Sample records for neurodegenerative generalized auditory

  1. Pleasurable Emotional Response to Music: A Case of Neurodegenerative Generalized Auditory Agnosia

    PubMed Central

    Matthews, Brandy R.; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L.

    2009-01-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables know to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report the activity of “listening” to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed. PMID:19253088

  2. Pleasurable emotional response to music: a case of neurodegenerative generalized auditory agnosia.

    PubMed

    Matthews, Brandy R; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L

    2009-06-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks, the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables known to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report that the activity of 'listening' to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed.

  3. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  4. Enhanced Generalization of Auditory Conditioned Fear in Juvenile Mice

    ERIC Educational Resources Information Center

    Ito, Wataru; Pan, Bing-Xing; Yang, Chao; Thakur, Siddarth; Morozov, Alexei

    2009-01-01

    Increased emotionality is a characteristic of human adolescence, but its animal models are limited. Here we report that generalization of auditory conditioned fear between a conditional stimulus (CS+) and a novel auditory stimulus is stronger in 4-5-wk-old mice (juveniles) than in their 9-10-wk-old counterparts (adults), whereas nonassociative…

  5. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    PubMed Central

    Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  6. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2015-01-01

    We previously found that stuttering individuals do not show the typical auditory modulation observed during speech planning in nonstuttering individuals. In this follow-up study, we further elucidate this difference by investigating whether stuttering speakers’ atypical auditory modulation is observed only when sensory predictions are based on movement planning or also when predictable auditory input is not a consequence of one’s own actions. We recorded 10 stuttering and 10 nonstuttering adults’ auditory evoked potentials in response to random probe tones delivered while anticipating either speaking aloud or hearing one’s own speech played back and in a control condition without auditory input (besides probe tones). N1 amplitude of nonstuttering speakers was reduced prior to both speaking and hearing versus the control condition. Stuttering speakers, however, showed no N1 amplitude reduction in either the speaking or hearing condition as compared with control. Thus, findings suggest that stuttering speakers have general auditory prediction difficulties. PMID:26335995

  7. Docking of Natural Products against Neurodegenerative Diseases: General Concepts.

    PubMed

    Ribeiro, Frederico F; Mendonca Junior, Francisco J B; Ghasemi, Jahan B; Ishiki, Hamilton M; Scotti, Marcus T; Scotti, Luciana

    2018-01-01

    Since antiquity, humanity has used medicinal plant preparations to cure its ills, and, as research has progressed, new technologies have enabled more investigations on natural compounds which originate from plants, fungi, and marine species. The health benefits that these natural products provide have become a motive for treatment studies of various diseases. Among them, the neurodegenerative diseases like Alzheimer's and Parkinson's, a major age-related neurodegenerative disorder. Studies with natural products for neurodegenerative diseases (particularly through molecular docking) search for, and then focus on those ligands which offer effective inhibition of the enzymes monoamine oxidase and acetylcholinesterase. This review introduces the main concepts involved in docking studies with natural products: and also in our group, which has conducted a docking study of natural products isolated from Tetrapterys mucronata for inhibition of acetylcholinesterase. We observed that compounds 4 and 5 formed more interactions than the theoretical ligand, but that ligands with greater activity also interacted with residues HIS 381 and GLN 527. We have reported on our docking study performed with AChE and alkaloids isolated from the plant Tetrapterys mucronata. Our docking results corroborate the experiments conducted, and emphasize the positive contribution that these theoretical studies involving natural products bring to the fight against neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Mitochondrial medicine for neurodegenerative diseases.

    PubMed

    Du, Heng; Yan, Shirley ShiDu

    2010-05-01

    Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases. 2010 Elsevier Ltd. All rights reserved.

  9. Exposures to fine particulate matter (PM2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo

    2017-10-01

    Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?

    PubMed

    Kotz, Sonja A; Gunter, Thomas C

    2015-03-01

    Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. © 2014 New York Academy of Sciences.

  11. Driving and Neurodegenerative Diseases

    PubMed Central

    Uc, Ergun Y.; Rizzo, Matthew

    2011-01-01

    The proportion of elderly in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet medical diagnosis or age alone is not reliable enough to predict driver safety or crashes, or revoke the driving privileges of these drivers. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help to develop rehabilitative measures for driving. PMID:18713573

  12. Auditory processing deficits in individuals with primary open-angle glaucoma.

    PubMed

    Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan

    2012-01-01

    The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.

  13. Auditory frequency generalization in the goldfish (Carassius auratus)1

    PubMed Central

    Fay, Richard R.

    1970-01-01

    Auditory frequency generalization in the goldfish was studied at five points within the best hearing range through the use of classical respiratory conditioning. Each experimental group received single-stimulus conditioning sessions at one of five stimulus frequencies (100, 200, 400, 800, and 1600 Hz), and were subsequently tested for generalization at eight neighboring frequencies. All stimuli were presented 30 db above absolute threshold. Significant generalization decrements were found for all subjects. For the subjects conditioned in the range between 100 and 800 Hz, a nearly complete failure to generalize was found at one octave above and below the training frequency. The subjects conditioned at 1600 Hz produced relatively more flat gradients between 900 and 2000 Hz. The widths of the generalization gradients, expressed in Hz, increased as a power function of frequency with a slope greater than one. PMID:16811481

  14. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    PubMed Central

    Zaltz, Yael; Globerson, Eitan; Amir, Noam

    2017-01-01

    The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF), intensity discrimination, spectrum discrimination (DLS), and time discrimination (DLT). Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels), and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels), were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant discrimination

  15. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  16. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    PubMed

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  17. Curcumin and neurodegenerative diseases

    PubMed Central

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  18. General Auditory Processing, Speech Perception and Phonological Awareness Skills in Chinese-English Biliteracy

    ERIC Educational Resources Information Center

    Chung, Kevin K. H.; McBride-Chang, Catherine; Cheung, Him; Wong, Simpson W. L.

    2013-01-01

    This study focused on the associations of general auditory processing, speech perception, phonological awareness and word reading in Cantonese-speaking children from Hong Kong learning to read both Chinese (first language [L1]) and English (second language [L2]). Children in Grades 2--4 ("N" = 133) participated and were administered…

  19. Generalization of conditioned suppression during salicylate-induced phantom auditory perception in rats.

    PubMed

    Brennan, J F; Jastreboff, P J

    1991-01-01

    Tonal frequency generalization was examined in a total of 114 pigmented male rats, 60 of which were tested under the influence of salicylate-induced phantom auditory perception, introduced before or after lick suppression training. Thirty control subjects received saline injections, and the remaining 24 subjects served as noninjected controls of tonal background effects on generalization. Rats were continuously exposed to background noise alone or with a superimposed tone. Offset of background noise alone (Experiment I), or combined with onset or continuation of the tone (Experiments II and III) served as the conditioned stimulus (CS). In Experiment I, tone presentations were introduced only after suppression training. Depending on the time of salicylate introduction, a strong and differential influence on generalization gradients was observed, which is consistent with subjects' detection of salicylate-induced, high-pitched sound. Moreover, when either 12- or 3 kHz tones were introduced before or after Pavlovian training to mimic salicylate effects in 24 rats, the distortions in generalization gradients resembled trends obtained from respective salicylate injected groups. Experiments II and III were aimed at evaluating the masking effect of salicylate-induced phantom auditory perception on external sounds, with a 5- or a 10-kHz tone imposed continuously on the noise or presented only during the CS. Tests of tonal generalization to frequencies ranging from 4- to 11- kHz showed that in this experimental context salicylate-induced perception did not interfere with the dominant influence of external tones, a result that further strengthens the conclusion of Experiment I.

  20. Cerebral responses to local and global auditory novelty under general anesthesia

    PubMed Central

    Uhrig, Lynn; Janssen, David; Dehaene, Stanislas; Jarraya, Béchir

    2017-01-01

    Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices. PMID:27502046

  1. Indian Herbs for the Treatment of Neurodegenerative Disease.

    PubMed

    Mannangatti, Padmanabhan; Naidu, Kamalakkannan Narasimha

    2016-01-01

    Ayurveda, an ancient system of medicine that is indigenous to India, is believed to be the world's oldest comprehensive health-care system and is now one of the most recognized and widely practiced disciplines of alternative medicine in the world. Medicinal herbs have been in use for treating diseases since ancient times in India. Ayurvedic therapies with medicinal herbs and herbomineral products generally provide relief without much adverse effects even after prolonged administration. Neurodegenerative disorders are a major cause of mortality and disability, and increasing life spans represent one of the key challenges of medical research. Ayurvedic medicine describes most neurodegenerative diseases and has defined a number of plants with therapeutic benefits for the treatment of neurodegenerative diseases having antioxidant activities. In this chapter, the role of four important Ayurvedic medicinal plants, viz., Withania somnifera (ashwagandha), Bacopa monnieri (brahmi), Centella asiatica (gotu kola), and Mucuna pruriens (velvet bean), on neurodegenerative diseases are discussed.

  2. Auditory hallucinations.

    PubMed

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  3. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  4. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  5. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  6. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that

  7. Primary Auditory Cortex Regulates Threat Memory Specificity

    ERIC Educational Resources Information Center

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  8. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis

    PubMed Central

    Fletcher, Phillip D.; Downey, Laura E.; Golden, Hannah L.; Clark, Camilla N.; Slattery, Catherine F.; Paterson, Ross W.; Schott, Jonathan M.; Rohrer, Jonathan D.; Rossor, Martin N.; Warren, Jason D.

    2015-01-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music (‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717

  9. Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans.

    PubMed

    Bezdjian, Aren; Kraaijenga, Véronique J C; Ramekers, Dyan; Versnel, Huib; Thomeer, Hans G X M; Klis, Sjaak F L; Grolman, Wilko

    2016-11-26

    Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53%) was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%). Ciliary neurotrophic factor (50%), nerve growth factor (24%) and insulin-like growth factor (21%) were most often used. Injection site reaction was a frequently occurring adverse event (61%) followed by asthenia (24%) and gastrointestinal disturbances (20%). Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising.

  10. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-02-26

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.

  11. Neurodegenerative causes of death among retired National Football League players.

    PubMed

    Lehman, Everett J; Hein, Misty J; Baron, Sherry L; Gersic, Christine M

    2012-11-06

    To analyze neurodegenerative causes of death, specifically Alzheimer disease (AD), Parkinson disease, and amyotrophic lateral sclerosis (ALS), among a cohort of professional football players. This was a cohort mortality study of 3,439 National Football League players with at least 5 pension-credited playing seasons from 1959 to 1988. Vital status was ascertained through 2007. For analysis purposes, players were placed into 2 strata based on characteristics of position played: nonspeed players (linemen) and speed players (all other positions except punter/kicker). External comparisons with the US population used standardized mortality ratios (SMRs); internal comparisons between speed and nonspeed player positions used standardized rate ratios (SRRs). Overall player mortality compared with that of the US population was reduced (SMR 0.53, 95% confidence interval [CI] 0.48-0.59). Neurodegenerative mortality was increased using both underlying cause of death rate files (SMR 2.83, 95% CI 1.36-5.21) and multiple cause of death (MCOD) rate files (SMR 3.26, 95% CI 1.90-5.22). Of the neurodegenerative causes, results were elevated (using MCOD rates) for both ALS (SMR 4.31, 95% CI 1.73-8.87) and AD (SMR 3.86, 95% CI 1.55-7.95). In internal analysis (using MCOD rates), higher neurodegenerative mortality was observed among players in speed positions compared with players in nonspeed positions (SRR 3.29, 95% CI 0.92-11.7). The neurodegenerative mortality of this cohort is 3 times higher than that of the general US population; that for 2 of the major neurodegenerative subcategories, AD and ALS, is 4 times higher. These results are consistent with recent studies that suggest an increased risk of neurodegenerative disease among football players.

  12. How challenges in auditory fMRI led to general advancements for the field.

    PubMed

    Talavage, Thomas M; Hall, Deborah A

    2012-08-15

    In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Auditory Processing Disorders

    MedlinePlus

    ... Loss Hearing Loss in Seniors Hearing Aids General Information Types Features Fittings Assistive Listening & Alerting Devices Cochlear Implants Aural Rehabilitation Auditory Processing Disorders (APDs) Common Conditions Dizziness Tinnitus Who Are ...

  14. Linguistic processing in idiopathic generalized epilepsy: an auditory event-related potential study.

    PubMed

    Henkin, Yael; Kishon-Rabin, Liat; Pratt, Hillel; Kivity, Sara; Sadeh, Michelle; Gadoth, Natan

    2003-09-01

    Auditory processing of increasing acoustic and linguistic complexity was assessed in children with idiopathic generalized epilepsy (IGE) by using auditory event-related potentials (AERPs) as well as reaction time and performance accuracy. Twenty-four children with IGE [12 with generalized tonic-clonic seizures (GTCSs), and 12 with absence seizures (ASs)] with average intelligence and age-appropriate scholastic skills, uniformly medicated with valproic acid (VPA), and 20 healthy controls, performed oddball discrimination tasks that consisted of the following stimuli: (a) pure tones; (b) nonmeaningful monosyllables that differed by their phonetic features (i.e., phonetic stimuli); and (c) meaningful monosyllabic words from two semantic categories (i.e., semantic stimuli). AERPs elicited by nonlinguistic stimuli were similar in healthy and epilepsy children, whereas those elicited by linguistic stimuli (i.e., phonetic and semantic) differed significantly in latency, amplitude, and scalp distribution. In children with GTCSs, phonetic and semantic processing were characterized by slower processing time, manifested by prolonged N2 and P3 latencies during phonetic processing, and prolongation of all AERPs latencies during semantic processing. In children with ASs, phonetic and semantic processing were characterized by increased allocation of attentional resources, manifested by enhanced N2 amplitudes. Semantic processing also was characterized by prolonged P3 latency. In both patient groups, processing of linguistic stimuli resulted in different patterns of brain-activity lateralization compared with that in healthy controls. Reaction time and performance accuracy did not differ among the study groups. AERPs exposed linguistic-processing deficits related to seizure type in children with IGE. Neurologic follow-up should therefore include evaluation of linguistic functions, and remedial intervention should be provided, accordingly.

  15. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  16. Lipid peroxidation and neurodegenerative disease.

    PubMed

    Reed, Tanea T

    2011-10-01

    Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Auditory sequence analysis and phonological skill

    PubMed Central

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D.

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  18. Amyloid PET in neurodegenerative diseases with dementia.

    PubMed

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Nuclear Receptors in Neurodegenerative Diseases

    PubMed Central

    Skerrett, Rebecca; Malm, Tarja; Landreth, Gary

    2014-01-01

    Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies. PMID:24874548

  1. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  2. Depressive symptoms in neurodegenerative diseases

    PubMed Central

    Baquero, Miquel; Martín, Nuria

    2015-01-01

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer’s disease and related conditions like Parkinson’s disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  3. Familial auditory neuropathy.

    PubMed

    Wang, Qiuju; Gu, Rui; Han, Dongyi; Yang, Weiyan

    2003-09-01

    Auditory neuropathy is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses and normal cochlear outer hair cell function as measured by otoacoustic emission recordings. Many risk factors are thought to be involved in its etiology and pathophysiology. Four Chinese pedigrees with familial auditory neuropathy were presented to demonstrate involvement of genetic factors in the etiology of auditory neuropathy. Probands of the above-mentioned pedigrees, who had been diagnosed with auditory neuropathy, were evaluated and followed in the Department of Otolaryngology-Head and Neck Surgery, China People Liberation Army General Hospital (Beijing, China). Their family members were studied, and the pedigree maps established. History of illness, physical examination, pure-tone audiometry, acoustic reflex, auditory brainstem responses, and transient evoked and distortion-product otoacoustic emissions were obtained from members of these families. Some subjects received vestibular caloric testing, computed tomography scan of the temporal bone, and electrocardiography to exclude other possible neuropathic disorders. In most affected patients, hearing loss of various degrees and speech discrimination difficulties started at 10 to 16 years of age. Their audiological evaluation showed absence of acoustic reflex and auditory brainstem responses. As expected in auditory neuropathy, these patients exhibited near-normal cochlear outer hair cell function as shown in distortion product otoacoustic emission recordings. Pure-tone audiometry revealed hearing loss ranging from mild to profound in these patients. Different inheritance patterns were observed in the four families. In Pedigree I, 7 male patients were identified among 43 family members, exhibiting an X-linked recessive pattern. Affected brothers were found in Pedigrees II and III, whereas in pedigree IV, two sisters were affected. All the patients were otherwise normal without evidence of

  4. Thalamic and cortical pathways supporting auditory processing

    PubMed Central

    Lee, Charles C.

    2012-01-01

    The neural processing of auditory information engages pathways that begin initially at the cochlea and that eventually reach forebrain structures. At these higher levels, the computations necessary for extracting auditory source and identity information rely on the neuroanatomical connections between the thalamus and cortex. Here, the general organization of these connections in the medial geniculate body (thalamus) and the auditory cortex is reviewed. In addition, we consider two models organizing the thalamocortical pathways of the non-tonotopic and multimodal auditory nuclei. Overall, the transfer of information to the cortex via the thalamocortical pathways is complemented by the numerous intracortical and corticocortical pathways. Although interrelated, the convergent interactions among thalamocortical, corticocortical, and commissural pathways enable the computations necessary for the emergence of higher auditory perception. PMID:22728130

  5. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  6. Categorization of extremely brief auditory stimuli: domain-specific or domain-general processes?

    PubMed

    Bigand, Emmanuel; Delbé, Charles; Gérard, Yannick; Tillmann, Barbara

    2011-01-01

    The present study investigated the minimum amount of auditory stimulation that allows differentiation of spoken voices, instrumental music, and environmental sounds. Three new findings were reported. 1) All stimuli were categorized above chance level with 50 ms-segments. 2) When a peak-level normalization was applied, music and voices started to be accurately categorized with 20 ms-segments. When the root-mean-square (RMS) energy of the stimuli was equalized, voice stimuli were better recognized than music and environmental sounds. 3) Further psychoacoustical analyses suggest that the categorization of extremely brief auditory stimuli depends on the variability of their spectral envelope in the used set. These last two findings challenge the interpretation of the voice superiority effect reported in previously published studies and propose a more parsimonious interpretation in terms of an emerging property of auditory categorization processes.

  7. Role of Ionizing Radiation in Neurodegenerative Diseases

    PubMed Central

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  8. Auditory Memory Distortion for Spoken Prose

    PubMed Central

    Hutchison, Joanna L.; Hubbard, Timothy L.; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M.; Rypma, Bart

    2013-01-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1–4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  9. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.

    PubMed

    Larson, Eric; Terry, Howard P; Canevari, Margaux M; Stepp, Cara E

    2013-01-01

    Human-machine interface (HMI) designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis). Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group), and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel) targets with an unambiguous cue.

  10. Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.

    PubMed

    Thorp, Elias B; Larson, Eric; Stepp, Cara E

    2014-01-01

    The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control.

  11. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions

  12. Noncoding RNAs in Neurodegenerative Diseases

    PubMed Central

    Rege, Shraddha D.; Geetha, Thangiah; Pondugula, Satyanarayana R.; Zizza, Claire A.; Wernette, Catherine M.

    2013-01-01

    Noncoding RNAs are widely known for their various essential roles in the development of central nervous system. It involves neurogenesis, neural stem cells generation, maintenance and maturation, neurotransmission, neural network plasticity, formation of synapses, and even brain aging and DNA damage responses. In this review, we will discuss the biogenesis of microRNA, various functions of noncoding RNA's specifically microRNAs (miRNAs) that act as the chief regulators of gene expression, and focus in particular on misregulation of miRNAs which leads to several neurodegenerative diseases as well as its therapeutic outcome. Recent evidences has shown that miRNAs expression levels are changed in patients with neurodegenerative diseases; hence, miRNA can be used as a potential diagnostic biomarker and serve as an effective therapeutic tool in overcoming various neurodegenerative disease processes. PMID:23738143

  13. Utility of an airframe referenced spatial auditory display for general aviation operations

    NASA Astrophysics Data System (ADS)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  14. Autophagy and Human Neurodegenerative Diseases-A Fly's Perspective.

    PubMed

    Kim, Myungjin; Ho, Allison; Lee, Jun Hee

    2017-07-23

    Neurodegenerative diseases in humans are frequently associated with prominent accumulation of toxic protein inclusions and defective organelles. Autophagy is a process of bulk lysosomal degradation that eliminates these harmful substances and maintains the subcellular environmental quality. In support of autophagy's importance in neuronal homeostasis, several genetic mutations that interfere with autophagic processes were found to be associated with familial neurodegenerative disorders. In addition, genetic mutations in autophagy-regulating genes provoked neurodegenerative phenotypes in animal models. The Drosophila model significantly contributed to these recent developments, which led to the theory that autophagy dysregulation is one of the major underlying causes of human neurodegenerative disorders. In the current review, we discuss how studies using Drosophila enhanced our understanding of the relationship between autophagy and neurodegenerative processes.

  15. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  16. [Sense of smell, physiological ageing and neurodegenerative diseases: II. Ageing and neurodegenerative diseases].

    PubMed

    Fusari, A; Molina, J A

    The sense of smell, which was once studied because of its biological and evolutionary significance, is today one of the centres of interest in research on normal and pathological ageing. The latest scientific developments point to an inversely proportional relationship between age and olfactory sensitivity. In certain neurodegenerative diseases this sensory decline is one of the first symptoms of the disorder and is correlated with the progression of the disease. In this work we are going to review the scientific knowledge on loss of sense of smell in ageing and in neurodegenerative diseases, with special attention given to Alzheimer's and Parkinson's diseases. A survey of studies that have examined the olfactory deficits in ageing and in some neurodegenerative diseases offers conclusive results about the presence of these impairments in the early stages of these disorders and even among healthy elderly persons. Although a number of causes contribute to these sensory losses in physiological ageing, a common neurological foundation has been proposed for Alzheimer's and Parkinson's diseases. Nevertheless, despite certain initial similarities, the olfactory deficits shown in these disorders seem to be qualitatively different.

  17. Bile Acids in Neurodegenerative Disorders

    PubMed Central

    Ackerman, Hayley D.; Gerhard, Glenn S.

    2016-01-01

    Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting. PMID:27920719

  18. Auditory Spatial Attention Representations in the Human Cerebral Cortex

    PubMed Central

    Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2014-01-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  19. Congenital deafness affects deep layers in primary and secondary auditory cortex

    PubMed Central

    Berger, Christoph; Kühne, Daniela; Scheper, Verena

    2017-01-01

    Abstract Congenital deafness leads to functional deficits in the auditory cortex for which early cochlear implantation can effectively compensate. Most of these deficits have been demonstrated functionally. Furthermore, the majority of previous studies on deafness have involved the primary auditory cortex; knowledge of higher‐order areas is limited to effects of cross‐modal reorganization. In this study, we compared the cortical cytoarchitecture of four cortical areas in adult hearing and congenitally deaf cats (CDCs): the primary auditory field A1, two secondary auditory fields, namely the dorsal zone and second auditory field (A2); and a reference visual association field (area 7) in the same section stained either using Nissl or SMI‐32 antibodies. The general cytoarchitectonic pattern and the area‐specific characteristics in the auditory cortex remained unchanged in animals with congenital deafness. Whereas area 7 did not differ between the groups investigated, all auditory fields were slightly thinner in CDCs, this being caused by reduced thickness of layers IV–VI. The study documents that, while the cytoarchitectonic patterns are in general independent of sensory experience, reduced layer thickness is observed in both primary and higher‐order auditory fields in layer IV and infragranular layers. The study demonstrates differences in effects of congenital deafness between supragranular and other cortical layers, but similar dystrophic effects in all investigated auditory fields. PMID:28643417

  20. [Molecular-targeted therapy for neurodegenerative diseases].

    PubMed

    Sobue, Gen

    2009-11-01

    Neurodegenerative diseases have been construed as incurable disorders. However, therapeutic development for these diseases is now facing a turning point: analyses of cellular and animal models have provided insights into pathogenesis of neurodegenerative diseases, and have indicated rational therapeutic approaches to them. Therefore, how to realize molecular targeted therapy for neurodegenerative diseases is becoming one of the most challenging issues in the clinical neurology. Primarily, pathophysiological understanding of the disease from basic science is the first step. For the successful clinical trials, effective trial design, sufficient economic and social support, and education are indispensable. The development of androgen deprivation therapy for spinal and bulbar muscular atrophy (SBMA) is a representative study in this field. SBMA is a hereditary neurodegenerative disease caused by expansion of a trinucleotide CAG repeat in the first exon of the androgen receptor (AR) gene. There is increasing evidence that testosterone, the ligand of AR, plays a pivotal role in the neurodegeneration in SBMA. The striking success of androgen deprivation therapy in SBMA mouse models has been translated into phase 2, and then phase 3, clinical trials.

  1. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  2. Cerebral correlates of psychotic syndromes in neurodegenerative diseases.

    PubMed

    Jellinger, Kurt A

    2012-05-01

    Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer's disease, synucleinopathies (Parkinson's disease, dementia with Lewy bodies), Huntington's disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients' quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  3. Auditory hallucinations and PTSD in ex-POWS.

    PubMed

    Crompton, Laura; Lahav, Yael; Solomon, Zahava

    2017-01-01

    Literature has suggested that auditory hallucinations might be prevalent in the general population and could be linked to the experience of trauma. This prospective study examines the prevalence of auditory hallucinations in trauma survivors and its association with posttraumatic stress disorder (PTSD) symptoms, over time. Former prisoners of war (ex-POWs) from the 1973 Yom Kippur War (n = 99) with and without PTSD and comparable veterans (n = 103) were assessed twice, in 1991 (T1) and 2003 (T2) in regard to auditory hallucinations and PTSD symptoms. Findings indicated that ex-POWs who suffered from PTSD reported higher levels of auditory hallucinations at T2 as well as increased hallucinations over time, compared to ex-POWs without PTSD and combatants who did not endure captivity. The relation between PTSD and auditory hallucinations was unidirectional, so that the PTSD overall score at T1 predicted an increase in auditory hallucinations between T1 and T2, but not vice versa. Assessing the role of PTSD clusters in predicting hallucinations revealed that intrusion symptoms had a unique contribution, compared to avoidance and hyperarousal symptoms. The findings suggest that auditory hallucinations might be a consequence of the posttraumatic reaction among veterans.

  4. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    USGS Publications Warehouse

    Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.

    2005-01-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  5. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    PubMed

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  7. Task- and Talker-Specific Gains in Auditory Training

    ERIC Educational Resources Information Center

    Barcroft, Joe; Spehar, Brent; Tye-Murray, Nancy; Sommers, Mitchell

    2016-01-01

    Purpose: This investigation focused on generalization of outcomes for auditory training by examining the effects of task and/or talker overlap between training and at test. Method: Adults with hearing loss completed 12 hr of meaning-oriented auditory training and were placed in a group that trained on either multiple talkers or a single talker. A…

  8. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. High-school football and late-life risk of neurodegenerative syndromes, 1956–1970

    PubMed Central

    Janssen, Pieter HH; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J. Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    BACKGROUND Repeated head trauma has been associated with risk of neurodegenerative diseases. Few studies have evaluated the long-term risk of neurodegenerative diseases in collision sports like football. OBJECTIVE To assess whether athletes who played American varsity high-school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. PATIENTS AND METHODS We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, compared to non-football-playing male varsity swimmers, wrestlers or basketball players. Using the records-linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, or amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. RESULTS We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than one year. Compared to non-football athletes, football players did not have an increased risk of neurodegenerative disease overall, nor the individual conditions of dementia, parkinsonism, or amyotrophic lateral sclerosis. CONCLUSION In this community based study, varsity high school football players from 1956 to 1970 did not have an increased risk of developing neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era where there was a generally nihilistic view of concussion dangers, less protective equipment and without prohibition of spearing (head-first tackling). However, size and strength of players from prior eras may not be comparable to current high-school athletes. PMID:27979411

  10. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases.

    PubMed

    Gao, Hui-Ming; Zhou, Hui; Hong, Jau-Shyong

    2012-06-01

    Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases. Published by Elsevier Ltd.

  11. Adrenomedullin, a Novel Target for Neurodegenerative Diseases.

    PubMed

    Ferrero, Hilda; Larrayoz, Ignacio M; Gil-Bea, Francisco J; Martínez, Alfredo; Ramírez, María J

    2018-03-29

    Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.

  12. Imaging multiple sclerosis and other neurodegenerative diseases

    PubMed Central

    Inglese, Matilde; Petracca, Maria

    2013-01-01

    Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases. PMID:23117868

  13. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    PubMed

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  14. A systems biology-led insight into the role of the proteome in neurodegenerative diseases.

    PubMed

    Fasano, Mauro; Monti, Chiara; Alberio, Tiziana

    2016-09-01

    Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases. Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer's disease, Parkinson's disease and other neurodegenerative disorders, as well as of affected human tissues. Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.

  15. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  16. Musicians Show General Enhancement of Complex Sound Encoding and Better Inhibition of Irrelevant Auditory Change in Music: An ERP Study

    PubMed Central

    Kaganovich, Natalya; Kim, Jihyun; Herring, Caryn; Schumaker, Jennifer; MacPherson, Megan; Weber-Fox, Christine

    2012-01-01

    Using electrophysiology, we have examined two questions in relation to musical training – namely, whether it enhances sensory encoding of the human voice and whether it improves the ability to ignore irrelevant auditory change. Participants performed an auditory distraction task, in which they identified each sound as either short (350 ms) or long (550 ms) and ignored a change in sounds’ timbre. Sounds consisted of a male and a female voice saying a neutral sound [a], and of a cello and a French Horn playing an F3 note. In some blocks, musical sounds occurred on 80% of trials, while voice sounds on 20% of trials. In other blocks, the reverse was true. Participants heard naturally recorded sounds in half of experimental blocks and their spectrally-rotated versions in the other half. Regarding voice perception, we found that musicians had a larger N1 ERP component not only to vocal sounds but also to their never before heard spectrally-rotated versions. We, therefore, conclude that musical training is associated with a general improvement in the early neural encoding of complex sounds. Regarding the ability to ignore irrelevant auditory change, musicians’ accuracy tended to suffer less from the change in sounds’ timbre, especially when deviants were musical notes. This behavioral finding was accompanied by a marginally larger re-orienting negativity in musicians, suggesting that their advantage may lie in a more efficient disengagement of attention from the distracting auditory dimension. PMID:23301775

  17. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    PubMed

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    limitations of these tests used and the sample sizes, olfactory dysfunction appears to be associated with the inability to identify odors reliably and consistently, not with the loss of an ability to identify specific odors. Irreproducibility in odor identification appears to be a non-disease-specific, general feature of olfactory dysfunction that is accelerated or accentuated in neurodegenerative disease. It may reflect a fundamental organizational principle of the olfactory system, which is more "error-prone" than other sensory systems.

  18. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  19. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  20. A basic study on universal design of auditory signals in automobiles.

    PubMed

    Yamauchi, Katsuya; Choi, Jong-dae; Maiguma, Ryo; Takada, Masayuki; Iwamiya, Shin-ichiro

    2004-11-01

    In this paper, the impression of various kinds of auditory signals currently used in automobiles and a comprehensive evaluation were measured by a semantic differential method. The desirable acoustic characteristic was examined for each type of auditory signal. Sharp sounds with dominant high-frequency components were not suitable for auditory signals in automobiles. This trend is expedient for the aged whose auditory sensitivity in the high frequency region is lower. When intermittent sounds were used, a longer OFF time was suitable. Generally, "dull (not sharp)" and "calm" sounds were appropriate for auditory signals. Furthermore, the comparison between the frequency spectrum of interior noise in automobiles and that of suitable sounds for various auditory signals indicates that the suitable sounds are not easily masked. The suitable auditory signals for various purposes is a good solution from the viewpoint of universal design.

  1. Incorporating Auditory Models in Speech/Audio Applications

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, Harish

    2011-12-01

    Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to

  2. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  3. Musicians show general enhancement of complex sound encoding and better inhibition of irrelevant auditory change in music: an ERP study.

    PubMed

    Kaganovich, Natalya; Kim, Jihyun; Herring, Caryn; Schumaker, Jennifer; Macpherson, Megan; Weber-Fox, Christine

    2013-04-01

    Using electrophysiology, we have examined two questions in relation to musical training - namely, whether it enhances sensory encoding of the human voice and whether it improves the ability to ignore irrelevant auditory change. Participants performed an auditory distraction task, in which they identified each sound as either short (350 ms) or long (550 ms) and ignored a change in timbre of the sounds. Sounds consisted of a male and a female voice saying a neutral sound [a], and of a cello and a French Horn playing an F3 note. In some blocks, musical sounds occurred on 80% of trials, while voice sounds on 20% of trials. In other blocks, the reverse was true. Participants heard naturally recorded sounds in half of experimental blocks and their spectrally-rotated versions in the other half. Regarding voice perception, we found that musicians had a larger N1 event-related potential component not only to vocal sounds but also to their never before heard spectrally-rotated versions. We therefore conclude that musical training is associated with a general improvement in the early neural encoding of complex sounds. Regarding the ability to ignore irrelevant auditory change, musicians' accuracy tended to suffer less from the change in timbre of the sounds, especially when deviants were musical notes. This behavioral finding was accompanied by a marginally larger re-orienting negativity in musicians, suggesting that their advantage may lie in a more efficient disengagement of attention from the distracting auditory dimension. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  5. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  6. Recent Patent Advances for Neurodegenerative Disorders and its Treatment.

    PubMed

    Kumar, Bhavna; Sharma, Deepika

    2017-01-01

    Neurodegenerative disorders are among the most common challenging diseases that affect the population with extreme medical and financial burdens. Widely seen neurodegeneration affects population of all ages, as it progresses with age, affecting a large proportion of elderly population including patients, caregivers, and immensely increasing the financial load of the country. These diseases have a very complex nature that frequently results from combined genetic, environmental and pathological factors. Various challenges are faced by the researchers working on the pathogenesis and the possible treatment of neurodegenerative disorder. The review has analysed for recent patent documents and treatment approaches for neurodegenerative disorders. This review does not relate to potential targets such as ( i.e. protein where modulation could be predicted to impact on pathophysiology), rather it mainly focuses on various available patented approaches for neurodegenerative disorders. The study design is based on updating the international and national literatures and an exhaustive patent search, compiling various patented documents for the treatment of neurodegenerative disorders (EP2282779A1, US20110229555A1) to provide information in the state of technological innovation in terms of research and development. In the present review, the authors described various neurodegenerative diseases, there treatment strategies and emphasized on various patented approaches for age-related neurodegenerative disorders such as novel therapeutic methods for treating Alzheimer's and associated disorders via modulated cell stress response EP2282779A1, through combined therapies that modulate angiogenesis US20120058992A1. The review will attract the interest of academics, researchers, students and pharmaceutical companies with regard to the recent on-going activities in neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Obstructive sleep apnea and neurodegenerative diseases: A bidirectional relation

    PubMed Central

    Bahia, Christianne Martins Corrêa da Silva; Pereira, João Santos

    2015-01-01

    Sleep disorders are common during the clinical course of the main neurodegenerative diseases. Among these disorders, obstructive sleep apnea has been extensively studied in the last decade and recent knowledge regarding its relationship with the neurodegenerative process points a bidirectional relationship. Neurodegenerative diseases can lead to functional changes in the respiratory system that facilitate the emergence of apnea. On the other hand, obstructive sleep apnea itself can lead to acceleration of neuronal death due to intermittent hypoxia. Considering that obstructive sleep apnea is a potentially treatable condition, its early identification and intervention could have a positive impact on the management of patients with neurodegenerative diseases. PMID:29213936

  8. Pharmacogenetics in Neurodegenerative Diseases: Implications for Clinical Trials.

    PubMed

    Tortelli, Rosanna; Seripa, Davide; Panza, Francesco; Solfrizzi, Vincenzo; Logroscino, Giancarlo

    2016-01-01

    Pharmacogenetics has become extremely important over the last 20 years for identifying individuals more likely to be responsive to pharmacological interventions. The role of genetic background as a predictor of drug response is a young and mostly unexplored field in neurodegenerative diseases. Mendelian mutations in neurodegenerative diseases have been used as models for early diagnosis and intervention. On the other hand, genetic polymorphisms or risk factors for late-onset Alzheimer's disease (AD) or other neurodegenerative diseases, probably influencing drug response, are hardly taken into account in randomized clinical trial (RCT) design. The same is true for genetic variants in cytochrome P450 (CYP), the principal enzymes influencing drug metabolism. A better characterization of individual genetic background may optimize clinical trial design and personal drug response. This chapter describes the state of the art about the impact of genetic factors in RCTs on neurodegenerative disease, with AD, frontotemporal dementia, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease as examples. Furthermore, a brief description of the genetic bases of drug response focusing on neurodegenerative diseases will be conducted. The role of pharmacogenetics in RCTs for neurodegenerative diseases is still a young, unexplored, and promising field. Genetic tools allow increased sophistication in patient profiling and treatment optimization. Pharmaceutical companies are aware of the value of collecting genetic data during their RCTs. Pharmacogenetic research is bidirectional with RCTs: efficacy data are correlated with genetic polymorphisms, which in turn define subjects for treatment stratification. © 2016 S. Karger AG, Basel.

  9. Innate immune activation in neurodegenerative disease.

    PubMed

    Heneka, Michael T; Kummer, Markus P; Latz, Eicke

    2014-07-01

    The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

  10. Cerebral vasomotor reactivity in neurodegenerative diseases.

    PubMed

    Smoliński, Łukasz; Członkowska, Anna

    Small-caliber cerebral vessels change their diameters in response to alterations of key metabolite concentrations such as carbon dioxide or oxygen. This phenomenon, termed the cerebral vasomotor reactivity (CVMR), is the basis for blood flow regulation in the brain in accordance with its metabolic status. Typically, CVMR is determined as the amount of change in cerebral blood flow in response to a vasodilating stimulus, which can be measured by various neuroimaging methods or by transcranial Doppler. It has been shown that CVMR is impaired in cerebrovascular diseases, but there is also evidence of a similar dysfunction in neurodegenerative disorders. Here, we review studies that have investigated CVMR in the common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. Moreover, we discuss potential neurodegenerative mechanisms responsible for the impairment of CVMR. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  12. Action-related auditory ERP attenuation: Paradigms and hypotheses.

    PubMed

    Horváth, János

    2015-11-11

    A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015. Published by Elsevier B.V.

  13. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  14. Auditory and communicative abilities in the auditory neuropathy spectrum disorder and mutation in the Otoferlin gene: clinical cases study.

    PubMed

    Costa, Nayara Thais de Oliveira; Martinho-Carvalho, Ana Claudia; Cunha, Maria Claudia; Lewis, Doris Ruthi

    2012-01-01

    This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.

  15. Mortality From Neurodegenerative Diseases in a Cohort of US Flight Attendants

    PubMed Central

    Pinkerton, Lynne E.; Hein, Misty J.; Grajewski, Barbara; Kamel, Freya

    2016-01-01

    Background Concern exists about the potential chronic neurological effects among aircrew of exposure to chemical contaminants from engine oil in aircraft cabin air. We evaluated mortality from neurodegenerative diseases among 11,311 former US flight attendants. Methods Vital status was ascertained through 2007, and life table analyses were conducted to obtain standardized mortality ratios (SMRs). Results Amyotrophic lateral sclerosis (ALS) mortality was over twice as high in the cohort as in the US general population, based on nine observed ALS deaths. There was no clear pattern in risk when SMRs for ALS were stratified by exposure duration. Mortality from other neurodegenerative diseases was not elevated. Conclusions Our findings are limited due to small numbers of observed deaths and reliance on mortality data, but suggest that flight attendants may have an increased risk of ALS. Additional research is needed. PMID:27184412

  16. Protein recycling pathways in neurodegenerative diseases

    PubMed Central

    2014-01-01

    Many progressive neurodegenerative diseases, including Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal lobe dementia, are associated with the formation of insoluble intracellular proteinaceous inclusions. It is therefore imperative to understand the factors that regulate normal, as well as abnormal, protein recycling in neurons. Dysfunction of the ubiquitin-proteasome or autophagy pathways might contribute to the pathology of various neurodegenerative diseases. Induction of these pathways may offer a rational therapeutic strategy for a number of these diseases. PMID:25031631

  17. The need for harmonisation and innovation of neuropsychological assessment in neurodegenerative dementias in Europe: consensus document of the Joint Program for Neurodegenerative Diseases Working Group.

    PubMed

    Costa, Alberto; Bak, Thomas; Caffarra, Paolo; Caltagirone, Carlo; Ceccaldi, Mathieu; Collette, Fabienne; Crutch, Sebastian; Della Sala, Sergio; Démonet, Jean François; Dubois, Bruno; Duzel, Emrah; Nestor, Peter; Papageorgiou, Sokratis G; Salmon, Eric; Sikkes, Sietske; Tiraboschi, Pietro; van der Flier, Wiesje M; Visser, Pieter Jelle; Cappa, Stefano F

    2017-04-17

    Cognitive, behavioural, and functional assessment is crucial in longitudinal studies of neurodegenerative dementias (NDD). Central issues, such as the definition of the study population (asymptomatic, at risk, or individuals with dementia), the detection of change/decline, and the assessment of relevant outcomes depend on quantitative measures of cognitive, behavioural, and functional status.Currently, we are far from having available reliable protocols and tools for the assessment of dementias in Europe. The main problems are the heterogeneity of the tools used across different European countries, the lack of standardisation of administration and scoring methods across centres, and the limited information available about the psychometric properties of many tests currently in widespread use. This situation makes it hard to compare results across studies carried out in different centres, thus hampering research progress, in particular towards the contribution to a "big data" common data set.We present here the results of a project funded by the Joint Program for Neurodegenerative Diseases (JPND) and by the Italian Ministry of Health. The project aimed at providing a consensus framework for the harmonisation of assessment tools to be applied to research in neurodegenerative disorders affecting cognition across Europe. A panel of European experts reviewed the current methods of neuropsychological assessment, identified pending issues, and made recommendations for the harmonisation of neuropsychological assessment of neurodegenerative dementias in Europe.A consensus was achieved on the general recommendations to be followed in developing procedures and tools for neuropsychological assessment, with the aim of harmonising tools and procedures to achieve more reliable data on the cognitive-behavioural examination. The results of this study should be considered as a first step to enhancing a common view and practise on NDD assessment across European countries.

  18. Neuroinflamm-aging and neurodegenerative diseases: an overview.

    PubMed

    Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna

    2011-08-01

    Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.

  19. Auditory reafferences: the influence of real-time feedback on movement control.

    PubMed

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  20. Primary auditory cortex regulates threat memory specificity.

    PubMed

    Wigestrand, Mattis B; Schiff, Hillary C; Fyhn, Marianne; LeDoux, Joseph E; Sears, Robert M

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used muscimol infusions in rats to show that discriminatory threat learning requires Au1 activity specifically during memory acquisition and retrieval, but not during consolidation. Memory specificity was similarly disrupted by infusion of PKMζ inhibitor peptide (ZIP) during memory storage. Our findings show that Au1 is required at critical memory phases and suggest that Au1 plasticity enables stimulus discrimination. © 2016 Wigestrand et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Rapid estimation of high-parameter auditory-filter shapes

    PubMed Central

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  2. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    PubMed

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    various configurations of masking speech, and in which the target speakers and test materials were unrelated to the training materials; (2) the Children's Auditory Performance Scale that assesses listening skills, completed by the children's teachers; and (3) the Clinical Evaluation of Language Fundamental-4 pragmatic profile that assesses pragmatic language use, completed by parents. All outcome measures significantly improved at immediate postintervention in the intervention group only, with effect sizes ranging from 0.76 to 1.7. Improvements in speech-in-noise performance correlated with improved scores in the Children's Auditory Performance Scale questionnaire in the trained group only. Baseline language and cognitive assessments did not predict better training outcome. Improvements in speech-in-noise performance were sustained 3 months postintervention. Broad speech-based auditory training led to improved auditory processing skills as reflected in speech-in-noise test performance and in better functional listening in real life. The observed correlation between improved functional listening with improved speech-in-noise perception in the trained group suggests that improved listening was a direct generalization of the auditory training.

  3. The Development of Auditory Perception in Children Following Auditory Brainstem Implantation

    PubMed Central

    Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio

    2014-01-01

    Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987

  4. Influence of Visual Prism Adaptation on Auditory Space Representation.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2017-01-01

    Prisms shifting the visual input sideways produce a mismatch between the visual versus felt position of one's hand. Prism adaptation eliminates this mismatch, realigning hand proprioception with visual input. Whether this realignment concerns exclusively the visuo-(hand)motor system or it generalizes to acoustic inputs is controversial. We here show that there is indeed a slight influence of visual adaptation on the perceived direction of acoustic sources. However, this shift in perceived auditory direction can be fully explained by a subconscious head rotation during prism exposure and by changes in arm proprioception. Hence, prism adaptation does only indirectly generalize to auditory space perception.

  5. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    PubMed

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  6. Auditory Spatial Perception: Auditory Localization

    DTIC Science & Technology

    2012-05-01

    cochlear nucleus, TB – trapezoid body, SOC – superior olivary complex, LL – lateral lemniscus, IC – inferior colliculus. Adapted from Aharonson and...Figure 5. Auditory pathways in the central nervous system. LE – left ear, RE – right ear, AN – auditory nerve, CN – cochlear nucleus, TB...fibers leaving the left and right inner ear connect directly to the synaptic inputs of the cochlear nucleus (CN) on the same (ipsilateral) side of

  7. High School Football and Late-Life Risk of Neurodegenerative Syndromes, 1956-1970.

    PubMed

    Janssen, Pieter H H; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    To assess whether athletes who played American varsity high school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, and non-football-playing male varsity swimmers, wrestlers, and basketball players. Using the medical records linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, and amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than 1 year. Compared with nonfootball athletes, football players did not have an increased risk of neurodegenerative disease overall or of the individual conditions of dementia, parkinsonism, and amyotrophic lateral sclerosis. In this community-based study, varsity high school football players from 1956 to 1970 did not have an increased risk of neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era when there was a generally nihilistic view of concussion dangers, less protective equipment, and no prohibition of spearing (head-first tackling). However, the size and strength of players from previous eras may not be comparable with that of current high school athletes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  8. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  9. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    PubMed

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  11. Is there evidence for neurodegenerative change following traumatic brain injury in children and youth? A scoping review.

    PubMed

    Keightley, Michelle L; Sinopoli, Katia J; Davis, Karen D; Mikulis, David J; Wennberg, Richard; Tartaglia, Maria C; Chen, Jen-Kai; Tator, Charles H

    2014-01-01

    While generalized cerebral atrophy and neurodegenerative change following traumatic brain injury (TBI) is well recognized in adults, it remains comparatively understudied in the pediatric population, suggesting that research should address the potential for neurodegenerative change in children and youth following TBI. This focused review examines original research findings documenting evidence for neurodegenerative change following TBI of all severities in children and youth. Our relevant inclusion and exclusion criteria identified a total of 16 articles for review. Taken together, the studies reviewed suggest there is evidence for long-term neurodegenerative change following TBI in children and youth. In particular both cross-sectional and longitudinal studies revealed volume loss in selected brain regions including the hippocampus, amygdala, globus pallidus, thalamus, periventricular white matter, cerebellum, and brain stem as well as overall decreased whole brain volume and increased CSF and ventricular space. Diffusion Tensor Imaging (DTI) studies also report evidence for decreased cellular integrity, particularly in the corpus callosum. Sensitivity of the hippocampus and deep limbic structures in pediatric populations are similar to findings in the adult literature and we consider the data supporting these changes as well as the need to investigate the possibility of neurodegenerative onset in childhood associated with mild traumatic brain injury (mTBI).

  12. In Vitro Microfluidic Models for Neurodegenerative Disorders.

    PubMed

    Osaki, Tatsuya; Shin, Yoojin; Sivathanu, Vivek; Campisi, Marco; Kamm, Roger D

    2018-01-01

    Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cannabidiol: a promising drug for neurodegenerative disorders?

    PubMed

    Iuvone, Teresa; Esposito, Giuseppe; De Filippis, Daniele; Scuderi, Caterina; Steardo, Luca

    2009-01-01

    Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration. Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective. In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.

  14. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    PubMed Central

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  15. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  16. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions

  17. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  18. Omental transplantation for neurodegenerative diseases.

    PubMed

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer's disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington's disease, Parkinson's disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders.

  19. Reward processing in neurodegenerative disease

    PubMed Central

    Perry, David C.; Kramer, Joel H.

    2015-01-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286

  20. Molecular diagnostics of neurodegenerative disorders.

    PubMed

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  1. Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.

    PubMed

    Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R

    2003-05-01

    A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.

  2. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  3. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    PubMed

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  4. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    PubMed

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  5. Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds

    PubMed Central

    Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.

    2012-01-01

    Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625

  6. Auditory short-term memory in the primate auditory cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  7. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    PubMed

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  9. Omental transplantation for neurodegenerative diseases

    PubMed Central

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510

  10. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multivariate sensitivity to voice during auditory categorization.

    PubMed

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  12. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  13. Necroptosis in neurodegenerative diseases: a potential therapeutic target

    PubMed Central

    Zhang, Shuo; Tang, Mi-bo; Luo, Hai-yang; Shi, Chang-he; Xu, Yu-ming

    2017-01-01

    Neurodegenerative diseases are a group of chronic progressive disorders characterized by neuronal loss. Necroptosis, a recently discovered form of programmed cell death, is a cell death mechanism that has necrosis-like morphological characteristics. Necroptosis activation relies on the receptor-interacting protein (RIP) homology interaction motif (RHIM). A variety of RHIM-containing proteins transduce necroptotic signals from the cell trigger to the cell death mediators RIP3 and mixed lineage kinase domain-like protein (MLKL). RIP1 plays a particularly important and complex role in necroptotic cell death regulation ranging from cell death activation to inhibition, and these functions are often cell type and context dependent. Increasing evidence suggests that necroptosis plays an important role in the pathogenesis of neurodegenerative diseases. Moreover, small molecules such as necrostatin-1 are thought inhibit necroptotic signaling pathway. Understanding the precise mechanisms underlying necroptosis and its interactions with other cell death pathways in neurodegenerative diseases could provide significant therapeutic insights. The present review is aimed at summarizing the molecular mechanisms of necroptosis and highlighting the emerging evidence on necroptosis as a major driver of neuron cell death in neurodegenerative diseases. PMID:28661482

  14. Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Kyles, Philip; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neuro-degeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including: Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington disease (HD). It can be suggested that autophagy dysfunction along with oxidative stress are considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases. PMID:24807843

  15. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  16. Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve.

    PubMed

    Sekiya, Tetsuji; Holley, Matthew C; Kojima, Ken; Matsumoto, Masahiro; Helyer, Richard; Ito, Juichi

    2007-04-01

    Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.

  17. Therapeutic Potential of Genipin in Central Neurodegenerative Diseases.

    PubMed

    Li, Yanwei; Li, Lin; Hölscher, Christian

    2016-10-01

    Central neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are one of the biggest health problems worldwide. Currently, there is no cure for these diseases. The Gardenia jasminoides fruit is a common herbal medicine in traditional Chinese medicine (TCM), and a variety of preparations are used as treatments for central nervous system (CNS) diseases. Pharmacokinetic studies suggest genipin is one of the main effective ingredients of G. jasminoides fruit extract (GFE). Accumulated research data show that genipin possesses a range of key pharmacological properties, such as anti-inflammatory, neuroprotective, neurogenic, antidiabetic, and antidepressant effects. Thus, genipin shows therapeutic potential for central neurodegenerative diseases. We review the pharmacological actions of genipin for the treatment of neurodegenerative diseases of the CNS. We also describe the potential mechanisms underlying these effects.

  18. Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases.

    PubMed

    Li, Matthew D; Burns, Terry C; Morgan, Alexander A; Khatri, Purvesh

    2014-09-04

    Neurodegenerative diseases share common pathologic features including neuroinflammation, mitochondrial dysfunction and protein aggregation, suggesting common underlying mechanisms of neurodegeneration. We undertook a meta-analysis of public gene expression data for neurodegenerative diseases to identify a common transcriptional signature of neurodegeneration. Using 1,270 post-mortem central nervous system tissue samples from 13 patient cohorts covering four neurodegenerative diseases, we identified 243 differentially expressed genes, which were similarly dysregulated in 15 additional patient cohorts of 205 samples including seven neurodegenerative diseases. This gene signature correlated with histologic disease severity. Metallothioneins featured prominently among differentially expressed genes, and functional pathway analysis identified specific convergent themes of dysregulation. MetaCore network analyses revealed various novel candidate hub genes (e.g. STAU2). Genes associated with M1-polarized macrophages and reactive astrocytes were strongly enriched in the meta-analysis data. Evaluation of genes enriched in neurons revealed 70 down-regulated genes, over half not previously associated with neurodegeneration. Comparison with aging brain data (3 patient cohorts, 221 samples) revealed 53 of these to be unique to neurodegenerative disease, many of which are strong candidates to be important in neuropathogenesis (e.g. NDN, NAP1L2). ENCODE ChIP-seq analysis predicted common upstream transcriptional regulators not associated with normal aging (REST, RBBP5, SIN3A, SP2, YY1, ZNF143, IKZF1). Finally, we removed genes common to neurodegeneration from disease-specific gene signatures, revealing uniquely robust immune response and JAK-STAT signaling in amyotrophic lateral sclerosis. Our results implicate pervasive bioenergetic deficits, M1-type microglial activation and gliosis as unifying themes of neurodegeneration, and identify numerous novel genes associated with

  19. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  20. Music training for the development of auditory skills.

    PubMed

    Kraus, Nina; Chandrasekaran, Bharath

    2010-08-01

    The effects of music training in relation to brain plasticity have caused excitement, evident from the popularity of books on this topic among scientists and the general public. Neuroscience research has shown that music training leads to changes throughout the auditory system that prime musicians for listening challenges beyond music processing. This effect of music training suggests that, akin to physical exercise and its impact on body fitness, music is a resource that tones the brain for auditory fitness. Therefore, the role of music in shaping individual development deserves consideration.

  1. Diminished auditory sensory gating during active auditory verbal hallucinations.

    PubMed

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cerebral processing of auditory stimuli in patients with irritable bowel syndrome

    PubMed Central

    Andresen, Viola; Poellinger, Alexander; Tsrouya, Chedwa; Bach, Dominik; Stroh, Albrecht; Foerschler, Annette; Georgiewa, Petra; Schmidtmann, Marco; van der Voort, Ivo R; Kobelt, Peter; Zimmer, Claus; Wiedenmann, Bertram; Klapp, Burghard F; Monnikes, Hubert

    2006-01-01

    AIM: To determine by brain functional magnetic resonance imaging (fMRI) whether cerebral processing of non-visceral stimuli is altered in irritable bowel syndrome (IBS) patients compared with healthy subjects. To circumvent spinal viscerosomatic convergence mechanisms, we used auditory stimulation, and to identify a possible influence of psychological factors the stimuli differed in their emotional quality. METHODS: In 8 IBS patients and 8 controls, fMRI measurements were performed using a block design of 4 auditory stimuli of different emotional quality (pleasant sounds of chimes, unpleasant peep (2000 Hz), neutral words, and emotional words). A gradient echo T2*-weighted sequence was used for the functional scans. Statistical maps were constructed using the general linear model. RESULTS: To emotional auditory stimuli, IBS patients relative to controls responded with stronger deactivations in a greater variety of emotional processing regions, while the response patterns, unlike in controls, did not differentiate between distressing or pleasant sounds. To neutral auditory stimuli, by contrast, only IBS patients responded with large significant activations. CONCLUSION: Altered cerebral response patterns to auditory stimuli in emotional stimulus-processing regions suggest that altered sensory processing in IBS may not be specific for visceral sensation, but might reflect generalized changes in emotional sensitivity and affective reactivity, possibly associated with the psychological comorbidity often found in IBS patients. PMID:16586541

  3. Thalamic and parietal brain morphology predicts auditory category learning.

    PubMed

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  4. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    PubMed

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  5. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  6. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  7. The role of vision in auditory distance perception.

    PubMed

    Calcagno, Esteban R; Abregú, Ezequiel L; Eguía, Manuel C; Vergara, Ramiro

    2012-01-01

    In humans, multisensory interaction is an important strategy for improving the detection of stimuli of different nature and reducing the variability of response. It is known that the presence of visual information affects the auditory perception in the horizontal plane (azimuth), but there are few researches that study the influence of vision in the auditory distance perception. In general, the data obtained from these studies are contradictory and do not completely define the way in which visual cues affect the apparent distance of a sound source. Here psychophysical experiments on auditory distance perception in humans are performed, including and excluding visual cues. The results show that the apparent distance from the source is affected by the presence of visual information and that subjects can store in their memory a representation of the environment that later improves the perception of distance.

  8. Neural stem cell-based treatment for neurodegenerative diseases.

    PubMed

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury. © 2013 Japanese Society of Neuropathology.

  9. Redox Imbalance and Viral Infections in Neurodegenerative Diseases.

    PubMed

    Limongi, Dolores; Baldelli, Sara

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).

  10. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    PubMed Central

    Limongi, Dolores

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  11. The Diagnosis and Understanding of Apraxia of Speech: Why Including Neurodegenerative Etiologies May Be Important

    ERIC Educational Resources Information Center

    Duffy, Joseph R.; Josephs, Keith A.

    2012-01-01

    Purpose: To discuss apraxia of speech (AOS) as it occurs in neurodegenerative disease (progressive AOS [PAOS]) and how its careful study may contribute to general concepts of AOS and help refine its diagnostic criteria. Method: The article summarizes our current understanding of the clinical features and neuroanatomical and pathologic correlates…

  12. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Convergent molecular defects underpin diverse neurodegenerative diseases.

    PubMed

    Tofaris, George K; Buckley, Noel J

    2018-02-19

    In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  15. Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.

    ERIC Educational Resources Information Center

    Hack, Zarita Caplan; Erber, Norman P.

    1982-01-01

    Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…

  16. Auditory risk estimates for youth target shooting

    PubMed Central

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  17. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  18. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  19. A verbal behavior analysis of auditory hallucinations

    PubMed Central

    Burns, Caleb E. S.; Heiby, Elaine M.; Tharp, Roland G.

    1983-01-01

    A review of recent research on the non-medical control of auditory hallucinations is presented. It is suggested that the decreases in hallucinatory behavior obtained in studies using aversive contingencies may be attributable to the disruption of the chains of behavior involved. The results of several additional studies are interpreted as indicating that methods of stimulus control and the use of incompatible behaviors may be effective in reducing the rate of auditory hallucinations. Research relating auditory hallucinations to subvocalizations is presented in support of the view that hallucinatory phenomena are sometimes related to the subject's own vocal productions. Skinner's views (1934, 1936, 1953, 1957, 1980) are then presented as possible explanations of some hallucinatory behavior. It is suggested that some auditory hallucinations consit of the mishearing of environmental and physiological stimuli as voices in a fashion similar to that which Skinner observed in his work with the verbal summator. The maintenance of long chains of such responses may be largely attributable to self-intraverbal influences (such as are present during automatic writing). With some auditory hallucinations, this progression involves first mishearing ambiguous stimuli as voices and then attributing the voices to some cause (e.g., insanity, the television, radio, or God). Later, the frequent and ongoing chains of such behavior may contaminate other verbal responses. Such verbal behavior may be parasitic on “normal verbal behavior” (and hence, not directly dependent on consquences for maintenance), may be cued by various stimuli (including respiration), and may interfere with other covert and overt behavior. Several studies to investigate this view are presented. It is hoped that such research will lead to a better understanding of the major issues involved in the etiology and treatment of auditory hallucinations in particular and perhaps of psychosis in general. PMID:22478583

  20. Multiple roles of HDAC inhibition in neurodegenerative conditions

    PubMed Central

    Chuang, De-Maw; Leng, Yan; Marinova, Zoya; Kim, Hyeon-Ju; Chiu, Chi-Tso

    2009-01-01

    Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histones and other proteins and in regulating fundamental cellular activities such as transcription. Imbalances in protein acetylation levels and dysfunctions in transcription are associated with a wide variety of brain disorders. Treatment with various HDAC inhibitors corrects these deficiencies and has emerged as a promising new strategy for therapeutic intervention in neurodegenerative diseases. Here, we review and discuss intriguing recent developments in the use of HDAC inhibitors to combat neurodegenerative conditions in cellular and disease models. HDAC inhibitors have neuroprotective, neurotrophic and anti-inflammatory properties, and improvements in neurological performance, learning/memory and other disease phenotypes are frequently seen in these models. We discuss the targets and mechanisms underlying these effects of HDAC inhibition and comment on the potential for some HDAC inhibitors to prove clinically effective in treating neurodegenerative disorders. PMID:19775759

  1. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  2. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed Central

    Yu-Wai-Man, Patrick

    2016-01-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. PMID:27002113

  3. [MicroRNA in neurodegenerative disorders].

    PubMed

    Sobue, Gen

    2013-01-01

    MicroRNAs (miRNAs) bind to the 3'-untranslated region of mRNA, and thereby suppress the gene expression. Recent studies suggest that miRNAs modify the pathogenesis of cancer and neurodegeneration. Our study demonstrated that the expression levels of miR-196a is increased in a mouse model of spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease caused by the expansion of polyglutamine in androgen receptor (AR). In cultured neuronal cells, miR-196a decayed the mutant AR mRNA via silencing CUG triplet repeat RNA binding protein 2, a potent miR-196a targeting mRNA, which contributed to stabilize the mutant AR mRNA. Adeno-associated virus vector-mediated delivery of this miRNA attenuates the expression of the mutant AR, resulting in the mitigation of motor neuron degeneration in the SBMA mice. Introduction of miRNA appears to be a novel therapeutic strategy for devastating neurodegenerative diseases.

  4. Oligonucleotide therapeutics in neurodegenerative diseases.

    PubMed

    Scoles, Daniel R; Pulst, Stefan M

    2018-03-21

    Therapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias. We have used an ASO approach toward developing a treatment for spinocerebellar ataxia type 2 (SCA2), for targeting the causative gene ATXN2. We demonstrated that reduction of ATXN2 expression in SCA2 mice treated by intracerebroventicular injection (ICV) of ATXN2 ASO delayed motor phenotype onset, improved the expression of several genes demonstrated abnormally reduced by transcriptomic profiling of SCA2 mice, and restored abnormal Purkinje cell firing frequency in acute cerebellar sections. Here we discuss RNA abnormalities in disease and the prospects of targeting neurodegenerative diseases at the level of RNA control using ASOs and other RNA-targeted therapeutics.

  5. Dystrophic Serotonergic Axons in Neurodegenerative Diseases

    PubMed Central

    Azmitia, Efrain C.; Nixon, Ralph

    2012-01-01

    Neurodegenerative diseases such as Parkinson's disease (PD), frontal lobe dementia (FLD) and Diffuse Lewy-Body dementia (DLBD) have diverse neuropathologic features. Here we report that serotonin fibers are dystrophic in the brains of individuals with these three diseases. In neuropathologically normal (control) brains (n=3), serotonin axons immunoreactive (IR) with antibodies against the serotonin transporter (5-HTT) protein were widely distributed in cortex (entorhinal and dorsolateral prefrontal), hippocampus and rostral brainstem. 5-HTT-IR fibers of passage appeared thick, smooth, and un-branched in medial forebrain bundle, medial lemniscus and cortex white matter. The terminal branches were fine, highly branched and varicose in substantia nigra, hippocampus and cortical gray matter. In the diseased brains, however, 5-HTT-IR fibers in the forebrain were reduced in number and were frequently bulbous, splayed, tightly clustered and enlarged. Morphometric analysis revealed significant differences in the size distribution of the 5-HTT-IR profiles in dorsolateral prefrontal area between neurodegenerative diseases and controls. Our observations provide direct morphologic evidence for degeneration of human serotonergic axons in the brains of patients with neurodegenerative diseases despite the limited size (n=3 slices for each region (3) from each brain (4), total slices was n=36) and lack of extensive clinical characterization of the analyzed cohort. This is the first report of dystrophic 5-HTT-IR axons in postmortem human tissue PMID:18502405

  6. Spatiotemporal differentiation in auditory and motor regions during auditory phoneme discrimination.

    PubMed

    Aerts, Annelies; Strobbe, Gregor; van Mierlo, Pieter; Hartsuiker, Robert J; Corthals, Paul; Santens, Patrick; De Letter, Miet

    2017-06-01

    Auditory phoneme discrimination (APD) is supported by both auditory and motor regions through a sensorimotor interface embedded in a fronto-temporo-parietal cortical network. However, the specific spatiotemporal organization of this network during APD with respect to different types of phonemic contrasts is still unclear. Here, we use source reconstruction, applied to event-related potentials in a group of 47 participants, to uncover a potential spatiotemporal differentiation in these brain regions during a passive and active APD task with respect to place of articulation (PoA), voicing and manner of articulation (MoA). Results demonstrate that in an early stage (50-110 ms), auditory, motor and sensorimotor regions elicit more activation during the passive and active APD task with MoA and active APD task with voicing compared to PoA. In a later stage (130-175 ms), the same auditory and motor regions elicit more activation during the APD task with PoA compared to MoA and voicing, yet only in the active condition, implying important timing differences. Degree of attention influences a frontal network during the APD task with PoA, whereas auditory regions are more affected during the APD task with MoA and voicing. Based on these findings, it can be carefully suggested that APD is supported by the integration of early activation of auditory-acoustic properties in superior temporal regions, more perpetuated for MoA and voicing, and later auditory-to-motor integration in sensorimotor areas, more perpetuated for PoA.

  7. Simple Test of Manual Dexterity Can Help to Identify Persons at High Risk for Neurodegenerative Diseases in the Community.

    PubMed

    Darweesh, Sirwan K L; Wolters, Frank J; Hofman, Albert; Stricker, Bruno H; Koudstaal, Peter J; Ikram, M Arfan

    2017-01-01

    Early identification of individuals at high risk of developing neurodegenerative diseases is essential for timely preventive intervention. However, simple methods that can be used for risk assessment in general practice are lacking. Within the population-based Rotterdam Study, we used the Purdue Pegboard Test (PPT) to assess manual dexterity in 4,856 persons (median age 70 years, 58% women) free of parkinsonism and dementia between 2000 and 2004. We followed these persons until January 1, 2012 for the onset of neurodegenerative diseases (defined as first diagnosis of parkinsonism or dementia). We determined the association of PPT scores with incident neurodegenerative disease, adjusting for age, sex, study cohort, level of education, smoking, preferred hand, parental history, memory complaints, and Mini-Mental State Examination. Furthermore, we determined the incremental predictive value of PPT, expressed as change in risk classification and discrimination. During follow-up (median 9.2 years), 277 participants were diagnosed with a neurodegenerative disease (227 with dementia and 50 with parkinsonism). Lower PPT scores were associated with higher risk of incident neurodegenerative diseases (hazard ratio [HR] = 1.28, 95% confidence interval [CI]: 1.18-1.41) and improved discrimination of incident neurodegenerative diseases. We also observed significant associations of PPT scores separately with incident dementia (HR = 1.25; 95% CI: 1.14-1.39]) and incident parkinsonism (HR = 1.41; 95% CI: 1.19-1.67). A rapid, nonlaboratory test of manual dexterity may help to identify persons at high risk for neurodegenerative diseases. This highlights the importance of motor function in the preclinical phase of both dementia and parkinsonism and may aid in selecting individuals for refined screening and neuroprotective trials. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e

  8. Chronic neurodegenerative consequences of traumatic brain injury.

    PubMed

    Chauhan, Neelima B

    2014-01-01

    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  9. Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer's disease.

    PubMed

    Karim, Sajjad; Mirza, Zeenat; Ansari, Shakeel A; Rasool, Mahmood; Iqbal, Zafar; Sohrab, Sayed S; Kamal, Mohammad A; Abuzenadah, Adel M; Al-Qahtani, Mohammed H

    2014-01-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder primarily affecting memory and thinking ability; caused by progressive degeneration and death of nerve cells. In this study, we integrated multiple dataset retrieved from the National Center for Biotechnology Information's Gene Expression Omnibus database, and took a systems-biology approach to compare and distinguish the molecular network based synaptic dysregulation associated with AD in particular and neurodegenerative diseases in general. We first identified 832 differentially expressed genes using cut off P value <0.5 and fold change > 2, followed by gene ontology study to identify genes associated with synapse (n=95) [membrane associated guanylate kinase, 2, amyloid beta precursor protein, neurotrophic tyrosine kinase, receptor, type 2], synapse part [γ-aminobutyric acid A receptor, γ1], synaptic vesicle [glutamate receptor, ionotropic, α-amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor 2, synaptoporin], pre- and post-synaptic density [neuronal calcium sensor 1, glutamate receptor, metabotropic 3]. We integrated these data with known pathways using Ingenuity Pathway Analysis tool and found following synapse associated pathways to be most affected; γ-aminobutyric acid receptor signaling, synaptic long term potentiation/depression, nuclear factor-erythroid 2-related factor 2-mediated oxidative stress response, huntington's disease signaling and Reelin signaling in neurons. In conclusion, synaptic dysfunction is tightly associated with the development and progression of neurodegenerative diseases like AD.

  10. Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.

    PubMed

    Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu

    2016-10-01

    The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.

  11. Aquatherapy for neurodegenerative disorders.

    PubMed

    Plecash, Alyson R; Leavitt, Blair R

    2014-01-01

    Aquatherapy is used for rehabilitation and exercise; water provides a challenging, yet safe exercise environment for many special populations. We have reviewed the use of aquatherapy programs in four neurodegenerative disorders: Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Results support the use of aquatherapy in Parkinson's disease and multiple sclerosis, however further evidence is required to make specific recommendations in all of the aforementioned disorders.

  12. Comparison of Pre-Attentive Auditory Discrimination at Gross and Fine Difference between Auditory Stimuli.

    PubMed

    Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  Mismatch Negativity is a negative component of the event-related potential (ERP) elicited by any discriminable changes in auditory stimulation. Objective  The present study aimed to assess pre-attentive auditory discrimination skill with fine and gross difference between auditory stimuli. Method  Seventeen normal hearing individual participated in the study. To assess pre-attentive auditory discrimination skill with fine difference between auditory stimuli, we recorded mismatch negativity (MMN) with pair of stimuli (pure tones), using /1000 Hz/ and /1010 Hz/ with /1000 Hz/ as frequent stimulus and /1010 Hz/ as infrequent stimulus. Similarly, we used /1000 Hz/ and /1100 Hz/ with /1000 Hz/ as frequent stimulus and /1100 Hz/ as infrequent stimulus to assess pre-attentive auditory discrimination skill with gross difference between auditory stimuli. The study included 17 subjects with informed consent. We analyzed MMN for onset latency, offset latency, peak latency, peak amplitude, and area under the curve parameters. Result  Results revealed that MMN was present only in 64% of the individuals in both conditions. Further Multivariate Analysis of Variance (MANOVA) showed no significant difference in all measures of MMN (onset latency, offset latency, peak latency, peak amplitude, and area under the curve) in both conditions. Conclusion  The present study showed similar pre-attentive skills for both conditions: fine (1000 Hz and 1010 Hz) and gross (1000 Hz and 1100 Hz) difference in auditory stimuli at a higher level (endogenous) of the auditory system.

  13. A Model of Auditory-Cognitive Processing and Relevance to Clinical Applicability.

    PubMed

    Edwards, Brent

    2016-01-01

    Hearing loss and cognitive function interact in both a bottom-up and top-down relationship. Listening effort is tied to these interactions, and models have been developed to explain their relationship. The Ease of Language Understanding model in particular has gained considerable attention in its explanation of the effect of signal distortion on speech understanding. Signal distortion can also affect auditory scene analysis ability, however, resulting in a distorted auditory scene that can affect cognitive function, listening effort, and the allocation of cognitive resources. These effects are explained through an addition to the Ease of Language Understanding model. This model can be generalized to apply to all sounds, not only speech, representing the increased effort required for auditory environmental awareness and other nonspeech auditory tasks. While the authors have measures of speech understanding and cognitive load to quantify these interactions, they are lacking measures of the effect of hearing aid technology on auditory scene analysis ability and how effort and attention varies with the quality of an auditory scene. Additionally, the clinical relevance of hearing aid technology on cognitive function and the application of cognitive measures in hearing aid fittings will be limited until effectiveness is demonstrated in real-world situations.

  14. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases12

    PubMed Central

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  15. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  16. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  17. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  18. Neuropsychopharmacology of auditory hallucinations: insights from pharmacological functional MRI and perspectives for future research.

    PubMed

    Johnsen, Erik; Hugdahl, Kenneth; Fusar-Poli, Paolo; Kroken, Rune A; Kompus, Kristiina

    2013-01-01

    Experiencing auditory verbal hallucinations is a prominent symptom in schizophrenia that also occurs in subjects at enhanced risk for psychosis and in the general population. Drug treatment of auditory hallucinations is challenging, because the current understanding is limited with respect to the neural mechanisms involved, as well as how CNS drugs, such as antipsychotics, influence the subjective experience and neurophysiology of hallucinations. In this article, the authors review studies of the effect of antipsychotic medication on brain activation as measured with functional MRI in patients with auditory verbal hallucinations. First, the authors examine the neural correlates of ongoing auditory hallucinations. Then, the authors critically discuss studies addressing the antipsychotic effect on the neural correlates of complex cognitive tasks. Current evidence suggests that blood oxygen level-dependant effects of antipsychotic drugs reflect specific, regional effects but studies on the neuropharmacology of auditory hallucinations are scarce. Future directions for pharmacological neuroimaging of auditory hallucinations are discussed.

  19. Pharmacological Effects of Active Compounds on Neurodegenerative Disease with Gastrodia and Uncaria Decoction, a Commonly Used Poststroke Decoction

    PubMed Central

    Chik, Stanley C. C.; Or, Terry C. T.; Luo, D.; Yang, Cindy L. H.; Lau, Allan S. Y.

    2013-01-01

    Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases. PMID:24348193

  20. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.

    PubMed

    Robson, Holly; Cloutman, Lauren; Keidel, James L; Sage, Karen; Drakesmith, Mark; Welbourne, Stephen

    2014-10-01

    Auditory discrimination is significantly impaired in Wernicke's aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Behavioural auditory discrimination thresholds of consonant-vowel-consonant (CVC) syllables and pure tones (PTs) were measured in WA (n = 7) and control (n = 7) participants. Threshold results were used to develop multiple deviant MMN oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed a relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical

  1. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    PubMed

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  2. Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception

    PubMed Central

    Ghai, Shashank; Schmitz, Gerd; Hwang, Tong-Hun; Effenberg, Alfred O.

    2018-01-01

    The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings. PMID:29568259

  3. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    PubMed Central

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  4. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    PubMed

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  5. Leftward Lateralization of Auditory Cortex Underlies Holistic Sound Perception in Williams Syndrome

    PubMed Central

    Bendszus, Martin; Schneider, Peter

    2010-01-01

    Background Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Methodology/Principal Findings Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. Conclusions/Significance There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties. PMID:20808792

  6. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    PubMed Central

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases. PMID:25152710

  7. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia.

    PubMed

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia

    2016-11-01

    Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia

    PubMed Central

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B.; Loewy, Rachel; Vinogradov, Sophia

    2016-01-01

    BACKGROUND Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. METHODS 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. RESULTS We observed signifcant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed inter-individual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20–40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. CONCLUSIONS There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of inter-individual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. PMID:27617637

  9. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  10. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    PubMed Central

    Liao, Yajin; Dong, Yuan; Cheng, Jinbo

    2017-01-01

    The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618

  11. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    PubMed

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  12. Neurons and Objects: The Case of Auditory Cortex

    PubMed Central

    Nelken, Israel; Bar-Yosef, Omer

    2008-01-01

    Sounds are encoded into electrical activity in the inner ear, where they are represented (roughly) as patterns of energy in narrow frequency bands. However, sounds are perceived in terms of their high-order properties. It is generally believed that this transformation is performed along the auditory hierarchy, with low-level physical cues computed at early stages of the auditory system and high-level abstract qualities at high-order cortical areas. The functional position of primary auditory cortex (A1) in this scheme is unclear – is it ‘early’, encoding physical cues, or is it ‘late’, already encoding abstract qualities? Here we argue that neurons in cat A1 show sensitivity to high-level features of sounds. In particular, these neurons may already show sensitivity to ‘auditory objects’. The evidence for this claim comes from studies in which individual sounds are presented singly and in mixtures. Many neurons in cat A1 respond to mixtures in the same way they respond to one of the individual components of the mixture, and in many cases neurons may respond to a low-level component of the mixture rather than to the acoustically dominant one, even though the same neurons respond to the acoustically-dominant component when presented alone. PMID:18982113

  13. Impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease patients.

    PubMed

    Simoes Loureiro, Isabelle; Lefebvre, Laurent

    2015-01-01

    The aim of this study was to generalize the positive impact of auditory-visual bimodality on lexical retrieval in Alzheimer's disease (AD) patients. In practice, the naming skills of healthy elderly persons improve when additional sensory signals are included. The hypothesis of this study was that the same influence would be observable in AD patients. Sixty elderly patients separated into three groups (healthy subjects, stage 1 AD patients, and stage 2 AD patients) were tested with a battery of naming tasks comprising three different modalities: a visual modality, an auditory modality, and a visual and auditory modality (bimodality). Our results reveal the positive influence of bimodality on the accuracy with which bimodal items are named (when compared with unimodal items) and their latency (when compared with unimodal auditory items). These results suggest that multisensory enrichment can improve lexical retrieval in AD patients.

  14. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease.

    PubMed

    Magalingam, Kasthuri Bai; Radhakrishnan, Ammu; Ping, Ng Shee; Haleagrahara, Nagaraja

    2018-01-01

    Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid- β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.

  16. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  17. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  18. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  19. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    PubMed

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  20. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test

    PubMed Central

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2016-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits. PMID:28050213

  1. Hearing and music in dementia

    PubMed Central

    Johnson, Julene K; Chow, Maggie L

    2016-01-01

    Music is a complex acoustic signal that relies on a number of different brain and cognitive processes to create the sensation of hearing. Changes in hearing function are generally not a major focus of concern for persons with a majority of neurodegenerative diseases associated with dementia, such as Alzheimer disease (AD). However, changes in the processing of sounds may be an early, and possibly preclinical, feature of AD and other neurodegenerative diseases. The aim of this chapter is to review the current state of knowledge concerning hearing and music perception in persons who have a dementia as a result of a neurodegenerative disease. The review focuses on both peripheral and central auditory processing in common neurodegenerative diseases, with a particular focus on the processing of music and other non-verbal sounds. The chapter also reviews music interventions used for persons with neurodegenerative diseases. PMID:25726296

  2. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    PubMed

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  3. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  4. Traumatic brain injury: a risk factor for neurodegenerative diseases.

    PubMed

    Gupta, Rajaneesh; Sen, Nilkantha

    2016-01-01

    Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.

  5. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    PubMed

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  6. Interhemispheric transfer time in patients with auditory hallucinations: an auditory event-related potential study.

    PubMed

    Henshall, Katherine R; Sergejew, Alex A; McKay, Colette M; Rance, Gary; Shea, Tracey L; Hayden, Melissa J; Innes-Brown, Hamish; Copolov, David L

    2012-05-01

    Central auditory processing in schizophrenia patients with a history of auditory hallucinations has been reported to be impaired, and abnormalities of interhemispheric transfer have been implicated in these patients. This study examined interhemispheric functional connectivity between auditory cortical regions, using temporal information obtained from latency measures of the auditory N1 evoked potential. Interhemispheric Transfer Times (IHTTs) were compared across 3 subject groups: schizophrenia patients who had experienced auditory hallucinations, schizophrenia patients without a history of auditory hallucinations, and normal controls. Pure tones and single-syllable words were presented monaurally to each ear, while EEG was recorded continuously. IHTT was calculated for each stimulus type by comparing the latencies of the auditory N1 evoked potential recorded contralaterally and ipsilaterally to the ear of stimulation. The IHTTs for pure tones did not differ between groups. For word stimuli, the IHTT was significantly different across the 3 groups: the IHTT was close to zero in normal controls, was highest in the AH group, and was negative (shorter latencies ipsilaterally) in the nonAH group. Differences in IHTTs may be attributed to transcallosal dysfunction in the AH group, but altered or reversed cerebral lateralization in nonAH participants is also possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  8. Sensation seeking, augmenting-reducing, and absolute auditory threshold: a strength-of-the-nervous-system perspective.

    PubMed

    Goldman, D; Kohn, P M; Hunt, R W

    1983-08-01

    The following measures were obtained from 42 student volunteers: the General and the Disinhibition subscales of the Sensation Seeking Scale (Form IV), the Reducer-Augmenter Scale, and the Absolute Auditory Threshold. General sensation seeking correlated significantly with the Reducer-Augmenter Scale, r(40) = .59, p less than .001, and the Absolute Auditory Threshold, r(40) = .45, p less than .005. Both results proved general across sex. These findings, that high-sensation seekers tend to be reducers and to lack sensitivity to weak stimulation, were interpreted as supporting strength-of-the-nervous-system theory more than the formulation of Zuckerman and his associates.

  9. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  10. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases.

    PubMed

    Lanza, Valeria; Milardi, Danilo; Di Natale, Giuseppe; Pappalardo, Giuseppe

    2018-02-12

    There is mounting urgency to find new drugs for the treatment of neurodegenerative disorders. A large number of reviews have exhaustively described either the molecular or clinical aspects of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD). Conversely, reports outlining how known drugs in use for other diseases can also be effective as therapeutic agents in neurodegenerative diseases are less reported. This review focuses on the current uses of some copper(II) chelating molecules as potential drug candidates in neurodegeneration. Starting from the well-known harmful relationships existing between the dyshomeostasis and mis-management of metals and AD onset, we surveyed the experimental work reported in the literature, which deals with the repositioning of metal-chelating drugs in the field of neurodegenerative diseases. The reviewed papers were retrieved from common literature and their selection was limited to those describing the biomolecular aspects associated with neuroprotection. In particular, we emphasized the copper(II) coordination abilities of the selected drugs. Copper, together with zinc and iron, are known to play a key role in regulating neuronal functions. Changes in copper homeostasis are crucial for several neurodegenerative disorders. The studies included in this review may provide an overview on the current strategies aimed at repurposing copper (II) chelating drugs for the treatment of neurodegenerative disorders. Starting from the exemplary case of clioquinol repurposing, we discuss the challenge and the opportunities that repurposing of other metal-chelating drugs may provide (e.g. PBT-2, metformin and cyclodipeptides) in the treatment of neurodegenerative disease. In order to improve the success rate of drug repositioning, comprehensive studies on the molecular mechanism and therapeutic efficacy are still required. The present review upholds that drug repurposing makes significant advantages over drug discovery since

  11. AUDITORY ASSOCIATIVE MEMORY AND REPRESENTATIONAL PLASTICITY IN THE PRIMARY AUDITORY CORTEX

    PubMed Central

    Weinberger, Norman M.

    2009-01-01

    Historically, the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both for the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form, function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task-dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. PMID:17344002

  12. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    PubMed Central

    Frautschy, Sally

    2014-01-01

    The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell. PMID:25386560

  13. Modulation of serine/threonine phosphatases by melatonin: therapeutic approaches in neurodegenerative diseases.

    PubMed

    Arribas, Raquel L; Romero, Alejandro; Egea, Javier; de Los Ríos, Cristóbal

    2018-05-20

    Melatonin is an endogenous hormone produced by the pineal gland as well as many other tissues and organs. The natural decline in melatonin levels with aging strongly contributes to the development of neurodegenerative disorders. Neurodegenerative diseases share common mechanisms of toxicity such as proteinopathy, mitochondrial dysfunction, metal dyshomeostasis, oxidative stress, neuroinflammation, and an imbalance in the phosphorylation/dephosphorylation ratio. Several reports have proved the usefulness of melatonin in counteracting the events that lead to a neurodegenerative scenario. In this review we have focused on highlighting the fact that melatonin could rectify the altered phosphorylation/dephosphorylation rate found in some neurodegenerative diseases by influencing the activity of phosphoprotein phosphatases. We analyze whether melatonin offers any protective activity towards these enzymes through a direct interaction. This article is protected by copyright. All rights reserved.

  14. The Essential Complexity of Auditory Receptive Fields

    PubMed Central

    Thorson, Ivar L.; Liénard, Jean; David, Stephen V.

    2015-01-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  15. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The Process of Auditory Distraction: Disrupted Attention and Impaired Recall in a Simulated Lecture Environment

    ERIC Educational Resources Information Center

    Zeamer, Charlotte; Fox Tree, Jean E.

    2013-01-01

    Literature on auditory distraction has generally focused on the effects of particular kinds of sounds on attention to target stimuli. In support of extensive previous findings that have demonstrated the special role of language as an auditory distractor, we found that a concurrent speech stream impaired recall of a short lecture, especially for…

  17. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease

    PubMed Central

    Horowitz, Alana M.; Villeda, Saul A.

    2017-01-01

    Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans. PMID:28815019

  19. Neuropsychological correlates of dominance, warmth, and extraversion in neurodegenerative disease

    PubMed Central

    Sollberger, Marc; Stanley, Christine M.; Ketelle, Robin; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Neuhaus, John; Kramer, Joel H.; Miller, Bruce L.; Rankin, Katherine P.

    2011-01-01

    Introduction Changes in personality differ qualitatively and quantitatively between patients with different neurodegenerative diseases, likely due to divergent patterns of regional neurodegeneration. Regional damage to circuits underlying various cognitive and emotional functions have been associated with interpersonal traits like dominance, extraversion, and warmth in patients with neurodegenerative diseases, suggesting that personality may in part be mediated by these more basic neuropsychological functions. In this study, we hypothesized that different combinations of cognitive, neuropsychiatric, and emotional measures would predict different interpersonal traits in patients with neurodegenerative diseases. Methods A battery of cognitive, neuropsychiatric, and emotional measures was administered to 286 patients with various neurodegenerative diseases such as Alzheimer’s disease, behavioral variant frontotemporal dementia, semantic dementia, and progressive supranuclear palsy, and informants described patients’ dominance, extraversion, and warmth using the Interpersonal Adjective Scales (IAS) personality questionnaire. Regression modeling was performed to identify which neuropsychological factors uniquely predicted current personality, controlling for age, gender, and premorbid personality. Results Social dominance covaried with patients’ capacity for cognitive control and verbal fluency. Conversely, warmth did not rely on these executive or verbal skills, but covaried primarily with patients’ capacity for emotional responsiveness. Extraversion, representing a blend of dominance and warmth, demonstrated an intermediate degree of relationship to both executive/verbal and emotional functions. Conclusions These findings suggest that different personality traits are partly subserved by specific cognitive and emotional functions in neurodegenerative disease patients. While this study was performed in the context of brain damage, the results raise the question

  20. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.

    PubMed

    Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian

    2018-04-18

    Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Auditory Processing Testing: In the Booth versus Outside the Booth.

    PubMed

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done

  2. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    PubMed Central

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  3. Local and Global Auditory Processing: Behavioral and ERP Evidence

    PubMed Central

    Sanders, Lisa D.; Poeppel, David

    2007-01-01

    Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115

  4. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  5. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    PubMed

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Auditory and non-auditory effects of noise on health

    PubMed Central

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  7. Optimizing mouse models of neurodegenerative disorders: are therapeutics in sight?

    PubMed

    Lutz, Cathleen M; Osborne, Melissa A

    2013-01-01

    The genomic and biologic conservation between mice and humans, along with our increasing ability to manipulate the mouse genome, places the mouse as a premier model for deciphering disease mechanisms and testing potential new therapies. Despite these advantages, mouse models of neurodegenerative disease are sometimes difficult to generate and can present challenges that must be carefully addressed when used for preclinical studies. For those models that do exist, the standardization and optimization of the models is a critical step in ensuring success in both basic research and preclinical use. This review looks back on the history of model development for neurodegenerative diseases and highlights the key strategies that have been learned in order to improve the design, development and use of mouse models in the study of neurodegenerative disease.

  8. Ghrelin and Neurodegenerative Disorders-a Review.

    PubMed

    Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia

    2017-03-01

    Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.

  9. Tsallis statistics and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Aggelos C.; Tsolaki, Magdalini; Aifantis, Elias C.

    2016-08-01

    In this paper, we perform statistical analysis of time series deriving from four neurodegenerative disorders, namely epilepsy, amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD). The time series are concerned with electroencephalograms (EEGs) of healthy and epileptic states, as well as gait dynamics (in particular stride intervals) of the ALS, PD and HDs. We study data concerning one subject for each neurodegenerative disorder and one healthy control. The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis q-triplet, namely {qstat, qsen, qrel}. The deviation of Tsallis q-triplet from unity indicates non-Gaussian statistics and long-range dependencies for all time series considered. In addition, the results reveal the efficiency of Tsallis statistics in capturing differences in brain dynamics between healthy and epileptic states, as well as differences between ALS, PD, HDs from healthy control subjects. The results indicate that estimations of Tsallis q-indices could be used as possible biomarkers, along with others, for improving classification and prediction of epileptic seizures, as well as for studying the gait complex dynamics of various diseases providing new insights into severity, medications and fall risk, improving therapeutic interventions.

  10. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  11. Anti-inflammatory effects of flavonoids in neurodegenerative disorders.

    PubMed

    Spagnuolo, Carmela; Moccia, Stefania; Russo, Gian Luigi

    2018-06-10

    Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  13. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  14. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  15. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  16. Protection against neurodegenerative disease on Earth and in space

    PubMed Central

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth’s gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through ‘anti-diabetes’ and ‘hypergravity’ approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought. PMID:28725728

  17. Protection against neurodegenerative disease on Earth and in space.

    PubMed

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth's gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through 'anti-diabetes' and 'hypergravity' approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought.

  18. Auditory scene analysis in school-aged children with developmental language disorders

    PubMed Central

    Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.

    2014-01-01

    Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430

  19. Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Shirendeb, Ulziibat; Mao, Peizhong

    2010-01-01

    The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355

  20. Neuropsychological correlates of dominance, warmth, and extraversion in neurodegenerative disease.

    PubMed

    Sollberger, Marc; Stanley, Christine M; Ketelle, Robin; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Neuhaus, John; Kramer, Joel H; Miller, Bruce L; Rankin, Katherine P

    2012-06-01

    Changes in personality differ qualitatively and quantitatively among patients with different neurodegenerative diseases, likely due to divergent patterns of regional neurodegeneration. Regional damage to circuits underlying various cognitive and emotional functions have been associated with interpersonal traits like dominance, extraversion, and warmth in patients with neurodegenerative diseases, suggesting that personality may in part be mediated by these more basic neuropsychological functions. In this study, we hypothesized that different combinations of cognitive, neuropsychiatric, and emotional measures would predict different interpersonal traits in patients with neurodegenerative diseases. A battery of cognitive, neuropsychiatric, and emotional measures was administered to 286 patients with various neurodegenerative diseases such as Alzheimer's disease, behavioral variant frontotemporal dementia, semantic dementia, and progressive supranuclear palsy, and informants described patients' dominance, extraversion, and warmth using the Interpersonal Adjective Scales (IAS) personality questionnaire. Regression modeling was performed to identify which neuropsychological factors uniquely predicted current personality, controlling for age, gender, and premorbid personality. Social dominance covaried with patients' capacity for cognitive control and verbal fluency. Conversely, warmth did not rely on these executive or verbal skills, but covaried primarily with patients' capacity for emotional responsiveness. Extraversion, representing a blend of dominance and warmth, demonstrated an intermediate degree of relationship to both executive/verbal and emotional functions. These findings suggest that different personality traits are partly subserved by specific cognitive and emotional functions in neurodegenerative disease patients. While this study was performed in the context of brain damage, the results raise the question of whether individual differences in these

  1. [Auditory training in workshops: group therapy option].

    PubMed

    Santos, Juliana Nunes; do Couto, Isabel Cristina Plais; Amorim, Raquel Martins da Costa

    2006-01-01

    auditory training in groups. to verify in a group of individuals with mental retardation the efficacy of auditory training in a workshop environment. METHOD a longitudinal prospective study with 13 mentally retarded individuals from the Associação de Pais e Amigos do Excepcional (APAE) of Congonhas divided in two groups: case (n=5) and control (n=8) and who were submitted to ten auditory training sessions after verifying the integrity of the peripheral auditory system through evoked otoacoustic emissions. Participants were evaluated using a specific protocol concerning the auditory abilities (sound localization, auditory identification, memory, sequencing, auditory discrimination and auditory comprehension) at the beginning and at the end of the project. Data (entering, processing and analyses) were analyzed by the Epi Info 6.04 software. the groups did not differ regarding aspects of age (mean = 23.6 years) and gender (40% male). In the first evaluation both groups presented similar performances. In the final evaluation an improvement in the auditory abilities was observed for the individuals in the case group. When comparing the mean number of correct answers obtained by both groups in the first and final evaluations, a statistically significant result was obtained for sound localization (p=0.02), auditory sequencing (p=0.006) and auditory discrimination (p=0.03). group auditory training demonstrated to be effective in individuals with mental retardation, observing an improvement in the auditory abilities. More studies, with a larger number of participants, are necessary in order to confirm the findings of the present research. These results will help public health professionals to reanalyze the theory models used for therapy, so that they can use specific methods according to individual needs, such as auditory training workshops.

  2. Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    PubMed Central

    Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.

    2012-01-01

    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857

  3. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  4. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia

    PubMed Central

    Biagianti, Bruno; Roach, Brian J.; Fisher, Melissa; Loewy, Rachel; Ford, Judith M.; Vinogradov, Sophia; Mathalon, Daniel H.

    2017-01-01

    Background Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Methods Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Results Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59–.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group. Conclusions In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by

  5. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  6. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    PubMed

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  7. Procedures for central auditory processing screening in schoolchildren.

    PubMed

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  8. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    PubMed

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the

  9. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    PubMed Central

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  10. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    PubMed

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.

  11. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  12. Neural coding strategies in auditory cortex.

    PubMed

    Wang, Xiaoqin

    2007-07-01

    In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.

  13. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    PubMed

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Neuroplasticity in the auditory system.

    PubMed

    Gil-Loyzaga, P

    2005-01-01

    An increasing interest on neuroplasticity and nerve regeneration within the auditory receptor and pathway has developed in recent years. The receptor and the auditory pathway are controlled by highly complex circuits that appear during embryonic development. During this early maturation process of the auditory sensory elements, we observe the development of two types of nerve fibers: permanent fibers that will remain to reach full-term maturity and other transient fibers that will ultimately disappear. Both stable and transitory fibers however, as well as developing sensory cells, express, and probably release, their respective neuro-transmitters that could be involved in neuroplasticity. Cell culture experiments have added significant information; the in vitro administration of glutamate or GABA to isolated spiral ganglion neurons clearly modified neural development. Neuroplasticity has been also found in the adult. Nerve regeneration and neuroplasticity have been demonstrated in the adult auditory receptors as well as throughout the auditory pathway. Neuroplasticity studies could prove interesting in the elaboration of current or future therapy strategies (e.g.: cochlear implants or stem cells), but also to really understand the pathogenesis of auditory or language diseases (e.g.: deafness, tinnitus, dyslexia, etc.).

  15. Auditory salience using natural soundscapes.

    PubMed

    Huang, Nicholas; Elhilali, Mounya

    2017-03-01

    Salience describes the phenomenon by which an object stands out from a scene. While its underlying processes are extensively studied in vision, mechanisms of auditory salience remain largely unknown. Previous studies have used well-controlled auditory scenes to shed light on some of the acoustic attributes that drive the salience of sound events. Unfortunately, the use of constrained stimuli in addition to a lack of well-established benchmarks of salience judgments hampers the development of comprehensive theories of sensory-driven auditory attention. The present study explores auditory salience in a set of dynamic natural scenes. A behavioral measure of salience is collected by having human volunteers listen to two concurrent scenes and indicate continuously which one attracts their attention. By using natural scenes, the study takes a data-driven rather than experimenter-driven approach to exploring the parameters of auditory salience. The findings indicate that the space of auditory salience is multidimensional (spanning loudness, pitch, spectral shape, as well as other acoustic attributes), nonlinear and highly context-dependent. Importantly, the results indicate that contextual information about the entire scene over both short and long scales needs to be considered in order to properly account for perceptual judgments of salience.

  16. Auditory hallucinations: nomenclature and classification.

    PubMed

    Blom, Jan Dirk; Sommer, Iris E C

    2010-03-01

    The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an overview of the nomenclature and classification of auditory hallucinations. Relevant data were obtained from books, PubMed, Embase, and the Cochrane Library. The results are presented in the form of several classificatory arrangements of auditory hallucinations, governed by the principles of content, perceived source, perceived vivacity, relation to the sleep-wake cycle, and association with suspected neurobiologic correlates. This overview underscores the necessity to reappraise the concepts of auditory hallucinations developed during the era of classic psychiatry, to incorporate them into our current nomenclature and classification of auditory hallucinations, and to test them empirically with the aid of the structural and functional imaging techniques currently available.

  17. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases.

    PubMed

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  18. Assessing Auditory Discrimination Skill of Malay Children Using Computer-based Method.

    PubMed

    Ting, H; Yunus, J; Mohd Nordin, M Z

    2005-01-01

    The purpose of this paper is to investigate the auditory discrimination skill of Malay children using computer-based method. Currently, most of the auditory discrimination assessments are conducted manually by Speech-Language Pathologist. These conventional tests are actually general tests of sound discrimination, which do not reflect the client's specific speech sound errors. Thus, we propose computer-based Malay auditory discrimination test to automate the whole process of assessment as well as to customize the test according to the specific speech error sounds of the client. The ability in discriminating voiced and unvoiced Malay speech sounds was studied for the Malay children aged between 7 and 10 years old. The study showed no major difficulty for the children in discriminating the Malay speech sounds except differentiating /g/-/k/ sounds. Averagely the children of 7 years old failed to discriminate /g/-/k/ sounds.

  19. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    PubMed

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model

    PubMed Central

    Diehl, Peter U.; Schaette, Roland

    2015-01-01

    Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277

  1. Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses

    PubMed Central

    2007-01-01

    In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105

  2. Auditory Discrimination Learning: Role of Working Memory.

    PubMed

    Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.

  3. BALDEY: A database of auditory lexical decisions.

    PubMed

    Ernestus, Mirjam; Cutler, Anne

    2015-01-01

    In an auditory lexical decision experiment, 5541 spoken content words and pseudowords were presented to 20 native speakers of Dutch. The words vary in phonological make-up and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudowords were matched in these respects to the real words. The BALDEY ("biggest auditory lexical decision experiment yet") data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbours and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles, and frequency ratings by 75 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.

  4. Auditory Discrimination Learning: Role of Working Memory

    PubMed Central

    Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068

  5. Motor (but not auditory) attention affects syntactic choice.

    PubMed

    Pokhoday, Mikhail; Scheepers, Christoph; Shtyrov, Yury; Myachykov, Andriy

    2018-01-01

    Understanding the determinants of syntactic choice in sentence production is a salient topic in psycholinguistics. Existing evidence suggests that syntactic choice results from an interplay between linguistic and non-linguistic factors, and a speaker's attention to the elements of a described event represents one such factor. Whereas multimodal accounts of attention suggest a role for different modalities in this process, existing studies examining attention effects in syntactic choice are primarily based on visual cueing paradigms. Hence, it remains unclear whether attentional effects on syntactic choice are limited to the visual modality or are indeed more general. This issue is addressed by the current study. Native English participants viewed and described line drawings of simple transitive events while their attention was directed to the location of the agent or the patient of the depicted event by means of either an auditory (monaural beep) or a motor (unilateral key press) lateral cue. Our results show an effect of cue location, with participants producing more passive-voice descriptions in the patient-cued conditions. Crucially, this cue location effect emerged in the motor-cue but not (or substantially less so) in the auditory-cue condition, as confirmed by a reliable interaction between cue location (agent vs. patient) and cue type (auditory vs. motor). Our data suggest that attentional effects on the speaker's syntactic choices are modality-specific and limited to the visual and motor, but not the auditory, domain.

  6. TRPM2, calcium and neurodegenerative diseases

    PubMed Central

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  7. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    PubMed

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.

  8. Behavioral Indications of Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Hartman, Kerry McGoldrick

    1988-01-01

    Identifies disruptive behaviors of children that may indicate central auditory processing disorders (CAPDs), perceptual handicaps of auditory discrimination or auditory memory not related to hearing ability. Outlines steps to modify the communication environment for CAPD children at home and in the classroom. (SV)

  9. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.

  10. Auditory hallucinations: A review of the ERC “VOICE” project

    PubMed Central

    Hugdahl, Kenneth

    2015-01-01

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the “VOICE” ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the “voices” having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app. PMID:26110121

  11. Maturation of Peripheral and Brainstem Auditory Function in the First Year Following Perinatal Asphyxia: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Jiang, Ze D.

    1998-01-01

    A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)

  12. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  13. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    NASA Astrophysics Data System (ADS)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  14. Audiovisual training is better than auditory-only training for auditory-only speech-in-noise identification.

    PubMed

    Lidestam, Björn; Moradi, Shahram; Pettersson, Rasmus; Ricklefs, Theodor

    2014-08-01

    The effects of audiovisual versus auditory training for speech-in-noise identification were examined in 60 young participants. The training conditions were audiovisual training, auditory-only training, and no training (n = 20 each). In the training groups, gated consonants and words were presented at 0 dB signal-to-noise ratio; stimuli were either audiovisual or auditory-only. The no-training group watched a movie clip without performing a speech identification task. Speech-in-noise identification was measured before and after the training (or control activity). Results showed that only audiovisual training improved speech-in-noise identification, demonstrating superiority over auditory-only training.

  15. Auditory preferences of young children with and without hearing loss for meaningful auditory-visual compound stimuli.

    PubMed

    Zupan, Barbra; Sussman, Joan E

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.

  16. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  17. Current understanding of auditory neuropathy.

    PubMed

    Boo, Nem-Yun

    2008-12-01

    Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.

  18. Building An Integrated Neurodegenerative Disease Database At An Academic Health Center

    PubMed Central

    Xie, Sharon X.; Baek, Young; Grossman, Murray; Arnold, Steven E.; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    Background It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration (FTLD). These comparative studies rely on powerful database tools to quickly generate data sets which match diverse and complementary criteria set by the studies. Methods In this paper, we present a novel Integrated NeuroDegenerative Disease (INDD) database developed at the University of Pennsylvania (Penn) through a consortium of Penn investigators. Since these investigators work on AD, PD, ALS and FTLD, this allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used Microsoft SQL Server as the platform with built-in “backwards” functionality to provide Access as a front-end client to interface with the database. We used PHP hypertext Preprocessor to create the “front end” web interface and then integrated individual neurodegenerative disease databases using a master lookup table. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Results We compare the results of a biomarker study using the INDD database to those using an alternative approach by querying individual database separately. Conclusions We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies across several neurodegenerative diseases. PMID:21784346

  19. Simultaneous acquisition of multiple auditory-motor transformations in speech

    PubMed Central

    Rochet-Capellan, Amelie; Ostry, David J.

    2011-01-01

    The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534

  20. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  1. Auditory Processing Disorder in Children

    MedlinePlus

    ... News & Events NIDCD News Inside NIDCD Newsletter Shareable Images ... Info » Hearing, Ear Infections, and Deafness Auditory Processing Disorder Auditory processing disorder (APD) describes a condition ...

  2. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    PubMed

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  3. Mechanisms of Protein Seeding in Neurodegenerative Diseases

    PubMed Central

    Walker, Lary C.; Diamond, Marc I.; Duff, Karen E.; Hyman, Bradley T.

    2013-01-01

    Most age-associated neurodegenerative diseases involve the aggregation of specific proteins within the nervous system. In Alzheimer’s disease, the insidious pathogenic process begins many years before the symptoms emerge, and the lesions that characterize the disease – senile plaques and neurofibrillary tangles – ramify systematically through the brain. We review evidence that the β-amyloid and tau proteins, which aggregate to form senile plaques and neurofibrillary tangles, respectively, are induced to misfold and self-assemble by a process of templated conformational change that amplifies a toxic species. Recent data also indicate that the spread of these lesions from one site to another is mediated by the cellular uptake, transport and release of endogenous seeds formed by the cognate proteins. This simple pathogenic principle suggests that the formation, trafficking and metabolism of pathogenic protein seeds are promising therapeutic targets for Alzheimer’s disease and other neurodegenerative disorders. PMID:23599928

  4. [Pathology of basal ganglia in neurodegenerative diseases].

    PubMed

    Wakabayashi, Koichi; Tanji, Kunikazu; Mori, Fumiaki

    2009-04-01

    Intra- and/or extracellular proteinaceous inclusions in the brain tissue are characteristic pathological markers of many neurodegenerative diseases. Tau protein in neurofibrillary tangles and beta-amyloid in senile plaques are associated with Alzheimer's disease. Tau is associated with various neurological conditions, which are collectively referred to as tauopathies. Alpha-synucleinopathy is a term that collectively refers to a set of diseases in which neurodegeneration is accompanied by intracellular accumulation of alpha-synuclein in neurons or glial cells. Recently, TDP-43 has been identified as a major disease protein in the ubiquitinated inclusions in deseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration with tau-negative, ubiquitin-positive inclusions. Thus, these neurodegenerative disorders comprise a new disease class, namely, TDP-43 proteinopathy. In this article, we review the present understanding of histopathological features of basal ganglia lesions in protein conformation disorders, including tauopathy, alpha-synucleinopathy, and TDP-43 proteinopathy.

  5. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    PubMed

    Li, Wanhe; Jin, Ying; Prazak, Lisa; Hammell, Molly; Dubnau, Josh

    2012-01-01

    Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  6. Pre-Attentive Auditory Processing of Lexicality

    ERIC Educational Resources Information Center

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  7. Examining age-related differences in auditory attention control using a task-switching procedure.

    PubMed

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  8. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  9. Hemichannels in neurodegenerative diseases: is there a link to pathology?

    PubMed Central

    Bosch, Megan; Kielian, Tammy

    2014-01-01

    Although originally considered a structural component of gap junctions, connexin hemichannels (HCs) are now recognized as functional entities capable of influencing metabolic gradients within the CNS, allowing direct communication between the intra- and extracellular milieus. Besides connexins, HCs can also be formed by pannexins, which are not capable of gap junction assembly. Both positive and negative effects have been attributed to HC activity in the context of neurodegenerative diseases. For example, HCs can exert neuroprotective effects by promoting the uptake of neurotoxic molecules, whereas chronic HC opening can disrupt molecular gradients leading to cellular dysfunction and death. The latter scenario has been suggested for multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and more recently, lysosomal storage disorders, which are the focus of this perspective. Currently available evidence suggests a complex role for HCs in neurodegenerative disorders, which sets the stage for future studies to determine whether targeting HC action may improve disease outcomes. PMID:25191227

  10. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment.

  11. Information flow in the auditory cortical network

    PubMed Central

    Hackett, Troy A.

    2011-01-01

    Auditory processing in the cerebral cortex is comprised of an interconnected network of auditory and auditory-related areas distributed throughout the forebrain. The nexus of auditory activity is located in temporal cortex among several specialized areas, or fields, that receive dense inputs from the medial geniculate complex. These areas are collectively referred to as auditory cortex. Auditory activity is extended beyond auditory cortex via connections with auditory-related areas elsewhere in the cortex. Within this network, information flows between areas to and from countless targets, but in a manner that is characterized by orderly regional, areal and laminar patterns. These patterns reflect some of the structural constraints that passively govern the flow of information at all levels of the network. In addition, the exchange of information within these circuits is dynamically regulated by intrinsic neurochemical properties of projecting neurons and their targets. This article begins with an overview of the principal circuits and how each is related to information flow along major axes of the network. The discussion then turns to a description of neurochemical gradients along these axes, highlighting recent work on glutamate transporters in the thalamocortical projections to auditory cortex. The article concludes with a brief discussion of relevant neurophysiological findings as they relate to structural gradients in the network. PMID:20116421

  12. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  13. Diffusion Imaging of Auditory and Auditory-Limbic Connectivity in Tinnitus: Preliminary Evidence and Methodological Challenges

    PubMed Central

    Seydell-Greenwald, Anna; Raven, Erika P.; Leaver, Amber M.; Turesky, Ted K.; Rauschecker, Josef P.

    2014-01-01

    Subjective tinnitus, or “ringing in the ears,” is perceived by 10 to 15 percent of the adult population and causes significant suffering in a subset of patients. While it was originally thought of as a purely auditory phenomenon, there is increasing evidence that the limbic system influences whether and how tinnitus is perceived, far beyond merely determining the patient's emotional reaction to the phantom sound. Based on functional imaging and electrophysiological data, recent articles frame tinnitus as a “network problem” arising from abnormalities in auditory-limbic interactions. Diffusion-weighted magnetic resonance imaging is a noninvasive method for investigating anatomical connections in vivo. It thus has the potential to provide anatomical evidence for the proposed changes in auditory-limbic connectivity. However, the few diffusion imaging studies of tinnitus performed to date have inconsistent results. In the present paper, we briefly summarize the results of previous studies, aiming to reconcile their results. After detailing analysis methods, we then report findings from a new dataset. We conclude that while there is some evidence for tinnitus-related increases in auditory and auditory-limbic connectivity that counteract hearing-loss related decreases in auditory connectivity, these results should be considered preliminary until several technical challenges have been overcome. PMID:25050181

  14. External auditory canal stenosis due to the use of powdered boric acid.

    PubMed

    Dündar, Riza; Soy, Fatih Kemal; Kulduk, Erkan; Muluk, Nuray Bayar; Cingi, Cemal

    2014-09-01

    Acquired stenosis of the external auditory canal (EAC) may occur because of chronic external otitis, recurrent chronic catarrhal otitis media associated with tympanic membrane perforation, chronic dermatitis, tumors, and trauma. Stenosis occurs generally at the one-third bone part of the external auditory canal. In this article, we present 3 cases of acquired EAC stenosis due to the previous powdered boric acid application. Besides the presentation of surgical intervetions in these cases, we want to notify the physicians not to use or carefully use powdered boric acid because of the complication of EAC stenosis.

  15. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy.

    PubMed

    Miyake, Noriko; Fukai, Ryoko; Ohba, Chihiro; Chihara, Takahiro; Miura, Masayuki; Shimizu, Hiroshi; Kakita, Akiyoshi; Imagawa, Eri; Shiina, Masaaki; Ogata, Kazuhiro; Okuno-Yuguchi, Jiu; Fueki, Noboru; Ogiso, Yoshifumi; Suzumura, Hiroshi; Watabe, Yoshiyuki; Imataka, George; Leong, Huey Yin; Fattal-Valevski, Aviva; Kramer, Uri; Miyatake, Satoko; Kato, Mitsuhiro; Okamoto, Nobuhiko; Sato, Yoshinori; Mitsuhashi, Satomi; Nishino, Ichizo; Kaneko, Naofumi; Nishiyama, Akira; Tamura, Tomohiko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Tanaka, Fumiaki; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-10-06

    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Auditory Task Irrelevance: A Basis for Inattentional Deafness

    PubMed Central

    Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.

    2018-01-01

    Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754

  17. Failure to detect critical auditory alerts in the cockpit: evidence for inattentional deafness.

    PubMed

    Dehais, Frédéric; Causse, Mickaël; Vachon, François; Régis, Nicolas; Menant, Eric; Tremblay, Sébastien

    2014-06-01

    The aim of this study was to test whether inattentional deafness to critical alarms would be observed in a simulated cockpit. The inability of pilots to detect unexpected changes in their auditory environment (e.g., alarms) is a major safety problem in aeronautics. In aviation, the lack of response to alarms is usually not attributed to attentional limitations, but rather to pilots choosing to ignore such warnings due to decision biases, hearing issues, or conscious risk taking. Twenty-eight general aviation pilots performed two landings in a flight simulator. In one scenario an auditory alert was triggered alone, whereas in the other the auditory alert occurred while the pilots dealt with a critical windshear. In the windshear scenario, II pilots (39.3%) did not report or react appropriately to the alarm whereas all the pilots perceived the auditory warning in the no-windshear scenario. Also, of those pilots who were first exposed to the no-windshear scenario and detected the alarm, only three suffered from inattentional deafness in the subsequent windshear scenario. These findings establish inattentional deafness as a cognitive phenomenon that is critical for air safety. Pre-exposure to a critical event triggering an auditory alarm can enhance alarm detection when a similar event is encountered subsequently. Case-based learning is a solution to mitigate auditory alarm misperception.

  18. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    PubMed

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  19. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    PubMed

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  20. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.

    PubMed

    Gibson, Gary E; Huang, Hsueh-Meei

    2004-08-01

    Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

  1. Sirtuins in neurodegenerative diseases: an update on potential mechanisms

    PubMed Central

    Min, Sang-Won; Sohn, Peter D.; Cho, Seo-Hyun; Swanson, Raymond A.; Gan, Li

    2013-01-01

    Silent information regulator 2 proteins (sirtuins or SIRTs) are a group of deacetylases (or deacylases) whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD+). Compelling evidence supports that sirtuins play major roles in many aspects of physiology, especially in pathways related to aging – the predominant and unifying risk factor for neurodegenerative diseases. In this review, we highlight the molecular mechanisms underlying the protective effects of sirtuins in neurodegenerative diseases, focusing on protein homeostasis, neural plasticity, mitochondrial function, and sustained chronic inflammation. We will also examine the potential and challenges of targeting sirtuin pathways to block these pathogenic pathways. PMID:24093018

  2. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  3. Human engineer's guide to auditory displays. Volume 1. Elements of perception and memory affecting auditory displays

    NASA Astrophysics Data System (ADS)

    Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.

    1984-08-01

    This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.

  4. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.

  5. Building an integrated neurodegenerative disease database at an academic health center.

    PubMed

    Xie, Sharon X; Baek, Young; Grossman, Murray; Arnold, Steven E; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M-Y; Trojanowski, John Q

    2011-07-01

    It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. These comparative studies rely on powerful database tools to quickly generate data sets that match diverse and complementary criteria set by them. In this article, we present a novel integrated neurodegenerative disease (INDD) database, which was developed at the University of Pennsylvania (Penn) with the help of a consortium of Penn investigators. Because the work of these investigators are based on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration, it allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used the Microsoft SQL server as a platform, with built-in "backwards" functionality to provide Access as a frontend client to interface with the database. We used PHP Hypertext Preprocessor to create the "frontend" web interface and then used a master lookup table to integrate individual neurodegenerative disease databases. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Using the INDD database, we compared the results of a biomarker study with those using an alternative approach by querying individual databases separately. We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies on several neurodegenerative diseases. Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. Predictive gene testing for Huntington disease and other neurodegenerative disorders.

    PubMed

    Wedderburn, S; Panegyres, P K; Andrew, S; Goldblatt, J; Liebeck, T; McGrath, F; Wiltshire, M; Pestell, C; Lee, J; Beilby, J

    2013-12-01

    Controversies exist around predictive testing (PT) programmes in neurodegenerative disorders. This study sets out to answer the following questions relating to Huntington disease (HD) and other neurodegenerative disorders: differences between these patients in their PT journeys, why and when individuals withdraw from PT, and decision-making processes regarding reproductive genetic testing. A case series analysis of patients having PT from the multidisciplinary Western Australian centre for PT over the past 20 years was performed using internationally recognised guidelines for predictive gene testing in neurodegenerative disorders. Of 740 at-risk patients, 518 applied for PT: 466 at risk of HD, 52 at risk of other neurodegenerative disorders - spinocerebellar ataxias, hereditary prion disease and familial Alzheimer disease. Thirteen percent withdrew from PT - 80.32% of withdrawals occurred during counselling stages. Major withdrawal reasons related to timing in the patients' lives or unknown as the patient did not disclose the reason. Thirty-eight HD individuals had reproductive genetic testing: 34 initiated prenatal testing (of which eight withdrew from the process) and four initiated pre-implantation genetic diagnosis. There was no recorded or other evidence of major psychological reactions or suicides during PT. People withdrew from PT in relation to life stages and reasons that are unknown. Our findings emphasise the importance of: (i) adherence to internationally recommended guidelines for PT; (ii) the role of the multidisciplinary team in risk minimisation; and (iii) patient selection. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  7. Parkin Regulation and Neurodegenerative Disorders

    PubMed Central

    Zhang, Cheng-Wu; Hang, Liting; Yao, Tso-Pang; Lim, Kah-Leong

    2016-01-01

    Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders. PMID:26793099

  8. Chronic traumatic encephalopathy and other neurodegenerative proteinopathies

    PubMed Central

    Tartaglia, Maria Carmela; Hazrati, Lili-Naz; Davis, Karen D.; Green, Robin E. A.; Wennberg, Richard; Mikulis, David; Ezerins, Leo J.; Keightley, Michelle; Tator, Charles

    2014-01-01

    “Chronic traumatic encephalopathy” (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this “perspective” is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment. PMID:24550810

  9. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    PubMed

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  10. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed

    Yu-Wai-Man, Patrick

    2016-10-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  12. A Brain System for Auditory Working Memory.

    PubMed

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  13. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    PubMed

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during

  14. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    PubMed Central

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p < 0.05, and r = 0.76, p = 0.01, respectively, in a sample of 20 children with APD diagnosis. The standard APD battery identified a larger proportion of participants as having APD, than an attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying

  15. Capuchin monkeys (Cebus apella) use positive, but not negative, auditory cues to infer food location.

    PubMed

    Heimbauer, Lisa A; Antworth, Rebecca L; Owren, Michael J

    2012-01-01

    Nonhuman primates appear to capitalize more effectively on visual cues than corresponding auditory versions. For example, studies of inferential reasoning have shown that monkeys and apes readily respond to seeing that food is present ("positive" cuing) or absent ("negative" cuing). Performance is markedly less effective with auditory cues, with many subjects failing to use this input. Extending recent work, we tested eight captive tufted capuchins (Cebus apella) in locating food using positive and negative cues in visual and auditory domains. The monkeys chose between two opaque cups to receive food contained in one of them. Cup contents were either shown or shaken, providing location cues from both cups, positive cues only from the baited cup, or negative cues from the empty cup. As in previous work, subjects readily used both positive and negative visual cues to secure reward. However, auditory outcomes were both similar to and different from those of earlier studies. Specifically, all subjects came to exploit positive auditory cues, but none responded to negative versions. The animals were also clearly different in visual versus auditory performance. Results indicate that a significant proportion of capuchins may be able to use positive auditory cues, with experience and learning likely playing a critical role. These findings raise the possibility that experience may be significant in visually based performance in this task as well, and highlight that coming to grips with evident differences between visual versus auditory processing may be important for understanding primate cognition more generally.

  16. Management of respiratory problems in people with neurodegenerative conditions: a narrative review.

    PubMed

    Jones, U; Enright, S; Busse, M

    2012-03-01

    Respiratory failure and dysfunction are common problems in many neurodegenerative conditions. Although physiotherapists manage these problems, it is not known which treatments have been studied and their efficacy. To review evidence on the management of respiratory problems in people with neurodegenerative conditions using the PRISMA approach. Comprehensive searches were conducted using the following electronic databases from inception to May 2010: HUGEnet, SIGLE, British Library Direct, CINAHL, Medline, AMED and Web of Knowledge. Bibliographies of all studies and systematic reviews were searched by hand. Studies were selected based on: self-ventilating participants with neurodegenerative conditions; interventions aimed at improving respiratory function; and any valid and reliable measures of respiratory function as outcomes. Studies were appraised by one reviewer using the Critical Appraisal Skills Programme. Data were synthesised using a narrative approach. Thirty-five studies were included in the review. The strongest evidence was for the use of non-invasive ventilation for people with amyotrophic lateral sclerosis, although this was weak. The evidence for the use of respiratory muscle training and methods to increase peak cough flow showed a positive effect, but was also weak. There is weak evidence for the positive effects of physiotherapeutic interventions for respiratory problems in people with neurodegenerative conditions. Further work is necessary in specific neurodegenerative conditions to identify why respiratory problems occur, and larger scale studies should be undertaken to investigate management of these problems. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  17. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    PubMed

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  18. Reboxetine Improves Auditory Attention and Increases Norepinephrine Levels in the Auditory Cortex of Chronically Stressed Rats

    PubMed Central

    Pérez-Valenzuela, Catherine; Gárate-Pérez, Macarena F.; Sotomayor-Zárate, Ramón; Delano, Paul H.; Dagnino-Subiabre, Alexies

    2016-01-01

    Chronic stress impairs auditory attention in rats and monoamines regulate neurotransmission in the primary auditory cortex (A1), a brain area that modulates auditory attention. In this context, we hypothesized that norepinephrine (NE) levels in A1 correlate with the auditory attention performance of chronically stressed rats. The first objective of this research was to evaluate whether chronic stress affects monoamines levels in A1. Male Sprague–Dawley rats were subjected to chronic stress (restraint stress) and monoamines levels were measured by high performance liquid chromatographer (HPLC)-electrochemical detection. Chronically stressed rats had lower levels of NE in A1 than did controls, while chronic stress did not affect serotonin (5-HT) and dopamine (DA) levels. The second aim was to determine the effects of reboxetine (a selective inhibitor of NE reuptake) on auditory attention and NE levels in A1. Rats were trained to discriminate between two tones of different frequencies in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance of ≥80% correct trials in the 2-ACT were randomly assigned to control and stress experimental groups. To analyze the effects of chronic stress on the auditory task, trained rats of both groups were subjected to 50 2-ACT trials 1 day before and 1 day after of the chronic stress period. A difference score (DS) was determined by subtracting the number of correct trials after the chronic stress protocol from those before. An unexpected result was that vehicle-treated control rats and vehicle-treated chronically stressed rats had similar performances in the attentional task, suggesting that repeated injections with vehicle were stressful for control animals and deteriorated their auditory attention. In this regard, both auditory attention and NE levels in A1 were higher in chronically stressed rats treated with reboxetine than in vehicle

  19. Enhanced auditory spatial localization in blind echolocators.

    PubMed

    Vercillo, Tiziana; Milne, Jennifer L; Gori, Monica; Goodale, Melvyn A

    2015-01-01

    Echolocation is the extraordinary ability to represent the external environment by using reflected sound waves from self-generated auditory pulses. Blind human expert echolocators show extremely precise spatial acuity and high accuracy in determining the shape and motion of objects by using echoes. In the current study, we investigated whether or not the use of echolocation would improve the representation of auditory space, which is severely compromised in congenitally blind individuals (Gori et al., 2014). The performance of three blind expert echolocators was compared to that of 6 blind non-echolocators and 11 sighted participants. Two tasks were performed: (1) a space bisection task in which participants judged whether the second of a sequence of three sounds was closer in space to the first or the third sound and (2) a minimum audible angle task in which participants reported which of two sounds presented successively was located more to the right. The blind non-echolocating group showed a severe impairment only in the space bisection task compared to the sighted group. Remarkably, the three blind expert echolocators performed both spatial tasks with similar or even better precision and accuracy than the sighted group. These results suggest that echolocation may improve the general sense of auditory space, most likely through a process of sensory calibration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  1. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  2. Auditory-vocal mirroring in songbirds.

    PubMed

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  3. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    PubMed

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  4. Repeated restraint stress impairs auditory attention and GABAergic synaptic efficacy in the rat auditory cortex.

    PubMed

    Pérez, Miguel Ángel; Pérez-Valenzuela, Catherine; Rojas-Thomas, Felipe; Ahumada, Juan; Fuenzalida, Marco; Dagnino-Subiabre, Alexies

    2013-08-29

    Chronic stress induces dendritic atrophy in the rat primary auditory cortex (A1), a key brain area for auditory attention. The aim of this study was to determine whether repeated restraint stress affects auditory attention and synaptic transmission in A1. Male Sprague-Dawley rats were trained in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance over 80% of correct trials in the 2-ACT were randomly assigned to control and restraint stress experimental groups. To analyze the effects of restraint stress on the auditory attention, trained rats of both groups were subjected to 50 2-ACT trials one day before and one day after of the stress period. A difference score was determined by subtracting the number of correct trials after from those before the stress protocol. Another set of rats was used to study the synaptic transmission in A1. Restraint stress decreased the number of correct trials by 28% compared to the performance of control animals (p < 0.001). Furthermore, stress reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) and miniature IPSC in A1, whereas glutamatergic efficacy was not affected. Our results demonstrate that restraint stress decreased auditory attention and GABAergic synaptic efficacy in A1. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Udhayabanu, Tamilarasan; Manole, Andreea; Rajeshwari, Mohan; Varalakshmi, Perumal; Houlden, Henry; Ashokkumar, Balasubramaniem

    2017-01-01

    Mitochondria are the repository for various metabolites involved in diverse energy-generating processes, like the TCA cycle, oxidative phosphorylation, and metabolism of amino acids, fatty acids, and nucleotides, which rely significantly on flavoenzymes, such as oxidases, reductases, and dehydrogenases. Flavoenzymes are functionally dependent on biologically active flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN), which are derived from the dietary component riboflavin, a water soluble vitamin. Riboflavin regulates the structure and function of flavoenzymes through its cofactors FMN and FAD and, thus, protects the cells from oxidative stress and apoptosis. Hence, it is not surprising that any disturbance in riboflavin metabolism and absorption of this vitamin may have consequences on cellular FAD and FMN levels, resulting in mitochondrial dysfunction by reduced energy levels, leading to riboflavin associated disorders, like cataracts, neurodegenerative and cardiovascular diseases, etc. Furthermore, mutations in either nuclear or mitochondrial DNA encoding for flavoenzymes and flavin transporters significantly contribute to the development of various neurological disorders. Moreover, recent studies have evidenced that riboflavin supplementation remarkably improved the clinical symptoms, as well as the biochemical abnormalities, in patients with neuronopathies, like Brown-Vialetto-Van-Laere syndrome (BVVLS) and Fazio-Londe disease. This review presents an updated outlook on the cellular and molecular mechanisms of neurodegenerative disorders in which riboflavin deficiency leads to dysfunction in mitochondrial energy metabolism, and also highlights the significance of riboflavin supplementation in aforementioned disease conditions. Thus, the outcome of this critical assessment may exemplify a new avenue to enhance the understanding of possible mechanisms in the progression of neurodegenerative diseases and may provide new rational approaches of disease

  6. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    PubMed

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

  7. Are Auditory and Visual Processing Deficits Related to Developmental Dyslexia?

    ERIC Educational Resources Information Center

    Georgiou, George K.; Papadopoulos, Timothy C.; Zarouna, Elena; Parrila, Rauno

    2012-01-01

    The purpose of this study was to examine if children with dyslexia learning to read a consistent orthography (Greek) experience auditory and visual processing deficits and if these deficits are associated with phonological awareness, rapid naming speed and orthographic processing. We administered measures of general cognitive ability, phonological…

  8. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  9. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases

    PubMed Central

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-01-01

    Abstract Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury. Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias. A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers

  10. [Auditory processing evaluation in children born preterm].

    PubMed

    Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo

    2011-01-01

    To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.

  11. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  13. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    PubMed

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  14. Auditory motion-specific mechanisms in the primate brain

    PubMed Central

    Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.

    2017-01-01

    This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038

  15. Human Engineer’s Guide to Auditory Displays. Volume 2. Elements of Signal Reception and Resolution Affecting Auditory Displays.

    DTIC Science & Technology

    1984-08-01

    90de It noce..etrv wnd identify by block numberl .’-- This work reviews the areas of monaural and binaural signal detection, auditory discrimination And...AUDITORY DISPLAYS This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to...pertaining to the major areas of auditory processing in humans. The areas covered in the reviews presented here are monaural and binaural siqnal detection

  16. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  17. Modelling auditory attention

    PubMed Central

    Kaya, Emine Merve

    2017-01-01

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information—a phenomenon referred to as the ‘cocktail party problem’. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well as ‘top-down’ task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044012

  18. The Listening Cube: A Three Dimensional Auditory Training Program

    PubMed Central

    Ilona, Anderson; Marleen, Bammens; Josepha, Jans; Marianne, Haesevoets; Ria, Pans; Hilde, Vandistel; Yvette, Vrolix

    2012-01-01

    Objectives Here we present the Listening Cube, an auditory training program for children and adults receiving cochlear implants, developed during the clinical practice at the KIDS Royal Institute for the Deaf in Belgium. We provide information on the content of the program as well as guidance as to how to use it. Methods The Listening Cube is a three-dimensional auditory training model that takes the following into consideration: the sequence of auditory listening skills to be trained, the variety of materials to be used, and the range of listening environments to be considered. During auditory therapy, it is important to develop training protocols and materials to provide rapid improvement over a relatively short time period. Moreover, effectiveness and the general real-life applicability of these protocols to various users should be determined. Results Because this publication is not a research article, but comes out of good daily practice, we cannot state the main results of this study. We can only say that this auditory training model is very successful. Since the first report was published in the Dutch language in 2003, more than 200 therapists in Belgium and the Netherlands followed a training course elected to implement the Listening Cube in their daily practice with children and adults with a hearing loss, especially in those wearing cochlear implants. Conclusion The Listening Cube is a tool to aid in planning therapeutic sessions created to meet individual needs, which is often challenging. The three dimensions of the cube are levels of perception, practice material, and practice conditions. These dimensions can serve as a visual reminder of the task analysis and of other considerations that play a role in structuring therapy sessions. PMID:22701766

  19. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  20. Transcriptional maturation of the mouse auditory forebrain.

    PubMed

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  1. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task

    PubMed Central

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L.

    2016-01-01

    Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e., optic flow) and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e., engine, tire, and wind sounds). Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion. PMID:27199829

  3. Auditory false perception in schizophrenia: Development and validation of auditory signal detection task.

    PubMed

    Chhabra, Harleen; Sowmya, Selvaraj; Sreeraj, Vanteemar S; Kalmady, Sunil V; Shivakumar, Venkataram; Amaresha, Anekal C; Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan

    2016-12-01

    Auditory hallucinations constitute an important symptom component in 70-80% of schizophrenia patients. These hallucinations are proposed to occur due to an imbalance between perceptual expectation and external input, resulting in attachment of meaning to abstract noises; signal detection theory has been proposed to explain these phenomena. In this study, we describe the development of an auditory signal detection task using a carefully chosen set of English words that could be tested successfully in schizophrenia patients coming from varying linguistic, cultural and social backgrounds. Schizophrenia patients with significant auditory hallucinations (N=15) and healthy controls (N=15) performed the auditory signal detection task wherein they were instructed to differentiate between a 5-s burst of plain white noise and voiced-noise. The analysis showed that false alarms (p=0.02), discriminability index (p=0.001) and decision bias (p=0.004) were significantly different between the two groups. There was a significant negative correlation between false alarm rate and decision bias. These findings extend further support for impaired perceptual expectation system in schizophrenia patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Composing alarms: considering the musical aspects of auditory alarm design.

    PubMed

    Gillard, Jessica; Schutz, Michael

    2016-12-01

    Short melodies are commonly linked to referents in jingles, ringtones, movie themes, and even auditory displays (i.e., sounds used in human-computer interactions). While melody associations can be quite effective, auditory alarms in medical devices are generally poorly learned and highly confused. Here, we draw on approaches and stimuli from both music cognition (melody recognition) and human factors (alarm design) to analyze the patterns of confusions in a paired-associate alarm-learning task involving both a standardized melodic alarm set (Experiment 1) and a set of novel melodies (Experiment 2). Although contour played a role in confusions (consistent with previous research), we observed several cases where melodies with similar contours were rarely confused - melodies holding musically distinctive features. This exploratory work suggests that salient features formed by an alarm's melodic structure (such as repeated notes, distinct contours, and easily recognizable intervals) can increase the likelihood of correct alarm identification. We conclude that the use of musical principles and features may help future efforts to improve the design of auditory alarms.

  5. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    PubMed Central

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD), spinocerebellar ataxia (SCA), and spinal muscular atrophy (SMA), is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed. PMID:27313396

  6. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    PubMed Central

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121

  7. Comprehension of insincere communication in neurodegenerative disease: Lies, sarcasm, and theory of mind

    PubMed Central

    Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott; Growdon, Matthew; Jang, Jung; Ketelle, Robin; Miller, Bruce L.; Rankin, Katherine P.

    2011-01-01

    Comprehension of insincere communication is an important aspect of social cognition requiring visual perspective taking, emotion reading, and understanding others’ thoughts, opinions, and intentions. Someone who is lying intends to hide their insincerity from the listener, while a sarcastic speaker wants the listener to recognize they are speaking insincerely. We investigated whether face-to-face testing of comprehending insincere communication would effectively discriminate among neurodegenerative disease patients with different patterns of real-life social deficits. We examined ability to comprehend lies and sarcasm from a third-person perspective, using contextual cues, in 102 patients with one of four neurodegenerative diseases (frontotemporal dementia [bvFTD], Alzheimer’s disease [AD], progressive supranuclear palsy [PSP], and vascular cognitive impairment) and 77 healthy older adults (NC). Participants answered questions about videos depicting social interactions involving deceptive, sarcastic, or sincere speech using The Awareness of Social Inference Test. All subjects equally understood sincere remarks, but bvFTD patients displayed impaired comprehension of lies and sarcasm compared with NCs. In other groups, impairment was not disease-specific but was proportionate to general cognitive impairment. Analysis of the task components revealed that only bvFTD patients were impaired on perspective taking and emotion reading elements and that both bvFTD and PSP patients had impaired ability to represent others’ opinions and intentions (i.e., theory of mind). Test performance correlated with informants’ ratings of subjects’ empathy, perspective taking and neuropsychiatric symptoms in everyday life. Comprehending insincere communication is complex and requires multiple cognitive and emotional processes vulnerable across neurodegenerative diseases. However, bvFTD patients show uniquely focal and severe impairments at every level of theory of mind and

  8. Auditory perception modulated by word reading.

    PubMed

    Cao, Liyu; Klepp, Anne; Schnitzler, Alfons; Gross, Joachim; Biermann-Ruben, Katja

    2016-10-01

    Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain.

  9. Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus.

    PubMed

    Ayuob, Nasra Naeim; El Wahab, Manal Galal Abd; Ali, Soad Shaker; Abdel-Tawab, Hanem Saad

    2018-06-01

    Alzheimer's disease (AD), one of the progressive neurodegenerative diseases might be associated with exposure to stress and altered living conditions. This study aimed to evaluate the effectiveness of Ocimum basilicum (OB) essential oils in improving the neurodegenerative-like changes induced in mice after exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice divided into four groups (n = 10); the control, CUMS, CUMS + Fluoxetine, CUMS + OB were used. Behavioral tests, serum corticosterone level, hippocampus protein level of the glucocorticoid receptors (GRs) and brain-dreived neurotropic factor (BDNF) were determined after exposure to CUMS. Hippocampus was histopathologically examined. Data were analyzed using statistical package for the social sciences (SPSS) and P value of less than 0.05 was considered significant. OB diminished the depression manifestation as well as impaired short term memory observed in the mice after exposure to the CUMS as evidenced by the forced swimming and elevated plus maze test. OB also up-regulated the serum corticosterone level, hippocampal protein level of the glucocorticoid receptor and the brain-derived neurotropic factor and reduced the neurodegenerative and atrophic changes induced in the hippocampus after exposure to CUMS. Essential oils of OB alleviated the memory impairment and hippocampal neurodegenerative changes induced by exposure to the chronic unpredictable stress indicating that it is the time to test its effectiveness on patients suffering from Alzheimer disease.

  10. Altered Exocytosis in Chromaffin Cells from Mouse Models of Neurodegenerative Diseases.

    PubMed

    de Diego, Antonio M G; García, Antonio G

    2018-05-09

    Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context we review here the following themes: (i) how the discharge of catecholamines is centrally and peripherally regulated at the sympatho-adrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affects the kinetics of exocytotic events; (v) finally we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate.

    PubMed

    Foran, Lindsey; Blackburn, Kaitlyn; Kulesza, Randy J

    2017-03-06

    Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, elevated extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavor enhancer in many processed foods. Previous studies have shown that MSG administration during the early postnatal period results in neurodegenerative changes in several forebrain regions, characterized by neuronal loss and neuroendocrine abnormalities. Systemic delivery of MSG during the neonatal period and induction of glutamate neurotoxicity in the cochlea have both been shown to result in fewer neurons in the spiral ganglion. We hypothesized that an MSG-induced loss of neurons in the spiral ganglion would have a significant impact on the number of neurons in the cochlear nuclei and superior olivary complex (SOC). Indeed, we found that exposure to MSG from postnatal days 4 through 10 resulted in significantly fewer neurons in the cochlear nuclei and SOC and significant dysmorphology in surviving neurons. Moreover, we found that neonatal MSG exposure resulted in a significant decrease in the expression of both calretinin and calbindin. These results suggest that neonatal exposure to MSG interferes with early development of the auditory brainstem and impacts expression of calcium binding proteins, both of which may lead to diminished auditory function. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Auditory agnosia associated with bilateral putaminal hemorrhage: A case report of clinical course of recovery.

    PubMed

    Tokida, Haruki; Kanaya, Yuhei; Shimoe, Yutaka; Imagawa, Madoka; Fukunaga, Shinya; Kuriyama, Masaru

    2017-08-31

    A 45-year-old right-handed man with a past history (10 years) of putaminal hemorrage presented with auditory agnosia associated with left putaminal hemorrhage. It was suspected that the auditory agnosia was due to bilateral damage in the acoustic radiations. Generalized auditory agnosia, verbal and non-verbal (music and environmental), was diagnosed by neuropsychological examinations. It improved 4 months after the onset. However, the clinical assessment of attention remained poor. The cognition for speech sounds improved slowly, but once it started to improve, the progress of improvement was rapid. Subsequently, the cognition for music sounds also improved, while the recovery of the cognition for environmental sounds remained delayed. There was a dissociation in recovery between these cognitions. He was able to return to work a year after the onset. We also reviewed the literature for cases with auditory agnosia and discuss their course of recovery in this report.

  13. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-01-01

    Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information. PMID:26989281

  14. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  15. The what, where and how of auditory-object perception.

    PubMed

    Bizley, Jennifer K; Cohen, Yale E

    2013-10-01

    The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.

  16. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  17. Looming auditory collision warnings for driving.

    PubMed

    Gray, Rob

    2011-02-01

    A driving simulator was used to compare the effectiveness of increasing intensity (looming) auditory warning signals with other types of auditory warnings. Auditory warnings have been shown to speed driver reaction time in rear-end collision situations; however, it is not clear which type of signal is the most effective. Although verbal and symbolic (e.g., a car horn) warnings have faster response times than abstract warnings, they often lead to more response errors. Participants (N=20) experienced four nonlooming auditory warnings (constant intensity, pulsed, ramped, and car horn), three looming auditory warnings ("veridical," "early," and "late"), and a no-warning condition. In 80% of the trials, warnings were activated when a critical response was required, and in 20% of the trials, the warnings were false alarms. For the early (late) looming warnings, the rate of change of intensity signaled a time to collision (TTC) that was shorter (longer) than the actual TTC. Veridical looming and car horn warnings had significantly faster brake reaction times (BRT) compared with the other nonlooming warnings (by 80 to 160 ms). However, the number of braking responses in false alarm conditions was significantly greater for the car horn. BRT increased significantly and systematically as the TTC signaled by the looming warning was changed from early to veridical to late. Looming auditory warnings produce the best combination of response speed and accuracy. The results indicate that looming auditory warnings can be used to effectively warn a driver about an impending collision.

  18. Modulation of Auditory Cortex Response to Pitch Variation Following Training with Microtonal Melodies

    PubMed Central

    Zatorre, Robert J.; Delhommeau, Karine; Zarate, Jean Mary

    2012-01-01

    We tested changes in cortical functional response to auditory patterns in a configural learning paradigm. We trained 10 human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music) and measured covariation in blood oxygenation signal to increasing pitch interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature that was trained. A psychophysical staircase procedure with feedback was used for training over a 2-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch interval size, such that those who had a higher sensitivity to pitch interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities. PMID:23227019

  19. Chameleon sequences in neurodegenerative diseases.

    PubMed

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chameleon sequences in neurodegenerative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramali, Golnaz; Goliaei, Bahram, E-mail: goliaei@ut.ac.ir; Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix tomore » coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.« less

  1. Auditory conflict and congruence in frontotemporal dementia.

    PubMed

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. P300 as a measure of processing capacity in auditory and visual domains in Specific Language Impairment

    PubMed Central

    Evans, Julia L.; Pollak, Seth D.

    2011-01-01

    This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354

  3. Neural correlates of auditory scene analysis and perception

    PubMed Central

    Cohen, Yale E.

    2014-01-01

    The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354

  4. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    PubMed

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Aging Microglia—Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases

    PubMed Central

    Spittau, Björn

    2017-01-01

    Aging of the central nervous system (CNS) is one of the major risk factors for the development of neurodegenerative pathologies such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). The molecular mechanisms underlying the onset of AD and especially PD are not well understood. However, neuroinflammatory responses mediated by microglia as the resident immune cells of the CNS have been reported for both diseases. The unique nature and developmental origin of microglia causing microglial self-renewal and telomere shortening led to the hypothesis that these CNS-specific innate immune cells become senescent. Age-dependent and senescence-driven impairments of microglia functions and responses have been suggested to play essential roles during onset and progression of neurodegenerative diseases. This review article summarizes the current knowledge of microglia phenotypes and functions in the aging CNS and further discusses the implications of these age-dependent microglia changes for the development and progression of AD and PD as the most common neurodegenerative diseases. PMID:28659790

  6. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    PubMed

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  7. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).

    PubMed

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  8. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  9. Auditory spatial processing in the human cortex.

    PubMed

    Salminen, Nelli H; Tiitinen, Hannu; May, Patrick J C

    2012-12-01

    The auditory system codes spatial locations in a way that deviates from the spatial representations found in other modalities. This difference is especially striking in the cortex, where neurons form topographical maps of visual and tactile space but where auditory space is represented through a population rate code. In this hemifield code, sound source location is represented in the activity of two widely tuned opponent populations, one tuned to the right and the other to the left side of auditory space. Scientists are only beginning to uncover how this coding strategy adapts to various spatial processing demands. This review presents the current understanding of auditory spatial processing in the cortex. To this end, the authors consider how various implementations of the hemifield code may exist within the auditory cortex and how these may be modulated by the stimulation and task context. As a result, a coherent set of neural strategies for auditory spatial processing emerges.

  10. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging

    PubMed Central

    Hugdahl, Kenneth

    2017-01-01

    In this invited review article, I present a translational perspective and overview of our research on auditory hallucinations in schizophrenia at the University of Bergen, Norway, with a focus on the neuronal mechanisms underlying the phenomenology of experiencing “hearing voices”. An auditory verbal hallucination (i.e. hearing a voice) is defined as a sensory experience in the absence of a corresponding external sensory source that could explain the phenomenological experience. I suggest a general frame or scheme for the study of auditory verbal hallucinations, called Levels of Explanation. Using a Levels of Explanation approach, mental phenomena can be described and explained at different levels (cultural, clinical, cognitive, brain-imaging, cellular and molecular). Another way of saying this is that, to advance knowledge in a research field, it is not only necessary to replicate findings, but also to show how evidence obtained with one method, and at one level of explanation, converges with evidence obtained with another method at another level. To achieve breakthroughs in our understanding of auditory verbal hallucinations, we have to advance vertically through the various levels, rather than the more common approach of staying at our favourite level and advancing horizontally (e.g., more advanced techniques and data acquisition analyses). The horizontal expansion will, however, not advance a deeper understanding of how an auditory verbal hallucination spontaneously starts and stops. Finally, I present data from the clinical, cognitive, brain-imaging, and cellular levels, where data from one level validate and support data at another level, called converging of evidence. Using a translational approach, the current status of auditory verbal hallucinations is that they implicate speech perception areas in the left temporal lobe, impairing perception of and attention to external sounds. Preliminary results also show that amygdala is implicated in the emotional

  11. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging.

    PubMed

    Hugdahl, Kenneth

    2017-12-01

    In this invited review article, I present a translational perspective and overview of our research on auditory hallucinations in schizophrenia at the University of Bergen, Norway, with a focus on the neuronal mechanisms underlying the phenomenology of experiencing "hearing voices". An auditory verbal hallucination (i.e. hearing a voice) is defined as a sensory experience in the absence of a corresponding external sensory source that could explain the phenomenological experience. I suggest a general frame or scheme for the study of auditory verbal hallucinations, called Levels of Explanation. Using a Levels of Explanation approach, mental phenomena can be described and explained at different levels (cultural, clinical, cognitive, brain-imaging, cellular and molecular). Another way of saying this is that, to advance knowledge in a research field, it is not only necessary to replicate findings, but also to show how evidence obtained with one method, and at one level of explanation, converges with evidence obtained with another method at another level. To achieve breakthroughs in our understanding of auditory verbal hallucinations, we have to advance vertically through the various levels, rather than the more common approach of staying at our favourite level and advancing horizontally (e.g., more advanced techniques and data acquisition analyses). The horizontal expansion will, however, not advance a deeper understanding of how an auditory verbal hallucination spontaneously starts and stops. Finally, I present data from the clinical, cognitive, brain-imaging, and cellular levels, where data from one level validate and support data at another level, called converging of evidence. Using a translational approach, the current status of auditory verbal hallucinations is that they implicate speech perception areas in the left temporal lobe, impairing perception of and attention to external sounds. Preliminary results also show that amygdala is implicated in the emotional

  12. Toxic Proteins in Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Taylor, J. Paul; Hardy, John; Fischbeck, Kenneth H.

    2002-06-01

    A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.

  13. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  14. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    PubMed

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    PubMed

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  16. Inservice Training Packet: Auditory Discrimination Listening Skills.

    ERIC Educational Resources Information Center

    Florida Learning Resources System/CROWN, Jacksonville.

    Intended to be used as the basis for a brief inservice workshop, the auditory discrimination/listening skills packet provides information on ideas, materials, and resources for remediating auditory discrimination and listening skill deficits. Included are a sample prescription form, tests of auditory discrimination, and a list of auditory…

  17. Auditory evoked potentials.

    PubMed

    De Cosmo, G; Aceto, P; Clemente, A; Congedo, E

    2004-05-01

    Auditory evoked potentials (AEPs) are an electrical manifestation of the brain response to an auditory stimulus. Mid-latency auditory evoked potentials (MLAEPs) and the coherent frequency of the AEP are the most promising for monitoring depth of anaesthesia. MLAEPs show graded changes with increasing anaesthetic concentration over the clinical concentration range. The latencies of Pa and Nb lengthen and their amplitudes reduce. These changes in features of waveform are similar with both inhaled and intravenous anaesthetics. Changes in latency of Pa and Nb waves are highly correlated to a transition from awake to loss of consciousness. MLAEPs recording may also provide information about cerebral processing of the auditory input, probably because it reflects activity in the temporal lobe/primary cortex, sites involved in sounds elaboration and in a complex mechanism of implicit (non declarative) memory processing. The coherent frequency has found to be disrupted by the anaesthetics as well as to be implicated in attentional mechanism. These results support the concept that the AEPs reflects the balance between the arousal effects of surgical stimulation and the depressant effects of anaesthetics. However, AEPs aren't a perfect measure of anaesthesia depth. They can't predict patients movements during surgery and the signal may be affected by muscle artefacts, diathermy and other electrical operating theatre interferences. In conclusion, once reliability of the AEPs recording became proved and the signal acquisition improved it is likely to became a routine feature of clinical anaesthetic practice.

  18. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    PubMed

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  19. Exploring auditory neglect: Anatomo-clinical correlations of auditory extinction.

    PubMed

    Tissieres, Isabel; Crottaz-Herbette, Sonia; Clarke, Stephanie

    2018-05-23

    The key symptoms of auditory neglect include left extinction on tasks of dichotic and/or diotic listening and rightward shift in locating sounds. The anatomical correlates of the latter are relatively well understood, but no systematic studies have examined auditory extinction. Here, we performed a systematic study of anatomo-clinical correlates of extinction by using dichotic and/or diotic listening tasks. In total, 20 patients with right hemispheric damage (RHD) and 19 with left hemispheric damage (LHD) performed dichotic and diotic listening tasks. Either task consists of the simultaneous presentation of word pairs; in the dichotic task, 1 word is presented to each ear, and in the diotic task, each word is lateralized by means of interaural time differences and presented to one side. RHD was associated with exclusively contralesional extinction in dichotic or diotic listening, whereas in selected cases, LHD led to contra- or ipsilesional extinction. Bilateral symmetrical extinction occurred in RHD or LHD, with dichotic or diotic listening. The anatomical correlates of these extinction profiles offer an insight into the organisation of the auditory and attentional systems. First, left extinction in dichotic versus diotic listening involves different parts of the right hemisphere, which explains the double dissociation between these 2 neglect symptoms. Second, contralesional extinction in the dichotic task relies on homologous regions in either hemisphere. Third, ipsilesional extinction in dichotic listening after LHD was associated with lesions of the intrahemispheric white matter, interrupting callosal fibres outside their midsagittal or periventricular trajectory. Fourth, bilateral symmetrical extinction was associated with large parieto-fronto-temporal LHD or smaller parieto-temporal RHD, which suggests that divided attention, supported by the right hemisphere, and auditory streaming, supported by the left, likely play a critical role. Copyright © 2018

  20. Auditory dysfunction associated with solvent exposure

    PubMed Central

    2013-01-01

    Background A number of studies have demonstrated that solvents may induce auditory dysfunction. However, there is still little knowledge regarding the main signs and symptoms of solvent-induced hearing loss (SIHL). The aim of this research was to investigate the association between solvent exposure and adverse effects on peripheral and central auditory functioning with a comprehensive audiological test battery. Methods Seventy-two solvent-exposed workers and 72 non-exposed workers were selected to participate in the study. The test battery comprised pure-tone audiometry (PTA), transient evoked otoacoustic emissions (TEOAE), Random Gap Detection (RGD) and Hearing-in-Noise test (HINT). Results Solvent-exposed subjects presented with poorer mean test results than non-exposed subjects. A bivariate and multivariate linear regression model analysis was performed. One model for each auditory outcome (PTA, TEOAE, RGD and HINT) was independently constructed. For all of the models solvent exposure was significantly associated with the auditory outcome. Age also appeared significantly associated with some auditory outcomes. Conclusions This study provides further evidence of the possible adverse effect of solvents on the peripheral and central auditory functioning. A discussion of these effects and the utility of selected hearing tests to assess SIHL is addressed. PMID:23324255

  1. Metabotropic glutamate receptors in auditory processing

    PubMed Central

    Lu, Yong

    2014-01-01

    As the major excitatory neurotransmitter used in the vertebrate brain, glutamate activates ionotropic and metabotropic glutamate receptors (mGluRs), which mediate fast and slow neuronal actions, respectively. Important modulatory roles of mGluRs have been shown in many brain areas, and drugs targeting mGluRs have been developed for treatment of brain disorders. Here, I review the studies on mGluRs in the auditory system. Anatomical expression of mGluRs in the cochlear nucleus has been well characterized, while data for other auditory nuclei await more systematic investigations at both the light and electron microscopy levels. The physiology of mGluRs has been extensively studied using in vitro brain slice preparations, with a focus on the lower auditory brainstem in both mammals and birds. These in vitro physiological studies have revealed that mGluRs participate in neurotransmission, regulate ionic homeostasis, induce synaptic plasticity, and maintain the balance between excitation and inhibition in a variety of auditory structures. However, very few in vivo physiological studies on mGluRs in auditory processing have been undertaken at the systems level. Many questions regarding the essential roles of mGluRs in auditory processing still remain unanswered and more rigorous basic research is warranted. PMID:24909898

  2. [Incidence of hypoacusia secondary to hyperbilirubinaemia in a universal neonatal auditory screening programme based on otoacoustic emissions and evoked auditory potentials].

    PubMed

    Núñez-Batalla, Faustino; Carro-Fernández, Pilar; Antuña-León, María Eva; González-Trelles, Teresa

    2008-03-01

    Hyperbilirubinaemia is a neonatal risk factor that has been proved to be associated with sensorineural hearing loss. A high concentration of unconjugated bilirubin place newborn children at risk of suffering toxic effects, including hypoacusia. Review of the newborn screening results with a diagnosis of pathological hyperbilirubinaemia as part of a hearing-loss early detection protocol in the general population based on otoemissions and evoked potentials. Retrospective study of 21 590 newborn children screened between 2002 and 2006. The selection criteria for defining pathological hyperbilirubinaemia were bilirubin concentrations in excess of 14 mg/dL in pre-term infants and 20 mg/dL in full-term babies. The Universal Neonatal Hearing Screening Programme is a two-phase protocol in which all children are initially subjected to a transient otoacoustic emissions test (TOAE). Children presenting risk factors associated with auditory neuropathy were always given brainstem auditory evoked potentials (BAEP). The patients identified as having severe hyperbilirubinaemia in the neonatal period numbered 109 (0.5 %) and 96 of these (88.07 %) passed the otoacoustic emissions test at the first attempt and 13 (11.93 %) did not; 11 of the 13 children in whom the otoacoustic emissions test was repeated passed it successfully. The 2 children who failed to pass the otoacoustic emissions test has normal BAEP results; 3 (2.75 %) of the newborn infants who passed the TOAE test did not pass the BAEP. Hyperbilirubinaemia values previously considered safe may harm the hearing system and give rise to isolated problems in auditory processing without being associated with other signs of classical kernicterus. Our results show that hyperbilirubinaemia-related auditory neuropathy reveals changes over time in the audiometric outcomes.

  3. The potential of epigenetic therapies in neurodegenerative diseases

    PubMed Central

    Coppedè, Fabio

    2014-01-01

    Available treatments for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, do not arrest disease progression but mainly help keeping patients from getting worse for a limited period of time. Increasing evidence suggests that epigenetic mechanisms such as DNA methylation and histone tail modifications are dynamically regulated in neurons and play a fundamental role in learning and memory processes. In addition, both global and gene-specific epigenetic changes and deregulated expression of the writer and eraser proteins of epigenetic marks are believed to contribute to the onset and progression of neurodegeneration. Studies in animal models of neurodegenerative diseases have highlighted the potential role of epigenetic drugs, including inhibitors of histone deacetylases and methyl donor compounds, in ameliorating the cognitive symptoms and preventing or delaying the motor symptoms of the disease, thereby opening the way for a potential application in human pathology. PMID:25071843

  4. Medicinal Plants in Neurodegenerative Diseases: Perspective of Traditional Persian Medicine.

    PubMed

    Farzaei, Mohammad Hosein; Shahpiri, Zahra; Mehri, Mohammad Reza; Bahramsoltani, Roodabeh; Rezaei, Mahdi; Raeesdana, Azade; Rahimi, Roja

    2018-01-01

    Neurodegenerative diseases are a progressive loss of structure and/or function of neurons. Weak therapeutic response and progressive nature of the diseases, as well as a wide range of side effects caused by conventional therapeutic approaches make patients seek for complementary and alternative medicine. The aim of the present paper is to discuss the neuropharmacological basis of medicinal plants and their principle phytochemicals which have been used in traditional Persian medicine for different types of neurodegenerative diseases. Medicinal plants introduced in traditional Persian medicine perform beneficial effects in neurodegenerative diseases via various cellular and molecular mechanisms including suppression of apoptosis mediated by an increase in the expression of anti-apoptotic agents (e.g. Bcl-2) as well as a decrease in the expression and activity of proapoptotic proteins (e.g. Bax, caspase 3 and 9). Alleviating inflammatory responses and suppressing the expression and function of pro-inflammatory cytokines like Tumor necrosis factor α and interleukins, as well as improvement in antioxidative performance mediated by superoxide dismutase and catalase, are among other neuroprotective mechanisms of traditional medicinal plants. Modulation of transcription, transduction, intracellular signaling pathways including ERK, p38, and MAPK, with upstream regulatory activity on inflammatory cascades, apoptosis and oxidative stress associated pathways, play an essential role in the preventive and therapeutic potential of the plants in neurodegenerative diseases. Medicinal plants used in traditional Persian medicine along with their related phytochemicals by affecting various neuropharmacological pathways can be considered as future drugs or adjuvant therapies with conventional pharmacotherapeutics; though, further clinical studies are necessary for the confirmation of their safety and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at

  5. Utilizing Oral-Motor Feedback in Auditory Conceptualization.

    ERIC Educational Resources Information Center

    Howard, Marilyn

    The Auditory Discrimination in Depth (ADD) program, an oral-motor approach to beginning reading instruction, trains first grade children in auditory skills by a process in which language and oral-motor feedback are used to integrate auditory properties with visual properties. This emphasis of the ADD program makes the child's perceptual…

  6. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  7. Redox Proteomics in Selected Neurodegenerative Disorders: From Its Infancy to Future Applications

    PubMed Central

    Perluigi, Marzia; Reed, Tanea; Muharib, Tasneem; Hughes, Christopher P.; Robinson, Renã A.S.; Sultana, Rukhsana

    2012-01-01

    Abstract Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 17, 1610–1655. PMID:22115501

  8. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback.

    PubMed

    Keough, Dwayne; Hawco, Colin; Jones, Jeffery A

    2013-03-09

    Auditory feedback is important for accurate control of voice fundamental frequency (F(0)). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/α /]. Participants were instructed to either 'compensate' for, or 'ignore' the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented ('ramp') in -2 cent increments down to -100 cents (1 semitone) or were suddenly ('constant') shifted down by 1 semitone. Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control.

  9. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases.

    PubMed

    Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M

    2018-03-01

    Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.

  10. Auditory perception vs. recognition: representation of complex communication sounds in the mouse auditory cortical fields.

    PubMed

    Geissler, Diana B; Ehret, Günter

    2004-02-01

    Details of brain areas for acoustical Gestalt perception and the recognition of species-specific vocalizations are not known. Here we show how spectral properties and the recognition of the acoustical Gestalt of wriggling calls of mouse pups based on a temporal property are represented in auditory cortical fields and an association area (dorsal field) of the pups' mothers. We stimulated either with a call model releasing maternal behaviour at a high rate (call recognition) or with two models of low behavioural significance (perception without recognition). Brain activation was quantified using c-Fos immunocytochemistry, counting Fos-positive cells in electrophysiologically mapped auditory cortical fields and the dorsal field. A frequency-specific labelling in two primary auditory fields is related to call perception but not to the discrimination of the biological significance of the call models used. Labelling related to call recognition is present in the second auditory field (AII). A left hemisphere advantage of labelling in the dorsoposterior field seems to reflect an integration of call recognition with maternal responsiveness. The dorsal field is activated only in the left hemisphere. The spatial extent of Fos-positive cells within the auditory cortex and its fields is larger in the left than in the right hemisphere. Our data show that a left hemisphere advantage in processing of a species-specific vocalization up to recognition is present in mice. The differential representation of vocalizations of high vs. low biological significance, as seen only in higher-order and not in primary fields of the auditory cortex, is discussed in the context of perceptual strategies.

  11. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    PubMed

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Typical cerebral metabolic patterns in neurodegenerative brain diseases.

    PubMed

    Teune, Laura K; Bartels, Anna L; de Jong, Bauke M; Willemsen, Antoon T M; Eshuis, Silvia A; de Vries, Jeroen J; van Oostrom, Joost C H; Leenders, Klaus L

    2010-10-30

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [(18)F]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting that this method can assist in early differential diagnosis of neurodegenerative brain diseases.We have studied patients who had an FDG-PET scan on clinical grounds at an early disease stage and included those with a retrospectively confirmed diagnosis according to strictly defined clinical research criteria. Ninety-six patients could be included of which 20 patients with Parkinson's disease (PD), 21 multiple system atrophy (MSA), 17 progressive supranuclear palsy (PSP), 10 corticobasal degeneration (CBD), 6 dementia with Lewy bodies (DLB), 15 Alzheimer's disease (AD), and 7 frontotemporal dementia (FTD). FDG PET images of each patient group were analyzed and compared to18 healthy controls using Statistical Parametric Mapping (SPM5).Disease-specific patterns of relatively decreased metabolic activity were found in PD (contralateral parietooccipital and frontal regions), MSA (bilateral putamen and cerebellar hemispheres), PSP (prefrontal cortex and caudate nucleus, thalamus, and mesencephalon), CBD (contralateral cortical regions), DLB (occipital and parietotemporal regions), AD (parietotemporal regions), and FTD (frontotemporal regions).The integrated method addressing a spectrum of various neurodegenerative brain diseases provided means to discriminate patient groups also at early disease stages. Clinical follow-up enabled appropriate patient inclusion. This implies that an early diagnosis in individual patients can be made by comparing each subject's metabolic findings with a complete database of specific disease related patterns.

  13. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  14. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  15. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  16. Auditory Brainstem Responses in Young Males with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Roberts, Joanne; Hennon, Elizabeth A.; Anderson, Kathleen; Roush, Jackson; Gravel, Judith; Skinner, Martie; Misenheimer, Jan; Reitz, Patricia

    2005-01-01

    Fragile X syndrome (FXS) is the most common inherited cause of mental retardation resulting in developmental delays in males. Atypical outer ear morphology is characteristic of FXS and may serve as a marker for abnormal auditory function. Despite this abnormality, studies of the hearing of young males with FXS are generally lacking. A few studies…

  17. Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation

    PubMed Central

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J.; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals. PMID:24651455

  18. How do neurons work together? Lessons from auditory cortex.

    PubMed

    Harris, Kenneth D; Bartho, Peter; Chadderton, Paul; Curto, Carina; de la Rocha, Jaime; Hollender, Liad; Itskov, Vladimir; Luczak, Artur; Marguet, Stephan L; Renart, Alfonso; Sakata, Shuzo

    2011-01-01

    Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information. © 2010 Elsevier B.V. All rights reserved.

  19. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  20. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  1. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  2. Cortical Representations of Speech in a Multitalker Auditory Scene.

    PubMed

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  3. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  4. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.

  5. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    PubMed

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  6. Vestibular evoked myogenic potential (VEMP) in patients with auditory neuropathy: Auditory neuropathy or audiovestibular neuropathy?

    PubMed

    Sazgar, Amir Arvin; Yazdani, Nasrin; Rezazadeh, Nima; Yazdi, Alireza Karimi

    2010-10-01

    Our results suggest that isolated auditory or vestibular involvement is unlikely and in fact audiovestibular neuropathy can better explain auditory neuropathy. The purpose of this study was to investigate saccule and related neural pathways in auditory neuropathy patients. Three males and five females diagnosed with auditory neuropathy were included in this prospective study. Patients' ages ranged from 21 to 45 years with a mean age of 28.6 ± 8.1 years and the history of disease was between 4 and 19 years. A group of 30 normal subjects served as the control group. The main outcome measures were the mean peak latency (in ms) of the two early waves (p13 and n23) of the vestibular evoked myogenic potential (VEMP) test in patients and controls. Of the 8 patients (16 ears), normal response was detected in 3 ears (1 in right and 2 in left ears). There were unrepeatable waves in four ears and absent VEMPs in nine ears.

  7. Depressive and Anxiety Symptoms in Older Adults With Auditory, Vision, and Dual Sensory Impairment.

    PubMed

    Simning, Adam; Fox, Meghan L; Barnett, Steven L; Sorensen, Silvia; Conwell, Yeates

    2018-06-01

    The objective of the study is to examine the association of auditory, vision, and dual sensory impairment with late-life depressive and anxiety symptoms. Our study included 7,507 older adults from the National Health & Aging Trends Study, a nationally representative sample of U.S. Medicare beneficiaries. Auditory and vision impairment were determined by self-report, and depressive and anxiety symptoms were evaluated by the two-item Patient Health Questionnaire (PHQ-2) and two-item Generalized Anxiety Disorder Scale (GAD-2), respectively. Auditory, vision, and dual impairment were associated with an increased risk of depressive and anxiety symptoms in multivariable analyses accounting for sociodemographics, medical comorbidity, and functional impairment. Auditory, vision, and dual impairment were also associated with an increased risk for depressive and anxiety symptoms that persist or were of new onset after 1 year. Screening older adults with sensory impairments for depression and anxiety, and screening those with late-life depression and anxiety for sensory impairments, may identify treatment opportunities to optimize health and well-being.

  8. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  9. LSTM for diagnosis of neurodegenerative diseases using gait data

    NASA Astrophysics Data System (ADS)

    Zhao, Aite; Qi, Lin; Li, Jie; Dong, Junyu; Yu, Hui

    2018-04-01

    Neurodegenerative diseases (NDs) usually cause gait disorders and postural disorders, which provides an important basis for NDs diagnosis. By observing and analyzing these clinical manifestations, medical specialists finally give diagnostic results to the patient, which is inefficient and can be easily affected by doctors' subjectivity. In this paper, we propose a two-layer Long Short-Term Memory (LSTM) model to learn the gait patterns exhibited in the three NDs. The model was trained and tested using temporal data that was recorded by force-sensitive resistors including time series, such as stride interval and swing interval. Our proposed method outperforms other methods in literature in accordance with accuracy of the predicted diagnostic result. Our approach aims at providing the quantitative assessment so that to indicate the diagnosis and treatment of these neurodegenerative diseases in clinic

  10. Progranulin: at the interface of neurodegenerative and metabolic diseases.

    PubMed

    Nguyen, Andrew D; Nguyen, Thi A; Martens, Lauren Herl; Mitic, Laura L; Farese, Robert V

    2013-12-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. We review here progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight the growth factor-like, trophic, and anti-inflammatory properties of progranulin as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Progranulin: At the interface of neurodegenerative and metabolic diseases

    PubMed Central

    Nguyen, Andrew D.; Nguyen, Thi A.; Martens, Lauren Herl; Mitic, Laura L.; Farese, Robert V.

    2013-01-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor–like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin’s function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. Here, we review progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight progranulin’s growth factor–like, trophic, and anti-inflammatory properties as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. PMID:24035620

  12. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit

    PubMed Central

    Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.

    2016-01-01

    Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498

  13. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  14. Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases

    PubMed Central

    Qureshi, Irfan A.

    2015-01-01

    In the post-genomic era, epigenetic factors—literally those that are “over” or “above” genetic ones and responsible for controlling the expression and function of genes—have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer’s and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders. PMID:21671162

  15. Unbiased approaches to biomarker discovery in neurodegenerative diseases

    PubMed Central

    Chen-Plotkin, Alice S.

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia have several important features in common. They are progressive, they affect a relatively inaccessible organ, and we have no disease-modifying therapies for them. For these brain-based diseases, current diagnosis and evaluation of disease severity rely almost entirely on clinical examination, which may only be a rough approximation of disease state. Thus, the development of biomarkers – objective, relatively easily measured and precise indicators of pathogenic processes – could improve patient care and accelerate therapeutic discovery. Yet existing, rigorously tested neurodegenerative disease biomarkers are few, and even fewer biomarkers have translated into clinical use. To find new biomarkers for these diseases, an unbiased, high-throughput screening approach may be needed. In this review, I will describe the potential utility of such an approach to biomarker discovery, using Parkinson’s disease as a case example. PMID:25442938

  16. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    PubMed

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  17. Auditory perceptual simulation: Simulating speech rates or accents?

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation

    PubMed Central

    Oliva, Aude

    2017-01-01

    Abstract Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear how the brain represents reverberant spaces separately from sound sources. Here, we report separable neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily dissociable in form and time: while sound source decoding exhibited an early and transient response, the neural signature of space was sustained and independent of the original source that produced it. The reverberant space response was robust to variations in sound source, and vice versa, indicating a generalized response not tied to specific source-space combinations. These results provide the first neuromagnetic evidence for robust, dissociable auditory source and reverberant space representations in the human brain and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic auditory signals. PMID:28451630

  20. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    PubMed

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  1. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning

    PubMed Central

    Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359

  2. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  3. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback

    PubMed Central

    2013-01-01

    Background Auditory feedback is important for accurate control of voice fundamental frequency (F0). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/ɑ /]. Participants were instructed to either ‘compensate’ for, or ‘ignore’ the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented (‘ramp’) in -2 cent increments down to -100 cents (1 semitone) or were suddenly (’constant‘) shifted down by 1 semitone. Results Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Conclusions Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control. PMID:23497238

  4. Effects of auditory and visual modalities in recall of words.

    PubMed

    Gadzella, B M; Whitehead, D A

    1975-02-01

    Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.

  5. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  6. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences.

    PubMed

    Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael

    2014-01-01

    Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called "cocktail-party" problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments.

  7. Using auditory pre-information to solve the cocktail-party problem: electrophysiological evidence for age-specific differences

    PubMed Central

    Getzmann, Stephan; Lewald, Jörg; Falkenstein, Michael

    2014-01-01

    Speech understanding in complex and dynamic listening environments requires (a) auditory scene analysis, namely auditory object formation and segregation, and (b) allocation of the attentional focus to the talker of interest. There is evidence that pre-information is actively used to facilitate these two aspects of the so-called “cocktail-party” problem. Here, a simulated multi-talker scenario was combined with electroencephalography to study scene analysis and allocation of attention in young and middle-aged adults. Sequences of short words (combinations of brief company names and stock-price values) from four talkers at different locations were simultaneously presented, and the detection of target names and the discrimination between critical target values were assessed. Immediately prior to speech sequences, auditory pre-information was provided via cues that either prepared auditory scene analysis or attentional focusing, or non-specific pre-information was given. While performance was generally better in younger than older participants, both age groups benefited from auditory pre-information. The analysis of the cue-related event-related potentials revealed age-specific differences in the use of pre-cues: Younger adults showed a pronounced N2 component, suggesting early inhibition of concurrent speech stimuli; older adults exhibited a stronger late P3 component, suggesting increased resource allocation to process the pre-information. In sum, the results argue for an age-specific utilization of auditory pre-information to improve listening in complex dynamic auditory environments. PMID:25540608

  8. Neurodegenerative Models in Drosophila: Polyglutamine Disorders, Parkinson Disease, and Amyotrophic Lateral Sclerosis

    PubMed Central

    Ambegaokar, Surendra S.; Roy, Bidisha; Jackson, George R.

    2010-01-01

    Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue. PMID:20561920

  9. HDL and Cognition in Neurodegenerative Disorders

    PubMed Central

    Hottman, David A.; Chernick, Dustin; Cheng, Shaowu; Wang, Zhe; Li, Ling

    2014-01-01

    High-density lipoproteins (HDL) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function. PMID:25131449

  10. Drug discovery of neurodegenerative disease through network pharmacology approach in herbs.

    PubMed

    Ke, Zhipeng; Zhang, Xinzhuang; Cao, Zeyu; Ding, Yue; Li, Na; Cao, Liang; Wang, Tuanjie; Zhang, Chenfeng; Ding, Gang; Wang, Zhenzhong; Xu, Xiaojie; Xiao, Wei

    2016-03-01

    Neurodegenerative diseases, referring to as the progressive loss of structure and function of neurons, constitute one of the major challenges of modern medicine. Traditional Chinese herbs have been used as a major preventive and therapeutic strategy against disease for thousands years. The numerous species of medicinal herbs and Traditional Chinese Medicine (TCM) compound formulas in nervous system disease therapy make it a large chemical resource library for drug discovery. In this work, we collected 7362 kinds of herbs and 58,147 Traditional Chinese medicinal compounds (Tcmcs). The predicted active compounds in herbs have good oral bioavailability and central nervous system (CNS) permeability. The molecular docking and network analysis were employed to analyze the effects of herbs on neurodegenerative diseases. In order to evaluate the predicted efficacy of herbs, automated text mining was utilized to exhaustively search in PubMed by some related keywords. After that, receiver operator characteristic (ROC) curves was used to estimate the accuracy of predictions. Our study suggested that most herbs were distributed in family of Asteraceae, Fabaceae, Lamiaceae and Apocynaceae. The predictive model yielded good sensitivity and specificity with the AUC values above 0.800. At last, 504 kinds of herbs were obtained by using the optimal cutoff values in ROC curves. These 504 herbs would be the most potential herb resources for neurodegenerative diseases treatment. This study would give us an opportunity to use these herbs as a chemical resource library for drug discovery of anti-neurodegenerative disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  12. Auditory peripersonal space in humans.

    PubMed

    Farnè, Alessandro; Làdavas, Elisabetta

    2002-10-01

    In the present study we report neuropsychological evidence of the existence of an auditory peripersonal space representation around the head in humans and its characteristics. In a group of right brain-damaged patients with tactile extinction, we found that a sound delivered near the ipsilesional side of the head (20 cm) strongly extinguished a tactile stimulus delivered to the contralesional side of the head (cross-modal auditory-tactile extinction). By contrast, when an auditory stimulus was presented far from the head (70 cm), cross-modal extinction was dramatically reduced. This spatially specific cross-modal extinction was most consistently found (i.e., both in the front and back spaces) when a complex sound was presented, like a white noise burst. Pure tones produced spatially specific cross-modal extinction when presented in the back space, but not in the front space. In addition, the most severe cross-modal extinction emerged when sounds came from behind the head, thus showing that the back space is more sensitive than the front space to the sensory interaction of auditory-tactile inputs. Finally, when cross-modal effects were investigated by reversing the spatial arrangement of cross-modal stimuli (i.e., touch on the right and sound on the left), we found that an ipsilesional tactile stimulus, although inducing a small amount of cross-modal tactile-auditory extinction, did not produce any spatial-specific effect. Therefore, the selective aspects of cross-modal interaction found near the head cannot be explained by a competition between a damaged left spatial representation and an intact right spatial representation. Thus, consistent with neurophysiological evidence from monkeys, our findings strongly support the existence, in humans, of an integrated cross-modal system coding auditory and tactile stimuli near the body, that is, in the peripersonal space.

  13. Human engineer's guide to auditory displays. Volume 2: Elements of signal reception and resolution affecting auditory displays

    NASA Astrophysics Data System (ADS)

    Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.

    1984-08-01

    This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to acoustic signals. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays. Appendix 1 also contains citations of the scientific literature on which was based the answers to each question. There are nineteen questions and answers, and more than two hundred citations contained in the list of references given in Appendix 2. This is one of two related works, the other of which reviewed the literature in the areas of auditory attention, recognition memory, and auditory perception of patterns, pitch, and loudness.

  14. Direct recordings from the auditory cortex in a cochlear implant user.

    PubMed

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  15. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  16. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  17. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    PubMed Central

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  18. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  19. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  20. The emergence of designed multiple ligands for neurodegenerative disorders.

    PubMed

    Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J

    2011-09-01

    The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.

  1. Visual influences on auditory spatial learning

    PubMed Central

    King, Andrew J.

    2008-01-01

    The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967

  2. Epidemiology of neurodegenerative diseases in sub-Saharan Africa: a systematic review

    PubMed Central

    2014-01-01

    Background Sub-Saharan African (SSA) countries are experiencing rapid transitions with increased life expectancy. As a result the burden of age-related conditions such as neurodegenerative diseases might be increasing. We conducted a systematic review of published studies on common neurodegenerative diseases, and HIV-related neurocognitive impairment in SSA, in order to identify research gaps and inform prevention and control solutions. Methods We searched MEDLINE via PubMed, ‘Banque de Données de Santé Publique’ and the database of the ‘Institut d’Epidemiologie Neurologique et de Neurologie Tropicale’ from inception to February 2013 for published original studies from SSA on neurodegenerative diseases and HIV-related neurocognitive impairment. Screening and data extraction were conducted by two investigators. Bibliographies and citations of eligible studies were investigated. Results In all 144 publications reporting on dementia (n = 49 publications, mainly Alzheimer disease), Parkinsonism (PD, n = 20), HIV-related neurocognitive impairment (n = 47), Huntington disease (HD, n = 19), amyotrophic lateral sclerosis (ALS, n = 15), cerebellar degeneration (n = 4) and Lewy body dementia (n = 1). Of these studies, largely based on prevalent cases from retrospective data on urban populations, half originated from Nigeria and South Africa. The prevalence of dementia (Alzheimer disease) varied between <1% and 10.1% (0.7% and 5.6%) in population-based studies and from <1% to 47.8% in hospital-based studies. Incidence of dementia (Alzheimer disease) ranged from 8.7 to 21.8/1000/year (9.5 to 11.1), and major risk factors were advanced age and female sex. HIV-related neurocognitive impairment’s prevalence (all from hospital-based studies) ranged from <1% to 80%. Population-based prevalence of PD and ALS varied from 10 to 235/100,000, and from 5 to 15/100,000 respectively while that for Huntington disease was 3.5/100,000. Equivalent

  3. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  4. Sound arithmetic: auditory cues in the rehabilitation of impaired fact retrieval.

    PubMed

    Domahs, Frank; Zamarian, Laura; Delazer, Margarete

    2008-04-01

    The present single case study describes the rehabilitation of an acquired impairment of multiplication fact retrieval. In addition to a conventional drill approach, one set of problems was preceded by auditory cues while the other half was not. After extensive repetition, non-specific improvements could be observed for all trained problems (e.g., 3 * 7) as well as for their non-trained complementary problems (e.g., 7 * 3). Beyond this general improvement, specific therapy effects were found for problems trained with auditory cues. These specific effects were attributed to an involvement of implicit memory systems and/or attentional processes during training. Thus, the present results demonstrate that cues in the training of arithmetic facts do not have to be visual to be effective.

  5. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  6. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  7. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods.

  8. Reduced auditory efferent activity in childhood selective mutism.

    PubMed

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  9. The effects of divided attention on auditory priming.

    PubMed

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  10. Auditory memory function in expert chess players

    PubMed Central

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. Methods: The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. Results: The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Conclusion: Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time. PMID:26793666

  11. Auditory memory function in expert chess players.

    PubMed

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  12. Tracing the neural basis of auditory entrainment.

    PubMed

    Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc

    2016-11-19

    Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Feature assignment in perception of auditory figure.

    PubMed

    Gregg, Melissa K; Samuel, Arthur G

    2012-08-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory "objects" (relatively punctate events, such as a dog's bark) and auditory "streams" (sounds involving a pattern over time, such as a galloping rhythm). In Experiments 1 and 2, on each trial 2 sounds-an object (a vowel) and a stream (a series of tones)-were presented with 1 target feature that could be perceptually grouped with either source. In each block of these experiments, listeners were required to attend to 1 of the 2 sounds, and report its perceived category. Across several experimental manipulations, listeners were more likely to allocate the feature to an impoverished object if the result of the grouping was a good, identifiable object. Perception of objects was quite sensitive to feature variation (noise masking), whereas perception of streams was more robust to feature variation. In Experiment 3, the number of sound sources competing for the feature was increased to 3. This produced a shift toward relying more on spatial cues than on the potential contribution of the feature to an object's perceptual quality. The results support a distinction between auditory objects and streams, and provide new information about the way that the auditory world is parsed. (c) 2012 APA, all rights reserved.

  14. The effects of auditory hallucination symptom management programme for people with schizophrenia: a quasi-experimental design.

    PubMed

    Yang, Chiu-Yueh; Lee, Tien-Hao; Lo, Su-Chen; Beckstead, Jason W

    2015-12-01

    To examine the effectiveness of an auditory hallucinatory symptom management programme in patients with chronic schizophrenia. Thirty per cent of chronic schizophrenia patients are still disturbed by hallucinations, which influence their psychological and social well-being, even when they take medication regularly. Fifty-eight people experiencing schizophrenia with auditory hallucinations from psychiatric inpatient rehabilitation wards in northern Taiwan participated in the study, with 29 in the experimental group and 29 in the control group. The experimental group received an auditory hallucinatory symptom management programme. The auditory hallucinatory symptom management programme involved 60-minute meetings once a week, for a total of 10 meetings. The control group received routine care, which included free recreation for 40 minutes and walking for 20 minutes. The participants completed three self-report questionnaires: the Beck Depressive Inventory II, the Beck Anxiety Inventory and the Characteristics of Auditory Hallucinations Questionnaire. Data were collected at baseline, immediately following the intervention and at 3 months and 6 months post intervention. Data collection occurred between March 2010-May 2013. The experimental group showed a non-significant improvement in anxiety symptoms over time. Generalized estimating equations revealed that the experimental group achieved a greater drop in Characteristics of Auditory Hallucinations Questionnaire score than the controls at three and 6 months post intervention. Beck Depressive Inventory II scores in the experimental group (n = 29) had significantly improved in 3 months. The auditory hallucinatory symptom management programme seems to be effective in improving auditory hallucinatory symptoms and depressive symptoms in patients with schizophrenia. © 2015 John Wiley & Sons Ltd.

  15. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases.

    PubMed

    Artusi, Carlo Alberto; Mishra, Murli; Latimer, Patricia; Vizcarra, Joaquin A; Lopiano, Leonardo; Maetzler, Walter; Merola, Aristide; Espay, Alberto J

    2018-01-01

    We sought to review the landscape of past, present, and future use of technology-based outcome measures (TOMs) in clinical trials of neurodegenerative disorders. We systematically reviewed PubMed and ClinicalTrials.gov for published and ongoing clinical trials in neurodegenerative disorders employing TOMs. In addition, medical directors of selected pharmaceutical companies were surveyed on their companies' ongoing efforts and future plans to integrate TOMs in clinical trials as primary, secondary, or exploratory endpoints. We identified 164 published clinical trials indexed in PubMed that used TOMs as outcome measures in Parkinson disease (n = 132) or other neurodegenerative disorders (n = 32). The ClinicalTrials.gov search yielded 42 clinical trials using TOMs, representing 2.7% of ongoing trials. Sensor-based technology accounted for over 75% of TOMs applied. Gait and physical activity were the most common targeted domains. Within the next 5 years, 83% of surveyed pharmaceutical companies engaged in neurodegenerative disorders plan to deploy TOMs in clinical trials. Although promising, TOMs are underutilized in clinical trials of neurodegenerative disorders. Validating relevant endpoints, standardizing measures and procedures, establishing a single platform for integration of data and algorithms from different devices, and facilitating regulatory approvals should advance TOMs integration into clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  17. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases.

    PubMed

    Madeira, Maria H; Boia, Raquel; Ambrósio, António F; Santiago, Ana R

    2017-01-01

    Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A 2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  18. Comprehension of insincere communication in neurodegenerative disease: lies, sarcasm, and theory of mind.

    PubMed

    Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott N; Growdon, Matthew E; Jang, Jung Y; Ketelle, Robin S; Miller, Bruce L; Rankin, Katherine P

    2012-01-01

    Comprehension of insincere communication is an important aspect of social cognition requiring visual perspective taking, emotion reading, and understanding others' thoughts, opinions, and intentions. Someone who is lying intends to hide their insincerity from the listener, while a sarcastic speaker wants the listener to recognize they are speaking insincerely. We investigated whether face-to-face testing of comprehending insincere communication would effectively discriminate among neurodegenerative disease patients with different patterns of real-life social deficits. We examined ability to comprehend lies and sarcasm from a third-person perspective, using contextual cues, in 102 patients with one of four neurodegenerative diseases (behavioral variant frontotemporal dementia [bvFTD], Alzheimer's disease [AD], progressive supranuclear palsy [PSP], and vascular cognitive impairment) and 77 healthy older adults (normal controls--NCs). Participants answered questions about videos depicting social interactions involving deceptive, sarcastic, or sincere speech using The Awareness of Social Inference Test. All subjects equally understood sincere remarks, but bvFTD patients displayed impaired comprehension of lies and sarcasm compared with NCs. In other groups, impairment was not disease-specific but was proportionate to general cognitive impairment. Analysis of the task components revealed that only bvFTD patients were impaired on perspective taking and emotion reading elements and that both bvFTD and PSP patients had impaired ability to represent others' opinions and intentions (i.e., theory of mind). Test performance correlated with informants' ratings of subjects' empathy, perspective taking and neuropsychiatric symptoms in everyday life. Comprehending insincere communication is complex and requires multiple cognitive and emotional processes vulnerable across neurodegenerative diseases. However, bvFTD patients show uniquely focal and severe impairments at every level

  19. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  20. Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis

    PubMed Central

    McDermott, Josh H.; Simoncelli, Eero P.

    2014-01-01

    Rainstorms, insect swarms, and galloping horses produce “sound textures” – the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures. However, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation. PMID:21903084

  1. Comorbidity of Auditory Processing, Language, and Reading Disorders

    ERIC Educational Resources Information Center

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  2. Functional Topography of Human Auditory Cortex

    PubMed Central

    Rauschecker, Josef P.

    2016-01-01

    Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding

  3. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    ERIC Educational Resources Information Center

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  4. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks

    PubMed Central

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  5. Alexithymia in Neurodegenerative Disease

    PubMed Central

    Sturm, Virginia E.; Levenson, Robert W.

    2012-01-01

    We investigated alexithymia, a deficit in the ability to identify and describe one’s emotions, in a sample that included patients with neurodegenerative disease and healthy controls. In addition, we investigated the relationship that alexithymia has with behavioral disturbance and with regional gray matter volumes. Alexithymia was examined with the Toronto Alexithymia Scale-20, behavioral disturbance was assessed with the Neuropsychiatric Inventory, and regional gray matter volumes were obtained from structural magnetic resonance images. Group analyses revealed higher levels of alexithymia in patients than controls. Alexithymia scores were positively correlated with behavioral disturbance (apathy and informant distress, in particular) and negatively correlated with the gray matter volume of the right pregenual anterior cingulate cortex, a region of the brain that is thought to play an important role in self and emotion processing. PMID:21432723

  6. Progranulin in neurodegenerative disease.

    PubMed

    Petkau, Terri L; Leavitt, Blair R

    2014-07-01

    Loss-of-function mutations in the progranulin gene are a common cause of familial frontotemporal dementia (FTD). The purpose of this review is to summarize the role of progranulin in health and disease, because the field is now poised to begin examining therapeutics that alter endogenous progranulin levels. We first review the clinical and neuropathological phenotype of FTD patients carrying mutations in the progranulin gene, which suggests that progranulin-mediated neurodegeneration is multifactorial and influenced by other genetic and/or environmental factors. We then examine evidence for the role of progranulin in the brain with a focus on mouse model systems. A better understanding of the complexity of progranulin biology in the brain will help guide the development of progranulin-modulating therapies for neurodegenerative disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nonlinear Processing of Auditory Brainstem Response

    DTIC Science & Technology

    2001-10-25

    Kraków, Poland Abstract: - Auditory brainstem response potentials (ABR) are signals calculated from the EEG signals registered as responses to an...acoustic activation of the auditory system. The ABR signals provide an objective, diagnostic method, widely applied in examinations of hearing organs

  8. A corollary discharge maintains auditory sensitivity during sound production

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2002-08-01

    Speaking and singing present the auditory system of the caller with two fundamental problems: discriminating between self-generated and external auditory signals and preventing desensitization. In humans and many other vertebrates, auditory neurons in the brain are inhibited during vocalization but little is known about the nature of the inhibition. Here we show, using intracellular recordings of auditory neurons in the singing cricket, that presynaptic inhibition of auditory afferents and postsynaptic inhibition of an identified auditory interneuron occur in phase with the song pattern. Presynaptic and postsynaptic inhibition persist in a fictively singing, isolated cricket central nervous system and are therefore the result of a corollary discharge from the singing motor network. Mimicking inhibition in the interneuron by injecting hyperpolarizing current suppresses its spiking response to a 100-dB sound pressure level (SPL) acoustic stimulus and maintains its response to subsequent, quieter stimuli. Inhibition by the corollary discharge reduces the neural response to self-generated sound and protects the cricket's auditory pathway from self-induced desensitization.

  9. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Lipton, Stuart A.

    2015-01-01

    At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. In contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. Here we highlight protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent posttranslational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics. PMID:26707925

  10. Transglutaminase activation in neurodegenerative diseases

    PubMed Central

    Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL

    2009-01-01

    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049

  11. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  12. Progressive and self-limiting neurodegenerative disorders in Africa: a new prominent field of research led by South Africa but without strong health policy.

    PubMed

    Poreau, Brice

    2016-01-01

    Neurodegenerative disorders are involved in mortality and morbidity of every country. A high prevalence is estimated in Africa. Neurodegenerative disorders are defined by a progressive or self-limiting alteration of neurons implied in specific functional and anatomical functions. It encompasses a various range of clinical disorders from self-limiting to progressive. Focus on public health policies and scientific research is needed to understand the mechanisms to reduce this high prevalence. We use bibliometrics and mapping tools to explore the area studies and countries involved in scientific research on neurodegenerative disorders in Africa. We used two databases: Web of Science and Pubmed. We analyzed the journals, most cited articles, authors, publication years, organizations, funding agencies, countries and keywords in Web of Science Core collection database and publication years and Medical Subject Headings in Pubmed database. We mapped the data using VOSviewer. We accessed 44 articles published between 1975 and 2014 in Web of Science Core collection Database and 669 from Pubmed database. The majority of which were after 2006. The main countries involved in research on neurodegenerative disorders in Africa the USA, the United Kingdom, France and South Africa representing the main network collaboration. Clinical neurology and Genetics hereditary are the main Web of Science categories whereas Neurosciences and Biochemistry and Molecular Biology are the main Web of Science categories for the general search "neurodegenerative disorders" not restrained to Africa. This is confirmed by Medical Subject Headings analysis from Pubmed with one more area study: Treatment. Neurodegenerative disorders research is leaded by South Africa with a network involving the USA, the UK, as well as African countries such Zambia. The chief field that emerged was on patient and hereditary as well as treatment. Public health policies were lacking fields in research whereas prevalence is

  13. Estimating subglottal pressure via airflow interruption with auditory masking.

    PubMed

    Hoffman, Matthew R; Jiang, Jack J

    2009-11-01

    Current noninvasive measurement of subglottal pressure using airflow interruption often produces inconsistent results due to the elicitation of audio-laryngeal reflexes. Auditory feedback could be considered as a means of ensuring measurement accuracy and precision. The purpose of this study was to determine if auditory masking could be used with the airflow interruption system to improve intrasubject consistency. A prerecorded sample of subject phonation was played on a loop over headphones during the trials with auditory masking. This provided subjects with a target pitch and blocked out distracting ambient noise created by the airflow interrupter. Subglottal pressure was noninvasively measured using the airflow interruption system. Thirty subjects, divided into two equal groups, performed 10 trials without auditory masking and 10 trials with auditory masking. Group one performed the normal trials first, followed by the trials with auditory masking. Group two performed the auditory masking trials first, followed by the normal trials. Intrasubject consistency was improved by adding auditory masking, resulting in a decrease in average intrasubject standard deviation from 0.93+/-0.51 to 0.47+/-0.22 cm H(2)O (P < 0.001). Auditory masking can be used effectively to combat audio-laryngeal reflexes and aid subjects in maintaining constant glottal configuration and frequency, thereby increasing intrasubject consistency when measuring subglottal pressure. By considering auditory feedback, a more reliable method of measurement was developed. This method could be used by clinicians, as reliable, immediately available values of subglottal pressure are useful in evaluating laryngeal health and monitoring treatment progress.

  14. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    PubMed Central

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N.; Desai, Shivani S.; Hill, Susanna S.; Antovich, Ashley D.; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S.; Marco, Elysa J.

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain. PMID:28603492

  15. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory

  16. Neuronal network disintegration: common pathways linking neurodegenerative diseases.

    PubMed

    Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C

    2016-11-01

    Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Long-latency neurodegenerative disease in the western Pacific.

    PubMed

    Spencer, P S; Kisby, G E; Ludolph, A C

    1991-08-01

    The western Pacific parkinsonism-dementia and amyotrophic lateral sclerosis complex is a prototypical neurodegenerative disorder found among inhabitants of Guam, New Guinea (Irian Jaya, Indonesia) and Japan (Kii Peninsula, Honshu). Nonviral environmental factors peculiar to the affected populations seem to play a prominent etiologic role. Although cause-effect relationships cannot be established by epidemiologic studies alone, we have shown in all three affected population groups that individuals develop the amyotrophic lateral sclerosis variant of this disorder after heavy exposure to the raw or incompletely detoxified seed of neurotoxic cycad plants. Since long periods may elapse between cycad exposure and the appearance of neurological disease in humans, cycads may harbor a "slow toxin" that causes the postmitotic neuron to undergo slow irreversible degeneration. Two cycad neurotoxins are recognized, one of which (cycasin) is known to have long-latency effects (tumorigenesis) on mitotic neurons and replicating cells in other tissues. This paper explores the possible relationship between tumorigenesis and long-latency neurotoxicity, and discusses possible biologic markers of cycad exposure and subclinical neurodegenerative disease.

  18. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  19. Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice

    PubMed Central

    Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi

    2011-01-01

    In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377

  20. Auditory brainstem response to complex sounds: a tutorial

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2010-01-01

    This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007

  1. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.

    PubMed

    Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo

    2017-02-01

    In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.

  2. Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.

    PubMed

    Häkkinen, Suvi; Rinne, Teemu

    2018-06-01

    A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.

  3. [Perception and selectivity of sound duration in the central auditory midbrain].

    PubMed

    Wang, Xin; Li, An-An; Wu, Fei-Jian

    2010-08-25

    Sound duration plays important role in acoustic communication. Information of acoustic signal is mainly encoded in the amplitude and frequency spectrum of different durations. Duration selective neurons exist in the central auditory system including inferior colliculus (IC) of frog, bat, mouse and chinchilla, etc., and they are important in signal recognition and feature detection. Two generally accepted models, which are "coincidence detector model" and "anti-coincidence detector model", have been raised to explain the mechanism of neural selective responses to sound durations based on the study of IC neurons in bats. Although they are different in details, they both emphasize the importance of synaptic integration of excitatory and inhibitory inputs, and are able to explain the responses of most duration-selective neurons. However, both of the hypotheses need to be improved since other sound parameters, such as spectral pattern, amplitude and repetition rate, could affect the duration selectivity of the neurons. The dynamic changes of sound parameters are believed to enable the animal to effectively perform recognition of behavior related acoustic signals. Under free field sound stimulation, we analyzed the neural responses in the IC and auditory cortex of mouse and bat to sounds with different duration, frequency and amplitude, using intracellular or extracellular recording techniques. Based on our work and previous studies, this article reviews the properties of duration selectivity in central auditory system and discusses the mechanisms of duration selectivity and the effect of other sound parameters on the duration coding of auditory neurons.

  4. Behavioral and electrophysiological auditory processing measures in traumatic brain injury after acoustically controlled auditory training: a long-term study

    PubMed Central

    Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro

    2015-01-01

    ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270

  5. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases

    PubMed Central

    Madeira, Maria H.

    2017-01-01

    Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases. PMID:28250576

  6. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing

    PubMed Central

    Keough, Dwayne; Jones, Jeffery A.

    2009-01-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel ∕ta∕ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback. PMID:19640048

  7. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing.

    PubMed

    Keough, Dwayne; Jones, Jeffery A

    2009-08-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers' and untrained singers' (nonsingers') sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers' F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers' models appear to be more sensitive in response to subtle discrepancies in auditory feedback.

  8. Patterns of language and auditory dysfunction in 6-year-old children with epilepsy.

    PubMed

    Selassie, Gunilla Rejnö-Habte; Olsson, Ingrid; Jennische, Margareta

    2009-01-01

    In a previous study we reported difficulty with expressive language and visuoperceptual ability in preschool children with epilepsy and otherwise normal development. The present study analysed speech and language dysfunction for each individual in relation to epilepsy variables, ear preference, and intelligence in these children and described their auditory function. Twenty 6-year-old children with epilepsy (14 females, 6 males; mean age 6:5 y, range 6 y-6 y 11 mo) and 30 reference children without epilepsy (18 females, 12 males; mean age 6:5 y, range 6 y-6 y 11 mo) were assessed for language and auditory ability. Low scores for the children with epilepsy were analysed with respect to speech-language domains, type of epilepsy, site of epileptiform activity, intelligence, and language laterality. Auditory attention, perception, discrimination, and ear preference were measured with a dichotic listening test, and group comparisons were performed. Children with left-sided partial epilepsy had extensive language dysfunction. Most children with partial epilepsy had phonological dysfunction. Language dysfunction was also found in children with generalized and unclassified epilepsies. The children with epilepsy performed significantly worse than the reference children in auditory attention, perception of vowels and discrimination of consonants for the right ear and had more left ear advantage for vowels, indicating undeveloped language laterality.

  9. Monitoring auditory cortical plasticity in hearing aid users with long latency auditory evoked potentials: a longitudinal study.

    PubMed

    Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile

    2018-02-19

    The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users.

  10. Monitoring auditory cortical plasticity in hearing aid users with long latency auditory evoked potentials: a longitudinal study

    PubMed Central

    Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile

    2018-01-01

    OBJECTIVE: The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. METHODS: Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. RESULTS: The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. CONCLUSIONS: Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users. PMID:29466495

  11. Drosophila as an In Vivo Model for Human Neurodegenerative Disease.

    PubMed

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M

    2015-10-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. Copyright © 2015 by the Genetics Society of America.

  12. Neural Substrates of Spontaneous Narrative Production in Focal Neurodegenerative Disease

    PubMed Central

    Gola, Kelly A.; Thorne, Avril; Veldhuisen, Lisa D.; Felix, Cordula M.; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P.; Stanley, Christine M.; Glenn, Shenly; Miller, Bruce L.; Rankin, Katherine P.

    2016-01-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups and may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics in these patients. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls) were analysed for storytelling characteristics and frequency, and videos of the interactions were rated for patients' social attentiveness. Compared to controls, svPPAs also told more stories and autobiographical stories, and perseverated on aspects of self during storytelling. ADs told fewer autobiographical stories than NCs, and svPPAs and bvFTDs failed to attend to social cues. Storytelling characteristics were associated with a processing speed and mental flexibility, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, evaluations, and social attention correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  13. Antidepressants and REM Sleep Behavior Disorder: Isolated Side Effect or Neurodegenerative Signal?

    PubMed Central

    Postuma, Ronald B.; Gagnon, Jean-Francois; Tuineaig, Maria; Bertrand, Josie-Anne; Latreille, Veronique; Desjardins, Catherine; Montplaisir, Jacques Y.

    2013-01-01

    Objectives: Antidepressants, among the most commonly prescribed medications, trigger symptoms of REM sleep behavior disorder (RBD) in up to 6% of users. Idiopathic RBD is a very strong prodromal marker of Parkinson disease and other synuclein-mediated neurodegenerative syndromes. It is therefore critically important to understand whether antidepressant-associated RBD is an independent pharmacologic syndrome or a sign of possible prodromal neurodegeneration. Design: Prospective cohort study. Setting: Tertiary sleep disorders center. Participants: 100 patients with idiopathic RBD, all with diagnosis confirmed on polysomnography, stratified to baseline antidepressant use, with 45 matched controls. Measurements/Results: Of 100 patients, 27 were taking antidepressants. Compared to matched controls, RBD patients taking antidepressants demonstrated significant abnormalities of 12/14 neurodegenerative markers tested, including olfaction (P = 0.007), color vision (P = 0.004), Unified Parkinson Disease Rating Scale II and III (P < 0.001 and 0.007), timed up-and-go (P = 0.003), alternate tap test (P = 0.002), Purdue Pegboard (P = 0.007), systolic blood pressure drop (P = 0.029), erectile dysfunction (P = 0.002), constipation (P = 0.003), depression indices (P < 0.001), and prevalence of mild cognitive impairment (13% vs. 60%, P < 0.001). All these abnormalities were indistinguishable in severity from RBD patients not taking antidepressants. However, on prospective follow-up, RBD patients taking antidepressants had a lower risk of developing neurodegenerative disease than those without antidepressant use (5-year risk = 22% vs. 59%, RR = 0.22, 95%CI = 0.06, 0.74). Conclusions: Although patients with antidepressant-associated RBD have a lower risk of neurodegeneration than patients with “purely-idiopathic” RBD, markers of prodromal neurodegeneration are still clearly present. Development of RBD with antidepressants can be an early signal of an underlying neurodegenerative

  14. Comparing the effect of auditory-only and auditory-visual modes in two groups of Persian children using cochlear implants: a randomized clinical trial.

    PubMed

    Oryadi Zanjani, Mohammad Majid; Hasanzadeh, Saeid; Rahgozar, Mehdi; Shemshadi, Hashem; Purdy, Suzanne C; Mahmudi Bakhtiari, Behrooz; Vahab, Maryam

    2013-09-01

    Since the introduction of cochlear implantation, researchers have considered children's communication and educational success before and after implantation. Therefore, the present study aimed to compare auditory, speech, and language development scores following one-sided cochlear implantation between two groups of prelingual deaf children educated through either auditory-only (unisensory) or auditory-visual (bisensory) modes. A randomized controlled trial with a single-factor experimental design was used. The study was conducted in the Instruction and Rehabilitation Private Centre of Hearing Impaired Children and their Family, called Soroosh in Shiraz, Iran. We assessed 30 Persian deaf children for eligibility and 22 children qualified to enter the study. They were aged between 27 and 66 months old and had been implanted between the ages of 15 and 63 months. The sample of 22 children was randomly assigned to two groups: auditory-only mode and auditory-visual mode; 11 participants in each group were analyzed. In both groups, the development of auditory perception, receptive language, expressive language, speech, and speech intelligibility was assessed pre- and post-intervention by means of instruments which were validated and standardized in the Persian population. No significant differences were found between the two groups. The children with cochlear implants who had been instructed using either the auditory-only or auditory-visual modes acquired auditory, receptive language, expressive language, and speech skills at the same rate. Overall, spoken language significantly developed in both the unisensory group and the bisensory group. Thus, both the auditory-only mode and the auditory-visual mode were effective. Therefore, it is not essential to limit access to the visual modality and to rely solely on the auditory modality when instructing hearing, language, and speech in children with cochlear implants who are exposed to spoken language both at home and at school

  15. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    PubMed

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Auditory and Visual Cues for Topic Maintenance with Persons Who Exhibit Dementia of Alzheimer's Type.

    PubMed

    Teten, Amy F; Dagenais, Paul A; Friehe, Mary J

    2015-01-01

    This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food.

  18. Auditory and Visual Cues for Topic Maintenance with Persons Who Exhibit Dementia of Alzheimer's Type

    PubMed Central

    Teten, Amy F.; Dagenais, Paul A.; Friehe, Mary J.

    2015-01-01

    This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food. PMID:26171273

  19. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  20. Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders.

    PubMed

    Arab, Anas; Wojna-Pelczar, Anna; Khairnar, Amit; Szabó, Nikoletta; Ruda-Kucerova, Jana

    2018-05-01

    Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.