Science.gov

Sample records for neurochemical profile quantification

  1. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  2. Quantitative in vivo neurochemical profiling in humans: where are we now?

    PubMed

    McKay, Jessica; Tkáč, Ivan

    2016-10-01

    Proton nuclear magnetic resonance spectroscopy of biofluids has become one of the key techniques for metabolic profiling and phenotyping. This technique has been widely used in a number of epidemiological studies and in a variety of health disorders. However, its utilization in brain disorders is limited due to the blood-brain barrier, which not only protects the brain from unwanted substances in the blood, but also substantially limits the potential of finding biomarkers for neurological disorders in serum. This review article focuses on the potential of localized in vivo proton magnetic resonance spectroscopy ((1)H-MRS) for non-invasive neurochemical profiling in the human brain. First, methodological aspects of (1)H-MRS (data acquisition, processing and metabolite quantification) that are essential for reliable non-invasive neurochemical profiling are described. Second, the power of (1)H-MRS-based neurochemical profiling is demonstrated using some examples of its application in neuroscience and neurology. Finally, the authors present their vision and propose necessary steps to establish (1)H-MRS as a method suitable for large-scale neurochemical profiling in epidemiological research. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  3. Regional Neurochemical Profiles in the Human Brain measured by 1H MRS at 7 Tesla using Local B1 Shimming

    PubMed Central

    Emir, Uzay E.; Auerbach, Edward J.; Van De Moortele, Pierre-Francois; Marjańska, Małgorzata; Uğurbil, Kamil; Terpstra, Melissa; Tkáč, Ivan; Öz, Gülin

    2011-01-01

    Increased sensitivity and chemical shift dispersion at ultra-high magnetic fields (UHF) enable precise quantification of an extended range of brain metabolites from 1H MR spectra. However, all previous neurochemical profiling studies using single-voxel MRS at 7 T were limited to data acquired from the occipital lobe with half-volume coils. Challenges of 1H MRS of the human brain at 7 T include short T2 and complex B1 distribution that imposes limitations in maximum achievable B1 strength. In this study, the feasibility of acquiring and quantifying short-echo (TE = 8 ms), single voxel 1H MR spectra from multiple brain regions was demonstrated by utilizing a 16-channel transceiver array coil with 16 independent transmit channels allowing local transmit B1 (B1+) shimming. Spectra were acquired from volumes-of-interest of 1 – 8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B1+ shimming substantially increased transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16-channel coil, artifact-free spectra were acquired with a small chemical shift displacement error (< 5% /ppm/direction) from all regions. The high SNR enabled the quantification of neurochemical profiles consisting of at least 9 metabolites including GABA, glutamate and glutathione in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, GABA levels were highest in the substantia nigra, total creatine highest in the cerebellar vermis and total choline highest in the pons, consistent with known biochemistry of these regions. These findings demonstrate that single voxel 1H MRS at UHF can reliably detect region-specific neurochemical patterns in the human brain and has the potential to objectively detect alterations in neurochemical

  4. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    PubMed

    Shimshoni, Jakob A; Winkler, Ilan; Golan, Ezekiel; Nutt, David

    2017-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-ol, 5-IT). These compounds were screened as potential second-generation anti-PTSD drugs, against a battery of human and non-human receptors, transporters, and enzymes, and their potencies as 5-HT2 receptor agonist and monoamine uptake inhibitors determined. All MDMA analogues displayed high binding affinities for 5-HT2a,b,c and NEα2 receptors, as well as significant 5-HT, DA, and NE uptake inhibition. 5-APB revealed significant agonist activity at the 5-HT2a,b,c receptors, while 6-MAPB, 5-MAPB, and 5-IT exhibited significant agonist activity at the 5-HT2c receptor. There was a lack of correlation between the results of functional uptake and the monoamine transporter binding assay. MDMA analogues emerged as potent and selective monoamine oxidase A inhibitors. Based on 6-MAPB favorable pharmacological profile, it was further subjected to IC50 determination for monoamine transporters. Overall, all MDMA analogues displayed higher monoamine receptor/transporter binding affinities and agonist activity at the 5-HT2a,c receptors as compared to MDMA.

  5. Regional neurochemical profiles in the human brain measured by ¹H MRS at 7 T using local B₁ shimming.

    PubMed

    Emir, Uzay E; Auerbach, Edward J; Van De Moortele, Pierre-Francois; Marjańska, Małgorzata; Uğurbil, Kamil; Terpstra, Melissa; Tkáč, Ivan; Oz, Gülin

    2012-01-01

    Increased sensitivity and chemical shift dispersion at ultra-high magnetic fields enable the precise quantification of an extended range of brain metabolites from (1)H MRS. However, all previous neurochemical profiling studies using single-voxel MRS at 7 T have been limited to data acquired from the occipital lobe with half-volume coils. The challenges of (1)H MRS of the human brain at 7 T include short T(2) and complex B(1) distribution that imposes limitations on the maximum achievable B(1) strength. In this study, the feasibility of acquiring and quantifying short-echo (TE =8 ms), single-voxel (1)H MR spectra from multiple brain regions was demonstrated by utilizing a 16-channel transceiver array coil with 16 independent transmit channels, allowing local transmit B(1) (B(1)(+)) shimming. Spectra were acquired from volumes of interest of 1-8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B(1)(+) shimming substantially increased the transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16-channel coil, artifact-free spectra were acquired with a small chemical shift displacement error (<5% /ppm/direction) from all regions. The high signal-to-noise ratio enabled the quantification of neurochemical profiles consisting of at least nine metabolites, including γ-aminobutyric acid, glutamate and glutathione, in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, γ-aminobutyric acid levels were highest in the substantia nigra, total creatine was highest in the cerebellar vermis and total choline was highest in the pons, consistent with the known biochemistry of these regions. These findings demonstrate that single-voxel (1)H MRS at ultra-high field can reliably detect region-specific neurochemical

  6. Distinct Neurochemical Profiles of Spinocerebellar Ataxias 1, 2, 6, and Cerebellar Multiple System Atrophy

    PubMed Central

    Öz, Gülin; Iltis, Isabelle; Hutter, Diane; Thomas, William; Bushara, Khalaf O.; Gomez, Christopher M.

    2011-01-01

    Hereditary and sporadic neurodegenerative ataxias are movement disorders that affect the cerebellum. Robust and objective biomarkers are critical for treatment trials of ataxias. In addition, such biomarkers may help discriminate between ataxia subtypes because these diseases display substantial overlap in clinical presentation and conventional MRI. Profiles of 10–13 neurochemical concentrations obtained in vivo by high field proton magnetic resonance spectroscopy (1H MRS) can potentially provide ataxia-type specific biomarkers. We compared cerebellar and brainstem neurochemical profiles measured at 4 T from 26 patients with spinocerebellar ataxias (SCA1, N=9; SCA2, N=7; SCA6, N=5) or cerebellar multiple system atrophy (MSA-C, N=5) and 15 age-matched healthy controls. The Scale for the Assessment and Rating of Ataxia (SARA) was used to assess disease severity. The patterns of neurochemical alterations relative to controls differed between ataxia types. Myo-inositol levels in the vermis, myo-inositol, total N-acetylaspartate, total creatine, glutamate, glutamine in the cerebellar hemispheres and myo-inositol, total N-acetylaspartate, glutamate in the pons were significantly different between patient groups (Bonferroni corrected p<0.05). The best MRS predictors were selected by a tree classification procedure and lead to 89% accurate classification of all subjects while the SARA scores overlapped considerably between patient groups. Therefore, this study demonstrated multiple neurochemical alterations in SCAs and MSA-C relative to controls and the potential for these neurochemical levels to differentiate ataxia types. Studies with higher numbers of patients and other ataxias are warranted to further investigate the clinical utility of neurochemical levels as measured by high-field MRS as ataxia biomarkers. PMID:20838948

  7. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  8. DIFFERENTIAL EFFECTS OF INTRAUTERINE GROWTH RESRICTION ON THE REGIONAL NEUROCHEMICAL PROFILE OF THE DEVELOPING RAT BRAIN

    PubMed Central

    Maliszewski-Hall, Anne M.; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2016-01-01

    Background Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Objective Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4T. Methods IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N=12) and NG (N=13) rats. Results In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P<0.01) and [glutamate]/[glutamine] ratio (P <0.05). Lower taurine concentrations were observed in the hippocampus (P<0.01) and striatum (P <0.05). Conclusion IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants. PMID:25972040

  9. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    PubMed

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo (1)H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  10. Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4 T

    PubMed Central

    Mangia, Silvia; Kumar, Anjali F; Moheet, Amir A; Roberts, Rachel J; Eberly, Lynn E; Seaquist, Elizabeth R; Tkáč, Ivan

    2013-01-01

    The impact of type 1 diabetes mellitus (T1DM) on a comprehensive neurochemical profile of the human brain has not been reported yet. Our previous proton magnetic resonance spectroscopy (1H-MRS) studies on T1DM were focused exclusively on the assessment of brain glucose levels. In this study, we reexamined our previously acquired data to investigate concentration differences of a broad range of neurochemicals in T1DM subjects relative to nondiabetic controls. We selected MRS data from 13 subjects (4 F/9 M, age=41±11 years, body mass index=26±3 kg/m2) with well-controlled T1DM (disease duration=22±12 years, A1C=7.5%±2.0%) and 32 nondiabetic controls (14 F/18 M, age=36±10 years, body mass index=27±6 kg/m2) acquired during a hyperglycemic clamp (target [Glc]plasma=300±15 mg/dL). The 1H-MR spectra were collected from two 15.6-mL voxels localized in gray-matter-rich occipital lobe and in white-matter-rich parieto-occipital region using ultra-short echo-time STEAM at 4 T. LCModel analysis allowed reliable quantification of 17 brain metabolites. Lower levels of N-acetylaspartate (by 6%, P=0.007) and glutamate (by 6%, P=0.045) were observed in the gray matter of T1DM patients as compared with controls, which might indicate a partial neuronal loss or dysfunction as a consequence of long-term T1DM. No other differences in metabolites were observed between subjects with T1DM and controls. PMID:23403373

  11. Neurochemical profile of the human cervical spinal cord determined by MRS.

    PubMed

    Hock, Andreas; Wilm, Bertram; Zandomeneghi, Giorgia; Ampanozi, Garyfalia; Franckenberg, Sabine; Zoelch, Niklaus; Wyss, Patrik Oliver; De Zanche, Nicola; Nordmeyer-Maßner, Jurek; Kraemer, Thomas; Thali, Michael; Ernst, Matthias; Kollias, Spyros; Henning, Anke

    2016-10-01

    MRS enables insight into the chemical composition of central nervous system tissue. However, technical challenges degrade the data quality when applied to the human spinal cord. Therefore, to date detection of only the most prominent metabolite resonances has been reported in the healthy human spinal cord. The aim of this investigation is to provide an extended metabolic profile including neurotransmitters and antioxidants in addition to metabolites involved in the energy and membrane metabolism of the human cervical spinal cord in vivo. To achieve this, data quality was improved by using a custom-made, cervical detector array together with constructive averaging of a high number of echo signals, which is enabled by the metabolite cycling technique at 3T. In addition, the improved spinal cord spectra were extensively cross-validated, in vivo, post-mortem in situ and ex vivo. Reliable identification of up to nine metabolites was achieved in group analyses for the first time. Distinct features of the spinal cord neurochemical profile, in comparison with the brain neurotransmission system, include decreased concentrations of the sum of glutamate and glutamate and increased concentrations of aspartate, γ-amino-butyric acid, scyllo-inositol and the sum of myo-inositol and glycine.

  12. The unique psychostimulant profile of (±)-modafinil: investigation of behavioral and neurochemical effects in mice.

    PubMed

    Mereu, Maddalena; Chun, Lauren E; Prisinzano, Thomas E; Newman, Amy H; Katz, Jonathan L; Tanda, Gianluigi

    2017-01-01

    Blockade of dopamine (DA) reuptake via the dopamine transporter (DAT) is a primary mechanism identified as underlying the therapeutic actions of (±)-modafinil (modafinil) and its R-enantiomer, armodafinil. Herein, we explored the neurochemical and behavioral actions of modafinil to better characterize its psychostimulant profile. Swiss-Webster mice were implanted with microdialysis probes in the nucleus accumbens shell (NAS) or core (NAC) to evaluate changes in DA levels related to acute reinforcing actions of drugs of abuse. Additionally, subjective effects were studied in mice trained to discriminate 10 mg/kg cocaine (i.p.) from saline. Modafinil (17-300 mg/kg, i.p.) significantly increased NAS and NAC DA levels that at the highest doses reached ~300% at 1 h, and lasted > 6 h in duration. These elevated DA levels did not show statistically significant regional differences between the NAS and NAC. Modafinil produced cocaine-like subjective effects at 56-100 mg/kg when administered at 5 and 60 min before the start of the session, and enhanced cocaine effects when the two were administered in combination. Despite sharing subjective effects with cocaine, modafinil's psychostimulant profile was unique compared to that of cocaine and like compounds. Modafinil had lower potency and efficacy than cocaine in stimulating NAS DA. In addition, the cocaine-like subjective effects of modafinil were obtained at lower doses and earlier onset times than expected based on its dopaminergic effects. These studies suggest that although inhibition of DA reuptake may be a primary mechanism underlying modafinil's therapeutic actions, non DA-dependent actions may be playing a role in its psychostimulant profile.

  13. High-resolution spatial mapping of changes in the neurochemical profile after focal ischemia in mice.

    PubMed

    Alf, Malte F; Lei, Hongxia; Berthet, Carole; Hirt, Lorenz; Gruetter, Rolf; Mlynarik, Vladimir

    2012-02-01

    After ischemic stroke, the ischemic damage to brain tissue evolves over time and with an uneven spatial distribution. Early irreversible changes occur in the ischemic core, whereas, in the penumbra, which receives more collateral blood flow, the damage is more mild and delayed. A better characterization of the penumbra, irreversibly damaged and healthy tissues is needed to understand the mechanisms involved in tissue death. MRSI is a powerful tool for this task if the scan time can be decreased whilst maintaining high sensitivity. Therefore, we made improvements to a (1)H MRSI protocol to study middle cerebral artery occlusion in mice. The spatial distribution of changes in the neurochemical profile was investigated, with an effective spatial resolution of 1.4 μL, applying the protocol on a 14.1-T magnet. The acquired maps included the difficult-to-separate glutamate and glutamine resonances and, to our knowledge, the first mapping of metabolites γ-aminobutyric acid and glutathione in vivo, within a metabolite measurement time of 45 min. The maps were in excellent agreement with findings from single-voxel spectroscopy and offer spatial information at a scan time acceptable for most animal models. The metabolites measured differed with respect to the temporal evolution of their concentrations and the localization of these changes. Specifically, lactate and N-acetylaspartate concentration changes largely overlapped with the T(2)-hyperintense region visualized with MRI, whereas changes in cholines and glutathione affected the entire middle cerebral artery territory. Glutamine maps showed elevated levels in the ischemic striatum until 8 h after reperfusion, and until 24 h in cortical tissue, indicating differences in excitotoxic effects and secondary energy failure in these tissue types. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.

    PubMed

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K

    2010-09-01

    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  15. Quantification of ethnic differences in facial profile.

    PubMed

    Sheridan, C S; Thomas, C D; Clement, J G

    1997-03-01

    The concept of facial aesthetics is becoming increasingly important and with the expanding application of orthodontic, orthognathic, plastic and reconstructive techniques to patients from continually diversifying ethnic backgrounds, it is timely that more elaborate methods for the evaluation of facial form are adopted. The aim of the present study was to further investigate the use of Fourier shape analysis in the quantification of facial profile and to investigate differences between racial groups. One hundred and twenty-two undergraduate dental students were photographed and surveyed for information pertaining to ethnic origin. Student's t-tests revealed significant differences (p < 0.05) in higher-order (fourth- and above) Fourier harmonics between male and female profiles, as well as between intervention and non-intervention groups. A comparison of multiple means test revealed significant differences (p < 0.05) in the third-order Fourier harmonic (vertex projection) between the Asian group and three other groups--Anglo-Celtic, Eastern European and Western European. Differences correlated with convexity in the lower third of the face, which was demonstrated by Fourier reconstruction.

  16. Evidencing different neurochemical profiles between thalamic nuclei using high resolution 2D-PRESS semi-LASER (1)H-MRSI at 7 T.

    PubMed

    Donadieu, Maxime; Le Fur, Yann; Confort-Gouny, Sylviane; Le Troter, Arnaud; Guye, Maxime; Ranjeva, Jean-Philippe

    2016-06-01

    To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei. Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER (1)H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume <0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data. The global assessment (ANOVA p < 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p < 0.0001), with significant effect of nucleus type (p < 0.0001) and hemisphere (p < 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p < 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p < 0.05). For the first time, using high resolution 2D-PRESS semi-LASER (1)H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.

  17. Mapping an Extended Neurochemical Profile at 3 and 7 T Using Accelerated High-Resolution Proton Magnetic Resonance Spectroscopic Imaging.

    PubMed

    Gruber, Stephan; Heckova, Eva; Strasser, Bernhard; Považan, Michal; Hangel, Gilbert J; Minarikova, Lenka; Trattnig, Siegfried; Bogner, Wolfgang

    2017-10-01

    The aim of this study was to compare high-resolution free induction decay magnetic resonance spectroscopic imaging (FID-MRSI) at 3 T and 7 T in the brain of healthy subjects and to showcase the clinical potential of accelerated FID-MRSI at 7 T in 2 brain tumor cases. In this institutional review board-approved study, 10 healthy volunteers (8 men/2 women; age: 31 ± 6 years) were measured at 3 T and 7 T (Trio and 7T-Magnetom; Siemens Healthcare, Germany) and 2 patients (a 38-year-old man and a 37-year-old man), 1 with an anaplastic oligoastrocytoma (grade III) and 1 with a low-grade glioma (oligodendroglioma), were measured at 7 T.Free induction decay MR spectroscopic imaging with 3.4 × 3.4 mm in-plane resolution was acquired in 30 minutes/6 minutes (nonaccelerated/accelerated) at both field strengths. In addition, single-slice or multi-slice FID-MRSI at 7 T was measured in the 2 tumor patients at 7 T within 6 minutes/13.3 minutes. Signal-to-noise ratio, Cramer-Rao lower bounds, and parallel imaging efficiency were assessed. High-resolution maps were created for 9 different brain metabolites. At 7 T, 7 of 9 metabolites were reliably mapped over the whole slice but only 3 at 3 T. Parallel imaging efficiency was significantly improved at 7 T. Signal-to-noise ratios were +75%/+66% (P < 0.05) for N-acetylaspartate and +97%/+74%(P < 0.05) for glutamine + glutamate [Glx], and full-widths at half maximum were +112%/+109%(P < 0.05) higher at 7 T than at 3 T (nonaccelerated/accelerated) for N-acetylaspartate. Cramer-Rao lower bounds were more than double at 3 T (P < 0.05). At 7 T, FID-MRSI allowed the assessment of an extended neurochemical profile and yielded better metabolic maps in only approximately 6 minutes at 7 T than in approximately 30 minutes at 3 T. We found several potentially therapy-relevant neurochemical alterations in brain tumors that highlighted the potential of fast clinical FID-MRSI at 7 T.

  18. Systems parasitology: effects of Fasciola hepatica on the neurochemical profile in the rat brain.

    PubMed

    Saric, Jasmina; Li, Jia V; Utzinger, Jürg; Wang, Yulan; Keiser, Jennifer; Dirnhofer, Stephan; Beckonert, Olaf; Sharabiani, Mansour T A; Fonville, Judith M; Nicholson, Jeremy K; Holmes, Elaine

    2010-07-01

    We characterize the integrated response of a rat host to the liver fluke Fasciola hepatica using a combination of (1)H nuclear magnetic resonance spectroscopic profiles (liver, kidney, intestine, brain, spleen, plasma, urine, feces) and multiplex cytokine markers of systemic inflammation. Multivariate mathematical models were built to describe the main features of the infection at the systems level. In addition to the expected modulation of hepatic choline and energy metabolism, we found significant perturbations of the nucleotide balance in the brain, together with increased plasma IL-13, suggesting a shift toward modulation of immune reactions to minimize inflammatory damage, which may favor the co-existence of the parasite in the host. Subsequent analysis of brain extracts from other trematode infection models (i.e. Schistosoma mansoni, and Echinostoma caproni) did not elicit a change in neural nucleotide levels, indicating that the neural effects of F. hepatica infection are specific. We propose that the topographically extended response to invasion of the host as characterized by the modulated global metabolic phenotype is stratified across several bio-organizational levels and reflects the direct manipulation of host-nucleotide balance.

  19. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats

    SciTech Connect

    Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V.

    2011-09-01

    Carvacrol is the major constituent of essential oils from aromatic plants. It showed antimicrobial, anticancer and antioxidant properties. Although it was approved for food use and included in the chemical flavorings list, no indication on its safety has been estimated. Since the use of plant extracts is relatively high among women, aim of this study was to evaluate carvacrol effects on female physiology and endocrine profiles by using female rats in proestrus and diestrus phases. Serotonin and metabolite tissue content in prefrontal cortex and nucleus accumbens, after carvacrol administration (0.15 and 0.45 g/kg p.o.), was measured. Drug effects in behavioral tests for alterations in motor activity, depression, anxiety-related behaviors and endocrine alterations were also investigated. While in proestrus carvacrol reduced serotonin and metabolite levels in both brain areas, no effects were observed in diestrus phase. Only in proestrus phase, carvacrol induced a depressive-like behavior in forced swimming test, without accompanying changes in ambulation. The improvement of performance in FST after subchronic treatment with fluoxetine (20 mg/kg) suggested a specific involvement of serotonergic system. No differences were found across the groups with regard to self-grooming behavior. Moreover, in proestrus phase, carvacrol reduced only estradiol levels without binding hypothalamic estradiol receptors. Our study showed an estrous-stage specific effect of carvacrol on depressive behaviors and endocrine parameters, involving serotonergic system. Given the wide carvacrol use not only as feed additive, but also as cosmetic essence and herbal remedy, our results suggest that an accurate investigation on the effects of its chronic exposure is warranted. - Highlights: > Carvacrol induced a depressive-like phenotype in rats, depending on ovarian cyclicity. > Carvacrol selectively reduced serotonin content in female rats in proestrus phase. > Carvacrol reduced serotonin levels

  20. Neurochemical and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, Org 3770 and its enantiomers.

    PubMed

    de Boer, T H; Maura, G; Raiteri, M; de Vos, C J; Wieringa, J; Pinder, R M

    1988-04-01

    The neurochemical and autonomic pharmacological profile of 1,2,3,4,10, 14b-hexahydro-2-methyl-pyrazino[2,1-a]pyrido[2,3-c]pyrido[2, 3-c] [2] benzazepine [+/-)Org 3770) and the related antidepressant drug, mianserin, have been compared. The uptake of [3H]noradrenaline ([3H]NA) in vitro was weakly affected by (+/-)Org 3770 (pKi = 5.6) in contrast to mianserin (pKi = 7.4). Both (+/-)Org 3770 and mianserin facilitated the release of [3H]NA in slices of cortex. The effects of NA mediated by alpha 2-adrenoceptors on the release of both [3H]NA or [3H]serotonin ([3H]5-HT) were antagonized by (+)Org 3770 with pKi values of 8.4 and 8.1, respectively. However, (-)Org 3770 only antagonized the effect of NA on the release of [3H]5-HT (pA2 = 7.7). The binding of [3H]rauwolscine to alpha 2-adrenoceptors was inhibited by (+/-)Org 3770 and mianserin with identical affinity (pKi = 7.0), whereas the binding of [3H]prazosin to alpha 1-adrenoceptors was less potently affected by (+/-)Org 3770 (pKi = 6.4) than by mianserin (pKi = 7.1). A similar difference was found for alpha 1- and alpha 2-adrenoceptors in vas deferens of the rat. The binding of [3H]mianserin to 5-HT2 receptors was less potently blocked by (+/-)Org 3770 (pKi = 8.1) than by mianserin (pKi = 9.4) while the binding of [3H]mepyramine to histamine-1 receptors was more potently affected by (+/-)Org 3770 (pKi = 9.3) than by mianserin (pKi = 8.75). The binding of [3H]quinuclidinylbenzilate to muscarinic cholinergic receptors was blocked equally by (+/-)Org 3770 (pKi = 6.1) and mianserin (pKi = 6.3). Similar data on tryptamine-D, histamine-1 and muscarinic cholinergic receptors in isolated organs were obtained. A prominent role for the blockade of alpha 2-adrenoceptors in the therapeutic effects of mianserin and (+/-)Org 3770 in depression is suggested, probably excluding a role of inhibition of the uptake of NA.

  1. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats.

    PubMed

    Páleníček, Tomáš; Fujáková, Michaela; Brunovský, Martin; Horáček, Jiří; Gorman, Ingmar; Balíková, Marie; Rambousek, Lukáš; Syslová, Kamila; Kačer, Petr; Zach, Petr; Bubeníková-Valešová, Věra; Tylš, Filip; Kubešová, Anna; Puskarčíková, Jana; Höschl, Cyril

    2013-01-01

    Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined. Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound. 2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc. 2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.

  2. Differences in the neurochemical and behavioural profiles of lisdexamfetamine methylphenidate and modafinil revealed by simultaneous dual-probe microdialysis and locomotor activity measurements in freely-moving rats.

    PubMed

    Rowley, Helen L; Kulkarni, Rajiv S; Gosden, Jane; Brammer, Richard J; Hackett, David; Heal, David J

    2014-03-01

    Lisdexamfetamine dimesylate is a novel prodrug approved in North America, Europe and Brazil for treating attention deficit hyperactivity disorder (ADHD). It undergoes rate-limited hydrolysis by red blood cells to yield d-amphetamine. Following our previous work comparing lisdexamfetamine with d-amphetamine, the neurochemical and behavioural profiles of lisdexamfetamine, methylphenidate and modafinil were compared by dual-probe microdialysis in the prefrontal cortex (PFC) and striatum of conscious rats with simultaneous locomotor activity measurement. We employed pharmacologically equivalent doses of all compounds and those that spanned the therapeutically relevant and psychostimulant range. Lisdexamfetamine (0.5, 1.5, 4.5 mg/kg d-amphetamine base, per os (po)), methylphenidate (3, 10, 30 mg/kg base, po) and modafinil (100, 300, 600 mg/kg base, po) increased efflux of dopamine and noradrenaline in PFC, and dopamine in striatum. Only lisdexamfetamine increased 5-hydroxytryptamine (5-HT) efflux in PFC and striatum. Lisdexamfetamine had larger and more sustained effects on catecholaminergic neurotransmission than methylphenidate or modafinil. Linear correlations were observed between striatal dopamine efflux and locomotor activity for lisdexamfetamine and methylphenidate, but not modafinil. Regression slopes revealed greater increases in extracellular dopamine could be elicited without producing locomotor activation by lisdexamfetamine than methylphenidate. These results are consistent with clinical findings showing that lisdexamfetamine is an effective ADHD medication with prolonged duration of action and good separation between its therapeutic actions and stimulant side-effects.

  3. The neurochemical hypothesis of 'theory of mind'.

    PubMed

    Abu-Akel, A

    2003-03-01

    This paper aims to explore the neurochemical basis of the ability to represent one's own or other's mental states such as intentions, beliefs, wants and knowledge, an ability often referred to as 'theory of mind'. Based on neurochemical and psychopharmacological investigations in autism and schizophrenia, pathologies in which this ability is impaired, it is hypothesized that 'theory of mind' abilities are contingent on the integrity of the serotonergic and dopaminergic system. This hypothesis is discussed in light of the system's neurochemical properties and role in cognition. It is suggested that specific abnormalities to this system can account for differences in the profile of 'theory of mind' impairments that may exist among patients belonging to different pathologies.

  4. Neurochemical Profile of Dementia Pugilistica

    PubMed Central

    Kokjohn, Tyler A.; Maarouf, Chera L.; Daugs, Ian D.; Hunter, Jesse M.; Whiteside, Charisse M.; Malek-Ahmadi, Michael; Rodriguez, Emma; Kalback, Walter; Jacobson, Sandra A.; Sabbagh, Marwan N.; Beach, Thomas G.

    2013-01-01

    Abstract Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ–degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital. PMID:23268705

  5. Neurochemical profile of dementia pugilistica.

    PubMed

    Kokjohn, Tyler A; Maarouf, Chera L; Daugs, Ian D; Hunter, Jesse M; Whiteside, Charisse M; Malek-Ahmadi, Michael; Rodriguez, Emma; Kalback, Walter; Jacobson, Sandra A; Sabbagh, Marwan N; Beach, Thomas G; Roher, Alex E

    2013-06-01

    Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.

  6. Leveraging transcript quantification for fast computation of alternative splicing profiles

    PubMed Central

    Alamancos, Gael P.; Pagès, Amadís; Trincado, Juan L.; Bellora, Nicolás; Eyras, Eduardo

    2015-01-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  7. Acquiring local field potential information from amperometric neurochemical recordings

    PubMed Central

    Zhang, Hao; Lin, Shih-Chieh; Nicolelis, Miguel A.L.

    2009-01-01

    Simultaneous acquisition of in vivo electrophysiological and neurochemical information is essential for understanding how endogenous neurochemicals modulate the dynamics of brain activity. However, up to now such a task has rarely been accomplished due to the major technical challenge of operating two independent recording systems simultaneously in real-time. Here we propose a simpler solution for achieving this goal by using only a standard electrochemical technique - amperometry. To demonstrate its feasibility, we compared amperometric signals with simultaneously recorded local field potential (LFP) signals. We found that the high frequency component (HFC) of the amperometric signals did not reflect neurochemical fluctuations, but instead it resembled LFPs in several aspects, including: (1) coherent spectral fluctuations; (2) clear characterization of different brain states; (3) identical hippocampal theta depth profile. As such, our findings provide the first demonstration that both LFP and local neurochemical information can be simultaneously acquired from electrochemical sensors alone. PMID:19428527

  8. Profiling and Quantification of Phenolics in Stevia rebaudiana Leaves.

    PubMed

    Karaköse, Hande; Müller, Anja; Kuhnert, Nikolai

    2015-10-21

    Stevia rebaudiana (Bertoni) is a plant from the Asteraceae family with significant economic value because of the steviol glycoside sweeteners in its leaves. Chlorogenic acids and flavonoid glycosides of S. rebaudiana from seven different botanical varieties cultivated over two years and harvested three times a year in eight European locations were profiled and quantified in a total of 166 samples. Compounds quantified include chlorogenic acids as well as flavonoid glycosides and aglycons. All phenolic concentration profiles show a perfect Gaussian distribution. Principal component analyses allow distinction between varieties of different geographical origin and distinction between different plant varieties. Although concentrations of all chlorogenic acids showed a positive correlation, no correlation was observed for flavonoid glycosides. Conclusions from these findings with respect to the biosynthesis and functional role of phenolics in S. rebaudiana are discussed.

  9. Neurochemical correlates of caudate atrophy in Huntington disease

    PubMed Central

    Padowski, Jeannie M.; Weaver, Kurt E.; Richards, Todd L.; Laurino, Mercy Y.; Samii, Ali; Aylward, Elizabeth H.; Conley, Kevin E.

    2014-01-01

    BACKGROUND The precise pathogenic mechanisms of Huntington disease (HD) are unknown, but can be tested in vivo using proton magnetic resonance spectroscopy (1H MRS) to measure neurochemical changes. OBJECTIVE To evaluate neurochemical differences in HD gene mutation-carriers (HGMC) vs. controls, and to investigate relationships among function, brain structure and neurochemistry in HD. Since previous 1H MRS studies have yielded varied conclusions about HD neurochemical changes, an additional goal was to compare two 1H MRS data analysis approaches. METHODS HGMC with pre-manifest to early HD and controls underwent evaluation of motor function, MR imaging and localized 1H MRS in caudate and frontal lobe. Analytical approaches tested included absolute quantitation (unsuppressed water signal as an internal reference) and relative quantification (calculating ratios of all neurochemical signals within a voxel). RESULTS We identified a suite of neurochemicals reduced in concentration proportionally to loss of caudate volume in HGMC. Caudate concentrations of NAA, creatine, choline, and caudate and frontal concentrations of glutamate+glutamine and glutamate correlated with caudate volume in HGMC subjects. The relative, but not the absolute quantitation approach revealed disease-related differences; the Glx signal was decreased relative to other neurochemicals in caudate of HGMC subjects vs. controls. CONCLUSIONS This is the first study to demonstrate correlation among structure, function and chemical measures in HD brain. Additionally, we demonstrate that a relative quantitation approach may enable magnification of subtle differences between groups. Observation of decreased glutamate-glutamine signals suggests that glutamate signaling may be disrupted relatively early in HD, with important implications for therapeutic approaches. PMID:24442623

  10. Neurochemical correlates of caudate atrophy in Huntington's disease.

    PubMed

    Padowski, Jeannie M; Weaver, Kurt E; Richards, Todd L; Laurino, Mercy Y; Samii, Ali; Aylward, Elizabeth H; Conley, Kevin E

    2014-03-01

    The precise pathogenic mechanisms of Huntington's disease (HD) are unknown but can be tested in vivo using proton magnetic resonance spectroscopy ((1)H MRS) to measure neurochemical changes. The objective of this study was to evaluate neurochemical differences in HD gene mutation carriers (HGMCs) versus controls and to investigate relationships among function, brain structure, and neurochemistry in HD. Because previous (1)H MRS studies have yielded varied conclusions about HD neurochemical changes, an additional goal was to compare two (1)H MRS data analysis approaches. HGMCs with premanifest to early HD and controls underwent evaluation of motor function, magnetic resonance imaging, and localized (1)H MRS in the caudate and the frontal lobe. Analytical approaches that were tested included absolute quantitation (unsuppressed water signal as an internal reference) and relative quantification (calculating ratios of all neurochemical signals within a voxel). We identified a suite of neurochemicals that were reduced in concentration proportionally to loss of caudate volume in HGMCs. Caudate concentrations of N-acetylaspartate (NAA), creatine, choline, and caudate and frontal lobe concentrations of glutamate plus glutamine (Glx) and glutamate were correlated with caudate volume in HGMCs. The relative, but not the absolute, quantitation approach revealed disease-related differences; the Glx signal was decreased relative to other neurochemicals in the caudate of HGMCs versus controls. This is the first study to demonstrate a correlation among structure, function, and chemical measures in HD brain. Additionally, we demonstrate that a relative quantitation approach may enable the magnification of subtle differences between groups. Observation of decreased Glx suggests that glutamate signaling may be disrupted relatively early in HD, which has important implications for therapeutic approaches.

  11. Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification

    PubMed Central

    Yeatman, Jason D.; Dougherty, Robert F.; Myall, Nathaniel J.; Wandell, Brian A.; Feldman, Heidi M.

    2012-01-01

    Tractography based on diffusion weighted imaging (DWI) data is a method for identifying the major white matter fascicles (tracts) in the living human brain. The health of these tracts is an important factor underlying many cognitive and neurological disorders. In vivo, tissue properties may vary systematically along each tract for several reasons: different populations of axons enter and exit the tract, and disease can strike at local positions within the tract. Hence quantifying and understanding diffusion measures along each fiber tract (Tract Profile) may reveal new insights into white matter development, function, and disease that are not obvious from mean measures of that tract. We demonstrate several novel findings related to Tract Profiles in the brains of typically developing children and children at risk for white matter injury secondary to preterm birth. First, fractional anisotropy (FA) values vary substantially within a tract but the Tract FA Profile is consistent across subjects. Thus, Tract Profiles contain far more information than mean diffusion measures. Second, developmental changes in FA occur at specific positions within the Tract Profile, rather than along the entire tract. Third, Tract Profiles can be used to compare white matter properties of individual patients to standardized Tract Profiles of a healthy population to elucidate unique features of that patient's clinical condition. Fourth, Tract Profiles can be used to evaluate the association between white matter properties and behavioral outcomes. Specifically, in the preterm group reading ability is positively correlated with FA measured at specific locations on the left arcuate and left superior longitudinal fasciculus and the magnitude of the correlation varies significantly along the Tract Profiles. We introduce open source software for automated fiber-tract quantification (AFQ) that measures Tract Profiles of MRI parameters for 18 white matter tracts. With further validation, AFQ Tract

  12. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile.

    PubMed

    Kiss, Béla; Horváth, Attila; Némethy, Zsolt; Schmidt, Eva; Laszlovszky, István; Bugovics, Gyula; Fazekas, Károly; Hornok, Katalin; Orosz, Szabolcs; Gyertyán, István; Agai-Csongor, Eva; Domány, György; Tihanyi, Károly; Adham, Nika; Szombathelyi, Zsolt

    2010-04-01

    Cariprazine {RGH-188; trans-N-[4-[2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl]cyclohexyl]-N',N'-dimethylurea hydrochloride}, a novel candidate antipsychotic, demonstrated approximately 10-fold higher affinity for human D(3) versus human D(2L) and human D(2S) receptors (pKi 10.07, 9.16, and 9.31, respectively). It displayed high affinity at human serotonin (5-HT) type 2B receptors (pK(i) 9.24) with pure antagonism. Cariprazine had lower affinity at human and rat hippocampal 5-HT(1A) receptors (pK(i) 8.59 and 8.34, respectively) and demonstrated low intrinsic efficacy. Cariprazine displayed low affinity at human 5-HT(2A) receptors (pK(i) 7.73). Moderate or low affinity for histamine H(1) and 5-HT(2C) receptors (pK(i) 7.63 and 6.87, respectively) suggest cariprazine's reduced propensity for adverse events related to these receptors. Cariprazine demonstrated different functional profiles at dopamine receptors depending on the assay system. It displayed D(2) and D(3) antagonism in [(35)S]GTPgammaS binding assays, but stimulated inositol phosphate (IP) production (pEC(50) 8.50, E(max) 30%) and antagonized (+/-)-quinpirole-induced IP accumulation (pK(b) 9.22) in murine cells expressing human D(2L) receptors. It had partial agonist activity (pEC(50) 8.58, E(max) 71%) by inhibiting cAMP accumulation in Chinese hamster ovary cells expressing human D(3) receptors and potently antagonized R(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphtalene HBr (7-OH-DPAT)-induced suppression of cAMP formation (pK(b) 9.57). In these functional assays, cariprazine showed similar (D(2)) or higher (D(3)) antagonist-partial agonist affinity and greater (3- to 10-fold) D(3) versus D(2) selectivity compared with aripiprazole. In in vivo turnover and biosynthesis experiments, cariprazine demonstrated D(2)-related partial agonist and antagonist properties, depending on actual dopaminergic tone. The antagonist-partial agonist properties of cariprazine at D(3) and D(2) receptors, with very high

  13. Unrequited: neurochemical enhancement of love.

    PubMed

    Bamford, Rebecca

    2015-07-01

    I raise several concerns with Earp and colleagues' analysis of enhancement through neurochemical modulation of love as a key issue in contemporary neuroethics. These include: (i) strengthening their deflation of medicalization concerns by showing how the objection that love should be left outside of the scope of medicine would directly undermine the goal of medicine; (ii) developing stronger analysis of the social and political concerns relevant to neurochemical modulation of love, by exploring and suggesting possible counters to ways in which 'wellbeing' may be used as a tool of oppression; (iii) providing reasons to support a broad need for ecological investigation of, and indeed ecological education concerning, neurotechnology; (iv) suggesting ways in which philosophy, and the humanities more broadly, remain directly relevant to responding effectively to issues in contemporary neuroethics.

  14. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases.

    PubMed

    Marin, Raquel; Fabelo, Noemí; Martín, Virginia; Garcia-Esparcia, Paula; Ferrer, Isidre; Quinto-Alemany, David; Díaz, Mario

    2017-01-01

    Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimer's disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the β-amyloidogenic pathway, including β-amyloid precursor protein, presenilin 1, β-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinson's disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the β-amyloidogenic pathway in DLB can facilitate generation of β-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimer's disease pathology, particularly β-amyloid deposition, in DLB. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Extended exposure to sugar and/or caffeine produces distinct behavioral and neurochemical profiles in the orbitofrontal cortex of rats: Implications for neural function.

    PubMed

    Franklin, Jane L; Mirzaei, Mehdi; Wearne, Travis A; Homewood, Judi; Goodchild, Ann K; Haynes, Paul A; Cornish, Jennifer L

    2016-11-01

    Caffeine is a psychostimulant commonly consumed with high levels of sugar. The increased availability of highly caffeinated, high sugar energy drinks could put some consumers at risk of being exposed to high doses of caffeine and sugar. Notably, research that has examined the consequences of this combination is limited. Here, we explored the effect of chronic exposure to caffeine and/or sugar on behavior and protein levels in the orbitofrontal cortex (OFC) of rats. The OFC brain region has been implicated in neuropsychiatric conditions, including obesity and addiction behaviors. Adult male Sprague-Dawley rats were treated for 26 days with control, caffeine (0.6 g/L), 10% sugar, or combination of both. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label-free quantitative shotgun analysis revealed that 21, 12, and 23% of proteins identified in the OFC were differentially expressed by sugar and/or caffeine. The results demonstrate that the intake of high levels of sugar and/or low to moderate levels of caffeine has different behavioral consequences. Moreover, each treatment results in a unique proteomic profile with different implications for neural health.

  16. Physical predictors, behavioural/emotional attributes and neurochemical determinants of dominant behaviour.

    PubMed

    Chichinadze, Konstantin; Chichinadze, Nodar; Gachechiladze, Ledi; Lazarashvili, Ann; Nikolaishvili, Marina

    2014-11-01

    Significant differences in physical and behavioural/emotional/cognitive predictors and attributes, as well as of neurochemical inducers of behaviour, between dominant and subordinate animals are discussed. It is still unknown whether these factors are the causes of differences between dominants and subordinates, or vice versa whether the differences between dominants and subordinates are the origin of differences in these factors. The possibility is discussed that no differences exist among juveniles in the concentrations of neurochemical agents (known in the literature as determinants of dominance) between the brains of future dominants and future subordinates. We describe a study design that makes the assessment of the 'original' neurochemical profile of the brain possible.

  17. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids

    PubMed Central

    Kailasa, Suresh Kumar; Wu, Hui-Fen

    2013-01-01

    Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed. PMID:24381533

  18. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    PubMed Central

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  19. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization.

    PubMed

    Adkins, D E; McClay, J L; Vunck, S A; Batman, A M; Vann, R E; Clark, S L; Souza, R P; Crowley, J J; Sullivan, P F; van den Oord, E J C G; Beardsley, P M

    2013-11-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In this study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine (MA)-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate, FDR <0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent MA levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Quantification problems in depth profiling of pwr steels using Ar+ ion sputtering and XPS analysis.

    PubMed

    Ignatova, Velislava A; Van Den Berghe, Sven; Van Dyck, Steven; Popok, Vladimir N

    2006-10-01

    The oxide scales of AISI 304 formed in boric acid solutions at 300 degrees C and pH = 4.5 have been studied using X-ray photoelectron spectroscopy (XPS) depth profiling. The present focus is depth profile quantification both in depth and chemical composition on a molecular level. The roughness of the samples is studied by atomic force microscopy before and after sputtering, and the erosion rate is determined by measuring the crater depth with a surface profilometer and vertical scanning interferometry. The resulting roughness (20-30 nm), being an order of magnitude lower than the crater depth (0.2-0.5 microm), allows layer-by-layer profiling, although the ion-induced effects result in an uncertainty of the depth calibration of a factor of 2. The XPS spectrum deconvolution and data evaluation applying target factor analysis allows chemical speciation on a molecular level. The elemental distribution as a function of the sputtering time is obtained, and the formation of two layers is observed-one hydroxide (mainly iron-nickel based) on top and a second one deeper, mainly consisting of iron-chromium oxides.

  1. Neurochemical Profiles of some novel psychoactive substances

    PubMed Central

    Iversen, Les; Gibbons, Simon; Treble, Ric; Setola, Vincent; Huang, Xi-Ping; Roth, Bryan L.

    2013-01-01

    Fourteen substances from the class of drugs sometimes known as “legal highs” were screened against a battery of human receptors in binding assays, and their potencies as inhibitors of monoamine uptake determined in functional in vitro assays. Thirteen of the test substances acted as inhibitors of monoamine uptake at submicromolar concentrations, including 9 potent inhibitors of the dopamine transporter (DAT), 12 potent inhibitors of the norepinephrine transporter (NET) and 4 potent inhibitors of the serotonin transporter (SERT). Seven compounds acted as submicromolar inhibitors of both DAT and NET, and three substances 1-(benzofuran-5-yl)propan-2-amine (5-APB),1-naphthalen-2-yl-2-pyrrolidin-1-ylpentan-1-one hydrochloride, (“naphyrone”) and 1-naphthalen-1-yl-2-pyrrolidin-1-ylpentan-1-one hydrochloride, (“1-naphyrone”) were submicromolar inhibitors of all three monoamine transporters. There was a lack of correlation between results of functional uptake experiments and in vitro binding assays for the monoamine transporters. There was also no correlation between the human behavioural effects of the substances and the results of bindings assays for a range of receptor targets, although 1-(benzofuran-5-yl)propan-2-amine(5-APB), 1-(benzofuran-6-yl)propan-2-amine hydrochloride(6-APB) and 5-iodo-2,3-dihydro-1H-inden-2-amine hydrochloride,(5-iodo-aminoindane) exhibited <100nM affinities for 5HT2B and α2C receptors. Functional assays revealed that 5-APB and 6-APB were potent full agonists at 5HT2B receptors. PMID:23261499

  2. Profiling and relative quantification of multiply nitrated and oxidized fatty acids.

    PubMed

    Milic, Ivana; Griesser, Eva; Vemula, Venukumar; Ieda, Naoya; Nakagawa, Hidehiko; Miyata, Naoki; Galano, Jean-Marie; Oger, Camille; Durand, Thierry; Fedorova, Maria

    2015-07-01

    The levels of nitro fatty acids (NO2-FA), such as nitroarachidonic, nitrolinoleic, nitrooleic, and dinitrooleic acids, are elevated under various inflammatory conditions, and this results in different anti-inflammatory effects. However, other multiply nitrated and nitro-oxidized FAs have not been studied so far. Owing to the low concentrations in vivo, NO2-FA analytics usually relies on targeted gas chromatography-tandem mass spectrometry (MS/MS) or liquid chromatography-MS/MS, and thus require standard compounds for method development. To overcome this limitation and increase the number and diversity of analytes, we performed in-depth mass spectrometry (MS) profiling of nitration products formed in vitro by incubating fatty acids with NO2BF4, and ONOO(-). The modified fatty acids were used to develop a highly specific and sensitive multiple reaction monitoring LC-MS method for relative quantification of 42 different nitrated and oxidized species representing three different groups: singly nitrated, multiply nitrated, and nitro-oxidized fatty acids. The method was validated in in vitro nitration kinetic studies and in a cellular model of nitrosative stress. NO2-FA were quantified in lipid extracts from 3-morpholinosydnonimine-treated rat primary cardiomyocytes after 15, 30, and 70 min from stress onset. The relatively high levels of dinitrooleic, nitroarachidonic, hydroxynitrodocosapenataenoic, nitrodocosahexaenoic, hydroxynitrodocosahexaenoic, and dinitrodocosahexaenoic acids confirm the presence of multiply nitrated and nitro-oxidized fatty acids in biological systems for the first time. Thus, in vitro nitration was successfully used to establish a targeted LC-MS/MS method that was applied to complex biological samples for quantifying diverse NO2-FA. Graphical Abstract Schematic representation of study design which combined in vitro nitration of different fatty acids, MS/MS characterization and optimization of MRM method for relative quantification, which was

  3. Modafinil: a review of neurochemical actions and effects on cognition.

    PubMed

    Minzenberg, Michael J; Carter, Cameron S

    2008-06-01

    Modafinil (2-[(Diphenylmethyl) sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy adult humans, and clinical populations. We searched PubMed with the search term 'modafinil' and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for

  4. Neurochemical oscillations in the basal ganglia.

    PubMed

    Noori, Hamid Reza; Jäger, Willi

    2010-01-01

    This work represents an attempt to elucidate the neurochemical processes in the basal ganglia by mathematical modelling. The correlation between neurochemistry and electrophysiology has been used to construct a dynamical system based on the basal ganglia's network structure. Mathematical models were constructed for different physical scales to reformulate the neurochemical and electrophysiological behaviour from synapses up to multi-compartment systems. Transformation functions have been developed to transit between the different scales. We show through numerical simulations that this network produces oscillations in the electrical potentials as well as in neurotransmitter concentrations. In agreement with pharmacological experiments, a parameter sensitivity analysis reveals temporary changes in the neurochemical and electrophysiological systems after single exposure to antipsychotic drugs. This behaviour states the structural stability of the system. The correlation between the neurochemical dynamics and drug-induced behaviour provides the perspective for novel neurobiological hypotheses.

  5. Results of immunocytochemical, neurochemical, and behavioral studies in aluminum-induced neurofilamentous degeneration.

    PubMed

    Pendlebury, W W; Beal, M F; Kowall, N W; Solomon, P R

    1987-01-01

    We undertook a series of experiments designed to further characterize behavioral, neurochemical and immunocytochemical features of aluminum neurotoxicity in the rabbit. Aluminum-exposed rabbits developed learning and memory deficits which were strongly correlated with the degree of whole brain neurofibrillary degeneration (NFD), but not with motor, sensory or motivational factors. Immunocytochemical probes demonstrated that phosphorylated neurofilaments accumulate in neuronal perikarya containing NFD, and double-labelling techniques suggested that NFD affects primarily the projection-type neurons. Finally, the neurochemical profile of the aluminum-intoxicated rabbit showed both similarities and discrepancies to that of Alzheimer's disease (AD).

  6. Quantification of (1) H-MRS signals based on sparse metabolite profiles in the time-frequency domain.

    PubMed

    Parto Dezfouli, Mohammad Ali; Parto Dezfouli, Mohsen; Ahmadian, Alireza; Frangi, Alejandro F; Esmaeili Rad, Melika; Saligheh Rad, Hamidreza

    2017-02-01

    MRS is an analytical approach used for both quantitative and qualitative analysis of human body metabolites. The accurate and robust quantification capability of proton MRS ((1) H-MRS) enables the accurate estimation of living tissue metabolite concentrations. However, such methods can be efficiently employed for quantification of metabolite concentrations only if the overlapping nature of metabolites, existing static field inhomogeneity and low signal-to-noise ratio (SNR) are taken into consideration. Representation of (1) H-MRS signals in the time-frequency domain enables us to handle the baseline and noise better. This is possible because the MRS signal of each metabolite is sparsely represented, with only a few peaks, in the frequency domain, but still along with specific time-domain features such as distinct decay constant associated with T2 relaxation rate. The baseline, however, has a smooth behavior in the frequency domain. In this study, we proposed a quantification method using continuous wavelet transformation of (1) H-MRS signals in combination with sparse representation of features in the time-frequency domain. Estimation of the sparse representations of MR spectra is performed according to the dictionaries constructed from metabolite profiles. Results on simulated and phantom data show that the proposed method is able to quantify the concentration of metabolites in (1) H-MRS signals with high accuracy and robustness. This is achieved for both low SNR (5 dB) and low signal-to-baseline ratio (-5 dB) regimes.

  7. Simultaneous wireless electrophysiological and neurochemical monitoring

    NASA Astrophysics Data System (ADS)

    Murari, Kartikeya; Mollazadeh, Mohsen; Thakor, Nitish; Cauwenberghs, Gert

    2008-08-01

    Information processing and propagation in the central nervous system is mostly electrical in nature. At synapses, electrical signals cause the release of neurotransmitters like dopamine, glutamate etc., that are sensed by post-synaptic neurons resulting in signal propagation or inhibition. It can be very informative to monitor electrical and neurochemical signals simultaneously to understand the mechanisms underlying normal or abnormal brain function. We present an integrated system for the simultaneous wireless acquisition of neurophysiological and neurochemical activity. Applications of the system to neuroscience include monitoring EEG and glutamate in rat somatosensory cortex following global ischemia.

  8. Characterization of In Vitro Release of Neurochemicals from the Intermediate Area of the Rat Thoracic Spinal Cord: Regulation by Coexisting Neurochemical and Presynaptic Autoreceptors

    DTIC Science & Technology

    1995-06-16

    APPROVAL SHEET Title of Dissertation: "Characterization of in vitro release of neurochemicals from the intennediate area of the rat thoracic spinal...release of neurochemicals from the intennediate area of the rat thoracic spinal cord: Regulation by coexisting neurochemical and presynaptic...Release of Neurochemicals from the Intermediate Area of the Rat Thoracic Spinal Cord : Regulation by coexisting Neurochemicals and Presynaptic

  9. Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes.

    PubMed

    Santos, Camila Leite; Roppa, Paola Haack Amaral; Truccolo, Pedro; Fontella, Fernanda Urruth; Souza, Diogo Onofre; Bobermin, Larissa Daniele; Quincozes-Santos, André

    2017-10-04

    The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.

  10. [Neurochemical mechanisms of sleep regulation].

    PubMed

    2009-01-01

    Sleep is a complex, global and reversible behavioral state of all mammals, that is homeostatically regulated. Generally it is also defined as a rapidly reversible state of immobility and reduced sensory responsiveness. Still, there is no definition that has succeded in satisfying all aspects of sleep. The failure to define sleep as a single behavior lies in several facts: (1) sleep is not a homogenous state, but continuum of number of mixed states; (2) the control mechanisms of sleep are manifested at all levels of biological organization--from genes and intracellular mechanisms to the networks of neuronal populations within the central nervous system that control movement, arousal, autonomic functions, behavior and cognition; (3) the activity and interactions of these neurochemically greatly heterogenous neuronal populations are dependent of two biological rhythms--the circadian rhythm of wake/sleep and periodic cycles of NREM/REM sleep as two main sleep states. There are several levels of sleep control. The brain forebrain areas serve to control neuropsychology of dreaming; thalamo-cortical system controls NREM sleep rhythms, EEG activation and deactivation; hippocampo-cortical system controls memory consolidation; hypothalamic nuclei are the sources of circadian rhythm and sleep onset control; the control of periodic NREM/REM cycling is within the pons. The wake promoting neuronal populations are within the brainstem, midbrain, hypothalamus and basal forebrain. The main pontine wake-promoting centers are the noradrenergic neurons of locus coeruleus, the serotonergic neurons of dorsal raphe nucleus and the cholinerigic neurons of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus. The reciprocal connections and interactions of these neurons, and their opposite discharge pattern activity from wake to NREM and REM sleep have been the background of reciprocal interaction hypothesis of REM sleep generation. The wake-promoting neurons at the

  11. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc.

  12. Quantification and profiling of lipophilic marine toxins in microalgae by UHPLC coupled to high-resolution orbitrap mass spectrometry.

    PubMed

    Orellana, Gabriel; Van Meulebroek, Lieven; Van Vooren, Sarah; De Rijcke, Maarten; Vandegehuchte, Michiel; Janssen, Colin R; Vanhaecke, Lynn

    2015-08-01

    During the last decade, a significant increase in the occurrence of harmful algal blooms (HABs), linked to repetitive cases of shellfish contamination has become a public health concern and therefore, accurate methods to detect marine toxins in different matrices are required. In this study, we developed a method for profiling lipophilic marine microalgal toxins based on ultra-high-performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry (UHPLC-HR-Orbitrap MS). Extraction of selected toxins (okadaic acid (OA), dinophysistoxin-1 (DTX-1), pectenotoxin-2 (PTX-2), azaspiracid-1 (AZA-1), yessotoxin (YTX) and 13-desmethyl spirolide C (SPX-1)) was optimized using a Plackett-Burman design. Three key algal species, i.e., Prorocentrum lima, Protoceratium reticulatum and Alexandrium ostenfeldii were used to test the extraction efficiency of OA, YTXs and SPXs, respectively. Prorocentrum micans, fortified with certified reference solutions, was used for recovery studies. The quantitative and confirmatory performance of the method was evaluated according to CD 2002/657/EC. Limits of detection and quantification ranged between 0.006 and 0.050 ng mL(-1) and 0.018 to 0.227 ng mL(-1), respectively. The intra-laboratory reproducibility ranged from 6.8 to 11.7 %, repeatability from 6.41 to 11.5 % and mean corrected recoveries from 81.9 to 119.6 %. In addition, algae cultures were retrospectively screened for analogues and metabolites through a homemade database. Using the ToxID software programme, 18 toxin derivates were detected in the extract of three toxin producing microalgae species. In conclusion, the generic extraction and full-scan HRMS approach offers an excellent quantitative performance and simultaneously allows to profile analogues and metabolites of marine toxins in microalgae. Graphical Abstract Optimization of extraction, detection and quantification of lipophilic marine toxins in microalgae by UHPLC-HR Orbitrap MS.

  13. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  14. Neurochemical alterations associated with borderline personality disorder.

    PubMed

    Atmaca, Murad; Karakoc, Tevfik; Mermi, Osman; Gurkan Gurok, M; Yildirim, Hanefi

    2015-01-01

    In neuroimaging on borderline personality disorder, prior studies focused on the hippocampus and amygdala, as mentioned above. However, no study investigated whether there were neurochemical changes in the patients with borderline personality disorder. Therefore, in the present study, we aimed to investigate neurochemical change of patients diagnosed with borderline disorder and hypothesized that neurochemicals would change in the hippocampus region of these patients. Seventeen patients and the same number of healthy control subjects were analyzed by using a 1.5 Tesla GE Signa Imaging System. N-acetylaspartate (NAA), choline compounds (CHO), and creatine (CRE) values of hippocampal region were measured. The mean NAA/CRE ratio in the hippocampus region was significantly reduced in the patients with borderline personality disorder compared to that of healthy control subjects, In addition, NAA/CHO ratio of the patients with borderline personality disorder was also significantly reduced when compared to that of healthy subjects. There was no difference in the ratio of CHO/CRE. In summary, we present evidence for reduced NAA in the patients with borderline personality disorder.

  15. HPLC profiling and quantification of active principles in leaves of Hedera helix L.

    PubMed

    Demirci, B; Goppel, M; Demirci, F; Franz, G

    2004-10-01

    Ivy (Hedera helix L., Araliaceae), is an evergreen medicinal and ornamental plant. Depending on leaf polymorphism different shaped ivy leaves were extracted and subsequently analyzed by reversed-phase high performance liquid chromatography (RP-HPLC). Quantitative determination of its most prominent saponins hederacoside C (1) and alpha-hederin (2) from different ivy leaf extracts were detected, validated and optimized for quick profiling. The linearity of response, repeatability and reproducibility of the applied RP-HPLC method are reported.

  16. Quantification of cell identity from single-cell gene expression profiles.

    PubMed

    Efroni, Idan; Ip, Pui-Leng; Nawy, Tal; Mello, Alison; Birnbaum, Kenneth D

    2015-01-22

    The definition of cell identity is a central problem in biology. While single-cell RNA-seq provides a wealth of information regarding cell states, better methods are needed to map their identity, especially during developmental transitions. Here, we use repositories of cell type-specific transcriptomes to quantify identities from single-cell RNA-seq profiles, accurately classifying cells from Arabidopsis root tips and human glioblastoma tumors. We apply our approach to single cells captured from regenerating roots following tip excision. Our technique exposes a previously uncharacterized transient collapse of identity distant from the injury site, demonstrating the biological relevance of a quantitative cell identity index.

  17. Molecular Detection, Quantification, and Toxigenicity Profiling of Aeromonas spp. in Source- and Drinking-Water.

    PubMed

    Robertson, Boakai K; Harden, Carol; Selvaraju, Suresh B; Pradhan, Suman; Yadav, Jagjit S

    2014-01-01

    Aeromonas is ubiquitous in aquatic environments and has been associated with a number of extra-gastrointestinal and gastrointestinal illnesses. This warrants monitoring of raw and processed water sources for pathogenic and toxigenic species of this human pathogen. In this study, a total of 17 different water samples [9 raw and 8 treated samples including 4 basin water (partial sand filtration) and 4 finished water samples] were screened for Aeromonas using selective culturing and a genus-specific real-time quantitative PCR assay. The selective culturing yielded Aeromonas counts ranging 0 - 2 x 10(3)CFU/ml and 15 Aeromonas isolates from both raw and treated water samples. The qPCR analysis indicated presence of a considerable nonculturable population (3.4 x 10(1) - 2.4 x 10(4) cells/ml) of Aeromonas in drinking water samples. Virulence potential of the Aeromonas isolates was assessed by multiplex/singleplex PCR-based profiling of the hemolysin and enterotoxin genes viz cytotoxic heat-labile enterotoxin (act), heat-labile cytotonic enterotoxin (alt), heat-stable cytotonic enterotoxin (ast), and aerolysin (aerA) genes. The water isolates yielded five distinct toxigenicity profiles, viz. act, alt, act+alt, aerA+alt, and aerA+alt+act. The alt gene showed the highest frequency of occurrence (40%), followed by the aerA (20%), act (13%), and ast (0%) genes. Taken together, the study demonstrated the occurrence of a considerable population of nonculturable Aeromonads in water and prevalence of toxigenic Aeromonas spp. potentially pathogenic to humans. This emphasizes the importance of routine monitoring of both source and drinking water for this human pathogen and role of the developed molecular approaches in improving the Aeromonas monitoring scheme for water.

  18. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells.

    PubMed

    Basanta-Sanchez, Maria; Temple, Sally; Ansari, Suraiya A; D'Amico, Anna; Agris, Paul F

    2016-02-18

    Exploration of the epitranscriptome requires the development of highly sensitive and accurate technologies in order to elucidate the contributions of the more than 100 RNA modifications to cell processes. A highly sensitive and accurate ultra-high performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously detect and quantify 28 modified and four major nucleosides in less than 20 min. Absolute concentrations were calculated using extinction coefficients of each of the RNA modifications studied. A comprehensive RNA modifications database of UV profiles and extinction coefficient is reported within a 2.3-5.2 % relative standard deviation. Excellent linearity was observed 0.99227-0.99999 and limit of detection values ranged from 63.75 attomoles to 1.21 femtomoles. The analytical performance was evaluated by analyzing RNA modifications from 100 ng of RNA from human pluripotent stem cell-derived neural cells. Modifications were detected at concentrations four orders of magnitude lower than the corresponding parental nucleosides, and as low as 23.01 femtograms, 64.09 attomoles. Direct and global quantitative analysis of RNA modifications are among the advantages of this new approach. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells

    PubMed Central

    Basanta-Sanchez, Maria; Temple, Sally; Ansari, Suraiya A.; D'Amico, Anna; Agris, Paul F.

    2016-01-01

    Exploration of the epitranscriptome requires the development of highly sensitive and accurate technologies in order to elucidate the contributions of the more than 100 RNA modifications to cell processes. A highly sensitive and accurate ultra-high performance liquid chromatography—tandem mass spectrometry method was developed to simultaneously detect and quantify 28 modified and four major nucleosides in less than 20 min. Absolute concentrations were calculated using extinction coefficients of each of the RNA modifications studied. A comprehensive RNA modifications database of UV profiles and extinction coefficient is reported within a 2.3–5.2 % relative standard deviation. Excellent linearity was observed 0.99227–0.99999 and limit of detection values ranged from 63.75 attomoles to 1.21 femtomoles. The analytical performance was evaluated by analyzing RNA modifications from 100 ng of RNA from human pluripotent stem cell-derived neural cells. Modifications were detected at concentrations four orders of magnitude lower than the corresponding parental nucleosides, and as low as 23.01 femtograms, 64.09 attomoles. Direct and global quantitative analysis of RNA modifications are among the advantages of this new approach. PMID:26438536

  20. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats.

    PubMed

    Duarte, João M N; Carvalho, Rui A; Cunha, Rodrigo A; Gruetter, Rolf

    2009-10-01

    Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.

  1. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60(+)-Ar(+) co-sputtering.

    PubMed

    Chang, Chi-Jen; Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Kuo, Yu-Ting; Kao, Wei-Lun; Yen, Guo-Ji; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-03-09

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.

  2. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex.

    PubMed

    de Matos, Nuno M P; Hock, Andreas; Wyss, Michael; Ettlin, Dominik A; Brügger, Mike

    2017-09-04

    The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of (1)H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A REVIEW OF FLUX CONSIDERATIONS FOR IN VIVO NEUROCHEMICAL MEASUREMENTS

    PubMed Central

    Paul, David W.; Stenken, Julie A.

    2016-01-01

    The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes. PMID:25977941

  4. Neurochemical mechanisms underlying responses to psychostimulants

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Hitzemann, R.; Wang, G.J. |

    1994-11-01

    This study employed positron emission tomography (PET) to investigate biochemical and metabolic characteristics of the brain of individuals which could put them at risk for drug addiction. It takes advantage of the normal variability between individuals in response to psychoactive drugs to investigate relation between mental state, brain neurochemistry and metabolism and the behavioral response to drugs. We discuss its use to assess if there is an association between mental state and dompaminergic reactivity in response to the psychostimulant drug methylphenidate (MP). Changes in synaptic dopamine induced by MP were evaluated with PET and [11C]raclopride, a D{sub 2} receptor radioligand that is sensitive to endogenous dopamine. Methylpphenidate significantly decreased striatal [11C]raclopride binding. The study showed a correlation between the magnitude of the dopamine-induced changes by methylphenidate, and the mental state of the subjects. Subjects reporting high levels of anxiety and restlessness at baseline had larger changes in MP-induced dopamine changes than those that did not. Further investigations on the relation between an individual`s response to a drug and his/her mental state and personality as well as his neurochemical brain composition may enable to understand better differences in drug addiction vulnerability.

  5. Neurochemical effects of L-pyroglutamic acid.

    PubMed

    de Mello, C F; De La Vega, D D; Pizutti, L T; Lopes, F P; Rubin, M A; Homerich, J G; Melo, C R; Somer, J E; Souza, D O; Wajner, M

    1995-12-01

    The effect of L-pyroglutamic acid, a metabolite that accumulates in pyroglutamic aciduria, on different neurochemical parameters was investigated in adult male Wistar rats. Glutamate binding, adenylate cyclase activity and G protein coupling to adenylate cyclase were assayed in the presence of the acid. L-pyroglutamic acid decreased Na(+)-dependent and Na(+)-independent glutamate binding. Basal and GMP-PNP stimulated adenylate cyclase activity were not affected by the acid. Furthermore, rats received unilateral intrastriatal injections of 10-300 nmol of buffered L-pyroglutamic acid. Vehicle (0.25 M Tris-Cl, pH 7.35-7.4) was injected into the contralateral striatum. Neurotoxic damage was assessed seven days after the injection by histological examination and by weighing both cerebral hemispheres. No difference in histology or weight could be identified between hemispheres. These results suggest that, although capable of interfering with glutamate binding, pyroglutamate did not cause a major lesion in the present model of neurotoxicity.

  6. Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

    SciTech Connect

    Chou, D.T.; Khan, S.; Forde, J.; Hirsh, K.R.

    1985-06-17

    The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of (/sup 3/H)-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify the neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, the data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for (/sup 3/H)-CHA was observed in reticular formation membranes without any change in receptor affinity. 28 references, 4 figures.

  7. Neuroprotective and neurochemical properties of mint extracts.

    PubMed

    López, Víctor; Martín, Sara; Gómez-Serranillos, Maria Pilar; Carretero, Maria Emilia; Jäger, Anna K; Calvo, Maria Isabel

    2010-06-01

    Mints are aromatic plants with a tradition as medicinal remedies and culinary herbs. With the aim of investigating potential central nervous system (CNS) activities of traditional medicinal plants, four species and one hybrid of the genus Mentha (M. aquatica, M. longifolia, M. pulegium, M. suaveolens and M. x piperita) were selected. Methanolic extracts of the plants were tested for protective effects against hydrogen-peroxide-induced toxicity in PC12 cells, antioxidant activity (by ABTS and X/XO methods) and neurochemical properties (MAO-A inhibition, AChE inhibition and affinity to the GABA(A) receptor). Mentha x piperita and Mentha aquatica produced significant (p < 0.05) protection of the PC12 cells against oxidative stress. All the plants exhibited antioxidant and MAO-A inhibitory activities, M. x piperita being the most active. M. aquatica showed the highest affinity to the GABA(A)-receptor assay. Results demonstrate that mints might have effect on the CNS. (c) 2009 John Wiley & Sons, Ltd.

  8. The neurochemical maturation of the rabbit cerebellum.

    PubMed

    Lossi, L; Ghidella, S; Marroni, P; Merighi, A

    1995-12-01

    The immunocytochemical distribution of several neuronal and glial antigens was investigated in the cerebellum of the developing and adult rabbit. Neurofilament positive neurons appeared at embryonic day (E) 25. Purkinje cells transiently expressed neurofilament polypeptides from postnatal day (P) 0 to 15. At later postnatal ages, staining was localised to the parallel fibres, the axonal arbors of the basket cells and fibres of the white matter. Neuron specific enolase (NSE) immunoreactivity was first detected at E25. At P0 Purkinje cells were positive and their staining intensity increased up to P25. From P30 to adulthood virtually all cells in the molecular and Purkinje cell layers were stained. Scattered PGP 9.5-immunoreactive neurons appeared in the cerebellar anlage at P25. Purkinje and Golgi cells were labelled by P0. Synaptophysin immunoreactivity was first observed at P0 in the form of a fine punctate reaction surrounding the perikarya and proximal dendrites of Purkinje cells. By P10, it became particularly intense within the cerebellar glomeruli of the granular layer. Neurons of the deep cerebellar nuclei expressed NSE and PGP 9.5 starting from E25. GFAP and S-100 immunoreactivities were first detected at P10. GFAP-immunopositive astrocytes progressively increased in number up to adulthood. S-100-immunoreactive glial cells were detected throughout the white and grey matter. Bergmann glial cells and their fibres were strongly immunoreactive. Vimentin positive glial cells and fibres were first observed at E15 and persisted up to adulthood. Double labelling experiments using a monoclonal antibody against the proliferating cell nuclear antigen (PCNA), a cyclin synthesised by mitotic cells, showed that neuronal and/or glial polypeptides are expressed only by fully differentiated postmitotic cells. These results indicate that major events in the neurochemical maturation of the rabbit cerebellum occur during the first month after birth, when the same pattern of

  9. The neurochemical maturation of the rabbit cerebellum.

    PubMed Central

    Lossi, L; Ghidella, S; Marroni, P; Merighi, A

    1995-01-01

    The immunocytochemical distribution of several neuronal and glial antigens was investigated in the cerebellum of the developing and adult rabbit. Neurofilament positive neurons appeared at embryonic day (E) 25. Purkinje cells transiently expressed neurofilament polypeptides from postnatal day (P) 0 to 15. At later postnatal ages, staining was localised to the parallel fibres, the axonal arbors of the basket cells and fibres of the white matter. Neuron specific enolase (NSE) immunoreactivity was first detected at E25. At P0 Purkinje cells were positive and their staining intensity increased up to P25. From P30 to adulthood virtually all cells in the molecular and Purkinje cell layers were stained. Scattered PGP 9.5-immunoreactive neurons appeared in the cerebellar anlage at P25. Purkinje and Golgi cells were labelled by P0. Synaptophysin immunoreactivity was first observed at P0 in the form of a fine punctate reaction surrounding the perikarya and proximal dendrites of Purkinje cells. By P10, it became particularly intense within the cerebellar glomeruli of the granular layer. Neurons of the deep cerebellar nuclei expressed NSE and PGP 9.5 starting from E25. GFAP and S-100 immunoreactivities were first detected at P10. GFAP-immunopositive astrocytes progressively increased in number up to adulthood. S-100-immunoreactive glial cells were detected throughout the white and grey matter. Bergmann glial cells and their fibres were strongly immunoreactive. Vimentin positive glial cells and fibres were first observed at E15 and persisted up to adulthood. Double labelling experiments using a monoclonal antibody against the proliferating cell nuclear antigen (PCNA), a cyclin synthesised by mitotic cells, showed that neuronal and/or glial polypeptides are expressed only by fully differentiated postmitotic cells. These results indicate that major events in the neurochemical maturation of the rabbit cerebellum occur during the first month after birth, when the same pattern of

  10. Neurochemical Changes after Acute Binge Toluene Inhalation in Adolescent and Adult Rats: A High-Resolution Magnetic Resonance Spectroscopy Study

    PubMed Central

    O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; McMechan, Andrew P.; Irtenkauf, Susan; Hannigan, John H.; Bowen, Scott E.

    2009-01-01

    Inhalant abuse in young people is a growing public health concern. We reported previously that acute toluene intoxication in young rats, using a pattern of exposures that approximate abuse patterns of inhalant use in humans, significantly altered neurochemical measures in select brain regions. In this study, adolescent and young adult rats were exposed similarly to an acute (2 × 15 min), high dose (8000 − 12000 ppm) of toluene and high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) was used to assess neurochemical profiles of tissue samples from a number of brain regions collected immediately following solvent exposure. The current investigation focused on N-acetyl-aspartate (NAA), choline-containing compounds, creatine, glutamate, GABA, and glutamine. Contrary to our predictions, no significant alterations were found in levels of NAA, choline, creatine, glutamate, or glutamine in adolescent animals. In contrast to these minimal effects in adolescents, binge toluene exposure altered several neurochemical parameters in young adult rats, including decreased levels of choline and GABA in the frontal cortex and striatum and lowered glutamine and NAA levels in the frontal cortex. One of the more robust findings was a wide-ranging increase in lactate after toluene exposure in adult animals, an effect not observed in adolescents. These age-dependent effects of toluene are distinct from those reported previously in juvenile rats and suggest a developmental difference in vulnerability to the effects of inhalants. Specifically, the results suggest that the neurochemical response to toluene in adolescents is attenuated compared to adults, and imply an association between these neurochemical differences and age-influenced differences in solvent abuse in humans. PMID:19628036

  11. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes

    PubMed Central

    Cea-del Rio, Christian A.; Lawrence, J. Josh; Tricoire, Ludovic; Erdelyi, Ferenc; Szabo, Gabor; McBain, Chris J.

    2010-01-01

    Cholinergic neuromodulation of hippocampal circuitry promotes network oscillations and facilitates learning and memory through cellular actions on both excitatory and inhibitory circuits. Despite widespread recognition that neurochemical content discriminates between functionally distinct interneuron populations, there has been no systematic examination of whether neurochemically distinct interneuron classes undergo differential cholinergic neuromodulation in the hippocampus. Using GFP transgenic mice that enable the visualization of perisomatically targeting parvalbumin-positive (PV+) or cholecystokinin-positive (CCK+) basket cells (BCs), we tested the hypothesis that neurochemically distinct interneuron populations are differentially engaged by muscarinic acetylcholine receptor (mAChR) activation. Cholinergic fiber activation revealed that CCK BCs were more sensitive to synaptic release of ACh than PV BCs. In response to depolarizing current steps, mAChR activation of PV BCs and CCK BCs also elicited distinct cholinergic response profiles, differing in mAChR-induced changes in action potential (AP) waveform, firing frequency, and intrinsic excitability. In contrast to PV BCs, CCK BCs exhibited a mAChR-induced afterdepolarization (mADP) that was frequency and activity-dependent. Pharmacological, molecular, and loss-of-function data converged on the presence of M3 mAChRs in distinguishing CCK BCs from PV BCs. Firing frequency of CCK BCs was controlled through M3 mAChRs but PV BC excitability was altered solely through M1 mAChRs. Finally, upon mAChR activation, glutamatergic transmission enhanced cellular excitability preferentially in CCK BCs but not in PV BCs. Our findings demonstrate that cell-type specific cholinergic specializations are present on neurochemically distinct interneuron subtypes in the hippocampus, revealing an organizing principle that cholinergic neuromodulation depends critically on neurochemical identity. PMID:20427660

  12. Partially hydrolyzed guar gum characterization and sensitive quantification in food matrices by high performance anion exchange chromatography with pulsed amperometric detection--validation using accuracy profile.

    PubMed

    Mercier, G; Campargue, C

    2012-11-02

    Interest concerning functional ingredients and especially dietary fibres has been growing in recent years. At the same time, the variety of ingredient accepted as dietary fibres and their mixing at low level in complex matrices have considerably complicated their quantitative analysis by approved AOAC methods. These reasons have led to the specific development of an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) to detect and quantify partially hydrolyzed guar gum (PHGG) in fruit preparation and dairy matrices. The analytical methodology was divided in two steps which could be deployed separately or in conjunction. The first, consists in a complete characterization of PHGG by size exclusion chromatography (SEC) with multi-angle light scattering and refractive index detection and HPAEC-PAD to determine its physico-chemical properties and galactomannans content, and the second step is the development of a new HPAEC-PAD method for PHGG direct quantification in complex matrices (dairy product). Validation in terms of detection and quantification limits, linearity of the analytical range, average accuracy (recovery, trueness) and average uncertainty were statistically carried out with accuracy profile. Overall, this new chromatographic method has considerably improved the possibility to quantify without fractionation treatment, low level of dietary fibres emerging from specific galactomannans, in complex matrices and many foodstuffs.

  13. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    PubMed

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.

  14. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Khurram, Obaid U.; Berry, B. Michael; Hachmann, Jan T.; Bieber, Allan J.; Bennet, Kevin E.; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H.; Lujan, J. L.

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders

  15. Neurochemical characteristics of the ventromedial hypothalamus in mediating the antiaversive effects of anxiolytics in different models of anxiety.

    PubMed

    Talalaenko, A N; Pankrat'ev, D V; Goncharenko, N V

    2003-03-01

    In experiments on rats using an "illuminated area" avoidance test and a "threatening situation" avoidance test, preliminary i.p. administration and subsequent microinjection into the ventromedial hypothalamus of various combinations of monoamines, transmitter amino acids, and their agonists and antagonists demonstrated differences in the functional importance of the neurochemical profile of this limbic formation in mediating anxiety states of different origins. The neurochemical analysis with local intrahypothalamic administration of anxiosedative and anxioselective substances showed that the antiaversive actions of Campirone are obtained only in conditions in which the dominant motivation is fear, while chlordiazepoxide, Phenibut, and Indoter are also active in anxiety induced by negatively stressful zoosocial influences; these actions are mediated respectively by serotoninergic and GABAergic types of synaptic switching in the ventromedial hypothalamus.

  16. A fully validated GC-TOF-MS method for the quantification of fatty acids revealed alterations in the metabolic profile of fatty acids after smoking cessation.

    PubMed

    Goettel, Michael; Niessner, Reinhard; Pluym, Nikola; Scherer, Gerhard; Scherer, Max

    2017-01-15

    We developed and validated an efficient and robust method for the simultaneous quantification of 44 fatty acid species in human plasma via GC-TOF-MS. The method is characterized by its robustness, accuracy and precision covering a wide range of fatty acid species with various saturation degrees including short chain fatty acids (beginning with FA 4:0) and long chain fatty acids (up to FA 32:0). The fatty acids were methylated prior to analyses and subsequently detected as fatty acid methyl esters by means of GC-TOF-MS. A highly substituted polar column allowed the separation of geometrical and positional isomers of fatty acid species. The method was applied to plasma samples of a strictly diet controlled clinical smoking cessation study including 39 smokers followed over the course of three months after having quit. Statistical significant alterations within the fatty acid profile were observed when comparing the baseline (subjects still smoking) with one week, one month and three months of smoking cessation. After 3 months of smoking cessation, a partial recovery of alterations in the fatty acid profile evoked by smoking was observed. In conclusion, the developed fatty acid profiling method using GC-TOF-MS has proven as a reliable tool for the quantitative determination of 44 individual fatty acid species within clinical studies.

  17. Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles

    NASA Astrophysics Data System (ADS)

    Kang, H. L.; Lao, J. B.; Li, Z. P.; Yao, W. Q.; Liu, C.; Wang, J. Y.

    2016-12-01

    The GaAs/AlAs superlattice multilayer structures were deposited on GaAs (1 0 0) substrates by molecular beam epitaxial (MBE) technique. The as-prepared samples were characterized respectively by Auger Electron Spectroscopy (AES) and Secondary Ion Mass Spectroscopy (SIMS) depth profiling techniques. The measured depth profiles were then fitted by the Mixing-Roughness-Information (MRI) model. The depth resolution values for both depth profiling techniques were evaluated quantitatively from the fitted MRI parameters and the as-prepared GaAs/AlAs multilayer structure was determined accordingly.

  18. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes.

    PubMed Central

    Lenders, J W; Eisenhofer, G; Abeling, N G; Berger, W; Murphy, D L; Konings, C H; Wagemakers, L M; Kopin, I J; Karoum, F; van Gennip, A H; Brunner, H G

    1996-01-01

    Monoamine oxidase (MAO) exists as two isoenzymes and plays a central role in the metabolism of monoamine neurotransmitters. In this study we compared the neurochemical phenotypes of previously described subjects with genetically determined selective lack of MAO-A or a lack of both MAO-A and MAO-B with those of two subjects with a previously described X chromosome microdeletion in whom we now demonstrate selective MAO-B deficiency. Mapping of the distal deletion breakpoint demonstrates its location in intron 5 of the MAO-B gene, with the deletion extending proximally into the Norrie disease gene. In contrast to the borderline mental retardation and abnormal behavioral phenotype in subjects with selective MAO-A deficiency and the severe mental retardation in patients with combined MAO-A/MAO-B deficiency and Norrie disease, the MAO-B-deficient subjects exhibit neither abnormal behavior nor mental retardation. Distinct neurochemical profiles characterize the three groups of MAO-deficient patients. In MAO-A-deficient subjects, there is a marked decrease in deaminated catecholamine metabolites and a concomitant marked elevation of O-methylated amine metabolites. These neurochemical changes are only slightly exaggerated in patients with combined lack of MAO-A and MAO-B. In contrast, the only biochemical abnormalities detected in subjects with the MAO-B gene deletion are a complete absence of platelet MAO-B activity and an increased urinary excretion of phenylethylamine. The differences in neurochemical profiles indicate that, under normal conditions, MAO-A is considerably more important than MAO-B in the metabolism of biogenic amines, a factor likely to contribute to the different clinical phenotypes. PMID:8613523

  19. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  20. BEHAVIORAL AND NEUROCHEMICAL CONSEQUENCES OF DEVELOPMENTAL ORGANOTIN EXPOSURE IN RATS.

    EPA Science Inventory

    Behavioral and Neurochemical Consequences of Developmental Organotin Exposure in Rats.
    Ehman, K.,1 Jenkins, S.,2 Barone Jr., S.2 and Moser, V.2 1Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, 2Neurotoxicology Division, U.S. Environmental Protection ...

  1. Neurochemical Correlates of Autistic Disorder: A Review of the Literature

    ERIC Educational Resources Information Center

    Lam, Kristen S. L.; Aman, Michael G.; Arnold, L. Eugene

    2006-01-01

    Review of neurochemical investigations in autistic disorder revealed that a wide array of transmitter systems have been studied, including serotonin, dopamine, norepinephrine, acetylcholine, oxytocin, endogenous opioids, cortisol, glutamate, and gamma-aminobutyric acid (GABA). These studies have been complicated by the fact that autism is a very…

  2. Neurochemical Correlates of Autistic Disorder: A Review of the Literature

    ERIC Educational Resources Information Center

    Lam, Kristen S. L.; Aman, Michael G.; Arnold, L. Eugene

    2006-01-01

    Review of neurochemical investigations in autistic disorder revealed that a wide array of transmitter systems have been studied, including serotonin, dopamine, norepinephrine, acetylcholine, oxytocin, endogenous opioids, cortisol, glutamate, and gamma-aminobutyric acid (GABA). These studies have been complicated by the fact that autism is a very…

  3. BEHAVIORAL AND NEUROCHEMICAL CONSEQUENCES OF DEVELOPMENTAL ORGANOTIN EXPOSURE IN RATS.

    EPA Science Inventory

    Behavioral and Neurochemical Consequences of Developmental Organotin Exposure in Rats.
    Ehman, K.,1 Jenkins, S.,2 Barone Jr., S.2 and Moser, V.2 1Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, 2Neurotoxicology Division, U.S. Environmental Protection ...

  4. Development of the Neurochemical Architecture of the Central Complex

    PubMed Central

    Boyan, George S.; Liu, Yu

    2016-01-01

    The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors. PMID:27630548

  5. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites

    PubMed Central

    López-Gutiérrez, Borja; Dinglasan, Rhoel R.

    2017-01-01

    The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum. The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector. PMID:28104756

  6. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites.

    PubMed

    López-Gutiérrez, Borja; Dinglasan, Rhoel R; Izquierdo, Luis

    2017-03-07

    The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.

  7. MetaPalette: a k-mer Painting Approach for Metagenomic Taxonomic Profiling and Quantification of Novel Strain Variation

    PubMed Central

    Falush, Daniel

    2016-01-01

    ABSTRACT Metagenomic profiling is challenging in part because of the highly uneven sampling of the tree of life by genome sequencing projects and the limitations imposed by performing phylogenetic inference at fixed taxonomic ranks. We present the algorithm MetaPalette, which uses long k-mer sizes (k = 30, 50) to fit a k-mer “palette” of a given sample to the k-mer palette of reference organisms. By modeling the k-mer palettes of unknown organisms, the method also gives an indication of the presence, abundance, and evolutionary relatedness of novel organisms present in the sample. The method returns a traditional, fixed-rank taxonomic profile which is shown on independently simulated data to be one of the most accurate to date. Tree figures are also returned that quantify the relatedness of novel organisms to reference sequences, and the accuracy of such figures is demonstrated on simulated spike-ins and a metagenomic soil sample. The software implementing MetaPalette is available at: https://github.com/dkoslicki/MetaPalette. Pretrained databases are included for Archaea, Bacteria, Eukaryota, and viruses. IMPORTANCE Taxonomic profiling is a challenging first step when analyzing a metagenomic sample. This work presents a method that facilitates fine-scale characterization of the presence, abundance, and evolutionary relatedness of organisms present in a given sample but absent from the training database. We calculate a “k-mer palette” which summarizes the information from all reads, not just those in conserved genes or containing taxon-specific markers. The compositions of palettes are easy to model, allowing rapid inference of community composition. In addition to providing strain-level information where applicable, our approach provides taxonomic profiles that are more accurate than those of competing methods. Author Video: An author video summary of this article is available. PMID:27822531

  8. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis.

    PubMed

    Hillered, Lars; Vespa, Paul M; Hovda, David A

    2005-01-01

    Microdialysis (MD) was introduced as an intracerebral sampling method for clinical neurosurgery by Hillered et al. and Meyerson et al. in 1990. Since then MD has been embraced as a research tool to measure the neurochemistry of acute human brain injury and epilepsy. In general investigators have focused their attention to relative chemical changes during neurointensive care, operative procedures, and epileptic seizure activity. This initial excitement surrounding this technology has subsided over the years due to concerns about the amount of tissue sampled and the complicated issues related to quantification. The interpretation of mild to moderate MD fluctuations in general remains an issue relating to dynamic changes of the architecture and size of the interstitial space, blood-brain barrier (BBB) function, and analytical imprecision, calling for additional validation studies and new methods to control for in vivo recovery variations. Consequently, the use of this methodology to influence clinical decisions regarding the care of patients has been restricted to a few institutions. Clinical studies have provided ample evidence that intracerebral MD monitoring is useful for the detection of overt adverse neurochemical conditions involving hypoxia/ischemia and seizure activity in subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), thromboembolic stroke, and epilepsy. There is some data strongly suggesting that MD changes precede the onset of secondary neurological deterioration following SAH, hemispheric stroke, and surges of increased ICP in fulminant hepatic failure. These promising investigations have relied on MD-markers for disturbed glucose metabolism (glucose, lactate, and pyruvate) and amino acids. Others have focused on trying to capture other important neurochemical events, such as excitotoxicity, cell membrane degradation, reactive oxygen species (ROS) and nitric oxide (NO) formation, cellular edema, and BBB dysfunction. However, these other

  9. Quantification of all-ceramic crown margin surface profile from try-in to 1-week post-cementation.

    PubMed

    Good, Melissa-L; Mitchell, Christina A; Pintado, Maria R; Douglas, William H

    2009-01-01

    To use profilometry to assess the margin surface profile of all-ceramic crowns (ACC's) at try-in and 1-week after cementation with dual-cured resin (DC, RelyX ARC, 3M ESPE, St. Paul, MN, USA), self-adhesive dual-cured resin (SADC, RelyX Unicem, 3M ESPE), light-cured resin (LC, RelyX Veneer, 3M ESPE) or chemically cured resin-modified glass ionomer (RMGI, RelyX Luting Plus, 3M ESPE) luting cement. Forty, sound, extracted, human, premolar teeth underwent a standardised preparation for ACC's. IPS Empress (Ivoclar-Vivadent, Liechtenstein) crowns of standard dimensions were fabricated and 10 luted with each cement and stored in water for 7 days. Three groups of serial profiles were taken, the first of the tooth preparation, the second of the crown margins at try-in and lastly of the crown margins after cementation and 7 days water storage. There were no significant differences in the crown margin surface profile between the four cement groups at try-in. The change in crown margin position between try-in and post-cementation was significantly greater for DC than for LC and RMGI. SADC was not significantly different to the other cements. There were no significant differences in the crown margin extensions between the four cement groups, however most of the IPS Empress ACC's in this study were underextended but this was not statistically significant. IPS Empress ACC's seated more fully with LC and RMGI than with DC cement.

  10. Neurochemical Changes Within Human Early Blind Occipital Cortex

    PubMed Central

    Weaver, Kurt E.; Richards, Todd L.; Saenz, Melissa; Petropoulos, Helen; Fine, Ione

    2015-01-01

    Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. Although it has been established in animal models that neurochemical pathways are heavily affected by early visual deprivation, the effects of blindness on these pathways in humans is still not well characterized. Here, using 1H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways. PMID:23954804

  11. Chemistry of the mind: neurochemical modulation of prefrontal cortical function.

    PubMed

    Robbins, Trevor W

    2005-12-05

    The neurochemical modulation of prefrontal cortical function is reviewed with special reference to the ascending dopaminergic and serotoninergic projections. Evidence is surveyed from studies of rats, nonhuman primates, and humans to suggest that prefrontal dopamine has specific functions in attentional control and working memory, mediated mainly through the D1 receptor, whereas manipulations of serotonin are shown by contrast to affect reversal learning in monkeys and human volunteers and measures of impulsivity in rats. These findings are discussed in the context of these as well as other neurotransmitter systems (including noradrenaline and acetylcholine) having distinct roles in the neuromodulation of prefrontal cortical function. The capacity of the prefrontal cortex itself to exert top-down regulation of these ascending neurochemical systems is also discussed. (c) 2005 Wiley-Liss, Inc.

  12. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  13. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  14. Age-Related Neurochemical Changes in the Vestibular Nuclei

    PubMed Central

    Smith, Paul F.

    2016-01-01

    There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics. PMID:26973593

  15. Quantification of Small Non-Coding RNAs Allows an Accurate Comparison of miRNA Expression Profiles

    PubMed Central

    Masotti, Andrea; Caputo, Viviana; Da Sacco, Letizia; Pizzuti, Antonio; Dallapiccola, Bruno; Bottazzo, Gian Franco

    2009-01-01

    MicroRNAs (miRNAs) are highly conserved ∼22-mer RNA molecules, encoded by plants and animals that regulate the expression of genes binding to the 3′-UTR of specific target mRNAs. The amount of miRNAs in a total RNA sample depends on the recovery efficiency that may be significantly affected by the different purification methods employed. Traditional approaches may be inefficient at recovering small RNAs, and common spectrophotometric determination is not adequate to quantify selectively these low molecular weight (LMW) species from total RNA samples. Here, we describe the use of qualitative and quantitative lab-on-a-chip tools for the analysis of these LMW RNA species. Our data emphasize the close correlation of LMW RNAs with the expression levels of some miRNAs. We therefore applied our result to the comparison of some miRNA expression profiles in different tissues. Finally, the methods we used in this paper allowed us to analyze the efficiency of extraction protocols, to study the small (but significant) differences among various preparations and to allow a proper comparison of some miRNA expression profiles in various tissues. PMID:19727414

  16. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  17. Subcellular probes for neurochemical recording from multiple brain sites.

    PubMed

    Schwerdt, Helen N; Kim, Min Jung; Amemori, Satoko; Homma, Daigo; Yoshida, Tomoko; Shimazu, Hideki; Yerramreddy, Harshita; Karasan, Ekin; Langer, Robert; Graybiel, Ann M; Cima, Michael J

    2017-03-14

    Dysregulation of neurochemicals, in particular, dopamine, is epitomized in numerous debilitating disorders that impair normal movement and mood aspects of our everyday behavior. Neurochemical transmission is a neuron-specific process, and further exhibits region-specific signaling in the brain. Tools are needed to monitor the heterogeneous spatiotemporal dynamics of dopamine neurotransmission without compromising the physiological processes of the neuronal environment. We developed neurochemical probes that are ten times smaller than any existing dopamine sensor, based on the size of the entire implanted shaft and its sensing tip. The microfabricated probe occupies a spatial footprint (9 μm) coordinate with the average size of individual neuronal cells (∼10 μm). These cellular-scale probes were shown to reduce inflammatory response of the implanted brain tissue environment. The probes are further configured in the form of a microarray to permit electrochemical sampling of dopamine and other neurotransmitters at unprecedented spatial densities and distributions. Dopamine recording was performed concurrently from up to 16 sites in the striatum of rats, revealing a remarkable spatiotemporal contrast in dopamine transmission as well as site-specific pharmacological modulation. Collectively, the reported platform endeavors to enable high density mapping of the chemical messengers fundamentally involved in neuronal communication through the use of minimally invasive probes that help preserve the neuronal viability of the implant environment.

  18. Antiepileptogenic properties of phenobarbital: behavior and neurochemical analysis.

    PubMed

    Silva Brum, L F; Elisabetsky, E

    2000-11-01

    Chronic in vivo models of epilepsy provide a suitable strategy for quantifying epileptogenesis, as well as investigating neurochemical changes associated with neuronal plasticity that leads to seizuring conditions. The aim of this paper was to investigate antiepileptogenic properties of phenobarbital, focusing on the neurochemical changes associated with repeated seizures induced by low convulsive dose of pentylenetetrazol (PTZ) (60 mg/kg, sc) in mice. Phenobarbital (10 and 30 mg/kg, ip) significantly diminished the severity of seizures induced by PTZ. Repeated PTZ administration was associated with an increase in [3H]glutamate binding (B(max) 196.6+/-10.2 pmol/mgxcontrol B(max) 137.7+/-17.0 pmol/mg). Regarding NMDA receptors, repeated PTZ administration was likewise associated with an increase in [3H]MK-801 binding (0.55+/-0.02 pmol/mgxcontrol 0.32+/-0.01 pmol/mg). In addition, phenobarbital (10 mg/kg) prevented the increase in [3H]glutamate binding (B(max) 133.7+/-11.4 pmol/mg), as well as in [3H]MK-801 binding (phenobarbital 10 and 30 mg/kg, 0.33+/-0.01 and 0.34+/-0.01 pmol/mg, respectively). This study reveals an interesting capability of phenobarbital in interfering with the establishment of both the behavioral expression and associated neurochemical changes induced by the repeated administration of low convulsive dose of PTZ, which may be important in the context of preventing epileptogenesis.

  19. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence.

    PubMed

    Marin-Lahoz, Juan; Gironell, Alexandre

    2016-06-01

    The pathophysiology and the exact anatomy of essential tremor (ET) is not well known. One of the pillars that support the cerebellum as the main anatomical locus in ET is neurochemistry. This review examines the link between neurochemical abnormalities found in ET and cerebellum. The review is based on published data about neurochemical abnormalities described in ET both in human and in animal studies. We try to link those findings with cerebellum. γ-aminobutyric acid (GABA) is the main neurotransmitter involved in the pathophysiology of ET. There are several studies about GABA that clearly points to a main role of the cerebellum. There are few data about other neurochemical abnormalities in ET. These include studies with noradrenaline, glutamate, adenosine, proteins, and T-type calcium channels. One single study reveals high levels of noradrenaline in the cerebellar cortex. Another study about serotonin neurotransmitter results negative for cerebellum involvement. Finally, studies on T-type calcium channels yield positive results linking the rhythmicity of ET and cerebellum. Neurochemistry supports the cerebellum as the main anatomical locus in ET. The main neurotransmitter involved is GABA, and the GABA hypothesis remains the most robust pathophysiological theory of ET to date. However, this hypothesis does not rule out other mechanisms and may be seen as the main scaffold to support findings in other systems. We clearly need to perform more studies about neurochemistry in ET to better understand the relations among the diverse systems implied in ET. This is mandatory to develop more effective pharmacological therapies.

  20. HUMAN METHAMPHETAMINE PHARMACOKINETICS SIMULATED IN THE RAT: BEHAVIORAL AND NEUROCHEMICAL EFFECTS OF A 72- HOUR BINGE

    PubMed Central

    Kuczenski, Ronald; Segal, David S.; Melega, William P.; Lacan, Goran; McCunney, Stanley J.

    2009-01-01

    Bingeing is one pattern of high dose methamphetamine (METH) abuse which involves continuous drug taking over several days and can result in psychotic behaviors for which the brain pathology remains poorly-defined. A corresponding animal model of this type of METH exposure may provide novel insights into the neurochemical and behavioral sequelae associated with this condition. Accordingly, to simulate the pharmacokinetic profile of a human METH binge exposure in rats we used a computer-controlled, intravenous METH procedure (dynamic infusion) to overcome species differences in METH pharmacokinetics and to replicate the human 12-h plasma METH half-life. Animals were treated over 13 weeks with escalating METH doses, using dynamic infusion, and then exposed to a binge in which drug was administered every 3 h for 72h. Throughout the binge, behavioral effects included unabated intense oral stereotypies in the absence of locomotion and in the absence of sleep. Decrements in regional brain dopamine, norepinephrine and serotonin levels, measured at 1 and 10 h after the last injection of the binge, had, with the exception of caudate-putamen dopamine and frontal cortex serotonin, recovered by 48 h. At 10 h after the last injection of the binge, [3H]ligand binding to dopamine and vesicular monoamine transporters in caudate-putamen were reduced by 35% and 13%, respectively. In a separate METH binge treated cohort, post-binge behavioral alterations were apparent in an attenuated locomotor response to a METH challenge infusion at 24h after the last injection of the binge. Collectively, the changes we characterized during and following a METH binge suggest that for humans under similar exposure conditions, multiple time-dependent neurochemical deficits contribute to their behavioral profiles. PMID:19571794

  1. Human methamphetamine pharmacokinetics simulated in the rat: behavioral and neurochemical effects of a 72-h binge.

    PubMed

    Kuczenski, Ronald; Segal, David S; Melega, William P; Lacan, Goran; McCunney, Stanley J

    2009-10-01

    Bingeing is one pattern of high-dose methamphetamine (METH) abuse, which involves continuous drug taking over several days and can result in psychotic behaviors for which the brain pathology remains poorly defined. A corresponding animal model of this type of METH exposure may provide novel insights into the neurochemical and behavioral sequelae associated with this condition. Accordingly, to simulate the pharmacokinetic profile of a human METH binge exposure in rats, we used a computer-controlled, intravenous METH procedure (dynamic infusion, DI) to overcome species differences in METH pharmacokinetics and to replicate the human 12-h plasma METH half-life. Animals were treated over 13 weeks with escalating METH doses, using DI, and then exposed to a binge in which drug was administered every 3 h for 72 h. Throughout the binge, behavioral effects included unabated intense oral stereotypies in the absence of locomotion and in the absence of sleep. Decrements in regional brain dopamine, norepinephrine, and serotonin levels, measured at 1 and 10 h after the last injection of the binge, had, with the exception of caudate-putamen dopamine and frontal cortex serotonin, recovered by 48 h. At 10 h after the last injection of the binge, [(3)H]ligand binding to dopamine and vesicular monoamine transporters in caudate-putamen were reduced by 35 and 13%, respectively. In a separate METH binge-treated cohort, post-binge behavioral alterations were apparent in an attenuated locomotor response to a METH challenge infusion at 24 h after the last injection of the binge. Collectively, the changes we characterized during and after a METH binge suggest that for human beings under similar exposure conditions, multiple time-dependent neurochemical deficits contribute to their behavioral profiles.

  2. Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations.

    PubMed

    Ramani, Balasubramanian; Zorn, Holger; Papenbrock, Jutta

    2004-01-01

    This study was aimed at understanding the role of sulfolipids in salt tolerance mechanisms of the halophytes Aster tripolium L., Compositae, and Sesuvium portulacastrum L., Aizoaceae, and of the glycophyte Arabidopsis thaliana (L.) Heynh., Brassicaceae. In Aster and Sesuvium the sulfolipid contents increased significantly under salt stress conditions (517 mM or 864 mM). In Arabidopsis, changes in sulfolipid contents were not observed (NaCl up to 100 mM). The fatty acid profile of sulfoquinovosyldiacylglycerol (SQDG) in Aster was modified with increasing NaCl concentrations. LC-MS analyses of sulfolipids from Aster and Sesuvium revealed the presence of 18:3/18:3 and 16:0/18:3 molecules. Obviously, the function of sulfolipids during salt stress differs between halophytic species and between halophytes and glycophytes where sulfolipid accumulation was not observed.

  3. 1HNMR-Based Discriminatory Analysis of Eurycoma longifolia from Different Locations and Establishing a Profile for Primary Metabolites Identification and Quassinoids Quantification.

    PubMed

    Ebrahimi, Forough; Ibrahim, Baharudin; Teh, Chin Hoe; Murugaiyah, Vikneswaran; Lam, Chan Kit

    2017-01-01

    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and

  4. Profile and quantification of human stratum corneum ceramides by normal-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: development of targeted lipidomic method and application to human stratum corneum of different age groups.

    PubMed

    Jia, Zhi-Xin; Zhang, Jin-Lan; Shen, Chun-Ping; Ma, Lin

    2016-09-01

    Skin, the largest organ of the human body, serves as the primary barrier to the external environment. Ceramides are one of the main constituents of stratum corneum (SC), playing an important role in skin barrier function. Therefore, comprehensive profiling and quantification of SC ceramide is important. Herein, a new targeted lipidomic method for human SC ceramide profiling and quantification is presented and tested. Normal-phase high-performance liquid chromatography coupled with dynamic multiple reaction monitoring mass spectrometry (NP-HPLC-dMRM-MS) was used to separate ceramides into subclasses and then characterize different ceramides within each subclass on the basis of their characteristics. In total, 483 ceramides were quantified in a single run within 20 min, covering 12 subclasses as well as some glycosylated ceramides not previously reported. Each subclass had typical standard substances (if available) that served to establish representative standard curves and were used for related substances with no standards. Linearity range, limit of quantification (LOQ), limit of detection (LOD), precision, accuracy, stability, and matrix effects were validated. dMRM increased sensitivity and accuracy greatly compared with common MRM (cMRM). This method was successfully applied to the study of human SC from different age groups. A total of 193 potential biomarkers were found to indicate age differences between children and adults. This method is an innovative approach for high-throughput quantification of SC ceramide. Graphical Abstract Method establishment (MRM spectra by the established method) and method application (score scatter plots of authentic samples).

  5. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling capsule in healthy volunteers

    PubMed Central

    Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo

    2016-01-01

    Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human. PMID:27527657

  6. Simultaneous application of multiple platforms (Glider, Scanfish, profiling mooring, CTD) to improve detection and quantification of temporal ocean dynamics

    NASA Astrophysics Data System (ADS)

    Meyer, D.; Prien, R. D.; Lips, U.; Naumann, M.; Liblik, T.; Schulz-Bull, D. E.

    2016-02-01

    Ocean dynamics are difficult to observe given the broad spectrum of temporal and spatial scales. Robotic technology can be used to address this issue, and help to investigate the variability of physical and biogeochemical processes. This work focuses on ocean robots and in particular on glider technology which seems to be one of the most promising oceanographic tools for future marine research. In this context, we present the results of an observational program conducted in the Baltic Sea combining a profiling mooring (GODESS - Gotland Deep Environmental Sampling Station) and glider technology (Slocum). The temporal variability is captured by the mooring, while the spatial variability is obtained from the glider sampling the surrounding area. Furthermore, classical CTD-measurements and an underwater vehicle (Scanfish) are used simultaneously by two different research vessels to validate and complement the observing network. The main aim of the study is to identify possible synergies between the different platforms and to get a better understanding of maximizing the information content of the data collected by this network. The value and the quality of the data of each individual platform is analyzed and their contribution to the performance of the network itself evaluated.

  7. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex.

    PubMed

    Schaefer, Markus K; Hechavarría, Julio C; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks-beginning at 50 ms post stimulus latency-is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control.

  8. Profiles.

    ERIC Educational Resources Information Center

    Macintosh, Henry G.

    An introduction to profiles is presented with examples provided to permit an overall appraisal of the potential of profiles, of the principles upon which they might be based, and of the problems that will have to be overcome if their potential is to be realized in practice. The larger scale examples of profiles discussed are the Scottish Pupil…

  9. Comparative quantification of pharmacodynamic parameters of chiral compounds (RRR- vs. all-rac-alpha tocopherol) by global gene expression profiling.

    PubMed

    Muller, Patrick Y; Netscher, Thomas; Frank, Jan; Stoecklin, Elisabeth; Rimbach, Gerald; Barella, Luca

    2005-07-01

    Pharmacologically active compounds (e.g. from the groups of pharmaceutical drugs, cofactors or vitamins) often consist of two or more stereoisomers (enantiomers or diastereoisomers) which may differ in their pharmacodynamic/kinetic, toxicological and biological properties. A well-known example is vitamin E which is predominantly administered as two different forms, one derived from natural sources (mainly soybeans), and one from production by chemical total-synthesis. While vitamin E from natural sources occurs as a single stereoisomer (RRR-alpha-tocopherol), synthetic vitamin E (all-rac-alpha-tocopherol) is an equimolar mixture of eight stereoisomers. Based on a number of animal studies it has been suggested that the biological potency of natural-source vitamin E is 1.36 greater compared to its counterpart produced by chemical synthesis. In this study, we have used the Affymetrix GeneChip technology to evaluate the feasibility of a new bio-assay where the gene regulatory activities of RRR-alpha-tocopherol and all-rac-alpha-tocopherol were quantified and compared on the genome-wide level. For this purpose, HepG2 cells were supplemented with increasing amounts of RRR- or all-rac-alpha-tocopherol for 7 days. Genes showing a dose-related induction/repression were identified by global gene expression profiling. Our findings show that RRR- and all-rac-alpha-tocopherol share an identical transcriptional activity, i.e. induce/repress the expression of the same set of genes. Based on the transcriptional dose-response data, EC50 and IC50 values were determined for each of these genes. The feasibility of calculating a "transcriptional potency factor" of RRR- vs. all-rac-e-tocopherol was evaluated by dividing the EC50/IC50 of RRR-alpha-tocopherol by the corresponding EC50/IC50 of all-rac-alpha-tocopherol for every of the vitamin E responsive genes. Using this approach we have calculated 215 single biopotency ratios. Subsequently, the mean of all potency ratios was found to be

  10. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    PubMed

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  11. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock.

    PubMed

    Liu, Guang; Yang, Xingping; Xu, Jinhua; Zhang, Man; Hou, Qian; Zhu, Lingli; Huang, Ying; Xiong, Aisheng

    2017-03-01

    Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Streamflow loss quantification for groundwater flow modeling using a wading-rod-mounted acoustic Doppler current profiler in a headwater stream

    NASA Astrophysics Data System (ADS)

    Pflügl, Christian; Hoehn, Philipp; Hofmann, Thilo

    2017-04-01

    Irrespective of the availability of various field measurement and modeling approaches, the quantification of interactions between surface water and groundwater systems remains associated with high uncertainty. Such uncertainties on stream-aquifer interaction have a high potential to misinterpret the local water budget and water quality significantly. Due to typically considerable temporal variation of stream discharge rates, it is desirable for the measurement of streamflow to reduce the measuring duration while reducing uncertainty. Streamflow measurements, according to the velocity-area method, have been performed along reaches of a losing-disconnected, subalpine headwater stream using a 2-dimensional, wading-rod-mounted acoustic Doppler current profiler (ADCP). The method was chosen, with stream morphology not allowing for boat-mounted setups, to reduce uncertainty compared to conventional, single-point streamflow measurements of similar measurement duration. Reach-averaged stream loss rates were subsequently quantified between 12 cross sections. They enabled the delineation of strongly infiltrating stream reaches and their differentiation from insignificantly infiltrating reaches. Furthermore, a total of 10 near-stream observation wells were constructed and/or equipped with pressure and temperature loggers. The time series of near-stream groundwater temperature data were cross-correlated with stream temperature time series to yield supportive qualitative information on the delineation of infiltrating reaches. Subsequently, as a reference parameterization, the hydraulic conductivity and specific yield of a numerical, steady-state model of groundwater flow, in the unconfined glaciofluvial aquifer adjacent to the stream, were inversely determined incorporating the inferred stream loss rates. Applying synthetic sets of infiltration rates, resembling increasing levels of uncertainty associated with single-point streamflow measurements of comparable duration, the

  13. Plant metabolomics: resolution and quantification of elusive peaks in liquid chromatography-mass spectrometry profiles of complex plant extracts using multi-way decomposition methods.

    PubMed

    Khakimov, Bekzod; Amigo, José Manuel; Bak, Søren; Engelsen, Søren Balling

    2012-11-30

    Previous studies on LC-MS metabolomic profiling of 127 F2 Barbarea vulgaris plants derived from a cross of parental glabrous (G) and pubescent (P) type, revealed four triterpenoid saponins (hederagenin cellobioside, oleanolic acid cellobioside, epihederagenin cellobioside, and gypsogenin cellobioside) that correlated with resistance of plants against the insect herbivore, Phyllotreta nemorum. In this study, for the first time, we demonstrate the efficiency of the multi-way decomposition method PARAllel FACtor analysis 2 (PARAFAC2) for exploring complex LC-MS data. PARAFAC2 enabled automated resolution and quantification of several elusive chromatographic peaks (e.g. overlapped, elution time shifted and low s/n ratio), which could not be detected and quantified by conventional chromatographic data analysis. Raw LC-MS data of 127 F2 B. vulgaris plants were arranged in a three-way array (elution time point×mass spectra×samples), divided into 17 different chromatographic intervals and each interval were individually modeled by PARAFAC2. Three main outputs of the PARAFAC2 models described: (1) elution time profile, (2) relative abundance, and (3) pure mass spectra of the resolved peaks modeled from each interval of the chromatographic data. PARAFAC2 scores corresponding to relative abundances of the resolved peaks were extracted and further used for correlation and partial least squares (PLS) analysis. A total of 71 PARAFAC2 components (which correspond to actual peaks, baselines and tails of neighboring peaks) were modeled from 17 different chromatographic retention time intervals of the LC-MS data. In addition to four previously known saponins, correlation- and PLS-analysis resolved five unknown saponin-like compounds that were significantly correlated with insect resistance. The method also enabled a good separation between resistant and susceptible F2 plants. PARAFAC2 spectral loadings corresponding to the pure mass spectra of chromatographic peaks matched well

  14. Brain neurochemical and hemodynamic findings in the NY1DD mouse model of mild sickle cell disease.

    PubMed

    Cui, Min-Hui; Suzuka, Sandra M; Branch, Nicholas A; Ambadipudi, Kamalakar; Thangaswamy, Sangeetha; Acharya, Seetharama A; Billett, Henny H; Branch, Craig A

    2017-02-10

    To characterize the cerebral profile associated with sickle cell disease (SCD), we used in vivo proton MRI and MRS to quantify hemodynamics and neurochemicals in the thalamus of NY1DD mice, a mild model of SCD, and compared them with wild-type (WT) control mice. Compared with WT mice, NY1DD mice at steady state had elevated cerebral blood flow (CBF) and concentrations of N-acetylaspartate (NAA), glutamate (Glu), alanine, total creatine and N-acetylaspartylglutamate. Concentrations of glutathione (GSH) at steady state showed a negative correlation with BOLD signal change in response to 100% oxygen, a marker for oxidative stress, and mean diffusivity assessed using diffusion-tensor imaging, a marker for edematous inflammation. In NY1DD mice, elevated basal CBF was correlated negatively with [NAA], but positively with concentration of glutamine ([Gln]). Immediately after experimental hypoxia (at reoxygenation after 18 hours of 8% O2 ), concentrations of NAA, Glu, GSH, Gln and taurine (Tau) increased only in NY1DD mice. [NAA], [Glu], [GSH] and [Tau] all returned to baseline levels two weeks after the hypoxic episode. The altered neurochemical profile in the NY1DD mouse model of SCD at steady state and following experimental hypoxia/reoxygenation suggests a state of chronic oxidative stress leading to compensatory cerebral metabolic adjustments.

  15. Hippocampal neurochemical and electrophysiological measures from freely moving rats.

    PubMed

    Bronzino, J D; Kehoe, P; Hendriks, R; Vita, L; Golas, B; Vivona, C; Morgane, P J

    1999-01-01

    This paper describes surgical and recording procedures that have been developed which permit the simultaneous monitoring of levels of select neurochemicals (via microdialysis) and measures of dentate-evoked field potentials within the hippocampal formation of freely moving adult rats. To test and evaluate these procedures, they were employed to examine changes in hippocampal neurochemistry and neuronal excitability associated with the establishment and maintenance of hippocampal long-term potentiation (LTP). Measures of hippocampal norepinephrine (NE) and glutamate levels along with measures of the dentate granule cell population spike amplitude (PSA) were obtained before, during, and after tetanization of the medial perforant path using two separate tetanization paradigms. Results obtained using these new procedures in several animals indicated that changes in NE and glutamate levels were strongly correlated with increases in the dentate granule cell PSA measure obtained following tetanization. The results indicate that this newly developed procedure can be effectively used to directly examine the relationship between neurochemical and neurophysiological changes associated with hippocampal neuroplasticity.

  16. Behavioral and neurochemical effects induced by reserpine in mice.

    PubMed

    de Freitas, Catiuscia Molz; Busanello, Alcindo; Schaffer, Larissa Finger; Peroza, Luis Ricardo; Krum, Bárbara Nunes; Leal, Caroline Queiroz; Ceretta, Ana Paula Chiapinotto; da Rocha, João Batista Teixeira; Fachinetto, Roselei

    2016-02-01

    Reserpine, a monoamine-depleting agent, which irreversibly and non-selectively blocks the vesicular monoamine transporter, has been used as an animal model to study several neurological disorders, including tardive dyskinesia and Parkinson's disease. The purpose of this study was to examine if motor deficits induced by reserpine in mice could be related to alterations in the expression of dopaminergic system proteins such as tyrosine hydroxylase (TH) and dopamine transporter (DAT) and in the activity of monoamine oxidase (MAO). Mice received either vehicle or reserpine (0.1, 0.5, or 1 mg/kg, s.c.) for four consecutive days. Two, 20, or 60 days after reserpine withdrawal, behavioral, and neurochemical changes were evaluated. Reserpine at a dose of 0.5 and 1 mg/kg increased vacuous chewing movements (VCMs) and reduced locomotion. Behavioral changes were accompanied by reduction in TH immunoreactivity in the striatum evaluated on days 2 and 20 after the last injection of 1 mg/kg reserpine. Furthermore, negative correlations were found between VCM and MAO-A or MAO-B on day 2 and TH striatal immunoreactivity on day 20 after the last injection of 1 mg/kg reserpine. A positive correlation was observed between VCMs and DAT immunoreactivity in the substantia nigra on day 2 after the last injection of 0.5 mg/kg reserpine. These findings suggest that the pharmacological blockage of vesicular monoamine transporter (VMAT) by reserpine caused neurochemical and behavioral alterations in mice.

  17. Quantification of Beach Profile Change

    DTIC Science & Technology

    1988-01-01

    expression for the local 30 equilibrium slope of a beach based on wave energy considerations. The equilibrium slope was a function of the angle of repose ...though the angle of initial yield should be approximately independent of grain size for the range of material studied. If a second bar formed immediately...the waves, whereas the time scale of beach fill adjustment is several weeks to several months and depends on season of placement, fill material , and

  18. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  19. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  20. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia

    PubMed Central

    Coullon, Gaelle S. L.; Emir, Uzay E.; Fine, Ione; Watkins, Kate E.

    2015-01-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, 1H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. PMID:26180125

  1. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  2. Neurobehavioral and neurochemical effects of prenatal ethanol administration in rats

    SciTech Connect

    Pradhan, S.; Briggs, F. )

    1992-01-01

    Effects of prenatal ethanol exposure in rats on the behavior and on the levels of multiple neurotransmitters in the brain have been investigated. Timed pregnant Sprague-Dawley rats were divided into three groups: ethanol-exposed, pair-fed control and nutritional control. Ethanol was administered through Leiber-DeCarli liquid diet containing 6% ethanol (v/v) throughout the gestation period in ethanol-exposed rats. Male offspring were tested for alternations in neurobehavioral and neurochemical parameters. Animals exposed to ethanol in utero exhibited lower birth weights, delayed motor development, delayed learning and no catch-up growth, as well as significant alterations in levels of dopamine, norepinephrine, serotonin and GABA in discrete brain areas.

  3. [Neuroanatomical, genetic and neurochemical aspects of infantile autism].

    PubMed

    Gerhant, Aneta; Olajossy, Marcin; Olajossy-Hilkesberger, Luiza

    2013-01-01

    Infantile autism is a neurodevelopmental disorder characterized by impairments in communication, reciprocal social interaction and restricted repetitive behaviors or interests. Although the cause of these disorders is not yet known, studies strongly suggest a genetic basis with a complex mode of inheritance. The etiopathogenetic processes of autism are extremely complex, which is reflected in the varying course and its symptomatology. Trajectories of brain development and volumes of its structures are aberrant in autistic patients. It is suggested that disturbances in sertotoninergic, gabaergic, glutaminergic, cholinergic and dopaminergic neurotransmission can be responsible for symptoms of autism as well as can disturb the development of the young brain. The objective of this article is to present the results of reasearch on neuroanatomical, neurochemical and genetic aspects of autism.

  4. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.

  5. Neurochemical effects of prenatal ethanol administration in rats

    SciTech Connect

    Briggs, F.; Headings, V.; Pradhan, S. )

    1991-03-11

    Effect of prenatal ethanol exposure in rats on the regulation brain serotonin (5-HT) and gamma-aminobutyric acid (GABA) has been investigated. Ethanol was administered in Sprague-Dawley rats through Lieber-DeCarli Liquid diet containing 6% ethanol (v/v) throughout the gestation period. The offspring of each group were sacrificed at four, seven and nine weeks of life by microwave radiation directed at the skull for one second. Each animal was decapitated and discrete areas of the brain were dissected out and analyzed for the neurotransmitter levels by HPLC technique. It was observed that the prenatal ethanol exposure significantly increased 5-HT level in pons medulla and GABA level in midbrain regions. No significant change was observed in those neurotransmitter levels between nutritional control and pair-fed control groups. These neurochemical changes were correlated with learning and behavior alterations in the same animal model.

  6. Thorium-induced neurobehavioural and neurochemical alterations in Swiss mice.

    PubMed

    Kumar, Amit; Ali, Manjoor; Mishra, Pravin; Pandey, B N; Sharma, Pragya; Mishra, Kaushala Prasad

    2009-04-01

    Thorium ((232)Th), a heavy metal radionuclide that targets the liver and skeleton, has been shown to accumulate in the central nervous system at low levels. The present study was aimed to investigate neurobehavioural and neurochemical changes in mice treated with (232)Th at sub-lethal doses. Swiss albino mice were administered intraperitoneally with thorium nitrate. The chelation-based therapeutic effect of calcium diethylenetriamine pentaacetate (Ca-DTPA) was tested on the (232)Th-treated mice. (232)Th localisation was determined in brain regions by the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) method. Achetylcholine esterase (AChE) activity in different brain regions was evaluated to assess the cholinergic function of mice CNS. Oxidative damage was evaluated by assessing the activities of antioxidant enzymes (i.e., superoxide dismutase and catalase) and the level of lipid peroxidation. The neurobehavioural alteration in the treated mice was studied by the shuttle box method. (232)Th accumulation found in different brain regions followed the order: Cerebellum (Cbl) > cortex (Ctx) > hippocampus (Hp) > striatum (Str). However, removal of (232)Th by Ca-DTPA was significant from brain regions like Cbl, Ctx and Str but not from Hp. A significant increase in lipid peroxidation and acetylcholine esterase (AChE) activity was observed in the treated mice but activities of superoxide dismutase and catalase was found substantially decreased. (232)Th treatment impaired the learning and memory-based neurobehaviour of the mice. Furthermore, our data suggest that Ca-DTPA injection in (232)Th-treated animals failed to improve the neurobehaviour of the treated mice, perhaps because Ca-DTPA could not decorporate (232)Th or mitigate (232)Th-mediated neurochemical changes effectively from/in hippocampus, a brain region implicated in learning and memory response. Administration of (232)Th in mice caused neurobehavioural alteration and impairment of cholinergic

  7. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry.

    PubMed

    Song, Peng; Mabrouk, Omar S; Hershey, Neil D; Kennedy, Robert T

    2012-01-03

    In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized for measuring each class of neurotransmitter. We present a high performance liquid chromatography (HPLC)-tandem mass spectrometry method that utilizes benzoyl chloride for determination of the most common low molecular weight neurotransmitters and metabolites. In this method, 17 analytes were separated in 8 min. The limit of detection was 0.03-0.2 nM for monoamine neurotransmitters, 0.05-11 nM for monoamine metabolites, 2-250 nM for amino acids, 0.5 nM for acetylcholine, 2 nM for histamine, and 25 nM for adenosine at sample volume of 5 μL. Relative standard deviation for repeated analysis at concentrations expected in vivo averaged 7% (n = 3). Commercially available (13)C benzoyl chloride was used to generate isotope-labeled internal standards for improved quantification. To demonstrate utility of the method for study of small brain regions, the GABA(A) receptor antagonist bicuculline (50 μM) was infused into a rat ventral tegmental area while recording neurotransmitter concentration locally and in nucleus accumbens, revealing complex GABAergic control over mesolimbic processes. To demonstrate high temporal resolution monitoring, samples were collected every 60 s while neostigmine, an acetylcholine esterase inhibitor, was infused into the medial prefrontal cortex. This experiment revealed selective positive control of acetylcholine over cortical glutamate.

  8. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  9. A neurochemical approach to valuation sensitivity over gains and losses

    PubMed Central

    Zhong, Songfa; Israel, Salomon; Xue, Hong; Sham, Pak C.; Ebstein, Richard P.; Chew, Soo Hong

    2009-01-01

    Prospect theory proposes the hypothesis that people have diminishing sensitivity in valuing increases in the size of monetary outcomes, for both gains and losses. For decision-making under risk, this implies a tendency to be risk-tolerant over losses while being generally risk averse over gains. We offer a neurochemistry-based model of the diminishing valuation sensitivity hypothesis. Specifically, we propose that dopamine tone modulates the sensitivity towards valuation of gains while serotonin tone modulates the sensitivity towards valuation of losses. Consequently, higher dopamine tone would yield a more concave valuation function over gains while higher serotonin tone would yield a more convex valuation function over losses. Using a neurogenetics strategy to test our neurochemical model, we find that subjects with the 9-repeat allele of DAT1 (lower DA tone) are more risk-tolerant over gains than subjects with the 10-repeat allele, and that subjects with the 10-repeat allele of STin2 (higher 5HT tone) are more risk-tolerant over losses than subjects with the 12-repeat allele. Overall, our results support the implications of our model and provide the first neurogenetics evidence that risk attitudes are partially hard-wired in differentiating between gain- and loss-oriented risks. PMID:19726478

  10. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    PubMed Central

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  11. A review of recent neurochemical data on inert gas narcosis.

    PubMed

    Rostain, J C; Lavoute, C; Risso, J J; Vallée, N; Weiss, M

    2011-01-01

    Nitrogen narcosis occurs in humans at around 0.4 MPa (4 ATA). Hydrogen narcosis occurs between 2.6 and 3.0 MPa. In rats, nitrogen disturbances occur from 1 MPa and a loss of righting reflex around 4 MPa. Neurochemical studies in striatum of rats with nitrogen at 3 MPa (75% of anesthesia threshold) with differential pulse voltammetry have demonstrated a decrease in dopamine (DA) release by neurons originated from the substantia nigra pars compacta (SNc). Such a decrease is found also with compressed argon, which is more narcotic than nitrogen and with the anesthetic gas nitrous oxide. Inversely, compressed helium with its very low narcotic potency induces DA increase. Microdialysis studies in the striatum have indicated that nitrogen also induces a decrease of glutamate concentration. Nitrogen pressure did not modify NMDA glutamate receptor activities in SNc or striatum but enhanced GABAA receptors activities in SNc. Repetitive exposures to nitrogen narcosis suppressed the DA decrease and induced an increase. This fact and the lack of improvement of motor disturbances did not support the hypothesis of a physiological adaptation. The desensitization of the GABAA receptors on DA cells during recurrent exposures and the parallel long-lasting decrease of glutamate coupled to the increase in NMDA receptor sensitivity suggest a nitrogen neurotoxicity or addiction induced by recurrent exposures. The differential changes produced by inert gases indifferent neurotransmitter receptors would support the binding protein theory.

  12. Recent neurochemical basis of inert gas narcosis and pressure effects.

    PubMed

    Rostain, J C; Balon, N

    2006-01-01

    Compressed air or a nitrogen-oxygen mixture produces from 0.3 MPa nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported the lipid theory. However, recently, protein theories are in increasing consideration since results have been interpreted as evidence for a direct anaesthetic-protein interaction. The question is to know whether inert gases act by binding processes on proteins of neurotransmitter receptors. Compression with breathing mixtures where nitrogen is replaced by helium which has a low narcotic potency induces from 1 MPa, the high pressure nervous syndrome which is related to neurochemical disturbances including changes of the amino-acid and monoamine neurotransmissions. The use of narcotic gas (nitrogen or hydrogen) added to a helium-oxygen mixture, reduced some symptoms of the HPNS but also had some effects due to an additional effect of the narcotic potency of the gas. The researches performed at the level of basal ganglia of the rat brain and particularly the nigro-striatal pathway involved in the control of the motor, locomotor and cognitive functions, disrupted by narcosis or pressure, have indicated that GABAergic neurotransmission is implicated via GABAa receptors.

  13. Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.

    PubMed

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2008-11-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.

  14. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  15. Neurophysiological and neurochemical basis of modern pruritus treatment.

    PubMed

    Ständer, Sonja; Weisshaar, Elke; Luger, Thomas A

    2008-03-01

    Chronic pruritus of any origin is a frequent discomfort in daily medical practice, and its therapy is challenging. Frequently, the underlying origin may not be identified and symptomatic therapy is necessary. Conventional treatment modalities such as antihistamines often lack efficacy, and hence new therapeutic strategies are necessary. The neuronal mechanisms underlying chronic pruritus have been partly identified during the past years and offer new therapeutic strategies. For example, mast cell degranulation, activation of neuroreceptors on sensory nerve fibres and neurogenic inflammation have been identified to be involved in induction and chronification of the symptom. Accordingly, controlling neuroreceptors such as cannabinoid receptors by agonists or antagonists showed high antipruritic efficacy. Pruritus is transmitted to the central nervous system by specialized nerve fibres and sensory receptors. It has been demonstrated that pruritus and pain have their own neuronal pathways with broad interactions. Accordingly, classical analgesics for neuropathic pain (gabapentin, antidepressants) also exhibit antipruritic efficacy upon clinical use. In summary, these recent developments show that highlighting the basis of pruritus offers modern neurophysiological and neurochemical therapeutic models and the possibility to treat patients with refractory itching of different origin.

  16. Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry.

    PubMed

    Yazulla, S; Studholme, K M

    2001-07-01

    The zebrafish retina is rapidly becoming a major preparation for the study of molecular genetic mechanisms underlying neural development and visual behavior. Studies utilizing retinal mutants would benefit by the availability of a data base on the distribution of neurotransmitter systems in the wild-type fish. To this end, the neurochemical anatomy of the zebrafish retina was surveyed by light microscopic immunocytochemistry. An extensive series of 60 separate antibodies were used to describe the distribution of major transmitter systems and a variety of neuron-associated membrane channels and proteins. These include markers (i.e., antibodies against enzymes, receptors, transporters) for transmitters: GABA, glycine, glutamate, biogenic amines, acetylcholine, cannabinoids and neuropeptides; as well as a sample of voltage-gated channels and synapse associated membrane proteins. Discussion of the comparative localization of these antibodies is restricted to other teleost fishes, particularly goldfish. Overall, there was great similarity in the distribution of the various markers, as might be expected. However, there were some notable differences, including several antibodies that did not label zebrafish at all, even though goldfish retinas that were processed in parallel, labeled beautifully. This survey is extensive, but not exhaustive, and hopefully will serve as a valuable resource for future studies of the zebrafish retina.

  17. Dyslipidemia links obesity to early cerebral neurochemical alterations

    PubMed Central

    Haley, Andreana P.; Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi

    2013-01-01

    Objective To examine the role of hypertension, hyperglycemia and dyslipidemia in potentially accounting for obesity-related brain vulnerability in the form of altered cerebral neurochemistry. Design and Methods Sixty-four adults, ages 40 to 60 years, underwent a health screen and proton magnetic resonance spectroscopy (1H MRS) of occipitoparietal grey matter to measure N-acetyl aspartate (NAA), choline (Cho), myo-inositol (mI) and glutamate (Glu) relative to creatine (Cr). The causal steps approach and non-parametric bootstrapping were utilized to assess if fasting glucose, mean arterial pressure or peripheral lipid/lipoprotein levels mediate the relationship between body mass index (BMI) and cerebral neurochemistry. Results Higher BMI was significantly related to higher mI/Cr, independent of age and sex. BMI was also significantly related to two of the proposed mediators, triglyceride and HDL-cholesterol, which were also independently related to increased mI/Cr. Finally, the relationship between BMI and mI/Cr, was significantly attenuated after inclusion of triglyceride and HDL-cholesterol into the model, one at a time, indicating statistical mediation. Conclusions Higher triglyceride and lower HDL levels statistically account for the association between BMI and myo-inositol, pointing towards a potentially critical role for dyslipidemia in the development of cerebral neurochemical alterations in obesity. PMID:23512296

  18. Social Stress and Psychosis Risk: Common Neurochemical Substrates?

    PubMed Central

    Mizrahi, Romina

    2016-01-01

    Environmental risk factors have been implicated in the etiology of psychotic disorders, with growing evidence showing the adverse effects of migration, social marginalization, urbanicity, childhood trauma, social defeat, and other adverse experiences on mental health in vulnerable populations. Collectively, social stress may be one mechanism that could link these environmental risk factors. The exact mechanism(s) by which social stress can affect brain function, and in particular the molecular targets involved in psychosis (such as the dopaminergic (DA) system), is (are) not fully understood. In this review, we will discuss the interplay between social environmental risk factors and molecular changes in the human brain; in particular, we will highlight the impact of social stress on three specific neurochemical systems: DA, neuroinflammation/immune, and endocannabinoid (eCB) signaling. We have chosen the latter two molecular pathways based on emerging evidence linking schizophrenia to altered neuroinflammatory processes and cannabis use. We further identify key developmental periods in which social stress interacts with these pathways, suggesting window(s) of opportunities for novel interventions. Taken together, we suggest that they may have a key role in the pathogenesis and disease progression, possibly provide novel treatment options for schizophrenia, and perhaps even prevent it. PMID:26346639

  19. Neurochemical background and approaches in the understanding of motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1982-01-01

    The problems and nature of space motion sickness were defined. The neurochemical and neurophysiological bases of vestibular system function and of the expression of motion sickness wre reviewed. Emphasis was given to the elucidation of the neuropharmacological mechanisms underlying the effects of scopolamine and amphetamine on motion sickness. Characterization of the ascending reticular activating system and the limbic system provided clues to the etiology of the side effects of scopolamine. The interrelationship between central cholinergic pathways and the peripheral (autonomic) expression of motion sickness was described. A correlation between the stress of excessive motion and a variety of hormonal responses to that stress was also detailed. The cholinergic system is involved in the efferent modulation of the vestibular hair cells, as an afferent modulator of the vestibular nuclei, in the activation of cortical and limbic structures, in the expression of motion sickness symptoms and most likely underscores a number of the hormonal changes that occur in stressful motion environments. The role of lecithin in the regulation of the levels of neurotransmitters was characterized as a possible means by which cholinergic neurochemistry can be modulated.

  20. Comparative neurochemical changes associated with chronic administration of typical and atypical neuroleptics: implications in tardive dyskinesia.

    PubMed

    Bishnoi, Mahendra; Kumar, Anil; Chopra, Kanwaljit; Kulkarni, Shrinivas K

    2007-02-01

    An important goal of current neuroleptic research is to develop antipsychotic compounds with the low incidence of extrapyramidal side effects. The therapeutic success and less side-effect of atypical anti-psychotics such as clozapine and risperidone has focused the attention on the role of receptor systems other than dopaminergic system in the pathophysiology of neuroleptics-associated extrapyramidal side effects. The present study compares the effect of chronic administration of typical and atypical antipsychotics on neurochemical profile in rat forebrain. The study was planned to study changes in extracellular levels of norepinephrine, dopamine and serotonin in forebrain region of brain and tried to correlate them with hyperkinetic motor activities (vacuous chewing movements (VCM's), tongue protrusions and facial jerking) in rats, hall mark of chronic extrapyramidal side-effect of neuroleptic therapy tardive dyskinesia. Chronic administration of haloperidol (1 mg/kg) and chlorpromazine (5 mg/kg) resulted in significant increase in orofacial hyperkinetic movements where as clozapine and risperidone showed less significant increase in orofacial hyperkinetic movements as compared to control. There were also significant decrease in the extracellular levels of neurotransmitters dopamine, norepinephrine and serotonin in fore-brain as measured by HPLC/ED after chronic administration of haloperidol and chlorpromazine. Chronic administration of atypical neuroleptics clozapine and risperidone resulted in the decrease in extracellular concentration of dopamine and norepinephrine but the effect was less significant as compared to typical drugs. However, treatment with atypical neuroleptics resulted in 3 fold increase in serotonin levels as compared to forebrain of control rats. Typical and atypical neuroleptics showed varying effects on neurotransmitters, especially serotonin which may account for the difference in their profile of side effects (Tardive dyskinesia).

  1. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.

    PubMed

    Ardais, A P; Borges, M F; Rocha, A S; Sallaberry, C; Cunha, R A; Porciúncula, L O

    2014-06-13

    Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Neurochemical Evidence of Potential Neurotoxicity After Prophylactic Cranial Irradiation

    SciTech Connect

    Kalm, Marie; Abel, Edvard; Wasling, Pontus; Nyman, Jan; Hietala, Max Albert; Bremell, Daniel; Hagberg, Lars; Elam, Mikael; Blennow, Kaj; Björk-Eriksson, Thomas; Zetterberg, Henrik

    2014-07-01

    Purpose: To examine whether cerebrospinal fluid biomarkers for neuroaxonal damage, neuroglial activation, and amyloid β–related processes could characterize the neurochemical response to cranial radiation. Methods and Materials: Before prophylactic cranial irradiation (PCI) of patients with small cell lung cancer, each patient underwent magnetic resonance imaging of the brain, lumbar puncture, and Mini-Mental State Examination of cognitive function. These examinations were repeated at approximately 3 and 12 months after radiation. Results: The major findings were as follows. (1) Cerebrospinal fluid markers for neuronal and neuroglial injury were elevated during the subacute phase after PCI. Neurofilament and T-tau increased 120% and 50%, respectively, after PCI (P<.05). The same was seen for the neuroglial markers YKL-40 and glial fibrillary acidic protein, which increased 144% and 106%, respectively, after PCI (P<.05). (2) The levels of secreted amyloid precursor protein-α and -β were reduced 44% and 46%, respectively, 3 months after PCI, and the levels continued to decrease as long as 1 year after treatment (P<.05). (3) Mini-Mental State Examination did not reveal any cognitive decline, indicating that a more sensitive test should be used in future studies. Conclusion: In conclusion, we were able to detect radiation therapy–induced changes in several markers reflecting neuronal injury, inflammatory/astroglial activation, and altered amyloid precursor protein/amyloid β metabolism, despite the low number of patients and quite moderate radiation doses (20-30 Gy). These changes are hypothesis generating and could potentially be used to assess the individual risk of developing long-term symptoms of chronic encephalopathy after PCI. This has to be evaluated in large studies with extended clinical follow-up and more detailed neurocognitive assessments.

  3. Neurochemical characterization of the tree shrew dorsal striatum.

    PubMed

    Rice, Matthew W; Roberts, Rosalinda C; Melendez-Ferro, Miguel; Perez-Costas, Emma

    2011-01-01

    The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington's, Tourette's syndrome, obsessive-compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.

  4. Neurochemical Characterization of the Tree Shrew Dorsal Striatum

    PubMed Central

    Rice, Matthew W.; Roberts, Rosalinda C.; Melendez-Ferro, Miguel; Perez-Costas, Emma

    2011-01-01

    The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum. PMID:21887131

  5. Neurochemical Changes Associated with Stress-Induced Sleep Disturbance in Rats: In Vivo and In Vitro Measurements

    PubMed Central

    Lee, Do-Wan; Chung, Seockhoon; Yoo, Hyun Ju; Kim, Su Jung; Woo, Chul-Woong; Kim, Sang-Tae; Lee, Dong-Hoon; Kim, Kyung Won; Kim, Jeong-Kon; Lee, Jin Seong; Choi, Choong Gon; Shim, Woo Hyun; Choi, Yoonseok; Woo, Dong-Cheol

    2016-01-01

    The goal of this study was to quantitatively assess the changes in the cerebral neurochemical profile and to identify those factors that contribute to the alteration of endogenous biomolecules when rats are subjected to stress-induced sleep disturbance. We exposed Sprague-Dawley rats (controls: n = 9; stress-induced sleep perturbation rats: n = 11) to a psychological stressor (cage exchange method) to achieve stress-induced sleep perturbation. In vivo magnetic resonance imaging assessments were carried out using a high-resolution 9.4 T system. For in vivo neurochemical analysis, a single voxel was localized in the right dorsal hippocampal region, and in vivo spectra were quantified for 17 cerebral neurochemical signals. Rats were sacrificed upon completion of the magnetic resonance spectroscopy protocol, and whole-brain tissue was harvested from twenty subjects. The dopamine and serotonin signals were obtained by performing in vitro liquid chromatography-tandem mass spectrometry on the harvested tissue. In the right dorsal hippocampal region, the gamma-aminobutyric-acid (GABA) and glutamine (Gln) concentrations were significantly higher in the sleep-perturbed rats than in the sham controls. The ratios of Gln/Glu (glutamate), Gln/tCr (total-creatine), and GABA/Glu were also significantly higher in the sleep-perturbed group, while serotonin concentrations were significantly lower in the sleep-perturbed rats. Pearson correlation results among individual rat data indicate that concentrations of dopamine (DA) and serotonin (5-HT) were significantly higher in SSP rats. A larger correlation coefficient was also observed for the SSP rats. Analysis of the correlation between the in vivo and in vitro signals indicated that the concentrations of Gln, 5-HT, and DA exhibited a significant negative correlation in the SSP rat data but not in that of control rats. The authors propose that the altered and correlated GABA, Gln, 5-HT, and DA concentrations/ratios could be considered

  6. Dystrophin quantification

    PubMed Central

    Anthony, Karen; Arechavala-Gomeza, Virginia; Taylor, Laura E.; Vulin, Adeline; Kaminoh, Yuuki; Torelli, Silvia; Feng, Lucy; Janghra, Narinder; Bonne, Gisèle; Beuvin, Maud; Barresi, Rita; Henderson, Matt; Laval, Steven; Lourbakos, Afrodite; Campion, Giles; Straub, Volker; Voit, Thomas; Sewry, Caroline A.; Morgan, Jennifer E.; Flanigan, Kevin M.

    2014-01-01

    Objective: We formed a multi-institution collaboration in order to compare dystrophin quantification methods, reach a consensus on the most reliable method, and report its biological significance in the context of clinical trials. Methods: Five laboratories with expertise in dystrophin quantification performed a data-driven comparative analysis of a single reference set of normal and dystrophinopathy muscle biopsies using quantitative immunohistochemistry and Western blotting. We developed standardized protocols and assessed inter- and intralaboratory variability over a wide range of dystrophin expression levels. Results: Results from the different laboratories were highly concordant with minimal inter- and intralaboratory variability, particularly with quantitative immunohistochemistry. There was a good level of agreement between data generated by immunohistochemistry and Western blotting, although immunohistochemistry was more sensitive. Furthermore, mean dystrophin levels determined by alternative quantitative immunohistochemistry methods were highly comparable. Conclusions: Considering the biological function of dystrophin at the sarcolemma, our data indicate that the combined use of quantitative immunohistochemistry and Western blotting are reliable biochemical outcome measures for Duchenne muscular dystrophy clinical trials, and that standardized protocols can be comparable between competent laboratories. The methodology validated in our study will facilitate the development of experimental therapies focused on dystrophin production and their regulatory approval. PMID:25355828

  7. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  8. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    PubMed Central

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-01-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy. PMID:28452348

  9. Impulsivity Characterization in the Roman High- and Low-Avoidance Rat Strains: Behavioral and Neurochemical Differences

    PubMed Central

    Moreno, Margarita; Cardona, Diana; Gómez, Maria José; Sánchez-Santed, Fernando; Tobeña, Adolf; Fernández-Teruel, Alberto; Campa, Leticia; Suñol, Cristina; Escarabajal, Maria Dolores; Torres, Carmen; Flores, Pilar

    2010-01-01

    The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for rapid vs extremely poor acquisition of active avoidance behavior in a shuttle-box has generated two phenotypes with different emotional and motivational profiles. The phenotypic traits of the Roman rat lines/strains (outbred or inbred, respectively) include differences in sensation/novelty seeking, anxiety/fearfulness, stress responsivity, and susceptibility to addictive substances. We designed this study to characterize differences between the inbred RHA-I and RLA-I strains in the impulsivity trait by evaluating different aspects of the multifaceted nature of impulsive behaviors using two different models of impulsivity, the delay-discounting task and five-choice serial reaction time (5-CSRT) task. Previously, rats were evaluated on a schedule-induced polydipsia (SIP) task that has been suggested as a model of obsessive-compulsive disorder. RHA-I rats showed an increased acquisition of the SIP task, higher choice impulsivity in the delay-discounting task, and poor inhibitory control as shown by increased premature responses in the 5-CSRT task. Therefore, RHA-I rats manifested an increased impulsivity phenotype compared with RLA-I rats. Moreover, these differences in impulsivity were associated with basal neurochemical differences in striatum and nucleus accumbens monoamines found between the two strains. These findings characterize the Roman rat strains as a valid model for studying the different aspects of impulsive behavior and for analyzing the mechanisms involved in individual predisposition to impulsivity and its related psychopathologies. PMID:20090672

  10. Stereochemistry of mephedrone neuropharmacology: enantiomer-specific behavioural and neurochemical effects in rats

    PubMed Central

    Gregg, Ryan A; Baumann, Michael H; Partilla, John S; Bonano, Julie S; Vouga, Alexandre; Tallarida, Christopher S; Velvadapu, Venkata; Smith, Garry R; Peet, M Melissa; Reitz, Allen B; Negus, S Stevens; Rawls, Scott M

    2015-01-01

    Background and Purpose Synthetic cathinones, commonly referred to as ‘bath salts’, are a group of amphetamine-like drugs gaining popularity worldwide. 4-Methylmethcathinone (mephedrone, MEPH) is the most commonly abused synthetic cathinone in the UK, and exerts its effects by acting as a substrate-type releaser at monoamine transporters. Similar to other cathinone-related compounds, MEPH has a chiral centre and exists stably as two enantiomers: R-mephedrone (R-MEPH) and S-mephedrone (S-MEPH). Experimental Approach Here, we provide the first investigation into the neurochemical and behavioural effects of R-MEPH and S-MEPH. We analysed both enantiomers in rat brain synaptosome neurotransmitter release assays and also investigated their effects on locomotor activity (e.g. ambulatory activity and repetitive movements), behavioural sensitization and reward. Key Results Both enantiomers displayed similar potency as substrates (i.e. releasers) at dopamine transporters, but R-MEPH was much less potent than S-MEPH as a substrate at 5-HT transporters. Locomotor activity was evaluated in acute and repeated administration paradigms, with R-MEPH producing greater repetitive movements than S-MEPH across multiple doses. After repeated drug exposure, only R-MEPH produced sensitization of repetitive movements. R-MEPH produced a conditioned place preference whereas S-MEPH did not. Lastly, R-MEPH and S-MEPH produced biphasic profiles in an assay of intracranial self-stimulation (ICSS), but R-MEPH produced greater ICSS facilitation than S-MEPH. Conclusions and Implications Our data are the first to demonstrate stereospecific effects of MEPH enantiomers and suggest that the predominant dopaminergic actions of R-MEPH (i.e. the lack of serotonergic actions) render this stereoisomer more stimulant-like when compared with S-MEPH. This hypothesis warrants further study. PMID:25255824

  11. Neurochemical dementia diagnostics for Alzheimer's disease and other dementias: an ISO 15189 perspective.

    PubMed

    Waedt, Johanna; Kleinow, Martina; Kornhuber, Johannes; Lewczuk, Piotr

    2012-10-01

    Dementia is one of the most common causes of health problems in the elderly populations of Western industrialized countries. A combined analysis of cerebrospinal fluid-based neurochemical dementia diagnostics biomarkers (amyloid-β peptides, total tau and phosphorylated forms of tau) provides sensitivity and specificity in the range of 85% for the diagnosis of Alzheimer's disease, the most common cause of dementia. The alterations occur very early in the course of neurodegeneration, enabling medical follow-up of persons with increased risk of developing dementia. With a growing number of laboratories performing neurochemical dementia diagnostics routinely, it is important to standardize protocols and laboratory performance to enable comparisons of results and their interpretations. Together with the recently published expert guidelines for sample handling and preparation, as well as the interpretation (post-analytical) algorithms developed by experienced centers, ISO 15189 norm provides an extremely useful tool for standardization of neurochemical dementia diagnostics.

  12. Physiological, morphological and neurochemical characterization of neurons modulated by movement.

    PubMed

    Dessem, Dean

    2011-04-21

    The role of individual neurons and their function in neuronal circuits is fundamental to understanding the neuronal mechanisms of sensory and motor functions. Most investigations of sensorimotor mechanisms rely on either examination of neurons while an animal is static or record extracellular neuronal activity during a movement. While these studies have provided the fundamental background for sensorimotor function, they either do not evaluate functional information which occurs during a movement or are limited in their ability to fully characterize the anatomy, physiology and neurochemical phenotype of the neuron. A technique is shown here which allows extensive characterization of individual neurons during an in vivo movement. This technique can be used not only to study primary afferent neurons but also to characterize motoneurons and sensorimotor interneurons. Initially the response of a single neuron is recorded using electrophysiological methods during various movements of the mandible followed by determination of the receptive field for the neuron. A neuronal tracer is then intracellularly injected into the neuron and the brain is processed so that the neuron can be visualized with light, electron or confocal microscopy (Fig. 1). The detailed morphology of the characterized neuron is then reconstructed so that neuronal morphology can be correlated with the physiological response of the neuron (Figs. 2,3). In this communication important key details and tips for successful implementation of this technique are provided. Valuable additional information can be determined for the neuron under study by combining this method with other techniques. Retrograde neuronal labeling can be used to determine neurons with which the labeled neuron synapses; thus allowing detailed determination of neuronal circuitry. Immunocytochemistry can be combined with this method to examine neurotransmitters within the labeled neuron and to determine the chemical phenotypes of neurons

  13. N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes.

    PubMed

    Fell, Matthew J; Witkin, Jeffrey M; Falcone, Julie F; Katner, Jason S; Perry, Kenneth W; Hart, John; Rorick-Kehn, Linda; Overshiner, Carl D; Rasmussen, Kurt; Chaney, Stephen F; Benvenga, Mark J; Li, Xia; Marlow, Deanna L; Thompson, Linda K; Luecke, Susan K; Wafford, Keith A; Seidel, Wesley F; Edgar, Dale M; Quets, Anne T; Felder, Christian C; Wang, XuShan; Heinz, Beverly A; Nikolayev, Alexander; Kuo, Ming-Shang; Mayhugh, Daniel; Khilevich, Albert; Zhang, Deyi; Ebert, Philip J; Eckstein, James A; Ackermann, Bradley L; Swanson, Steven P; Catlow, John T; Dean, Robert A; Jackson, Kimberley; Tauscher-Wisniewski, Sitra; Marek, Gerard J; Schkeryantz, Jeffrey M; Svensson, Kjell A

    2011-01-01

    The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2

  14. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS.

    PubMed

    Otto, Markus; Bowser, Robert; Turner, Martin; Berry, James; Brettschneider, Johannes; Connor, James; Costa, Júlia; Cudkowicz, Merit; Glass, Jonathan; Jahn, Olaf; Lehnert, Stefan; Malaspina, Andrea; Parnetti, Lucilla; Petzold, Axel; Shaw, Pamela; Sherman, Alexander; Steinacker, Petra; Süssmuth, Sigurd; Teunissen, Charlotte; Tumani, Hayrettin; Wuolikainen, Anna; Ludolph, Albert

    2012-01-01

    Despite major advances in deciphering the neuropathological hallmarks of amyotrophic lateral sclerosis (ALS), validated neurochemical biomarkers for monitoring disease activity, earlier diagnosis, defining prognosis and unlocking key pathophysiological pathways are lacking. Although several candidate biomarkers exist, translation into clinical application is hindered by small sample numbers, especially longitudinal, for independent verification. This review considers the potential routes to the discovery of neurochemical markers in ALS, and provides a consensus statement on standard operating procedures that will facilitate multicenter collaboration, validation and ultimately clinical translation.

  15. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development.

    PubMed

    Palmisano, Giuseppe; Parker, Benjamin L; Engholm-Keller, Kasper; Lendal, Sara Eun; Kulej, Katarzyna; Schulz, Melanie; Schwämmle, Veit; Graham, Mark E; Saxtorph, Henrik; Cordwell, Stuart J; Larsen, Martin R

    2012-11-01

    We describe a method that combines an optimized titanium dioxide protocol and hydrophilic interaction liquid chromatography to simultaneously enrich, identify and quantify phosphopeptides and formerly N-linked sialylated glycopeptides to monitor changes associated with cell signaling during mouse brain development. We initially applied the method to enriched membrane fractions from HeLa cells, which allowed the identification of 4468 unique phosphopeptides and 1809 formerly N-linked sialylated glycopeptides. We subsequently combined the method with isobaric tagging for relative quantification to compare changes in phosphopeptide and formerly N-linked sialylated glycopeptide abundance in the developing mouse brain. A total of 7682 unique phosphopeptide sequences and 3246 unique formerly sialylated glycopeptides were identified. Moreover 669 phosphopeptides and 300 formerly N-sialylated glycopeptides differentially regulated during mouse brain development were detected. This strategy allowed us to reveal extensive changes in post-translational modifications from postnatal mice from day 0 until maturity at day 80. The results of this study confirm the role of sialylation in organ development and provide the first extensive global view of dynamic changes between N-linked sialylation and phosphorylation.

  16. Chemical profiling and quantification of Gua-Lou-Gui-Zhi decoction by high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and ultra-performance liquid chromatography/triple quadrupole mass spectrometry.

    PubMed

    Xu, Wen; Huang, Mingqing; Li, Huang; Chen, Xianwen; Zhang, Yuqin; Liu, Jie; Xu, Wei; Chu, Kedan; Chen, Lidian

    2015-04-01

    Gua-Lou-Gui-Zhi decoction (GLGZD) is a classical formula of traditional Chinese medicine, which has been commonly used to treat dysfunction after stroke, epilepsy and spinal cord injury. In this study, a systematic method was established for chemical profiling and quantification analysis of the major constituents in GLGZD. For qualitative analysis, a method of high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (Q-TOF MS) was developed. 106 compounds, including monoterpene glycosides, galloyl glucoses, phenolic acids, flavonoids, gingerols and triterpene saponins were identified or tentatively presumed by comparison with reference standards or literature data. According to the qualitative results, a new quantitative analysis method of ultra-performance liquid chromatography/triple quadrupole mass spectrometry (QqQ-MS) was established. 24 representative compounds were simultaneously detected in 10 batches of GLGZD samples in 7.5 min. The calibration curves for all analytes showed good linearity (r>0.9959) within the test ranges. The LODs and the LOQs were less than 30.6 and 70.9 ng/mL, respectively. The RSDs of intra- and inter-day precision, repeatability and stability were below 3.64%, 4.85%, 4.84% and 3.87%, respectively. The overall recoveries ranged from 94.94% to 103.66%, with the RSDs within 5.12%. This study established a high sensitive and efficient method for the integrating quality control, including identification and quantification of Chinese medicinal preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Eating disorder and obsessive-compulsive disorder: neurochemical and phenomenological commonalities.

    PubMed Central

    Jarry, J L; Vaccarino, F J

    1996-01-01

    This paper explores a possible connection between neurochemistry and cognitions in eating disorders (ED). Cognitions play an important role in ED. However, a possible neurochemical origin of these cognitions has not been explored. Obsessive-compulsive disorder (OCD) is known as a disorder of thinking. Extensive neurochemical research conducted on this disorder indicates a connection between serotonin (5-HT) dysregulation and cognitions in OCD. This study used research done on OCD as a template to interpret the available research findings in ED and their possible meaning in terms of neurochemical origin of cognitions in ED. This paper suggests that the neurochemical and behavioral expression of both ED and OCD occur on a continuum. At one end of the continuum, ED and OCD are expressed through constrained behaviors of an avoidant quality. This pole is also characterized by high levels of serotonin markers. At the other end, both disorders are characterized by disinhibited approach behavior. This end of the continuum is characterized by low levels of 5-HT markers. It is suggested that these levels of 5-HT generate cognitions that may in turn promote specific behaviors. PMID:8580116

  18. Compulsive Behavior and Eye Blink in Prader-Willi Syndrome: Neurochemical Implications

    ERIC Educational Resources Information Center

    Holsen, Laura; Thompson, Travis

    2004-01-01

    Compulsive behavior in Prader-Willi syndrome is well-documented, though the neurochemical basis of these behaviors remains unknown. We studied a group of 16 people with Prader-Willi syndrome and a comparison group of 19 people with intellectual disability. Using eye-blink rate as an indirect measure of central nervous system dopamine, we found a…

  19. Compulsive Behavior and Eye Blink in Prader-Willi Syndrome: Neurochemical Implications

    ERIC Educational Resources Information Center

    Holsen, Laura; Thompson, Travis

    2004-01-01

    Compulsive behavior in Prader-Willi syndrome is well-documented, though the neurochemical basis of these behaviors remains unknown. We studied a group of 16 people with Prader-Willi syndrome and a comparison group of 19 people with intellectual disability. Using eye-blink rate as an indirect measure of central nervous system dopamine, we found a…

  20. Examining Neurochemical Determinants of Inspection Time: Development of a Biological Model.

    ERIC Educational Resources Information Center

    Stough, Con; Thompson, J. C.; Bates, T. C.; Nathan, P. J.

    2001-01-01

    Describes results of several studies of the neurochemical determinants of inspection time (IT), outlining the significance of several studies in which performance on the IT task is measured before and after modulating key human central nervous system neurotransmitters and receptor systems. Results of these studies suggest a primarily cholinergic…

  1. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    PubMed Central

    Beman, J. M.; Bertics, Victoria J.; Braunschweiler, Thomas; Wilson, Jesse M.

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria. PMID:22837756

  2. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.

    PubMed

    Zuena, Anna Rita; Mairesse, Jerome; Casolini, Paola; Cinque, Carlo; Alemà, Giovanni Sebastiano; Morley-Fletcher, Sara; Chiodi, Valentina; Spagnoli, Luigi Giusto; Gradini, Roberto; Catalani, Assia; Nicoletti, Ferdinando; Maccari, Stefania

    2008-05-14

    Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats") showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.

  3. Prenatal Restraint Stress Generates Two Distinct Behavioral and Neurochemical Profiles in Male and Female Rats

    PubMed Central

    Casolini, Paola; Cinque, Carlo; Alemà, Giovanni Sebastiano; Morley-Fletcher, Sara; Chiodi, Valentina; Spagnoli, Luigi Giusto; Gradini, Roberto; Catalani, Assia; Nicoletti, Ferdinando; Maccari, Stefania

    2008-01-01

    Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS (“PRS rats”) showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females. PMID:18478112

  4. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    DOE PAGES

    Choi, Y.; Eng, P.; Stubbs, J.; ...

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less

  5. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    SciTech Connect

    Choi, Y.; Eng, P.; Stubbs, J.; Sutton, S. R.; Schmeling, M.; Veryovkin, I. V.; Burnett, D.

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impurity Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.

  6. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    SciTech Connect

    Choi, Y.; Eng, P.; Stubbs, J.; Sutton, S. R.; Schmeling, M.; Veryovkin, I. V.; Burnett, D.

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impurity Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.

  7. Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries ( Vaccinium spp.).

    PubMed

    Yousef, Gad G; Brown, Allan F; Funakoshi, Yayoi; Mbeunkui, Flaubert; Grace, Mary H; Ballington, James R; Loraine, Ann; Lila, Mary A

    2013-05-22

    Anthocyanins and phenolic acids are major secondary metabolites in blueberry with important implications for human health maintenance. An improved protocol was developed for the accurate, efficient, and rapid comparative screening for large blueberry sample sets. Triplicates of six commercial cultivars and four breeding selections were analyzed using the new method. The compound recoveries ranged from 94.2 to 97.5 ± 5.3% when samples were spiked with commercial standards prior to extraction. Eighteen anthocyanins and 4 phenolic acids were quantified in frozen and freeze-dried fruits. Large variations for individual and total anthocyanins, ranging from 201.4 to 402.8 mg/100 g, were assayed in frozen fruits. The total phenolic acid content ranged from 23.6 to 61.7 mg/100 g in frozen fruits. Across all genotypes, freeze-drying resulted in minor reductions in anthocyanin concentration (3.9%) compared to anthocyanins in frozen fruits. However, phenolic acids increased by an average of 1.9-fold (±0.3) in the freeze-dried fruit. Different genotypes frequently had comparable overall levels of total anthocyanins and phenolic acids, but differed dramatically in individual profiles of compounds. Three of the genotypes contained markedly higher concentrations of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, and malvidin 3-O-glucoside, which have previously been implicated as bioactive principles in this fruit. The implications of these findings for human health benefits are discussed.

  8. Activation of cerebral function by CS-932, a functionally selective M1 partial agonist: neurochemical characterization and pharmacological studies.

    PubMed

    Iwata, N; Kozuka, M; Hara, T; Kanek, T; Tonohiro, T; Sugimoto, M; Niitsu, Y; Kondo, Y; Yamamoto, T; Sakai, J; Nagano, M

    2000-11-01

    A newly synthesized agonist for muscarinic acetylcholine (ACh) receptors CS-932, (R)-3-(3-iso-xazoloxy)-1-azabicyclo-[2.2.2]octane hydrochloride, showed a relatively higher affinity for M1 than M2 receptors expressed in Chinese hamster ovary (CHO)-cells in comparison with ACh. CS-932 elevated the intracellular Ca2+ level only in M1-CHO cells, although ACh increased the level in both M1- and M3-CHO cells. CS-932 and ACh reduced forskolin-stimulated accumulation of cAMP in M2-CHO cells by 20% and 80%, respectively. This neurochemical profile of CS-932 indicates that the compound can activate M1-receptor-mediated functions selectively. CS-932 increased firing of cholinoceptive neurons in rat hippocampal slices, and this excitation was antagonized by pirenzepine, but not by AF-DX 116. CS-932 increased awake and decreased slow wave sleep episodes of daytime EEG in free-moving rats. It counteracted scopolamine-induced slow waves in rat cortical EEG. CS-932 also increased the power of alpha- and beta-waves, but decreased delta-wave of the cortical EEG in anesthetized monkeys. It ameliorated scopolamine-induced impairment of working memory in rats. Orally administered CS-932 had the best penetration into the brain among the muscarinic agonists tested and caused the least salivary secretion among the cholinomimetics examined. These results indicate that CS-932 has potential as a cognitive enhancer with fewer side effects in therapy for Alzheimer disease.

  9. Neurochemical study of amino acids in rodent brain structures using an improved gas chromatography-mass spectrometry method.

    PubMed

    Pinto, Mauro Cunha Xavier; de Paiva, Maria José Nunes; Oliveira-Lima, Onésia Cristina; Menezes, Helvécio Costa; Cardeal, Zenilda de Lourdes; Gomez, Marcus Vinícius; Resende, Rodrigo Ribeiro; Gomez, Renato Santiago

    2014-01-01

    The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005μmolL(-1) to 7.07±0.05μmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The neurobiology of social attachment: A comparative approach to behavioral, neuroanatomical, and neurochemical studies.

    PubMed

    Young, Kimberly A; Liu, Yan; Wang, Zuoxin

    2008-11-01

    The formation and maintenance of social bonds in adulthood is an essential component of human health. However studies investigating the underlying neurobiology of such behaviors have been scarce. Microtine rodents offer a unique comparative animal model to explore the neural processes responsible for pair bonding and its associated behaviors. Studies using monogamous prairie voles and other related species have recently offered insight into the neuroanatomical, neurobiological, and neurochemical underpinnings of social attachment. In this review, we will discuss the utility of the microtine rodents in comparative studies by exploring their natural history and social behavior in the laboratory. We will then summarize the data implicating vasopressin, oxytocin, and dopamine in the regulation of pair bonding. Finally, we will discuss the ways in which these neurochemical systems may interact to mediate this complex behavior.

  11. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  12. Neurochemical coding in the small intestine of patients with Crohn's disease.

    PubMed Central

    Belai, A; Boulos, P B; Robson, T; Burnstock, G

    1997-01-01

    BACKGROUND: There have been conflicting results regarding the effect of Crohn's disease on the neurochemical composition of the enteric nervous system. AIMS: To examine the effect of Crohn's disease on the neurochemical composition of enteric nerve fibres and cell bodies using whole mount preparations of human ileum. METHODS: Whole wall ileum from seven normal subjects and nine patients with Crohn's disease was used to investigate the neurochemical composition of neurones and nerve fibres in the myenteric plexus, circular muscle, and serosa layer of ileum using immunohistochemical techniques. RESULTS: Increased tyrosine hydroxylase, 5-hydroxytryptamine, and neuropeptide Y immunoreactivity was exclusively seen in the myenteric plexus. There was increased neurofilament immunoreactivity in the myenteric plexus and nerve fibres of the circular muscle layer, and thick bundles of immunoreactive nerve fibres in the serosa layer. Increased vasoactive intestinal polypeptide, nitric oxide synthase, and pituitary adenylate cyclase activating peptide immunoreactivity was seen in the myenteric plexus and nerve fibres of the circular muscle layer, and aggregates of inflammatory cells in the serosa layer of the afflicted segment of Crohn's ileum. In addition, there was a chaotic display of nerve fibres containing some of the neuroactive substances with a high frequency of enlarged varicosities in the myenteric ganglia and/or nerve fibres of the circular muscle layer of Crohn's ileum. CONCLUSION: Results show quantitative as well as qualitative changes in the neurochemical composition of enteric nerve fibres and nerve cell bodies of Crohn's ileum. These changes and the presence of nitric oxide synthase and peptides immunoreactive inflammatory cells in the serosa layer suggest that nerve-immune interactions may have a significant role in the process of the inflammatory changes seen in Crohn's ileitis. Images PMID:9245931

  13. Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats

    PubMed Central

    Hutsell, Blake A.; Baumann, Michael H.; Partilla, John S.; Banks, Matthew L.; Vekariya, Rakesh; Glennon, Richard A.; Negus, S. Stevens

    2017-01-01

    Cathinone and many of its analogs produce behavioral effects by promoting transporter-mediated release of the monoamine neurotransmitters dopamine, norepinephrine and/or serotonin. Stereoselectivity is one determinant of neurochemical and behavioral effects of cathinone analogs. This study compared effectiveness of the S(−) and R(+) enantiomers of cathinone and 4-methylcathinone to produce in vitro monoamine release and in vivo abuse-related behavioral effects in rats. For neurochemical studies, drug effects were evaluated on monoamine release through dopamine, norepinephrine, and serotonin transporters (DAT, NET and SERT, respectively) in rat brain synaptosomes. For behavioral studies, drug effects were evaluated on responding for electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. The cathinone enantiomers differed in potency [S(−)>R(+)], but both enantiomers were >50-fold selective at promoting monoamine release through DAT vs. SERT, and both enantiomers produced ICSS facilitation. The 4-methylcathinone enantiomers also differed in potency [S(−)>R(+)]; however, in neurochemical studies, the decrease in potency from S(−) to R(+)4-methylcathinone was less for DAT than for SERT, and as a result, DAT vs. SERT selectivity was greater for R(+) than for S(−)4-methylcathinone (4.1- vs. 1.2-fold). Moreover, in behavioral studies, S(−)4-methylcathinone produced only ICSS depression, whereas R(+)4-methylcathinone produced ICSS facilitation. This study provides further evidence for stereoselectivity in neurochemical and behavioral actions of cathinone analogs. More importantly, stereoselective 4-methylcathinone effects on ICSS illustrate the potential for diametrically opposite effects of enantiomers in a preclinical behavioral assay of abuse potential. PMID:26738428

  14. Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats.

    PubMed

    Hutsell, Blake A; Baumann, Michael H; Partilla, John S; Banks, Matthew L; Vekariya, Rakesh; Glennon, Richard A; Negus, S Stevens

    2016-02-01

    Cathinone and many of its analogs produce behavioral effects by promoting transporter-mediated release of the monoamine neurotransmitters dopamine, norepinephrine and/or serotonin. Stereoselectivity is one determinant of neurochemical and behavioral effects of cathinone analogs. This study compared effectiveness of the S(-) and R(+) enantiomers of cathinone and 4-methylcathinone to produce in vitro monoamine release and in vivo abuse-related behavioral effects in rats. For neurochemical studies, drug effects were evaluated on monoamine release through dopamine, norepinephrine, and serotonin transporters (DAT, NET and SERT, respectively) in rat brain synaptosomes. For behavioral studies, drug effects were evaluated on responding for electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. The cathinone enantiomers differed in potency [S(-)>R(+)], but both enantiomers were >50-fold selective at promoting monoamine release through DAT vs. SERT, and both enantiomers produced ICSS facilitation. The 4-methylcathinone enantiomers also differed in potency [S(-)>R(+)]; however, in neurochemical studies, the decrease in potency from S(-) to R(+)4-methylcathinone was less for DAT than for SERT, and as a result, DAT vs. SERT selectivity was greater for R(+) than for S(-)4-methylcathinone (4.1- vs. 1.2-fold). Moreover, in behavioral studies, S(-)4-methylcathinone produced only ICSS depression, whereas R(+)4-methylcathinone produced ICSS facilitation. This study provides further evidence for stereoselectivity in neurochemical and behavioral actions of cathinone analogs. More importantly, stereoselective 4-methylcathinone effects on ICSS illustrate the potential for diametrically opposite effects of enantiomers in a preclinical behavioral assay of abuse potential.

  15. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain

    PubMed Central

    Bennet, Kevin E.; Tomshine, Jonathan R.; Min, Hoon-Ki; Manciu, Felicia S.; Marsh, Michael P.; Paek, Seungleal B.; Settell, Megan L.; Nicolai, Evan N.; Blaha, Charles D.; Kouzani, Abbas Z.; Chang, Su-Youne; Lee, Kendall H.

    2016-01-01

    Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301). PMID:27014033

  16. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  17. Pupillometry as a glimpse into the neurochemical basis of human memory encoding

    PubMed Central

    Hoffing, Russell Cohen; Seitz, Aaron R.

    2015-01-01

    Neurochemical systems are well studied in animal learning, however ethical issues limit methodologies to explore these systems in humans. Pupillometry provides a glimpse into the brain’s neurochemical systems, where pupil dynamics in monkeys have been linked with locus coeruleus activity, which releases norepinephrine (NE) throughout the brain. Here, we use pupil dynamics as a surrogate measure of neurochemical activity to explore the hypothesis that NE is involved in modulating memory encoding. We examine this using a task irrelevant learning paradigm in which learning is boosted for stimuli temporally paired with task-targets. We show that participants better recognize images that are paired with task-targets than distractors, and in correspondence that pupil-size changes more for target-paired than distractor-paired images. To further investigate the hypothesis that NE non-specifically guides learning for stimuli that are present with its release, a second procedure was used that employed an unexpected sound to activate the LC-NE system and induce pupil-size changes; results indicated a corresponding increase in memorization of images paired with the unexpected sounds. Together, these results suggest a relationship between the LC-NE system, pupil-size changes and human memory encoding. PMID:25390194

  18. HPA axis activation and neurochemical responses to bacterial translocation from the gastrointestinal tract.

    PubMed

    Dunn, Adrian J; Ando, Tetsuya; Brown, Rhonda F; Berg, Rodney D

    2003-05-01

    Stress can cause migration of indigenous bacterial flora from the gut to the peritoneum, a phenomenon known as bacterial translocation. Destruction of the cell walls of gram-negative bacteria can result in the production of endotoxin (lipopolysaccharide, LPS), which is the likely cause of sepsis. Exogenously administered LPS can activate the hypothalamo-pituitary-adrenal (HPA) axis as well as brain noradrenergic and indoleaminergic systems. Thus, it is possible that activations of these systems associated with laboratory stressors in rats and mice could be attributed to bacterial translocation and LPS production. To test this hypothesis we conducted experiments on the time course of bacterial translocation in response to restraint in mice, while measuring HPA and neurochemical responses. These experiments failed to show good correlations between the occurrence of bacterial translocation and HPA and neurochemical activations, suggesting that the later responses were not linked to bacterial translocation. This conclusion was supported by the observation of normal neurochemical responses to restraint in germ-free mice. In further experiments, translocation of Salmonella typhimurium, a bacterium that readily translocates in unstressed animals, was associated with HPA activation and noradrenergic and indoleaminergic responses, indicating that bacterial translocation can indeed activate the HPA axis and brain amines. However, the above experiments suggest that this is not the mechanism by which restraint activates these systems.

  19. PET Measurement of rCBF in the presence of a neurochemical tracer.

    PubMed

    Converse, Alexander K; Barnhart, Todd E; Dabbs, Kevin A; DeJesus, Onofre T; Larson, Julie A; Nickles, Robert J; Schneider, Mary L; Roberts, Andrew D

    2004-01-30

    Functional neurochemical imaging can indicate neurotransmitter release by detecting changes in receptor occupancy. A dual tracer positron emission tomography (PET) technique is presented here to extend such studies by simultaneously measuring changes in regional cerebral blood flow (rCBF). This would permit correlations of task or drug induced changes in rCBF and neurochemical function. In this proposed method, the rapidly varying signal from a blood flow tracer is distinguished from the slowly changing signal due to a long-lived neurochemical tracer. As a proof of principle, baseline studies were carried out in rhesus monkeys. Two monkeys were anesthetized with isoflurane, and [18F]fallypride (t1/2=110 min), a dopamine D2 receptor antagonist, was injected. Starting 99-137 min after injection, PET images were acquired every 10 s while the blood flow tracer [17F]fluoromethane (t1/2=65 s) was administered by inhalation in a repeating pattern of 45 s on/45 s off. The observed time-activity curves for 2 ml brain regions were fit with a three compartment lung-body-brain model of fluoromethane kinetics with whole brain perfusion fixed. Comparing consecutive 6 min scans, reproducibility of relative rCBF and striatal [18F]fallypride concentration were 9 and 8%, respectively.

  20. Dynamic of neurochemical alterations in striatum, hippocampus and cortex after the 6-OHDA mesostriatal lesion.

    PubMed

    Zhang, Sheng; Gui, Xue-Hong; Xue, Zhong-Feng; Huang, Li-Ping; Fang, Ruo-Ming; Ke, Xue-Hong; Li, Ling; Fang, Yong-Qi

    2014-08-01

    Immediate neurochemical alterations produced by 6-OHDA could explain the general toxic pattern in the central nervous system. However, no evidences describe the effects of 6-OHDA on early changes of neurotransmitters in rats' striatum, cortex and hippocampus. In our study, unilateral 6-OHDA injection into medial forebrain bundle (MFB) was used in rats, then five neurotransmitters were analyzed at 3, 6, 12, 24, 48 and 72 h, respectively. Results showed that 6-OHDA injection caused a sharp decline of striatal dopamine (DA) levels in the first 12h followed by a further reduction between 12 and 48 h. However, striatal levels of homovanillic acid (HVA) were stable in the first 12h and showed a marked reduction between 12 and 24h. Striatal levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) decreased linearly for 72 h, whereas levels of norepinephrine (NE) showed a slight reduction in the first 48 h, and returned back to normal afterwards. Striatal HVA/DA ratio increased significantly in the first 12h, but 5-HIAA/5-HT ratio showed a sharp increase between 12 and 72 h. Besides, neurochemical alterations were also found in hippocampus and cortex, and the correlations of neurotransmitters were analyzed. Our study indicated that NE system had little influence in the early phase of 6-OHDA injection, moreover, early neurochemical alterations were involved with striatum, hippocampus and cortex.

  1. Neurochemical and psychotropic effects of bupropion in healthy male subjects.

    PubMed

    Gobbi, Gabriella; Slater, Susan; Boucher, Nathalie; Debonnel, Guy; Blier, Pierre

    2003-06-01

    Bupropion is a weak inhibitor of noradrenaline (NE) and dopamine (DA) reuptake and has no direct action on serotonin (5-HT) neuronal elements. In the rat brain, bupropion suppresses NE neuron firing activity via the activation of alpha(2)-adrenoceptors and increases that of 5-HT neurons through an indirect action on NE neurons. Twenty-five healthy young male volunteers, with no previous history of psychiatric disorders, were randomized to one of four 7-day regimens: placebo, bupropion (150 mg) once daily, bupropion (150 mg) twice a day, and methylphenidate SR (20 mg daily). To assess the activity of the NE reuptake process, the blood pressure response to intravenous tyramine was determined. A decrease in the systolic pressure response to tyramine was considered evidence of NE reuptake inhibition. Effects on 5-HT reuptake were assessed by measuring whole blood 5-HT concentration, with a decrease serving as an index of 5-HT reuptake blockade. The Profile of Mood States (POMS) scale was used to assess behavioral and psychological changes. Neither bupropion nor methylphenidate altered the tyramine pressor response, in contrast to previous data that demonstrated decreases were obtained with NE reuptake inhibitors. Neither drug modified 5-HT concentrations. However, POMS scores revealed that bupropion at a dosage of 150 mg/day increased composedness, agreeability, and energy, whereas 300 mg/day improved only attention. In contrast, methylphenidate improved only energy. These data provide no evidence that bupropion acts as an inhibitor of NE or 5-HT reuptake in healthy humans. Presumably it enhances synaptic availability of NE by increasing release. Yet, because its behavioral profile is different from that of methylphenidate, it may not share all the biochemical properties of psychostimulants.

  2. Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety.

    PubMed

    Lapin, I P

    2003-01-01

    The following NEKY have been studied: 1-kynurenine (KYN), 3-hydroxyKYN (3HKYN), kynurenic (KYNA), anthranilic (ANT), 3-hydroxyANT (3HANT), quinolinic (QUIN), picolinic (PICA), xanthurenic (XAN), nicotinic (NIC) acids, 3-indole-pyruvate (IPA), nicotinamide (NAM). NEKY antagonize the central effects of precursors of serotonin (tryptophan and 5-HTP), and tryptamine as well. Seizures induced by central administration of KYN and QUIN are prevented by centrally injected dopamine and diminished by noradrenaline and adrenaline. KYN, 3HANT, PIC and NIC potentiate oxotremorine hypothermia mediated by acetylcholine. Central administration of GABA, glycine or taurine, as well as proline and melatonin, prevented seizures induced by QUIN and KYN. Behavioral inhibitory effects of these amino acids are diminished by pretreament with KYN, 3HKYN and QUIN. Elevation of concentrations of corticosteroids is resulted in rise of level of NEKY due to hormonal induction of liver tryptophan pyrrolase and brain 2,3 dioxigenase. NEKY, in their turn, activate both enzymes. Thus, a "vicious circle" is formed and it supports an elevated level of NEKY for a long time, hours and days. Long-lasting increased concentrations of NEKY in tissues can lead to significant after-effects and numerous pathogenic consequences. One can not exclude that a rise of the level of some NEKY, e.g. KYNA, IPA, PIC and XAN, may play an "adaptogenic" role in stress antagonizing some pathologic effects of KYN and QUIN, e.g. anxiogenic, neurotoxic and proconvulsive. It has been demonstrated that the excitatory NEKY, KYN, 3HKYN, QUIN, possess an anxiogenic activity in the standard animal models of anxiety. NEKY with opposite neuroactivities, namely KYNA, IPA, PICA and XAN, have a pharmacological profile of anxiolytics and antagonize both anxiogenic NEKY and standard anxiogens, like caffeine, pentylenetetrazole and yohimbine. Major emphasis is made on KYN as a putative endogenous anxiogen. Studies on the interaction of NEKY

  3. Magnetic resonance spectroscopy analysis of neurochemical changes in the atrophic hippocampus of APP/PS1 transgenic mice.

    PubMed

    Liang, Shengxiang; Huang, Jia; Liu, Weilin; Jin, Hao; Li, Long; Zhang, Xiufeng; Nie, Binbin; Lin, Ruhui; Tao, Jing; Zhao, Shujun; Shan, Baoci; Chen, Lidian

    2017-09-29

    Alzheimer's disease (AD) is characterized by neuropathological changes and progressive cognitive decline, which is associated with the volume loss and neurochemical alterations. However, the specific neurochemical alterations in cerebral regions that contribute to cognitive decline still remain unknown. In the present study, we measured cerebral morphological and neurochemical alterations using structural magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H-MRS) in an AD model of APP/PS1 transgenic mice. Voxel-based morphometry (VBM) analysis indicated atrophy of the hippocampus, motor cortex, striatum, amygdaloid body, septal area, bed nucleus of the stria terminalis and accumbens nucleus in APP/PS1 transgenic mice. Furthermore, the hippocampus was selected as a region of interest (ROI) to explore neurochemical metabolism. The results showed that the ratios of N-acetylaspartate/creatine (NAA/Cr) and glutamate/creatine (Glu/Cr) were reduced, while myo-inositol/creatine (mIn/Cr) was increased in APP/PS1 transgenic mice compared to the wild type mice and accompanied by a decline in learning and memory. Taken together, the present study suggests that hippocampal atrophy and neurochemical changes in NAA, Glu and mIn may play a causative role in the cognitive decline associated with AD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure

    PubMed Central

    Adkins, Daniel E.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Beardsley, Patrick M.; van den Oord, Edwin J. C. G.

    2012-01-01

    Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10−5, q = 0.013), tryptophan (p = 7.0 × 10−4, q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10−4, q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10−7). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10−4, q = 0.087) and ergothioneine (p = 3.0 × 10−4, q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects. PMID:23554582

  5. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure.

    PubMed

    McClay, Joseph L; Adkins, Daniel E; Vunck, Sarah A; Batman, Angela M; Vann, Robert E; Clark, Shaunna L; Beardsley, Patrick M; van den Oord, Edwin J C G

    2013-04-01

    Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10(-5), q = 0.013), tryptophan (p = 7.0 × 10(-4), q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10(-4), q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10(-7)). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10(-4), q = 0.087) and ergothioneine (p = 3.0 × 10(-4), q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects.

  6. Morphological development and neurochemical differentiation of cerebellar inhibitory interneurons in microexplant cultures.

    PubMed

    Koscheck, T; Weyer, A; Schilling, R L; Schilling, K

    2003-01-01

    The cerebellar cortex comprises a rather limited variety of interneurons, prominently among them inhibitory basket and stellate cells and Golgi neurons. To identify mechanisms subserving the positioning, morphogenesis, and neurochemical maturation of these inhibitory interneurons, we analyzed their development in primary microexplant cultures of the early postnatal cerebellar cortex. These provide a well-defined, patterned lattice within which the development of individual cells is readily accessible to experimental manipulation and observation. Pax-2-positive precursors of inhibitory interneurons were found to effectively segregate from granule cell perikarya. They emigrate from the core explant and avoid the vicinity of granule cells, which also emigrate and aggregate into small clusters around the explant proper. This contrasts with the behavior of Purkinje neurons, which remain within the explant proper. During migration, a subset of Pax-2-positive cells gradually acquires a GABAergic phenotype, and subsequently also expresses the type 2 metabotropic receptor for glutamate, or parvalbumin, markers for Golgi neurons and basket or stellate cells, respectively. The latter eventually orient their dendrites such that they take a preferentially perpendicular orientation relative to granule cell axons. Both the neurochemical maturation of basket/stellate cells and the specific orientation of their dendrites are independent of their continuous contact with radially oriented glia or Purkinje cell dendrites projecting from the core explant. Numbers of parvalbumin-positive basket/stellate cells and the prevalence of glutamate-positive neurites, which form a dense network preferentially within cell clusters containing granule cell perikarya and their dendrites, are subject to regulation by chronic depolarization. In contrast, brain-derived neurotrophic factor results in a drastic decrease of numbers of basket/stellate cells. These findings document that granule cell axons

  7. Endocrine and neurochemical effects of 3,4-methylenedioxymethamphetamine and its stereoisomers in rhesus monkeys.

    PubMed

    Murnane, K S; Fantegrossi, W E; Godfrey, J R; Banks, M L; Howell, L L

    2010-08-01

    3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative that elicits complex biological effects in humans. One plausible mechanism for this phenomenon is that racemic MDMA is composed of two stereoisomers that exhibit qualitatively different pharmacological effects. In support of this, studies have shown that R(-)-MDMA tends to have hallucinogen-like effects, whereas S(+)-MDMA tends to have psychomotor stimulant-like effects. However, relatively little is known about whether these stereoisomers engender different endocrine and neurochemical effects. In the present study, the endocrine and neurochemical effects of each stereoisomer and the racemate were assessed in four rhesus monkeys after intravenous delivery at doses (1-3 mg/kg) that approximated voluntary self-administration by rhesus monkeys and human recreational users. Specifically, fluorescence-based enzyme-linked immunosorbent assay was used to assess plasma prolactin concentrations, and in vivo microdialysis was used to assess extracellular dopamine and serotonin concentrations in the dorsal striatum. R(-)-MDMA, but not S(+)-MDMA, significantly increased plasma prolactin levels and the effects of S,R(+/-)-MDMA were intermediate to each of its component stereoisomers. Although S(+)-MDMA did not alter prolactin levels, it did significantly increase extracellular serotonin concentrations. In addition, S(+)-MDMA, but not R(-)-MDMA, significantly increased dopamine concentrations. Furthermore, as in the prolactin experiment, the effects of the racemate were intermediate to each of the stereoisomers. These studies demonstrate the stereoisomers of MDMA engender qualitatively different endocrine and neurochemical effects, strengthening the inference that differences in these stereoisomers might be the mechanism producing the complex biological effects of the racemic mixture of MDMA in humans.

  8. Neurochemical phenotype of cytoglobin-expressing neurons in the rat hippocampus

    PubMed Central

    HUNDAHL, CHRISTIAN ANSGAR; FAHRENKRUG, JAN; HANNIBAL, JENS

    2014-01-01

    Cytoglobin (Cygb), a novel oxygen-binding protein, is expressed in the majority of tissues and has been proposed to function in nitric oxide (NO) metabolism in the vasculature and to have cytoprotective properties. However, the overall functions of Cygb remain elusive. Cygb is also expressed in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population of Cygb neurons co-expressing nNOS. Furthermore, it was shown that the majority of neurons expressing somastostatin and vasoactive intestinal peptide also co-express Cygb and nNOS. Detailed information regarding the neurochemical phenotype of Cygb neurons in the hippocampus can be a valuable tool in determining the function of Cygb in the brain. PMID:25054000

  9. Neurochemical and physiological correlates of a critical period of respiratory development in the rat

    PubMed Central

    Wong-Riley, Margaret T.T.; Liu, Qiuli

    2008-01-01

    Despite its vital importance to life, respiration is not mature at birth in mammals, but rather, it undergoes a great deal of growth, refinement, and adjustments postnatally. Many adjustments do not follow smooth paths, but assume abrupt changes during certain postnatal periods that may render the animal less capable of responding to respiratory stressors. The present review focuses on neurochemical and physiological correlates of a critical period of respiratory development in the rat. In addition to an imbalanced expression of reduced excitatory and enhanced inhibitory neurotransmitters, a switch in the expressions of GABAA receptor subunits from α3 to α1 occurs around postnatal day (P)12 in the Pre-Bötzinger nucleus and the ventrolateral subnucleus of the solitary tract nucleus. Possible subunit switches in a number of other neurotransmitter receptors are discussed. These neurochemical changes are paralleled by ventilatory adjustments at the end of the second postnatal week. At P13 and under normoxia, respiratory frequency reaches its peak before assuming a gradual fall, and both tidal volume and minute ventilation exhibit a significant rise prior to a plateau or a gradual decline until P21. The response to acute hypoxia is markedly reduced between P12 and P16, being lowest at P13. Thus, the end of the second postnatal week can be considered as a critical period of respiratory development, during which multiple neurochemical and physiological adjustments and switches are orchestrated at the same time, rendering the system extremely dynamic but, at the same time, vulnerable to externally imposed perturbations and insults. The critical period embodies a time of multi-system, multifaceted growth and adjustments. It is a plastic, transitional period that is also a part of the normal development of the respiratory system. PMID:18524695

  10. Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice.

    PubMed

    Mereu, Maddalena; Tronci, Valeria; Chun, Lauren E; Thomas, Alexandra M; Green, Jennifer L; Katz, Jonathan L; Tanda, Gianluigi

    2015-01-01

    The endocannabinoid system has been implicated in the development of synaptic plasticity induced by several drugs abused by humans, including cocaine. However, there remains some debate about the involvement of cannabinoid receptors/ligands in cocaine-induced plasticity and corresponding behavioral actions. Here, we show that a single cocaine injection in Swiss-Webster mice produces behavioral and neurochemical alterations that are under the control of the endocannabinoid system. This plasticity may be the initial basis for changes in brain processes leading from recreational use of cocaine to its abuse and ultimately to dependence. Locomotor activity was monitored with photobeam cell detectors, and accumbens shell/core microdialysate dopamine levels were monitored by high-performance liquid chromatography with electrochemical detection. Development of single-trial cocaine-induced behavioral sensitization, measured as increased distance traveled in sensitized mice compared to control mice, was paralleled by a larger stimulation of extracellular dopamine levels in the core but not the shell of the nucleus accumbens. Both the behavioral and neurochemical effects were reversed by CB1 receptor blockade produced by rimonabant pre-treatments. Further, both behavioral and neurochemical cocaine sensitization were facilitated by pharmacological blockade of endocannabinoid metabolism, achieved by inhibiting the fatty acid amide hydrolase enzyme. In conclusion, our results suggest that a single unconditioned exposure to cocaine produces sensitization through neuronal alterations that require regionally specific release of endocannabinoids. Further, the present results suggest that endocannabinoids play a primary role from the earliest stage of cocaine use, mediating the inception of long-term brain-adaptive responses, shaping central pathways and likely increasing vulnerability to stimulant abuse disorders. Published 2013. This article is a U.S. Government work and is in the

  11. Paternal deprivation affects social behaviors and neurochemical systems in the offspring of socially monogamous prairie voles.

    PubMed

    Tabbaa, Manal; Lei, Kelly; Liu, Yan; Wang, Zuoxin

    2017-02-20

    Early life experiences, particularly the experience with parents, are crucial to phenotypic outcomes in both humans and animals. Although the effects of maternal deprivation on offspring well-being have been studied, paternal deprivation (PD) has received little attention despite documented associations between father absence and children health problems in humans. In the present study, we utilized the socially monogamous prairie vole (Microtus ochrogaster), which displays male-female pair bonding and bi-parental care, to examine the effects of PD on adult behaviors and neurochemical expression in the hippocampus. Male and female subjects were randomly assigned into one of two experimental groups that grew up with both the mother and father (MF) or with the mother-only (MO, to generate PD experience). Our data show that MO subjects received less parental licking/grooming and carrying and were left alone in the nest more frequently than MF subjects. At adulthood (∼75days of age), MO subjects displayed increased social affiliation (SOA) toward a conspecific compared to MF subjects, but the two groups did not differ in social recognition (SOR) and anxiety-like behavior. Interestingly, MO subjects showed consistent increases in both gene and protein expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) as well as the levels of total histone 3 and histone 3 acetylation in the hippocampus compared to MF subjects. Further, PD experience increased glucocorticoid receptor beta (GRβ) protein expression in the hippocampus of females as well as increased corticotrophin receptor 2 (CRHR2) protein expression in the hippocampus of males, but decreased CRHR2 mRNA in both sexes. Together, our data suggest that PD has a long-lasting, behavior-specific effect on SOA and alters hippocampal neurochemical systems in the vole brain. The functional role of such altered neurochemical systems in social behaviors and the potential involvement

  12. Mercury Vapour Long-Lasting Exposure: Lymphocyte Muscarinic Receptors as Neurochemical Markers of Accidental Intoxication

    PubMed Central

    Roda, E.; Vecchio, S.; Apostoli, P.

    2016-01-01

    Introduction. Chronic poisoning may result in home setting after mercury (Hg) vapours inhalation from damaged devices. We report a chronic, nonoccupational Hg poisoning due to 10-year indoor exposure to mercury spillage. Case Report. A 72-year-old man with polyneuropathy of suspected toxic origin. At hospitalization, toxicological clinical evaluations confirmed the altered neurological picture documented across the last decade. Periodic blood and urine Hg levels (BHg, UHg) monitoring were performed from admission (t0), until 1 year later (t2), paralleled by blood neurochemical markers assessment, that is, lymphocytes muscarinic receptors (l-MRs). At t0: BHg and UHg were 27 and 1.4 microg/L, respectively (normal values: BHg 1–4.5; UHg 0.1–4.5), associated with l-MRs increase, 185.82 femtomoL/million lymphocytes (normal range: 8.0–16.0). At t1 (two days after DMSA-mobilization test), BHg weak reduction, paralleled by UHg 3.7-fold increase, was measured together with further l-MRs enhancement (205.43 femtomoL/million lymphocytes). At t2 (eight months after two cycles of DMSA chelating therapy ending), gradual improving of clinical manifestations was accompanied by progressive decrease of BHg and UHg (4.0 and 2.8 microg/L, resp.) and peripheral l-MRs neurochemical marker (24.89 femtomoL/million lymphocytes). Conclusion. l-MRs modulatory effect supports their use as peripheral neurochemical marker in Hg poisoning diagnosis and chelation therapy monitoring. PMID:27872646

  13. Effect of chronic psychogenic stress on some behavioral and neurochemical characteristics of rats

    SciTech Connect

    Danchev, N.D.; Rozhanets, V.V.; Val'dman, A.V.

    1986-06-01

    This paper studies the behavioral, somatic, and certain neurochemical parameters in rats under conditions of unavoidable chronic stress, according to Hecht et al. in a situation of possible avoidance, with the same total number of aversive stimuli. Specific binding of tritium-flunitrazepam and tritium-dihydroalprenolol was studied. The dissociatin constant and the maximal concentration of ligand-receptor complexes were determined in Scatchard plots by means of an HP-33E computer. The protein concentration in the samples was determined by Peterson's method.

  14. Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry.

    PubMed

    Wu, Fei; Yu, Ping; Mao, Lanqun

    2017-05-22

    Real-time in vivo analysis of neurochemical dynamics has great physiological and pathological implications for a full understanding of the brain. Self-powered electrochemical systems (SPESs) built on galvanic cell configurations bear the advantages of easy miniaturization for implantation and no interference to electric activities of neurons over traditional externally-powered electrochemical sensors for self-triggered in vivo analysis. However, this is still a new concept for in vivo neurochemical sensing with few implanted examples reported so far. This tutorial review summarizes the development of SPESs toward implantable applications from both principal and practical perspectives, ultimately aimed at providing a guide map to the future design of neurochemical sensors for in vivo analysis of brain chemistry.

  15. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    NASA Astrophysics Data System (ADS)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  16. Structural and neurochemical evaluation of the brain and pons in patients with Wilson's disease.

    PubMed

    Algin, Oktay; Taskapilioglu, Ozlem; Hakyemez, Bahattin; Ocakoglu, Gokhan; Yurtogullari, Sukran; Erer, Sevda; Parlak, Mufit

    2010-11-01

    The aim of this study was to examine the structural-neurochemical abnormalities of the frontal white matter (FWM), deep gray matter nuclei, and pons in patients with Wilson's disease (WD) using proton magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI). Nine patients with WD and 14 age-matched controls were examined with MRS. N-Acetylaspartate (NAA), choline (Cho), and creatine (Cr) peaks were calculated. DWI scans from six WD patients and six controls were also obtained. The relative metabolite ratios and apparent diffusion coefficient (ADC) values of the WD patients were compared to those of the control subjects by using statistical measures. Measurements in the thalamus and pons showed significantly lower NAA/Cho and NAA/Cr ratios in the WD group than in the control group (P < 0.05). Thalamic and pontine Cho/Cr ratios in the patient group were significantly higher than those of the control group (P < 0.05). No statistically significant relation was found between the patient and control groups as a result of the MRS examinations of FWM and all ADC measurements (P > 0.05). MRS is a noninvasive, valuable modality for detecting structural-neurochemical changes of the brain stem and deep gray matter in patients with WD. The contribution of DWI in these patients is limited.

  17. Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth.

    PubMed

    Katz, David M; Dutschmann, Mathias; Ramirez, Jan-Marino; Hilaire, Gérard

    2009-08-31

    Disorders of respiratory control are a prominent feature of Rett syndrome (RTT), a severely debilitating condition caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). RTT patients present with a complex respiratory phenotype that can include periods of hyperventilation, apnea, breath holds terminated by Valsalva maneuvers, forced and deep breathing and apneustic breathing, as well as abnormalities of heart rate control and cardiorespiratory integration. Recent studies of mouse models of RTT have begun to shed light on neurologic deficits that likely contribute to respiratory dysfunction including, in particular, defects in neurochemical signaling resulting from abnormal patterns of neurotransmitter and neuromodulator expression. The authors hypothesize that breathing dysregulation in RTT results from disturbances in mechanisms that modulate the respiratory rhythm, acting either alone or in combination with more subtle disturbances in rhythm and pattern generation. This article reviews the evidence underlying this hypothesis as well as recent efforts to translate our emerging understanding of neurochemical defects in mouse models of RTT into preclinical trials of potential treatments for respiratory dysfunction in this disease.

  18. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  19. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  20. The relationship of addiction, tolerance, and dependence to alcohol and drugs: a neurochemical approach.

    PubMed

    Miller, N S; Dackis, C A; Gold, M S

    1987-01-01

    Alcohol and drug addiction are defined in behavioral terms as the preoccupation with, compulsive use of, and relapse to drugs that are descriptive and confirmatory. The basis of addiction may involve neurochemical changes in the brain that distort and redirect the drive states (instincts). Tolerance and dependence may only be incidentally associated with addiction as a result of a nonspecific adaptation by the body to the presence of a drug. The cellular adaptation may be the same in all organs. Addiction to alcohol and drugs may have no specific relationship to tolerance and dependence. Addiction occurs in the absence of observable tolerance and dependence to alcohol and drugs. Alcohol and drug addiction is probably more complex than tolerance and dependence. Addiction is difficult to study because of the variability of behavioral phenomena and the underlying intricacies of the neurosubstrates. Tolerance and dependence are still useful as they are indicators of drug use. It is a misconception that long term chronic use is necessary for tolerance and dependence to develop. Some studies have shown that tolerance can develop within hours and days to a single dose of alcohol or other drugs. Anxiety, depression and insomnia can occur after a single dose of ethanol in humans. These symptoms of withdrawal from the alcohol or drug constitute dependence. Redefining the criteria for addiction tolerance and dependence to alcohol and other drugs may be in order. A neurochemical model may provide a more definitive and uniform basis for considering addiction, tolerance, and dependence to alcohol and drugs.

  1. Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes.

    PubMed

    Clarke, Melanie; Razmjou, Sara; Prowse, Natalie; Dwyer, Zach; Litteljohn, Darcy; Pentz, Rowan; Anisman, Hymie; Hayley, Shawn

    2017-01-01

    Considerable recent attention has focused on the rapid antidepressant effects observed in treatment resistant patients produced by the NMDA receptor antagonist, ketamine. Surprisingly, the effects of ketamine in the context of stressor exposure, as well as the consequences of its chronic use are unclear. Thus, we assessed the impact of acute and repeated ketamine treatment together with acute [restraint or lipopolysaccharide (LPS)] or chronic (unpredictable different psychogenic challenges) stressor exposure. Importantly, acute ketamine treatment did provoke an antidepressant-like effect in a forced swim test (FST) and this effect lasted for 8 days following repeated exposure to the drug. Although acute restraint and LPS individually provoked the expected elevation of plasma corticosterone and brain-region specific monoamine variations, ketamine had no influence on corticosterone and had, at best, sparse effects on the monoamine changes. Similarly, ketamine did not appreciably influence the stressor induced neurochemical and sucrose preference alterations, it did however, dose-dependently reverse the LPS induced elevation of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Likewise, repeated ketamine administration increased adult hippocampal neurogenesis. These data indicate that repeated ketamine administration had greater behavioral consequences than acute treatment and that the drug might be imparting antidepressant effects through its effects on neuroplasticity and inflammatory processes rather than the typical neurochemical/hormonal factors affected by stressors. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo.

    PubMed

    Chanyachukul, Thida; Yoovathaworn, Krongtong; Thongsaard, Watchareewan; Chongthammakun, Sukumal; Navasumrit, Panida; Satayavivad, Jutamaad

    2004-05-02

    Alterations of motor behavioral patterns and monoamine contents in the discrete rat brain areas after acute paraquat exposure (3, 5, 10, 20 mg/kg, s.c.) have been studied. The results showed that paraquat at the doses of 5, 10, and 20 mg/kg significantly reduced locomotive, stereotypic, and rotational behaviors. Significant decreases of norepinephrine (NE) contents in cortex and hypothalamus, as well as striatal contents of dopamine (DA) and its acidic metabolites, were detected. In addition, L-valine (200 mg/kg, i.p.) significantly attenuated paraquat-induced toxicity at moderate dose (5 mg/kg) but not at high dose (20 mg/kg). The results provide evidence that paraquat can enter the brain as illustrated by the alterations in the motor behavioral pattern and neurochemical contents. Furthermore, the attenuation effect of L-valine against systemic administration of paraquat-induced motor behaviors was detected, with a slightly protective effect on paraquat-induced neurochemical alterations.

  3. [Neurochemical mechanisms of depression-like behavior in WAG/Rij rats].

    PubMed

    Sarkisova, K Iu; Kulikov, M A; Kudrin, V S; Narkevich, V B; Midzianovskaia, I S; Biriukova, L M; Folomkina, A A; Basian, A S

    2013-01-01

    Behavior in the light-dark choice, open-field, sucrose consumption/preference and forced swimming tests, monoamines and their metabolites level in 6 brain structures (prefrontal cortex, nucleus accumbens, striatum, hypothalamus, hippocampus, amygdala), and density of D2-like dopamine receptors in 21 brain regions were studied in WAG/Rij and Wistar rats. WAG/Rij rats exhibited symptoms of depression-like behavior such as increased immobility in the forced swim test and decreased sucrose consumption/preference (anhedonia). Substantial changes in behavior indicating increased anxiety in WAG/Rij rats were not revealed. Neurochemical abnormalities suggesting hypofunction of the mesolimbic dopaminergic brain system were found in "depressive" WAG/Rij rats compared with "normal" Wistar rats: decreased levels of noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine in the nucleus accumbens, and increased density of D2-like dopamine receptors in the nucleus accumbens and ventral tegmental area. Reduced levels of dopamine were also observed in the prefrontal cortex and striatum. No substantial changes in the content of monoamines and their metabolites have been revealed in the hypothalamus, hippocampus and amygdala as well as in the content ofserotonin and its metabolite 5-hydroxyindolacetic acid in all studied brain structures with the exception of increased level ofserotonin in the amygdala. Results suggest that hypofunction of the mesolimbic dopaminergic brain system (nucleus accumbens) is a neurochemical mechanism of depression-like behavior in WAG/Rij rats.

  4. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons.

    PubMed

    Blennow, K; Jonsson, M; Andreasen, N; Rosengren, L; Wallin, A; Hellström, P A; Zetterberg, H

    2011-04-01

    Psychiatric and neurological symptoms are common among soldiers exposed to blast without suffering a direct head injury. It is not known whether such symptoms are direct consequences of blast overpressure. To examine if repeated detonating explosions or firing if of heavy weapons is associated with neurochemical evidence of brain damage. Three controlled experimental studies. In the first, army officers were exposed to repeated firing of a FH77B howitzer or a bazooka. Cerebrospinal fluid (CSF) was taken post-exposure to measure biomarkers for brain damage. In the second, officers were exposed for up to 150 blasts by firing a bazooka, and in the third to 100 charges of detonating explosives of 180 dB. Serial serum samples were taken after exposure. Results were compared with a control group consisting of 19 unexposed age-matched healthy volunteers. The CSF biomarkers for neuronal/axonal damage (tau and neurofilament protein), glial cell injury (GFAP and S-100b), blood-brain barrier damage (CSF/serum albumin ratio) and hemorrhages (hemoglobin and bilirubin) and the serum GFAP and S-100b showed normal and stable levels in all exposed officers. Repeated exposure to high-impact blast does not result in any neurochemical evidence of brain damage. These findings are of importance for soldiers regularly exposed to high-impact blast when firing artillery shells or other types of heavy weapons. © 2010 John Wiley & Sons A/S.

  5. REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson's disease.

    PubMed

    Dos Santos, Ana Carolina D; Castro, Marcela Alexandra V; Jose, Elis Angela K; Delattre, Ana Márcia; Dombrowski, Patrícia A; Da Cunha, Claudio; Ferraz, Anete C; Lima, Marcelo M S

    2013-11-01

    The recently described intranigral rotenone model of Parkinson's disease (PD) in rodents provides an interesting model for studying mechanisms of toxin-induced dopaminergic neuronal injury. The relevance of this model remains unexplored with regard to sleep disorders that occur in PD. On this basis, the construction of a PD model depicting several behavioral and neurochemical alterations related to sleep would be helpful in understanding the association between PD and sleep regulation. We performed bilateral intranigral injections of rotenone (12 μg) on day 0 and the open-field test initially on day 20 after rotenone. Acquisition phase of the object-recognition test, executed also during day 20, was followed by an exact period of 24 hr of rapid eye movement (REM) sleep deprivation (REMSD; day 21). In the subsequent day (22), the rats were re-exposed to the open-field test and to the object-recognition test (choice phase). After the last session of behavioral tests, the rat brains were immediately dissected, and their striata were collected for neurochemical purposes. We observed that a brief exposure to REMSD was able to impair drastically the object-recognition test, similarly to a nigrostriatal lesion promoted by intranigral rotenone. However, the combination of REMSD and rotenone surprisingly did not inflict memory impairment, concomitant with a moderate compensatory mechanism mediated by striatal dopamine release. In addition, we demonstrated the existence of changes in serotonin and noradrenaline neurotransmissions within the striatum mostly as a function of REMSD and REMSD plus rotenone, respectively.

  6. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake.

    PubMed

    Avena, Nicole M; Rada, Pedro; Hoebel, Bartley G

    2008-01-01

    [Avena, N.M., Rada, P., Hoebel B.G., 2007. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience and Biobehavioral Reviews XX(X), XXX-XXX]. The experimental question is whether or not sugar can be a substance of abuse and lead to a natural form of addiction. "Food addiction" seems plausible because brain pathways that evolved to respond to natural rewards are also activated by addictive drugs. Sugar is noteworthy as a substance that releases opioids and dopamine and thus might be expected to have addictive potential. This review summarizes evidence of sugar dependence in an animal model. Four components of addiction are analyzed. "Bingeing," "withdrawal," "craving" and "cross-sensitization" are each given operational definitions and demonstrated behaviorally with sugar bingeing as the reinforcer. These behaviors are then related to neurochemical changes in the brain that also occur with addictive drugs. Neural adaptations include changes in dopamine and opioid receptor binding, enkephalin mRNA expression and dopamine and acetylcholine release in the nucleus accumbens. The evidence supports the hypothesis that under certain circumstances rats can become sugar dependent. This may translate to some human conditions as suggested by the literature on eating disorders and obesity.

  7. Quantification of endogenous retinoids.

    PubMed

    Kane, Maureen A; Napoli, Joseph L

    2010-01-01

    Numerous physiological processes require retinoids, including development, nervous system function, immune responsiveness, proliferation, differentiation, and all aspects of reproduction. Reliable retinoid quantification requires suitable handling and, in some cases, resolution of geometric isomers that have different biological activities. Here we describe procedures for reliable and accurate quantification of retinoids, including detailed descriptions for handling retinoids, preparing standard solutions, collecting samples and harvesting tissues, extracting samples, resolving isomers, and detecting with high sensitivity. Sample-specific strategies are provided for optimizing quantification. Approaches to evaluate assay performance also are provided. Retinoid assays described here for mice also are applicable to other organisms including zebrafish, rat, rabbit, and human and for cells in culture. Retinoid quantification, especially that of retinoic acid, should provide insight into many diseases, including Alzheimer's disease, type 2 diabetes, obesity, and cancer.

  8. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Problematizing the neurochemical subject of anti-depressant treatment: the limits of biomedical responses to women's emotional distress.

    PubMed

    Fullagar, Simone; O'Brien, Wendy

    2013-01-01

    In this article we situate empirical research into women's problematic experiences of anti-depressant medication within broader debates about pharmaceuticalization and the rise of the neurochemical self. We explore how women interpreted and problematized anti-depressant medication as it impeded their recovery in a number of ways. Drawing upon Foucauldian and feminist work we conceptualize anti-depressants as biotechnologies of the self that shaped how women thought about and acted upon their embodied (and hence gendered) subjectivities. Through the interplay of biochemical, emotional and socio-cultural effects medication worked to shape women's self-in-recovery in ways that both reinscribed and undermined a neurochemical construction of depression. Our analysis outlines two key discursive constructions that focused on women's problematization of the neurochemical self in response to the side-effects of anti-depressant use. We identified how the failure of medication to alleviate depression contributed to women's reinterpretation of recovery as a process of 'working' on the emotional self. We argue that women's stories act as a form of subjugated knowledge about the material and discursive forces shaping depression and recovery. These findings offer a gendered critique of scientific and market orientated rationalities underpinning neurochemical recovery that obscure the embodied relations of affect and the social conditions that enable the self to change.

  10. [Neurochemical characteristics of the ventromedial hypothalamus and anti-aversive effects of anxiolytic agents in various anxiety models].

    PubMed

    Talalaenko, A N; Pankrat'ev, D V; Goncharenko, N V

    2001-09-01

    Neurochemical analysis using anxiosedative and anxioselective agents injected into the hypothalamus revealed that antiaversive action of camprione is only realised under conditions of domineering fear motivation whereas that of chlordiazepoxide, phenibut, indoter may also be realised under conditions of negative stressful zoo-social impacts mediated by serotonin.

  11. Neurochemical analysis of brain monoamines after L-histidine and chlorpheniramine administration in goldfish.

    PubMed

    Medalha, Carla C; Santangelo, Erika M; Mattioli, Rosana

    2003-10-09

    This study investigated the effects of chlorpheniramine (CPA) and L-histidine (LH) administration on catecholaminergic levels in goldfish brain using neurochemical analysis. Fifty-eight animals were used. After 20 min of i.p. administration of the drugs or saline the animals were decapitated, and the telencephalon and the diencephalon were dissected. We also measured catecholamines in a non-injected (NI) group. Results showed lower homovanillic acid (HVA) levels after treatment with 100 mg/kg of LH when compared to saline and 5-hydroxyindoleacetic acid levels were lower in the saline group when compared to the NI group. In the diencephalon the NI group and animals treated with CPA at 4.0 and 8.0 mg/kg had lower HVA levels. Results suggest that LH had an inhibitory effect on dopaminergic activity and an anxiolytic-like effect for CPA results is suggested.

  12. Whole-cell patch-clamp recordings from morphologically- and neurochemically-identified hippocampal interneurons.

    PubMed

    Booker, Sam A; Song, Jie; Vida, Imre

    2014-09-30

    GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.

  13. Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation.

    PubMed

    Jarrott, Bevyn; Williams, Spencer J

    2016-03-01

    It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit 'priming' leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.

  14. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    SciTech Connect

    Balcar, V.J.; Dreher, B. )

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.

  15. Neurochemical and electrical modulation of the locus coeruleus: contribution to CO2drive to breathe

    PubMed Central

    de Carvalho, Débora; Patrone, Luis G. A.; Taxini, Camila L.; Biancardi, Vivian; Vicente, Mariane C.; Gargaglioni, Luciane H.

    2014-01-01

    The locus coeruleus (LC) is a dorsal pontine region, situated bilaterally on the floor of the fourth ventricle. It is considered to be the major source of noradrenergic innervation in the brain. These neurons are highly sensitive to CO2/pH, and chemical lesions of LC neurons largely attenuate the hypercapnic ventilatory response in unanesthetized adult rats. Developmental dysfunctions in these neurons are linked to pathological conditions such as Rett and sudden infant death syndromes, which can impair the control of the cardio-respiratory system. LC is densely innervated by fibers that contain glutamate, serotonin, and adenosine triphosphate, and these neurotransmitters strongly affect LC activity, including central chemoreflexes. Aside from neurochemical modulation, LC neurons are also strongly electrically coupled, specifically through gap junctions, which play a role in the CO2 ventilatory response. This article reviews the available data on the role of chemical and electrical neuromodulation of the LC in the control of ventilation. PMID:25183958

  16. Convulsant activity and neurochemical alterations induced by a fraction obtained from fruit Averrhoa carambola (Oxalidaceae: Geraniales).

    PubMed

    Carolino, Ruither O G; Beleboni, Renê O; Pizzo, Andrea B; Vecchio, Flavio Del; Garcia-Cairasco, Norberto; Moyses-Neto, Miguel; Santos, Wagner F Dos; Coutinho-Netto, Joaquim

    2005-06-01

    We obtained a neurotoxic fraction (AcTx) from star fruit (Averrhoa carambola) and studied its effects on GABAergic and glutamatergic transmission systems. AcTx had no effect on GABA/glutamate uptake or release, or on glutamate binding. However, it specifically inhibited GABA binding in a concentration-dependent manner (IC(50)=0.89muM). Video-electroencephalogram recordings demonstrated that following cortical administration of AcTx, animals showed behavioral changes, including tonic-clonic seizures, evolving into status epilepticus, accompanied by cortical epileptiform activity. Chemical characterization of AcTx showed that this compound is a nonproteic molecule with a molecular weight less than 500, differing from oxalic acid. This neurotoxic fraction of star fruit may be considered a new tool for neurochemical and neuroethological research.

  17. Neurochemical evaluation of rats prenatally exposed to the adrenergic agonists clonidine and lofexidine.

    PubMed

    Ali, S F; Holson, R R; Pizzi, W J; Newport, G D; Slikker, W

    1988-01-01

    Clonidine (CLON), an alpha-2 adrenergic agonist, is widely used to reduce hypertension; it is also recommended for blocking acute opiate withdrawal. Lofexidine (LOF), a CLON analog, is an investigational compound being readied for the marketplace. Since exposure to both drugs is likely to occur in the last two trimesters of human pregnancy, it is important to determine whether such exposure can have effects upon brain or behavior of offspring. Pregnant CD rat dams were given daily subcutaneous injections of saline, CLON, or LOF on days 8 through 20 of gestation. Maternal weight during gestation, neonatal weight and neurochemical measures were monitored. Maternal body weight was reduced in a dose dependent manner. At PND 1 brain ornithine decarboxylase (ODC) activity was reduced in LOF- but not CLON-exposed pups of both sexes. At this age no alteration was seen in whole brain catecholamine levels or in whole brain alpha-2-adrenergic binding.

  18. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant.

    PubMed

    Shibata, Kazuhisa; Sasaki, Yuka; Bang, Ji Won; Walsh, Edward G; Machizawa, Maro G; Tamaki, Masako; Chang, Li-Hung; Watanabe, Takeo

    2017-03-01

    Overlearning refers to the continued training of a skill after performance improvement has plateaued. Whether overlearning is beneficial is a question in our daily lives that has never been clearly answered. Here we report a new important role: overlearning in humans abruptly changes neurochemical processing, to hyperstabilize and protect trained perceptual learning from subsequent new learning. Usually, learning immediately after training is so unstable that it can be disrupted by subsequent new learning until after passive stabilization occurs hours later. However, overlearning so rapidly and strongly stabilizes the learning state that it not only becomes resilient against, but also disrupts, subsequent new learning. Such hyperstabilization is associated with an abrupt shift from glutamate-dominant excitatory to GABA-dominant inhibitory processing in early visual areas. Hyperstabilization contrasts with passive and slower stabilization, which is associated with a mere reduction of excitatory dominance to baseline levels. Using hyperstabilization may lead to efficient learning paradigms.

  19. REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy.

    PubMed

    Maturana, Maira J; Pudell, Cláudia; Targa, Adriano D S; Rodrigues, Laís S; Noseda, Ana Carolina D; Fortes, Mariana H; Dos Santos, Patrícia; Da Cunha, Cláudio; Zanata, Sílvio M; Ferraz, Anete C; Lima, Marcelo M S

    2015-02-01

    There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD.

  20. Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis).

    PubMed

    Dornbos, Peter; Strom, Sean; Basu, Niladri

    2013-04-01

    River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported.

  1. Age-Related Neurochemical Changes in the Rhesus Macaque Cochlear Nucleus

    PubMed Central

    Gray, Daniel T.; Engle, James R.; Recanzone, Gregg H.

    2014-01-01

    Neurochemical changes in the expression of various proteins within the central auditory system have been associated with natural aging. These changes may compensate in part for the loss of auditory sensitivity arising from two phenomena of the aging auditory system: cochlear histopathologies and increased excitability of central auditory neurons. Recent studies in the macaque monkey have revealed age-related changes in the density of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (NADPHd) and parvalbumin (PV)-positive cells within the inferior colliculus and superior olivary complex. The cochlear nucleus (CN), which is the first central auditory nucleus, remains unstudied. Since the CN participates in the generation of the auditory brainstem response (ABR) and receives direct innervation from the cochlea, it serves as an ideal nucleus to compare the relationship between these neurochemical changes and the physiological and peripheral changes of the aging auditory system. We used stereological sampling to calculate the densities of NADPHd and PV reactive neurons within the three subdivisions of the CN in middle-aged and aged rhesus macaques. Regression analyses of these values with ABR properties and cochlear histopathologies revealed relationships between these cell types and the changing characteristics of the aging auditory system. Our results indicate that NADPHd expression does change with age in a specific subdivision of the CN, but PV does not. Conversely, PV expression correlated with ABR amplitudes and outer hair cell loss in the cochlea, but NADPHd did not. These results indicate that NADPHd and PV may take part in distinct compensatory efforts of the aging auditory system. PMID:24127432

  2. Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice.

    PubMed

    Thelen, Connor; Sens, Jonathon; Mauch, Joseph; Pandit, Radhika; Pitychoutis, Pothitos M

    2016-10-01

    One of the most striking discoveries in the treatment of major depression was the finding that infusion of a single sub-anesthetic dose of ketamine induces rapid and sustained antidepressant effects in treatment-resistant depressed patients. However, ketamine's antidepressant-like actions are transient and can only be sustained by repeated drug treatment. Despite the fact that women experience major depression at roughly twice the rate of men, research regarding the neurobiological antidepressant-relevant effects of ketamine has focused almost exclusively on the male sex. Importantly, knowledge regarding the sex-differentiated effects, the frequency and the dose on which repeated ketamine administration stops being beneficial, is limited. In the current study, we investigated the behavioral, neurochemical and synaptic molecular effects of repeated ketamine treatment (10mg/kg; 21days) in male and female C57BL/6J mice. We report that ketamine induced beneficial antidepressant-like effects in male mice, but induced both anxiety-like (i.e., decreased time spent in the center of the open field arena) and depressive-like effects (i.e., enhanced immobility duration in the forced swim test; FST) in their female counterparts. Moreover, repeated ketamine treatment induced sustained sex-differentiated neurochemical and molecular effects, as it enhanced hippocampal synapsin protein levels and serotonin turnover in males, but attenuated glutamate and aspartate levels in female mice. Taken together, our findings indicate that repeated ketamine treatment induces opposite behavioral effects in male and female mice, and thus, present data have far-reaching implications for the sex-oriented use of ketamine in both experimental and clinical research settings.

  3. The gyri of the octopus vertical lobe have distinct neurochemical identities.

    PubMed

    Shigeno, Shuichi; Ragsdale, Clifton W

    2015-06-15

    The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry.

  4. Behavioural and neurochemical effects of superior cervical ganglionectomy in rats with septo-hippocampal lesions.

    PubMed

    Bratt, A M; Cassel, J C; Neufang, B; Greene, P L; Jackisch, R; Hertting, G; Will, B E

    1995-01-01

    This longitudinal study, extending over 12 months, assessed the behavioural and biochemical effects of hippocampal sympathetic ingrowth (HSI) into the partially denervated hippocampus. Male Long-Evans rats received fimbria-fornix lesions (FIFO) or sham operations at 90 days of age. At the same time half of the rats from each group sustained bilateral ablation of the superior cervical ganglia (SCGX). A battery of behavioural tests, measuring spontaneous alternation, activity in the open field and home cage, and radial-maze performance, were employed, starting after one very short (16 days) and one extended (216 days) post-operative delay. Neurochemical analyses measuring choline acetyltransferase (ChAT) activity, high-affinity choline (HACU) and noradrenaline uptake by hippocampal synaptosomes (HANU), hippocampal noradrenaline ([NA]), serotonin ([5-HT]) and 5-hydroxyindoleacetic acid ([5-HIAA]) concentrations were carried out in a dorsal, a "middle" and a ventral region of the hippocampus. Lesion of the FIFO induced a significant and enduring deficit in radial-maze performance, in addition to a persistent locomotor hyperactivity. ChAT and HACU were significantly depleted in all three regions of the hippocampus at 12 months, and these deficits were negatively correlated with maze performance. SCGX in the presence of the FIFO lesion significantly reduced [NA] in the middle region of the hippocampus, as compared to SCGX rats, and contributed to a restoration of lesion-induced depletions in [5-HT] and [5-HIAA] in the middle and ventral hippocampal regions, whilst failing to elicit any behavioural changes at either time point. It is concluded that if lesion-induced HSI indeed occurred, as is suggested by neurochemical evidence, it had no effect upon the observed behavioural deficits elicited by transection of the FIFO in the rat.

  5. Embelin Attenuates Intracerebroventricular Streptozotocin-Induced Behavioral, Biochemical, and Neurochemical Abnormalities in Rats.

    PubMed

    Arora, Rimpi; Deshmukh, Rahul

    2016-10-15

    Embelin, the main active constituent of Embelia ribes, has been reported to possess various pharmacological actions, including anti-inflammatory, antioxidant, anticonvulsant, and neuroprotective. The present study was designed to investigate neuroprotective mechanisms and therapeutic potential of embelin against intracerebroventricular streptozotocin (ICV-STZ)-induced experimental sporadic dementia in rats. STZ was infused bilaterally at the dose of (3 mg/kg/1 μl/1 min) ICV on day first and third. Spatial and non-spatial memory was evaluated using Morris water maze and object recognition task in rats. Embelin (2.5, 5, and 10 mg/kg, i.p.) was administrated for 14 days from seventh day onwards after first ICV-STZ infusion in rats. On day 22, rats were sacrificed and hippocampal brain regions were used to identify biochemical, neurochemical, and neuroinflammatory alterations. STZ-infused rats showed significant learning and memory deficit which was associated with an increase in oxidative stress (lipid peroxidation and nitrite), compromised antioxidant defense (reduced glutathione), neurotransmitter alterations (AChE, dopamine, noradrenaline, 5-hydroxytryptamine, gama amino butyric acid, and glutamate), and elevation in neuroinflammatory cytokine (IL-1 β, IL-6, and TNF-α) levels. Embelin dose dependently attenuated STZ-induced cognitive deficit and biochemical alterations and restored hippocampal neurochemical levels. The observed protective effect might be attributed to the antioxidant and anti-inflammatory potential of embelin and its ability to restore hippocampal neurochemistry. Thus, the outcomes of the current study suggest therapeutic potential of embelin in cognitive disorders such as sporadic Alzheimer's disease (SAD).

  6. Previous Ketamine Produces an Enduring Blockade of Neurochemical and Behavioral Effects of Uncontrollable Stress

    PubMed Central

    Dolzani, Samuel D.; Tilden, Scott; Christianson, John P.; Kubala, Kenneth H.; Bartholomay, Kristi; Sperr, Katherine; Ciancio, Nicholas; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Recent interest in the antidepressant and anti-stress effects of subanesthetic doses of ketamine, an NMDA receptor antagonist, has identified mechanisms whereby ketamine reverses the effect of stress, but little is known regarding the prophylactic effect ketamine might have on future stressors. Here we investigate the prophylactic effect of ketamine against neurochemical and behavioral changes that follow inescapable, uncontrollable tail shocks (ISs) in Sprague Dawley rats. IS induces increased anxiety, which is dependent on activation of serotonergic (5-HT) dorsal raphe nucleus (DRN) neurons that project to the basolateral amygdala (BLA). Ketamine (10 mg/kg, i.p.) administered 2 h, 1 week, or 2 weeks before IS prevented the increased extracellular levels of 5-HT in the BLA typically produced by IS. In addition, ketamine administered at these time points blocked the decreased juvenile social investigation produced by IS. Microinjection of ketamine into the prelimbic (PL) region of the medial prefrontal cortex duplicated the effects of systemic ketamine, and, conversely, systemic ketamine effects were prevented by pharmacological inhibition of the PL. Although IS does not activate DRN-projecting neurons from the PL, IS did so after ketamine, suggesting that the prophylactic effect of ketamine is a result of altered functioning of this projection. SIGNIFICANCE STATEMENT The reported data show that systemic ketamine, given up to 2 weeks before a stressor, blunts behavioral and neurochemical effects of the stressor. The study also advances understanding of the mechanisms involved and suggests that ketamine acts at the prelimbic cortex to sensitize neurons that project to and inhibit the DRN. PMID:26740657

  7. Locomotion of aged rats: relationship to neurochemical but not morphological changes in nigrostriatal dopaminergic neurons.

    PubMed

    Emerich, D F; McDermott, P; Krueger, P; Banks, M; Zhao, J; Marszalkowski, J; Frydel, B; Winn, S R; Sanberg, P R

    1993-01-01

    Spontaneous locomotion and motor coordination was evaluated in young (5-6 month old) and aged (24-25 month old) rats. Animals were tested for spontaneous locomotor activity in Digiscan Animal Activity Monitors during the nocturnal cycle. Aged animals exhibited a significant hypoactivity compared to their young counterparts. Evaluation of the time course of activity revealed that the young animals had a cyclical pattern of activity during the 12-hour testing period with clear peaks at 2-4 hours after the initiation of testing and at 8- to 10-hour intervals thereafter. In contrast, the aged animals exhibited a blunted initial activity peak. During the remainder of the test period the aged animals activity was stable with no further peaks in activity. Compared to the young animals the aged animals also (a) remained suspended from a horizontal wire for less time, (b) were unable to descend a wooden pole covered with wire mesh in a coordinated manner, (c) fell more rapidly from a rotating rod and (d) were unable to maintain their balance on a series of wooden beams with either a square or rounded top of varying widths. Histological analysis demonstrated that there was no reduction in the number, area, or length of tyrosine hydroxylase-immunoreactive neurons within the A8, A9, or A10 region of the aged animals. Neurochemical analysis revealed that while DA and HVA levels were not decreased in the aged rats, DOPAC levels, as well as the ratios of DA/DOPAC and DA/HVA, were decreased. These results indicate that neurochemical but not morphological changes within the nigrostriatal dopaminergic system underlie the deficits in motor behavior observed in aged rats.

  8. Neuroendocrine and neurochemical effects of acute ibogaine administration: a time course evaluation.

    PubMed

    Ali, S F; Newport, G D; Slikker, W; Rothman, R B; Baumann, M H

    1996-10-21

    Ibogaine (IBO) is an indole alkaloid that is reported to facilitate drug abstinence in substance abusers. Despite considerable investigation, the mechanism of IBO action in vivo and its suitability as a treatment for drug addiction remains unclear. The present study was designed to evaluate the time-course effects of acute IBO on neuroendocrine and neurochemical indices. Adult male rats were treated with i.p. saline or 50 mg/kg IBO and sacrificed 15, 30, 60, 120 min and 24 h later. Trunk blood was collected for hormone measures and brains were dissected for neurochemical analyses. IBO produced a rapid elevation in plasma prolactin that declined to control levels by 60 min. Corticosterone levels increased 15 min after drug administration, continued to increase for 120 min, but returned to control levels 24 h after dosing. IBO decreased dopamine (DA) concentrations in the striatum and frontal cortex at 30, 60 and 120 min after injection while DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were elevated over the same time period. 24 h after IBO, DOPAC concentrations in striatum and HVA levels in the frontal cortex were below control values. Serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were decreased at 60 min after IBO administration only in the striatum. These data indicate that a single injection of IBO produces a spectrum of effects that includes: (1) elevation of plasma prolactin and corticosterone, (2) short- and long-term effects on DA neurotransmission, and (3) modest, transient effects of 5-HT neurotransmission. The effects of IBO reported herein may have relevance to the anti-addictive properties of this drug, and this proposal warrants further investigation.

  9. Changes in neurochemicals within the ventrolateral medullary respiratory column in awake goats after carotid body denervation

    PubMed Central

    Miller, Justin Robert; Neumueller, Suzanne; Muere, Clarissa; Olesiak, Samantha; Pan, Lawrence; Hodges, Matthew R.

    2013-01-01

    A current and major unanswered question is why the highly sensitive central CO2/H+ chemoreceptors do not prevent hypoventilation-induced hypercapnia following carotid body denervation (CBD). Because perturbations involving the carotid bodies affect central neuromodulator and/or neurotransmitter levels within the respiratory network, we tested the hypothesis that after CBD there is an increase in inhibitory and/or a decrease in excitatory neurochemicals within the ventrolateral medullary column (VMC) in awake goats. Microtubules for chronic use were implanted bilaterally in the VMC within or near the pre-Bötzinger Complex (preBötC) through which mock cerebrospinal fluid (mCSF) was dialyzed. Effluent mCSF was collected and analyzed for neurochemical content. The goats hypoventilated (peak +22.3 ± 3.4 mmHg PaCO2) and exhibited a reduced CO2 chemoreflex (nadir, 34.8 ± 7.4% of control ΔV̇E/ΔPaCO2) after CBD with significant but limited recovery over 30 days post-CBD. After CBD, GABA and glycine were above pre-CBD levels (266 ± 29% and 189 ± 25% of pre-CBD; P < 0.05), and glutamine and dopamine were significantly below pre-CBD levels (P < 0.05). Serotonin, substance P, and epinephrine were variable but not significantly (P > 0.05) different from control after CBD. Analyses of brainstem tissues collected 30 days after CBD exhibited 1) a midline raphe-specific reduction (P < 0.05) in the percentage of tryptophan hydroxylase–expressing neurons, and 2) a reduction (P < 0.05) in serotonin transporter density in five medullary respiratory nuclei. We conclude that after CBD, an increase in inhibitory neurotransmitters and a decrease in excitatory neuromodulation within the VMC/preBötC likely contribute to the hypoventilation and attenuated ventilatory CO2 chemoreflex. PMID:23869058

  10. Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure.

    PubMed

    Nam, Dong-Ha; Adams, Douglas H; Flewelling, Leanne J; Basu, Niladri

    2010-09-01

    Brevetoxins are persistent, bioaccumulative, lipophilic polyether neurotoxins synthesized by Karenia brevis, a harmful algal bloom (HAB) dinoflagellate. Although some marine organisms accumulate potentially harmful levels of brevetoxins, little is known about neurotoxic effects in wild populations. Here, tissue (i.e., liver, kidney, muscle, intestine, gill, brain) brevetoxin levels (as ng PbTx-3 eq/g) and four neurochemical biomarkers (monoamine oxidase, MAO; cholinesterase, ChE; muscarinic cholinergic receptor, mAChR; N-methyl-d-aspartic acid receptor, NMDAR) were compared between eleven lemon sharks collected during a K. brevis bloom and eighteen lemon sharks not exposed to a bloom (controls) in a case-control manner. Brevetoxin levels in tissues were significantly higher in HAB-exposed sharks when compared to controls, and tissue levels (e.g., 277-3112 ng/g in livers, 429-2833 ng/g in gills) in HAB-exposed sharks were comparable to levels detected in a shark (e.g., 1223 ng/g in liver, 930 ng/g in gill) that died presumably of toxin exposure. Further, there were significant correlations between brain brevetoxin levels and ChE activity (r=-0.41; p<0.05), MAO activity (r=-0.37; p<0.05), mAChR levels (r=0.55; p<0.01), and NMDAR levels (r=-0.49; p<0.01). There were no relationships between neurochemical biomarkers and metals (total mercury, methylmercury, selenium). Overall, these results in tissues from free-ranging lemon sharks indicate that ecologically relevant exposures to brevetoxins may cause significant changes in brain neurochemistry. As disruptions to neurochemistry precede structural and functional damage to the nervous system, these results suggest that relevant exposures to HABs may be causing sub-clinical effects in lemon sharks and raise further questions about the ecological and physiological impacts of HABs on marine biota.

  11. Differential effects of endomorphin-1 and -2 on amphetamine sensitization: neurochemical and behavioral aspects.

    PubMed

    Chen, J C; Liang, K W; Huang, E Y

    2001-03-01

    Mu-opioid receptors are known to modulate mesolimbic dopaminergic activity in the ventral tegmental area via disinhibition of GABA-containing neurons. Recently, two novel tetrapeptides, endomorphin-1 and endomorphin-2, were identified in the mammalian brain and reported to have high binding affinities toward mu-opioid receptors. To determine if endomorphins would modulate the development of amphetamine sensitization, we administered endomorphins locally into the rat brain followed by behavioral and neurochemical examinations. The results indicate that rats pretreated with endomorphin-1 or -2 (5 microg per side for 7 days) in the ventral tegmental area developed locomotor sensitization to the challenge injection of amphetamine (1 mg/kg). On the other hand, when endomorphins were given in the lateral ventricle (20 microg for 5 days) of amphetamine-sensitized rats (5 mg/kg x 14 days) during the withdrawal period (w5-w9), neither peptide had a modulatory effect on locomotor sensitization. Biochemical analyses revealed that treatment with endomorphins in the ventral tegmental area significantly increased the levels of glutamate in the medial prefrontal cortex and ventral and dorsal striatum to levels comparable to those observed in the amphetamine-sensitized rats. In the same animals, endomorphins also caused decreases in the levels of serotonin and its metabolite, 5-hydroxyindoleacetic acid, in the medial prefrontal cortex. Interestingly, although there was no behavioral significance, endomorphin-1 treatment in the lateral ventricle of control and amphetamine-sensitized rats during withdrawal resulted in decreases of GABA, aspartate, dopamine, and its metabolite 3,4-dihydroxyphenylacetic acid in the ventral striatum. We conclude that endomorphins, by stimulating the mu-opioid receptors in the ventral tegmental area, could sensitize the behavioral response to amphetamine. The results also demonstrate that there are differential responses between endomorphin-1 and -2 on

  12. Behavioral and neurochemical changes in response to acute stressors: influence of previous chronic exposure to immobilization.

    PubMed

    Pol, O; Campmany, L; Gil, M; Armario, A

    1992-07-01

    The effect of daily (2 h) exposure to immobilization (IMO) for 15 days on the behavioral and neurochemical responses of adult male rats to acute stress caused by 2-h IMO or 2-h tail-shock was studied. The brain areas studied were frontal cortex, hippocampus, hypothalamus, midbrain, and pons plus medulla. Chronic exposure to IMO did not alter noradrenaline (NA), 3-methoxy,4-hydroxyphenyletileneglycol-SO4 (MHPG-SO4), serotonin, or 5-hydroxindoleacetic acid (5-HIAA) concentrations in any brain area as measured approximately 20 h after the last exposure to IMO. Exposure to behavioral tests did not modify neurochemical variables except NA levels in the hypothalamus of nonchronically stressed (control) rats. Both exposure to 2-h IMO or 2-h shock significantly decreased NA levels in hypothalamus and midbrain of nonchronically stressed rats. These decreases in response to the two acute stressors were not observed in chronically stressed rats. However, MHPG-SO4 levels increased to the same extent in control and chronically stressed rats after exposure to the acute stressors. Likewise, increased 5-HIAA concentrations observed in response to acute stressors were similar in control and chronically stressed rats. The inhibition of activity (areas crossed and rearing) in the holeboard caused by acute IMO was less marked in rats previously exposed to the same stressor than in control rats, but the response to shock was similar. In the forced swim test, acute IMO decreased struggling in control rats but tended to increase it in chronically stressed rats. The response to shock followed the same pattern as that to IMO, although it was slight.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Quantification of micro stickies

    Treesearch

    Mahendra. Doshi; Jeffrey. Dyer; Salman. Aziz; Kristine. Jackson; Said M. Abubakr

    1997-01-01

    The objective of this project was to compare the different methods for the quantification of micro stickies. The hydrophobic materials investigated in this project for the collection of micro stickies were Microfoam* (polypropylene packing material), low density polyethylene film (LDPE), high density polyethylene (HDPE; a flat piece from a square plastic bottle), paper...

  14. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  15. The effects of the acute administration of low-dosage ethanol on the phasic neurochemical oscillations of the basal ganglia.

    PubMed

    Noori, H R

    2012-09-01

    The effects of the acute ethanol consumption on the brain's neurochemistry are largely studied at the synaptic level. Here, the acute action of low dosages of ethanol, in terms of the inhibition of the glutamatergic system through antagonizing the N-methyl-D-aspartate receptors, on the neurochemical oscillations along the neurocircuitry of the basal ganglia is investigated by mathematical models. Substantial alterations in the dynamical behaviour of the neurochemical oscillations after single administration of low dosages of ethanol have been observed. Significant dynamical changes in the gamma-aminobutyric acid and glutamate systems along the subthalamic-pallidal feedback loop and the dopamine system of the striatal complex suggest new perspectives in the understanding of the ethanol-induced motor dysfunctions.

  16. Sleep and neurochemical modulation by the nuclear peroxisome proliferator-activated receptor α (PPAR-α) in rat.

    PubMed

    Mijangos-Moreno, Stephanie; Poot-Aké, Alwin; Guzmán, Khalil; Arankowsky-Sandoval, Gloria; Arias-Carrión, Oscar; Zaldívar-Rae, Jaime; Sarro-Ramírez, Andrea; Murillo-Rodríguez, Eric

    2016-04-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear protein that plays an essential role in diverse neurobiological processes. However, the role of PPARα on the sleep modulation is unknown. Here, rats treated with an intrahypothalamic injection of Wy14643 (10μg/1μL; PPARα agonist) enhanced wakefulness and decreased slow wave sleep and rapid eye movement sleep whereas MK-886 (10μg/1μL; PPARα antagonist) promoted opposite effects. Moreover, Wy14643 increased dopamine, norepinephrine, serotonin, and adenosine contents collected from nucleus accumbens. The levels of these neurochemicals were diminished after MK-886 treatment. The current findings suggest that PPARα may participate in the sleep and neurochemical modulation.

  17. Neurochemical features of endomorphin-2-containing neurons in the submucosal plexus of the rat colon

    PubMed Central

    Li, Jun-Ping; Zhang, Ting; Gao, Chang-Jun; Kou, Zhen-Zhen; Jiao, Xu-Wen; Zhang, Lian-Xiang; Wu, Zhen-Yu; He, Zhong-Yi; Li, Yun-Qing

    2015-01-01

    AIM: To investigate the distribution and neurochemical phenotype of endomorphin-2 (EM-2)-containing neurons in the submucosal plexus of the rat colon. METHODS: The mid-colons between the right and left flexures were removed from rats, and transferred into Kreb’s solution. For whole-mount preparations, the mucosal, outer longitudinal muscle and inner circular muscle layers of the tissues were separated from the submucosal layer attached to the submucosal plexus. The whole-mount preparations from each rat mid-colon were mounted onto seven gelatin-coated glass slides, and processed for immunofluorescence histochemical double-staining of EM-2 with calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT), nitric oxide synthetase (NOS), neuron-specific enolase (NSE), substance P (SP) and vasoactive intestinal peptide (VIP). After staining, all the fluorescence-labeled sections were observed with a confocal laser scanning microscope. To estimate the extent of the co-localization of EM-2 with CGRP, ChAT, NOS, NSE, SP and VIP, ganglia, which have a clear boundary and neuronal cell outline, were randomly selected from each specimen for this analysis. RESULTS: In the submucosal plexus of the mid-colon, many EM-2-immunoreactive (IR) and NSE-IR neuronal cell bodies were found in the submucosal plexus of the rat mid-colon. Approximately 6 ± 4.2 EM-2-IR neurons aggregated within each ganglion and a few EM-2-IR neurons were also found outside the ganglia. The EM-2-IR neurons were also immunopositive for ChAT, SP, VIP or NOS. EM-2-IR nerve fibers coursed near ChAT-IR neurons, and some of these fibers were even distributed around ChAT-IR neuronal cell bodies. Some EM-2-IR neuronal cell bodies were surrounded by SP-IR nerve fibers, but many long processes connecting adjacent ganglia were negative for EM-2 immunostaining. Long VIP-IR processes with many branches coursed through the ganglia and surrounded the EM-2-IR neurons. The percentages of the EM-2-IR neurons

  18. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements.

    PubMed

    Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M

    2016-08-02

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.

  19. Vitamin B6 Reduces Neurochemical and Long-Term Cognitive Alterations After Polymicrobial Sepsis: Involvement of the Kynurenine Pathway Modulation.

    PubMed

    Danielski, Lucinéia Gainski; Giustina, Amanda Della; Goldim, Mariana Pereira; Florentino, Drielly; Mathias, Khiany; Garbossa, Leandro; de Bona Schraiber, Rosiane; Laurentino, Ana Olívia Martins; Goulart, Marina; Michels, Monique; de Queiroz, Karina Barbosa; Kohlhof, Markus; Rezin, Gislaine Tezza; Fortunato, Jucélia Jeremias; Quevedo, Joao; Barichello, Tatiana; Dal-Pizzol, Felipe; Coimbra, Roney S; Petronilho, Fabricia

    2017-09-06

    Neurological dysfunction as a result of neuroinflammation has been reported in sepsis and cause high mortality. High levels of cytokines stimulate the formation of neurotoxic metabolites by kynurenine (KYN) pathway. Vitamin B6 (vit B6) has anti-inflammatory and antioxidant properties and also acts as a cofactor for enzymes of the KYN pathway. Thus, by using a relevant animal model of polymicrobial sepsis, we studied the effect of vit B6 on the KYN pathway, acute neurochemical and neuroinflammatory parameters, and cognitive dysfunction in rats. Male Wistar rats (250-300 g) were submitted to cecal ligation and perforation (CLP) and divided into sham + saline, sham + vit B6, CLP + saline, and CLP + vit B6 (600 mg/kg, s.c.) groups. Twenty-four hours later, the prefrontal cortex and hippocampus were removed for neurochemical and neuroinflammatory analyses. Animals were followed for 10 days to determine survival rate, when cognitive function was assessed by behavioral tests. Vitamin B6 interfered in the activation of kynurenine pathway, which led to an improvement in neurochemical and neuroinflammatory parameters and, consequently, in the cognitive functions of septic animals. Thus, the results indicate that vit B6 exerts neuroprotective effects in acute and late consequences after sepsis.

  20. Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice.

    PubMed

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Sharma, Yogita; Saroha, Babita; Datusalia, Ashok Kumar; Bezbaruah, Babul Kumar

    2016-06-01

    The aim of the present study was to investigate the protective effects of curcumin alone and in combination with piperine against lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical deficits in the mice hippocampus. Mice were treated with curcumin (100, 200, and 400 mg/kg, p.o.) and piperine (20 mg/kg, p.o.) for 7 days followed by LPS (0.83 mg/kg, i.p.) administration. Animals exhibited anxiety and depressive-like phenotype after 3 and 24 h of LPS exposure, respectively. LPS administration increased the oxido-nitrosative stress as evident by elevated levels of malondialdehyde, nitrite, and depletion of glutathione level in the hippocampus. Furthermore, we found raised level of pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus of LPS-treated mice. Pretreatment with curcumin alleviated LPS-induced neurobehavioral and neurochemical deficits. Furthermore, co-administration of curcumin with piperine significantly potentiated the neuroprotective effect of curcumin. These results demonstrate that piperine enhanced the neuroprotective effect of curcumin against LPS-induced neurobehavioral and neurochemical deficits.

  1. Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit.

    PubMed

    Gonzalez-Reyes, Luis E; Verbitsky, Miguel; Blesa, Javier; Jackson-Lewis, Vernice; Paredes, Daniel; Tillack, Karsten; Phani, Sudarshan; Kramer, Edgar R; Przedborski, Serge; Kottmann, Andreas H

    2012-07-26

    Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non cell-autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinson's disease. Variable Shh signaling results in graded inhibition of muscarinic autoreceptor- and glial cell line-derived neurotrophic factor (GDNF)-expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Sonic Hedgehog Maintains Cellular and Neurochemical Homeostasis in the Adult Nigrostriatal Circuit

    PubMed Central

    Gonzalez-Reyes, Luis E.; Verbitsky, Miguel; Blesa, Javier; Jackson-Lewis, Vernice; Paredes, Daniel; Tillack, Karsten; Phani, Sudarshan; Kramer, Edgar R.; Przedborski, Serge; Kottmann, Andreas H.

    2012-01-01

    SUMMARY Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non-cell autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinson’s disease. Variable Shh signaling results in graded inhibition of muscarinic auto-receptor- and GDNF- expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a novel mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinson’s disease. PMID:22841315

  3. Etiology, triggers and neurochemical circuits associated with unexpected, expected, and laboratory-induced panic attacks.

    PubMed

    Johnson, Philip L; Federici, Lauren M; Shekhar, Anantha

    2014-10-01

    Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. ETIOLOGY, TRIGGERS AND NEUROCHEMICAL CIRCUITS ASSOCIATED WITH UNEXPECTED, EXPECTED, AND LABORATORY-INDUCED PANIC ATTACKS

    PubMed Central

    Johnson, Philip L.; Federici, Lauren M.; Shekhar, Anantha

    2014-01-01

    Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene x environment and gene x hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states. PMID:25130976

  5. Neurochemical and Neuropharmacological Aspects of Circadian Disruptions: An Introduction to Asynchronization

    PubMed Central

    Kohyama, Jun

    2011-01-01

    Circadian disruptions are common in modern society, and there is an urgent need for effective treatment strategies. According to standard diagnostic criteria, most adolescents showing both insomnia and daytime sleepiness are diagnosed as having behavioral-induced sleep efficiency syndrome resulting from insomnia due to inadequate sleep hygiene. However, a simple intervention of adequate sleep hygiene often fails to treat them. As a solution to this clinical problem, the present review first overviews the basic neurochemical and neuropharmachological aspects of sleep and circadian rhythm regulation, then explains several circadian disruptions from similar viewpoints, and finally introduces the clinical notion of asynchronization. Asynchronization is designated to explain the pathophysiology/pathogenesis of exhibition of both insomnia and hypersomnia in adolescents, which comprises disturbances in various aspects of biological rhythms. The major triggers for asynchronization are considered to be a combination of light exposure during the night, which disturbs the biological clock and decreases melatonin secretion, as well as a lack of light exposure in the morning, which prohibits normal synchronization of the biological clock to the 24-hour cycle of the earth and decreases the activity of serotonin. In the chronic phase of asynchronization, involvement of both wake- and sleep-promoting systems is suggested. Both conventional and alternative therapeutic approaches for potential treatment of asynchronization are suggested. PMID:22131941

  6. No neurochemical evidence for brain injury caused by heading in soccer

    PubMed Central

    Zetterberg, Henrik; Jonsson, Michael; Rasulzada, Abdullah; Popa, Cornel; Styrud, Ewa; Hietala, Max Albert; Rosengren, Lars; Wallin, Anders; Blennow, Kaj

    2007-01-01

    Background The possible injurious effect to the brain of heading in soccer is a matter of discussion. Objective To determine whether standardised headings in soccer are associated with increased levels of biochemical markers for neuronal injury in cerebrospinal fluid (CSF) and serum. Methods 23 male amateur soccer players took part in a heading training session involving heading a ball kicked from a distance of 30 m at least 10 m forward. Ten players performed 10 and 13 players performed 20 approved headings. The players underwent lumbar puncture and serum sampling 7–10 days after the headings. The study also included 10 healthy male non‐athletic control subjects. CSF was analysed for neurofilament light protein, total tau, glial fibrillary acidic protein, S‐100B and albumin concentrations. Serum was analysed for S‐100B and albumin. Results None of the biomarker levels were abnormal and there were no significant differences between any of the three groups, except for a slightly increased CSF S‐100B concentration in controls compared with headers. Biomarker levels did not correlate with the number of headings performed. Conclusion Repeated low‐severity head impacts due to heading in soccer are not associated with any neurochemical signs of injury to the brain. PMID:17496068

  7. No neurochemical evidence for brain injury caused by heading in soccer.

    PubMed

    Zetterberg, Henrik; Jonsson, Michael; Rasulzada, Abdullah; Popa, Cornel; Styrud, Ewa; Hietala, Max Albert; Rosengren, Lars; Wallin, Anders; Blennow, Kaj

    2007-09-01

    The possible injurious effect to the brain of heading in soccer is a matter of discussion. To determine whether standardised headings in soccer are associated with increased levels of biochemical markers for neuronal injury in cerebrospinal fluid (CSF) and serum. 23 male amateur soccer players took part in a heading training session involving heading a ball kicked from a distance of 30 m at least 10 m forward. Ten players performed 10 and 13 players performed 20 approved headings. The players underwent lumbar puncture and serum sampling 7-10 days after the headings. The study also included 10 healthy male non-athletic control subjects. CSF was analysed for neurofilament light protein, total tau, glial fibrillary acidic protein, S-100B and albumin concentrations. Serum was analysed for S-100B and albumin. None of the biomarker levels were abnormal and there were no significant differences between any of the three groups, except for a slightly increased CSF S-100B concentration in controls compared with headers. Biomarker levels did not correlate with the number of headings performed. Repeated low-severity head impacts due to heading in soccer are not associated with any neurochemical signs of injury to the brain.

  8. 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine.

    PubMed

    Eggan, Branden L; McCallum, Sarah E

    2016-07-01

    Systemic 18-methoxycoronaridine, an alpha3beta4 nicotinic antagonist, slows the rate of induction of behavioral sensitization to nicotine (Glick et al., 1996; 2011). The primary mechanism of action of 18-MC is believed to be the inhibition of α3β4 nicotinic acetylcholine receptors which are densely expressed in the medial habenula and interpeduncular nucleus (Pace et al., 2004; Glick et al., 2012). Recently, these habenular nicotinic receptors and their multiple roles in nicotine aversion and withdrawal have been increasingly emphasized (Antolin-Fontes et al., 2015). Here, we investigated the effects of 18-MC on both behavioral and neurochemical sensitization to nicotine. Daily systemic administration of 18-MC slowed the rate of induction of behavioral sensitization to nicotine but failed to block the expression of a sensitized locomotor response when absent. In contrast, in nicotine sensitized animals, systemic 18-MC significantly reduced the expression of behavioral sensitization. Results from intra-habenular administration of 18-MC paralleled these findings in that the expression of behavioral sensitization was also reduced in sensitized animals. Consistent with its effects on behavioral sensitization, intra-MHb treatment with 18-MC completely abolished sensitized dopamine responses in the nucleus accumbens in nicotine sensitized animals. These results show that α3β4 nicotinic receptors in the MHb contribute to nicotine sensitization, a phenomenon associated with drug craving and relapse. Copyright © 2016. Published by Elsevier B.V.

  9. Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons

    PubMed Central

    Booker, Sam A.; Song, Jie; Vida, Imre

    2014-01-01

    GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons. PMID:25350149

  10. The German Competence Net Dementias: standard operating procedures for the neurochemical dementia diagnostics.

    PubMed

    Lewczuk, P; Kornhuber, J; Wiltfang, J

    2006-08-01

    Aging of population results in an increasing number of patients with dementia. Therefore, recently a BMBF-supported project, Competence Net Dementia, was launched to reveal diagnostic, therapeutic, and epidemiologic aspects of demential disorders. In this project, our task was to establish and maintain human body fluids (HBF) bank to collect cerebrospinal fluid, plasma, serum, and full blood of patients enrolled into the study. As the pre-analytical sample handling is a prerequisite of all studies aiming at finding novel disease biomarkers, standard operating procedures (SOPs) were launched by our group to allow standardized collection, storage, and shipment of the samples among all 14 University centers involved in HBF collection. Currently, to our best knowledge the CND HBF bank represents one of the largest prospectively collected set of the samples from subjects with mild cognitive impairment and early dementias. With the samples collected in the HBF bank, recently introduced analytical technologies (like e.g. surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), differential gel electrophoresis (DIGE), and multiplexing) can be promptly tested with regard to their potential usefulness in neurochemical dementia diagnostics.

  11. Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats.

    PubMed

    Allagui, M S; Feriani, A; Saoudi, M; Badraoui, R; Bouoni, Z; Nciri, R; Murat, J C; Elfeki, A

    2014-08-01

    This study aimed to investigate the potential protective effects of melatonin (Mel) against aluminium-induced neurodegenerative changes in aging Wistar rats (24-28months old). Herein, aluminium chloride (AlCl3) (50mg/kg BW/day) was administered by gavage, and melatonin (Mel) was co-administered to a group of Al-treated rats by an intra-peritoneal injection at a daily dose of 10mg/kg BW for four months. The findings revealed that aluminium administration induced a significant decrease in body weight associated with marked mortality for the old group of rats, which was more pronounced in old Al-treated rats. Behavioural alterations were assessed by 'open fields', 'elevated plus maze' and 'Radial 8-arms maze' tests. The results demonstrated that Mel co-administration alleviated neurobehavioral changes in both old and old Al-treated rats. Melatonin was noted to play a good neuroprotective role, reducing lipid peroxidation (TBARs), and enhancing enzymatic (SOD, CAT and GPx) activities in the brain organs of old control and old Al-treated rats. Mel treatment also reversed the decrease of AChE activity in the brain tissues, which was confirmed by histological sections. Overall, the results showed that Mel administration can induce beneficial effects for the treatment of Al-induced neurobehavioral and neurochemical changes in the central nervous system (CNS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  13. Neurochemical and behavioral effects of green tea (Camellia sinensis): a model study.

    PubMed

    Mirza, Beenish; Ikram, Huma; Bilgrami, Sofia; Haleem, Darakhshan Jabeen; Haleem, Muhammad Abdul

    2013-05-01

    Being rich in polyphenolic compounds such as flavonoids, green tea is suggested to be a potential candidate for the treatment of obesity, stress, depression, Parkinson's and other disorders. Since serotonin has an important role in the pathophysiology of these disorders, present study was designed to monitor the effects of green tea in rats. Green tea extract was provided to the male Albino Wistar rats for 5 weeks, and effects on behaviors were monitored. Results show a decrease in food intake after 5th week but not before. An increase in locomotive activities of the animals was observed, as monitored in novel as well as in familiar environment. Anxiolytic effects were observed in elevated plus maze but not in light dark activity box. An increase in dopamine and serotonin turnover was observed. Our results suggest that beneficial effects of green tea drinking might be due to alteration of serotonin and/or dopamine metabolism. We thereby propose that in further experiments, green tea should be administered in animal model of learned helplessness and effects on the development of adaptation to stress should be monitored. Neurochemical estimations of catecholamine and indoleamine in these animal models of stress exposed to green tea would help in understanding the anxiolytic effects of green tea.

  14. Behavioral, Neurochemical and Neuroendocrine Effects of Abnormal Savda Munziq in the Chronic Stress Mice

    PubMed Central

    Amat, Nurmuhammat; Hoxur, Parida; Ming, Dang; Matsidik, Aynur; Kijjoa, Anake; Upur, Halmurat

    2012-01-01

    Oral administration of Abnormal Savda Munsiq (ASMq), a herbal preparation used in Traditional Uighur Medicine, was found to exert a memory-enhancing effect in the chronic stressed mice, induced by electric foot-shock. The memory improvement of the stressed mice was shown by an increase of the latency time in the step-through test and the decrease of the latency time in the Y-maze test. Treatment with ASMq was found to significantly decrease the serum levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and β-endorphin (β-EP) as well as the brain and serum level of norepinephrine (NE). Furthermore, ASMq was able to significantly reverse the chronic stress by decreasing the brain and serum levels of the monoamine neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT) and 3,4-dihydroxyphenylalanine (DOPAC). The results obtained from this study suggested that the memory-enhancing effect of ASMq was mediated through regulations of neurochemical and neuroendocrine systems. PMID:22919413

  15. Intracerebroventricular Streptozotocin as a Model of Alzheimer's Disease: Neurochemical and Behavioral Characterization in Mice.

    PubMed

    Ravelli, Katherine Garcia; Rosário, Barbara Dos Anjos; Camarini, Rosana; Hernandes, Marina Sorrentino; Britto, Luiz Roberto

    2017-04-01

    Streptozotocin has been widely used to mimic some aspects of Alzheimer's disease (AD). However, especially in mice, several characteristics involved in the streptozotocin (STZ)-induced AD pathology are not well known. The main purpose of this study was to evaluate temporally the expression of AD-related proteins, such as amyloid-β (Aβ), choline acetyltransferase (ChAT), synapsin, axonal neurofilaments, and phosphorylated Tau in the hippocampus following intracerebroventricular (icv) administration of STZ in adult mice. We also analyzed the impact of STZ on short- and long-term memory by novel object recognition test. Male mice were injected with STZ or citrate buffer, and AD-related proteins were evaluated by immunoblotting assays in the hippocampus at 7, 14, or 21 days after injection. No differences between the groups were found at 7 days. The majority of AD markers evaluated were found altered at 14 days, i.e., the STZ group showed increased amyloid-β protein and neurofilament expression, increased phosphorylation of Tau protein, and decreased synapsin expression levels compared to controls. Except for synapsin, all of these neurochemical changes were transient and did not last up to 21 days of STZ injection. Moreover, both short-term and long-term memory deficits were demonstrated after STZ treatment at 14 and 21 days after STZ treatment.

  16. Leukemia inhibitory factor impairs structural and neurochemical development of rat visual cortex in vivo.

    PubMed

    Engelhardt, Maren; di Cristo, Graziella; Grabert, Jochen; Patz, Silke; Maffei, Lamberto; Berardi, Nicoletta; Wahle, Petra

    2017-03-01

    Minipump infusions into visual cortex in vivo at the onset of the critical period have revealed that the proinflammatory cytokine leukemia inhibitory factor (LIF) delays the maturation of thalamocortical projection neurons of the lateral geniculate nucleus, and tecto-thalamic projection neurons of the superior colliculus, and cortical layer IV spiny stellates and layer VI pyramidal neurons. Here, we report that P12-20 LIF infusion inhibits somatic maturation of pyramidal neurons and of all interneuron types in vivo. Likewise, DIV 12-20 LIF treatment in organotypic cultures prevents somatic growth GABA-ergic neurons. Further, while NPY expression is increased in the LIF-infused hemispheres, the expression of parvalbumin mRNA and protein, Kv3.1 mRNA, calbindin D-28k protein, and GAD-65 mRNA, but not of GAD-67 mRNA or calretinin protein is substantially reduced. Also, LIF treatment decreases parvalbumin, Kv3.1, Kv3.2 and GAD-65, but not GAD-67 mRNA expression in OTC. Developing cortical neurons are known to depend on neurotrophins. Indeed, LIF alters neurotrophin mRNA expression, and prevents the growth promoting action of neurotophin-4 in GABA-ergic neurons. The results imply that LIF, by altering neurotrophin expression and/or signaling, could counteract neurotrophin-dependent growth and neurochemical differentiation of cortical neurons.

  17. Neurochemical and behavioral effects elicited by bupropion and diethylpropion in rats.

    PubMed

    Santamaría, Abel; Arias, Hugo R

    2010-07-29

    This study is an attempt to demonstrate whether bupropion (BP) and diethylpropion (DEP) exert their pharmacological actions by similar neurochemical mechanisms in the dorsal striatum. In this regard, the release of dopamine (DA), glutamate (Glu), and GABA, was determined in the rat dorsal striatum after acute (5 min) and chronic (15 consecutive days) treatments, and subsequently correlated with the locomotor activities produced by these drugs. The results from the acute experiments indicate that BP and DEP (40 mg/kg) increase locomotor activity, whereas chronic DEP treatment decreases locomotor activity by unspecific mechanisms. Acute BP treatment produces significant DA and Glu, but not GABA, releases. A lesser extent of DA release and tissue content of DA and its metabolites, and consequently less locomotor activity, was observed after chronic BP treatment. Acute DEP (5mg/kg) was only able to slightly increase DA release and to decrease the tissue levels of DA, but no other markers, with practically nil locomotor activity, whereas chronic DEP produced even less neurotransmitter release. The observed difference between BP and DEP might be based on that although both drugs inhibit the DA and norepinephrine transporters, the BP-induced nicotinic receptor inhibition has yet to be demonstrated for DEP.

  18. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish.

    PubMed

    Tran, Steven; Nowicki, Magda; Muraleetharan, Arrujyan; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-04

    Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish.

    PubMed

    Bidel, Flavie; Di Poi, Carole; Imarazene, Boudjema; Koueta, Noussithé; Budzinski, Hélène; Van Delft, Pierre; Bellanger, Cécile; Jozet-Alves, Christelle

    2016-03-01

    Embryonic and early postembryonic development of the cuttlefish Sepia officinalis (a cephalopod mollusk) occurs in coastal waters, an environment subject to considerable pressure from xenobiotic pollutants such as pharmaceutical residues. Given the role of serotonin in brain development and its interaction with neurodevelopmental functions, this study focused on fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI, antidepressant). The goal was to determine the effects of subchronic waterborne FLX exposure (1 and 10 μg L(-1)) during the last 15 days of embryonic development on neurochemical, neurodevelopmental, behavioral, and immunological endpoints at hatching. Our results showed for the first time that organic contaminants, such as FLX, could pass through the eggshell during embryonic development, leading to a substantial accumulation of this molecule in hatchlings. We also found that FLX embryonic exposure (1 and 10 μg L(-1)) (1) modulated dopaminergic but not serotonergic neurotransmission, (2) decreased cell proliferation in key brain structures for cognitive and visual processing, (3) did not induce a conspicuous change in camouflage quality, and (4) decreased lysozyme activity. In the long term, these alterations observed during a critical period of development may impair complex behaviors of the juvenile cuttlefish and thus lead to a decrease in their survival. Finally, we suggest a different mode of action by FLX between vertebrate and non-vertebrate species and raise questions regarding the vulnerability of early life stages of cuttlefish to the pharmaceutical contamination found in coastal waters.

  20. Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioural, and neurotoxic effects of methamphetamine

    PubMed Central

    Weinshenker, David; Ferrucci, Michela; Busceti, Carla L.; Biagioni, Francesca; Lazzeri, Gloria; Liles, L. Cameron; Lenzi, Paola; Murri, Luigi; Paparelli, Antonio; Fornai, Francesco

    2008-01-01

    N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) lesions of the locus coeruleus (LC), the major brain noradrenergic nucleus, exacerbate the damage to nigrostriatal dopamine (DA) terminals caused by the psychostimulant methamphetamine (METH). However, because noradrenergic terminals contain other neuromodulators and the noradrenaline (NA) transporter, which may act as a neuroprotective buffer, it was unclear whether this enhancement of METH neurotoxicity was caused by the loss of noradrenergic innervation or the loss of NA itself. We addressed the specific role of NA by comparing the effects of METH in mice with noradrenergic lesions (DSP-4) and those with intact noradrenergic terminals but specifically lacking NA (genetic or acute pharmacological blockade of the NA biosynthetic enzyme dopamine β-hydroxylase; DBH). We found that genetic deletion of DBH (DBH −/− mice) and acute treatment of wild-type mice with a DBH inhibitor (fusaric acid) recapitulated the effects of DSP-4 lesions on METH responses. All three methods of NA depletion enhanced striatal DA release, extracellular oxidative stress (as measured by in vivo microdialysis of DA and 2,3-dihydroxybenzoic acid), and behavioural stereotypies following repeated METH administration. These effects accompanied a worsening of the striatal DA neuron terminal damage and ultrastructural changes to medium spiny neurons. We conclude that NA itself is neuroprotective and plays a fundamental role in the sensitivity of striatal DA terminals to the neurochemical, behavioural, and neurotoxic effects of METH. PMID:18042179

  1. Neurochemical and behavioral effects of Cinnamomi cassiae (Lauraceae) bark aqueous extract in obese rats.

    PubMed

    Bano, Farhat; Ikram, Huma; Akhtar, Naheed

    2014-05-01

    Obesity is a risk factor leading to a number of chronic and metabolic disorders. Obesity is the fifth leading cause of global deaths. At least 2.8 million adults are dying each year as being overweight or obese. Cinnamomi cassiae is widely used traditional medicinal plant, used indigenously, to decrease glucose and cholesterol. 5-Hydroxy tryptamine (5-HT; Serotonin) is an important neurotransmitter reported to be involved in the pathophysiology of anorexia. Present study was designed to investigate the neurochemical and behavioral effects of cinnamon bark aqueous extract (CBAE) in obese rats and to find the possible involvement of 5-HT in reducing the body weight in these experimental animals. CBAE was repeatedly administered orally in the test animals for 5 weeks. A decrease in the food intake along with a concomitant increase in brain 5-HT level was observed in rats administered with CBAE. Findings may help in extending therapeutics in the pathophysiology of obesity and related eating disorders. Decrease activities in behavioral models were also monitored in CBAE treated animals.

  2. Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states.

    PubMed

    Rutkiewicz, Jennifer; Nam, Dong-Ha; Cooley, Thomas; Neumann, Kay; Padilla, Irene Bueno; Route, William; Strom, Sean; Basu, Niladri

    2011-10-01

    In this study, we assessed mercury (Hg) exposure in several tissues (brain, liver, and breast and primary feathers) in bald eagles (Haliaeetus leucocephalus) collected from across five Great Lakes states (Iowa, Michigan, Minnesota, Ohio, and Wisconsin) between 2002-2010, and assessed relationships between brain Hg and neurochemical receptors (NMDA and GABA(A)) and enzymes (glutamine synthetase (GS) and glutamic acid decarboxylase (GAD)). Brain total Hg (THg) levels (dry weight basis) averaged 2.80 μg/g (range: 0.2-34.01), and levels were highest in Michigan birds. THg levels in liver (r(p) = 0.805) and breast feathers (r(p) = 0.611) significantly correlated with those in brain. Brain Hg was not associated with binding to the GABA(A) receptor. Brain THg and inorganic Hg (IHg) were significantly positively correlated with GS activity (THg r(p) = 0.190; IHg r(p) = 0.188) and negatively correlated with NMDA receptor levels (THg r(p) = -0245; IHg r(p) = -0.282), and IHg was negatively correlated with GAD activity (r(s) = -0.196). We also report upon Hg demethylation and relationships between Hg and Se in brain and liver. These results suggest that bald eagles in the Great Lakes region are exposed to Hg at levels capable of causing subclinical neurological damage, and that when tissue burdens are related to proposed avian thresholds approximately 14-27% of eagles studied here may be at risk.

  3. Investigating the microstructural and neurochemical environment within the basal ganglia of current methamphetamine abusers.

    PubMed

    Lin, Joanne C; Jan, Reem K; Kydd, Rob R; Russell, Bruce R

    2015-04-01

    Methamphetamine is a highly addictive psychostimulant and the medical, social, and economic consequences associated with its use have become a major international problem. Current evidence has shown methamphetamine to be particularly neurotoxic to dopamine neurons and striatal structures within the basal ganglia. A previous study from our laboratory demonstrated larger putamen volumes in actively using methamphetamine-dependent participants. The purpose of this current study was to determine whether striatal structures in the same sample of participants also exhibit pathology on the microstructural and molecular level. Diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were carried out in current methamphetamine users (n = 18) and healthy controls (n = 22) to investigate diffusion indices and neurometabolite levels in the basal ganglia. Contrary to findings from previous DTI and MRS studies, no significant differences in diffusion indices or metabolite levels were observed in the basal ganglia regions of current methamphetamine users. These findings differ from those reported in abstinent users and the absence of diffusion and neurochemical abnormalities may suggest that striatal enlargement in current methamphetamine use may be due to mechanisms other than edema and glial proliferation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Chronic and acute alcohol administration induced neurochemical changes in the brain: comparison of distinct zebrafish populations.

    PubMed

    Chatterjee, Diptendu; Shams, Soaleha; Gerlai, Robert

    2014-04-01

    The zebrafish is increasingly utilized in the analysis of the effects of ethanol (alcohol) on brain function and behavior. We have shown significant population-dependent alcohol-induced changes in zebrafish behavior and have started to analyze alterations in dopaminergic and serotoninergic responses. Here, we analyze the effects of alcohol on levels of selected neurochemicals using a 2 × 3 (chronic × acute) between-subject alcohol exposure paradigm randomized for two zebrafish populations, AB and SF. Each fish first received the particular chronic treatment (0 or 0.5 vol/vol% alcohol) and subsequently the acute exposure (0, 0.5 or 1.0% alcohol). We report changes in levels of dopamine, DOPAC, serotonin, 5HIAA, glutamate, GABA, aspartate, glycine and taurine as quantified from whole brain extracts using HPLC. We also analyze monoamine oxidase and tyrosine hydroxylase enzymatic activity. The results demonstrate that compared to SF, AB is more responsive to both acute alcohol exposure and acute alcohol withdrawal at the level of neurochemistry, a finding that correlates well with prior behavioral observations and one which suggests the involvement of genes in the observed alcohol effects. We discuss correlations between the current results and prior behavioral findings, and stress the importance of characterization of zebrafish strains for future behavior genetic and psychopharmacology studies.

  5. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake

    PubMed Central

    Avena, Nicole M.; Rada, Pedro; Hoebel, Bartley G.

    2008-01-01

    The experimental question is whether or not sugar can be a substance of abuse and lead to a natural form of addiction. “Food addiction” seems plausible because brain pathways that evolved to respond to natural rewards are also activated by addictive drugs. Sugar is noteworthy as a substance that releases opioids and dopamine and thus might be expected to have addictive potential. This review summarizes evidence of sugar dependence in an animal model. Four components of addiction are analyzed. “Bingeing”, “withdrawal”, “craving” and cross-sensitization are each given operational definitions and demonstrated behaviorally with sugar bingeing as the reinforcer. These behaviors are then related to neurochemical changes in the brain that also occur with addictive drugs. Neural adaptations include changes in dopamine and opioid receptor binding, enkephalin mRNA expression and dopamine and acetylcholine release in the nucleus accumbens. The evidence supports the hypothesis that under certain circumstances rats can become sugar dependent. This may translate to some human conditions as suggested by the literature on eating disorders and obesity. PMID:17617461

  6. Imaging based magnetic resonance spectroscopy (MRS) localization for quantitative neurochemical analysis and cerebral metabolism studies.

    PubMed

    Lee, Phil; Adany, Peter; Choi, In-Young

    2017-01-10

    Accurate quantitative metabolic imaging of the brain presents significant challenges due to the complexity and heterogeneity of its structures and compositions with distinct compartmentations of brain tissue types (e.g., gray and white matter). The brain is compartmentalized into various regions based on their unique functions and locations. In vivo magnetic resonance spectroscopy (MRS) techniques allow non-invasive measurements of neurochemicals in either single voxel or multiple voxels, yet the spatial resolution and detection sensitivity of MRS are significantly lower compared with MRI. A fundamentally different approach, namely spectral localization by imaging (SLIM) provides a new framework that overcomes major limitations of conventional MRS techniques. Conventional MRS allows only rectangular voxel shapes that do not conform to the shapes of brain structures or lesions, while SLIM allows compartments with arbitrary shapes. However, the restrictive assumption proposed in the original concept of SLIM, i.e., compartmental homogeneity, led to spectral localization errors, which have limited its broad applications. This review focuses on the recent technical frontiers of image-based MRS localization techniques that overcome the limitations of SLIM through the development and implementation of various new strategies, including incorporation of magnetic field inhomogeneity corrections, the use of multiple receiver coils, and prospective optimization of data acquisition.

  7. [Neurochemical basis for social encounter-induced hyperactivity in post-weaning isolation-reared mice].

    PubMed

    Ago, Yukio

    2014-08-01

    Rearing rodents in social isolation from post-weaning causes abnormal behaviors in adulthood, such as hyper-locomotion, aggression, cognitive impairments, and depression- and anxiety-like behaviors. This social isolation is widely used as a model to study the effects of adverse early-life experiences on behavior and the neural mechanisms associated with neuropsychological development. Previous studies have shown abnormalities of dendritic spine density, synaptic protein levels and amine metabolism in the prefrontal cortex and hippocampus of isolation-reared animals, but the neurochemical basis for induction of abnormal behaviors is not known. We have established a novel methodology for assessing social interaction, focusing on the psychological stressor responsible for induction of abnormal behaviors as a transient environmental factor. This review summarizes the effect of a social encounter with an unfamiliar conspecific on behavior and neurochemistry in isolation-reared mice. The current analysis using the encounter response will provide new strategies to clarify the pathophysiology of psychiatric disorders including schizophrenia, depression and drug dependence.

  8. The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence.

    PubMed

    Scherma, Maria; Fattore, Liana; Castelli, Maria Paola; Fratta, Walter; Fadda, Paola

    2014-01-01

    The endocannabinoid system has long been known as a modulator of several physiological functions, among which the homeostatic and hedonic aspects of eating. CB1 receptors are widely expressed in brain regions that control food intake, reward and energy balance. Animal and human studies indicate that CB1 receptor agonists possess orexigenic effects enhancing appetite and increasing the rewarding value of food. Conversely, CB1 antagonists have been shown to inhibit the intake of food. Eating disorders include a range of chronic and disabling related pathological illnesses that are characterized by aberrant patterns of feeding behaviour and weight regulation, and by abnormal attitudes and perceptions toward body shape image. The psychological and biological factors underlying eating disorders are complex and not yet completely understood. However in the last decades, converging evidence have led to hypothesise a link between defects in the endocannabinoid system and eating disorders, including obesity. Here we review the neurochemical and behavioural preclinical evidence supporting the role of the endocannabinoid system in eating disorders to offer the reader an update regarding the state of the art. Despite the recent withdrawal from the market of rimonabant for treating obesity and overweight individuals with metabolic complications due to its psychiatric side effects, preclinical findings support the rationale for the clinical development of drug which modulate the endocannabinoid system in the treatment of eating disorders.

  9. Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat.

    PubMed

    Fujáková-Lipski, Michaela; Kaping, Daniel; Šírová, Jana; Horáček, Jiří; Páleníček, Tomáš; Zach, Petr; Klaschka, Jan; Kačer, Petr; Syslová, Kamila; Vrajová, Monika; Bubenikova-Valešová, Věra; Beste, Christian; Šlamberová, Romana

    2017-05-05

    Chronic methamphetamine (METH) abuse has been shown to elicit strong neurotoxic effects. Yet, with an increasing number of children born to METH abusing mothers maturing into adulthood, one important question is how far do the neurotoxic effects of METH alter various neurotransmitter systems in the adult METH-exposed offspring. The purpose of this study was to investigate long-term trans-generational neurochemical changes, following prenatal METH exposure, in the adult Wistar rat brain. METH or saline (SAL-control animals) was administered to pregnant dams throughout the entire gestation period (G0-G22). At postnatal day 90, dopamine, serotonin, glutamate and GABA were measured in the adult brain before (baseline) and after a METH re-administration using in vivo microdialysis and liquid chromatography/mass spectrometry. The results show that METH-exposure increased basal levels of monoamines and glutamate, but decreased GABA levels in all measured brain regions. Acute challenge with METH injection in the METH-exposed group induced a lower increase in the monoamine system relative to the increase in the GABAergic and glutamatergic system. The data show that prenatal METH exposure has strong effects on the monoaminergic, GABAergic and glutamatergic system even when exposure to METH was limited to the prenatal phase. Toxicological effects of METH have therefore longer lasting effects as currently considered and seem to affect the excitatory-inhibitory balance in the brain having strong implications for cognitive and behavioral functioning.

  10. Negotiating the neurochemical self: anti-depressant consumption in women's recovery from depression.

    PubMed

    Fullagar, Simone

    2009-07-01

    Anti-depressant treatment can be viewed as an exercise of biopower that is articulated through policies and practices aimed at the reduction of depression, population healthcare costs and effects on labour force productivity. Drawing upon a feminist governmentality perspective, this article examines the discourses that shaped women's experiences of anti-depressant medication in an Australian qualitative study on recovery from depression. The majority of women had been prescribed anti-depressants to treat a chemical imbalance in the brain, manage symptoms and restore normal functioning. One-third of participants identified anti-depressants as helpful in their recovery, while two-thirds were either highly ambivalent about, or critical of, medication as a solution to depression. Thirty-one women who identified the ;positive' benefits of anti-depressants actively constituted themselves as biomedical consumers seeking to redress a chemical imbalance. The problem of depression, the emergence of molecular science and the push for pharmacological solutions are contributing to the discursive formation of new subject positions - such as the neurochemically deficient self. Three themes were identified in relation to medication use, namely restoring normality, signifying recovery success and control/uncertainty. Anti-depressant medication offered women a normalized pathway to successful recovery that stood in stark contrast to the biologically deficient and morally failing self. These women's stories importantly reveal the gender relations and paradoxes arising from biopolitical technologies that shape selfhood for women in advanced liberal societies.

  11. The neurochemical markers in cerebrospinal fluid to differentiate between aseptic and tuberculous meningitis.

    PubMed

    Qureshi, G A; Baig, S M; Bednar, I; Halawa, A; Parvez, S H

    1998-02-01

    In this study, the use of neurochemical markers in patients with aseptic and tuberculous meningitis has been investigated. The cerebrospinal fluid levels of amino acids, nitrite (a metabolite of nitric oxide), vitamin B12 and homocysteine were quantitated in both groups of patients. Among the amino acids, aspartic acid and glutamic acid both excitatory amino acid, GABA, glycine and tryptophan were all significantly increased in both patient groups whereas decreased level of taurine and increased level of phenylalanine were only found in patients with tuberculous meningitis. The levels of nitrite and its precursor arginine were significantly higher in patients with tuberculous meningitis whereas unchanged levels were found in patients with aseptic meningitis. A significantly increased homocysteine level and a decreased level of vitamin B12 were found only in patients with tuberculous meningitis whereas unchanged levels were found in patients with aseptic meningitis. This indicates that patients with tuberculous meningitis are particularly prone to vitamin B12 deficiency resulting into increased level of HC, and involvement of free radical showing the importance of these biological markers for promoting the possibility for the design of therapeutic approach.

  12. Morphometrical and neurochemical changes in the anteroventral subdivision of the rat medial amygdala during estrous cycle.

    PubMed

    Carrillo, Beatriz; Pinos, Helena; Guillamón, Antonio; Panzica, Giancarlo; Collado, Paloma

    2007-05-30

    The anteroventral subdivision of the medial amygdala (MeAV) is one of the vomeronasal structures involved in the control of hormonally dependent behaviors such as sexual and agonistic behaviors in rats. The present study investigates some anatomical and neurochemical parameters of this nucleus (volume, number of neurons, number of glial elements, and of NADPH-diaphorase-positive neurons) in females in two estrous cycle phases (diestrous and estrous) and in males. We also investigate the possible existence of adult neurogenesis in this nucleus in the females. Results showed that volume and estimated number of Nissl-stained neurons in the MeAV vary with the estrous cycle phase: estrous females have greater values than diestrous females. As a consequence of these variations, there is a transient sex difference between males and diestrous females. Two subpopulations of NADPH-diaphorase-positive neurons were detected: intensely stained and medium stained. The intensely stained neurons were more numerous in the estrous than the diestrous females. Neither BrdU nor GFAP inmunostaining revealed significant differences between the two groups, suggesting that adult cell generation, i.e., increases in the number of glial elements, has no significant role in the changes detected in the number of Nissl-stained sections. In conclusion, the MeAV shows functional diergism, due to plastic changes in the female rat brain probably linked to the increase of estradiol during estrous. Finally, these changes are probably functionally related to changes in the behaviors that are controlled through this nucleus.

  13. Neurochemical and neuropharmacological aspects of circadian disruptions: an introduction to asynchronization.

    PubMed

    Kohyama, Jun

    2011-06-01

    Circadian disruptions are common in modern society, and there is an urgent need for effective treatment strategies. According to standard diagnostic criteria, most adolescents showing both insomnia and daytime sleepiness are diagnosed as having behavioral-induced sleep efficiency syndrome resulting from insomnia due to inadequate sleep hygiene. However, a simple intervention of adequate sleep hygiene often fails to treat them. As a solution to this clinical problem, the present review first overviews the basic neurochemical and neuropharmachological aspects of sleep and circadian rhythm regulation, then explains several circadian disruptions from similar viewpoints, and finally introduces the clinical notion of asynchronization. Asynchronization is designated to explain the pathophysiology/pathogenesis of exhibition of both insomnia and hypersomnia in adolescents, which comprises disturbances in various aspects of biological rhythms. The major triggers for asynchronization are considered to be a combination of light exposure during the night, which disturbs the biological clock and decreases melatonin secretion, as well as a lack of light exposure in the morning, which prohibits normal synchronization of the biological clock to the 24-hour cycle of the earth and decreases the activity of serotonin. In the chronic phase of asynchronization, involvement of both wake- and sleep-promoting systems is suggested. Both conventional and alternative therapeutic approaches for potential treatment of asynchronization are suggested.

  14. Juvenile exposure to methamphetamine attenuates behavioral and neurochemical responses to methamphetamine in adult rats.

    PubMed

    McFadden, Lisa M; Carter, Samantha; Matuszewich, Leslie

    2012-04-01

    Previous research has shown that children living in clandestine methamphetamine (MA) labs are passively exposed to the drug [1]. The long-term effects of this early exposure on the dopaminergic systems are unknown, but may be important for adult behaviors mediated by dopamine, such as drug addiction. The current study sought to determine if juvenile exposure to low doses of MA would lead to altered responsiveness to the stimulant in adulthood. Young male and female rats (PD20-34) were injected daily with 0 or 2 mg/kg MA or left undisturbed and then tested at PD90. In the open field, adult rats exposed to MA during preadolescence had reduced locomotor activity compared to control non-exposed rats following an acute injection of MA (2 mg/kg). Likewise, methamphetamine-induced dopamine increases in the dorsal striatum were attenuated in male and female rats that had been exposed to MA as juveniles, although there were no changes in basal in vivo or ex vivo dopamine levels. These findings suggest that exposure of juveniles to MA leads to persistent changes in the behavioral and neurochemical responses to stimulants in adulthood.

  15. Persistent behavioral and neurochemical sensitization to an acute injection of methamphetamine following unpredictable stress.

    PubMed

    Matuszewich, Leslie; Carter, Samantha; Anderson, Eden M; Friedman, Ross D; McFadden, Lisa M

    2014-10-01

    Prior research in humans and animals suggest that exposure to chronic stress alters the response to drugs of abuse, increasing vulnerability to drug addiction. Chronic unpredictable stress (CUS) has been shown to augment the increase of dopamine in the striatum when challenged with high doses of methamphetamine immediately following stress exposure, however it is not known whether this neurochemical stress-sensitization continues after the cessation of the stressors or if behavioral sensitization is also present. Therefore, the current study examined the immediate and delayed effects of CUS on methamphetamine-induced behaviors and striatal dopamine levels. Male rats were exposed to 10 days of CUS and then tested in either an open field box to assess locomotion or underwent in vivo microdialysis to measure striatal dopamine levels immediately following CUS or after a 1-2 week delay. All rats exposed to CUS showed a potentiated locomotor response immediately following an acute injection of 7.5mg/kg methamphetamine compared to non-stressed control rats. Both groups of CUS rats also showed augmented dopamine release and rectal temperatures following methamphetamine with prolonged increases in the CUS rats tested after a delay. These results suggest that CUS increases the sensitivity of a rat to a single injection of methamphetamine and that the increased sensitivity persists for up to 2 weeks following the last stressor.

  16. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain.

    PubMed

    Scoriels, Linda; Jones, Peter B; Sahakian, Barbara J

    2013-01-01

    Modafinil is a central nervous system wake promoting agent used for the treatment of excessive daytime sleeping. Its vigilance promoting properties and low abuse potential has intrigued the scientific community and has led to use it as a cognitive enhancer, before its neural functions were understood. Here, we review the effects of modafinil in human cognition and emotion and its specific actions on symptoms in patients with schizophrenia and whether these are consistently effective throughout the literature. We also performed a systematic review on the effects of modafinil on neurotransmitter signalling in different areas of the brain in order to better understand the neuromechanisms of its cognitive and emotional enhancing properties. A review of its effects in schizophrenia suggests that modafinil facilitates cognitive functions, with pro-mnemonic effects and problem solving improvements. Emotional processing also appears to be enhanced by the drug, although to date there are only a limited number of studies. The systematic review on the neurochemical modulation of the modafinil suggests that its mnemonic enhancing properties might be the result of glutamatergic and dopaminergic increased neuronal activation in the hippocampus and in the prefrontal cortex respectively. Other neurotransmitters were also activated by modafinil in various limbic brain areas, suggesting that the drug acts on these brain regions to influence emotional responses. These reviews seek to delineate the neuronal mechanisms by which modafinil affects cognitive and emotional function. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  17. Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity.

    PubMed

    Escubedo, E; Abad, S; Torres, I; Camarasa, J; Pubill, D

    2011-01-01

    The neurotoxicity of MDMA or "Ecstasy" in rats is selectively serotonergic, while in mice it is both dopaminergic and serotonergic. MDMA metabolism may play a key role in this neurotoxicity. The function of serotonin and dopamine transporter and the effect of MDMA and its metabolites on them are essential to understand MDMA neurotoxicity. The aim of the present study was to investigate and compare the effects of MDMA and its metabolite alpha-methyldopamine (MeDA) on several molecular targets, mainly the dopamine and serotonin transporter functionality, to provide evidence for the role of this metabolite in the neurotoxicity of MDMA in rodents. MeDA had no affinity for the serotonin transporter but competed with serotonin for its uptake. It had no persistent effects on the functionalism of the serotonin transporter, in contrast to the effect of MDMA. Moreover, MeDA inhibited the uptake of dopamine into the serotonergic terminal and also MAO(B) activity. MeDA inhibited dopamine uptake with a lower IC(50) value than MDMA. After drug washout, the inhibition by MeDA persisted while that of MDMA was significantly reduced. The effect of MDMA on the dopamine transporter is related with dopamine release from vesicular stores, as this inhibition disappeared in reserpine-treated animals. However, the effect of MeDA seems to be a persistent conformational change of this transporter. Moreover, in contrast with MDMA, MeDA did not show affinity for nicotinic receptors, so no effects of MeDA derived from these interactions can be expected. The metabolite reduced cell viability at lower concentrations than MDMA. Apoptosis plays a key role in MDMA induced cellular toxicity but necrosis is the major process involved in MeDA cytotoxicity. We conclude that MeDA could protect against the serotonergic lesion induced by MDMA but potentiate the dopaminergic lesion as a result of the persistent blockade of the dopamine transporter induced this metabolite.

  18. Quantificational logic of context

    SciTech Connect

    Buvac, Sasa

    1996-12-31

    In this paper we extend the Propositional Logic of Context, to the quantificational (predicate calculus) case. This extension is important in the declarative representation of knowledge for two reasons. Firstly, since contexts are objects in the semantics which can be denoted by terms in the language and which can be quantified over, the extension enables us to express arbitrary first-order properties of contexts. Secondly, since the extended language is no longer only propositional, we can express that an arbitrary predicate calculus formula is true in a context. The paper describes the syntax and the semantics of a quantificational language of context, gives a Hilbert style formal system, and outlines a proof of the system`s completeness.

  19. Differential neurochemical properties of central serotonergic transmission in Roman high- and low-avoidance rats.

    PubMed

    Giorgi, O; Piras, G; Lecca, D; Hansson, S; Driscoll, P; Corda, M G

    2003-07-01

    The selective breeding of Roman high- (RHA/Verh) and low-avoidance (RLA/Verh) rats for rapid versus poor acquisition of active avoidant behaviour has produced two behavioural phenotypes with different performances in a variety of animal models of anxiety, in which RLA/Verh rats are consistently more fearful than RHA/Verh rats. In addition, these two lines display different functional properties of brain neurotransmitters like serotonin (5-HT), known to be involved in the expression of anxiety- and depression-related behaviours. Therefore, we used brain microdialysis and [3H]-citalopram binding autoradiography to characterize further the neurochemical properties of 5-HTergic transmission in the two lines. No significant line-related differences were detected in the basal 5-HT output in the frontoparietal cortex (FPCx). In contrast, the increase in the cortical 5-HT output elicited by the systemic administration or the local application, via reverse dialysis, of chlorimipramine and fluoxetine was more robust in RHA/Verh than in RLA/Verh rats. Moreover, the binding signal of [3H]-citalopram to 5-HT re-uptake sites was more intense in the FPCx of RHA/Verh rats than in their RLA/Verh counterparts. These findings suggest that the functional tone of the 5-HTergic projection to the FPCx is stronger in the RHA/Verh line relative to the RLA/Verh line. It is proposed that RLA/Verh rats may be used as a model with heuristic value for studying the role of 5-HTergic transmission in anxiety and in the anxiolytic effects of monoamine re-uptake inhibitors.

  20. Neurochemical impact of bisphenol A in the hippocampus and cortex of adult male albino rats.

    PubMed

    Khadrawy, Yasser A; Noor, Neveen A; Mourad, Iman M; Ezz, Heba S Aboul

    2016-09-01

    Bisphenol A (BPA), an endocrine-disrupting chemical, is widely used in the manufacture of polycarbonated plastics and epoxy resins and line metal beverage cans. Growing evidence suggests that BPA acts directly on neuronal functions as it is lipophilic and could accumulate in the brain. The present study aims to investigate the effect of two doses of BPA (10 mg/kg for 6 and 10 weeks and 25 mg/kg for 6 weeks) on excitatory (glutamate and aspartate) and inhibitory (γ-aminobutyric acid, glycine, and taurine) amino acid neurotransmitter levels in the cortex and hippocampus. This study extends to investigate the effect of BPA on acetylcholinesterase (AchE) activity and some oxidative stress parameters in the two regions. In the cortex, a significant increase in the excitatory and a significant decrease in the inhibitory amino acids occurred after BPA (10 mg/kg for 10 weeks and 25 mg/kg for 6 weeks). This was accompanied by a significant increase in lipid peroxidation, nitric oxide, and reduced glutathione after 6 weeks of BPA (25 mg/kg). In the hippocampus, a significant increase in the excitatory and inhibitory amino acid neurotransmitters occurred after 6 weeks of BPA. Hippocampal lipid peroxidation increased significantly after BPA exposure and hippocampal reduced glutathione increased significantly after 6 weeks of BPA exposure (10 mg/kg). BPA induced a significant increase in cortical and hippocampal AchE activity. The present neurochemical changes in the cortex and hippocampus suggest that BPA induced a state of excitotoxicity and oxidative stress. This may raise concerns about the exposure of humans to BPA due to its wide applications in industry. © The Author(s) 2015.

  1. Beneficial behavioral, neurochemical and molecular effects of 1-(R)-aminoindan in aged mice.

    PubMed

    Badinter, Felix; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2015-12-01

    Previous neuroprotective studies demonstrated that 1-(R)-aminoindan (AI), which is the major metabolite of the anti-Parkinsonian drug rasagiline, possesses beneficial pharmacological effects in various cell culture and animal models of neurodegeneration. The present study was aimed at investigating the possible neuroprotective effects of AI on cognitive impairments and neurochemical alterations in aged mice. Our findings provide evidence that following chronic systemic treatment with AI (5 mg/kg; daily; 3 months) of aged mice (24 months old), the compound exerted a significant positive impact on neuropsychiatric functions and cognitive behavior deficits, assessed in a variety of tasks (spatial learning and memory retention, working memory, learning abilities and nest building behavior) and produced an antidepressant-like effect. In addition, chronic AI treatment significantly enhanced expression levels of neurotrophins, including brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), tyrosine kinase- B (Trk-B) receptor and synaptic plasticity markers, such as synapsin-1 and growth-associated protein-43 (GAP-43) in the striatum and hippocampus in aged mice. Our results also indicate that AI treatment up-regulated the expression levels of the pro-survival Bcl-2 mRNA, increased the anti-apoptotic index Bcl-2/Bax and enhanced the activity of the antioxidant enzyme catalase in the brain of aged mice. These effects of AI were also confirmed in aged rats (24 months old). Altogether, the present findings indicate that AI can induce neuroprotective effects on age-related alterations in neurobehavioral functions and exerts neurotrophic up-regulatory and anti-apoptotic properties in aged animals.

  2. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates

    PubMed Central

    Libero, Lauren E.; DeRamus, Thomas P.; Lahti, Adrienne C.; Deshpande, Gopikrishna; Kana, Rajesh K.

    2016-01-01

    Neuroimaging techniques, such as fMRI, structural MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS) have uncovered evidence for widespread functional and anatomical brain abnormalities in autism spectrum disorder (ASD) suggesting it to be a system-wide neural systems disorder. Nevertheless, most previous studies have focused on examining one index of neuropathology through a single neuroimaging modality, and seldom using multiple modalities to examine the same cohort of individuals. The current study aims to bring together multiple brain imaging modalities (structural MRI, DTI, and 1H-MRS) to investigate the neural architecture in the same set of individuals (19 high-functioning adults with ASD and 18 typically developing (TD) peers). Morphometry analysis revealed increased cortical thickness in ASD participants, relative to typical controls, across the left cingulate, left pars opercularis of the inferior frontal gyrus, left inferior temporal cortex, and right precuneus, and reduced cortical thickness in right cuneus and right precentral gyrus. ASD adults also had reduced fractional anisotropy (FA) and increased radial diffusivity (RD) for two clusters on the forceps minor of the corpus callosum, revealed by DTI analyses. 1H-MRS results showed a reduction in the N-acetylaspartate/Creatine ratio in dorsal anterior cingulate cortex (dACC) in ASD participants. A decision tree classification analysis across the three modalities resulted in classification accuracy of 91.9% with FA, RD, and cortical thickness as key predictors. Examining the same cohort of adults with ASD and their TD peers, this study found alterations in cortical thickness, white matter (WM) connectivity, and neurochemical concentration in ASD. These findings underscore the potential for multimodal imaging to better inform on the neural characteristics most relevant to the disorder. PMID:25797658

  3. Neurochemical Metabolomics Reveals Disruption to Sphingolipid Metabolism Following Chronic Haloperidol Administration.

    PubMed

    McClay, Joseph L; Vunck, Sarah A; Batman, Angela M; Crowley, James J; Vann, Robert E; Beardsley, Patrick M; van den Oord, Edwin J

    2015-09-01

    Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use. Brain tissue was collected following microwave tissue fixation to arrest metabolism and extracted metabolites were assessed using both liquid and gas chromatography mass spectrometry (MS). Over 300 unique compounds were identified across MS platforms. Haloperidol was found to be present in all test samples and not in controls, indicating experimental validity. Twenty-one compounds differed significantly between test and control groups at the p < 0.05 level. Top compounds were robust to analytical method, also being identified via partial least squares discriminant analysis. Four compounds (sphinganine, N-acetylornithine, leucine and adenosine diphosphate) survived correction for multiple testing in a non-parametric analysis using false discovery rate threshold < 0.1. Pathway analysis of nominally significant compounds (p < 0.05) revealed significant findings for sphingolipid metabolism (p = 0.015) and protein biosynthesis (p = 0.024). Altered sphingolipid metabolism is suggestive of disruptions to myelin. This interpretation is supported by our observation of elevated N-acetyl-aspartyl-glutamate in the haloperidol-treated mice (p = 0.004), a marker previously associated with demyelination. This study further demonstrates the utility of murine neurochemical metabolomics as a method to advance understanding of CNS drug effects.

  4. Neurochemical metabolomics reveals disruption to sphingolipid metabolism following chronic haloperidol administration

    PubMed Central

    McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Crowley, James J.; Vann, Robert E.; Beardsley, Patrick M.; van den Oord, Edwin J.

    2015-01-01

    Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use. Brain tissue was collected following microwave tissue fixation to arrest metabolism and extracted metabolites were assessed using both liquid and gas chromatography mass spectrometry (MS). Over 300 unique compounds were identified across MS platforms. Haloperidol was found to be present in all test samples and not in controls, indicating experimental validity. Twenty-one compounds differed significantly between test and control groups at the p < 0.05 level. Top compounds were robust to analytical method, also being identified via partial least squares discriminant analysis. Four compounds (sphinganine, N-acetylornithine, leucine and adenosine diphosphate) survived correction for multiple testing in a non-parametric analysis using false discovery rate threshold < 0.1. Pathway analysis of nominally significant compounds (p < 0.05) revealed significant findings for sphingolipid metabolism (p = 0.02) and protein biosynthesis (p = 0.03). Altered sphingolipid metabolism is suggestive of disruptions to myelin. This interpretation is supported by our observation of elevated N-acetylaspartylglutamate in the haloperidol-treated mice (p = 0.004), a marker previously associated with demyelination. This study further demonstrates the utility of murine neurochemical metabolomics as a method to advance understanding of CNS drug effects. PMID:25850894

  5. Behavioural and neurochemical assessment of salvinorin A abuse potential in the rat.

    PubMed

    Serra, Veronica; Fattore, Liana; Scherma, Maria; Collu, Roberto; Spano, Maria Sabrina; Fratta, Walter; Fadda, Paola

    2015-01-01

    Salvinorin A is a recreational drug derived from Salvia divinorum, a sage species long used as an entheogen. While salvinorin A has potent hallucinogenic properties, its abuse potential has not been assessed consistently in controlled behavioural and neurochemical studies in rodents. This study aimed to assess salvinorin A abuse potential by measuring its capacity to establish and maintain self-administration behaviour and to modify dopamine (DA) levels in the nucleus accumbens (NAcc) of rats. Male Lister Hooded (LH) and Sprague-Dawley (SD) rats were allowed to self-administer salvinorin A (0.5 or 1.0 μg/kg/infusion) intravenously 2 h/day for 20 days under a continuous schedule of reinforcement and lever pressing as operandum. LH rats discriminated between the active and inactive levers but did not reach the acquisition criterion for stable self-administration (≥12 active responses vs ≤5 inactive responses for at least 5 consecutive days). SD rats discriminated between the two levers at the lower dose only but, like LH rats, never acquired stable self-administration behaviour. Systemic salvinorin A increased extracellular DA in the NAcc shell of both LH (at ≥40 μg/kg) and SD rats (at ≥5 μg/kg), but injection into the ventral tegmental area (VTA) induced no significant change in NAcc DA concentration in LH rats and only brief elevations in SD rats. Salvinorin A differs from other commonly abused compounds since although it affects accumbal dopamine transmission, yet it is unable, at least at the tested doses, to sustain stable intravenous self-administration behaviour.

  6. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine.

    PubMed

    Célia Moreira Borella, Vládia; Seeman, Mary V; Carneiro Cordeiro, Rafaela; Vieira dos Santos, Júnia; Romário Matos de Souza, Marcos; Nunes de Sousa Fernandes, Ethel; Santos Monte, Aline; Maria Mendes Vasconcelos, Silvânia; Quinn, John P; de Lucena, David F; Carvalho, André F; Macêdo, Danielle

    2016-05-01

    Neonatal N-methyl-D-aspartate (NMDA) receptor blockade in rodents triggers schizophrenia (SCZ)-like alterations during adult life. SCZ is influenced by gender in age of onset, premorbid functioning, and course. Estrogen, the hormone potentially driving the gender differences in SCZ, is known to present neuroprotective effects such as regulate oxidative pathways and the expression of brain-derived neurotrophic factor (BDNF). Thus, the aim of this study was to verify if differences in gender and/or estrous cycle phase during adulthood would influence the development of behavioral and neurochemical alterations in animals neonatally administered ketamine. The results showed that ketamine-treated male (KT-male) and female-in-diestrus (KTF-diestrus, the low estrogen phase) presented significant deficits in prepulse inhibition of the startle reflex and spatial working memory, two behavioral SCZ endophenotypes. On the contrary, female ketamine-treated rats during proestrus (KTF-proestrus, the high estradiol phase) had no behavioral alterations. This correlated with an oxidative imbalance in the hippocampus (HC) of both male and KTF-diestrus female rats, that is, decreased levels of GSH and increased levels of lipid peroxidation and nitrite. Similarly, BDNF was decreased in the KTF-diestrus rats while no alterations were observed in KTF-proestrus and male animals. The changes in the HC were in contrast to those in the prefrontal cortex in which only increased levels of nitrite in all groups studied were observed. Thus, there is a gender difference in the adult rat HC in response to ketamine neonatal administration, which is based on the estrous cycle. This is discussed in relation to neuropsychiatric conditions and in particular SCZ. © 2015 Wiley Periodicals, Inc.

  7. Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons of the adult rat.

    PubMed

    Niu, Le; Chen, Tao; Wang, Ya-Yun; Li, Yun-Qing

    2009-12-01

    It has been shown that endomorphin-2-like immunoreactive (EM2-LI) neurons in dorsal root ganglion play important roles in regulating somatic information transmission. Although EM2-ergic neurons have been found in nodose ganglion (NG) which is mainly involved in transmitting visceral information into the nucleus tractus solitarii (NTS), the neurochemical phenotypes of EM2-ergic neurons have not yet been investigated. In the present study, immunofluorescent histochemical staining showed that 43.5% of the NG neurons contained EM2 and these neurons were small to medium in size. 15.2%, 27.8%, 74.4% and 25.2% of the EM2-LI NG neurons expressed substance P (SP), calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS) and vasoactive intestinal peptide (VIP), respectively. In addition, about 90.8% of EM2-LI NG neurons also contained mu-opioid receptor (MOR). EM2/MOR and EM2/SP double-labeled peripheral axons were observed in the vagal trunk. Anterograde tracing combined with immunofluorescent staining showed EM2/MOR and EM2/SP double-labeled vagal afferents in the NTS. EM2/MOR/SP and EM2/MOR/CGRP triple-labeled neurons and axons were observed in the NG. Importantly, at the ultrastructrual level, post-embedding electron microscopy revealed that EM2-LI and SP-LI gold particles coexisted in the same large dense-cored synaptic vesicles in the pre-synaptic button, while MOR-LI gold particles existed on both pre- and post-synaptic membranes in the NTS. These results suggest that EM2 in axon terminals of NG neurons might be involved in visceral information transmission and homeostatic control through modulating the release of other neurotransmitters (such as SP, CGRP, NO, VIP) via pre-synaptic MOR and through post-synaptic mechanisms in the NTS.

  8. Morphological and neurochemical differences in peptidergic nerve fibres of the mouse vagina.

    PubMed

    Barry, Christine; Ji, Esther; Sharma, Harman; Beukes, Lara; Vilimas, Pat; DeGraaf, Yvette; Matusica, Dusan; Haberberger, Rainer V

    2017-03-21

    The vagina is innervated by a complex arrangement of sensory, sympathetic and parasympathetic nerve fibres that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labelling immunohistochemistry, confocal imaging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY) and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibres of the murine vaginal wall. We compared cervical and vulvar areas of the vagina in young nullipara and older multipara C57Bl/6 mice, and identified differences including that small ganglia were restricted to cervical segments, epithelial fibres were mainly present in vulvar segments and most nerve fibres were found in the lamina propria of the cervical region of the vagina, where a higher number of fibres containing immunoreactivity for VIP, CGRP, SP or nNOS were found. Two populations of VIP-containing fibres were identified: fibres containing CGRP and fibres containing VIP but not CGRP. Differences between young and older mice were present in multiple layers of the vaginal wall, with older mice showing overall loss of innervation of epithelium of the proximal vagina and reduced proportions of VIP, CGRP and SP containing nerve fibres in the distal epithelium. The distal vagina also showed increased vascularisation and perivascular fibres containing NPY. Immunolabelling of ganglia associated with the vagina indicated the likely origin of some peptidergic fibres. Our results reveal regional differences and age- or parity- related changes in innervation of the mouse vagina, effecting the distribution of neuropeptides with diverse roles

  9. d-Fenfluramine and salbutamol: two drugs causing anorexia through different neurochemical mechanisms.

    PubMed

    Garattini, S; Samanin, R

    1984-01-01

    Recent studies on some neurochemical and functional effects of d-fenfluramine and salbutamol in rats were summarized. It was found that d-fenfluramine releases serotonin almost exclusively from a reserpine-sensitive pool, but this is not the only mechanism by which it reduces food intake, as reserpine did not change its anorectic activity. The fact that d-norfenfluramine, the active metabolite of d-fenfluramine, uses mainly a reserpine-insensitive pool may help explain the failure of reserpine to reduce d-fenfluramine's effect on food intake. On the other hand, metergoline and chlorimipramine significantly reduced the effect of d-fenfluramine suggesting that drug's uptake into serotonin-confining neurons and serotonin release are important for the anorectic activity. The ability of d-fenfluramine to enhance serotonin function leads to a pattern of effects on various forms of eating that distinguishes this drug from d-amphetamine. In particular, studies with food-rewarded runway behaviour have clearly shown that d-fenfluramine reduces motivation for food whereas no such effect is clear for d-amphetamine. Salbutamol, a beta-adrenergic stimulant, was shown to reduce food intake in rats in a dose-dependent manner through a mechanism which seems to involve beta-adrenergic sites in the brain. The mechanism of action of salbutamol seems to be different from that of d-amphetamine since no cross-tolerance between the two drugs was found as regards their anorectic activity. Moreover, salbutamol and d-amphetamine affected differently some aspects of feeding behaviour in rats.

  10. Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists.

    PubMed Central

    Shoaib, M.; Benwell, M. E.; Akbar, M. T.; Stolerman, I. P.; Balfour, D. J.

    1994-01-01

    1. The repeated co-administration of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (0.1 and 0.3 mg kg-1, i.p.) with nicotine (0.4 mg kg-1, s.c.) attenuated the development of tolerance to the locomotor depressant effect of the nicotine in rats. 2. The repeated co-administration of the competitive NMDA antagonist D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid, 2 and 8 mg kg-1, i.p.) also attenuated tolerance to the locomotor depressant effect of nicotine. 3. Dizocilpine (0.3 mg kg-1, i.p.) pretreatment attenuated sensitization to the locomotor stimulant effect of nicotine (0.4 mg kg-1, s.c.) and prevented sensitization of nicotine-induced dopamine release in the nucleus accumbens. However, pretreatment with dizocilpine alone caused a modest enhancement of the behavioural response to a subsequent acute dose of nicotine. 4. D-CPPene (2.0 mg kg-1, i.p.) pretreatment prevented sensitization to the nicotine-induced dopamine release in the nucleus accumbens. There was no enhanced locomotor response that could be attributed to nicotine pretreatment when D-CPPene was co-administered with nicotine. However, pretreatment with D-CPPene alone enhanced the locomotor response to an acute dose of nicotine. 5. The results suggest the involvement of NMDA receptors in adaptations of the behavioural and neurochemical effects of nicotine that occur as a result of repeated administration of the drug. PMID:8032593

  11. Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice.

    PubMed

    Filho, Carlos Borges; Jesse, Cristiano Ricardo; Donato, Franciele; Del Fabbro, Lucian; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Souza, Leandro Cattelan; Giacomeli, Renata; Antunes, Michelle; Luchese, Cristiane; Roman, Silvane Souza; Boeira, Silvana Peterini

    2016-11-15

    Chrysin is a flavonoid which is found in bee propolis, honey and various plants. Antidepressant-like effect of chrysin in chronically stressed mice was previously demonstrated by our group. Conversely, neurochemical factors associated with this effect require further investigations. Thus, we investigated the possible involvement of pro-inflammatory cytokines, kynurenine pathway (KP), 5-hydroxytryptamine (5-HT) metabolism and caspases activities in the effect of chrysin in mice exposed to unpredictable chronic stress (UCS). UCS applied for 28 days induced a depressive-like behavior, characterized by decrease in the time of grooming in the splash test and by increase in the immobility time in the tail suspension test. Oral treatment with chrysin (5 or 20mg/kg, 28 days), similarly to fluoxetine (10mg/kg, positive control), culminated in the prevention of these alterations. UCS elevated plasma levels of corticotropin-releasing hormone and adrenocorticotropic hormone, as well the tumor necrosis factor-α, interleukin-1β, interleukin-6 and kynurenine levels in the prefrontal cortex (PFC) and hippocampus (HP). UCS induced the decrease in the 5-HT levels in the HP and the increase in the indoleamine-2,3-dioxygenase, caspase 3 and 9 activities in the PFC and HP. Treatment with chrysin, similarly to fluoxetine, promoted the attenuation of these alterations occasioned by UCS. These results corroborated with the antidepressant potential of chrysin in the treatment of psychiatric diseases. Furthermore, this work indicated the association of pro-inflammatory cytokines synthesis, KP, 5-HT metabolism and caspases activities with the action exercised by chrysin in mice exposed to UCS. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects

    PubMed Central

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato

    2015-01-01

    Backgound: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Methods: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC-/-) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. Results: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC-/- mice, as administration of 8-bromoadenosine 3’, 5’-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Conclusions: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. PMID:25899065

  13. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors' Behavioral and Neurochemical Effects.

    PubMed

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato; Blandina, Patrizio

    2015-04-21

    The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC(-/-)) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC(-/-) mice, as administration of 8-bromoadenosine 3', 5'-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat.

    PubMed

    Christianson, Julie A; Traub, Richard J; Davis, Brian M

    2006-01-10

    Visceral pain is a prevalent clinical problem and one of the most common ailments for which patients seek medical attention. Recent studies have described many of the physiological properties of visceral afferents, but not much is known regarding their anatomical characteristics. To determine the spinal distribution and neurochemical phenotype of colonic afferents in rodents, Alexa Fluor-conjugated cholera toxin-beta (CTB) was injected subserosally into the proximal and distal portions of the descending colon in Sprague Dawley rats and C57Bl/6 mice. Dorsal root ganglia (T10-S2) were processed for fluorescent immunohistochemistry and visualized by confocal microscopy. In the mouse, CTB-positive neurons were most numerous in the lumbosacral region (LS; L6-S1), with a smaller contribution in the thoracolumbar ganglia (TL; T13-L1). In contrast, CTB-positive neurons in the rat were most numerous in the TL ganglia, with a smaller contribution in the LS ganglia. The vast majority of CTB-positive neurons in both mouse and rat were positive for TRPV1 and CGRP and most likely unmyelinated, in that most colonic afferents were not positive for neurofilament heavy chain. In the mouse, the TL ganglia had a significantly higher percentage of TRPV1- and CGRP-positive neurons than did the LS ganglia, whereas no differences were observed in the rat. The high incidence of TRPV1-positive colonic afferents in rodents suggests that hypersensitivity from the viscera may be partially a TRPV1-mediated event, thereby providing a suitable target for the treatment of visceral pain.

  15. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression

    PubMed Central

    Njau, Stephanie; Joshi, Shantanu H.; Espinoza, Randall; Leaver, Amber M.; Vasavada, Megha; Marquina, Antonio; Woods, Roger P.; Narr, Katherine L.

    2017-01-01

    Background Electroconvulsive therapy (ECT) is a highly effective brain stimulation treatment for severe depression. Identifying neurochemical changes linked with ECT may point to biomarkers and predictors of successful treatment response. Methods We used proton magnetic resonance spectroscopy (1H-MRS) to measure longitudinal changes in glutamate/glutamine (Glx), creatine (Cre), choline (Cho) and N-acetylaspartate (NAA) in the dorsal (dACC) and subgenual anterior cingulate cortex (sgACC) and bilateral hippocampus in patients receiving ECT scanned at baseline, after the second ECT session and after the ECT treatment series. Patients were compared with demographically similar controls at baseline. Controls were assessed twice to establish normative values and variance. Results We included 50 patients (mean age 43.78 ± 14 yr) and 33 controls (mean age 39.33 ± 12 yr) in our study. Patients underwent a mean of 9 ± 4.1 sessions of ECT. At baseline, patients showed reduced Glx in the sgACC, reduced NAA in the left hippocampus and increased Glx in the left hippocampus relative to controls. ECT was associated with significant increases in Cre in the dACC and sgACC and decreases in NAA in the dACC and right hippocampus. Lower NAA levels in the dACC at baseline predicted reductions in depressive symptoms. Both ECT and symptom improvement were associated with decreased Glx in the left hippocampus and increased Glx in the sgACC. Limitations Attrition and clinical heterogeneity may have masked more subtle findings. Conclusion ECT elicits robust effects on brain chemistry, impacting Cre, NAA and Glx, which suggests restorative and neurotrophic processes. Differential effects of Glx in the sgACC and hippocampus, which approach control values with treatment, may reflect previously implicated underactive cortical and overactive subcortical limbic circuitry in patients with major depression. NAA levels at baseline are predictive of therapeutic outcome and could inform future

  16. Effect of angiotensin II on some behavioral and neurochemical measures of the central serotonine system.

    PubMed

    Braszko, J J; Majewski, K; Maciejewski, A; Wisniewski, K

    1985-01-01

    The effects of angiotensin II (AII) given intracerebroventricularly (icv.) on behaviors controlled by central serotonine (5-HT) and on some neurochemical measures of central 5-HT function have been investigated in rats. AII (0.1 and 0.5 micrograms) increased the 5-HT (20 micrograms, icv.) and L-tryptophan (200 mg/kg, ip.) induced hyposensitivity to painful electric stimuli delivered to the animals feet. Also AII (0.5 micrograms) intensified yawning, a 5-HT dependent behavior. This effect was decreased or abolished, respectively, by mianserin (3 mg/kg, i.p.) or cyproheptadine (1 mg/kg, i.p.), the 5-HT receptors blockers. AII, however, influenced neither the slight hyposensitivity of rats to electric current caused by 5-hydroxytryptophane (5-HTP, 12.5 and 25 mg/kg, ip.) nor the number of 'Wet-Dog' shakes evoked by 5-HTP (100 mg/kg, i.p.). Also, the peptide did change the rate of 5-HTP accumulation in brain measured after pretreatment of the animals with L-tryptophan (200 and 500 mg/kg, i.p.) preceded by the inhibition of central aromatic amino acid decarboxylase. In vitro AII (10(-5) - 10(-9) mol/l) did not affect release and only slightly increased uptake of 3H-5-HT by blood platelets. The data indicate that AII stimulates central 5-HT neurotransmission and that this action does not result from the peptide interference with the synthesis, release and uptake of 5-HT.

  17. Individual behavioral and neurochemical markers of unadapted decision-making processes in healthy inbred mice.

    PubMed

    Pittaras, Elsa; Callebert, Jacques; Chennaoui, Mounir; Rabat, Arnaud; Granon, Sylvie

    2016-12-01

    One of the hallmarks of decision-making processes is the inter-individual variability between healthy subjects. These behavioral patterns could constitute risk factors for the development of psychiatric disorders. Therefore, finding predictive markers of safe or risky decision-making is an important challenge for psychiatry research. We set up a mouse gambling task (MGT)-adapted from the human Iowa gambling task with uncertain contingencies between response and outcome that furthermore enables the emergence of inter-individual differences. Mice (n = 54) were further individually characterized for locomotive, emotional and cognitive behavior. Individual basal rates of monoamines and brain activation after the MGT were assessed in brain regions related to reward, emotion or cognition. In a large healthy mice population, 44 % showed a balanced strategy with limited risk-taking and flexible choices, 29 % showed a safe but rigid strategy, while 27 % adopted risky behavior. Risky mice took also more risks in other apparatus behavioral devices and were less sensitive to reward. No difference existed between groups regarding anxiety, working memory, locomotion and impulsivity. Safe/rigid mice exhibited a hypoactivation of prefrontal subareas, a high level of serotonin in the orbitofrontal cortex combined with a low level of dopamine in the putamen that predicted the emergence of rigid behavior. By contrast, high levels of dopamine, serotonin and noradrenalin in the hippocampus predicted the emergence of more exploratory and risky behaviors. The coping of C57bl/6J mice in MGT enables the determination of extreme patterns of choices either safe/rigid or risky/flexible, related to specific neurochemical and behavioral markers.

  18. Neurochemical measurements in the brains of mice infected with Trypanosoma brucei brucei (TREU 667).

    PubMed

    Amole, B; Sharpless, N; Wittner, M; Tanowitz, H B

    1989-06-01

    Trypanosoma brucei brucei (TREU 667) infected mice were used as a model of African trypanosomiasis, a disease in which neuropsychiatric manifestations occur. To study the possible neurochemical basis of these abnormalities, we measured brain acetylcholine receptor numbers, activities of the cholinergic enzymes, choline acetyltransferase (CAT), and acetylcholinesterase (AChE), and regional concentrations of the monoamines, dopamine (DA), serotonin (5-HT), and norepinephrine (NE), and their acid metabolites, homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) in mice infected with T. b. brucei. There were no significant changes in CAT or AChE activities or acetylcholine receptor numbers at either 35 or 50 days post-infection (PI). At day 35 PI, the only significant finding was a decrease in 5-HIAA concentration in the brain stem, a change which did not persist to day 50 PI. At day 50 PI there were, however, significant increases in DA concentration in the brain stem and NE concentrations in the hippocampus, cerebellum, brain stem and striatum. To establish a chronic relapsing murine model, mice were treated with diminazene aceturate (Berenil) at day 60 PI and killed 60 days later (120 days PI). In these mice, 5-HT concentrations were significantly increased in the hypothalamus and decreased in the cortex. In addition, 5-HIAA concentrations were increased in the striatum and hypothalamus and HVA concentrations were increased in the striatum and hippocampus. Our data, taken together with that of others, suggests that there are alterations in the monoaminergic, but not in the cholinergic, neuronal system, in African trypanosomiasis. These data may form the basis for the neuropsychiatric abnormalities that are associated with this disease.

  19. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    PubMed Central

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin but neither orexin nor MCH neurons expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. PMID:23605441

  20. [Neurochemical characteristics of the turtle optic tectum: comparison with other reptilian species and birds].

    PubMed

    Kenigfest, I B; Belekhova, M G

    2012-01-01

    Data on distribution of biologically active substances in the turtle optic tectum are compared with results of similar experiments on other reptilian as well as on avian species. In two turtle species (Testudo horsfield and Emys orbicularis), immunoreactivity to monoamines (5-HT and TH), NPY, as well as NADPH-d activity were similarly distributed in neuropil of the SGFS retinorecipient part and in that of the SGP/SAP periventricular layers. Immunoreactivity to neuropeptides SP and m-Enk was maximal in neuropil of the SGFS non-retinorecipient part. The periventricular layers were characterized by the abundant radial SP- and mENK-ir as well as the NADPH-d-positive neurons. Diffusely dispersed ChAT-ir elements and many ir fibers perpenducilar to the tectal surface were observed in the SGFS retinorecipient part; the SGFS non-retinorecipient part contained a dense plexus of thick ir fibers and diffusely distributed ir terminals. The GABA ir cells were the most numerous in the tectum; they were spread in all tectal layers. Thus, various biologically active substance located in superficial retinorecipient tectal sublayers could affect processing and transmission of information via ascending dendrites of neurons in deeper layers. The cells containing SP, m-Enk, and NADPH-d had laminar organization in SGP; via the system of ascending and descending axons, they are able to affect other structures within and outside of the optic tectum. Putative sources of tectal modulatory innervation are discussed. In all studied reptilian and avian species, the principal similarity is revealed in the neurochemical organization. Some differences might be explained by the level of tectal differentiation due to factors of phylogenetic evolution and/or adaptive specialization.

  1. Sex-dependent neurochemical effects of environmental enrichment in the visual system.

    PubMed

    Bessinis, D P; Dalla, C; Kokras, N; Pitychoutis, P M; Papadopoulou-Daifoti, Z

    2013-12-19

    Sex differences in the visual system have been reported in aspects of human vision, such as color perception, peripheral vision and even in the activation of the primary visual cortex. Similarly sex differences have been identified in the visual system of laboratory animals such as monkeys and rats. On the other hand, environmental enrichment (EE) has long been known to affect visual tissues. Taking into consideration the variation in the experimental approaches concerning EE and the sex differences in the visual system, we investigated in male and female rats the serotonergic and dopaminergic effects of EE in the retina and the visual cortex at different time points (i.e. P0-25, P0-P90 and P90-P150). Early EE in adulthood increased the serotonergic activity of the male visual cortex and the female retina (P0-P90). In addition early enrichment (P0-P90) increased dopaminergic activity in the female retina and in the visual cortex of both sexes. Late enrichment increased the serotonergic activity in the retina and visual cortex of both sexes (P90-P150), but increased the dopaminergic activity in the visual cortex only in male animals. In the present study we expose marked sex differences in the neurochemistry of visual tissues and we demonstrate for the first time that EE can in fact modify the serotonergic and dopaminergic neurotransmission in the retina and visual cortex. Overall, the present study underpins the sex-dependent neurochemical status of the visual system and provides insights into the different mechanisms underlying visual processing in the two sexes.

  2. Hippocampal Neurochemical Changes in Senescent Mice Induced with Chronic Injection of D-Galactose and NaNO2: An In Vitro High-Resolution NMR Spectroscopy Study at 9.4T

    PubMed Central

    Chen, Yaowen; Pang, Li; Li, Haihong; Cao, Zhen; You, Kezeng; Dai, Haiyang; Wu, Renhua

    2014-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) has been used to provide useful information about the neurochemical changes reflecting early pathological alterations in Alzheimer's disease (AD) brain. In this study, we have longitudinally measured the hippocampal neurochemical profile in vitro in senescent mice induced with chronic injection of D-Galactose and NaNO2, at different time point from day 30 to day 70 with a 10-day interval. Pathological brain alterations induced by D-Galactose and NaNO2 were monitored through hematoxylin and eosin (HE) staining, Congo red staining and bielschowsky silver staining, and the cognition deficits were assessed via Morris Water Maze (MWM) test. This D-galactose and NaNO2 treated mouse model, characterized by an early-onset memory dysfunction, a robust neuronal loss, amyloid plaques and neurofibrillary tangles in hippocampal subdivision, well mimics a prodromal Alzheimer's phenotype. Consistent with previously published in vivo 1H MRS findings in human AD patients and AD transgenic mice, our in vitro 1H MRS on the perchloric acid extractions of hippocampus in senescent mice observed significant decreases of N-acetylaspartate (NAA) and Glutamate (Glu) but an increase in Myo-inositol (mIns). Elevated mIns occurred prior to the reduction of NAA and Glu during the progression of aging. In addition, changes in mIns, NAA and Glu were found to precede pathological abnormalities. Overall, our in vitro findings in senescent mice validated the concept that hippocampal neurochemical alternations preceded the pathological changes of the brain, and could serve as potential markers of AD progression. Reductions of NAA and Glu can be interpreted in terms of neuronal degeneration and dysfunctions in glutamatergic activity that may contribute to the pathophysiological mechanisms underlying AD. Elevated mIns might be related to glial activation. Further experiments are needed to explore the potential value of mIns in the early diagnosis of AD

  3. Using Pharmacokinetic Profiles and Digital Quantification of Stained Tissue Microarrays as a Medium-Throughput, Quantitative Method for Measuring the Kinetics of Early Signaling Changes Following Integrin-Linked Kinase Inhibition in an In Vivo Model of Cancer.

    PubMed

    Kalra, Jessica; Dragowska, Weislawa H; Bally, Marcel B

    2015-09-01

    A small molecule inhibitor (QLT0267) targeting integrin-linked kinase is able to slow breast tumor growth in vivo; however, the mechanism of action remains unknown. Understanding how targeting molecules involved in intersecting signaling pathways impact disease is challenging. To facilitate this understanding, we used tumor tissue microarrays (TMA) and digital image analysis for quantification of immunohistochemistry (IHC) in order to investigate how QLT0267 affects signaling pathways in an orthotopic model of breast cancer over time. Female NCR nude mice were inoculated with luciferase-positive human breast tumor cells (LCC6(Luc)) and tumor growth was assessed by bioluminescent imaging (BLI). The plasma levels of QLT0267 were determined by LC-MS/MS methods following oral dosing of QLT0267 (200 mg/kg). A TMA was constructed using tumor tissue collected at 2, 4, 6, 24, 78 and 168 hr after treatment. IHC methods were used to assess changes in ILK-related signaling. The TMA was digitized, and Aperio ScanScope and ImageScope software were used to provide semi-quantitative assessments of staining levels. Using medium-throughput IHC quantitation, we show that ILK targeting by QLT0267 in vivo influences tumor physiology through transient changes in pathways involving AKT, GSK-3 and TWIST accompanied by the translocation of the pro-apoptotic protein BAD and an increase in Caspase-3 activity.

  4. Using Pharmacokinetic Profiles and Digital Quantification of Stained Tissue Microarrays as a Medium-Throughput, Quantitative Method for Measuring the Kinetics of Early Signaling Changes Following Integrin-Linked Kinase Inhibition in an In Vivo Model of Cancer

    PubMed Central

    Dragowska, Weislawa H.; Bally, Marcel B.

    2015-01-01

    A small molecule inhibitor (QLT0267) targeting integrin-linked kinase is able to slow breast tumor growth in vivo; however, the mechanism of action remains unknown. Understanding how targeting molecules involved in intersecting signaling pathways impact disease is challenging. To facilitate this understanding, we used tumor tissue microarrays (TMA) and digital image analysis for quantification of immunohistochemistry (IHC) in order to investigate how QLT0267 affects signaling pathways in an orthotopic model of breast cancer over time. Female NCR nude mice were inoculated with luciferase-positive human breast tumor cells (LCC6Luc) and tumor growth was assessed by bioluminescent imaging (BLI). The plasma levels of QLT0267 were determined by LC-MS/MS methods following oral dosing of QLT0267 (200 mg/kg). A TMA was constructed using tumor tissue collected at 2, 4, 6, 24, 78 and 168 hr after treatment. IHC methods were used to assess changes in ILK-related signaling. The TMA was digitized, and Aperio ScanScope and ImageScope software were used to provide semi-quantitative assessments of staining levels. Using medium-throughput IHC quantitation, we show that ILK targeting by QLT0267 in vivo influences tumor physiology through transient changes in pathways involving AKT, GSK-3 and TWIST accompanied by the translocation of the pro-apoptotic protein BAD and an increase in Caspase-3 activity. PMID:25940338

  5. Neurochemical changes correlated with behavior maintained under fixed-interval and fixed-ratio schedules of reinforcement.

    PubMed Central

    Barrett, J E; Hoffmann, S M

    1991-01-01

    Key pecking of 4 pigeons was maintained under a multiple 3-min fixed-interval, 30-response fixed-ratio schedule of food presentation. Only one schedule was in effect during an experimental session, and each was correlated with a different keylight stimulus and location (left vs. right). The different schedule components alternated across days or weeks. Cerebrospinal fluid was collected from chronically implanted intracerebroventricular cannulae following sessions with the different schedules, as well as following sessions in which reinforcement was withheld (extinction), when response-independent food was delivered, and when the experimental chamber was dark and there were no scheduled events. Metabolites of the neurotransmitters serotonin, norepinephrine, and dopamine were assayed in cerebrospinal fluid using high-performance liquid chromatography with electrochemical detection. Compared to the fixed-ratio condition, responding maintained under the fixed-interval schedule resulted in consistently higher levels of the serotonin metabolite 5-hydroxyindoleacetic acid and of the dopamine metabolite homovanillic acid in all pigeons. Levels of 3-methoxy-4-hydroxyphenylethylene glycol, a metabolite of norepinephrine, and dihydroxyphenylacetic acid, another dopamine metabolite, were also higher in 3 of the 4 pigeons following exposure to the fixed-interval schedules when compared to levels of these metabolites after exposure to the fixed-ratio schedule. Extinction of fixed-ratio responding resulted in large increases in 5-hydroxyindoleacetic acid compared to levels of this metabolite under the fixed-ratio schedule, whereas this serotonin metabolite decreased during extinction of responding under the fixed-interval schedule. Control procedures suggested that the neurochemical changes were not related to the rate of responding but were a function of the specific experimental conditions. Distinctive neurochemical changes that accompany schedule-controlled responding show the

  6. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements

    PubMed Central

    Kirkpatrick, D. C.; McKinney, C. J.; Manis, P. B.

    2016-01-01

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations. PMID:27314130

  7. Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus).

    PubMed

    Scheuhammer, A M; Basu, N; Burgess, N M; Elliott, J E; Campbell, G D; Wayland, M; Champoux, L; Rodrigue, J

    2008-02-01

    Fish-eating birds can be exposed to levels of dietary methylmercury (MeHg) known or suspected to adversely affect normal behavior and reproduction, but little is known regarding Hg's subtle effects on the avian brain. In the current study, we explored relationships among Hg, Se, and neurochemical receptors and enzymes in two fish-eating birds--common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). In liver, both species demonstrated a wide range of total Hg (THg) concentrations, substantial demethylation of MeHg, and a co-accumulation of Hg and Se. In liver, there were molar excesses of Se over Hg up to about 50-60 microg/g THg, above which there was an approximate 1:1 molar ratio of Hg:Se in both species. However, in brain, bald eagles displayed a greater apparent ability to demethylate MeHg than common loons. There were molar excesses of Se over Hg in brains of bald eagles across the full range of THg concentrations, whereas common loons often had extreme molar excesses of Hg in their brains, with a higher proportion of THg remaining as MeHg compared with eagles. There were significant positive correlations between brain THg and muscarinic cholinergic receptor concentrations in both species studied; whereas significant negative correlations were observed between N-methyl-D-aspartic acid (NMDA) receptor levels and brain Hg concentration. There were no significant correlations between brain Se and neurochemical receptors or enzymes (cholinesterase and monoamine oxidase) in either species. Our findings suggest that there are significant differences between common loons and bald eagles with respect to cerebral metabolism and toxicodynamics of MeHg and Se. These interspecies differences may influence relative susceptibility to MeHg toxicity; however, neurochemical responses to Hg in both species were similar.

  8. Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain.

    PubMed

    Belmer, Arnauld; Klenowski, Paul M; Patkar, Omkar L; Bartlett, Selena E

    2017-04-01

    Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.

  9. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets.

    PubMed

    Pan, Y; Chatterjee, D; Gerlai, R

    2012-12-05

    The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.

  10. GZ-793A inhibits the neurochemical effects of methamphetamine via a selective interaction with the vesicular monoamine transporter-2.

    PubMed

    Nickell, Justin R; Siripurapu, Kiran B; Horton, David B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2017-01-15

    Lobeline and lobelane inhibit the behavioral and neurochemical effects of methamphetamine via an interaction with the vesicular monoamine transporter-2 (VMAT2). However, lobeline has high affinity for nicotinic receptors, and tolerance develops to the behavioral effects of lobelane. A water-soluble analog of lobelane, R-N-(1,2-dihydroxypropyl)-2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A), also interacts selectively with VMAT2 to inhibit the effects of methamphetamine, but does not produce behavioral tolerance. The current study further evaluated the mechanism underlying the GZ-793A-mediated inhibition of the neurochemical effects of methamphetamine. In contrast to lobeline, GZ-793A does not interact with the agonist recognition site on α4β2(*) and α7(*) nicotinic receptors. GZ-793A (0.3-100µM) inhibited methamphetamine (5µM)-evoked fractional dopamine release from rat striatal slices, and did not evoke dopamine release in the absence of methamphetamine. Furthermore, GZ-793A (1-100µM) inhibited neither nicotine (30µM)-evoked nor electrical field-stimulation-evoked (100Hz/1min) fractional dopamine release. Unfortunately, GZ-793A inhibited [(3)H]dofetilide binding to human-ether-a-go-go related gene channels expressed on human embryonic kidney cells, and further, prolonged action potentials in rabbit cardiac Purkinje fibers, suggesting the potential for GZ-793A to induce ventricular arrhythmias. Thus, GZ-793A selectively inhibits the neurochemical effects of methamphetamine and lacks nicotinic receptor interactions; however, development as a pharmacotherapy for methamphetamine use disorders will not be pursued due to its potential cardiac liabilities. Copyright © 2016. Published by Elsevier B.V.

  11. A validated high-performance thin-layer chromatography method for the identification and simultaneous quantification of six markers from Platanus orientalis and their cytotoxic profiles against skin cancer cell lines.

    PubMed

    Khan, Imran; Sangwan, Payare L; Dar, Alamgir A; Rafiq, Rather A; Farrukh, Mufti R; Dhar, Jagdish K; Tasduq, Sheikh A; Koul, Surrinder

    2013-08-01

    Betulinic acid (1), betulinic acid-3-acetate (2), 3-acetylbetulinaldehyde (3), oleanolic acid-3-acetate (4), 3-β-hydroxy-28,19-β-olenolide (5), and β-sitosterol (6) were isolated from Platanus orientalis and a high-performance thin-layer chromatography method was developed for their simultaneous quantification. The markers were first derivatized on the chromatogram with ceric ammonium sulfate and then high-performance thin-layer chromatography densitometry was carried out. Chromatographic separation of these markers was carried out on silica gel 60 plates using a ternary solvent system n-hexane/toluene/acetone (6:3.5:1 v/v/v) as a mobile phase. For marker 1, a deuterium (D2) lamp and wavelength of 420 nm was used. A tungsten (W) lamp was used for markers 2 and 3 at 550 nm and for 4-6 at 500 nm. The method was validated for accuracy, precision, LOD, and LOQ. All calibration curves showed a good linear relationship (r > 0.9919). The precision evaluated by an intra- and interday study showed RSDs < 2.51% and accuracy validation recovery between 95.54 and 99.33% with RSDs < 1.55%. The successful application of the validated method showed 1 as the most abundant component (4.63%) and 5 (0.017%) the least. The markers displayed a significant cytotoxic effect against human keratinocyte, mouse melanoma, and human skin epithelial carcinoma cancer cells by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.

  12. Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination.

    PubMed

    Nam, Dong-Ha; Yates, David; Ardapple, Pedro; Evers, David C; Schmerfeld, John; Basu, Niladri

    2012-05-01

    Despite evidence of persistent methylmercury (MeHg) contamination in the South River (Virginia, USA) ecosystem, there is little information concerning MeHg-associated neurological impacts in resident wildlife. Here we determined mercury (Hg) concentrations in tissues of insectivorous little brown bats (Myotis lucifugus) collected from a reference site and a MeHg-contaminated site in the South River ecosystem. We also explored whether neurochemical biomarkers (monoamine oxidase, MAO; acetylcholinesterase, ChE; muscarinic acetylcholine receptor, mAChR; N-methyl-D-aspartate receptor, NMDAR) previously shown to be altered by MeHg in other wildlife were associated with brain Hg levels in these bats. Concentrations of Hg (total and MeHg) in tissues were significantly higher (10-40 fold difference) in South River bats when compared to reference sites. Mean tissue mercury levels (71.9 ppm dw in liver, 7.14 ppm dw in brain, 132 ppm fw in fur) in the South River bats exceed (sub)-clinical thresholds in mammals. When compared to the South River bats, animals from the reference site showed a greater ability to demethylate MeHg in brain (33.1% of total Hg was MeHg vs. 65.5%) and liver (8.9% of total Hg was MeHg vs. 50.8%) thus suggesting differences in their ability to detoxify and eliminate Hg. In terms of Hg-associated neurochemical biomarker responses, interesting biphasic responses were observed with an inflection point between 1 and 5 ppm dw in the brain. In the reference bats Hg-associated decreases in MAO (r = -0.61; p < 0.05) and ChE (r = -0.79; p < 0.01) were found in a manner expected but these were not found in the bats from the contaminated site. Owing to high Hg exposures, differences in Hg metabolism, and the importance of the aforementioned neurochemicals in multiple facets of animal health, altered or perhaps even a lack of expected neurochemical responses in Hg-contaminated bats raise questions about the ecological and physiological impacts of Hg on the bat

  13. Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-γ8-associated AMPA receptors.

    PubMed

    Witkin, Jeffrey M; Li, Jennifer; Gilmour, Gary; Mitchell, Stephen N; Carter, Guy; Gleason, Scott D; Seidel, Wesley F; Eastwood, Brian J; McCarthy, Andrew; Porter, Warren J; Reel, Jon; Gardinier, Kevin M; Kato, Akihiko S; Wafford, Keith A

    2017-11-01

    6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differential effects of two lots of aroclor 1254: congener-specific analysis and neurochemical end points.

    PubMed

    Kodavanti, P R; Kannan, N; Yamashita, N; Derr-Yellin, E C; Ward, T R; Burgin, D E; Tilson, H A; Birnbaum, L S

    2001-11-01

    the effects on ethoxyresorufin-O-deethylase (EROD) or methoxyresorufin-O-deethylase (MROD) activities. It is possible that the differential effects seen in neuronal cells could be caused by differences in the composition of ortho-congeners in these two mixtures, because PCBs with ortho-lateral substitutions can exhibit different activities on the selected neurochemical end points. Because of these differential effects with different lot numbers, the composition of Aroclor mixtures used in investigations should be disclosed.

  15. Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia.

    PubMed

    Mawe, G M; Talmage, E K; Cornbrooks, E B; Gokin, A P; Zhang, L; Jennings, L J

    1997-10-01

    The muscle and epithelial tissues of the gallbladder are regulated by a ganglionated plexus that lies within the wall of the organ. Although these ganglia are derived from the same set of precursor neural crest cells that colonize the gut, they exhibit structural, neurochemical and physiological characteristics that are distinct from the myenteric and submucous plexuses of the enteric nervous system. Structurally, the ganglionated plexus of the guinea pig gallbladder is comprised of small clusters of neurons that are located in the outer wall of the organ, between the serosa and underlying smooth muscle. The ganglia are encapsulated by a shell of fibroblasts and a basal lamina, and are devoid of collagen. Gallbladder neurons are rather simple in structure, consisting of a soma, a few short dendritic processes and one or two long axons. Results reported here indicate that all gallbladder neurons are probably cholinergic since they all express immunoreactivity for choline acetyltransferase. The majority of these neurons also express substance P, neuropeptide Y, and somatostatin, and a small remaining population of neurons express vasoactive intestinal peptide (VIP) immunoreactivity and NADPH-diaphorase enzymatic activity. We report here that NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity are expressed by the same neurons in the gallbladder. Physiological studies indicate that the ganglia of the gallbladder are the site of action of the following neurohumoral inputs: 1) all neurons receive nicotinic input from vagal preganglionic fibers; 2) norepinephrine released from sympathetic postganglionic fibers acts presynaptically on vagal terminals within gallbladder ganglia to decrease the release of acetylcholine from vagal terminals; 3) substance P and calcitonin gene-related peptide, which are co-expressed in sensory fibers, cause prolonged depolarizations of gallbladder neurons that resemble slow EPSPs; and 4) cholecystokinin

  16. Differential effects of two lots of aroclor 1254: congener-specific analysis and neurochemical end points.

    PubMed Central

    Kodavanti, P R; Kannan, N; Yamashita, N; Derr-Yellin, E C; Ward, T R; Burgin, D E; Tilson, H A; Birnbaum, L S

    2001-01-01

    the effects on ethoxyresorufin-O-deethylase (EROD) or methoxyresorufin-O-deethylase (MROD) activities. It is possible that the differential effects seen in neuronal cells could be caused by differences in the composition of ortho-congeners in these two mixtures, because PCBs with ortho-lateral substitutions can exhibit different activities on the selected neurochemical end points. Because of these differential effects with different lot numbers, the composition of Aroclor mixtures used in investigations should be disclosed. PMID:11713001

  17. PREPROGLUCAGON (PPG) NEURONS INNERVATE NEUROCHEMICALLY IDENTIFIED AUTONOMIC NEURONS IN THE MOUSE BRAINSTEM

    PubMed Central

    Llewellyn-Smith, Ida J; Gnanamanickam, Greta J. E.; Reimann, Frank; Gribble, Fiona M; Trapp, Stefan

    2015-01-01

    Preproglucagon (PPG) neurons produce glucagon-like peptide-1 (GLP-1) and occur primarily in the nucleus tractus solitarius (NTS). GLP-1 affects a variety of central autonomic circuits, including those controlling the cardiovascular system, thermogenesis, and most notably energy balance. Our immunohistochemical studies in transgenic mice expressing YFP under the control of the PPG promoter showed that PPG neurons project widely to central autonomic regions, including brainstem nuclei. Functional studies have highlighted the importance of hindbrain receptors for the anorexic effects of GLP-1. In this study, we assessed YFP innervation of neurochemically-identified brainstem neurons in transgenic YFP-PPG mice. Immunoreactivity for YFP plus choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or serotonin (5-HT) were visualised with two- or three-colour immunoperoxidase labelling using black (YFP), brown and bluegrey reaction products. In the dorsal motor nucleus of the vagus (DMV), terminals from fine YFP-immunoreactive axons closely apposed a small proportion of ChAT-positive and rare TH-positive/ChAT-positive motor neurons, mostly ventral to AP. YFP-immunoreactive innervation was virtually absent from the compact and loose formations of the nucleus ambiguus. In the NTS, some TH-immunoreactive neurons were closely apposed by YFP-containing axons. In the A1/C1 column in the ventrolateral medulla, close appositions on TH-positive neurons were more common, particularly in the caudal portion of the column. A single YFP-immunoreactive axon usually provided 1-3 close appositions on individual ChAT- or TH-positive neurons. Serotonin-immunoreactive neurons were most heavily innervated, with the majority of raphé pallidus, raphé obscurus and parapyramidal neurons receiving several close appositions from large varicosities of YFP-immunoreactive axons. These results indicate that GLP-1 neurons innervate various populations of brainstem autonomic neurons. These

  18. Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease

    PubMed Central

    Hennis, Meghan R.; Marvin, Marian A.; Taylor, Charles M.; Goldberg, Matthew S.

    2013-01-01

    projections. The results of our behavioral, neurochemical and immunohistochemical analyses reveal that PD-linked mutations in Parkin and DJ-1 cause dysregulation of neurotransmitter systems beyond the nigrostriatal dopaminergic circuit and that loss-of-function mutations in Parkin and DJ-1 lead to adaptive changes in dopamine and serotonin especially in the context of Gpx1 deficiency. PMID:24075852

  19. Molecular and neurochemical substrates of the audiogenic seizure strains: The GASH:Sal model.

    PubMed

    Prieto-Martín, Ana I; Aroca-Aguilar, J Daniel; Sánchez-Sánchez, Francisco; Muñoz, Luis J; López, Dolores E; Escribano, Julio; de Cabo, Carlos

    2017-06-01

    Animal models of audiogenic epilepsy are useful tools to understand the mechanisms underlying human reflex epilepsies. There is accumulating evidence regarding behavioral, anatomical, electrophysiological, and genetic substrates of audiogenic seizure strains, but there are still aspects concerning their neurochemical basis that remain to be elucidated. Previous studies have shown the involved of γ-amino butyric acid (GABA) in audiogenic seizures. The aim of our research was to clarify the role of the GABAergic system in the generation of epileptic seizures in the genetic audiogenic seizure-prone hamster (GASH:Sal) strain. We studied the K(+)/Cl(-) cotransporter KCC2 and β2-GABAA-type receptor (GABAAR) and β3-GABAAR subunit expressions in the GASH:Sal both at rest and after repeated sound-induced seizures in different brain regions using the Western blot technique. We also sequenced the coding region for the KCC2 gene both in wild- type and GASH:Sal hamsters. Lower expression of KCC2 protein was found in GASH:Sal when compared with controls at rest in several brain areas: hippocampus, cortex, cerebellum, hypothalamus, pons-medulla, and mesencephalon. Repeated induction of seizures caused a decrease in KCC2 protein content in the inferior colliculus and hippocampus and an increase in the pons-medulla. When compared to controls, the basal β2-GABAAR subunit in the GASH:Sal was overexpressed in the inferior colliculus, rest of the mesencephalon, and cerebellum, whereas basal β3 subunit levels were lower in the inferior colliculus and rest of the mesencephalon. Repeated seizures increased β2 both in the inferior colliculus and in the hypothalamus and β3 in the hypothalamus. No differences in the KCC2 gene-coding region were found between GASH:Sal and wild-type hamsters. These data indicate that GABAergic system functioning is impaired in the GASH:Sal strain, and repeated seizures seem to aggravate this dysfunction. These results have potential clinical relevance

  20. Semiautomatic quantification of angiogenesis.

    PubMed

    Boettcher, Markus; Gloe, Torsten; de Wit, Cor

    2010-07-01

    Angiogenesis is of major interest in developmental biology and cancer research. Different experimental approaches are available to study angiogenesis that have in common the need for microscopy, image acquisition, and analysis. Problems that are encountered hereby are the size of the structures, which requires generation of composite images and difficulties in quantifying angiogenic activity reliably and rapidly. Most graphic software packages lack some of the required functions for easy, semiautomatic quantification of angiogenesis and, consequently, multiple software packages or expensive programs have to be used to cover all necessary functions. A software package (AQuaL) to analyze angiogenic activity was developed using Java, which can be used platform-independently. It includes image acquisition relying on the Java Media Framework and an easy to use image alignment tool. Multiple overlapping images can be aligned and saved without limitations and loss of resolution into a composite image, which requires only the selection of a single point representing a characteristic structure in adjacent images. Angiogenic activity can be quantified in composite images semiautomatically by the assessment of the area overgrown by cells after filtering and image binarization. In addition, tagging of capillary-like structures allows quantification of their length and branching pattern. Both developed methods deliver reliable and correlating data as exemplified in the aortic ring angiogenesis assay. The developed software provides modular functions specifically targeted to quantify angiogenesis. Whereas the area measurement is time saving, length measurement provides additional information about the branching patterns, which is required for a qualitative differentiation of capillary growth. (c) 2010 Elsevier Inc. All rights reserved.

  1. Age-related change of neurochemical abnormality in attention-deficit hyperactivity disorder: a meta-analysis.

    PubMed

    Aoki, Yuta; Inokuchi, Ryota; Suwa, Hiroshi; Aoki, Ai

    2013-09-01

    Prevalence and symptoms of attention-deficit hyperactivity disorder (ADHD) change with advancing age. However, neurochemical background of such age-related change is yet to be elucidated. We therefore conducted a meta-analysis of 16 proton magnetic resonance spectroscopy studies comprising 270 individuals with ADHD and 235 controls. Standardized mean differences were calculated and used as an effect size. Sensitivity analyses and meta-regression to explore the effect of age on neurochemical abnormality were performed. A random effects model identified a significantly higher-than-normal N-acetylaspartate (NAA) in the medial prefrontal cortex (mPFC), but no significant differences of other metabolites in that area. No significant difference in metabolite levels was demonstrated in any other region. Sensitivity analysis of children with ADHD revealed significantly higher-than-normal NAA, whereas no significant difference was found in adults with ADHD. Meta-regression revealed significant correlation between advanced age and normal levels of NAA in the mPFC, suggesting that age-dependent abnormality of NAA level in the mPFC is a potential neural basis of age-related change of symptoms of ADHD.

  2. Repeated weekly exposure to MDMA, methamphetamine or their combination: long-term behavioural and neurochemical effects in rats.

    PubMed

    Clemens, Kelly J; Cornish, Jennifer L; Hunt, Glenn E; McGregor, Iain S

    2007-01-12

    In recent work we have documented lasting adverse neurochemical and behavioural effects in rats given short-term 'binge' dosing with methylenedioxymethamphetamine (MDMA, Ecstasy), methamphetamine (METH) or their combination. Here we investigated whether similar effects persist in rats given 16 weekly injections followed by a 10 week period of abstinence. Female rats received MDMA (8 mg/kg, i.p.), METH (8 mg/kg), or a MDMA/METH combination (4 mg/kg MDMA + 4 mg/kg METH), once a week for 16 weeks, with locomotor activity and body temperature measured on weeks 1, 8 and 16. The MDMA and MDMA/METH groups showed acute drug-induced hyperthermia on week 1 only. MDMA-treated rats demonstrated an acute hyperactivity while METH and MDMA/METH treated rats showed pronounced stereotypy. Seven weeks after drug-treatment concluded, a decrease in social interaction was observed in all chronically drug-treated rats. No group differences were evident on the emergence, object recognition or forced swim tests. Neurochemical analysis revealed modest noradrenaline and serotonin depletion in chronically treated rats that was not evident following a single equivalent administration. These results indicate that although chronic, intermittent exposure to MDMA, METH or their combination, may not lead to significant long-term monoamine depletion, lasting adverse behavioural effects may persist, especially those related to social behaviour.

  3. Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence.

    PubMed

    Roger-Sánchez, Concepción; García-Pardo, María P; Rodríguez-Arias, Marta; Miñarro, Jose; Aguilar, María A

    2016-04-01

    In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.

  4. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging.

    PubMed

    Jenkins, B G; Brouillet, E; Chen, Y C; Storey, E; Schulz, J B; Kirschner, P; Beal, M F; Rosen, B R

    1996-05-01

    Water-suppressed chemical shift magnetic resonance imaging was used to detect neurochemical alterations in vivo in neurotoxin-induced rat models of Huntington's and Parkinson's disease. The toxins were: N-methyl-4-phenylpyridinium (MPP+), aminooxyacetic acid (AOAA), 3-nitropropionic acid (3-NP), malonate, and azide. Local or systemic injection of these compounds caused secondary excitotoxic lesions by selective inhibition of mitochondrial respiration that gave rise to elevated lactate concentrations in the striatum. In addition, decreased N-acetylaspartate (NAA) concentrations were noted at the lesion site over time. Measurements of lactate washout kinetics demonstrated that t1/2 followed the order: 3-NP approximately MPP+ > AOAA approximately malonate, which parallels the expected lifetimes of the neurotoxins based on their mechanisms of action. Further increases in lactate were also caused by intravenous infusion of glucose. At least part of the excitotoxicity is mediated through indirect glutamate pathways because lactate production and lesion size were diminished using unilateral decortectomies (blockade of glutamatergic input) or glutamate antagonists (MK-801). Lesion size and lactate were also diminished by energy repletion with ubiquinone and nicotinamide. Lactate measurements determined by magnetic resonance agreed with biochemical measurements made using freeze clamp techniques. Lesion size as measured with MR, although larger by 30%, agreed well with lesion size determined histologically. These experiments provide evidence for impairment of intracellular energy metabolism leading to indirect excitotoxicity for all the compounds mentioned before and demonstrate the feasibility of small-volume metabolite imaging for in vivo neurochemical analysis.

  5. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray

    PubMed Central

    Yin, Jun-Bin; Wu, Huang-Hui; Dong, Yu-Lin; Zhang, Ting; Wang, Jian; Zhang, Yong; Wei, Yan-Yan; Lu, Ya-Cheng; Wu, Sheng-Xi; Wang, Wen; Li, Yun-Qing

    2014-01-01

    The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM. PMID:25477786

  6. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.

    PubMed

    Kenigfest, Natalia; Belekhova, Margarita; Repérant, Jacques; Rio, Jean Paul; Ward, Roger; Vesselkin, Nikolai

    2005-10-01

    Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.

  7. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers

    PubMed Central

    Kellner, Stefanie; Ochel, Antonia; Thüring, Kathrin; Spenkuch, Felix; Neumann, Jennifer; Sharma, Sunny; Entian, Karl-Dieter; Schneider, Dirk; Helm, Mark

    2014-01-01

    In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC–MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding 13C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations <2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude. PMID:25129236

  8. Wrappers, Aspects, Quantification and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    Talk overview: Object infrastructure framework (OIF). A system development to simplify building distributed applications by allowing independent implementation of multiple concern. Essence and state of AOP. Trinity. Quantification over events. Current work on a generalized AOP technology.

  9. Uncertainty Quantification in Aeroelasticity

    NASA Astrophysics Data System (ADS)

    Beran, Philip; Stanford, Bret; Schrock, Christopher

    2017-01-01

    Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.

  10. Quantification of human responses

    NASA Technical Reports Server (NTRS)

    Steinlage, R. C.; Gantner, T. E.; Lim, P. Y. W.

    1992-01-01

    Human perception is a complex phenomenon which is difficult to quantify with instruments. For this reason, large panels of people are often used to elicit and aggregate subjective judgments. Print quality, taste, smell, sound quality of a stereo system, softness, and grading Olympic divers and skaters are some examples of situations where subjective measurements or judgments are paramount. We usually express what is in our mind through language as a medium but languages are limited in available choices of vocabularies, and as a result, our verbalizations are only approximate expressions of what we really have in mind. For lack of better methods to quantify subjective judgments, it is customary to set up a numerical scale such as 1, 2, 3, 4, 5 or 1, 2, 3, ..., 9, 10 for characterizing human responses and subjective judgments with no valid justification except that these scales are easy to understand and convenient to use. But these numerical scales are arbitrary simplifications of the complex human mind; the human mind is not restricted to such simple numerical variations. In fact, human responses and subjective judgments are psychophysical phenomena that are fuzzy entities and therefore difficult to handle by conventional mathematics and probability theory. The fuzzy mathematical approach provides a more realistic insight into understanding and quantifying human responses. This paper presents a method for quantifying human responses and subjective judgments without assuming a pattern of linear or numerical variation for human responses. In particular, quantification and evaluation of linguistic judgments was investigated.

  11. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation

    PubMed Central

    Settell, Megan L.; Testini, Paola; Cho, Shinho; Lee, Jannifer H.; Blaha, Charles D.; Jo, Hang J.; Lee, Kendall H.; Min, Hoon-Ki

    2017-01-01

    Background: The ventral tegmental area (VTA), containing mesolimbic and mesocortical dopaminergic neurons, is implicated in processes involving reward, addiction, reinforcement, and learning, which are associated with a variety of neuropsychiatric disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its projection target the nucleus accumbens (NAc) is reported to improve depressive symptoms in patients affected by severe, treatment-resistant major depressive disorder (MDD) and depressive-like symptoms in animal models of depression. Here we sought to determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal large animal model (swine) by combining neurochemical measurements with functional magnetic resonance imaging (fMRI). Methods: Animals (n = 8 swine) were implanted with a unilateral DBS electrode targeting the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude), fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent (BOLD) percent change evoked by stimulation was performed at increasing voltages (1, 2, and 3 V). Results: A significant increase in VTA-DBS-evoked BOLD signal was found in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior and posterior cingulate, insula, premotor cortex, primary somatosensory cortex, and striatum. A decrease in the BOLD signal was also observed in the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal cortex, insula, inferior temporal gyrus, and primary somatosensory cortex (Bonferroni-corrected < 0.001). During neurochemical measurements, stimulation time-locked changes in dopamine release were recorded in the NAc, confirming that mesolimbic dopaminergic neurons were stimulated by DBS. In the

  12. Molecular and neurochemical biomarkers in Arctic beluga whales (Delphinapterus leucas) were correlated to brain mercury and selenium concentrations.

    PubMed

    Ostertag, Sonja K; Shaw, Alyssa C; Basu, Niladri; Chan, Hing Man

    2014-10-07

    Mercury (Hg) concentrations have increased in western Arctic beluga whales (Delphinapterus leucas) since the industrial revolution. Methylmercruy (MeHg) is a known neurotoxicant, yet little is known about the risk of exposure for beluga whales. Selenium (Se) has been linked to demethylation of MeHg in cetaceans, but its role in attenuating Hg toxicity in beluga whales is poorly understood. The objective of this study is to explore relationships between Hg and Se concentrations and neurochemical biomarkers in different brain regions of beluga whales in order to assess potential neurotoxicological risk of Hg exposure in this population. Brain tissue was sampled from hunter-harvested beluga whales from the western Canadian Arctic in 2008 and 2010. Neurochemical and molecular biomarkers were measured with radioligand binding assays and quantitative PCR, respectively. Total Hg (HgT) concentration ranged from 2.6-113 mg kg(-1) dw in temporal cortex. Gamma-amminobutyric acid type A receptor (GABAA-R) binding in the cerebellum was negatively associated with HgT, MeHg and total Se (SeT) concentrations (p ≤ 0.05). The expression of mRNA for GABAA-R subunit α2 was negatively associated with HgT and MeHg (p ≤ 0.05). Furthermore, GABAA-R binding was positively correlated to mRNA expression for GABAA-R α2 subunit, and negatively correlated to the expression of mRNA for GABAA-R α4 subunit (p ≤ 0.05). The expression of N-methyl-d-aspartate receptor (NMDA-R) subunit 2b mRNA expression was negatively associated with iHglabile concentration in the cerebellum (p ≤ 0.05). Variation of molecular and/or biochemical components of the GABAergic and glutamatergic signaling pathways were associated with MeHg exposure in beluga whales. Our results show that MeHg exposure is associated with neurochemical variation in the cerebellum of beluga whales and Se may partially protect from MeHg-associated neurotoxicity.

  13. In vivo receptor binding, neurochemical and functional studies with the dopamine D-1 receptor antagonist SCH23390.

    PubMed

    Hjorth, S; Carlsson, A

    1988-01-01

    A series of in vivo experiments were undertaken, relating functional (motor activity, body temperature), dopamine (DA) receptor binding and neurochemical (catecholamine synthesis and utilization, DA release) aspects of the pharmacology of SCH23390 in the rat. The compound inhibited the locomotor hyperactivity, but not the hypothermia, induced by the potent DA stimulant DP-5,6-ADTN. Interstingly, SCH23390 simultaneously failed to displace DP-5,6-ADTN from its binding sites in the rat striatum--used as a direct in vivo biochemical index of DA (D-2) receptor interaction. The spontaneous locomotion in non-pretreated rats was likewise inhibited by SCH23390. The locomotor-suppressive action, but not the DP-5,6-ADTN-displacing capacity of the D-2 blocker haloperidol was significantly enhanced by SCH23390, suggesting that motility can be suppressed by either enhanced D-1 or D-2 (postsynaptic) receptor blockade, but also that the D-1 and D-2 sites involved may be physically distinct. SCH23390 only slightly altered in vivo neurochemical of DA synthesis, release and nerve-impulse flow, indicating that, while similar in suppressing dopaminergic behaviour, the D-1 antagonist is less effective than traditional neuroleptics as an activator of DA neuronal feedback mechanisms. The weak increases of DA synthesis and release nonetheless obtained were equal in magnitude (30-40%) in the limbic vs. striatal brain areas; also in this respect, SCH23390 thus differs from classical neuroleptics, which generally display more marked effects in the striatum than in limbic tissue. No major changes in the in vivo indices of NA synthesis and utilization (or in 5-HT synthesis) were found after SCH23390 administration, by and large supporting the DA receptor specificity of the compound. In summary, the studies demonstrated that SCH23390 can offset and accentuate, respectively, behavioural consequences of D-2 receptor stimulation and blockade. Importantly, at the same time no direct interaction at

  14. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  15. Metabolite profiling in Arabidopsis.

    PubMed

    Fiehn, Oliver

    2006-01-01

    Metabolite profiling is the multiparallel relative quantification of a mixture of compounds or compound classes using chromatography and universal detection technologies (GC-MS, LC-MS). In this respect it is an extension of classical single-target methods from which it can be distinguished by its broader view on profiling major biochemical events. This broader scope of analysis outweighs the disadvantages by making compromises in method development and the reduced accuracy for specific metabolites. This chapter exemplifies the strategies in metabolite profiling of polar compounds by gas chromatography-mass spectrometry (GC-MS). It gives experimental details on the basic steps: harvest, homogenization, extraction, fractionation, concentration, derivatization, data acquisition, raw data processing and result data tranformation.

  16. Quantification noise in single cell experiments

    PubMed Central

    Reiter, M.; Kirchner, B.; Müller, H.; Holzhauer, C.; Mann, W.; Pfaffl, M. W.

    2011-01-01

    In quantitative single-cell studies, the critical part is the low amount of nucleic acids present and the resulting experimental variations. In addition biological data obtained from heterogeneous tissue are not reflecting the expression behaviour of every single-cell. These variations can be derived from natural biological variance or can be introduced externally. Both have negative effects on the quantification result. The aim of this study is to make quantitative single-cell studies more transparent and reliable in order to fulfil the MIQE guidelines at the single-cell level. The technical variability introduced by RT, pre-amplification, evaporation, biological material and qPCR itself was evaluated by using RNA or DNA standards. Secondly, the biological expression variances of GAPDH, TNFα, IL-1β, TLR4 were measured by mRNA profiling experiment in single lymphocytes. The used quantification setup was sensitive enough to detect single standard copies and transcripts out of one solitary cell. Most variability was introduced by RT, followed by evaporation, and pre-amplification. The qPCR analysis and the biological matrix introduced only minor variability. Both conducted studies impressively demonstrate the heterogeneity of expression patterns in individual cells and showed clearly today's limitation in quantitative single-cell expression analysis. PMID:21745823

  17. Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin

    PubMed Central

    Suyama, Julie A.; Sakloth, Farhana; Kolanos, Renata; Glennon, Richard A.; Lazenka, Matthew F.; Negus, S. Stevens

    2016-01-01

    Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = −0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs. PMID:26645638

  18. Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin.

    PubMed

    Suyama, Julie A; Sakloth, Farhana; Kolanos, Renata; Glennon, Richard A; Lazenka, Matthew F; Negus, S Stevens; Banks, Matthew L

    2016-01-01

    Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = -0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs.

  19. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    PubMed Central

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    Object Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. Methods The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. Results The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer

  20. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry.

    PubMed

    Bledsoe, Jonathan M; Kimble, Christopher J; Covey, Daniel P; Blaha, Charles D; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M; Horne, April; Bennet, Kevin E; Lee, Kendall H; Garris, Paul A

    2009-10-01

    Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. The FSCV study consisted of a triangle wave scanned between -0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 mum) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by approximately 100 microm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2

  1. Rhythm and blues. Neurochemical, neuropharmacological and neuropsychological implications of a hypothesis of circadian rhythm dysfunction in the affective disorders.

    PubMed

    Healy, D

    1987-01-01

    Current views on the organisation and functions of the circadian rhythm system are outlined. Evidence is presented supportive of the notion that the pathophysiology of the affective disorders involves a disruption of circadian rhythms and that the primary locus of action of agents effective in the affective disorders is on the circadian rhythm system. Potential disruptions of this system are enumerated. Such a hypothesis, it is argued, might potentially unite the disparate neurochemical and neuroendocrinological findings emerging in both depression and mania. There are in addition neuropsychological and nosological implications of such a framework, which may help bridge the divide between molecular and behavioural approaches to research on the affective disorders which are outlined.

  2. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC(2)-MS/MS quantification of 11β-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone.

    PubMed

    du Toit, Therina; Bloem, Liezl M; Quanson, Jonathan L; Ehlers, Riaan; Serafin, Antonio M; Swart, Amanda C

    2017-02-01

    Adrenal C19 steroids serve as precursors to active androgens in the prostate. Androstenedione (A4), 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) are metabolised to potent androgen receptor (AR) agonists, dihydrotestosterone (DHT), 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). The identification of 11OHA4 metabolites, 11KT and 11KDHT, as active androgens has placed a new perspective on adrenal C11-oxy C19 steroids and their contribution to prostate cancer (PCa). We investigated adrenal androgen metabolism in normal epithelial prostate (PNT2) cells and in androgen-dependent prostate cancer (LNCaP) cells. We also analysed steroid profiles in PCa tissue and plasma, determining the presence of the C19 steroids and their derivatives using ultra-performance liquid chromatography (UHPLC)- and ultra-performance convergence chromatography tandem mass spectrometry (UPC(2)-MS/MS). In PNT2 cells, sixty percent A4 (60%) was primarily metabolised to 5α-androstanedione (5αDIONE) (40%), testosterone (T) (10%), and androsterone (AST) (10%). T (30%) was primarily metabolised to DHT (10%) while low levels of A4, 5αDIONE and 3αADIOL (≈20%) were detected. Conjugated steroids were not detected and downstream products were present at <0.05μM. Only 20% of 11OHA4 and 11OHT were metabolised with the former yielding 11keto-androstenedione (11KA4), 11KDHT and 11β-hydroxy-5α-androstanedione (11OH-5αDIONE) and the latter yielding 11OHA4, 11KT and 11KDHT with downstream products <0.03μM. In LNCaP cells, A4 (90%) was metabolised to AST-glucuronide via the alternative pathway while T was detected as T-glucuronide with negligible conversion to downstream products. 11OHA4 (80%) and 11OHT (60%) were predominantly metabolised to 11KA4 and 11KT and in both assays more than 50% of 11KT was detected in the unconjugated form. In tissue, we detected C11-oxy C19 metabolites at significantly higher levels than the C19 steroids, with unconjugated 11

  3. In Vivo Magnetic Resonance Studies Reveal Neuroanatomical and Neurochemical Abnormalities in the Serine Racemase Knockout Mouse Model of Schizophrenia

    PubMed Central

    Puhl, Matthew D.; Mintzopoulos, Dionyssios; Jensen, J. Eric; Gillis, Timothy E.; Konopaske, Glenn T.; Kaufman, Marc J.; Coyle, Joseph T.

    2014-01-01

    BACKGROUND Decreased availability of the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is thought to promote NMDAR hypofunction and contribute to the pathophysiology of schizophrenia, including neuroanatomical abnormalities, such as cortical atrophy and ventricular enlargement, and neurochemical abnormalities, such as aberrant glutamate and γ-aminobutyric acid (GABA) signaling. It is thought that these abnormalities directly relate to the negative symptoms and cognitive impairments that are hallmarks of the disorder. Because of the genetic complexity of schizophrenia, animal models of the disorder are extremely valuable for the study of genetically predisposing factors. Our laboratory developed a transgenic mouse model lacking serine racemase (SR), the synthetic enzyme of D-serine, polymorphisms of which are associated with schizophrenia. Null mutants (SR−/−) exhibit NMDAR hypofunction and cognitive impairments. We used 9.4 Tesla magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to compare in vivo brain structure and neurochemistry in wildtype (WT) and SR−/− mice. METHODS Mice were anesthetized with isoflurane for MRI and MRS scans. RESULTS Compared to WT controls, SR−/− mice exhibited 23% larger ventricular volumes (p<0.05). Additionally, in a medial frontal cortex voxel (15 μl), SR−/− mice exhibited significantly higher glutamate/water (12%, t=1.83, p<0.05) and GABA/water (72%, t=4.10, p<0.001) ratios. CONCLUSIONS Collectively, these data demonstrate in vivo neuroanatomical and neurochemical abnormalities in the SR−/− mouse comparable to those previously reported in humans with schizophrenia. PMID:25461193

  4. Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice.

    PubMed

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala; Mohan, Pritam; Bezbaruah, Babul Kumar

    2015-06-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) functions at the center of cellular stress and sways the immune system at several key points, thus modulates inflammatory diseases. The antiinflammatory properties of PARP-1 inhibitors have been demonstrated ameliorating effect in various neuroinflammatory disorders. It has been reported that there is a close relationship between the inflammatory processes and major depressive disorder. In the present study, we have elucidated the role of oxidative-nitrosative stress-PARP-1 pathway in lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical alterations in mice. 3-Aminobenzamide (10 and 30mg/kg) and imipramine (10 and 30mg/kg) were administered once daily for 14days. Mice were challenged with LPS (1mg/kg, i.p.) 30min after drug administration on the 14th day. The mRNA expression level of PARP-1 (12h after LPS injection) in the hippocampus was measured through quantitative real-time PCR. All the behavioral and biochemical parameters were assessed at 24h after LPS injection. The expression level of PARP-1mRNA was found significantly up-regulated in the hippocampus at 12h after LPS administration. Results showed that the LPS-challenged mice exhibited an increase in immobility time seen in forced swimming test and tail suspension test. LPS increased the levels of proinflammatory cytokines and oxido-nitrosative stress parameters in the hippocampus. However, pretreatment with 3-aminobenzamide (30mg/kg) significantly reversed the LPS-induced alterations in behavioral parameters, proinflammatory cytokines, oxidative-nitrosative stress and PARP-1 mRNA levels. Imipramine failed to prevent the up-regulation of PARP-1 induced by LPS administration. Our results emphasized that oxidative-nitrosative stress-PARP-1 cascade can play a key role in LPS-induced neurobehavioral and neurochemical anomalies.

  5. Acute but not chronic administration of pioglitazone promoted behavioral and neurochemical protective effects in the MPTP model of Parkinson's disease.

    PubMed

    Barbiero, Janaína K; Santiago, Ronise M; Lima, Marcelo M S; Ariza, Deborah; Morais, Lívia H; Andreatini, Roberto; Vital, Maria A B F

    2011-01-01

    The present study investigated the neurochemical, motor and cognitive effects of pioglitazone in a rat model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the first experiment, we administered MPTP, and 1h later administered a single oral dose of pioglitazone (5, 15 and 30 mg/kg). The following day, we performed the open-field test and neurochemical dose response curve. We demonstrated that 30 mg/kg of pioglitazone was capable of restoring striatal dopamine (DA) concentrations and motor behaviors. A second experiment was conducted to test the effects of two protocols (acute and chronic) of pioglitazone (30 mg/kg) administration in the open-field test, two-way active avoidance task and in the DA and metabolites levels. The acute protocol consisted of a single oral administration 1 h after MPTP, whereas the chronic protocol was performed with daily administrations starting 1 h after MPTP and ending 22 days after that. Results showed that neither protocol was able to reverse the cognitive impairment promoted by MPTP. We also demonstrated that acute treatment generated some level of neuroprotection, as confirmed by the absence of DA reduction in the group treated with pioglitazone in comparison to the sham group. By contrast, chronic treatment leaded to a reduction of striatal DA, close to MPTP administration alone. These findings suggest that acute administration of pioglitazone (30 mg/kg) was more efficient in generating beneficial effects on motor behaviors and in striatal DA levels. Nevertheless, we failed to demonstrate that pioglitazone administration improved performance on a dopamine-related cognitive task after MPTP.

  6. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain.

    PubMed

    Cheng, Hanjun; Yu, Ping; Lu, Xulin; Lin, Yuqing; Ohsaka, Takeo; Mao, Lanqun

    2013-01-07

    This study demonstrates a new electrochemical method for continuous neurochemical sensing with a biofuel cell-based self-powered biogenerator as the detector for the analysis of microdialysate continuously sampled from rat brain, with glucose as an example analyte. To assemble a glucose/O(2) biofuel cell that can be used as a self-powered biogenerator for glucose sensing, glucose dehydrogenase (GDH) was used as the bioanodic catalyst for the oxidation of glucose with methylene green (MG) adsorbed onto single-walled carbon nanotubes (SWNTs) as the electrocatalyst for the oxidation of dihydronicotinamide adenine dinucleotide (NADH). Laccase crosslinked onto SWNTs was used as the biocathodic catalyst for the O(2) reduction. To enable the bioanode and biocathode to work efficiently in their individually favorable solutions and to eliminate the interference between the glucose bioanode and O(2) biocathode, the biofuel cell-based biogenerator was built in a co-laminar microfluidic chip so that the bioanodic and biocathodic streams could be independently optimized to provide conditions favorable for each of the bioelectrodes. By using a home-made portable voltmeter to output the voltage generated on an external resistor, the biogenerator was used for glucose sensing based on a galvanic cell mechanism. In vitro experiments demonstrate that, under the optimized conditions, the voltage generated on an external resistor shows a linear relationship with the logarithmic glucose concentration within a concentration range of 0.2 mM to 1.0 mM. Moreover, the biogenerator exhibits a high stability and a good selectivity for glucose sensing. The validity of the biofuel cell-based self-powered biogenerator for continuous neurochemical sensing was illustrated by online continuous monitoring of striatum glucose in rat brain through the combination of in vivo microdialysis. This study offers a new and technically simple platform for continuously monitoring physiologically important

  8. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  9. Two-pass alignment improves novel splice junction quantification.

    PubMed

    Veeneman, Brendan A; Shukla, Sudhanshu; Dhanasekaran, Saravana M; Chinnaiyan, Arul M; Nesvizhskii, Alexey I

    2016-01-01

    Discovery of novel splicing from RNA sequence data remains a critical and exciting focus of transcriptomics, but reduced alignment power impedes expression quantification of novel splice junctions. Here, we profile performance characteristics of two-pass alignment, which separates splice junction discovery from quantification. Per sample, across a variety of transcriptome sequencing datasets, two-pass alignment improved quantification of at least 94% of simulated novel splice junctions, and provided as much as 1.7-fold deeper median read depth over those splice junctions. We further demonstrate that two-pass alignment works by increasing alignment of reads to splice junctions by short lengths, and that potential alignment errors are readily identifiable by simple classification. Taken together, two-pass alignment promises to advance quantification and discovery of novel splicing events. arul@med.umich.edu, nesvi@med.umich.edu Two-pass alignment was implemented here as sequential alignment, genome indexing, and re-alignment steps with STAR. Full parameters are provided in Supplementary Table 2. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Two-pass alignment improves novel splice junction quantification

    PubMed Central

    Veeneman, Brendan A.; Shukla, Sudhanshu; Dhanasekaran, Saravana M.; Chinnaiyan, Arul M.; Nesvizhskii, Alexey I.

    2016-01-01

    Motivation: Discovery of novel splicing from RNA sequence data remains a critical and exciting focus of transcriptomics, but reduced alignment power impedes expression quantification of novel splice junctions. Results: Here, we profile performance characteristics of two-pass alignment, which separates splice junction discovery from quantification. Per sample, across a variety of transcriptome sequencing datasets, two-pass alignment improved quantification of at least 94% of simulated novel splice junctions, and provided as much as 1.7-fold deeper median read depth over those splice junctions. We further demonstrate that two-pass alignment works by increasing alignment of reads to splice junctions by short lengths, and that potential alignment errors are readily identifiable by simple classification. Taken together, two-pass alignment promises to advance quantification and discovery of novel splicing events. Contact: arul@med.umich.edu, nesvi@med.umich.edu Availability and implementation: Two-pass alignment was implemented here as sequential alignment, genome indexing, and re-alignment steps with STAR. Full parameters are provided in Supplementary Table 2. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26519505

  11. Quantification of microvessels in canine lymph nodes.

    PubMed

    Tonar, Zbynĕk; Egger, Gunter F; Witter, Kirsti; Wolfesberger, Birgitt

    2008-10-01

    Quantification of microvessels in tumors is mostly based on counts of vessel profiles in tumor hot spots. Drawbacks of this method include low reproducibility and large interobserver variance, mainly as a result of individual differences in sampling of image fields for analysis. Our aim was to test an unbiased method for quantifying microvessels in healthy and tumorous lymph nodes of dogs. The endothelium of blood vessels was detected in paraffin sections by a combination of immunohistochemistry (von Willebrand factor) and lectin histochemistry (wheat germ agglutinin) in comparison with detection of basal laminae by laminin immunohistochemistry or silver impregnation. Systematic uniform random sampling of 50 image fields was performed during photo-documentation. An unbiased counting frame (area 113,600 microm(2)) was applied to each micrograph. The total area sampled from each node was 5.68 mm(2). Vessel profiles were counted according to stereological counting rules. Inter- and intraobserver variabilities were tested. The application of systematic uniform random sampling was compared with the counting of vessel profiles in hot spots. The unbiased estimate of the number of vessel profiles per unit area ranged from 100.5 +/- 44.0/mm(2) to 442.6 +/- 102.5/mm(2) in contrast to 264 +/- 72.2/mm(2) to 771.0 +/- 108.2/mm(2) in hot spots. The advantage of using systematic uniform random sampling is its reproducibility, with reasonable interobserver and low intraobserver variance. This method also allows for the possibility of using archival material, because staining quality is not limiting as it is for image analysis, and artifacts can easily be excluded. However, this method is comparatively time-consuming.

  12. Micro-RNA quantification using DNA polymerase and pyrophosphate quantification.

    PubMed

    Yu, Hsiang-Ping; Hsiao, Yi-Ling; Pan, Hung-Yin; Huang, Chih-Hung; Hou, Shao-Yi

    2011-12-15

    A rapid quantification method for micro-RNA based on DNA polymerase activity and pyrophosphate quantification has been developed. The tested micro-RNA serves as the primer, unlike the DNA primer in all DNA sequencing methods, and the DNA probe serves as the template for DNA replication. After the DNA synthesis, the pyrophosphate detection and quantification indicate the existence and quantity of the tested miRNA. Five femtomoles of the synthetic RNA could be detected. In 20-100 μg RNA samples purified from SiHa cells, the measurement was done using the proposed assay in which hsa-miR-16 and hsa-miR-21 are 0.34 fmol/μg RNA and 0.71 fmol/μg RNA, respectively. This simple and inexpensive assay takes less than 5 min after total RNA purification and preparation. The quantification is not affected by the pre-miRNA which cannot serve as the primer for the DNA synthesis in this assay. This assay is general for the detection of the target RNA or DNA with a known matched DNA template probe, which could be widely used for detection of small RNA, messenger RNA, RNA viruses, and DNA. Therefore, the method could be widely used in RNA and DNA assays.

  13. Conessine, an H3 receptor antagonist, alters behavioral and neurochemical effects of ethanol in mice.

    PubMed

    Morais-Silva, Gessynger; Ferreira-Santos, Mariane; Marin, Marcelo T

    2016-05-15

    Ethanol abuse potential is mainly due to its reinforcing properties, crucial in the transition from the recreational to pathological use. These properties are mediated by mesocorticolimbic and nigrostriatal dopaminergic pathways and neuroadaptations in these pathways seem to be responsible for addiction. Both pathways are modulated by other neurotransmitters systems, including neuronal histaminergic system. Among the histamine receptors, H3 receptor stands out due to its role in modulation of histamine and other neurotransmitters release. Thus, histaminergic system, through H3 receptors, may have an important role in ethanol addiction development. Aiming to understand these interactions, conessine, an H3 receptor antagonist, was given to mice subjected to the evaluation of ethanol-induced psychostimulation, ethanol CPP and quantification of norepinephrine, dopamine, serotonin and their metabolites in mesocorticolimbic and nigrostriatal pathways following acute ethanol treatment. Systemic conessine administration exacerbated ethanol effects on locomotor activity. Despite of conessine reinforcing effect on CPP, this drug did not alter acquisition of ethanol CPP. Ethanol treatment affects the serotoninergic neurotransmission in the ventral tegmental area, the dopaminergic neurotransmission in the pre-frontal cortex (PFC) and caudate-putamen nucleus (CPu) and the noradrenergic neurotransmission in the CPu. In the PFC, conessine blocked ethanol effects on dopaminergic and noradrenergic neurotransmission. The blockade of H3 receptors and ethanol seem to interact in the modulation of dopaminergic neurotransmission of nigrostriatal pathway, decreasing dopamine metabolites in substantia nigra. In conclusion, conessine was able to change psychostimulant effect of ethanol, without altering its reinforcing properties. This exacerbation of ethanol-induced psychostimulation would be related to alterations in dopaminergic neurotransmission in the nigrostriatal pathway.

  14. MAMA Software Features: Quantification Verification Documentation-1

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-21

    This document reviews the verification of the basic shape quantification attributes in the MAMA software against hand calculations in order to show that the calculations are implemented mathematically correctly and give the expected quantification results.

  15. Quantification of Microbial Phenotypes

    PubMed Central

    Martínez, Verónica S.; Krömer, Jens O.

    2016-01-01

    Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694

  16. Absolute protein quantification of the yeast chaperome under conditions of heat shock.

    PubMed

    Mackenzie, Rebecca J; Lawless, Craig; Holman, Stephen W; Lanthaler, Karin; Beynon, Robert J; Grant, Chris M; Hubbard, Simon J; Eyers, Claire E

    2016-08-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  18. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism.

    PubMed

    Oleskin, Alexander V; Shenderov, Boris A; Rogovsky, Vladimir S

    2017-02-22

    This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortium-immune system-nervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical "language." It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota-host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota-host coevolution. We emphasize that the terms "microbiota" and "microbial consortium" are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortium-immune system-nervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target

  19. Transplacental Exposure to AZT Induces Adverse Neurochemical and Behavioral Effects in a Mouse Model: Protection by L-Acetylcarnitine

    PubMed Central

    Venerosi Pesciolini, Aldina; Tramutola, Antonella; Ajmone-Cat, Maria Antonietta; Cinque, Carlo; Alemà, Giovanni Sebastiano; Giovine, Angela; Peluso, Gianfranco; Minghetti, Luisa; Nicolai, Raffaella; Calamandrei, Gemma; Casolini, Paola

    2013-01-01

    Maternal-fetal HIV-1 transmission can be prevented by administration of AZT, alone or in combination with other antiretroviral drugs to pregnant HIV-1-infected women and their newborns. In spite of the benefits deriving from this life-saving prophylactic therapy, there is still considerable uncertainty on the potential long-term adverse effects of antiretroviral drugs on exposed children. Clinical and experimental studies have consistently shown the occurrence of mitochondrial dysfunction and increased oxidative stress following prenatal treatment with antiretroviral drugs, and clinical evidence suggests that the developing brain is one of the targets of the toxic action of these compounds possibly resulting in behavioral problems. We intended to verify the effects on brain and behavior of mice exposed during gestation to AZT, the backbone of antiretroviral therapy during human pregnancy. We hypothesized that glutamate, a neurotransmitter involved in excitotoxicity and behavioral plasticity, could be one of the major actors in AZT-induced neurochemical and behavioral alterations. We also assessed the antioxidant and neuroprotective effect of L-acetylcarnitine, a compound that improves mitochondrial function and is successfully used to treat antiretroviral-induced polyneuropathy in HIV-1 patients. We found that transplacental exposure to AZT given per os to pregnant mice from day 10 of pregnancy to delivery impaired in the adult offspring spatial learning and memory, enhanced corticosterone release in response to acute stress, increased brain oxidative stress also at birth and markedly reduced expression of mGluR1 and mGluR5 subtypes and GluR1 subunit of AMPA receptors in the hippocampus. Notably, administration during the entire pregnancy of L-acetylcarnitine was effective in preventing/ameliorating the neurochemical, neuroendocrine and behavioral adverse effects induced by AZT in the offspring. The present preclinical findings provide a mechanistic hypothesis for

  20. Best practices for metabolite quantification in drug development: updated recommendation from the European Bioanalysis Forum.

    PubMed

    Timmerman, Philip; Blech, Stefan; White, Stephen; Green, Martha; Delatour, Claude; McDougall, Stuart; Mannens, Geert; Smeraglia, John; Williams, Stephen; Young, Graeme

    2016-06-01

    Metabolite quantification and profiling continues to grow in importance in today's drug development. The guidance provided by the 2008 FDA Metabolites in Safety Testing Guidance and the subsequent ICH M3(R2) Guidance (2009) has led to a more streamlined process to assess metabolite exposures in preclinical and clinical studies in industry. In addition, the European Bioanalysis Forum (EBF) identified an opportunity to refine the strategies on metabolite quantification considering the experience to date with their recommendation paper on the subject dating from 2010 and integrating the recent discussions on the tiered approach to bioanalytical method validation with focus on metabolite quantification. The current manuscript summarizes the discussion and recommendations from a recent EBF Focus Workshop into an updated recommendation for metabolite quantification in drug development.

  1. Good quantification practices of flavours and fragrances by mass spectrometry

    PubMed Central

    Begnaud, Frédéric

    2016-01-01

    Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644977

  2. Drug Development and Conservation of Biodiversity in West and Central Africa: Performance of Neurochemical and Radio Receptor Assays of Plant Extracts Drug Discovery for the Central Nervous System

    DTIC Science & Technology

    2004-09-01

    7) Hui, D.; Sao-Xing, C. J. Nat. Prod. 1998, 61, 142-144. (8) Aldrich Libray of 13C and 1H FT NMR spectra 1992, 2, 326A. (9) Kadota, S .; Hui, D...Biodiversity in West and Central Africa: Performance of Neurochemical and Radio Receptor Assays of Plant Extracts Drug Discovery for the Central... s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation

  3. Absolute quantification of myocardial blood flow.

    PubMed

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  4. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from (1)H MR spectroscopy.

    PubMed

    Baeken, Chris; Lefaucheur, Jean-Pascal; Van Schuerbeek, Peter

    2017-09-01

    Although accelerated repetitive transcranial magnetic stimulation (rTMS) designs seem to be able to alleviate mood over a relatively short period of time, no studies yet examined the cellular effects on neurochemicals with regard to working mechanisms, safety and neural integrity. Eighteen right-handed antidepressant-free unipolar treatment resistant depressed (TRD) patients participated in this sham-controlled accelerated high frequency (aHF)-rTMS (1)H MR spectroscopy study applied to the left dorsolateral prefrontal cortex (DLPFC). Baseline measurements were compared to eighteen age- and gender-matched healthy controls. We explicitly focused on neurochemical concentrations in the bilateral DLPFC and rostral anterior cingulate cortex (rACC). Compared to healthy individuals, TRD patients displayed significantly lower baseline glutamatergic (sum absolute concentrations glutamate and glutamine) concentrations in the left DLPFC. aHF-rTMS does not significantly alter neurochemical concentrations in the three predefined brain regions. Clinical improvement was related to significant GABA concentration increases in the left DLPFC. Accelerated HF-rTMS treatment did not affect neural integrity in the examined regions. The observed GABA concentration increases suggest that the immediate therapeutic effects of aHF-rTMS could be mediated through a locally increased GABAergic inhibitory neurotransmission. Although more statistical power is needed for reaching firm conclusions, aHF-rTMS does not appear to negatively influence neural integrity. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Statistical image quantification toward optimal scan fusion and change quantification

    NASA Astrophysics Data System (ADS)

    Potesil, Vaclav; Zhou, Xiang Sean

    2007-03-01

    Recent advance of imaging technology has brought new challenges and opportunities for automatic and quantitative analysis of medical images. With broader accessibility of more imaging modalities for more patients, fusion of modalities/scans from one time point and longitudinal analysis of changes across time points have become the two most critical differentiators to support more informed, more reliable and more reproducible diagnosis and therapy decisions. Unfortunately, scan fusion and longitudinal analysis are both inherently plagued with increased levels of statistical errors. A lack of comprehensive analysis by imaging scientists and a lack of full awareness by physicians pose potential risks in clinical practice. In this paper, we discuss several key error factors affecting imaging quantification, studying their interactions, and introducing a simulation strategy to establish general error bounds for change quantification across time. We quantitatively show that image resolution, voxel anisotropy, lesion size, eccentricity, and orientation are all contributing factors to quantification error; and there is an intricate relationship between voxel anisotropy and lesion shape in affecting quantification error. Specifically, when two or more scans are to be fused at feature level, optimal linear fusion analysis reveals that scans with voxel anisotropy aligned with lesion elongation should receive a higher weight than other scans. As a result of such optimal linear fusion, we will achieve a lower variance than naïve averaging. Simulated experiments are used to validate theoretical predictions. Future work based on the proposed simulation methods may lead to general guidelines and error lower bounds for quantitative image analysis and change detection.

  6. Miniaturized ultra-high performance liquid chromatography coupled to electrochemical detection: Investigation of system performance for neurochemical analysis.

    PubMed

    Van Schoors, Jolien; Maes, Katrien; Van Wanseele, Yannick; Broeckhoven, Ken; Van Eeckhaut, Ann

    2016-01-04

    The interest in implementation of miniaturized ultra-high performance liquid chromatography (UHPLC) in neurochemical research is growing because of the need for faster, more selective and more sensitive neurotransmitter analyses. The instrument performance of a tailor designed microbore UHPLC system coupled to electrochemical detection (ECD) is investigated, focusing on the quantitative monoamine determination in in vivo microdialysis samples. The use of a microbore column (1.0mm I.D.) requires miniaturization of the entire instrument, though a balance between extra-column band broadening and injection volume must be considered. This is accomplished through the user defined Performance Optimizing Injection Sequence, whereby 5 μL sample is injected on the column with a measured extra-column variance of 4.5-9.0 μL(2) and only 7 μL sample uptake. Different sub-2 μm and superficially porous particle stationary phases are compared by means of the kinetic plot approach. Peak efficiencies of about 16000-35000 theoretical plates are obtained for the Acquity UPLC BEH C18 column within 13 min analysis time. Furthermore, the coupling to ECD is shown suitable for microbore UHPLC analysis thanks to the miniaturized flow cell design, sufficiently fast data acquisition and mathematical data filtering. Ultimately, injection of in vivo samples demonstrates the applicability of the system for microdialysis analysis.

  7. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract.

    PubMed

    Garfield, Alastair S; Patterson, Christa; Skora, Susanne; Gribble, Fiona M; Reimann, Frank; Evans, Mark L; Myers, Martin G; Heisler, Lora K

    2012-10-01

    The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin.

  8. [Sensitivity of neurochemical dementia diagnostics in CSF compared to 99mTc-SPECT in Alzheimer's dementia].

    PubMed

    Weih, M; Krinninger, M; Zimmermann, R; Lewczuk, P; Svitek, J; Schaller, G; Degirmenci, U; Richter-Schmidinger, T; Wiltfang, J; Kuwert, T; Kornhuber, J; Schmidt, D

    2009-07-01

    The diagnosis of Alzheimer's dementia is currently changing from a late and exclusion diagnosis towards a pathophysiology-based early and positive diagnosis. Especially advances in neuro-chemical dementia diagnostics in the cerebrospinal fluid (NDD-CSF) and imaging techniques like PET, SPECT or MRI are of particular interest. Unfortunately, many studies investigated only either one or other technique. In the present study 56 patients (average 67.1 years; average mini-mental status test (MMST) 22.2) were examined with the clinical diagnosis of Alzheimer's dementia. All patients both underwent NDD-CSF as well as 99mTc-SPECT. Only the SPECT, but not the NDD-CSF correlated with disease severity. Sensitivity of NDD-CSF was 89 % and SPECT 48 % for all patients and 93 % resp. 61 % for patients with MMST < 24. Below MMST 20 both methods had equal sensitivity. Both diagnostic techniques showed no statistic coherence (p = 0.27), neither after correction for subgroups like disease severity or the APOE genotype. Our results are compatible with the hypothesis that the NDD-CSF reflects beta-amyloid-aggregation and Tau-Protein pathology as a pathophysiologic biomarker. Our results suggest that SPECT is rather a state parameter for the rCBF changes following cortical neurodegeneration.

  9. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder.

  10. Interaction between handling induced stress and anxiolytic effects of ethanol in zebrafish: A behavioral and neurochemical analysis.

    PubMed

    Tran, Steven; Nowicki, Magda; Fulcher, Niveen; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-01

    Stress is often considered an important factor in the development of alcohol addiction. In rodents, various types of stressors have been shown to potentiate the effects of alcohol on behavioral responses, and to increase consumption of this substance. However, few have investigated the interaction between stress and alcohol in zebrafish. In the current study we present a repeated handling stress paradigm we developed for zebrafish, and examine whether stress alters alcohol induced behavioral and neurochemical responses. Our results show that repeated handling of zebrafish conducted for 2 consecutive days is sufficient to increase anxiety-like behavioral responses quantified 24h post-stressor. Repeatedly handled zebrafish also exhibited a reduction in the levels of serotonin's metabolite, 5-hydroxyindole acetic acid (quantified by high precision liquid chromatography) compared to unhandled controls. A 60-min acute exposure to 1% ethanol was found to significantly increase locomotor activity and decrease anxiety-like behavioral responses in stressed zebrafish but not in controls. Furthermore, unhandled control zebrafish exhibited a significant increase in whole-brain dopamine levels following exposure to ethanol but the increase was not observed in repeatedly handled fish. Our findings suggest that ethanol induced locomotor activity and anxiolysis is potentiated by handling stress and may be partially mediated by changes in dopaminergic and serotonergic activity. Overall, we demonstrate the validity of our repeated handling stressor paradigm for zebrafish, which can be used to investigate the interaction between stress and ethanol.

  11. Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice

    PubMed Central

    Dieni, Sandra; Nestel, Sigrun; Sibbe, Mirjam; Frotscher, Michael; Hellwig, Sabine

    2015-01-01

    Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network; and (ii) a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF) protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: (i) modified neuropeptide distribution; (ii) perturbed expression of selected markers of synaptic activation or plasticity; (iii) subtle changes to microglial structure; and (iv) morphological alterations to the mossy fiber (MF) synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn-mutant as a useful model for studying the effects of chronic changes to network activity. PMID:26557085

  12. Neurochemical characterization of a neuroprotective compound from Parawixia bistriata spider venom that inhibits synaptosomal uptake of GABA and glycine.

    PubMed

    Beleboni, Renê Oliveira; Guizzo, Renato; Fontana, Andréia Cristina Karklin; Pizzo, Andrea Baldocchi; Carolino, Ruither Oliveira Gomes; Gobbo-Neto, Leonardo; Lopes, Norberto Peporine; Coutinho-Netto, Joaquim; Dos Santos, Wagner Ferreira

    2006-06-01

    The major contribution of this work is the isolation of a neuroprotective compound referred to as 2-amino-5-ureidopentanamide (FrPbAII) (M(r) = 174) from Parawixia bistriata spider venom and an investigation of its mode of action. FrPbAII inhibits synaptosomal GABA uptake in a dose-dependent manner and probably does not act on Na(+), K(+), and Ca(2+) channels, GABA(B) receptors, or gamma-aminobutyrate:alpha-ketoglutarate aminotransferase enzyme; therefore, it is not directly dependent on these structures for its action. Direct increase of GABA release and reverse transport are also ruled out as mechanisms of FrPbAII activities as well as unspecific actions on pore membrane formation. Moreover, FrPbAII is selective for GABA and glycine transporters, having slight or no effect on monoamines or glutamate transporters. According to our experimental glaucoma data in rat retina, FrPbAII is able to cross the blood-retina barrier and promote effective protection of retinal layers submitted to ischemic conditions. These studies are of relevance by providing a better understanding of neurochemical mechanisms involved in brain function and for possible development of new neuropharmacological and therapeutic tools.

  13. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway.

    PubMed

    Jangra, Ashok; Datusalia, Ashok Kumar; Khandwe, Shriya; Sharma, Shyam Sunder

    2013-12-01

    Diabetes associated hyperglycemia results in generation of reactive oxygen species which induces oxidative stress and initiate massive DNA damage leading to overactivation of poly (ADP-ribose) polymerase (PARP). In this study, we have elucidated the involvement of oxidative stress-PARP pathway using pharmacological interventions (melatonin, as an anti-oxidant and nicotinamide, as a PARP inhibitor) in diabetes-induced neurobehavioral and neurochemical alterations. Sprague-Dawley rats were rendered diabetic by a single intraperitoneal injection of streptozotocin. Behavioral and cognitive deficits were assessed after 8weeks of diabetes induction using a functional observation battery, passive avoidance and rotarod test. Acetylcholinesterase activity was significantly decreased in hippocampus of diabetic rats as compared to control rats. Diabetic animals showed significant increase in malondialdehyde levels and reduction in NAD levels in hippocampus. Glutamate and GABA levels were also altered in hippocampus of the diabetic animals. Two week treatment with melatonin (3 and 10mg/kg) and nicotinamide (300 and 1000mg/kg) alone and in combination significantly improved the neurobehavioral parameters which were altered in diabetes. Neurotransmitter (glutamate and GABA) levels were improved by these interventions. Our results emphasize that simultaneous inhibition of oxidative stress-PARP overactivation cascade can be beneficial in treatment of diabetes associated CNS changes.

  14. A 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant.

    PubMed

    Bétry, C; Overstreet, D; Haddjeri, N; Pehrson, A L; Bundgaard, C; Sanchez, C; Mørk, A

    2015-04-01

    More effective treatments for major depression are needed. We studied if the selective 5-HT3 receptor antagonist ondansetron can potentiate the antidepressant potential of the selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine using behavioral, neurochemical and electrophysiological methods. Flinders Sensitive Line (FSL) rats, treated with ondansetron, and/or a sub-effective dose of paroxetine, were assessed in the forced swim test. The effects of an acute intravenous administration of each compound alone and in combination were evaluated with respect to 5-HT neuronal firing rate in the dorsal raphe nucleus (DRN). Effects of s.c. administration of the compounds alone and in combination on extracellular levels of 5-HT were assessed in the ventral hippocampus of freely moving rats by microdialysis. The results showed that ondansetron enhanced the antidepressant activity of paroxetine in the forced swim test. It partially prevented the suppressant effect of paroxetine on DRN 5-HT neuronal firing and enhanced the paroxetine-induced increase of hippocampal extracellular 5-HT release. These findings indicate that 5-HT3 receptor blockade potentiates the antidepressant effects of SSRIs. Since both paroxetine and ondansetron are used clinically, it might be possible to validate this augmentation strategy in depressed patients.

  15. Changes of electroretinogram and neurochemical aspects of GABAergic neurons of retina after intraocular injection of kainic acid in rats.

    PubMed

    Goto, M; Inomata, N; Ono, H; Saito, K I; Fukuda, H

    1981-05-04

    The effect of kainic acid (KA) on both electroretinogram (ERG) readings and neurochemical properties of the retina was investigated in rats with emphasis placed upon examination of the events that occur immediately following KA treatment. KA was injected into the eyes of rats with doses of 50 and 200 nmol. One hour after injection, histological alterations became evident. Swelling was observed in the inner and outer plexiform layers. Certain ganglion cells and cells of the inner nuclear layers exhibited pyknotic nuclei. Most of the ganglion cells appeared to have degenerated 48 h following injection, and the form of the outer plexiform layer was incomplete. The amplitude of the b-waves of the ERG decreased 2 h following injection and never recovered. The amplitude of the a-waves was unaffected by KA. The gamma-aminobutyric acid content in the eyecups began to decrease within 1 h and fell to approximately 20% of its original level 24 h following injection. The taurine content in the eyecups was unaffected by KA. The activity of glutamic acid decarboxylase remained unaffected for 2 h after injection, but was reduced to approximately 40% of its original activity by 24 h after injection. A possible explanation for the mechanism by which KA effects degenerative changes in the rat retina is that KA induces release of neurotransmitters through stimulation of neurons, and degeneration in the soma follows.

  16. Lack of Specific Involvement of (+)-Naloxone and (+)-Naltrexone on the Reinforcing and Neurochemical Effects of Cocaine and Opioids.

    PubMed

    Tanda, Gianluigi; Mereu, Maddalena; Hiranita, Takato; Quarterman, Juliana C; Coggiano, Mark; Katz, Jonathan L

    2016-10-01

    Effective medications for drug abuse remain a largely unmet goal in biomedical science. Recently, the (+)-enantiomers of naloxone and naltrexone, TLR4 antagonists, have been reported to attenuate preclinical indicators of both opioid and stimulant abuse. To further examine the potential of these compounds as drug-abuse treatments, we extended the previous assessments to include a wider range of doses and procedures. We report the assessment of (+)-naloxone and (+)-naltrexone on the acute dopaminergic effects of cocaine and heroin determined by in vivo microdialysis, on the reinforcing effects of cocaine and the opioid agonist, remifentanil, tested under intravenous self-administration procedures, as well as the subjective effects of cocaine determined by discriminative-stimulus effects in rats. Pretreatments with (+)-naloxone or (+)-naltrexone did not attenuate, and under certain conditions enhanced the stimulation of dopamine levels produced by cocaine or heroin in the nucleus accumbens shell. Furthermore, although an attenuation of either cocaine or remifentanil self-administration was obtained at the highest doses of (+)-naloxone and (+)-naltrexone, those doses also attenuated rates of food-maintained behaviors, indicating a lack of selectivity of TLR4 antagonist effects for behaviors reinforced with drug injections. Drug-discrimination studies failed to demonstrate a significant interaction of (+)-naloxone with subjective effects of cocaine. The present studies demonstrate that under a wide range of doses and experimental conditions, the TLR4 antagonists, (+)-naloxone and (+)-naltrexone, did not specifically block neurochemical or behavioral abuse-related effects of cocaine or opioid agonists.

  17. A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry.

    PubMed

    Roham, M; Daberkow, D P; Ramsson, E S; Covey, D P; Pakdeeronachit, S; Garris, P A; Mohseni, P

    2008-03-01

    An integrated circuit for real-time wireless monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting measurements in both fast-scan cyclic voltammetry (FSCV) and amperometry modes for a wide input current range. The chip architecture employs a second-order DeltaSigma modulator (DeltaSigmaM) and a frequency-shift-keyed transmitter operating near 433 MHz. It is fabricated using the AMI 0.5-mum double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. A measured current resolution of 12 pA at a sampling rate of 100 Hz and 132 pA at a sampling rate of 10 kHz is achieved in amperometry and 300-V/s FSCV modes, respectively, for any input current in the range of plusmn430 nA. The modulator core and the transmitter draw 22 and 400 muA from a 2.6-V power supply, respectively. The chip has been externally interfaced with a carbon-fiber microelectrode implanted acutely in the caudate-putamen of an anesthetized rat, and, for the first time, extracellular levels of dopamine elicited by electrical stimulation of the medial forebrain bundle have been successfully recorded wirelessly using 300-V/s FSCV.

  18. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease.

    PubMed

    Maswood, Navin; Young, Jennifer; Tilmont, Edward; Zhang, Zhiming; Gash, Don M; Gerhardt, Greg A; Grondin, Richard; Roth, George S; Mattison, Julie; Lane, Mark A; Carson, Richard E; Cohen, Robert M; Mouton, Peter R; Quigley, Christopher; Mattson, Mark P; Ingram, Donald K

    2004-12-28

    We report that a low-calorie diet can lessen the severity of neurochemical deficits and motor dysfunction in a primate model of Parkinson's disease. Adult male rhesus monkeys were maintained for 6 months on a reduced-calorie diet [30% caloric restriction (CR)] or an ad libitum control diet after which they were subjected to treatment with a neurotoxin to produce a hemiparkinson condition. After neurotoxin treatment, CR monkeys exhibited significantly higher levels of locomotor activity compared with control monkeys as well as higher levels of dopamine (DA) and DA metabolites in the striatal region. Increased survival of DA neurons in the substantia nigra and improved manual dexterity were noted but did not reach statistical significance. Levels of glial cell line-derived neurotrophic factor, which is known to promote the survival of DA neurons, were increased significantly in the caudate nucleus of CR monkeys, suggesting a role for glial cell line-derived neurotrophic factor in the anti-Parkinson's disease effect of the low-calorie diet.

  19. Online electrochemical systems for continuous neurochemical measurements with low-potential mediator-based electrochemical biosensors as selective detectors.

    PubMed

    Zhang, Zipin; Hao, Jie; Xiao, Tongfang; Yu, Ping; Mao, Lanqun

    2015-08-07

    This study demonstrates a new strategy to develop online electrochemical systems (OECSs) for continuously monitoring neurochemicals by efficiently integrating in vivo microdialysis with an oxidase-based electrochemical biosensor with low-potential electron mediators to shuttle the electron transfer of the oxidases. By using thionine and xanthine oxidase (XOD) as examples of low-potential mediators and oxidases, respectively, we demonstrate that the use of low-potential mediators to shuttle the electron transfer of oxidases would offer a new approach to the development of oxidase-based biosensors with theoretical and technical simplicity. To construct the XOD-based biosensor, thionine was adsorbed onto carbon nanotubes and used to shuttle the electron transfer of XOD. The XOD-based biosensor was positioned into an electrochemical cell that was directly coupled with in vivo microdialysis to form an online electrochemical system (OECS) for continuous and selective measurements of the substrate of XOD (with hypoxanthine as an example). The OECS based on the low-potential mediators is highly selective against the species endogenously existing in the brain system, which is attributed to the low operation potential benefited from the low redox potentials of the mediators. Moreover, the OECS demonstrated here is stable and reproducible and could thus be envisaged to find some interesting applications in physiological and pathological investigations. This study essentially offers a new strategy to develop online electrochemical systems, which is of great importance in understanding the molecular basis of physiological and pathological events.

  20. Current application of neurochemical biomarkers in the prediction and differential diagnosis of Alzheimer's disease and other neurodegenerative dementias.

    PubMed

    Genius, J; Klafki, H; Benninghoff, J; Esselmann, H; Wiltfang, J

    2012-11-01

    In light of the dramatically increasing prevalence of Alzheimer's disease (AD) to be expected in the future, the development of novel therapeutics, improved differential and early diagnostics, and means for the identification of individuals at risk are urgently needed. At present, instruments for a reliable differential diagnosis in clinical dementia, mild cognitive impairment, or prodromal stages have direct practical implications for differentiating secondary dementias from neurodegenerative conditions and for treatment decisions. It may also be reasonable to enforce the incorporation of biomarkers into clinical studies as surrogate outcome parameters and as an attempt to optimize recruitment criteria. Recently, revised research criteria increasingly rely on the interpretation of biomarker patterns, including neuroimaging and CSF-based neurochemical dementia diagnosis (NDD) in supporting the clinical diagnosis. Here, we review the performance of current core CSF biomarkers (Aβ(42) peptide, total tau protein and phosphorylated tau species) and try to define objectives for prospective markers, also considering blood-based tests, which would increase the acceptance and wide application of NDD. Moreover, we evaluate the role and the limitations of genotyping in the predictive diagnosis of AD.

  1. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION.

    SciTech Connect

    Hemez, F.M.; Doebling, S.W.

    2000-10-01

    This session offers an open forum to discuss issues and directions of research in the areas of model updating, predictive quality of computer simulations, model validation and uncertainty quantification. Technical presentations review the state-of-the-art in nonlinear dynamics and model validation for structural dynamics. A panel discussion introduces the discussion on technology needs, future trends and challenges ahead with an emphasis placed on soliciting participation of the audience, One of the goals is to show, through invited contributions, how other scientific communities are approaching and solving difficulties similar to those encountered in structural dynamics. The session also serves the purpose of presenting the on-going organization of technical meetings sponsored by the U.S. Department of Energy and dedicated to health monitoring, damage prognosis, model validation and uncertainty quantification in engineering applications. The session is part of the SD-2000 Forum, a forum to identify research trends, funding opportunities and to discuss the future of structural dynamics.

  2. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

    SciTech Connect

    Sharif, N.A.; Roberts, P.J.

    1984-01-01

    Specific binding of L-(/sup 3/H)glutamate ((/sup 3/H)Glu) and L(/sup 3/H)Asp) to cerebellar membranes represented a time-, temperature-, pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K/sub off//K/sub on/ . K/sub d/) for (/sup 3/H)Glu binding to this fraction indicated high-affinity (433 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for (/sup 3/H)Glu and (/sup 3/H)Asp as receptors with differential pharmacological specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37 degrees C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents and L-Glu (50-1000 microM) provided protection against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8-12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8-12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously.

  3. Uncertainty Quantification for Airfoil Icing

    NASA Astrophysics Data System (ADS)

    DeGennaro, Anthony Matteo

    Ensuring the safety of airplane flight in icing conditions is an important and active arena of research in the aerospace community. Notwithstanding the research, development, and legislation aimed at certifying airplanes for safe operation, an analysis of the effects of icing uncertainties on certification quantities of interest is generally lacking. The central objective of this thesis is to examine and analyze problems in airfoil ice accretion from the standpoint of uncertainty quantification. We focus on three distinct areas: user-informed, data-driven, and computational uncertainty quantification. In the user-informed approach to uncertainty quantification, we discuss important canonical icing classifications and show how these categories can be modeled using a few shape parameters. We then investigate the statistical effects of these parameters. In the data-driven approach, we build statistical models of airfoil ice shapes from databases of actual ice shapes, and quantify the effects of these parameters. Finally, in the computational approach, we investigate the effects of uncertainty in the physics of the ice accretion process, by perturbing the input to an in-house numerical ice accretion code that we develop in this thesis.

  4. An HPLC-ECD method for monoamines and metabolites quantification in cuttlefish (cephalopod) brain tissue.

    PubMed

    Bidel, Flavie; Corvaisier, Sophie; Jozet-Alves, Christelle; Pottier, Ivannah; Dauphin, François; Naud, Nadège; Bellanger, Cécile

    2016-08-01

    The cuttlefish belongs to the mollusk class Cephalopoda, considered as the most advanced marine invertebrates and thus widely used as models to study the biology of complex behaviors and cognition, as well as their related neurochemical mechanisms. Surprisingly, methods to quantify the biogenic monoamines and their metabolites in cuttlefish brain remain sparse and measure a limited number of analytes. This work aims to validate an HPLC-ECD method for the simultaneous quantification of dopamine, serotonin, norepinephrine and their main metabolites in cuttlefish brain. In comparison and in order to develop a method suitable to answer both ecological and biomedical questions, the validation was also carried out on a phylogenetically remote species: mouse (mammals). The method was shown to be accurate, precise, selective, repeatable and sensitive over a wide range of concentrations for 5-hydroxyindole-3-acetic acid, serotonin, dopamine, 3,4-dihydroxyphenylacetic acid and norepinephrine in the both extracts of cuttlefish and mouse brain, though with low precision and recovery for 4-hydroxy-3-methoxyphenylethylene glycol. Homovanillic acid, accurately studied in rodents, was not detectable in the brain of cuttlefish. Overall, we described here the first fully validated HPLC method for the routine measurement of both monoamines and metabolites in cuttlefish brain. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Gas plume quantification in downlooking hyperspectral longwave infrared images

    NASA Astrophysics Data System (ADS)

    Turcotte, Caroline S.; Davenport, Michael R.

    2010-10-01

    Algorithms have been developed to support quantitative analysis of a gas plume using down-looking airborne hyperspectral long-wave infrared (LWIR) imagery. The resulting gas quantification "GQ" tool estimates the quantity of one or more gases at each pixel, and estimates uncertainty based on factors such as atmospheric transmittance, background clutter, and plume temperature contrast. GQ uses gas-insensitive segmentation algorithms to classify the background very precisely so that it can infer gas quantities from the differences between plume-bearing pixels and similar non-plume pixels. It also includes MODTRAN-based algorithms to iteratively assess various profiles of air temperature, water vapour, and ozone, and select the one that implies smooth emissivity curves for the (unknown) materials on the ground. GQ then uses a generalized least-squares (GLS) algorithm to simultaneously estimate the most likely mixture of background (terrain) material and foreground plume gases. Cross-linking of plume temperature to the estimated gas quantity is very non-linear, so the GLS solution was iteratively assessed over a range of plume temperatures to find the best fit to the observed spectrum. Quantification errors due to local variations in the camera-topixel distance were suppressed using a subspace projection operator. Lacking detailed depth-maps for real plumes, the GQ algorithm was tested on synthetic scenes generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software. Initial results showed pixel-by-pixel gas quantification errors of less than 15% for a Freon 134a plume.

  6. A regularized method for peptide quantification.

    PubMed

    Yang, Chao; Yang, Can; Yu, Weichuan

    2010-05-07

    Peptide abundance estimation is generally the first step in protein quantification. In peptide abundance estimation, peptide overlapping and peak intensity variation are two challenges. The main objective of this paper is to estimate peptide abundance by taking advantage of peptide isotopic distribution and smoothness of peptide elution profile. Our method proposes to solve the peptide overlapping problem and provides a way to control the variance of estimation. We compare our method with a commonly used method on simulated data sets and two real data sets of standard protein mixtures. The results show that our method achieves more accurate estimation of peptide abundance on different samples. In our method, there is a variance-related parameter. Considering the well-known trade-off between the variance and the bias of estimation, we should not only focus on reducing the variance in real applications. A suggestion about parameter selection is given based on the discussion of variance and bias. Matlab source codes and detailed experimental results are available at http://bioinformatics.ust.hk/PeptideQuant/peptidequant.htm.

  7. Neurochemical effects of a 20 kHz magnetic field on the central nervous system in prenatally exposed mice

    SciTech Connect

    Dimberg, Y.

    1995-09-01

    C57/B1 mice were exposed during pregnancy (gestation days 0--19) to a 20 kHz magnetic field (MF). The asymmetric sawtooth-waveform magnetic field in the exposed racks had a flux density of 15 {micro}T (peak to peak). After 19 days, the exposure was terminated, and the mice were housed individually under normal laboratory conditions. On postnatal day (PD) 1, PD21, and PD308, various neurochemical markers in the brains of the offspring were investigated and the brains weighed. No significant difference was found in the whole brain weight at PD1 or PD21 between exposed offspring and control animals. However, on PD308, a significant decrease in weight of the whole brain was detected in exposed animals. No significant differences were found in the weight of cortex, hippocampus, septum, or cerebellum on nay of the sampling occasions, nor were any significant differences detected in protein-, DNA-level, nerve growth factor (NGF), acetylcholine esterase- (AChE), or 2{prime},3{prime}-cyclic nucleotide 3{prime}-phosphodiesterase- (CNP; marker for oligodendrocytes) activities on PD21 in cerebellum. Cortex showed a more complex pattern of response to MF: MF treatment resulted in a decrease in DNA level and increases in the activities of CNP, AChE, and NGF protein. On PD308, the amount of DNA was significantly reduced in MF-treated cerebellum and CNP activity was still enhanced in MF-treated cortex compared to controls. Most of the effect of MF treatment during the embryonic period were similar to those induced by ionizing radiation but much weaker. However, the duration of the exposure required to elucidate the response of different markers to MF seems to be greater and effects appear later during development compared to responses to ionizing radiation.

  8. Water temperature determines neurochemical and behavioural responses to forced swim stress: an in vivo microdialysis and biotelemetry study in rats.

    PubMed

    Linthorst, Astrid C E; Flachskamm, Cornelia; Reul, Johannes M H M

    2008-03-01

    Forced swimming is a behavioural stress model increasingly used to investigate the neurocircuitry of stress responses. Although forced swim stress clearly is a psychological stressor (anxiety, panic), its physical aspects are often neglected. There are indications that behavioural and neurochemical responses to swim stress depend on the water temperature. Thus, we investigated the responsiveness of hippocampal serotonergic neurotransmission (important in the coordination of stress responses), and of behaviour and core body temperature to forced swimming at different water temperatures (19, 25 and 35 degrees C). In vivo microdialysis and biotelemetry in freely-behaving rats were used. Dialysates were analysed for serotonin (5-HT) and its metabolite 5-HIAA (5-hydroxyindoleacetic acid) by HPLC with electrochemical detection. Forced swimming in water at 25 and 19 degrees C decreased core body temperature by 8 and 12 degrees C, respectively. A rapid and pronounced increase in hippocampal 5-HT and 5-HIAA was found in rats that swam at 35 degrees C, whereas biphasic responses in 5-HT and 5-HIAA were observed at 25 and 19 degrees C. Also swim stress behaviour and post-stress home cage behaviour depended on the water temperature. Comparing the serotonergic and core body temperature changes revealed that a combination of two different 5-HT and 5-HIAA responses seems to shape the neurotransmitter response. Swimming-induced increases in hippocampal extracellular concentrations of 5-HT and 5-HIAA occurred at all water temperatures, but these increases were temporarily quenched, or concentrations were transistently decreased, when core body temperature fell below 31 degrees C in water at 25 or 19 degrees C. These data demonstrate that water temperature is a key factor determining the impact of forced swim stress on behaviour and neurochemistry, and underscore that changes in these parameters should be interpreted in the light of the autonomic responses induced by this stressor.

  9. Behavioral and Neurochemical Deficits in Aging Rats with Increased Neonatal Iron Intake: Silibinin’s Neuroprotection by Maintaining Redox Balance

    PubMed Central

    Chen, Hanqing; Wang, Xijin; Wang, Meihua; Yang, Liu; Yan, Zhiqiang; Zhang, Yuhong; Liu, Zhenguo

    2015-01-01

    Aging is a critical risk factor for Parkinson’s disease. Silibinin, a major flavonoid in Silybum marianum, has been suggested to display neuroprotective properties against various neurodegenerative diseases. In the present study, we observed that neonatal iron (120 μg/g body weight) supplementation resulted in significant abnormality of behavior and depletion of striatal dopamine (DA) in the aging male and female rats while it did not do so in the young male and female rats. No significant change in striatal serotonin content was observed in the aging male and female rats with neonatal supplementation of the same dose of iron. Furthermore, we found that the neonatal iron supplementation resulted in significant increase in malondialdehyde (MDA) and decrease in glutathione (GSH) in the substantia nigra (SN) of the aging male and female rats. No significant change in content of MDA and GSH was observed in the cerebellum of the aging male and female rats with the neonatal iron supplementation. Interestingly, silibinin (25 and 50 mg/kg body weight) treatment significantly and dose-dependently attenuated depletion of striatal DA and improved abnormality of behavior in the aging male and female rats with the neonatal iron supplementation. Moreover, silibinin significantly reduced MDA content and increased GSH content in the SN of the aging male and female rats. Taken together, our results indicate that elevated neonatal iron supplementation may result in neurochemical and behavioral deficits in the male and female rats with aging and silibinin may exert dopaminergic neuroprotection by maintaining redox balance. PMID:26578951

  10. Neurochemical and Neuroanatomical Plasticity Following Memory Training and Yoga Interventions in Older Adults with Mild Cognitive Impairment.

    PubMed

    Yang, Hongyu; Leaver, Amber M; Siddarth, Prabha; Paholpak, Pattharee; Ercoli, Linda; St Cyr, Natalie M; Eyre, Harris A; Narr, Katherine L; Khalsa, Dharma S; Lavretsky, Helen

    2016-01-01

    Behavioral interventions are becoming increasingly popular approaches to ameliorate age-related cognitive decline, but their underlying neurobiological mechanisms and clinical efficiency have not been fully elucidated. The present study explored brain plasticity associated with two behavioral interventions, memory enhancement training (MET) and a mind-body practice (yogic meditation), in healthy seniors with mild cognitive impairment (MCI) using structural magnetic resonance imaging (s-MRI) and proton magnetic resonance spectroscopy ((1)H-MRS). Senior participants (age ≥55 years) with MCI were randomized to the MET or yogic meditation interventions. For both interventions, participants completed either MET training or Kundalini Yoga (KY) for 60-min sessions over 12 weeks, with 12-min daily homework assignments. Gray matter volume and metabolite concentrations in the dorsal anterior cingulate cortex (dACC) and bilateral hippocampus were measured by structural MRI and (1)H-MRS at baseline and after 12 weeks of training. Metabolites measured included glutamate-glutamine (Glx), choline-containing compounds (Cho, including glycerophosphocholine and phosphocholine), gamma-aminobutyric acid (GABA), and N-acetyl aspartate and N-acetylaspartyl-glutamate (NAA-NAAG). In total, 11 participants completed MET and 14 completed yogic meditation for this study. Structural MRI analysis showed an interaction between time and group in dACC, indicating a trend towards increased gray matter volume after the MET intervention. (1)H-MRS analysis showed an interaction between time and group in choline-containing compounds in bilateral hippocampus, induced by significant decreases after the MET intervention. Though preliminary, our results suggest that memory training induces structural and neurochemical plasticity in seniors with MCI. Further research is needed to determine whether mind-body interventions like yoga yield similar neuroplastic changes.

  11. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats.

    PubMed

    Lazenka, M F; Suyama, J A; Bauer, C T; Banks, M L; Negus, S S

    2017-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a substrate for dopamine (DA), norepinephrine and serotonin (5HT) transporters that produces greater pharmacological effects on certain endpoints in females than males in both clinical and rodent preclinical studies. To evaluate potential for sex differences in abuse-related MDMA effects, the present study compared MDMA effects on intracranial self-stimulation (ICSS) and on in vivo microdialysis measurements of DA or 5HT in the nucleus accumbens (NAc) in female and male Sprague-Dawley rats. For ICSS studies, electrodes were implanted in the medial forebrain bundle and rats trained to press for electrical stimulation over a range of frequencies (56-158Hz, 0.05 log increments) under a fixed-ratio 1 schedule, and the potency (0.32-3.2mg/kg, 10min pretreatment) and time course (3.2. mg/kg, 10-180min pretreatment) of MDMA effects were determined. For in vivo microdialysis, rats were implanted with bilateral guide cannulae targeting the NAc, and the time course of MDMA effects (1.0-3.2mg/kg, 0-180min) on DA and 5HT was determined. MDMA produced qualitatively similar effects in both sexes on ICSS (both increases in low ICSS rates maintained by low brain-stimulation frequencies and decreases in high ICSS rates maintained by high brain-stimulation frequencies) and microdialysis (increases in both DA and 5HT). The duration and peak levels of both abuse-related ICSS facilitation and increases in NAc DA were longer in females. MDMA was also more potent to increase 5HT in females. These results provide evidence for heightened sensitivity of females to abuse-related behavioral and neurochemical effects of MDMA in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Neurochemical and Neuroanatomical Plasticity Following Memory Training and Yoga Interventions in Older Adults with Mild Cognitive Impairment

    PubMed Central

    Yang, Hongyu; Leaver, Amber M.; Siddarth, Prabha; Paholpak, Pattharee; Ercoli, Linda; St. Cyr, Natalie M.; Eyre, Harris A.; Narr, Katherine L.; Khalsa, Dharma S.; Lavretsky, Helen

    2016-01-01

    Behavioral interventions are becoming increasingly popular approaches to ameliorate age-related cognitive decline, but their underlying neurobiological mechanisms and clinical efficiency have not been fully elucidated. The present study explored brain plasticity associated with two behavioral interventions, memory enhancement training (MET) and a mind-body practice (yogic meditation), in healthy seniors with mild cognitive impairment (MCI) using structural magnetic resonance imaging (s-MRI) and proton magnetic resonance spectroscopy (1H-MRS). Senior participants (age ≥55 years) with MCI were randomized to the MET or yogic meditation interventions. For both interventions, participants completed either MET training or Kundalini Yoga (KY) for 60-min sessions over 12 weeks, with 12-min daily homework assignments. Gray matter volume and metabolite concentrations in the dorsal anterior cingulate cortex (dACC) and bilateral hippocampus were measured by structural MRI and 1H-MRS at baseline and after 12 weeks of training. Metabolites measured included glutamate-glutamine (Glx), choline-containing compounds (Cho, including glycerophosphocholine and phosphocholine), gamma-aminobutyric acid (GABA), and N-acetyl aspartate and N-acetylaspartyl-glutamate (NAA-NAAG). In total, 11 participants completed MET and 14 completed yogic meditation for this study. Structural MRI analysis showed an interaction between time and group in dACC, indicating a trend towards increased gray matter volume after the MET intervention. 1H-MRS analysis showed an interaction between time and group in choline-containing compounds in bilateral hippocampus, induced by significant decreases after the MET intervention. Though preliminary, our results suggest that memory training induces structural and neurochemical plasticity in seniors with MCI. Further research is needed to determine whether mind-body interventions like yoga yield similar neuroplastic changes. PMID:27917121

  13. Effect of JWH-250, JWH-073 and their interaction on "tetrad", sensorimotor, neurological and neurochemical responses in mice.

    PubMed

    Ossato, Andrea; Canazza, Isabella; Trapella, Claudio; Vincenzi, Fabrizio; De Luca, Maria Antonietta; Rimondo, Claudia; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; Marti, Matteo

    2016-06-03

    JWH-250 and JWH-073 are two synthetic cannabinoid agonists with nanomolar affinity at CB1 and CB2 receptors. They are illegally marketed within "herbal blend" for theirs psychoactive effects greater than those produced by Cannabis. Recently, we analyzed an "herbal" preparation containing a mixture of both JWH-250 and JWH-073. The present study was aimed at investigating the in vitro and in vivo pharmacological activity of JWH-250 and JWH-073 in male CD-1 mice. In vitro competition binding experiments performed on mouse and human CB1 and CB2 receptors revealed a nanomolar affinity and potency of the JWH-250 and JWH-073. In vivo studies showed that JWH-250 and JWH-073, administered separately, induced a marked hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promote aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of JWH-250 and JWH-073 stimulated dopamine release in the nucleus accumbens in a dose-dependent manner. Behavioral, neurological and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251. Co-administration of ineffective doses of JWH-250 and JWH-073 impaired visual sensorimotor responses, improved mechanical pain threshold and stimulated mesolimbic DA transmission in mice, living unchanged all other behavioral and physiological parameters. For the first time the present study demonstrates the overall pharmacological effects induced by the administration of JWH-250 and JWH-073 in mice and it reveals their potentially synergistic action suggesting that co-administration of different synthetic cannabinoids may potentiate the detrimental effects of individual compounds increasing their dangerousness and abuse potential.

  14. In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern.

    PubMed

    Arini, Adeline; Cavallin, Jenna E; Berninger, Jason P; Marfil-Vega, Ruth; Mills, Marc; Villeneuve, Daniel L; Basu, Niladri

    2016-04-01

    Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24-42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24-54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences.

  15. Effects of polychlorinated biphenyl (PCB) on regulation of thyroid-, growth-, and neurochemically related developmental processes in young rats

    SciTech Connect

    Juarez de Ku, L.M.

    1992-01-01

    Neonatal exposure to the toxic chemical polychlorinated biphenyl (PCB) induces hypothyroidism and retarded growth. Neonatal rats made hypothyroid by chemical or surgical means experience retarded growth and subnormal activity of choline acetyltransferase (ChAT) This study compared thyroid-, growth-, and neurochemically-related processes altered by hypothyroidism induced by other means, with PCB-induced hypothyroidism: (1) titers of thyroid stimulating hormone (TSH); (2) titers of hormones that regulate growth [growth hormone (GH), insulin-growth like factor-I (IGF-1), growth hormone releasing hormone (GHRH) and somatostatin (SS)]; or (3) brain ChAT activity. Whether PCB-induced growth retardation and other alterations are secondary to accompanying hypothyroidism rather than or in addition to a direct effect of PCB was also examined. Pregnant rats were fed chow containing 0 (controls), 62.5, 125, or 250 ppm PCB (entering offspring through placenta and milk) throughout pregnancy and lactation. Neonates exposed to PCB displayed many alterations similar to those made hypothyroid by other means: depression of overall and skeletal growth, circulating by other means: depression of overall and skeletal growth, circulating T[sub 4] levels and ChAT activity, and no change in hypothalamic GHRH and SS concentrations. Differences included a paradoxical increase in circulating GH levels, and no significant alteration of circulation IGF-1 and TSH levels and pituitary GH and TSH levels (although trends were in the expected direction). Thus, PCB-induced hypothyroidism may partially cause altered skeletal growth, circulating GH and TSH concentrations, and ChAT activity. Both T[sub 4] and T[sub 3] injections returned circulating TSH and GH levels and pituitary TSH content toward control levels; T[sub 3] restored skeletal, but not overall growth; and T[sub 4] elevated ChAT activity.

  16. Neurochemical, behavioral and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

    PubMed Central

    Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.

    2008-01-01

    Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364

  17. The human cuneate nucleus contains discrete subregions whose neurochemical features match those of the relay nuclei for nociceptive information.

    PubMed

    Del Fiacco, Marina; Quartu, Marina; Serra, Maria Pina; Boi, Marianna; Demontis, Roberto; Poddighe, Laura; Picci, Cristina; Melis, Tiziana

    2014-11-01

    The present paper is aimed at defining distinctive subdivisions of the human cuneate nucleus (Cu), evident from prenatal to old life, whose occurrence has never been clearly formalized in the human brain, or described in other species so far. It extends our early observations on the presence of gray matter areas that host strong substance P (SP) immunoreactivity in the territory of the human Cu and adjacent cuneate fascicle. Here we provide a three-dimensional reconstruction of the Cu fields rich in SP and further identify those areas by means of their immunoreactivity to the neuropeptides SP, calcitonin gene-related peptide, methionine- and leucine-enkephalin, peptide histidine-isoleucine, somatostatin and galanin, to the trophins glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, and to the neuroplasticity proteins polysialylated neural cell adhesion molecule and growth-associated protein-43. The presence, density and distribution of immunoreactivity for each of these molecules closely resemble those occurring in the superficial layers of the caudal spinal trigeminal nucleus (Sp5C). Myelin and Nissl stainings suggest that those Cu subregions and the Sp5C superficial layers share a similar histological aspect. This work establishes the existence of definite subregions, localized within the Cu territory, that bear the neurochemical and histological features of sensory nuclei committed to the neurotransmission of protopathic stimuli, including pain. These findings appear of particular interest when considering that functional, preclinical and clinical studies show that the dorsal column nuclei, classical relay station of fine somatic tactile and proprioceptive sensory stimuli, are also involved in pain neurotransmission.

  18. The P-glycoprotein inhibitor cyclosporin A differentially influences behavioural and neurochemical responses to the antidepressant escitalopram.

    PubMed

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Donovan, Maria D; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2014-03-15

    Recent studies have raised the possibility that P-glycoprotein (P-gp) inhibition may represent a putative augmentation strategy for treatment with certain antidepressants. Indeed, we have previously shown that administration of the P-gp inhibitor verapamil increased the brain distribution and behavioural effects of the antidepressant escitalopram. The aim of the current study was to investigate if similar effects occur with another P-gp inhibitor, cyclosporin A (CsA). CsA pre-treatment exacerbated the severity of behaviours in an escitalopram-induced mouse model of serotonin syndrome, a potentially life-threatening adverse drug reaction associated with serotonergic drugs. P-gp inhibition by CsA enhanced the brain distribution of escitalopram by 70-80%. Serotonin (5-HT) turnover in the prefrontal cortex was reduced by escitalopram, and this effect was augmented by CsA. However, CsA pre-treatment did not augment the effect of escitalopram in the tail suspension test (TST) of antidepressant-like activity. Microdialysis experiments revealed that pre-treatment with CsA failed to augment, but blunted, the increase in extracellular 5-HT in response to escitalopram administration. This blunting effect may contribute to the lack of augmentation in the TST. Taken together, the present studies demonstrate that co-administration of CsA and escitalopram produces differential effects depending on the behavioural and neurochemical assays employed. Thus, the results highlight the need for further studies involving more selective pharmacological tools to specifically evaluate the impact of P-gp inhibition on behavioural responses to antidepressants which are subject to efflux by P-gp. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hemispheric specialization in quantification processes.

    PubMed

    Pasini, M; Tessari, A

    2001-01-01

    Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range.

  20. Damage quantification in confined ceramics

    SciTech Connect

    Xu Yueping; Espinosa, Horacio D.

    1998-07-10

    Impact recovery experiments on confined ceramic rods and multi-layer ceramic targets are performed for failure identification and damage quantification. In-material stress measurements with manganin gauges and velocity histories are recorded with interferometric techniques. Observations on recovered samples are made through Optical Microscopy. Microscopy results show that microcracking is the dominant failure mode in ceramic rods and multi-layer ceramic targets. Macrocrack surface per unit area is estimated on various sections along several orientations. Correlation between dynamic loading and crack density is established. Moreover, multiple penetrator defeat is observed in ceramic targets recovered from penetration experiments.

  1. Lipid Profile

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...

  2. Behavioral and neurochemical alterations in the offspring of rats after maternal or paternal inhalation exposure to the industrial solvent 2-methoxyethanol.

    PubMed

    Nelson, B K; Brightwell, W S; Burg, J R; Massari, V J

    1984-02-01

    The industrial solvent 2-methoxyethanol (2ME) has antifertility effects in male rats at 300 ppm and is teratogenic in rats and rabbits at 50 ppm. The present research investigated if exposure of paternal or maternal animals to 25 ppm 2ME, the current U.S. permissible occupational exposure limit, would produce detectable effects in the offspring. Eighteen male young-adult Sprague-Dawley rats were exposed to 25 ppm 2ME 7 hr/day, 7 days/week for 6 weeks; they were then mated with untreated females which were allowed to deliver and rear their young. In addition, groups of 15 pregnant rats were exposed 7 hr/day on gestation days 7-13 or 14-20 and allowed to deliver and rear their young. At birth, litters were culled to 4 females and 4 males for behavioral testing of neuromotor function, activity, and simple learning ability on days 10 through 90. In addition, brains from newborn and 21-day-old offspring were analyzed for neurochemical deviations from controls. No effects on paternal or maternal animals, nor on the number or weight of live offspring, were noted. Behavioral testing revealed significant differences from controls only in avoidance conditioning of offspring of mothers exposed on days 7-13. In contrast, neurochemical deviations were observed in brains from 21-day-old offspring from the paternally exposed group as well as from both maternally exposed groups; changes were numerous in the brainstem and cerebrum but were fewer in the cerebellum and midbrain. Thus it appears that both paternal and maternal inhalation of 25 ppm 2ME produces some effect which is reflected in neurochemical deviations in the offspring.

  3. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    NASA Astrophysics Data System (ADS)

    Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to ;accelerated aging.; One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  4. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Nimchinsky, E. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The neurochemical characteristics of the neuronal subsets that furnish different types of corticocortical connections have been only partially determined. In recent years, several cytoskeletal proteins have emerged as reliable markers to distinguish subsets of pyramidal neurons in the cerebral cortex of primates. In particular, previous studies using an antibody to nonphosphorylated neurofilament protein (SMI-32) have revealed a consistent degree of regional and laminar specificity in the distribution of a subpopulation of pyramidal cells in the primate cerebral cortex. The density of neurofilament protein-immunoreactive neurons was shown to vary across corticocortical pathways in macaque monkeys. In the present study, we have used the antibody SMI-32 to examine further and to quantify the distribution of a subset of corticocortically projecting neurons in a series of long ipsilateral corticocortical pathways in comparison to short corticocortical, commissural, and limbic connections. The results demonstrate that the long association pathways interconnecting the frontal, parietal, and temporal neocortex have a high representation of neurofilament protein-enriched pyramidal neurons (45-90%), whereas short corticocortical, callosal, and limbic pathways are characterized by much lower numbers of such neurons (4-35%). These data suggest that different types of corticocortical connections have differential representation of highly specific neuronal subsets that share common neurochemical characteristics, thereby determining regional and laminar cortical patterns of morphological and molecular heterogeneity. These differences in neuronal neurochemical phenotype among corticocortical circuits may have considerable influence on cortical processing and may be directly related to the type of integrative function subserved by each cortical pathway. Finally, it is worth noting that neurofilament protein-immunoreactive neurons are dramatically affected in the course of

  5. Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Nimchinsky, E. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The neurochemical characteristics of the neuronal subsets that furnish different types of corticocortical connections have been only partially determined. In recent years, several cytoskeletal proteins have emerged as reliable markers to distinguish subsets of pyramidal neurons in the cerebral cortex of primates. In particular, previous studies using an antibody to nonphosphorylated neurofilament protein (SMI-32) have revealed a consistent degree of regional and laminar specificity in the distribution of a subpopulation of pyramidal cells in the primate cerebral cortex. The density of neurofilament protein-immunoreactive neurons was shown to vary across corticocortical pathways in macaque monkeys. In the present study, we have used the antibody SMI-32 to examine further and to quantify the distribution of a subset of corticocortically projecting neurons in a series of long ipsilateral corticocortical pathways in comparison to short corticocortical, commissural, and limbic connections. The results demonstrate that the long association pathways interconnecting the frontal, parietal, and temporal neocortex have a high representation of neurofilament protein-enriched pyramidal neurons (45-90%), whereas short corticocortical, callosal, and limbic pathways are characterized by much lower numbers of such neurons (4-35%). These data suggest that different types of corticocortical connections have differential representation of highly specific neuronal subsets that share common neurochemical characteristics, thereby determining regional and laminar cortical patterns of morphological and molecular heterogeneity. These differences in neuronal neurochemical phenotype among corticocortical circuits may have considerable influence on cortical processing and may be directly related to the type of integrative function subserved by each cortical pathway. Finally, it is worth noting that neurofilament protein-immunoreactive neurons are dramatically affected in the course of

  6. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of (56)Fe particles.

    PubMed

    Poulose, Shibu M; Rabin, Bernard M; Bielinski, Donna F; Kelly, Megan E; Miller, Marshall G; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as (56)Fe, within 24-48h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to (56)Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to (56)Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that (56)Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  7. Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy.

    PubMed

    Mishra, Awanish; Goel, Rajesh Kumar

    2015-08-01

    Our previous work demonstrated, chronic epilepsy affects learning and memory of rodents along with peculiar neurochemical changes in discrete brain parts. Most commonly used antiepileptic drugs (phenytoin and sodium valproate) also worsen learning and memory in the patients with epilepsy. Therefore this study was designed to carry out comparison of behavioral and neurochemical changes with phenytoin and sodium valproate treatment in pentylenetetrazole-kindling induced learning and memory deficit to devise add on therapy for this menace. For the experimental epilepsy, animals were kindled using PTZ (35 mg/kg; i.p., at 48 ± 2 h intervals) and successful kindled animals were involved in the study. These kindled animals were treated with saline, phenytoin (30 mg/kg/day, i.p.) and sodium valproate (300 mg/kg/day, i.p.) for 20 days. These animals were challenged with PTZ challenging dose (35 mg/kg) on day 5, 10, 15 and 20 to evaluate the effect on seizure severity score on different days. Effect on learning and memory was evaluated using elevated plus maze and passive shock avoidance paradigm. On day 20, after behavioral evaluations, animals were sacrificed to analyze glutamate, GABA, norepinephrine, dopamine, serotonin, total nitrite level and acetylcholinesterase level in cortex and hippocampus. Behavioral evaluations suggested that phenytoin and sodium valproate treatment significantly reduced seizure severity in the kindled animals, while sodium valproate treatment controls seizures with least memory deficit in comparison to phenytoin. Neurochemical findings revealed that elevated cortical acetylcholinesterase level could be one of the responsible factors leading to memory deficit in phenytoin treated animals. However sodium valproate treatment reduced cortical acetylcholinesterase level and had least debilitating consequences on memory deficit. Therefore, attenuation of elevated AChE activity can be one of add-on approach for management of memory deficit

  8. A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome.

    PubMed

    Gerlach, M; Gsell, W; Kornhuber, J; Jellinger, K; Krieger, V; Pantucek, F; Vock, R; Riederer, P

    1996-11-25

    Functional models of the circuitry of the basal ganglia have recently been proposed to account for the vast spectrum of motor disorders associated with the loss of anatomical or neurochemical integrity within the basal ganglia. On the basis of these hypothetical models, hypokinetic disorders such as Parkinson's disease, are thought to be associated with excessive tonic and phasic inhibition of the output from the basal ganglia to the thalamus. In the present study we have attempted to determine the validity of the proposed model by measuring neurochemical markers of inhibitory and excitatory neurotransmission in post mortem human brain tissue. We have determined the concentrations of the excitatory neurotransmitters aspartate/glutamate and of the inhibitory neurotransmitter GABA in 18 relevant regions of the thalamocortical circuits of the basal ganglia of patients who had manifested Parkinsonian symptoms, and compared them with controls of individuals who had died without any history of neurological or psychiatric disorders and had no neuropathological abnormalities. Additionally, the receptor subtype for the excitatory amino acid N-methyl-D-aspartate (NMDA) was studied in the same brain tissue in which neurotransmitter concentrations had been analysed as neurochemical markers of post-synaptic excitatory neurotransmission. In patients who had manifested Parkinsonian symptoms, glutamate and aspartate levels were found to be unchanged in all examined brain regions. In contrast, the binding of [3H]MK-801, which identifies the NMDA receptor, was reduced in the head (-42%) and body (-38%) of the caudate nucleus. In parkinsonian patients, GABA levels were diminished by 36% in the centromedial thalamus, compared to control values. These results do not confirm the changes in neurotransmitter concentrations predicted according to the model, although we cannot rule out that the predicted changes might have been observed if the Parkinsonian group had been further subdivided

  9. State Profiles.

    ERIC Educational Resources Information Center

    State-Federal Information Clearinghouse for Exceptional Children, Reston, VA.

    State-by-state public policy profiles are provided by the Council for Exceptional Children's State-Federal Information Clearinghouse. These profiles summarize the present legal base for the delivery of educational services to handicapped children in the United States. Included in each profile is information from various avenues used to establish…

  10. Quantification of wastewater sludge dewatering.

    PubMed

    Skinner, Samuel J; Studer, Lindsay J; Dixon, David R; Hillis, Peter; Rees, Catherine A; Wall, Rachael C; Cavalida, Raul G; Usher, Shane P; Stickland, Anthony D; Scales, Peter J

    2015-10-01

    Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the dewatering comparison. This method is shown to be necessary for quantification and comparison of dewaterability as the permeability and compressibility of the sludges varies by up to ten orders of magnitude in the range of solids concentration of interest to industry. This causes a high sensitivity of the dewaterability comparison to the starting concentration of laboratory tests, thus simple dewaterability comparison based on parameters such as the specific resistance to filtration is difficult. The new approach is demonstrated to be robust relative to traditional methods such as specific resistance to filtration analysis and has an in-built integrity check. Comparison of the quantified dewaterability of the fifteen sludges to the relative volatile solids content showed a very strong correlation in the volatile solids range from 40 to 80%. The data indicate that the volatile solids parameter is a strong indicator of the dewatering behaviour of sewage sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nanoscale elemental quantification in heterostructured SiGe nanowires

    NASA Astrophysics Data System (ADS)

    Hourani, W.; Periwal, P.; Bassani, F.; Baron, T.; Patriarche, G.; Martinez, E.

    2015-04-01

    The nanoscale chemical characterization of axial heterostructured Si1-xGex nanowires (NWs) has been performed using scanning Auger microscopy (SAM) through local spectroscopy, line-scan and depth profile measurements. Local Auger profiles are realized with sufficient lateral resolution to resolve individual nanowires. Axial and radial composition heterogeneities are highlighted. Our results confirm the phenomenon of Ge radial growth forming a Ge shell around the nanowire. Moreover, quantification is performed after verifying the absence of preferential sputtering of Si or Ge on a bulk SiGe sample. Hence, reliable results are obtained for heterostructured NW diameters higher than 100 nm. However, for smaller sizes, we have noticed that the sensitivity factors evaluated from bulk samples cannot be used because of edge effects occurring for highly topographical features and a modified contribution of backscattered electrons.The nanoscale chemical characterization of axial heterostructured Si1-xGex nanowires (NWs) has been performed using scanning Auger microscopy (SAM) through local spectroscopy, line-scan and depth profile measurements. Local Auger profiles are realized with sufficient lateral resolution to resolve individual nanowires. Axial and radial composition heterogeneities are highlighted. Our results confirm the phenomenon of Ge radial growth forming a Ge shell around the nanowire. Moreover, quantification is performed after verifying the absence of preferential sputtering of Si or Ge on a bulk SiGe sample. Hence, reliable results are obtained for heterostructured NW diameters higher than 100 nm. However, for smaller sizes, we have noticed that the sensitivity factors evaluated from bulk samples cannot be used because of edge effects occurring for highly topographical features and a modified contribution of backscattered electrons. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07503j

  12. Detection and Quantification of Neurotransmitters in Dialysates

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.; Denoroy, Luc

    2010-01-01

    Sensitive analytical methods are needed for the separation and quantification of neurotransmitters obtained in microdialysate studies. This unit describes methods that permit quantification of nanomolar concentrations of monoamines and their metabolites (high-pressure liquid chromatography electrochemical detection), acetylcholine (HPLC-coupled to an enzyme reactor), and amino acids (HPLC-fluorescence detection; capillary electrophoresis with laser-induced fluorescence detection). PMID:19575473

  13. In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens.

    PubMed

    Bradley, Mark; Rutkiewicz, Jennifer; Mittal, Krittika; Fernie, Kimberly; Basu, Niladri

    2015-01-01

    Organophosphorous flame retardants (OPFRs) are contaminants of emerging concern. There is growing evidence of environmental contamination and exposures to both humans and wildlife. Here, the objective was to increase understanding of the potential neurodevelopmental effects of two relevant OPFRs, TMPP (tri (methylphenyl) phosphate; a non-halogen-containing OPFR) and TDCIPP (tris (1,3-dichloro-isopropyl) phosphate; a halogen-containing OPFR) in an avian embryo/chick model. We injected white leghorn chicken eggs with a range of TMPP (0, 10, 100, and 1000 ng/g) or TDCIPP (0, 10, 100, 1000, 50,000 ng/g) concentrations at incubation day 0 exposing embryos throughout the ~21-day in ovo period. Hatching success was unaffected by TMPP, but TDCIPP-exposed chicks had higher early-incubation mortality in 100 and 50,000 ng/g groups. On 7-9-day-old chicks, we assessed behavior via tests concerning righting reflex, angled balance beams, gait patterns, wing flap reflex, and open field movements. Chicks exposed to 100 ng/g TDCIPP achieved 40% lower maximum velocity in the open field test than vehicle-exposed controls, while those exposed to 1000 ng/g TDCIPP achieved 20% higher maximum velocity than vehicle-exposed controls. Chicks exposed to 50,000 ng/g TDCIPP showed reduced righting response success. There were no dose- or treatment-related differences in angled beam, gait analysis, or wing flap reflex tests. Cerebrum hemispheres from 10-day-old chicks were examined for neurochemistry (acetylcholinesterase [AChE] activity and both nicotinic [nACh] and muscarinic [mACh] acetylcholine receptor levels) and cerebellums were examined for histopathology. TDCIPP-exposed chicks had reduced number of degenerate Purkinje cells (TDCIPP, 1000 ng/g), possibly indicating disruption of neurodevelopment. No neurochemical effects were found in TMPP- or TDCIPP-exposed chicks. In general this study shows some possible neurodevelopmental effects in chicks exposed to TDCIPP when levels greatly

  14. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    model, the pig. Results The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA. Conclusions By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery. PMID:19425899

  15. A quantitative study of neurochemically defined excitatory interneuron populations in laminae I–III of the mouse spinal cord

    PubMed Central

    Gutierrez-Mecinas, Maria; Furuta, Takahiro; Watanabe, Masahiko

    2016-01-01

    Background Excitatory interneurons account for the majority of neurons in laminae I–III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. Results SST, preprotachykinin B (PPTB, the precursor of NKB), neurotensin, PKCγ or calretinin were detected with antibodies, while cells expressing GRP were identified in a mouse line (GRP-EGFP) in which enhanced green fluorescent protein (EGFP) was expressed under control of the GRP promoter. We found that SST-, neurotensin-, PPTB- and PKCγ-expressing cells accounted for 44%, 7%, 12% and 21% of the neurons in laminae I–II, and 16%, 8%, 4% and 14% of those in lamina III, respectively. GRP-EGFP cells made up 11% of the neuronal population in laminae I–II. The neurotensin, PPTB and GRP-EGFP populations showed very limited overlap, and we estimate that between them they account for ∼40% of the excitatory interneurons in laminae I–II. SST which is expressed by ∼60% of excitatory interneurons in this region, was found in each of these populations, as well as in cells that did not express any of the other peptides. Neurotensin and PPTB were often found in cells with PKCγ, and between them, constituted around 60% of the PKCγ cells. Surprisingly, we found extensive co-localisation of SST and calretinin. Conclusions These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets

  16. Neurochemical and neurobehavioral effects of neonatal administration of beta-N-methylamino-L-alanine and 3,3'-iminodipropionitrile.

    PubMed

    Dawson, R; Marschall, E G; Chan, K C; Millard, W J; Eppler, B; Patterson, T A

    1998-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by a loss of motor neurons in the spinal cord, brain stem, and cortex. The present study examined the neurochemical and neurobehavioral consequences of the neonatal administration of IDPN and BMAA, two neurotoxins previously considered as experimental models of ALS. Sprague-Dawley rat pups (male and female) were injected SC with IDPN or BMAA. The following treatment groups (n = 5-14 per group) were studied; IDPN [100 mg/kg on postnatal days (PNDs) 2, 4, and 6], BMAA-A (500 mg/kg PND 5 only), BMAA-B (500 mg/kg PND 2 and 5), and BMAA-C (100 mg/kg PND 2 and 5). Neurobehavioral testing was performed and the rats were sacrificed at 101 days of age. Monoamine and amino acid content was measured by HPLC in brain regions and the spinal cord. IDPN treatment impaired the righting reflex and decreased forepaw suspension times. BMAA-A and BMAA-B males exhibited an increase in open field behavior. The hindlimb splay of BMAA-A females was increased. Other significant behavioral and endocrine effects were also seen with neonatal IDPN or BMAA treatment. IDPN females had increased spinal cord content of norepinephrine (NE), serotonin, and 5-hydroxyindoleacetic acid (5-HIAA). IDPN males had no alterations in spinal cord content of NE or Glu, but serotonin and 5-HIAA content were increased. BMAA-A and BMAA-B males also had elevated spinal cord 5-HIAA content whereas females were unaffected. Glu and Asp content in the spinal cord was elevated in the female BMAA-C group. Monoamines were also altered in the cerebellum, mediobasal hypothalamus, and hippocampus by IDPN and BMAA treatment. alpha 2-Adrenergic binding sites were increased in the spinal cord by IDPN and in the cerebellum by BMAA treatment. The results of this study clearly demonstrated that both IDPN and BMAA given neonatally can produce changes in motor function and spinal cord neurochemistry, although the pattern of the

  17. Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas.

    PubMed

    Perry, Kenneth W; Falcone, Julie F; Fell, Matthew J; Ryder, John W; Yu, Hong; Love, Patrick L; Katner, Jason; Gordon, Kimberly D; Wade, Mark R; Man, Teresa; Nomikos, George G; Phebus, Lee A; Cauvin, Annick J; Johnson, Kirk W; Jones, Carrie K; Hoffmann, Beth J; Sandusky, George E; Walter, Magnus W; Porter, Warren J; Yang, Lijuan; Merchant, Kalpana M; Shannon, Harlan E; Svensson, Kjell A

    2008-10-01

    Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.

  18. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes.

    PubMed

    Bhutani, Mohit Kumar; Bishnoi, Mahendra; Kulkarni, Shrinivas K

    2009-03-01

    Curcumin, a yellow pigment extracted from rhizomes of the plant Curcuma longa (turmeric), has been widely used as food additive and also as a herbal medicine throughout Asia. The present study was designed to study the pharmacological, biochemical and neurochemical effects of daily administration of curcumin to rats subjected to chronic unpredictable stress. Curcumin treatment (20 and 40 mg/kg, i.p., 21 days) significantly reversed the chronic unpredictable stress-induced behavioral (increase immobility period), biochemical (increase monoamine oxidase activity) and neurochemical (depletion of brain monoamine levels) alterations. The combination of piperine (2.5 mg/kg, i.p., 21 days), a bioavailability enhancer, with curcumin (20 and 40 mg/kg, i.p., 21 days) showed significant potentiation of its anti-immobility, neurotransmitter enhancing (serotonin and dopamine) and monoamine oxidase inhibitory (MAO-A) effects as compared to curcumin effect per se. This study provided a scientific rationale for the use of curcumin and its co-administration with piperine in the treatment of depressive disorders.

  19. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system.

    PubMed

    Listos, Joanna; Baranowska-Bosiacka, Irena; Wąsik, Agnieszka; Talarek, Sylwia; Tarnowski, Maciej; Listos, Piotr; Łupina, Małgorzata; Antkiewicz-Michaluk, Lucyna; Gutowska, Izabela; Tkacz, Marta; Pilutin, Anna; Orzelska-Górka, Jolanta; Chlubek, Dariusz; Fidecka, Sylwia

    2016-06-01

    Experimental data informs that not only do the dose and time duration of dependent drugs affect the severity of withdrawal episodes. Previous withdrawal experiences may intensify this process, which is referred as sensitization to withdrawal signs. Adenosine and dopamine (DA) receptors may be involved in this sensitization. Rats were continuously and sporadically treated with increasing doses of morphine for 8 days. In rats, sporadically treated with morphine, morphine administration was modified by adding three morphine-free periods. Adenosine agonists were given during each of the morphine-free periods (six injections in total). On the 9th day, morphine was injected. One hour later, naloxone was administered to induce morphine withdrawal signs. Then, the animals were placed into cylinders and the number of jumpings was recorded. Next, the rats were decapitated and brain and brain structures (striatum, hippocampus, and prefrontal cortex) were dissected for neurochemical, molecular, and immunohistochemical experiments within DAergic pathways. We demonstrated that previous experiences of opioid withdrawal intensified subsequent withdrawal signs. Adenosine ligands attenuated the sensitization to withdrawal signs. In a neurochemical study, the release of DA and its metabolites was impaired in all structures. Significant alterations were also observed in mRNA and protein expression of DA receptors. Results demonstrate that intermittent treatment with morphine induces alterations in the DAergic system which may be responsible for sensitization to morphine withdrawal signs. Although adenosine ligands attenuate this type of sensitization, they are not able to fully restore the physiological brain status.

  20. Neurochemical Plasticity of the Coeliac-Superior Mesenteric Ganglion Complex Neurons Projecting to the Prepyloric Area of the Porcine Stomach following Hyperacidity.

    PubMed

    Palus, Katarzyna; Całka, Jarosław

    2016-01-01

    This study was designed to determine neurochemical properties of the coeliac-superior mesenteric ganglion (CSMG) neurons supplying the prepyloric area of the porcine stomach in physiological state and following experimentally induced hyperacidity. To localize sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control animals and hydrochloric acid infusion (HCl) groups. After 23 days, animals of the HCl group were reintroduced into a state of general anesthesia and intragastrically given 5 mL/kg of body weight of 0.25 M aqueous solution of hydrochloric acid. On the 28th day, all animals were sacrificed. The CSMG complexes were then collected and processed for double-labeling immunofluorescence. In the control animals, FB-positive perikarya displayed immunoreactivity to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), and galanin (GAL). Experimentally induced gastric hyperacidity changed the neurochemical phenotype of the studied neurons. An upregulated expression of GAL and NPY and the de novo synthesis of neuronal nitric oxide synthase (nNOS) and leu5-enkephalin (LENK) as well as downregulated expression of TH and DβH in the stomach-projecting neurons were observed. These findings enrich existing knowledge about the participation of these active substances in adaptive mechanism(s) of the sympathetic neurons during pathological processes within the gastrointestinal tract.

  1. Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa.

    PubMed

    Avena, Nicole M; Bocarsly, Miriam E

    2012-07-01

    Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained through animal models of binge eating, bulimia nervosa, or anorexia nervosa. The findings suggest that alterations in dopamine (DA), acetylcholine (ACh) and opioid systems in reward-related brain areas occur in response to binge eating of palatable foods. Moreover, animal models of bulimia nervosa suggest that while bingeing on palatable food releases DA, purging attenuates the release of ACh that might otherwise signal satiety. Animal models of anorexia nervosa suggest that restricted access to food enhances the reinforcing effects of DA when the animal does eat. The activity-based anorexia model suggests alterations in mesolimbic DA and serotonin occur as a result of restricted eating coupled with excessive wheel running. These findings with animal models complement data obtained through neuroimaging and pharmacotherapy studies of clinical populations. Information on the neurochemical consequences of the behaviors associated with these eating disorders will be useful in understanding these complex disorders and may inform future therapeutic approaches, as discussed here. This article is part of a Special Issue entitled 'Central Control of Food Intake'.

  2. Neurochemical Plasticity of the Coeliac-Superior Mesenteric Ganglion Complex Neurons Projecting to the Prepyloric Area of the Porcine Stomach following Hyperacidity

    PubMed Central

    Całka, Jarosław

    2016-01-01

    This study was designed to determine neurochemical properties of the coeliac-superior mesenteric ganglion (CSMG) neurons supplying the prepyloric area of the porcine stomach in physiological state and following experimentally induced hyperacidity. To localize sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control animals and hydrochloric acid infusion (HCl) groups. After 23 days, animals of the HCl group were reintroduced into a state of general anesthesia and intragastrically given 5 mL/kg of body weight of 0.25 M aqueous solution of hydrochloric acid. On the 28th day, all animals were sacrificed. The CSMG complexes were then collected and processed for double-labeling immunofluorescence. In the control animals, FB-positive perikarya displayed immunoreactivity to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), and galanin (GAL). Experimentally induced gastric hyperacidity changed the neurochemical phenotype of the studied neurons. An upregulated expression of GAL and NPY and the de novo synthesis of neuronal nitric oxide synthase (nNOS) and leu5-enkephalin (LENK) as well as downregulated expression of TH and DβH in the stomach-projecting neurons were observed. These findings enrich existing knowledge about the participation of these active substances in adaptive mechanism(s) of the sympathetic neurons during pathological processes within the gastrointestinal tract. PMID:27293908

  3. Short- and long-lasting behavioral and neurochemical adaptations: relationship with patterns of cocaine administration and expectation of drug effects in rats.

    PubMed

    Puig, S; Noble, F; Benturquia, N

    2012-10-23

    Cocaine dependence is a significant public health problem, characterized by periods of abstinence. Chronic exposure to drugs of abuse induces important modifications on neuronal systems, including the dopaminergic system. The pattern of administration is an important factor that should be taken into consideration to study the neuroadaptations. We compared the effects of intermittent (once daily) and binge (three times a day) cocaine treatments for 1 (WD1) and 14 (WD14) days after the last cocaine injection on spontaneous locomotor activity and dopamine (DA) levels in the nucleus accumbens (Nac). The intermittent treatment led to a spontaneous increase in DA (WD1/WD14), and in locomotor activity (WD1) at the exact hour which rats were habituated to receive a cocaine injection. These results underline that taking into consideration the hours of the day at which the experiments are performed is crucial. We also investigated these behavioral and neurochemical adaptations in response to an acute cocaine challenge on WD1 and WD14. We observed that only the binge treatment led to sensitization of locomotor effects of cocaine, associated to a DA release sensitization in the Nac, whereas the intermittent treatment did not. We demonstrate that two different patterns of administration induced distinct behavioral and neurochemical consequences. We unambiguously demonstrated that the intermittent treatment induced drug expectation associated with higher basal DA level in the Nac when measured at the time of chronic cocaine injection and that the binge treatment led to behavioral and sensitization effects of cocaine.

  4. Dysregulation of Brain Reward Systems in Eating Disorders: Neurochemical Information from Animal Models of Binge Eating, Bulimia Nervosa, and Anorexia Nervosa

    PubMed Central

    Avena, Nicole M.; Bocarsly, Miriam E.

    2012-01-01

    Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained through animal models of binge eating, bulimia nervosa, or anorexia nervosa. The findings suggest that alterations in dopamine (DA), acetylcholine (ACh) and opioid systems in reward-related brain areas occur in response to binge eating of palatable foods. Moreover, animal models of bulimia nervosa suggest that while bingeing on palatable food releases DA, purging attenuates the release of ACh that might otherwise signal satiety. Animal models of anorexia nervosa suggest that restricted access to food enhances the reinforcing effects of DA when the animal does eat. The activity-based anorexia model suggests alterations in mesolimbic DA and serotonin occur as a result of starvation coupled with excessive wheel running. These findings with animal models complement data obtained through neuroimaging and pharmacotherapy studies of clinical populations. Finally, information on the neurochemical consequences of the behaviors associated with these eating disorders will be useful in understanding these complex disorders and may inform future therapeutic approaches, as discussed here. PMID:22138162

  5. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network.

    PubMed

    Albers, H Elliott

    2015-01-01

    Arginine-vasotocin (AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the "social behavior neural network (SBNN)" and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality.

  6. Species, Sex and Individual Differences in the Vasotocin/Vasopressin System: Relationship to Neurochemical Signaling in the Social Behavior Neural Network

    PubMed Central

    Albers, H. Elliott

    2014-01-01

    Arginine-vasotocin(AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the “Social Behavior Neural Network” and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality. PMID:25102443

  7. Neuroblastoma: A neurochemical approach

    SciTech Connect

    Schor, N.F. )

    1991-07-01

    Neuroblastoma is among the most common malignancies of childhood. Despite greatly improved therapy for some pediatric tumors, the prognosis for children with metastatic neuroblastoma has not changed significantly in the past 10 years. With conventional chemotherapy, radiation therapy, and surgery, children with metastatic neuroblastoma have a 20% long-term survival rate. The authors describe here approaches to neuroblastoma that target its neuronal characteristics. On the one hand, the neurotransmitter receptors on the surface of the neuroblastoma cells and, on the other hand, specific isozymes that distinguish neuroblastoma cells from their normal counterparts are the focus of these experimental therapies. In the former case, specificity for tumor cells is effected by (1) selective protection of normal neuronal elements from toxicity, or (2) selective potentiation of toxicity for neural tumor cells. It is hoped that these strategies will be generalizable to other neural crest-derived tumors. 32 references.

  8. Progressive damage state evolution and quantification in composites

    NASA Astrophysics Data System (ADS)

    Patra, Subir; Banerjee, Sourav

    2016-04-01

    Precursor damage state quantification can be helpful for safety and operation of aircraft and defense equipment's. Damage develops in the composite material in the form of matrix cracking, fiber breakages and deboning, etc. However, detection and quantification of the damage modes at their very early stage is not possible unless modifications of the existing indispensable techniques are conceived, particularly for the quantification of multiscale damages at their early stage. Here, we present a novel nonlocal mechanics based damage detection technique for precursor damage state quantification. Micro-continuum physics is used by modifying the Christoffel equation. American society of testing and materials (ASTM) standard woven carbon fiber (CFRP) specimens were tested under Tension-Tension fatigue loading at the interval of 25,000 cycles until 500,000 cycles. Scanning Acoustic Microcopy (SAM) and Optical Microscopy (OM) were used to examine the damage development at the same interval. Surface Acoustic Wave (SAW) velocity profile on a representative volume element (RVE) of the specimen were calculated at the regular interval of 50,000 cycles. Nonlocal parameters were calculated form the micromorphic wave dispersion curve at a particular frequency of 50 MHz. We used a previously formulated parameter called "Damage entropy" which is a measure of the damage growth in the material calculated with the loading cycle. Damage entropy (DE) was calculated at every pixel on the RVE and the mean of DE was plotted at the loading interval of 25,000 cycle. Growth of DE with fatigue loading cycles was observed. Optical Imaging also performed at the interval of 25,000 cycles to investigate the development of damage inside the materials. We also calculated the mean value of the Surface Acoustic Wave (SAW) velocity and plotted with fatigue cycle which is correlated further with Damage Entropy (DE). Statistical analysis of the Surface Acoustic Wave profile (SAW) obtained at different

  9. Processing and domain selection: Quantificational variability effects

    PubMed Central

    Harris, Jesse A.; Clifton, Charles; Frazier, Lyn

    2014-01-01

    Three studies investigated how readers interpret sentences with variable quantificational domains, e.g., The army was mostly in the capital, where mostly may quantify over individuals or parts (Most of the army was in the capital) or over times (The army was in the capital most of the time). It is proposed that a general conceptual economy principle, No Extra Times (Majewski 2006, in preparation), discourages the postulation of potentially unnecessary times, and thus favors the interpretation quantifying over parts. Disambiguating an ambiguously quantified sentence to a quantification over times interpretation was rated as less natural than disambiguating it to a quantification over parts interpretation (Experiment 1). In an interpretation questionnaire, sentences with similar quantificational variability were constructed so that both interpretations of the sentence would require postulating multiple times; this resulted in the elimination of the preference for a quantification over parts interpretation, suggesting the parts preference observed in Experiment 1 is not reducible to a lexical bias of the adverb mostly (Experiment 2). An eye movement recording study showed that, in the absence of prior evidence for multiple times, readers exhibit greater difficulty when reading material that forces a quantification over times interpretation than when reading material that allows a quantification over parts interpretation (Experiment 3). These experiments contribute to understanding readers’ default assumptions about the temporal properties of sentences, which is essential for understanding the selection of a domain for adverbial quantifiers and, more generally, for understanding how situational constraints influence sentence processing. PMID:25328262

  10. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  11. Error models for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Josset, L.; Scheidt, C.; Lunati, I.

    2012-12-01

    In groundwater modeling, uncertainty on the permeability field leads to a stochastic description of the aquifer system, in which the quantities of interests (e.g., groundwater fluxes or contaminant concentrations) are considered as stochastic variables and described by their probability density functions (PDF) or by a finite number of quantiles. Uncertainty quantification is often evaluated using Monte-Carlo simulations, which employ a large number of realizations. As this leads to prohibitive computational costs, techniques have to be developed to keep the problem computationally tractable. The Distance-based Kernel Method (DKM) [1] limits the computational cost of the uncertainty quantification by reducing the stochastic space: first, the realizations are clustered based on the response of a proxy; then, the full model is solved only for a subset of realizations defined by the clustering and the quantiles are estimated from this limited number of realizations. Here, we present a slightly different strategy that employs an approximate model rather than a proxy: we use the Multiscale Finite Volume method (MsFV) [2,3] to compute an approximate solution for each realization, and to obtain a first assessment of the PDF. In this context, DKM is then used to identify a subset of realizations for which the exact model is solved and compared with the solution of the approximate model. This allows highlighting and correcting possible errors introduced by the approximate model, while keeping full statistical information on the ensemble of realizations. Here, we test several strategies to compute the model error, correct the approximate model and achieve an optimal PDF estimation. We present a case study in which we predict the breakthrough curve of an ideal tracer for an ensemble of realizations generated via Multiple Point Direct Sampling [4] with a training image obtained from a 2D section of the Herten permeability field [5]. [1] C. Scheidt and J. Caers, "Representing

  12. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  13. Direct qPCR quantification using the Quantifiler(®) Trio DNA quantification kit.

    PubMed

    Liu, Jason Yingjie

    2014-11-01

    The effectiveness of a direct quantification assay is essential to the adoption of the combined direct quantification/direct STR workflow. In this paper, the feasibility of using the Quantifiler(®) Trio DNA quantification kit for the direct quantification of forensic casework samples was investigated. Both low-level touch DNA samples and blood samples were collected on PE swabs and quantified directly. The increased sensitivity of the Quantifiler(®) Trio kit enabled the detection of less than 10pg of DNA in unprocessed touch samples and also minimizes the stochastic effect experienced by different targets in the same sample. The DNA quantity information obtained from a direct quantification assay using the Quantifiler(®) Trio kit can also be used to accurately estimate the optimal input DNA quantity for a direct STR amplification reaction. The correlation between the direct quantification results (Quantifiler(®) Trio kit) and the direct STR results (GlobalFiler™ PCR amplification kit(*)) for low-level touch DNA samples indicates that direct quantification using the Quantifiler(®) Trio DNA quantification kit is more reliable than the Quantifiler(®) Duo DNA quantification kit for predicting the STR results of unprocessed touch DNA samples containing less than 10pg of DNA.

  14. Biomechanical Profiling of Caenorhabditis elegans Motility

    PubMed Central

    Krajacic, Predrag; Shen, Xiaoning; Purohit, Prashant K.; Arratia, Paulo; Lamitina, Todd

    2012-01-01

    Caenorhabditis elegans locomotion is a stereotyped behavior that is ideal for genetic analysis. We integrated video microscopy, image analysis algorithms, and fluid mechanics principles to describe the C. elegans swim gait. Quantification of body shapes and external hydrodynamics and model-based estimates of biomechanics reveal that mutants affecting similar biological processes exhibit related patterns of biomechanical differences. Therefore, biomechanical profiling could be useful for predicting the function of previously unstudied motility genes. PMID:22554893

  15. MAMA Software Features: Visual Examples of Quantification

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-20

    This document shows examples of the results from quantifying objects of certain sizes and types in the software. It is intended to give users a better feel for some of the quantification calculations, and, more importantly, to help users understand the challenges with using a small set of ‘shape’ quantification calculations for objects that can vary widely in shapes and features. We will add more examples to this in the coming year.

  16. Accessible quantification of multiparticle entanglement

    NASA Astrophysics Data System (ADS)

    Cianciaruso, Marco; Bromley, Thomas R.; Adesso, Gerardo

    2016-10-01

    Entanglement is a key ingredient for quantum technologies and a fundamental signature of quantumness in a broad range of phenomena encompassing many-body physics, thermodynamics, cosmology and life sciences. For arbitrary multiparticle systems, entanglement quantification typically involves nontrivial optimisation problems, and it may require demanding tomographical techniques. Here, we develop an experimentally feasible approach to the evaluation of geometric measures of multiparticle entanglement. Our framework provides analytical results for particular classes of mixed states of N qubits, and computable lower bounds to global, partial, or genuine multiparticle entanglement of any general state. For global and partial entanglement, useful bounds are obtained with minimum effort, requiring local measurements in just three settings for any N. For genuine entanglement, a number of measurements scaling linearly with N are required. We demonstrate the power of our approach to estimate and quantify different types of multiparticle entanglement in a variety of N-qubit states useful for quantum information processing and recently engineered in laboratories with quantum optics and trapped ion setups.

  17. Stirling Convertor Fasteners Reliability Quantification

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Kovacevich, Tiodor; Schreiber, Jeffrey G.

    2006-01-01

    Onboard Radioisotope Power Systems (RPS) being developed for NASA s deep-space science and exploration missions require reliable operation for up to 14 years and beyond. Stirling power conversion is a candidate for use in an RPS because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced inventory of radioactive material. Structural fasteners are responsible to maintain structural integrity of the Stirling power convertor, which is critical to ensure reliable performance during the entire mission. Design of fasteners involve variables related to the fabrication, manufacturing, behavior of fasteners and joining parts material, structural geometry of the joining components, size and spacing of fasteners, mission loads, boundary conditions, etc. These variables have inherent uncertainties, which need to be accounted for in the reliability assessment. This paper describes these uncertainties along with a methodology to quantify the reliability, and provides results of the analysis in terms of quantified reliability and sensitivity of Stirling power conversion reliability to the design variables. Quantification of the reliability includes both structural and functional aspects of the joining components. Based on the results, the paper also describes guidelines to improve the reliability and verification testing.

  18. Precise quantification of nanoparticle internalization.

    PubMed

    Gottstein, Claudia; Wu, Guohui; Wong, Benjamin J; Zasadzinski, Joseph Anthony

    2013-06-25

    Nanoparticles have opened new exciting avenues for both diagnostic and therapeutic applications in human disease, and targeted nanoparticles are increasingly used as specific drug delivery vehicles. The precise quantification of nanoparticle internalization is of importance to measure the impact of physical and chemical properties on the uptake of nanoparticles into target cells or into cells responsible for rapid clearance. Internalization of nanoparticles has been measured by various techniques, but comparability of data between different laboratories is impeded by lack of a generally accepted standardized assay. Furthermore, the distinction between associated and internalized particles has been a challenge for many years, although this distinction is critical for most research questions. Previously used methods to verify intracellular location are typically not quantitative and do not lend themselves to high-throughput analysis. Here, we developed a mathematical model which integrates the data from high-throughput flow cytometry measurements with data from quantitative confocal microscopy. The generic method described here will be a useful tool in biomedical nanotechnology studies. The method was then applied to measure the impact of surface coatings of vesosomes on their internalization by cells of the reticuloendothelial system (RES). RES cells are responsible for rapid clearance of nanoparticles, and the resulting fast blood clearance is one of the major challenges in biomedical applications of nanoparticles. Coating of vesosomes with long chain polyethylene glycol showed a trend for lower internalization by RES cells.

  19. Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry

    PubMed Central

    Zhou, Feng; Lu, Yu; Ficarro, Scott B.; Adelmant, Guillaume; Jiang, Wenyu; Luckey, C. John; Marto, Jarrod A.

    2013-01-01

    Advances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation. PMID:23863870

  20. Biophysical Profile

    MedlinePlus

    ... is Rh positive Worrisome results from other prenatal tests Your health care provider might also recommend a biophysical profile if ... the test and at regular intervals during the test. Your health care provider or a member of your health care ...

  1. Leadership Profiles.

    ERIC Educational Resources Information Center

    Teach, Beverly; And Others

    1994-01-01

    Presents profiles of two leaders in the field of educational media and technology: Carolyn Guss and Mendel Sherman, both retired professors from Indiana University's program in Information Systems Technology. (KRN)

  2. Leadership Profiles.

    ERIC Educational Resources Information Center

    Morgan, Robert M.; And Others

    1992-01-01

    Presents profiles of three leaders in the field of educational media and technology: Robert Mills Gagne, Florida State University; Robert Heinich, Indiana University; and Charles Francis Schuller, University of Georgia. (SLW)

  3. Leadership Profiles.

    ERIC Educational Resources Information Center

    Morgan, Robert M.; And Others

    1992-01-01

    Presents profiles of three leaders in the field of educational media and technology: Robert Mills Gagne, Florida State University; Robert Heinich, Indiana University; and Charles Francis Schuller, University of Georgia. (SLW)

  4. Leadership Profiles.

    ERIC Educational Resources Information Center

    Teach, Beverly; And Others

    1994-01-01

    Presents profiles of two leaders in the field of educational media and technology: Carolyn Guss and Mendel Sherman, both retired professors from Indiana University's program in Information Systems Technology. (KRN)

  5. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  6. In situ quantification and visualization of lithium transport with neutrons.

    PubMed

    Liu, Danny X; Wang, Jinghui; Pan, Ke; Qiu, Jie; Canova, Marcello; Cao, Lei R; Co, Anne C

    2014-09-01

    A real-time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li-ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high-capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials.

  7. Uncertainty Quantification in Climate Modeling

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Safta, C.; Berry, R.; Debusschere, B.; Najm, H.

    2011-12-01

    We address challenges that sensitivity analysis and uncertainty quantification methods face when dealing with complex computational models. In particular, climate models are computationally expensive and typically depend on a large number of input parameters. We consider the Community Land Model (CLM), which consists of a nested computational grid hierarchy designed to represent the spatial heterogeneity of the land surface. Each computational cell can be composed of multiple land types, and each land type can incorporate one or more sub-models describing the spatial and depth variability. Even for simulations at a regional scale, the computational cost of a single run is quite high and the number of parameters that control the model behavior is very large. Therefore, the parameter sensitivity analysis and uncertainty propagation face significant difficulties for climate models. This work employs several algorithmic avenues to address some of the challenges encountered by classical uncertainty quantification methodologies when dealing with expensive computational models, specifically focusing on the CLM as a primary application. First of all, since the available climate model predictions are extremely sparse due to the high computational cost of model runs, we adopt a Bayesian framework that effectively incorporates this lack-of-knowledge as a source of uncertainty, and produces robust predictions with quantified uncertainty even if the model runs are extremely sparse. In particular, we infer Polynomial Chaos spectral expansions that effectively encode the uncertain input-output relationship and allow efficient propagation of all sources of input uncertainties to outputs of interest. Secondly, the predictability analysis of climate models strongly suffers from the curse of dimensionality, i.e. the large number of input parameters. While single-parameter perturbation studies can be efficiently performed in a parallel fashion, the multivariate uncertainty analysis

  8. Uncertainty quantification for environmental models

    USGS Publications Warehouse

    Hill, Mary C.; Lu, Dan; Kavetski, Dmitri; Clark, Martyn P.; Ye, Ming

    2012-01-01

    Environmental models are used to evaluate the fate of fertilizers in agricultural