Science.gov

Sample records for neuronal nicotinic receptors

  1. Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes.

    PubMed

    Schilström, Björn; Rawal, Nina; Mameli-Engvall, Monica; Nomikos, George G; Svensson, Torgny H

    2003-03-01

    Burst firing of dopaminergic neurons has been found to represent a particularly effective means of increasing dopamine release in terminal areas as well as activating immediate early genes in dopaminoceptive cells. Spontaneous burst firing is largely controlled by the level of activation of NMDA receptors in the ventral tegmental area (VTA) as a consequence of glutamate released from afferents arising mainly in the prefrontal cortex. Nicotine has been found to effectively increase burst firing of dopaminergic cells. This effect of nicotine may be due to an alpha 7 nicotinic receptor-mediated presynaptic facilitation of glutamate release in the VTA. By the use of in-vivo single-cell recordings and immunohistochemistry we here evaluated the role of alpha 7 nicotinic receptors in nicotine-induced burst firing of dopamine cells in the VTA and the subsequent activation of immediate early genes in dopaminoceptive target areas. Nicotine (0.5 mg/kg s.c.) was found to increase firing rate and burst firing of dopaminergic neurons. In the presence of methyllycaconitine (MLA, 6.0 mg/kg i.p.) nicotine only increased firing rate. Moreover, in the presence of dihydro-beta-erythroidine (DH beta E, 1.0 mg/kg i.p.), an antagonist at non-alpha 7 nicotinic receptors, nicotine produced an increase in burst firing without increasing the firing rate. Nicotine also increased Fos-like immunoreactivity in dopamine target areas, an effect that was antagonized with MLA but not with DH beta E. Our data suggest that nicotine's augmenting effect on burst firing is, indeed, due to stimulation of alpha 7 nicotinic receptors whereas other nicotinic receptors seem to induce an increase in firing frequency.

  2. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    PubMed Central

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  3. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  4. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals. PMID:25231613

  5. Prenatal nicotine exposure alters the types of nicotinic receptors that facilitate excitatory inputs to cardiac vagal neurons.

    PubMed

    Huang, Zheng-Gui; Wang, Xin; Evans, Cory; Gold, Allison; Bouairi, Evguenia; Mendelowitz, David

    2004-10-01

    Nicotinic receptors play an important role in modulating the activity of parasympathetic cardiac vagal neurons in the medulla. Previous work has shown nicotine acts via at least three mechanisms to excite brain stem premotor cardiac vagal neurons. Nicotine evokes a direct increase in holding current and facilitates both the frequency and amplitude of glutamatergic neurotransmission to cardiac vagal neurons. This study tests whether these nicotinic receptor-mediated responses are endogenously active, whether alpha4beta2 and alpha7 nicotinic receptors are involved, and whether prenatal exposure to nicotine alters the magnitude of these responses and the types of nicotinic receptors involved. Application of neostigmine (10 microM) significantly increased the holding current, amplitude, and frequency of miniature excitatory postsynaptic current (mEPSC) glutamatergic events in cardiac vagal neurons. In unexposed animals, the nicotine-evoked facilitation of mEPSC frequency, but not mEPSC amplitude or holding current, was blocked by alpha-bungarotoxin (100 nM). Prenatal nicotine exposure significantly exaggerated and altered the types of nicotinic receptors involved in these responses. In prenatal nicotine-exposed animals, alpha-bungarotoxin only partially reduced the increase in mEPSC frequency. In addition, in prenatal nicotine-exposed animals, the increase in holding current was partially dependent on alpha-7 subunit-containing nicotinic receptors, in contrast to unexposed animals in which alpha-bungarotoxin had no effect. These results indicate prenatal nicotine exposure, one of the highest risk factors for sudden infant death syndrome (SIDS), exaggerates the responses and changes the types of nicotinic receptors involved in exciting premotor cardiac vagal neurons. These alterations could be responsible for the pronounced bradycardia that occurs during apnea in SIDS victims.

  6. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  7. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.

    PubMed

    Galindo-Charles, Luis; Hernandez-Lopez, Salvador; Galarraga, Elvira; Tapia, Dagoberto; Bargas, José; Garduño, Julieta; Frías-Dominguez, Carmen; Drucker-Colin, René; Mihailescu, Stefan

    2008-08-01

    Very few neurons in the telencephalon have been shown to express functional postsynaptic nicotinic acetylcholine receptors (nAChRs), among them, the noradrenergic and dopaminergic neurons. However, there is no evidence for postsynaptic nAChRs on serotonergic neurons. In this study, we asked if functional nAChRs are present in serotonergic (5-HT) and nonserotonergic (non-5-HT) neurons of the dorsal raphe nucleus (DRN). In rat midbrain slices, field stimulation at the tegmental pedunculopontine (PPT) nucleus evoked postsynaptic currents (eEPSCs) with different components in DRN neurons. After blocking the glutamatergic and GABAergic components, the remaining eEPSCs were blocked by mecamylamine and reduced by either the selective alpha7 nAChR antagonist methyllycaconitine (MLA) or the selective alpha4beta2 nAChR antagonist dihydro-beta-eritroidine (DHbetaE). Simultaneous addition of MLA and DHbetaE blocked all eEPSCs. Integrity of the PPT-DRN pathway was assessed by both anterograde biocytin tracing and antidromic stimulation from the DRN. Inward currents evoked by the direct application of acetylcholine (ACh), in the presence of atropine and tetrodotoxin, consisted of two kinetically different currents: one was blocked by MLA and the other by DHbetaE; in both 5-HT and non-5-HT DR neurons. Analysis of spontaneous (sEPSCs) and evoked (eEPSCs) synaptic events led to the conclusion that nAChRs were located at the postsynaptic membrane. The possible implications of these newly described nAChRs in various physiological processes and behavioral events, such as the wake-sleep cycle, are discussed. PMID:18512214

  8. Functional Upregulation of α4* Nicotinic Acetylcholine Receptors in VTA GABAergic Neurons Increases Sensitivity to Nicotine Reward.

    PubMed

    Ngolab, Jennifer; Liu, Liwang; Zhao-Shea, Rubing; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R

    2015-06-01

    Chronic nicotine exposure increases sensitivity to nicotine reward during a withdrawal period, which may facilitate relapse in abstinent smokers, yet the molecular neuroadaptation(s) that contribute to this phenomenon are unknown. Interestingly, chronic nicotine use induces functional upregulation of nicotinic acetylcholine receptors (nAChRs) in the mesocorticolimbic reward pathway potentially linking upregulation to increased drug sensitivity. In the ventral tegmental area (VTA), functional upregulation of nAChRs containing the α4 subunit (α4* nAChRs) is restricted to GABAergic neurons. To test the hypothesis that increased functional expression of α4* nAChRs in these neurons modulates nicotine reward behaviors, we engineered a Cre recombinase-dependent gene expression system to selectively express α4 nAChR subunits harboring a "gain-of-function" mutation [a leucine mutated to a serine residue at the 9' position (Leu9'Ser)] in VTA GABAergic neurons of adult mice. In mice expressing Leu9'Ser α4 nAChR subunits in VTA GABAergic neurons (Gad2(VTA):Leu9'Ser mice), subreward threshold doses of nicotine were sufficient to selectively activate VTA GABAergic neurons and elicit acute hypolocomotion, with subsequent nicotine exposures eliciting tolerance to this effect, compared to control animals. In the conditioned place preference procedure, nicotine was sufficient to condition a significant place preference in Gad2(VTA):Leu9'Ser mice at low nicotine doses that failed to condition control animals. Together, these data indicate that functional upregulation of α4* nAChRs in VTA GABAergic neurons confers increased sensitivity to nicotine reward and points to nAChR subtypes specifically expressed in GABAergic VTA neurons as molecular targets for smoking cessation therapeutics.

  9. Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors.

    PubMed

    Hernandez, S C; Bertolino, M; Xiao, Y; Pringle, K E; Caruso, F S; Kellar, K J

    2000-06-01

    Dextromethorphan (DM), a structural analog of morphine and codeine, has been widely used as a cough suppressant for more than 40 years. DM is not itself a potent analgesic, but it has been reported to enhance analgesia produced by morphine and nonsteroidal anti-inflammatory drugs. Although DM is considered to be nonaddictive, it has been reported to reduce morphine tolerance in rats and to be useful in helping addicted subjects to withdraw from heroin. Here we studied the effects of DM on neuronal nicotinic receptors stably expressed in human embryonic kidney cells. Studies were carried out to examine the effects of DM on nicotine-stimulated whole cell currents and nicotine-stimulated (86)Rb(+) efflux. We found that both DM and its metabolite dextrorphan block nicotinic receptor function in a noncompetitive but reversible manner, suggesting that both drugs block the receptor channel. Consistent with blockade of the receptor channel, neither drug competed for the nicotinic agonist binding sites labeled by [(3)H]epibatidine. Although DM is approximately 9-fold less potent than the widely used noncompetitive nicotinic antagonist mecamylamine in blocking nicotinic receptor function, the block by DM appears to reverse more slowly than that by mecamylamine. These data indicate that DM is a useful antagonist for studying nicotinic receptor function and suggest that it might prove to be a clinically useful neuronal nicotinic receptor antagonist, possibly helpful as an aid for helping people addicted to nicotine to refrain from smoking, as well as in other conditions where blockade of neuronal nicotinic receptors would be helpful. PMID:10869398

  10. Conditional Knockout of NMDA Receptors in Dopamine Neurons Prevents Nicotine-Conditioned Place Preference

    PubMed Central

    Phillip Wang, Lei; Li, Fei; Shen, Xiaoming; Tsien, Joe Z.

    2010-01-01

    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction. PMID:20062537

  11. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors

    PubMed Central

    Kang, Lily; Tian, Michael K.; Bailey, Craig D. C.; Lambe, Evelyn K.

    2015-01-01

    Prefrontal layer 6 (L6) pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are “long” (reaching to the pial surface) vs. “short” (terminating in the deep layers, as in primary cortical regions). This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure) have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons) or within the deep layers (short neurons), and nicotinic perturbations differently alter spine density within each subgroup. PMID:26500498

  12. Evaluation of benzyltetrahydroisoquinolines as ligands for neuronal nicotinic acetylcholine receptors

    PubMed Central

    Exley, Richard; Iturriaga-Vásquez, Patricio; Lukas, Ronald J; Sher, Emanuele; Cassels, Bruce K; Bermudez, Isabel

    2005-01-01

    Effects of derivatives of coclaurine (C), which mimic the ‘eastern' or the nonquaternary halves of the alkaloids tetrandrine or d-tubocurarine, respectively, both of which are inhibitors of nicotinic acetylcholine receptors (nACh), were examined on recombinant, human α7, α4β2 and α4β4 nACh receptors expressed in Xenopus oocytes and clonal cell lines using two-electrode voltage clamping and radioligand binding techniques. In this limited series, Cs have higher affinity and are most potent at α4 subunit-containing-nACh receptors and least potent at homomeric α7 receptors, and this trend is very marked for the N-unsubstituted C and its O,O′-bisbenzyl derivative. 7-O-Benzyl-N-methylcoclaurine (BBCM) and its 12-O-methyl derivative showed the highest affinities and potencies at all three receptor subtypes, and this suggests that lipophilicity at C7 and/or C12 increases potency. Laudanosine and armepavine (A) were noncompetitive and voltage-dependent inhibitors of α7, α4β2 or α4β4 receptors, but the bulkier C7-benzylated 7BNMC (7-O-benzyl-N-methylcoclaurine) and 7B12MNMC (7-O-benzyl-N,12-O-dimethyl coclaurine) were voltage-independent, noncompetitive inhibitors of nACh receptors. Voltage-dependence was also lost on going from A to its N-ethyl analogue. These studies suggest that C derivatives may be useful tools for studies characterising the antagonist and ion channel sites on human α7, α4β2 or α4β4 nACh receptors and for revealing structure–function relationships for nACh receptor antagonists. PMID:15980871

  13. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  14. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  15. Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure.

    PubMed

    Kawai, H; Berg, D K

    2001-09-01

    Chronic exposure to (-)nicotine has been widely reported to up-regulate nicotinic acetylcholine receptors on neurons and induce long-term inactivation as a possible cause. Nicotinic receptors containing alpha 7 subunits are among the most abundant in brain and influence diverse cellular events. Whole-cell patch clamp recording from embryonic rat cortical neurons in culture was used to identify responses from alpha 7-containing receptors. Immunochemical staining for glutamic acid decarboxylase (GAD) indicated that both GABAergic and non-GABAergic neurons expressed the receptors. Exposure to micromolar concentrations of nicotine for 1-4 days caused up-regulation of the receptors as measured by [alpha-(125)I]-bungarotoxin binding. Carbachol produced the same up-regulation, and cell counts demonstrated that neuronal survival was unchanged. The up-regulation was accompanied by an increased whole-cell response; no evidence was found for long-lasting inactivation. Autonomic alpha 7-containing receptors also avoided long-lasting inactivation, even though the receptors were down-regulated by nicotine. Blocking protein synthesis or protein glycosylation prevented receptor up-regulation on cortical neurons, suggesting that new synthesis was required. No evidence was found for a pre-existing intracellular pool that supplied receptors to the surface. The results indicate that alpha 7-containing receptors differ from other receptor subtypes in their regulation by nicotine and demonstrate further that long-lasting inactivation is not an obligatory requirement for up-regulation in this case.

  16. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

    PubMed Central

    Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun

    2015-01-01

    Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265

  17. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  18. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    PubMed

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R; Timperley, Christopher M; Bird, Michael; Green, A Christopher; Chad, John E; Worek, Franz; Tattersall, John E H

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  19. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine

    PubMed Central

    Dani, John A.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the “Cys-loop” superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain. PMID:26472524

  20. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  1. Differential expression of the beta4 neuronal nicotinic receptor subunit affects tolerance development and nicotinic binding sites following chronic nicotine treatment

    PubMed Central

    Meyers, Erin E.; Loetz, Esteban C.; Marks, Michael J.

    2015-01-01

    The role of neuronal nicotinic acetylcholine receptors (nAChR) containing the β4 subunit in tolerance development and nicotinic binding site levels following chronic nicotine treatment was investigated. Mice differing in expression of the β4 nAChR subunit [wild-type (β4++), heterozygote (β4+−) and null mutant (β4−−)] were chronically treated for 10 days with nicotine (0, 0.5, 1.0, 2.0 or 4.0 mg/kg/hr) by constant intravenous infusion. Chronic nicotine treatment elicited dose-dependent tolerance development. β4−− mice developed significantly more tolerance than either β4++ or β4+− mice which was most evident following treatment with 4.0 mg/kg/hr nicotine. Subsets of [125I]-epibatidine binding were measured in several brain regions. Deletion of the β4 subunit had little effect on initial levels of cytisine-sensitive [125I]-epibatidine binding (primarily α4β2-nAChR sites) or their response (generally increased binding) to chronic nicotine treatment. In contrast, β4 gene-dose-dependent decreases in expression 5IA-85380 resistant [125I]-epibatidine binding sites (primarily β4*-nAChR) were observed. While these β4*nAChR sites were generally resistant to regulation by chronic nicotine treatment, significant increases in binding were noted for habenula and hindbrain. Comparison of previously published tolerance development in β2−− mice (less tolerance) to that of β4−− mice (more tolerance) supports a differential role for these receptor subtypes in regulating tolerance following chronic nicotine treatment. PMID:25560939

  2. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake.

    PubMed

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  3. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake

    PubMed Central

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L.; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E.

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  4. Neuronal-type alpha-bungarotoxin receptors and the alpha 5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines.

    PubMed Central

    Chini, B; Clementi, F; Hukovic, N; Sher, E

    1992-01-01

    alpha-Bungarotoxin (alpha Bgtx) is a toxin known to interact with muscle nicotinic receptors and with some neuronal nicotinic receptors. We show that alpha Bgtx binding sites are also expressed in nonmuscle and nonneuronal human cells, including small cell lung carcinoma and several epithelial cell lines. These receptors are immunologically related to the alpha Bgtx receptors of unknown function described in the nervous system and in the IMR32 neuroblastoma cell line and are distinct from muscle nicotinic receptors. We have also cloned from IMR32 cells the human alpha 5-nicotinic receptor subunit, which is supposed to participate in the formation of alpha Bgtx receptors. Transcripts corresponding to the alpha 5-subunit gene were found not only in neuroblastoma cells but also in all the cell lines expressing alpha Bgtx receptors, with the exception of the TE671 cell line, whose nicotinic receptor subunits are of the muscle type. We conclude that both alpha Bgtx receptors and the alpha 5-nicotinic subunit gene are not neuron-specific, as previously thought, but are expressed in a number of human cell lines of various origin. Images PMID:1542648

  5. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence.

    PubMed

    Wu, Jie; Gao, Ming; Taylor, Devin H

    2014-03-01

    Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Alcoholism is a serious public health problem and has been identified as the third major cause of preventable mortality in the world. Worldwide, about 2 billion people consume alcohol, with 76.3 million having diagnosable alcohol use disorders. Alcohol is currently responsible for the death of 4% of adults worldwide (about 2.5 million deaths each year), and this number will be significantly increased by 2020 unless effective action is taken. Alcohol is the most commonly abused substance by humans. Ethanol (EtOH) is the intoxicating agent in alcoholic drinks that can lead to abuse and dependence. Although it has been extensively studied, the mechanisms of alcohol reward and dependence are still poorly understood. The major reason is that, unlike other addictive drugs (eg, morphine, cocaine or nicotine) that have specific molecular targets, EtOH affects much wider neuronal functions. These functions include phospholipid membranes, various ion channels and receptors, synaptic and network functions, and intracellular signaling molecules. The major targets in the brain that mediate EtOH's effects remain unclear. This knowledge gap results in a therapeutic barrier in the treatment of alcoholism. Interestingly, alcohol and nicotine are often co-abused, which suggests that neuronal nicotinic acetylcholine receptors (nAChRs), the molecular targets for nicotine, may also contribute to alcohol's abusive properties. Here, we briefly summarize recent lines of evidence showing how EtOH modulates nAChRs in the mesolimbic pathway, which provides a perspective that nAChRs are important targets mediating alcohol abuse.

  6. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    PubMed Central

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects. PMID:24896614

  7. Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment.

    PubMed

    Mucchietto, Vanessa; Crespi, Arianna; Fasoli, Francesca; Clementi, Francesco; Gotti, Cecilia

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke. PMID:26845123

  8. Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-Expressing GABAergic Neurons in the Interpeduncular Nucleus

    PubMed Central

    Hsu, Yun-Wei A.; Tempest, Lynne; Quina, Lely A.; Wei, Aguan D.; Zeng, Hongkui

    2013-01-01

    The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an “accessory” subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5GFP, to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5GFP is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5GFP is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5GFP neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5GFP neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5GFP IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5GFP neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714

  9. Medial habenula output circuit mediated by α5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus.

    PubMed

    Hsu, Yun-Wei A; Tempest, Lynne; Quina, Lely A; Wei, Aguan D; Zeng, Hongkui; Turner, Eric E

    2013-11-13

    The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an "accessory" subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5(GFP), to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5(GFP) is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5(GFP) is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5(GFP) neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5(GFP) neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5(GFP) IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5(GFP) neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714

  10. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  11. Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation.

    PubMed

    Hans, M; Wilhelm, M; Swandulla, D

    2012-06-01

    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (-) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC₅₀ of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC₅₀ value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs.

  12. Neuregulin 1 as an endogenous regulator of nicotinic acetylcholine receptors in adult major pelvic ganglion neurons.

    PubMed

    Kim, Han-Gyu; Cho, Sung-Min; Lee, Choong-Ku; Jeong, Seong-Woo

    2015-08-01

    We investigated whether endogenous neuregulin 1 (NRG1) is released in a soluble form (called sNRG1) and upregulates expression of nicotinic acetylcholine receptor (nAChR) in autonomic major pelvic ganglion (MPG) neurons of adult rats. To elicit the release of sNRG1, either the hypogastric nerve or the pelvic nerve was electrically stimulated. Then, the MPG-conditioned medium (CM) was subjected to western blotting using an antibody directed against the N-terminal ectodomain of NRG1. Both sympathetic and parasympathetic nerve activation elicited the release of sNRG1 from MPG neurons in a frequency-dependent manner. The sNRG1 release was also induced by treatment of MPG neurons with either high KCl or neurotrophic factors. The biological activity of the released sNRG1 was detected by tyrosine phosphorylation (p185) of the ErbB2 receptors in MPG neurons. When MPG neurons were incubated for 6 h in the CM, the protein level of the nAChR α3 subunit and ACh-induced current (IACh) density were significantly increased. The CM-induced changes in IACh was abolished by a selective ErbB2 tyrosine kinase inhibitor. Taken together, these data suggest that NRG1 functions as an endogenous regulator of nAChR expression in adult MPG neurons.

  13. Cloning and mapping of the mouse {alpha}7-neuronal nicotinic acetylcholine receptor

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1995-03-20

    We report the isolation of cDNA clones for the mouse {alpha}7 neuronal nicotinic acetylcholine receptor subunit (gene symbol Acra7), the only nicotinic receptor subunit known to bind a-bungarotoxin in mammalian brain. This gene may have relevance to nicotine sensitivity and to some electrophysiologic findings in schizophrenia. The mouse {alpha}7 subunit gene encodes a protein of 502 amino acids with substantial identity to the rat (99.6%), human (92.8%), and chicken (87.5%) amino acid sequences. The {alpha}7 gene was mapped to mouse chromosome 7 near the p locus with the following gene order from proximal to distal: Myod1-3.5 {+-}1.7 cM-Gas2-0.9 cM {+-} 0.9 cM-D7Mit70-1.8 {+-} 1.2 cM- Acra7-4.4 {+-}1.0 cM-Hras1-ps11/Igf1r/Snrp2a. The human gene was confirmed to map to the homologous region of human chromosome 15q13-q14. 26 refs., 3 figs.

  14. Autoradiographic localization of putative nicotinic receptors in the rat brain using sup 125 I-neuronal bungarotoxin

    SciTech Connect

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E. )

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits.

  15. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores. PMID:23100436

  16. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  17. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  18. NEURONAL NICOTINIC RECEPTOR AGONISTS FOR THE TREATMENT OF ATTENTION-DEFICIT/HYPERACTIVITY DISORDER: FOCUS ON COGNITION

    PubMed Central

    Wilens, Timothy E.; Decker, Michael W.

    2010-01-01

    Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioral disorder in children and adolescents, and in about half of these patients, significant symptomology continues into adulthood. Although impulsivity and hyperactivity are the most salient features of ADHD, cognitive deficits, particularly impairments in attention and executive function, are an important component, particularly in adolescents and adults, with over 90% of adults seeking treatment for ADHD manifesting cognitive dysfunction. Currently available medications treat the core ADHD symptoms but typically do not adequately address cognitive aspects of ADHD, underscoring the need for new therapeutics. Dopamine and norepinephrine are hypothesized to be particularly important in ADHD, but there is emerging evidence that cholinergic neurotransmission, particularly involving neuronal nicotinic acetylcholine receptors (nAChRs), may play a role in the pathophysiology of ADHD. Nicotine has demonstrated procognitive effects in both humans and experimental animals and has produced signals of efficacy in small proof-of-concept adult ADHD trials. Although adverse effects associated with nicotine preclude its development as a therapeutic, a number of novel nAChR agonists with improved safety/tolerability profiles have been discovered. Of these, ABT-418 and ABT-089 have both demonstrated signals of efficacy in adults with ADHD. Notably, tolerability issues that might be expected of a nAChR agonist, such as nausea and emesis, were not observed at efficacious doses of ABT-089. Further understanding of the effects of novel neuronal nAChR agonists on specific aspects of cognitive functioning in ADHD is required to assess the full potential of this approach. PMID:17689498

  19. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases.

    PubMed

    Wang, Kan; Hackett, John T; Cox, Michael E; Van Hoek, Monique; Lindstrom, Jon M; Parsons, Sarah J

    2004-03-01

    Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.

  20. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  1. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new opportunities.

    PubMed

    Moaddel, Ruin; Jozwiak, Krzysztof; Wainer, Irving W

    2007-09-01

    Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed. PMID:17238157

  2. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  3. Heterogeneity of neuronal nicotinic acetylcholine receptors in 5-HT-containing chemoreceptor cells of the chicken aorta

    PubMed Central

    Ito, Shigeo; Ohta, Toshio; Kasai, Yohei; Yonekubo, Kazuki; Nakazato, Yoshikazu

    2001-01-01

    The effects of nicotinic agonists and antagonists on whole-cell currents and 5-hydroxytryptamine (5-HT) release were studied in order to characterize nicotinic ACh receptors on the 5-HT-containing chemoreceptor cells of the chicken aorta.ACh, nicotine and dimethylphenylpiperazinium (DMPP) evoked concentration-dependent inward currents accompanied by increases in current noise at a holding potential of −70 mV. The peak amplitude of the current response to DMPP was 50% larger than that to either nicotine or ACh.Hexamethonium, α – bungarotoxin (α – BTX) and methyllycaconitine decreased nicotine-induced inward currents in a concentration-dependent manner. Although hexamethonium (0.1 mM) abolished the current response to nicotine (30 μM), a high concentration (1 μM) of α – BTX decreased it only by about 30% of the control response. Methyllycaconitine (0.1 μM) decreased the current response to nicotine to the same extent as did α – BTX whilst a high concentration (10 μM) abolished the response.ACh, nicotine and DMPP caused concentration-dependent increases in 5-HT output from the thoracic aorta which effect was blocked by hexamethonium (0.1 mM). Pre-treatment with α – BTX (1 μM) for 30 min reduced the output of 5-HT induced by ACh to 70% of the control response.It is suggested that neuronal nicotinic ACh receptors, sensitive and insensitive to α – BTX, are present on the chemoreceptor cells of the chicken aorta, the activation of which causes the release of 5-HT. PMID:11309266

  4. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells.

    PubMed

    Carlisle, Diane L; Liu, Xuwan; Hopkins, Toni M; Swick, Michelle C; Dhir, Rajiv; Siegfried, Jill M

    2007-01-01

    Nicotinic acetylcholine receptors (nAChR) are expressed on non-neuronal cell types, including normal bronchial epithelial cells, and nicotine has been reported to cause Akt activation in cultured normal airway cells. This study documents mRNA and protein expression of subunits known to form a muscle-type nAChR in non-small cell lung cancer (NSCLC) cell lines. In one NSCLC examined, mRNA and protein for a heteropentamer neuronal-type alpha3beta2 nAChR was detected in addition to a muscle-type receptor. Protein for the alpha5 nAChR was also detected in NSCLC cells. Although, mRNA for the alpha7 nAChR subunit was observed in all cell lines, alpha7 protein was not detectable by immunoblot in NSCLC cell extracts. Immunohistochemistry (IHC) of NSCLC primary tissues from 18 patients demonstrated protein expression of nAChR alpha1 and beta1 subunits, but not alpha7 subunit, in lung tumors, indicating preferential expression of the muscle-type receptor. In addition, the beta1 subunit showed significantly increased expression in lung tumors as compared to non-tumor bronchial tissue. The alpha1 subunit also showed evidence of high expression in lung tumors. Nicotine at a concentration of 10 microM caused phosphorylation of mitogen-activated protein kinase (MAPK) (p44/42) that could be inhibited using nAChR antagonists. Inhibition was observed at 100 nM alpha-bungarotoxin (alpha-BTX) or 10 microM hexamethonium (HEX); maximal inhibition was achieved using a combination of alpha-BTX and HEX. Akt was also phosphorylated in NSCLC cells after exposure to nicotine; this effect was inhibited by the PI3K inhibitor LY294002 and antagonists to the neuronal-type nAChR, but not to the muscle-type receptor. Nicotine triggered influx of calcium in the 273T NSCLC cell line, suggesting that L-type calcium channels were activated. 273T cells also showed greater activation of p44/42 MAPK than of Akt in response to nicotine. Cultures treated with nicotine and the EGFR tyrosine kinase inhibitor

  5. The Ubiquitin–Proteasome System Regulates the Stability of Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Rezvani, Khosrow; Teng, Yanfen

    2010-01-01

    Ubiquitination is a key event for protein degradation by the proteasome system, membrane protein internalization, and protein trafficking among cellular compartments. Few data are available on the role of the ubiquitin–proteasome system (UPS) in the trafficking of neuronal nicotinic acetylcholine receptors (nAChRs). Experiments conducted in neuron-like differentiated rat pheochromocytoma cells (PC12 cells) show that the α3, β2, and β4 nAChR subunits are ubiquitinated and that their ubiquitination is necessary for degradation. A 24-h treatment with the proteasome inhibitor PS-341 increased the total levels of α3 and the two β subunits in both whole cell lysates and fractions enriched for the ER/Golgi compartment. nAChR subunit upregulation was also detected in plasma membrane-enriched fractions. Inhibition of the lysosomal degradation machinery by E-64 had a significantly smaller effect on nAChR turnover. The present data, together with previous results showing that the α7 nAChR subunit is a target of the UPS, point to a prominent role of the proteasome in nAChR trafficking. PMID:19693707

  6. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  7. Nicotine cue: lack of effect of the alpha 7 nicotinic receptor antagonist methyllycaconitine.

    PubMed

    Brioni, J D; Kim, D J; O'Neill, A B

    1996-04-22

    To assess the role of the alpha 7 neuronal nicotinic acetylcholine receptor in the discriminative stimulus properties of (-)-nicotine, this study investigated the ability of the alpha 7 receptor antagonist methyllycaconitine to modulate the nicotine cue. In rats trained to discriminate (-)-nicotine from saline, intraperitoneal injections of methyllycaconitine neither induced nor blocked the nicotine cue. Intracerebroventricular administration of methyllycaconitine, neither potentiated nor blocked the effect of (-)-nicotine. On the other hand, intracerebroventricular injections of mecamylamine blocked the nicotine cue. The available evidence indicate that the nicotinic acetylcholine receptors in the brain blocked by methyllycaconitine, those presumably containing alpha 7 subunits, do not participate in the expression of the discriminative stimulus properties of (-)-nicotine.

  8. Nicotinic receptors and attention.

    PubMed

    Hahn, Britta

    2015-01-01

    Facilitation of different attentional functions by nicotinic acetylcholine receptor (nAChR) agonists may be of therapeutic potential in disease conditions such as Alzheimer's disease or schizophrenia. For this reason, the neuronal mechanisms underlying these effects have been the focus of research in humans and in preclinical models. Attention-enhancing effects of the nonselective nAChR agonist nicotine can be observed in human nonsmokers and in laboratory animals, suggesting that benefits go beyond a reversal of withdrawal deficits in smokers. The ultimate aim is to develop compounds acting with greater selectivity than nicotine at a subset of nAChRs, with an effects profile narrowly matching the targeted cognitive deficits and minimizing unwanted effects. To date, compounds tested clinically target the nAChR subtypes most abundant in the brain. To help pinpoint more selectively expressed subtypes critical for attention, studies have aimed at identifying the secondary neurotransmitter systems whose stimulation mediates the attention-enhancing properties of nicotine. Evidence indicates that noradrenaline and glutamate, but not dopamine release, are critical mediators. Thus, attention-enhancing nAChR agents could spare the system central to nicotine dependence. Neuroimaging studies suggest that nAChR agonists act on a variety of brain systems by enhancing activation, reducing activation, and enhancing deactivation by attention tasks. This supports the notion that effects on different attentional functions may be mediated by distinct central mechanisms, consistent with the fact that nAChRs interact with a multitude of brain sites and neurotransmitter systems. The challenge will be to achieve the optimal tone at the right subset of nAChR subtypes to modulate specific attentional functions, employing not just direct agonist properties, but also positive allosteric modulation and low-dose antagonism.

  9. Prenatal nicotine exposure alters the nicotinic receptor subtypes that modulate excitation of parasympathetic cardiac neurons in the nucleus ambiguus from primarily alpha3beta2 and/or alpha6betaX to alpha3beta4.

    PubMed

    Kamendi, Harriet; Stephens, Christopher; Dergacheva, Olga; Wang, Xin; Huang, Zheng-Gui; Bouairi, Evguenia; Gorini, Christopher; McIntosh, J Michael; Mendelowitz, David

    2006-07-01

    Nicotinic receptors play an essential role in central cardiorespiratory function, however, the types of nicotinic receptors responsible for activating cardiac vagal neurons in the nucleus ambiguus that control heart rate are unknown. This study tests whether alpha-conotoxin MII and alpha-conotoxin AuIB sensitive nicotinic receptors are involved in augmentation of glutamatergic neurotransmission and changes in holding current in cardiac vagal neurons, and whether exposure to nicotine in the prenatal period alters these responses. The nicotinic agonist cytisine significantly increased the holding current and amplitude of glutamatergic mEPSCs. In unexposed animals alpha-conotoxin MII (100nM) significantly reduced the increase in mEPSC amplitude and change in holding current evoked by cytisine. However, in animals prenatally exposed to nicotine, alpha-conotoxin MII blunted but did not block the increase in mEPSC amplitude but blocked the increase in holding current evoked by cytisine. In unexposed animals, alpha-conotoxin AuIB (10microM) blocked the cytisine evoked increase in mEPSC amplitude and inhibited but did not abolish the increase in holding current. In contrast, in animals exposed to nicotine, alpha-conotoxin AuIB blunted the increase in mEPSC amplitude, and completely abolished the cytisine evoked increase in holding current. These data demonstrate that the prenatal nicotine exposure alters the nicotinic receptors involved in excitation of cardiac vagal neurons.

  10. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    PubMed

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  11. Neuronal nicotinic receptor agonists: a multi-approach development of the pharmacophore.

    PubMed

    Nicolotti, O; Pellegrini-Calace, M; Carrieri, A; Altomare, C; Centeno, N B; Sanz, F; Carotti, A

    2001-09-01

    Based on the results obtained with different automated computational approaches as applied to the study of eleven high-affinity agonists of the neuronal nicotine acetylcholine receptor (nAChR), belonging to different chemical classes, new relevant features were detected which complement the existing pharmacophores. Convergent results from DISCO (Distance Comparison), QXP (Quick Explore), Catalyst/HipHop, and MIPSIM (Molecular Interaction Potential Similarity) allowed us to identify and locate, in a well defined spatial arrangement, three geometrically independent key structural features: (i) a positively charged nitrogen atom for ionic or hydrogen bond interactions, (ii) a lone pair of the pyridine nitrogen or a specific lone pair of a carbonyl oxygen, as a hydrogen bond acceptor, and (iii) a centre of a hydrophobic area generally occupied by aliphatic cycles. The pharmacophore presented herein, along with predictive 2D and 3D QSAR models recently developed in our group, could represent valuable computational tools for the design of new nAChR agonists having therapeutical potential. PMID:11776295

  12. Neuronal nicotinic receptor agonists: a multi-approach development of the pharmacophore.

    PubMed

    Nicolotti, O; Pellegrini-Calace, M; Carrieri, A; Altomare, C; Centeno, N B; Sanz, F; Carotti, A

    2001-09-01

    Based on the results obtained with different automated computational approaches as applied to the study of eleven high-affinity agonists of the neuronal nicotine acetylcholine receptor (nAChR), belonging to different chemical classes, new relevant features were detected which complement the existing pharmacophores. Convergent results from DISCO (Distance Comparison), QXP (Quick Explore), Catalyst/HipHop, and MIPSIM (Molecular Interaction Potential Similarity) allowed us to identify and locate, in a well defined spatial arrangement, three geometrically independent key structural features: (i) a positively charged nitrogen atom for ionic or hydrogen bond interactions, (ii) a lone pair of the pyridine nitrogen or a specific lone pair of a carbonyl oxygen, as a hydrogen bond acceptor, and (iii) a centre of a hydrophobic area generally occupied by aliphatic cycles. The pharmacophore presented herein, along with predictive 2D and 3D QSAR models recently developed in our group, could represent valuable computational tools for the design of new nAChR agonists having therapeutical potential.

  13. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity

    PubMed Central

    Bloem, Bernard; Poorthuis, Rogier B.; Mansvelder, Huibert D.

    2014-01-01

    Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior. PMID:24653678

  14. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds.

    PubMed

    Wilking, Jennifer A; Stitzel, Jerry A

    2015-09-01

    Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the α4 nAChR subunit and Chrna7, the gene that encodes the α7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498233

  15. Neuronal specificity of the alpha 7 nicotinic acetylcholine receptor promoter develops during morphogenesis of the central nervous system.

    PubMed Central

    Matter-Sadzinski, L; Hernandez, M C; Roztocil, T; Ballivet, M; Matter, J M

    1992-01-01

    A transient transfection assay has been developed to analyse promoter activity in neuronal cells freshly dissociated from the chick central nervous system. The assay enabled us to identify cis-acting regulatory elements within the 5'-flanking region of the alpha 7 nicotinic acetylcholine receptor gene. In differentiated retina, regulatory elements direct reporter gene expression to a small subset of neurons which has been identified as ganglion cells, i.e. to the population of neurons in which alpha 7 transcripts were localized by in situ hybridization. However, these promoter elements exhibit ubiquitous activity in undifferentiated neural cells and in mesodermal stem cells. Our study supports the idea that alpha 7 regulatory elements acquire their neuronal specificity in the course of embryogenesis. Images PMID:1425587

  16. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells.

    PubMed

    Oikawa, Shino; Mano, Asuka; Iketani, Mitsue; Kakinuma, Yoshihiko

    2015-11-01

    We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis. PMID:25979761

  17. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models.

    PubMed

    Nicolotti, Orazio; Altomare, Cosimo; Pellegrini-Calace, Marialuisa; Carotti, Angelo

    2004-01-01

    Neuronal nicotinic acetylcholine ion channel receptors (nAChRs) exist as several subtypes and are involved in a variety of functions and disorders of the central nervous system (CNS), such as Alzheimer's and Parkinson's diseases. The lack of reliable information on the 3D structure of nAChRs prompted us to focus efforts on pharmacophore and structure-affinity relationships (SAFIRs). The use of DISCO (DIStance COmparison) and Catalyst/HipHop led to the formulation of a pharmacophore that is made of three geometrically unrelated features: (i) an ammonium head involved in coulombic and/or H-bond interactions, (ii) a lone pair of a pyridine nitrogen or a carbonyl oxygen, as H-bond acceptor site, and (iii) a hydrophobic molecular region generally constituted by aliphatic cycles. The quantitative SAFIR (QSAFIR) study was carried out on about three hundred nicotinoid agonists, and coherent results were obtained from classical Hansch-type approach, 3D QSAFIRs, based on Comparative Molecular Field Analysis (CoMFA), and trade-off models generated by Multi-objective Genetic QSAR (MoQSAR), a novel evolutionary software that makes use of Genetic Programming (GP) and multi-objective optimization (MO). Within each congeneric series, Hansch-type equations revealed detrimental steric effects as the major factors modulating the receptor affinity, whereas CoMFA allowed us to merge progressively single-class models in a more global one, whose robustness was supported by crossvalidation, high prediction statistics and satisfactory predictions of the affinity data of a true external ligand set (r(2)(pred) = 0.796). Next, MoQSAR was used to analyze a data set of 58 highly active nicotinoids characterized by 56 descriptors, that are log P, MR and 54 low inter-correlated WHIM (Weighted Holistic Invariant Molecular) indices. Equivalent QSAFIR models, that represent different compromises between structural model complexity, fitting and internal model complexity, were found. Our attention was

  18. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models.

    PubMed

    Nicolotti, Orazio; Altomare, Cosimo; Pellegrini-Calace, Marialuisa; Carotti, Angelo

    2004-01-01

    Neuronal nicotinic acetylcholine ion channel receptors (nAChRs) exist as several subtypes and are involved in a variety of functions and disorders of the central nervous system (CNS), such as Alzheimer's and Parkinson's diseases. The lack of reliable information on the 3D structure of nAChRs prompted us to focus efforts on pharmacophore and structure-affinity relationships (SAFIRs). The use of DISCO (DIStance COmparison) and Catalyst/HipHop led to the formulation of a pharmacophore that is made of three geometrically unrelated features: (i) an ammonium head involved in coulombic and/or H-bond interactions, (ii) a lone pair of a pyridine nitrogen or a carbonyl oxygen, as H-bond acceptor site, and (iii) a hydrophobic molecular region generally constituted by aliphatic cycles. The quantitative SAFIR (QSAFIR) study was carried out on about three hundred nicotinoid agonists, and coherent results were obtained from classical Hansch-type approach, 3D QSAFIRs, based on Comparative Molecular Field Analysis (CoMFA), and trade-off models generated by Multi-objective Genetic QSAR (MoQSAR), a novel evolutionary software that makes use of Genetic Programming (GP) and multi-objective optimization (MO). Within each congeneric series, Hansch-type equations revealed detrimental steric effects as the major factors modulating the receptor affinity, whereas CoMFA allowed us to merge progressively single-class models in a more global one, whose robustness was supported by crossvalidation, high prediction statistics and satisfactory predictions of the affinity data of a true external ligand set (r(2)(pred) = 0.796). Next, MoQSAR was used to analyze a data set of 58 highly active nicotinoids characterized by 56 descriptors, that are log P, MR and 54 low inter-correlated WHIM (Weighted Holistic Invariant Molecular) indices. Equivalent QSAFIR models, that represent different compromises between structural model complexity, fitting and internal model complexity, were found. Our attention was

  19. Selective α4β2 nicotinic acetylcholine receptor agonists target epigenetic mechanisms in cortical GABAergic neurons.

    PubMed

    Maloku, Ekrem; Kadriu, Bashkim; Zhubi, Adrian; Dong, Erbo; Pibiri, Fabio; Satta, Rosalba; Guidotti, Alessandro

    2011-06-01

    Nicotine improves cognitive performance and attention in both experimental animals and in human subjects, including patients affected by neuropsychiatric disorders. However, the specific molecular mechanisms underlying nicotine-induced behavioral changes remain unclear. We have recently shown in mice that repeated injections of nicotine, which achieve plasma concentrations comparable to those reported in high cigarette smokers, result in an epigenetically induced increase of glutamic acid decarboxylase 67 (GAD(67)) expression. Here we explored the impact of synthetic α(4)β(2) and α(7) nAChR agonists on GABAergic epigenetic parameters. Varenicline (VAR), a high-affinity partial agonist at α(4)β(2) and a lower affinity full agonist at α(7) neuronal nAChR, injected in doses of 1-5 mg/kg/s.c. twice daily for 5 days, elicited a 30-40% decrease of cortical DNA methyltransferase (DNMT)1 mRNA and an increased expression of GAD(67) mRNA and protein. This upregulation of GAD(67) was abolished by the nAChR antagonist mecamylamine. Furthermore, the level of MeCP(2) binding to GAD(67) promoters was significantly reduced following VAR administration. This effect was abolished when VAR was administered with mecamylamine. Similar effects on cortical DNMT1 and GAD(67) expression were obtained after administration of A-85380, an agonist that binds to α(4)β(2) but has negligible affinity for α(3)β(4) or α(7) subtypes containing nAChR. In contrast, PNU-282987, an agonist of the homomeric α(7) nAChR, failed to decrease cortical DNMT1 mRNA or to induce GAD(67) expression. The present study suggests that the α(4)β(2) nAChR agonists may be better suited to control the epigenetic alterations of GABAergic neurons in schizophrenia than the α(7) nAChR agonists.

  20. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors.

    PubMed

    Melis, Miriam; Scheggi, Simona; Carta, Gianfranca; Madeddu, Camilla; Lecca, Salvatore; Luchicchi, Antonio; Cadeddu, Francesca; Frau, Roberto; Fattore, Liana; Fadda, Paola; Ennas, M Grazia; Castelli, M Paola; Fratta, Walter; Schilstrom, Bjorn; Banni, Sebastiano; De Montis, M Graziella; Pistis, Marco

    2013-04-01

    Ventral tegmental area dopamine neurons control reward-driven learning, and their dysregulation can lead to psychiatric disorders. Tonic and phasic activity of these dopaminergic neurons depends on cholinergic tone and activation of nicotinic acetylcholine receptors (nAChRs), particularly those containing the β2 subunit (β2*-nAChRs). Nuclear peroxisome proliferator-activated receptors type-α (PPARα) tonically regulate β2*-nAChRs and thereby control dopamine neuron firing activity. However, it is unknown how and when PPARα endogenous ligands are synthesized by dopamine cells. Using ex vivo and in vivo electrophysiological techniques combined with biochemical and behavioral analysis, we show that activation of α7-nAChRs increases in the rat VTA both the tyrosine phosphorylation of the β2 subunit of nAChRs and the levels of two PPARα endogenous ligands in a Ca(2+)-dependent manner. Accordingly, in vivo production of endogenous PPARα ligands, triggered by α7-nAChR activation, blocks in rats nicotine-induced increased firing activity of dopamine neurons and displays antidepressant-like properties. These data demonstrate that endogenous PPARα ligands are effectors of α7-nAChRs and that their neuromodulatory properties depend on phosphorylation of β2*-nAChRs on VTA dopamine cells. This reveals an autoinhibitory mechanism aimed at reducing dopamine cell overexcitation engaged during hypercholinergic drive. Our results unveil important physiological functions of nAChR/PPARα signaling in dopamine neurons and how behavioral output can change after modifications of this signaling pathway. Overall, the present study suggests PPARα as new therapeutic targets for disorders associated with unbalanced dopamine-acetylcholine systems. PMID:23554501

  1. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  2. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  3. Synthesis and Pharmacological Evaluation of DHβE Analogues as Neuronal Nicotinic Acetylcholine Receptor Antagonists

    PubMed Central

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and pharmacological characterization of a series of DHβE analogues in which two of the four rings in the natural product has been excluded. We found that the direct analogue of DHβE maintains affinity for the α4β2-subtype, but further modifications of the simplified analogues were detrimental to their activities on the nAChRs. PMID:25050162

  4. Nicotinic Receptors in Neurodegeneration

    PubMed Central

    Posadas, Inmaculada; López-Hernández, Beatriz; Ceña, Valentín

    2013-01-01

    Many studies have focused on expanding our knowledge of the structure and diversity of peripheral and central nicotinic receptors. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels, which include GABA (A and C), serotonin, and glycine receptors. Currently, 9 alpha (α2-α10) and 3 beta (β2-β4) subunits have been identified in the central nervous system (CNS), and these subunits assemble to form a variety of functional nAChRs. The pentameric combination of several alpha and beta subunits leads to a great number of nicotinic receptors that vary in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitize. In the CNS, nAChRs play crucial roles in modulating presynaptic, postsynaptic, and extrasynaptic signaling, and have been found to be involved in a complex range of CNS disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, Tourette´s syndrome, anxiety, depression and epilepsy. Therefore, there is growing interest in the development of drugs that modulate nAChR functions with optimal benefits and minimal adverse effects. The present review describes the main characteristics of nAChRs in the CNS and focuses on the various compounds that have been tested and are currently in phase I and phase II trials for the treatment of neurodegenerative diseases including PD, AD and age-associated memory and mild cognitive impairment. PMID:24179465

  5. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    PubMed

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-01

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation.

  6. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons.

    PubMed

    Schreiner, Benjamin S P; Lehmann, Ramona; Thiel, Ulrike; Ziemba, Paul M; Beltrán, Leopoldo R; Sherkheli, Muhammad A; Jeanbourquin, Philippe; Hugi, Alain; Werner, Markus; Gisselmann, Günter; Hatt, Hanns

    2014-04-01

    Nicotine sensory perception is generally thought to be mediated by nicotinic acetylcholine (nACh) receptors. However, recent data strongly support the idea that other receptors (e.g., transient receptor potential A1 channel, TRPA1) and other pathways contribute to the detection mechanisms underlying the olfactory and trigeminal cell response to nicotine flavor. This is in accordance with the reported ability of humans to discriminate between (+)- and (-)- nicotine enantiomers. To get a more detailed understanding of the molecular and cellular basis underlying the sensory perception of nicotine, we studied the activity of (+)- and (-)-nicotine on cultured murine trigeminal sensory neurons and on a range of heterologously expressed receptors. The human TRPA1 channel is activated by (-)-nicotine. In this work, we show that (+)-nicotine is also an activator of this channel. Pharmacological experiments using nicotinic acetylcholine receptors and transient receptor potential blockers revealed that trigeminal neurons express one or more unidentified receptors that are sensitive to (+)- and/or (-)-nicotine. Results also indicate that the presence of extracellular calcium ions is required to elicit trigeminal neuron responses to (+)- and (-)-nicotine. Results also show that both (+)-nicotine and (-)-nicotine can block 5-hydroxytryptamine type 3 (5-HT3) receptor-mediated responses in recombinant expression systems and in cultured trigeminal neurons expressing 5-HT3 receptors. Our investigations broaden the spectra of receptors that are targets for nicotine enantiomers and give new insights into the physiological role of nicotine. PMID:24512725

  7. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    PubMed Central

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-01-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species. PMID:27124107

  8. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees.

    PubMed

    Moffat, Christopher; Buckland, Stephen T; Samson, Andrew J; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A; Huang, Jeffrey T-J; Connolly, Christopher N

    2016-01-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species. PMID:27124107

  9. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    NASA Astrophysics Data System (ADS)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  10. Nicotinic receptors in addiction pathways.

    PubMed

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  11. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes.

    PubMed

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A

    2016-02-06

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses.

  12. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A.

    2016-01-01

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses. PMID:26861354

  13. The effects of temperature on the interactions between volatile general anaesthetics and a neuronal nicotinic acetylcholine receptor.

    PubMed Central

    Dickinson, R.; Lieb, W. R.; Franks, N. P.

    1995-01-01

    1. Completely isolated identified neurones from the right parietal ganglion of the pond snail Lymnaea stagnalis were investigated under two-electrode voltage clamp. Neuronal nicotinic acetylcholine receptor (AChR) currents were studied at low acetylcholine concentrations (< or = 200 nM). 2. Inhibition of the ACh-induced currents by three volatile general anaesthetics (halothane, isoflurane and methoxyflurane) and the specific inhibitor (+)-tubocurarine was studied as a function of temperature (over the range 4-25 degrees C). 3. The inhibition by the volatile anaesthetics increased (inhibition constants decreased) with decreasing temperature while the inhibition by (+)-tubocurarine did not change significantly near room temperature, but decreased at lower temperatures. The (+)-tubocurarine inhibition appeared to be competitive in nature and showed no significant voltage-dependence. 4. The van't Hoff plots (logarithms of the dissociation constants against reciprocal absolute temperature) were linear for the anaesthetics, but markedly non-linear for (+)-tubocurarine. From these plots, values for the changes in the standard Gibbs free energy delta G degrees water-->AChR, enthalpy delta H degree water-->AChR, entropy delta S degree water-->AChR and heat capacity delta Cp degree water-->AChR were determined. Tubocurarine was found to bind very much tighter to the receptor than the volatile anaesthetics due, entirely, to a favourable increase in entropy on binding. 5. A comparison between the temperature-dependence of the anaesthetic inhibition of the ACh receptor and that of general anaesthetic potencies in animals indicates that the temperature-dependence of animal potencies might be simply accounted for in terms of changes in anaesthetic/receptor binding. PMID:8680729

  14. Nicotinic receptors and schizophrenia.

    PubMed

    Ripoll, Nadège; Bronnec, Marie; Bourin, Michel

    2004-07-01

    The incidence of smoking is very high in non-schizophrenic subjects presenting various psychiatric disorders (35 to 54%). However, the incidence of smoking is extremely high in schizophrenic patients: 80% to 90%, versus 25% to 30% of the general population. Various studies have demonstrated that the use of tobacco transiently restores the schizophrenic patient's cognitive and sensory deficits. Smoking cessation also appears to exacerbate the symptoms of the disease. Post-mortem binding studies have revealed a disturbance of nicotinic receptor expression, affecting the alpha(7) and alpha(4)beta(2) subunits, in various cerebral areas. Genetic linkage studies have also shown that the alpha(7) subunit is involved in schizophrenia. This review assesses the involvement of the nicotinic system in schizophrenia and suggests ways in which this system may participate in the pathophysiology of this disease.

  15. Action of ethanol on responses to nicotine from cerebellar Purkinje neurons: relationship to methyllycaconitine (MLA) inhibition of nicotine responses.

    PubMed

    Yang, X; Criswell, H E; Breese, G R

    1999-08-01

    The effect of ethanol on responses to nicotine from rat cerebellar Purkinje neurons was investigated using extracellular single-unit recording. Systemic administration of ethanol initially enhanced the nicotine-induced inhibition from 50% of the Purkinje neurons. However, irrespective of whether there was an initial enhancement, systemic administration of ethanol antagonized the response to nicotine from the majority of Purkinje neurons. When varying ethanol concentrations were electro-osmotically applied to this neuronal cell type, the responses to nicotine (6/8) were enhanced when a low concentration of ethanol (40 mM) was in the pipette, whereas the majority of nicotine responses (10/11) were antagonized when a higher concentration of ethanol (160 mM) was applied to Purkinje neurons. Thus, the concentration of ethanol presented to the neuron seemed to explain the biphasic consequence of systemically administered ethanol on responses to nicotine. In order to determine whether ethanol affected a specific nACh receptor subtype containing the alpha-7 subunit, it was initially established that the nicotinic antagonists, alpha-bungarotoxin (alpha-BTX) and methyllycaconitine (MLA), which are associated with this subunit, had identical actions on responses to nicotine from Purkinje neurons. When MLA was tested against responses to nicotine from this cell type, MLA antagonized the response to nicotine from 45% (9/20) of the neurons tested. In a direct comparison of the action of ethanol to inhibit responses to nicotine with the action of MLA on the same Purkinje neuron, ethanol inhibited responses to nicotine on all neurons sensitive to MLA. However, ethanol also affected nicotine-induced neural changes from some Purkinje neurons not sensitive to MLA antagonism of nicotine. These data support the supposition that ethanol affects a nACh receptor subtype which has an alpha-7 subunit as well as other nACh receptor subtypes without this specific subunit.

  16. Allosteric interaction of the anticholinergic drug [N-(4-phenyl)-phenacyl-l-hyoscyamine] (Phenthonium) with nicotinic receptors of post-ganglionic sympathetic neurons of the rat vas deferens.

    PubMed

    Munhoz, Egberto; De Lima, Thereza C M; Souccar, Caden; Lapa, Antonio J; Lima-Landman, Maria Teresa R

    2009-08-15

    Phenthonium (Phen), a quaternary analog of hyoscyamine, is a blocker of muscarinic activity and an allosteric blocker of alpha(1)2betagammaepsilon nicotinic receptors. Specifically, Phenthonium increases the spontaneous release of acetylcholine at the motor endplate without depolarizing the muscle or inhibiting cholinesterase activity. This paper compares Phenthonium's effects on sympathetic transmission and on ganglionic nicotinic receptor activation. Neurotransmitter release and twitch of the rat vas deferens were induced either by electrical stimulation or by 1,1-dimethyl-4-phenylpiperazine (DMPP) activation of nicotinic receptors. Contractions independent of transmitter release were induced by noradrenaline and adenosine 5'-triphosphate (ATP). Phenthonium inhibited transmitter release and depressed twitch without changing the responsiveness to noradrenaline or ATP. Twitch depression did not occur after K(+)-channel blockade with 4-aminopyridine (4-AP) or charybdotoxin. DMPP had a similar effect, but high concentrations induced contraction of non-stimulated organs. Incubation of Phenthonium inhibited further DMPP twitch depression and non-competitively depressed the contractile responses elicited by DMPP. Furthermore, mecamylamine, but neither methyllycaconitine nor atropine, blocked the contraction elicited by DMPP. Phenthonium and DMPP are K(+)-channel openers that primarily inhibit sympathetic transmission. Contraction induced by DMPP was probably mediated by neuronal nicotinic receptor other than the alpha7 subtype. The blockade of DMPP contractile response was unrelated to Phenthonium's antimuscarinic or K(+)-channel opening activities. Since Phenthonium's quaternary chemical structure limits its membrane diffusion, the non-competitive inhibition of DMPP excitatory responses should be linked to allosteric interaction with neuronal nicotinic receptors that putatively qualify Phenthonium as a novel modulator of cholinergic synapses.

  17. A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization.

    PubMed

    Hurst, Raymond S; Hajós, Mihaly; Raggenbass, Mario; Wall, Theron M; Higdon, Nicole R; Lawson, Judy A; Rutherford-Root, Karen L; Berkenpas, Mitchell B; Hoffmann, W E; Piotrowski, David W; Groppi, Vincent E; Allaman, Geraldine; Ogier, Roch; Bertrand, Sonia; Bertrand, Daniel; Arneric, Stephen P

    2005-04-27

    Several lines of evidence suggest a link between the alpha7 neuronal nicotinic acetylcholine receptor (nAChR) and brain disorders including schizophrenia, Alzheimer's disease, and traumatic brain injury. The present work describes a novel molecule, 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596), which acts as a powerful positive allosteric modulator of the alpha7 nAChR. Discovered in a high-throughput screen, PNU-120596 increased agonist-evoked calcium flux mediated by an engineered variant of the human alpha7 nAChR. Electrophysiology studies confirmed that PNU-120596 increased peak agonist-evoked currents mediated by wild-type receptors and also demonstrated a pronounced prolongation of the evoked response in the continued presence of agonist. In contrast, PNU-120596 produced no detectable change in currents mediated by alpha4beta2, alpha3beta4, and alpha9alpha10 nAChRs. PNU-120596 increased the channel mean open time of alpha7 nAChRs but had no effect on ion selectivity and relatively little, if any, effect on unitary conductance. When applied to acute hippocampal slices, PNU-120596 increased the frequency of ACh-evoked GABAergic postsynaptic currents measured in pyramidal neurons; this effect was suppressed by TTX, suggesting that PNU-120596 modulated the function of alpha7 nAChRs located on the somatodendritic membrane of hippocampal interneurons. Accordingly, PNU-120596 greatly enhanced the ACh-evoked inward currents in these interneurons. Systemic administration of PNU-120596 to rats improved the auditory gating deficit caused by amphetamine, a model proposed to reflect a circuit level disturbance associated with schizophrenia. Together, these results suggest that PNU-120596 represents a new class of molecule that enhances alpha7 nAChR function and thus has the potential to treat psychiatric and neurological disorders. PMID:15858066

  18. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  19. Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery.

    PubMed

    Zhan, Changyou; Yan, Zhiqiang; Xie, Cao; Lu, Weiyue

    2010-12-01

    Three-finger snake neurotoxins have been widely investigated for their high binding affinities with nicotinic acetylcholine receptors (nAChRs), which are widely expressed in the central nervous system including the blood-brain barrier and thus mediate intracranial drug delivery. The loop 2 segments of three-finger snake neurotoxins are considered as the binding domain with nAChRs, and thus, they may have the potential to enhance drug or drug delivery system intracranial transport. In the present work, binding of the synthetic peptides to the neuronal nAChRs was assessed by measuring their ability to inhibit the binding of (125)I-α-bungarotoxin to the receptor. The loop 2 segment of Ophiophagus hannah toxin b (KC2S) showed high binding affinity, and the competitive binding IC(50) value was 32.51 nM. Furthermore, the brain targeting efficiency of KC2S had been investigated in vitro and in vivo. The specific uptake by brain capillary endothelial cells (BCECs) demonstrated that KC2S could be endocytosized after binding with nAChRs. In vivo, the qualitative and quantitative biodistribution results of fluorescent dyes (DiR or coumarin-6) indicated that KC2S modified poly(ethylene glycol)-poly(lactic acid) micelles (KC2S-PEG-PLA micelles) could enhance intracranial drug delivery. Furthermore, intravenous treatment with paclitaxel-encapsulated KC2S-PEG-PLA micelles (KC2S-PEG-PLA-PTX micelles) afforded robust inhibition of intracranial glioblastoma. The median survival time of KC2S-PEG-PLA-PTX-micelle-treated mice (47.5 days) was significantly longer than that of mice treated by mPEG-PLA-PTX micelles (41.5 days), Taxol (38.5 days), or saline (34 days). Compared with the short peptide derived from rabies virus glycoprotein (RVG29) that has been previously reported as an excellent brain targeting ligand, KC2S has a similar binding affinity with neuronal nAChRs but fewer amino acid residues. Thus, we concluded that the loop 2 segment of Ophiophagus hannah toxin b could bind

  20. α6-Containing Nicotinic Acetylcholine Receptors in Midbrain Dopamine Neurons are Poised to Govern Dopamine-Mediated Behaviors and Synaptic Plasticity

    PubMed Central

    Berry, Jennifer N.; Engle, Staci E.; McIntosh, J. Michael; Drenan, Ryan M.

    2015-01-01

    Acetylcholine acts through nicotinic and muscarinic acetylcholine (ACh) receptors in ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson’s disease, and schizophrenia. α6-containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs (“α6L9S” mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6* nAChR agonists to activate α6* nAChRs in vivo. Using local infusions of both agonists and antagonists into brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6* nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch clamp electrophysiology, we show that activating α6* nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in VTA DA neurons. Together, these results from in vivo studies strongly suggest that α6* nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the induction of synaptic plasticity by

  1. α6-Containing nicotinic acetylcholine receptors in midbrain dopamine neurons are poised to govern dopamine-mediated behaviors and synaptic plasticity.

    PubMed

    Berry, J N; Engle, S E; McIntosh, J M; Drenan, R M

    2015-09-24

    Acetylcholine (ACh) acts through nicotinic and muscarinic ACh receptors in the ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson's disease, and schizophrenia. α6-Containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs ("α6L9S" mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6(∗) nAChR agonists to activate α6(∗) nAChRs in vivo. Using local infusions of both agonists and antagonists into the brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6(∗) nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch-clamp electrophysiology, we show that activating α6(∗) nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in ventral tegmental area (VTA) DA neurons. Together, these results from in vivo studies strongly suggest that α6(∗) nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the

  2. Age-related Hearing Loss: GABA, Nicotinic Acetylcholine and NMDA Receptor Expression Changes in Spiral Ganglion Neurons of the Mouse

    PubMed Central

    Tang, Xiaolan; Zhu, Xiaoxia; Ding, Bo; Walton, Joseph P.; Frisina, Robert D.; Su, Jiping

    2014-01-01

    Age-related hearing loss – presbycusis – is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate gamma-amino butyric acid A (GABAA) receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative RT-PCR techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40 dB from 3–48 kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40 dB from 6–49 kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. Spiral ganglion neuron (SGN) density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1 amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss. PMID:24316061

  3. Differential blockade of rat α3β4 and α7 neuronal nicotinic receptors by ω-conotoxin MVIIC, ω-conotoxin GVIA and diltiazem

    PubMed Central

    Herrero, Carlos J; García-Palomero, Esther; Pintado, Antonio J; García, Antonio G; Montiel, Carmen

    1999-01-01

    Rat α3β4 or α7 neuronal nicotinic acetylcholine receptors (AChRs) were expressed in Xenopus laevis oocytes, and the effects of various toxins and non-toxin Ca2+ channel blockers studied. Nicotinic AChR currents were elicited by 1 s pulses of dimethylphenylpiperazinium (DMPP, 100 μM) applied at regular intervals.The N/P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC inhibited α3β4 currents with an IC50 of 1.3 μM; the blockade was non-competitive and reversible. The α7 currents were unaffected.At 1 μM, ω-conotoxin GVIA (N-type Ca2+ channel blocker) inhibited by 24 and 20% α3β4 and α7 currents, respectively. At 1 μM, ω-agatoxin IVA (a P/Q-type Ca2+ channel blocker) did not affect α7 currents and inhibited α3β4 currents by only 15%.L-type Ca2+ channel blockers furnidipine, verapamil and, particularly, diltiazem exhibited a preferential blocking activity on α3β4 nicotinic AChRs.The mechanism of α3β4 currents blockade by ω-conotoxins and diltiazem differed in the following aspects: (i) the onset and reversal of the blockade was faster for toxins; (ii) the blockade by the peptides was voltage-dependent, while that exerted by diltiazem was not; (iii) diltiazem promoted the inactivation of the current while ω-toxins did not.These data show that, at concentrations currently employed as Ca2+ channel blockers, some of these compounds also inhibit certain subtypes of nicotinic AChR currents. Our data calls for caution when interpreting many of the results obtained in neurons and other cell types, where nicotinic receptor and Ca2+ channels coexist. PMID:10455287

  4. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  5. Role of α5-containing nicotinic receptors in neuropathic pain and response to nicotine.

    PubMed

    Xanthos, Dimitris N; Beiersdorf, Johannes W; Thrun, Ariane; Ianosi, Bogdan; Orr-Urtreger, Avi; Huck, Sigismund; Scholze, Petra

    2015-08-01

    Nicotinic receptors in the central nervous system (nAChRs) are known to play important roles in pain processing and modulate behavioral responses to analgesic drugs, including nicotine. The presence of the α5-neuronal nicotinic accessory subunit in the nicotinic receptor complex is increasingly understood to modulate reward and aversive states, addiction, and possibly pathological pain. In the current study, using α5-knockout (KO) mice and subunit-specific antibodies, we assess the role of α5-containing neuronal nicotinic receptors in neuropathic pain and in the analgesic response to nicotine. After chronic constriction injury (CCI) or partial sciatic nerve ligation (PSNL), no differences in mechanical, heat, or cold hyperalgesia were found in wild-type (WT) versus α5-KO littermate mice. The number of α5-containing nAChRs was decreased (rather than increased) after CCI in the spinal cord and in the thalamus. Nevertheless, thermal analgesic response to nicotine was marginally reduced in CCI α5-KO mice at 4 days after CCI, but not at later timepoints or after PSNL. Interestingly, upon daily intermittent nicotine injections in unoperated mice, WT animals developed tolerance to nicotine-induced analgesia to a larger extent than α5-KO mice. Our results suggest that α5-containing nAChRs mediate analgesic tolerance to nicotine but do not play a major role in neuropathic pain.

  6. Nicotinic activation of laterodorsal tegmental neurons: implications for addiction to nicotine.

    PubMed

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-11-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non-cholinergic neurons. Utilization of nicotinic acetylcholine receptors (nAChR) subunit antagonists revealed that presynaptic, inhibitory terminals on cholinergic neurons were activated by receptors containing alpha 7, beta2, and non-alpha 7 subunits, whereas, presynaptic glutamatergic terminals were activated by nAChRs that comprised non-alpha 7 subunits. We also found that direct nicotinic actions on cholinergic LDT neurons were mediated by receptors containing alpha 7, beta2, and non

  7. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX.

    PubMed

    Couturier, S; Bertrand, D; Matter, J M; Hernandez, M C; Bertrand, S; Millar, N; Valera, S; Barkas, T; Ballivet, M

    1990-12-01

    cDNA and genomic clones encoding alpha 7, a novel neuronal nicotinic acetylcholine receptor (nAChR) alpha subunit, were isolated and sequenced. The mature alpha 7 protein (479 residues) has moderate homology with all other alpha and non-alpha nAChR subunits and probably assumes the same transmembrane topology. alpha 7 transcripts transiently accumulate in the developing optic tectum between E5 and E16. They are present in both the deep and the superficial layers of E12 tectum. In Xenopus oocytes, the alpha 7 protein assembles into a homo-oligomeric channel responding to acetylcholine and nicotine. The alpha 7 channel desensitizes very rapidly, rectifies strongly above -20 mV, and is blocked by alpha-bungarotoxin. A bacterial fusion protein encompassing residues 124-239 of alpha 7 binds labeled alpha-bungarotoxin. We conclude that alpha-bungarotoxin binding proteins in the vertebrate nervous system can function as nAChRs.

  8. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    PubMed

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  9. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    PubMed

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  10. Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice.

    PubMed

    Di Angelantonio, Silvia; De Stefano, Maria Egle; Piccioni, Alessio; Lombardi, Loredana; Gotti, Cecilia; Paggi, Paola

    2011-02-01

    In the sympathetic superior cervical ganglion (SCG), nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission. We previously demonstrated that in SCG neurons of mdx mice, an animal model for Duchenne muscular dystrophy, lack of dystrophin causes a decrease, compared to the wild-type, in post-synaptic nAChRs containing the α3 subunit associated with β2 and/or β4 (α3β2/β4-nAChRs), but not in those containing the α7 subunit. Here we show, by whole cell patch-clamp recordings from cultured SCG neurons, that both nicotine and acetylcholine-evoked currents through α3β2/β4-nAChRs are significantly reduced in mdx mice compared to the wild-type, while those through α7-nAChR are unaffected. This reduction associates with that of protein levels of α3, β2 and β4 subunits. Therefore, we suggest that, in mdx mouse SCG neurons, lack of dystrophin, by specifically affecting membrane stabilization of α3β2/β4-nAChRs, could determine an increase in receptor internalization and degradation, with consequent reduction in the fast intraganglionic cholinergic transmission.

  11. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    PubMed

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  12. [125/123I] 5-Iodo-3-pyridyl ethers. syntheses and binding to neuronal nicotinic acetylcholine receptors.

    PubMed

    Fan, H; Scheffel, U A; Rauseo, P; Xiao, Y; Dogan, A S; Yokoi, F; Hilton, J; Kellar, K J; Wong, D F; Musachio, J L

    2001-11-01

    Three 3-pyridyl ether nicotinic ligands-(S)-5-Iodo-3-[(2-pyrrolidinyl)-methoxy]pyridine (5-iodo-A-85865), (S)-5-Iodo-3-[1-(methyl)-2-pyrrolidinyl-methoxy]pyridine (5-Iodo-A-84543), and (S)-5-iodo-3-[1-methyl-(2-azetidinyl)-methoxy]pyridine (5-iodo-N-Me-A-85380) were labeled with I-125/I-123, and their ability to label high-affinity brain nicotinic acetylcholine receptors (nAChRs) was evaluated. The most promising ligand, [123/125I] 5-iodo-A-85865, showed approximately 65% inhibition of radioactivity uptake in thalamus in mice pretreated with cytisine. Preliminary SPECT imaging studies with [123I] 5-iodo-A-85865 revealed a distribution profile consistent with nAChRs (thalamus > frontal cortex > cerebellum) and a more rapid pharmacokinetic profile relative to azetidinyl 3-pyridyl ether based ligands.

  13. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Cook, Daniel; Kem, William R

    2016-07-04

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic.

  14. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids

    PubMed Central

    Green, Benedict T.; Lee, Stephen T.; Welch, Kevin D.; Cook, Daniel; Kem, William R.

    2016-01-01

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic. PMID:27384586

  15. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Cook, Daniel; Kem, William R

    2016-01-01

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic. PMID:27384586

  16. The novel Na+/Ca2+ exchange inhibitor KB-R7943 also blocks native and expressed neuronal nicotinic receptors

    PubMed Central

    Pintado, Antonio J; Herrero, Carlos J; García, Antonio G; Montiel, Carmen

    2000-01-01

    We studied the effects of the novel Na+/Ca2+ exchange inhibitor KB-R7943, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate, on the native nicotinic receptors present at the bovine adrenal chromaffin cells, as well as on rat brain α3β4 and α7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes.As expected, KB-R7943 blocked the Na+-gradient dependent 45Ca2+ uptake into chromaffin cells (IC50 of 5.5 μM); but in addition, the compound also inhibited the 45Ca2+ entry and the increase of cytosolic Ca2+ concentration, [Ca2+]c, stimulated by 5 s pulses of ACh (IC50 of 6.5 and 1.7 μM, respectively).In oocytes expressing α3β4 and α7 nicotinic AChRs, voltage-clamped at −60 mV, inward currents elicited by 1 s pulses of 100 μM ACh (IACh) were blocked by KB-R7943 with an IC50 of 0.4 μM and a Hill coefficient of 0.9.Blockade of α3β4 currents by KB-R7943 was noncompetitive; moreover, the blocker (0.3 μM) became more active as the ACh concentration increased (34 versus 66% blockade at 30 μM and 1 mM ACh, respectively).Inhibition of α3β4 currents by 0.3 μM KB-R7943 was more pronounced at hyperpolarized potentials. If given within the ACh pulse (10 μM), the inhibition amounted to 33, 64 and 80% in oocytes voltage-clamped at −40, −60 and −100 mV, respectively. The onset of blockade was faster and the recovery slower at −100 mV; the reverse was true at −40 mV.In conclusion, KB-R7943 is a potent blocker of nicotinic AChRs; moreover, it displays many features of an open-channel blocker at the rat brain α3β4 AChR. These results should be considered when KB-R7943 is to be used to study Ca2+ homeostasis in cells expressing nicotinic AChRs and the Na+/Ca2+ exchanger. PMID:10952680

  17. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  18. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors.

  19. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. PMID:27506652

  20. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking.

    PubMed

    Gamaleddin, Islam; Wertheim, Carrie; Zhu, Andy Z X; Coen, Kathleen M; Vemuri, Kiran; Makryannis, Alex; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence. PMID:21521420

  1. Molecular modeling of human pentameric alpha(7) neuronal nicotinic acetylcholine receptor and its interaction with its agonist and competitive antagonist.

    PubMed

    Parthiban, Marimuthu; Rajasekaran, Mohan Babu; Ramakumar, Suryanarayanarao; Shanmughavel, Piramanayagam

    2009-04-01

    The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding pocket present at the interface region of the subunits. alpha-neurotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR was studied. Agonists such as acetylcholine, nicotine, which are used in a diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.

  2. Neuroanatomical and neuropharmacological approaches to postictal antinociception-related prosencephalic neurons: the role of muscarinic and nicotinic cholinergic receptors

    PubMed Central

    de Freitas, Renato Leonardo; Bolognesi, Luana Iacovelo; Twardowschy, André; Corrêa, Fernando Morgan Aguiar; Sibson, Nicola R; Coimbra, Norberto Cysne

    2013-01-01

    Several studies have suggested the involvement of the hippocampus in the elaboration of epilepsy. There is evidence that suggests the hippocampus plays an important role in the affective and motivational components of nociceptive perception. However, the exact nature of this involvement remains unclear. Therefore, the aim of this study was to determine the role of muscarinic and nicotinic cholinergic receptors in the dorsal hippocampus (dH) in the organization of postictal analgesia. In a neuroanatomical study, afferent connections were found from the somatosensory cortex, the medial septal area, the lateral septal area, the diagonal band of Broca, and the dentate gyrus to the dH; all these areas have been suggested to modulate convulsive activity. Outputs to the dH were also identified from the linear raphe nucleus, the median raphe nucleus (MdRN), the dorsal raphe nucleus, and the locus coeruleus. All these structures comprise the endogenous pain modulatory system and may be involved either in postictal pronociception or antinociception that is commonly reported by epileptic patients. dH-pretreatment with cobalt chloride (1.0 mmol/L CoCl2/0.2 μL) to transiently inhibit local synapses decreased postictal analgesia 10 min after the end of seizures. Pretreatment of the dH with either atropine or mecamylamine (1.0 μg/0.2 μL) attenuated the postictal antinociception 30 min after seizures, while the higher dose (5.0 μg/0.2 μL) decreased postictal analgesia immediately after the end of seizures. These findings suggest that the dH exerts a critical role in the organization of postictal analgesia and that muscarinic and nicotinic cholinergic receptor-mediated mechanisms in the dH are involved in the elaboration of antinociceptive processes induced by generalized tonic-clonic seizures. PMID:23785660

  3. Nicotinic acetylcholine receptors and cancer

    PubMed Central

    DANG, NINGNING; MENG, XIANGUANG; SONG, HAIYAN

    2016-01-01

    Nicotine, the primary addictive constituent of cigarettes, is believed to contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated cation channels. nAChRs activation can be triggered by the neurotransmitter Ach, or certain other biological compounds, such as nicotine. In recent years, genome-wide association studies have indicated that allelic variation in the α5-α3-β4 nAChR cluster on chromosome 15q24-15q25.1 is associated with lung cancer risk. The role of nAChRs in other types of cancer has also been reported. The present review highlights the role of nAChRs in types of human cancer. PMID:27123240

  4. Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine.

    PubMed

    Grottick, A J; Trube, G; Corrigall, W A; Huwyler, J; Malherbe, P; Wyler, R; Higgins, G A

    2000-09-01

    Neuronal nicotinic receptors are comprised of combinations of alpha(2-9) and beta(2-4) subunits arranged to form a pentameric receptor. Currently, the principal central nervous system (CNS) subtypes are believed to be alpha(4)beta(2) and a homomeric alpha(7) receptor, although other combinations almost certainly exist. The identity of the nicotinic receptor subtype(s) involved in the rewarding effects of nicotine are unknown. In the present study, using some recently described subtype selective nicotinic agonists and antagonists, we investigated the role of the alpha(7) nicotinic receptor in the mediation of nicotine-induced hyperactivity and self-administration in rats. The alpha(7) receptor agonists AR-R 17779 and DMAC failed to stimulate locomotor activity in both nicotine-nontolerant and -sensitized rats. In contrast, nicotine and the putative alpha(4)beta(2) subtype selective agonist SIB1765F increased activity in both experimental conditions. In nicotine-sensitized rats, the high affinity (including the alpha(4)beta(2) subtype) nicotinic antagonist dihydro-beta-erythroidine (DHbetaE), but not the selective alpha(7) antagonist methyllycaconitine (MLA), antagonized a nicotine-induced hyperactivity. Similarly, DHbetaE, but not MLA, pretreatment reduced nicotine self-administration. Electrophysiology experiments using Xenopus oocytes expressing the human alpha(7) receptor confirmed AR-R 17779 and DMAC to be potent agonists at this site, and further studies demonstrated the ability of systemically administered AR-R 17779 to penetrate into the CNS. Taken together, these results indicate a negligible role of alpha(7) receptors in nicotine-induced hyperlocomotion and reward in the rat, and support the view for an involvement of a member from the high-affinity nicotinic receptor subclass, possibly alpha(4)beta(2). Issues such as drug potency, CNS penetration, and desensitization of the alpha(7) receptor are discussed.

  5. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.

    PubMed

    Sellings, Laurie; Pereira, Schreiber; Qian, Cheng; Dixon-McDougall, Thomas; Nowak, Christina; Zhao, Bin; Tyndale, Rachel F; van der Kooy, Derek

    2013-03-01

    Signaling at nicotinic acetylcholine receptors in Caenorhabditis elegans controls many behaviors, including egg-laying and locomotor activity. Here, we show that C. elegans approaches a point source of nicotine in a time-, concentration- and age-dependent manner. Additionally, nicotine paired with butanone under starvation conditions prevented the reduced approach to butanone that is observed when butanone is paired with starvation alone and pairing with nicotine generates a preference for the tastes of either sodium or chloride over baseline. These results suggest nicotine acts as a rewarding substance in C. elegans. Furthermore, the nicotinic receptor antagonist mecamylamine, the smoking cessation pharmacotherapy varenicline, mutation of the dop-1 and dop-2 dopamine receptors, and mutations of either acr-5 or acr-15, two nicotinic receptor subunit genes with sequence homology to the mammalian α7 subunit, all reduced the nicotine approach behavior. These two mutants also were defective at associating the presence of nicotine with butanone under starvation conditions and acr-5 mutation could obviate the effect of pairing nicotine with salts. Furthermore, the approach deficit in acr-15 mutants was rescued by selective re-expression in a subset of neurons, but not in muscle. Caenorhabditis elegans may therefore serve as a useful model organism for nicotine-motivated behaviors that could aid in the identification of novel nicotine motivational molecular pathways and consequently the development of novel cessation aids.

  6. Nicotine excites cardiac vagal neurons via three sites of action.

    PubMed

    Mendelowitz, D

    1998-06-01

    1. Nicotine is involved in many cardio-respiratory diseases, including hypertension and sudden infant death syndrome (SIDS), which is the most common cause of death in infants between 1 month and 1 year of age. While the aetiology of SIDS remains largely unknown, recent clinical studies suggest maternal cigarette smoking is a major risk factor in SIDS and an abnormality of cardio-respiratory control, particularly a centrally mediated slowing of the heart that precedes or accompanies apnoea, is involved. 2. Because the sites, mechanisms of action and diverse receptor types of nicotine within the central nervous system are controversial and poorly understood, in the present study we examined the effects of nicotine on specific brainstem neurons that control heart rate. Cardiac vagal neurons were identified in an in vitro slice preparation using a retrograde fluorescent tracer and were studied using both whole-cell and perforated patch-clamp electrophysiological techniques. 3. We have found there are different pre- and post-synaptic nicotinic receptors that have dramatic effects on glutamatergic neurotransmission as well as directly activating vagal cardio-inhibitory neurons.

  7. Cholinergic nicotinic receptors in the vestibular epithelia.

    PubMed

    Thornhill, R A

    1991-10-01

    Receptor binding studies specific for nicotinic cholinergic receptors have been carried out on isolated vestibular epithelia of the frogs Rana catesbiana and Rana temporaria. Evidence is presented for the presence of nicotinic-like cholinergic receptors specifically associated with the sensory areas. PMID:1797345

  8. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  9. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection. PMID:26656837

  10. Genetics of nicotinic acetylcholine receptors: relevance to nicotine addiction

    PubMed Central

    Mineur, Yann S.; Picciotto, Marina R.

    2008-01-01

    Human twin studies have suggested that there is a substantial genetic component underlying nicotine dependence, ongoing smoking and ability to quit. Similarly, animal studies have identified a number of genes and gene products that are critical for behaviors related to nicotine addiction. Classical genetic approaches, gene association studies and genetic engineering techniques have been used to identify the gene products involved in nicotine dependence. One class of genes involved in nicotine-related behavior is the family of nicotinic acetylcholine receptors (nAChRs). These receptors are the primary targets for nicotine in the brain. Genetic engineering studies in mice have identified a number of subunits that are critical for the ability of nicotine to activate the reward system in the brain, consisting of the dopaminergic cell bodies in the ventral tegmental area and their terminals in the nucleus accumbens and other portions of the mesolimbic system. In this review we will discuss the various lines of evidence suggesting that nAChRs may be involved in smoking behavior, and will review the human and animal studies that have been performed to date examining the genetic basis for nicotine dependence and smoking. PMID:17632086

  11. Nicotinic receptors and Alzheimer's disease.

    PubMed

    Bourin, Michel; Ripoll, Nadège; Dailly, Eric

    2003-01-01

    Nicotinic receptors (NRs) belong to the group of polymeric receptors of the cell membrane and are key elements of cholinergic transmission. Numerous subtypes of NRs exist with the alpha 4 beta 2 and alpha 7 types being encountered most frequently. Deficiencies in NRs seem to play a role in Alzheimer's disease, which is characterised by accumulation of senile plaques, mainly composed of beta-amyloid peptide (beta A). Although the aetiology of this disease is unknown, different pathogenesis hypotheses implicating alpha 7 NRs have been proposed, with the receptors exerting a direct or indirect action on the mechanism of beta A toxicity. Allosteric modulators of NRs, such as the cholinesterase inhibitor galantamine, that facilitate the action of acetylcholine on these receptors may provide therapeutic benefits in the areas of cognition, attention and antineurodegenerative activity.

  12. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors.

    PubMed

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [³H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [(125)I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT₃ nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  13. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I.; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  14. Making choice between competing rewards in uncertain vs. safe social environment: role of neuronal nicotinic receptors of acetylcholine.

    PubMed

    Chabout, Jonathan; Cressant, Arnaud; Hu, Xian; Edeline, Jean-Marc; Granon, Sylvie

    2013-01-01

    In social environments, choosing between multiple rewards is modulated by the uncertainty of the situation. Here, we compared how mice interact with a conspecific and how they use acoustic communication during this interaction in a three chambers task (no social threat was possible) and a Social Interaction Task, SIT (uncertain situation as two mice interact freely). We further manipulated the motivational state of the mice to see how they rank natural rewards such as social contact, food, and novelty seeking. We previously showed that beta2-subunit containing nicotinic receptors-β2(*)nAChRs- are required for establishing reward ranking between social interaction, novelty exploration, and food consumption in social situations with high uncertainty. Knockout mice for β2(*)nAChRs-β2(-/-)mice- exhibit profound impairment in making social flexible choices, as compared to control -WT- mice. Our current data shows that being confronted with a conspecific in a socially safe environment as compared to a more uncertain environment, drastically reduced communication between the two mice, and changed their way to deal with a social conspecific. Furthermore, we demonstrated for the first time, that β2(-/-) mice had the same motivational ranking than WT mice when placed in a socially safe environment. Therefore, β2(*)nAChRs are not necessary for integrating social information or social rewards per se, but are important for making choices, only in a socially uncertain environment. This seems particularly important in the context of Social Neuroscience, as numerous animal models are used to provide novel insights and to test promising novel treatments of human pathologies affecting social and communication processes, among which Autistic spectrum disorders and schizophrenia.

  15. RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation

    PubMed Central

    2013-01-01

    Background Recent work has shown that the chaperone resistant to inhibitors of acetylcholinesterase (RIC-3) is critical for the folding, maturation and functional expression of a variety of neuronal nicotinic acetylcholine receptors. α7 nicotinic receptors can only assemble and functionally express in select lines of cells, provided that RIC-3 is present. In contrast, α4β2 nicotinic receptors can functionally express in many cell lines even without the presence of RIC-3. Depending on the cell line, RIC-3 has differential effects on α4β2 receptor function – enhancement in mammalian cells but inhibition in Xenopus oocytes. Other differences between the two receptor types include nicotine-induced upregulation. When expressed in cell lines, α4β2 receptors readily and robustly upregulate with chronic nicotine exposure. However, α7 nicotinic receptors appear more resistant and require higher concentrations of nicotine to induce upregulation. Could the coexpression of RIC-3 modulate the extent of nicotine-induced upregulation not only for α7 receptors but also α4β2 receptors? We compared and contrasted the effects of RIC-3 on assembly, trafficking, protein expression and nicotine-induced upregulation on both α7 and α4β2 receptors using fluorescent protein tagged nicotinic receptors and Förster resonance energy transfer (FRET) microscopy imaging. Results RIC-3 increases assembly and cell surface trafficking of α7 receptors but does not alter α7 protein expression in transfected HEK293T cells. In contrast, RIC-3 does not affect assembly of α4β2 receptors but increases α4 and β2 subunit protein expression. Acute nicotine (30 min exposure) was sufficient to upregulate FRET between α4 and β2 subunits. Surprisingly, when RIC-3 was coexpressed with α4β2 receptors nicotine-induced upregulation was prevented. α7 receptors did not upregulate with acute nicotine in the presence or absence of RIC-3. Conclusions These results provide interesting novel data

  16. Brain region specific modulation of ethanol-induced depression of GABAergic neurons in the brain reward system by the nicotine receptor antagonist mecamylamine.

    PubMed

    Adermark, Louise; Söderpalm, Bo; Burkhardt, John M

    2014-08-01

    The mechanisms underlying ethanol-induced activation of the mesolimbic dopamine system are not fully understood, but increased extracellular dopamine in the nucleus accumbens (nAc) has been shown to involve nicotinic acetylcholine receptors (nAChRs). Basal activity of dopaminergic neurons in the ventral tegmental area (VTA) is under the influence of GABAergic neurotransmission, and the aim of this study was to characterize the involvement of nAChRs in mediating acute ethanol effects on GABAergic activity in subregions of the brain reward system. Multi-electrode in vivo recordings were made in the VTA and nAc of awake and behaving C57BL6/J mice receiving intraperitoneal injections of saline or ethanol (2.0 g/kg), combined with, or without, pre-injection of the non-competitive nAChR antagonist mecamylamine (1.0 mg/kg). Ethanol significantly decreased the activity of quinpirole-insensitive slow-spiking and fast-spiking units in both the VTA and the nAc as compared to saline injection. Pre-treatment with mecamylamine inhibited the rate-inhibiting properties of ethanol in the VTA, but not in the nAc. The data presented here show that ethanol depresses the activity of quinpirole-insensitive, putative GABAergic neurons, in the mesolimbic dopamine system of mice, and that nAChRs contribute to this modulation. This finding, taken together with previous microdialysis studies, supports an involvement of GABAergic neurons and nAChRs in ethanol's interaction with the mesolimbic dopamine system.

  17. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  18. In vitro metabolism of α7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite.

    PubMed

    Zhou, Diansong; Zhang, Minli; Ye, Xiaomei; Gu, Chungang; Piser, Timothy M; Lanoue, Bernard A; Schock, Sara A; Cheng, Yi-Fang; Grimm, Scott W

    2011-03-01

    1. AZD0328 was pharmacologically characterized as a α7 neuronal nicotinic receptor agonist intended for treatment of Alzheimer's disease. In vitro AZD0328 cross species metabolite profile and enzyme identification for its N-oxide metabolite were evaluated in this study. 2. AZD0328 was very stable in the human hepatocyte incubation, whereas extensively metabolized in rat, dog and guinea pig hepatocyte incubations. The N-oxidation metabolite (M6) was the only metabolite detected in human hepatocyte incubations, and it also appeared to be the major in vitro metabolic pathway in a number of preclinical species. In addition, N-glucuronide metabolite of AZD0328 was observed in human liver microsomes. 3. Other metabolic pathways in the preclinical species include hydroxylation in azabicyclo octane or furopyridine part of the molecule. Pyridine N-methylation of AZD0328 (M2) was identified as a dog specific metabolite, not observed in human or other preclinical species. 4. Multiple enzymes including CYP2D6, CYP3A4/5, FMO1 and FMO3 catalyzed AZD0328 metabolism. The potential for AZD0328 to be inhibited clinically by co-administered drugs or genetic polymorphism is relative low. PMID:21226652

  19. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons.

    PubMed

    Wang, Jijiang; Wang, Xin; Irnaten, Mustapha; Venkatesan, Priya; Evans, Cory; Baxi, Sunit; Mendelowitz, David

    2003-05-01

    The heart slows during expiration and heart rate increases during inspiration. This cardiorespiratory interaction is thought to occur by increased inhibitory synaptic events to cardiac vagal neurons during inspiration. Since cholinergic receptors have been suggested to be involved in this cardiorespiratory interaction, we tested whether endogenous cholinergic activity modulates GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus, whether nicotine can mimic this facilitation, and we examined the nicotinic receptors involved. Cardiac vagal neurons in the rat were labeled with a retrograde fluorescent tracer and studied in an in vitro slice using patch-clamp techniques. Application of neostigmine (10 microM), an acetylcholinerase inhibitor, significantly increased the frequency of both GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) in cardiac vagal neurons. Exogenous application of nicotine increased the frequency and amplitude of both GABAergic and glycinergic IPSCs. The nicotinic facilitation of both GABAergic and glycinergic IPSCs were insensitive to 100 nM alpha-bungarotoxin but were abolished by dihydro-beta-erythrodine (DHbetaE) at a concentration (3 microM) specific for alpha4beta2 nicotinic receptors. In the presence of TTX, nicotine increased the frequency of GABAergic and glycinergic miniature synaptic events, which were also abolished by DHbetaE (3 microM). This work demonstrates that there is endogenous cholinergic facilitation of GABAergic and glycinergic synaptic inputs to cardiac vagal neurons, and activation of alpha4beta2 nicotinic receptors at presynaptic terminals facilitates GABAergic and glycinergic neurotransmission to cardiac vagal neurons. Nicotinic facilitation of inhibitory neurotransmission to premotor cardiac parasympathetic neurons may be involved in generating respiratory sinus arrhythmia.

  20. Potentiation of Neuronal Nicotinic Receptors by 17β-Estradiol: Roles of the Carboxy-Terminal and the Amino-Terminal Extracellular Domains

    PubMed Central

    Jin, Xiaochun; Steinbach, Joe Henry

    2015-01-01

    The endogenous steroid 17β-estradiol (βEST) potentiates activation of neuronal nicotinic receptors containing α4 subunits. Previous work has shown that the final 4 residues of the α4 subunit are required for potentiation. However, receptors containing the α2 subunit are not potentiated although it has these 4 residues, and only one amino acid difference in the C-terminal tail (FLAGMI vs. WLAGMI). Previous work had indicated that the tryptophan residue was involved in binding an analog of βEST, but not in potentiation by βEST. To determine the structural basis for the loss of potentiation we analyzed data from chimeric subunits, which indicated that the major factor underlying the difference between α2 and α4 is the tryptophan/phenylalanine difference, while the N-terminal extracellular domain is a less significant factor. When the tryptophan in α4 was mutated, both phenylalanine and tyrosine conferred lower potentiation while lysine and leucine did not. The reduction reflected a reduced maximal magnitude of potentiation, indicating that the tryptophan is involved in transduction of steroid effects. The regions of the α4 N-terminal extracellular domain involved in potentiation lie near the agonist-binding pocket, rather than close to the membrane or the C-terminal tail, and appear to be involved in transduction rather than binding. These observations indicate that the C-terminal region is involved in both steroid binding (AGMI residues) and transduction (W). The role of the N-terminus appears to be independent of the C-terminal tryptophan and likely reflects an influence on conformational changes caused during channel activation by agonist and potentiation by estradiol. PMID:26684647

  1. The reducing agent dithiothreitol (DTT) does not abolish the inhibitory nicotinic response recorded from rat dorsolateral septal neurons

    NASA Technical Reports Server (NTRS)

    Sorenson, E. M.; Gallagher, J. P.

    1993-01-01

    Previous intracellular recordings have demonstrated that dorsolateral septal nucleus (DLSN) neurons express a novel nicotinic receptor which produces a direct membrane hyperpolarization when activated by nicotinic agonists. Activation of the classical excitatory nicotinic receptors has been shown to require a disulfide bond involving the cysteines at positions 192 and 193 of the alpha subunits of the receptor. Reduction of this cystine bond with dithiothreitol (DTT) abolishes agonist activation of excitatory nicotinic receptors. We have now examined whether DTT treatment of the inhibitory nicotinic receptor on DLSN neurons also abolishes the inhibitory nicotinic response. We find that the inhibitory response persists after treatment of the neurons with 1 mM DTT, even if the reduction is followed by alkylation of the receptor with bromoacetylcholine to prevent possible reformation of disulfide bonds. This result suggests that the agonist binding site on the inhibitory nicotinic receptor does not require an intact disulfide bond, similar to the bond on the alpha subunit of the excitatory nicotinic receptor, for agonist activation of the receptor. Some of these results have been previously reported in abstract form.

  2. Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine.

    PubMed

    Poorthuis, Rogier B; Mansvelder, Huibert D

    2013-10-15

    Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention.

  3. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons

    PubMed Central

    Srinivasan, Rahul; Henley, Beverley M.; Henderson, Brandon J.; Indersmitten, Tim; Cohen, Bruce N.; Kim, Charlene H.; McKinney, Sheri; Deshpande, Purnima; Xiao, Cheng

    2016-01-01

    Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in

  4. Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis

    PubMed Central

    Mineur, Yann S.; Picciotto, Marina R.

    2010-01-01

    There is a well-established connection between smoking and depression, with depressed individuals over-represented among smokers and ex-smokers often experiencing increased depressive symptoms immediately after quitting. Nicotine in tobacco binds, activates and desensitizes nicotinic acetylcholine receptors (nAChRs), but it is not known whether activation or desensitization is more important for nicotine’s effects on depressive symptoms. In this article, we review the hypothesis that blockade rather than activation of neuronal nAChRs might be important for the effects of nicotinic agents on depressive symptoms based on clinical and preclinical studies of nicotinic drugs. The endogenous neurotransmitter for nAChRs is acetylcholine, and the effects of nicotine on depression-like behaviors support the idea that dysregulation of the cholinergic system might contribute to the etiology of major depressive disorder. Thus, pharmacological agents that limit acetylcholine signaling through neuronal nAChRs might be promising for the development of novel antidepressant medications. PMID:20965579

  5. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement.

    PubMed

    Beckmann, Joshua S; Meyer, Andrew C; Pivavarchyk, M; Horton, David B; Zheng, Guangrong; Smith, Andrew M; Wooters, Thomas E; McIntosh, J Michael; Crooks, Peter A; Bardo, Michael T; Dwoskin, Linda P

    2015-10-01

    α6β2* nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [(3)H]nicotine or [(3)H]methyllycaconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small

  6. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors.

    PubMed

    Shytle, R Douglas; Mori, Takashi; Townsend, Kirk; Vendrame, Martina; Sun, Nan; Zeng, Jin; Ehrhart, Jared; Silver, Archie A; Sanberg, Paul R; Tan, Jun

    2004-04-01

    Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.

  7. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement.

    PubMed

    Tolu, S; Eddine, R; Marti, F; David, V; Graupner, M; Pons, S; Baudonnat, M; Husson, M; Besson, M; Reperant, C; Zemdegs, J; Pagès, C; Hay, Y A H; Lambolez, B; Caboche, J; Gutkin, B; Gardier, A M; Changeux, J-P; Faure, P; Maskos, U

    2013-03-01

    Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.

  8. Nicotine receptors mediating sensorimotor gating and its enhancement by systemic nicotine.

    PubMed

    Pinnock, Farena; Bosch, Daniel; Brown, Tyler; Simons, Nadine; Yeomans, John R; DeOliveira, Cleusa; Schmid, Susanne

    2015-01-01

    Prepulse inhibition (PPI) of startle occurs when intensity stimuli precede stronger startle-inducing stimuli by 10-1000 ms. PPI deficits are found in individuals with schizophrenia and other psychiatric disorders, and they correlate with other cognitive impairments. Animal research and clinical studies have demonstrated that both PPI and cognitive function can be enhanced by nicotine. PPI has been shown to be mediated, at least in part, by mesopontine cholinergic neurons that project to pontine startle neurons and activate muscarinic and potentially nicotine receptors (nAChRs). The subtypes and anatomical location of nAChRs involved in mediating and modulating PPI remain unresolved. We tested the hypothesis that nAChRs that are expressed by pontine startle neurons contribute to PPI. We also explored whether or not these pontine receptors are responsible for the nicotine enhancement of PPI. While systemic administration of nAChR antagonists had limited effects on PPI, PnC microinfusions of the non-α7nAChR preferring antagonist TMPH, but not of the α7nAChR antagonist MLA, into the PnC significantly reduced PPI. Electrophysiological recordings from startle-mediating PnC neurons confirmed that nicotine affects excitability of PnC neurons, which could be antagonized by TMPH, but not by MLA, indicating the expression of non-α7nAChR. In contrast, systemic nicotine enhancement of PPI was only reversed by systemic MLA and not by TMPH or local microinfusions of MLA into the PnC. In summary, our data indicate that non-α7nAChRs in the PnC contribute to PPI at stimulus intervals of 100 ms or less, whereas activation of α7nAChRs in other brain areas is responsible for the systemic nicotine enhancement of PPI. This is important knowledge for the correct interpretation of behavioral, preclinical, and clinical data as well as for developing drugs for the amelioration of PPI deficits and the enhancement of cognitive function.

  9. Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons.

    PubMed

    Neff, R A; Humphrey, J; Mihalevich, M; Mendelowitz, D

    Although peripheral cholinergic neurotransmission has long been known to play a pivotal role in the control of heart rate and blood pressure, recent evidence has suggested that central cholinergic mechanisms may be involved in the genesis of hypertension, anxiety, cardiorespiratory control, and, in particular, the respiratory modulation of heart rate. Yet, the sites, mechanisms, and receptor subtypes involved in the action of nicotine within the central nervous system are controversial. The present study demonstrates that nicotine has at least 3 sites of action to increase the activity of vagal cardiac neurons. Nicotine, but not muscarinic agonists, activates postsynaptic receptors and a depolarizing inward current in vagal cardiac neurons studied with the perforated patch-clamp technique in a visualized brain stem slice. In addition, nicotine acts at different presynaptic and postsynaptic sites to facilitate glutamatergic neurotransmission. Presynaptic nicotinic receptors increase the frequency of transmitter release and are sensitive to block by alpha-bungarotoxin. Nicotine also elicits a previously undescribed augmentation of postsynaptic non-NMDA currents. The presynaptic and postsynaptic receptors may prove to be future targets in the search for agonists to increase vagal cardiac activity and reduce the fatality associated with cardiac hyperexcitability and for antagonists to reduce cardiac vagal activity in pathological conditions associated with abnormally low heart rates and cardiac function such as sudden infant death syndrome.

  10. Increased nicotine response in iPSC-derived human neurons carrying the CHRNA5 N398 allele

    PubMed Central

    Oni, Eileen N.; Halikere, Apoorva; Li, Guohui; Toro-Ramos, Alana J.; Swerdel, Mavis R.; Verpeut, Jessica L.; Moore, Jennifer C.; Bello, Nicholas T.; Bierut, Laura J.; Goate, Alison; Tischfield, Jay A.; Pang, Zhiping P.; Hart, Ronald P.

    2016-01-01

    Genetic variation in nicotinic receptor alpha 5 (CHRNA5) has been associated with increased risk of addiction-associated phenotypes in humans yet little is known the underlying neural basis. Induced pluripotent stem cells (iPSCs) were derived from donors homozygous for either the major (D398) or the minor (N398) allele of the nonsynonymous single nucleotide polymorphism (SNP), rs16969968, in CHRNA5. To understand the impact of these nicotinic receptor variants in humans, we differentiated these iPSCs to dopamine (DA) or glutamatergic neurons and then tested their functional properties and response to nicotine. Results show that N398 variant human DA neurons differentially express genes associated with ligand receptor interaction and synaptic function. While both variants exhibited physiological properties consistent with mature neuronal function, the N398 neuronal population responded more actively with an increased excitatory postsynaptic current response upon the application of nicotine in both DA and glutamatergic neurons. Glutamatergic N398 neurons responded to lower nicotine doses (0.1 μM) with greater frequency and amplitude but they also exhibited rapid desensitization, consistent with previous analyses of N398-associated nicotinic receptor function. This study offers a proof-of-principle for utilizing human neurons to study gene variants contribution to addiction. PMID:27698409

  11. Nicotine enhances inhibition of mouse vagal motor neurons by modulating excitability of premotor GABAergic neurons in the nucleus tractus solitarii

    PubMed Central

    Xu, Hong; Boychuk, Jeffery A.; Boychuk, Carie R.; Uteshev, Victor V.

    2014-01-01

    The caudal nucleus of the solitary tract (NTS) serves as the site of the first synapse for visceral sensory inputs to the central nervous system. The NTS sends functional projections to multiple brain nuclei, with gastric-related projections primarily targeting the dorsal motor nucleus of the vagus (DMV). Previous studies have demonstrated that the majority of caudal NTS neurons that project to the DMV respond robustly to nicotine and express nicotinic acetylcholine receptors (nAChRs). However, the cytochemical identity and relationship with specific viscera of DMV-projecting, nicotine-responsive caudal NTS neurons have not been determined. The present study used transgenic mice that express enhanced green fluorescent protein (EGFP) under a GAD67 promoter in a subset of GABAergic neurons, in vivo retrograde pseudorabies viral labeling to identify gastric-related vagal complex neurons, and patch-clamp electrophysiology in acute brain stem slices to test the hypothesis that gastric-related and GABAergic inhibitory synaptic input to the DMV from the caudal NTS is under a robust modulatory control by nAChRs. Our results suggest that activation of nAChRs in the caudal NTS, but not DMV, potentiates GABAergic, but not glutamatergic, input to the DMV. Gastric-related caudal NTS and DMV neurons are directly involved in this nicotine-sensitive circuitry. Understanding the central patterns of nicotinic modulation of visceral sensory-motor circuitry may help develop therapeutic interventions to restore autonomic homeostasis in patients with autonomic impairments. PMID:25429117

  12. Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Wongtrakool, Cherry; Roser-Page, Susanne; Rivera, Hilda N; Roman, Jesse

    2007-09-01

    There is abundant epidemiological data linking prenatal environmental tobacco smoke with childhood asthma and wheezing, but the underlying molecular and physiological mechanisms that occur in utero to explain this link remain unelucidated. Several studies suggest that nicotine, which traverses the placenta, is a causative agent. Therefore, we studied the effects of nicotine on lung branching morphogenesis using embryonic murine lung explants. We found that the expression of alpha(7) nicotinic acetylcholine receptors, which mediate many of the biological effects of nicotine, is highest in pseudoglandular stage lungs compared with lungs at later stages. We then studied the effects of nicotine in the explant model and found that nicotine stimulated lung branching in a dose-dependent fashion. alpha-Bungarotoxin, an antagonist of alpha(7) nicotinic acetylcholine receptors, blocked the stimulatory effect of nicotine, whereas GTS-21, a specific agonist, stimulated branching, thereby mimicking the effects of nicotine. Explants deficient in alpha(7) nicotinic acetylcholine receptors did not respond to nicotine. Nicotine also stimulated the growth of the explant. Altogether, these studies suggest that nicotine stimulates lung branching morphogenesis through alpha(7) nicotinic acetylcholine receptors and may contribute to dysanaptic lung growth, which in turn may predispose the host to airway disease in the postnatal period.

  13. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism.

    PubMed

    Dajas-Bailador, F A; Lima, P A; Wonnacott, S

    2000-10-01

    Neuronal nicotinic acetylcholine receptors (nAChR) have been suggested to play a role in a variety of modulatory and regulatory processes, including neuroprotection. Here we have characterized the neuroprotective effects of nicotine against an excitotoxic insult in primary hippocampal cultures. Exposure of hippocampal neurons to 200 microM NMDA for 1 h decreased cell viability by 25+/-5%, an effect blocked by NMDA receptor antagonists. Nicotine (10 microM) counteracted the NMDA-induced cell death when co-incubated with NMDA or when present subsequent to the NMDA treatment. Nicotine protection was prevented by 1 microM MLA, confirming that it was mediated by nAChR, and by 1 microM alpha-bungarotoxin, demonstrating that the alpha7 nAChR subtype was responsible. Both the NMDA evoked neurotoxicity and nicotine neuroprotection were Ca(2+)-dependent. In Fura-2-loaded hippocampal neurons, nicotine (10 microM) and NMDA (200 microM) acutely increased intracellular resting Ca(2+) from 70 nM to 200 and 500 nM, respectively. Responses to NMDA were unaffected by the presence of nicotine. (45)Ca(2+) uptake after a 1 h exposure to nicotine or NMDA also demonstrated quantitative differences between the two drugs. This study demonstrates that the alpha7 subtype of nAChR can support neuronal survival after an excitotoxic stimulus, through a Ca(2+) dependent mechanism that operates downstream of NMDA receptor activation.

  14. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  15. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  16. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  17. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms.

    PubMed

    Zuo, Wanhong; Xiao, Cheng; Gao, Ming; Hopf, F Woodward; Krnjević, Krešimir; McIntosh, J Michael; Fu, Rao; Wu, Jie; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine's actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward. PMID:27596561

  18. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  19. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  20. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways

    PubMed Central

    Gorini, C.; Jameson, H.; Woerman, A. L.; Perry, D. C.

    2013-01-01

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg−1·day−1 of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex. PMID:23766497

  1. α7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition.

    PubMed

    Pillai, Smitha; Chellappan, Srikumar

    2012-05-01

    Cigarette smoking is strongly correlated with many diseases like cancer, cardiovascular disease and macular degeneration. Nicotine, the main active and addictive component of tobacco smoke has recently been shown to enhance angiogenesis in many experimental systems and animal models. The pro-angiogenic activity of nicotine is mediated by nicotinic acetylcholine receptors, particularly the alpha 7 subunit, that are expressed on a variety of non-neuronal cells including those in the vasculature such as endothelial cells and smooth muscle cells. The present review focuses on the role of α7nAChR in mediating the pro-angiogenic effects of nicotine and describes the molecular mechanisms involved in nicotine-induced angiogenesis as well as epithelial to mesenchymal transition. These observations on nicotine function highlight the therapeutic potential of α7nAChR agonists and antagonists for combating angiogenesis related diseases.

  2. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  3. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  4. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  5. Evidence for thymopoietin and thymopoietin/. alpha. -bungarotoxin/nicotinic receptors within the brain

    SciTech Connect

    Quik, M. ); Babu, U.; Audhya, T.; Goldstein, G. )

    1991-03-15

    Thymopoietin, a polypeptide hormone of the thymus that has pleiotropic actions on the immune, endocrine, and nervous systems, potently interacts with the neuromuscular nicotinic acetylcholine receptor. Thymopoietin binds to the nicotinic {alpha}-bungarotoxin ({alpha}-BGT) receptor in muscle and, like {alpha}BGT, inhibits cholinergic transmission at this site. Evidence is given that radiolabeled thymopoietin similarly binds to a nicotinic {alpha}-BGT-binding site within the brain and does so with the characteristics of a specific receptor ligand. Thus specific binding to neuronal membranes was saturable, of high affinity linear with increased tissue concentration, and readily reversible; half-time was {approximately}5 min for association and 10 min for dissociation. Binding of {sup 125}I-labeled thymopoietin was displaced not only by unlabeled thymopoietin but also by {alpha}-BGT and the nicotinic receptor ligands d-tubocurarine and nicotine; various other receptor ligands (muscarinic, adrenergic, and dopaminergic) did not affect binding of {sup 125}I-labeled thymopoietin. Thymopoietin was shown by ELISA to be present in brain extracts, displacement curves of thymus and brain extracts being parallel to the standard thymopoietin curve, and Western (immuno) blot identified in brain and thymus extracts a thymopoietin-immunoreactive polypeptide of the same molecular mass as purified thymopoietin polypeptide. The authors conclude that thymopoietin and thymopoietin-binding sites are present within the brain and that the receptor for thymopoietin is the previously identified nicotinic {alpha}-BGT-binding site of neuronal tissue.

  6. Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure.

    PubMed

    Polli, Joseph R; Dobbins, Dorothy L; Kobet, Robert A; Farwell, Mary A; Zhang, Baohong; Lee, Myon-Hee; Pan, Xiaoping

    2015-03-01

    Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7μM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17μM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7μM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr

  7. Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors.

    PubMed

    Ríos, Alain; Barrientos, Rafael; Alatorre, Alberto; Delgado, Alfonso; Perez-Capistran, Teresa; Chuc-Meza, Eliezer; García-Ramirez, Martha; Querejeta, Enrique

    2016-02-01

    The globus pallidus (GP) coordinates information processing in the basal ganglia nuclei. The contribution of nicotinic cholinergic receptors (nAChRs) to the spiking activity of GP neurons is largely unknown. Several studies have reported that the effect of nAChRs in other nuclei depends on dopaminergic input. Via in vivo single unit extracellular recordings and intranuclear drug infusions, we analyzed the effects of local activation and blockade of nAChRs in neurons of both sham and 6-hydroxydopamine (6-OHDA)-lesioned rats. In sham rats, the local application of nicotine and edrophonium (an acetylcholinesterase inhibitor) increases GP neurons spiking rate. Local application of mecamylamine, a neuronal nicotinic cholinergic antagonist, diminishes pallidal neurons spiking rate, an effect not produced by d-tubocurarine, a peripheral nicotinic cholinergic antagonist. Moreover, mecamylamine blocks the excitatory effect evoked by nicotine and edrophonium. In 6-OHDA-lesioned rats, local infusion of nicotine does not change pallidal neurons firing rate. Our results show that there is a tonic cholinergic input to the GP that increases their spiking rate through the activation of nAChRs and that this effect depends on functional dopaminergic pathways.

  8. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms

    PubMed Central

    Zuo, Wanhong; Xiao, Cheng; Gao, Ming; Hopf, F. Woodward; Krnjević, Krešimir; McIntosh, J. Michael; Fu, Rao; Wu, Jie; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine’s actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward. PMID:27596561

  9. The Oncogenic Functions of Nicotinic Acetylcholine Receptors

    PubMed Central

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  10. The Oncogenic Functions of Nicotinic Acetylcholine Receptors.

    PubMed

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  11. Increased sensitivity to nicotine-induced seizures in mice expressing the L250T alpha 7 nicotinic acetylcholine receptor mutation.

    PubMed

    Broide, Ron S; Salas, Ramiro; Ji, Daoyun; Paylor, Richard; Patrick, James W; Dani, John A; De Biasi, Mariella

    2002-03-01

    High doses of nicotine, the addictive component of tobacco, induce clonic-tonic seizures in animals. Pharmacological and biochemical data have suggested that alpha 7-containing neuronal nicotinic receptors (nAChRs) contribute to these seizures. To study potential alpha 7 contributions, we examined alpha 7 subunits with a Leu250-to-Thr substitution in the channel domain, which creates a gain-of-function mutation. Previous studies have shown that mice homozygous for the alpha 7 L250T mutation (T/T) die shortly after birth, but animals heterozygous for the mutation (+/T) are viable and grow to adulthood. Hippocampal neurons from the +/T mice exhibited altered alpha 7-type currents with increased amplitudes and slower desensitization kinetics, confirming a partial gain of function for the alpha 7 nAChR. We found that +/T mice were more sensitive to the convulsant effects of nicotine compared with their wild-type (+/+) littermates. Furthermore, although their behavior was normal in basal conditions, +/T mice showed a unique nicotine-induced phenotype, consisting of head-bobbing and paw-tapping movements. Increased sensitivity to nicotine-induced seizures occurred despite a 60% decline in brain alpha 7 nAChR protein levels. There were no changes in the levels of alpha 4, alpha 5, alpha 6, alpha 7, beta 2, and beta 4 mRNA, or in [(125)I]epibatidine and [(3)H]nicotine binding between +/T and +/+ mice. Recent data from our laboratory show that alpha 7-null mice maintain normal sensitivity to nicotine-induced seizures. Hence, these present findings suggest that alterations in the properties rather than absence of alpha 7 nAChRs might affect the mechanisms underlying the convulsive properties of nicotine.

  12. Prenatal exposure of rats to nicotine causes persistent alterations of nicotinic cholinergic receptors

    PubMed Central

    Gold, Allison B.; Keller, Ashleigh B.; Perry, David C.

    2010-01-01

    We examined for immediate and persistent changes in nAChRs in cerebral cortex, thalamus and striatum of male rats caused by prenatal exposure to nicotine from gestational day 3 to postnatal day 10 (PN10), and how such exposure affected the responses of adolescents to subsequent nicotine challenge. Receptor numbers were assessed by [3H]epibatidine binding and receptor function was measured by acetylcholine-stimulated 86Rb efflux (cerebral cortex and thalamus) and nicotine-stimulated dopamine release (striatum). Immediate effects of prenatal nicotine, assessed in PN10 animals, were not detected for any parameter. A subsequent 14 day nicotine exposure in adolescence revealed persistent changes caused by prenatal nicotine exposure. Nicotine exposure in adolescents caused up-regulation of binding in all three regions; however, this up-regulation was lost in thalamus from animals prenatally exposed to nicotine. Nicotine exposure in adolescents caused decreased nicotine-stimulated dopamine release in striatum; this effect was also lost in animals prenatally exposed to nicotine. Comparison of parameters in PN10 and PN42 rats revealed developmental changes in the CNS cholinergic system. In thalamus, binding increased with age, as did the proportion of 86Rb efflux with high sensitivity to acetylcholine. In cortex, binding also increased with age, but there was no change in total 86Rb efflux, and the proportion of high to low sensitivity efflux declined with age. Nicotine-stimulated striatal dopamine release (both total and α-conotoxin MII-resistant release) increased with age in naïve animals, but not in those prenatally exposed to nicotine. These findings demonstrate that prenatal exposure to nicotine causes alterations in the regulation of nAChRs by nicotine that persist into adolescence. These changes may play a role in the increased risk for nicotine addiction observed in adolescent offspring of smoking mothers. PMID:19028470

  13. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  14. PRENATAL NICOTINE EXPOSURE SELECTIVELY AFFECTS NICOTINIC RECEPTOR EXPRESSION IN PRIMARY AND ASSOCIATIVE VISUAL CORTICES OF THE FETAL BABOON

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Stark, Raymond I.; Myers, Michael M.; Fifer, William P.; Mokler, David J.; Kinney, Hannah C.

    2014-01-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex which are important in the development of visual mapping. Using a baboon model we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/hr, i.v.) or saline from 86 days gestation. At 161 days gestation fetal brains were collected (n=5/group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region and subunit dependent manner. Prenatal nicotine exposure was associated with increased binding for 3H-epibatidine sensitive nAChRs in the primary visual cortex (BA 17) and BA 18, but not BA 19, of the associative visual cortex (p<0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy. PMID:24903536

  15. Effects of methyllycaconitine (MLA), an alpha 7 nicotinic receptor antagonist, on nicotine- and cocaine-induced potentiation of brain stimulation reward.

    PubMed

    Panagis, G; Kastellakis, A; Spyraki, C; Nomikos, G

    2000-05-01

    It has been shown that nicotine facilitates intracranial self-stimulation (ICSS) reward and that nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA) are of primary importance for its reinforcing and dependence-producing actions. Recently, we have shown that alpha 7 nicotinic receptors in the VTA contribute to both the acute effects of nicotine on the mesolimbic dopamine system, as well as to nicotine withdrawal reactions. However, it is not yet known whether the same receptor conformation is directly involved in the reinforcing actions of nicotine. Here, using the curve-shift method we studied the effects of methyllycaconitine (MLA), a selective alpha 7 receptor antagonist, microinjected (graded doses: 1, 3, 9 micrograms/microliter per side) into the VTA on the rewarding efficacy of lateral hypothalamic self-stimulation and on the systemic nicotine-induced potentiation of brain stimulation reward. MLA did not affect baseline self-stimulation. Nicotine produced a significant reduction in ICSS threshold, without altering maximal rates of responding, while MLA attenuated the effect of nicotine at the two lower doses. Given the reported interaction between nicotine and cocaine at both the neuronal and the behavioral level, we also examined whether alpha 7 receptor antagonism within the VTA can affect the reinforcing action of cocaine, as measured with ICSS. Interestingly, MLA attenuated the reinforcing effect of cocaine in all doses tested, without altering the maximal rate of responding, i.e. the performance of the animals. These results suggest that alpha 7 nAChRs in the VTA are involved in mediating the reinforcing actions of drugs of abuse, such as nicotine and cocaine, and provide evidence that alpha 7 nAChR antagonists may be clinically useful in attenuating the rewarding effects of addictive drugs.

  16. [Nicotine dependence].

    PubMed

    Kawazoe, Shingo; Shinkai, Takahiro

    2015-09-01

    Smoking is the most widespread addictive behavior in the world, and it causes physical and psychological dependence on nicotine. As for physical nicotine dependence, nicotine produces rewarding effects by interacting with nicotinic acetylcholine receptors on neurons in the brain's reward system. Psychological dependence on nicotine comes with a complex psychological procedure that is based on distorted cognition which justifies their smoking behavior. Clinicians should support smokers with willingness to quit smoking comprehensively with this knowledge, although the success rate of smoking cessation is no ideal in general. PMID:26394514

  17. The sleep-modulating peptide orexin-B protects midbrain dopamine neurons from degeneration, alone or in cooperation with nicotine.

    PubMed

    Guerreiro, Serge; Florence, Clélia; Rousseau, Erwann; Hamadat, Sabah; Hirsch, Etienne C; Michel, Patrick P

    2015-01-01

    To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder.

  18. Enhanced attenuation of nicotine discrimination in rats by combining nicotine-specific antibodies with a nicotinic receptor antagonist.

    PubMed

    LeSage, Mark G; Shelley, David; Pravetoni, Marco; Pentel, Paul R

    2012-07-01

    Tobacco addiction requires activation by nicotine of a variety of central nicotinic acetylcholine receptors (nAChRs). In animals, both nAChR antagonists and immunization against nicotine can reduce nAChR activation by nicotine and block a variety of addiction-relevant behaviors. However, clinical use of nAChR antagonists for smoking cessation is limited by dose-related side effects, and immunization does not reliably produce sufficient antibody levels in smokers to enhance smoking cessation rates. Combining these approaches may be one way of addressing the limitations of each while enhancing overall efficacy. This study examined the individual and combined effects of passive immunization with the monoclonal nicotine-specific antibody Nic311 and the nicotinic receptor antagonist mecamylamine (MEC) on nicotine's discriminative stimulus effects. Rats were trained to discriminate 0.4 mg/kg of nicotine from saline using a two-lever operant discrimination procedure. Antagonism of nicotine discrimination by Nic311 (160 mg/kg i.v.) and ascending doses of MEC (0.03, 0.1, 0.3, and 1.0 mg/kg s.c.) was assessed across four consecutive daily 2-min extinction test sessions using a 2×2 design. Nic311 alone produced a 24-48% reduction in % nicotine-lever responding (%NLR) across all four test sessions. MEC produced a dose-dependent decrease in %NLR, with no effect at the two lowest doses and 80-93% attenuation at the two highest doses. Nic311 combined with MEC significantly suppressed %NLR at every MEC dose (85-92% reduction across all four test sessions). Very low doses of MEC that were ineffective alone completely blocked nicotine discrimination when combined with Nic311. These data demonstrate that nicotine-specific antibodies and MEC can work synergistically to suppress the subjective effects of nicotine and suggest that low doses of MEC may significantly enhance the efficacy of immunotherapy.

  19. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [18F]LBT-999 in a Parkinson’s Disease Rat Model

    PubMed Central

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson’s disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [18F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [3H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  20. Distinct Roles of Bulbar Muscarinic and Nicotinic Receptors in Olfactory Discrimination Learning

    PubMed Central

    Devore, Sasha; de Almeida, Licurgo

    2014-01-01

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns. PMID:25143606

  1. Activation of α2A-Containing Nicotinic Acetylcholine Receptors Mediates Nicotine-Induced Motor Output in Embryonic Zebrafish

    PubMed Central

    Menelaou, Evdokia; Udvadia, Ava J.; Tanguay, Robert L.; Svoboda, Kurt R.

    2014-01-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as evidence from others suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. In order to examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChR are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself. PMID:24738729

  2. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish.

    PubMed

    Menelaou, Evdokia; Udvadia, Ava J; Tanguay, Robert L; Svoboda, Kurt R

    2014-07-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChRs are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.

  3. Nicotinic receptor modulation to treat alcohol and drug dependence

    PubMed Central

    Rahman, Shafiqur; Engleman, Eric A.; Bell, Richard L.

    2015-01-01

    Alcohol and drug dependence are serious public health problems worldwide. The prevalence of alcohol and drug dependence in the United States and other parts of the world is significant. Given the limitations in the efficacy of current pharmacotherapies to treat these disorders, research in developing alternative pharmacotherapies continues. Preclinical and clinical evidence thus far has indicated that brain nicotinic acetylcholine receptors (nAChRs) are important pharmacological targets for the development of medications to treat alcohol and drug dependence. The nAChRs are a super family of ligand gated ion channels, and are expressed throughout the brain with twelve neuronal nAChR subunits (α2–α10 and β2–β4) identified. Here, we review preclinical and clinical evidence involving a number of nAChR ligands that target different nAChR subtypes in alcohol and nicotine addiction. The important ligands include cytisine, lobeline, mecamylamine, varenicline, sazetidine A and others that target α4β2* nAChR subtypes as small molecule modulators of the brain nicotinic cholinergic system are also discussed. Taken together, both preclinical and clinical data exist that support nAChR–based ligands as promising therapeutic agents for the treatment of alcohol and drug dependence. PMID:25642160

  4. Nicotine enhances both excitatory and inhibitory synaptic inputs to inspiratory-activated airway vagal preganglionic neurons.

    PubMed

    Zhou, Xujiao; Chen, Yonghua; Ge, Dengyun; Yuan, Wenjun; Wang, Jijiang

    2013-01-01

    The airway vagal preganglionic neurons (AVPNs) supply the essential excitatory drive to the postganglionic neurons and dominate the neural control of the airway both physiologically and pathophysiologically. The AVPNs express multiple subunits of nicotinic acetylcholine receptors (nAChRs), but the influences of exogenous nicotine and endogenous acetylcholine are unknown. This study examined the effects of nicotine and endogenous acetylcholine on retrogradely labelled, functionally identified inspiratory-activated AVPNs (IA-AVPNs) using the patch-clamp technique. Nicotine (10 μmol l(-1)) significantly increased the frequency and amplitude of the spontaneous EPSCs of IA-AVPNs, and these effects were insensitive to methyllycaconitine (MLA, 100 nmol l(-1)), an antagonist of the α7 type of nAChR, but was prevented by dihydro-β-erythroidine (DHβE, 3 μmol l(-1)), an antagonist of the α4β2 type of nAChR. Nicotine caused a tonic inward current in IA-AVPNs, which was reduced by MLA or DHβE alone, but was not abolished by co-application of MLA and DHβE. Nicotine caused a significant increase in the frequency of GABAergic and glycinergic spontaneous IPSCs and significantly increased the amplitude of glycinergic spontaneous IPSCs, all of which were prevented by DHβE. Nicotine had no effects on the miniature EPSCs or miniature IPSCs following pretreatment with TTX. Under current clamp, nicotine caused depolarization and increased the firing rate of IA-AVPNs during inspiratory intervals. Neostigmine (10 μmol l(-1)), an acetylcholinesterase inhibitor, mimicked the effects of nicotine. These results demonstrate that nicotine and endogenous ACh enhance the excitatory and inhibitory synaptic inputs of IA-AVPNs and cause a postsynaptic excitatory current and that the nicotinic effects are mediated presynaptically by activation of the α4β2 type of nAChR and postsynaptically by activation of multiple nAChRs, including α7 and α4β2 types.

  5. The nicotine metabolite, cotinine, alters the assembly and trafficking of a subset of nicotinic acetylcholine receptors.

    PubMed

    Fox, Ashley M; Moonschi, Faruk H; Richards, Christopher I

    2015-10-01

    Exposure to nicotine alters the trafficking and assembly of nicotinic receptors (nAChRs), leading to their up-regulation on the plasma membrane. Although the mechanism is not fully understood, nicotine-induced up-regulation is believed to contribute to nicotine addiction. The effect of cotinine, the primary metabolite of nicotine, on nAChR trafficking and assembly has not been extensively investigated. We utilize a pH-sensitive variant of GFP, super ecliptic pHluorin, to differentiate between intracellular nAChRs and those expressed on the plasma membrane to quantify changes resulting from cotinine and nicotine exposure. Similar to nicotine, exposure to cotinine increases the number of α4β2 receptors on the plasma membrane and causes a redistribution of intracellular receptors. In contrast to this, cotinine exposure down-regulates α6β2β3 receptors. We also used single molecule fluorescence studies to show that cotinine and nicotine both alter the assembly of α4β2 receptors to favor the high sensitivity (α4)2(β2)3 stoichiometry.

  6. The Nicotine Metabolite, Cotinine, Alters the Assembly and Trafficking of a Subset of Nicotinic Acetylcholine Receptors*

    PubMed Central

    Fox, Ashley M.; Moonschi, Faruk H.; Richards, Christopher I.

    2015-01-01

    Exposure to nicotine alters the trafficking and assembly of nicotinic receptors (nAChRs), leading to their up-regulation on the plasma membrane. Although the mechanism is not fully understood, nicotine-induced up-regulation is believed to contribute to nicotine addiction. The effect of cotinine, the primary metabolite of nicotine, on nAChR trafficking and assembly has not been extensively investigated. We utilize a pH-sensitive variant of GFP, super ecliptic pHluorin, to differentiate between intracellular nAChRs and those expressed on the plasma membrane to quantify changes resulting from cotinine and nicotine exposure. Similar to nicotine, exposure to cotinine increases the number of α4β2 receptors on the plasma membrane and causes a redistribution of intracellular receptors. In contrast to this, cotinine exposure down-regulates α6β2β3 receptors. We also used single molecule fluorescence studies to show that cotinine and nicotine both alter the assembly of α4β2 receptors to favor the high sensitivity (α4)2(β2)3 stoichiometry. PMID:26269589

  7. Neuronal effects of nicotine during auditory selective attention in schizophrenia.

    PubMed

    Smucny, Jason; Olincy, Ann; Rojas, Donald C; Tregellas, Jason R

    2016-01-01

    Although nicotine has been shown to improve attention deficits in schizophrenia, the neurobiological mechanisms underlying this effect are poorly understood. We hypothesized that nicotine would modulate attention-associated neuronal response in schizophrenia patients in the ventral parietal cortex (VPC), hippocampus, and anterior cingulate based on previous findings in control subjects. To test this hypothesis, the present study examined response in these regions in a cohort of nonsmoking patients and healthy control subjects using an auditory selective attention task with environmental noise distractors during placebo and nicotine administration. In agreement with our hypothesis, significant diagnosis (Control vs. Patient) X drug (Placebo vs. Nicotine) interactions were observed in the VPC and hippocampus. The interaction was driven by task-associated hyperactivity in patients (relative to healthy controls) during placebo administration, and decreased hyperactivity in patients after nicotine administration (relative to placebo). No significant interaction was observed in the anterior cingulate. Task-associated hyperactivity of the VPC predicted poor task performance in patients during placebo. Poor task performance also predicted symptoms in patients as measured by the Brief Psychiatric Rating Scale. These results are the first to suggest that nicotine may modulate brain activity in a selective attention-dependent manner in schizophrenia.

  8. Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization

    NASA Astrophysics Data System (ADS)

    Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.

    2004-11-01

    The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.

  9. Role of α5 Nicotinic Acetylcholine Receptors in Pharmacological and Behavioral Effects of Nicotine in Mice

    PubMed Central

    Marks, M. J.; Vann, R. E.; Chen, X.; Gamage, T. F.; Warner, J. A.; Damaj, M. I.

    2010-01-01

    Incorporation of the α5 nicotinic acetylcholine receptor (nAChR) subunit can greatly influence nAChR function without altering receptor number. Although few animal studies have assessed the role of the α5 nAChR in nicotine-mediated behaviors, recent evidence suggests an association between polymorphisms in the α5 nAChR gene and nicotine dependence phenotypes in humans. Thus, additional studies are imperative to elucidate the role and function of the α5 nAChR subunit in nicotine dependence. Using α5(−/−) mice, the current study aimed to examine the role of α5 nAChRs in the initial pharmacological effects of nicotine, nicotine reward using the conditioned place preference model, and the discriminative effects of nicotine using a two-lever drug discrimination model. 86Rb+ efflux and 125I-epibatidine binding assays were conducted to examine the effect of α5 nAChR subunit deletion on expression and activity of functional nAChRs. Results show that α5(−/−) mice are less sensitive to the initial effects of nicotine in antinociception, locomotor activity, and hypothermia measures and that the α5 nAChR is involved in nicotine reward. Alternatively, α5(−/−) mice did not differ from wild-type littermates in sensitivity to the discriminative stimulus effects of nicotine. Furthermore, deletion of the α5 nAChR subunit resulted in a statistically significant decrease in function in the thalamus and hindbrain, but the decreases noted in spinal cord were not statistically significant. Receptor number was unaltered in all areas tested. Taken together, results of the study suggest that α5 nAChRs are involved in nicotine-mediated behaviors relevant to development of nicotine dependence. PMID:20400469

  10. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna Maria; Cappiello, Achille; Pusiol, Teresa; Corna, Melissa Felicita; Termopoli, Veronica; Matturri, Luigi

    2015-01-15

    This study indicates the impact of nicotine and pesticides (organochlorine and organophosphate insecticides used in agriculture) on neuronal α7-nicotinic acetylcholine receptor expression in brainstem regions receiving cholinergic projections in human perinatal life. An in-depth anatomopathological examination of the autonomic nervous system and immunohistochemistry to analyze the α7-nicotinic acetylcholine receptor expression in the brainstem from 44 fetuses and newborns were performed. In addition, the presence of selected agricultural pesticides in cerebral cortex samples of the victims was determined by specific analytical procedures. Hypodevelopment of brainstem structures checking the vital functions, frequently associated with α7-nicotinic acetylcholine receptor immunopositivity and smoke absorption in pregnancy, was observed in high percentages of victims of sudden unexpected perinatal death. In nearly 30% of cases however the mothers never smoked, but lived in rural areas. The search for pesticides highlighted in many of these cases traces of both organochlorine and organophosphate pesticides. We detain that exposition to pesticides in pregnancy produces homologous actions to those of nicotine on neuronal α7-nicotinic acetylcholine receptor, allowing to developmental alterations of brainstem vital centers in victims of sudden unexplained death.

  11. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  12. The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.

    PubMed

    Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L

    2004-03-01

    The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding.

  13. The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.

    PubMed

    Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L

    2004-03-01

    The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding. PMID:14975691

  14. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors.

    PubMed

    Hawkins, Brian T; Egleton, Richard D; Davis, Thomas P

    2005-07-01

    Nicotine increases the permeability of the blood-brain barrier in vivo. This implies a possible role for nicotinic acetylcholine receptors in the regulation of cerebral microvascular permeability. Expression of nicotinic acetylcholine receptor subunits in cerebral microvessels was investigated with immunofluorescence microscopy. Positive immunoreactivity was found for receptor subunits alpha3, alpha5, alpha7, and beta2, but not subunits alpha4, beta3, or beta4. Blood-brain barrier permeability was assessed via in situ brain perfusion with [14C]sucrose. Nicotine increased the rate of sucrose entry into the brain from 0.3 +/- 0.1 to 1.1 +/- 0.2 microl.g(-1).min(-1), as previously described. This nicotine-induced increase in blood-brain barrier permeability was significantly attenuated by both the blood-brain barrier-permeant nicotinic antagonist mecamylamine and the blood-brain barrier-impermeant nicotinic antagonist hexamethonium to 0.5 +/- 0.2 and 0.3 +/- 0.2 microl.g(-1).min(-1), respectively. These data suggest that nicotinic acetylcholine receptors expressed on the cerebral microvascular endothelium mediate nicotine-induced changes in blood-brain barrier permeability.

  15. Nicotinic Mechanisms in the Treatment of Psychotic Disorders: A Focus on the α7 Nicotinic Receptor

    PubMed Central

    Freedman, Robert

    2013-01-01

    Nicotine is heavily abused by persons with schizophrenia. Nicotine better enables people with schizophrenia to filter out extraneous auditory stimuli. Nicotine also improves prepulse inhibition when compared to placebo. Nicotine similarly increases the amplitude of patients’ duration mismatch negativity. The 15q13-14 region of the genome coding for the α7 nicotinic receptor is linked to schizophrenia. Multiple single nucleotide polymorphisms have been identified in this 15q13-14 gene promoter region that are more frequently present in people with schizophrenia than in normal controls. Abnormalities in expression and regulation of central nicotinic cholinoceptors with decreased α7 binding in multiple brain regions are also present. Nicotine enhances cognition in schizophrenia. Alternative agents that activate the nicotinic receptor have been tested including 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB-A). This compound improved attention, working memory, and negative symptoms in an add-on study in non-smoking patients with schizophrenia. There are multiple other nicotinic agents, including positive allosteric modulators, in the preclinical stages of development. Finally, the effects of varenicline and clozapine and their relation to smoking cessation are discussed. PMID:23027417

  16. Crucial role of nicotinic α5 subunit variants for Ca2+ fluxes in ventral midbrain neurons.

    PubMed

    Sciaccaluga, Miriam; Moriconi, Claudia; Martinello, Katiuscia; Catalano, Myriam; Bermudez, Isabel; Stitzel, Jerry A; Maskos, Uwe; Fucile, Sergio

    2015-08-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit modulate nicotine consumption, and the human CHRNA5 rs16969968 polymorphism, causing the replacement of the aspartic acid residue at position 398 with an asparagine (α5DN), has recently been associated with increased use of tobacco and higher incidence of lung cancer. We show that in ventral midbrain neurons, the α5 subunit is essential for heteromeric nAChR-induced intracellular-free Ca(2+) concentration elevations and that in α5(-/-) mice, a class of large-amplitude nicotine-evoked currents is lost. Furthermore, the expression of the α5DN subunit is not able to restore nicotinic responses, indicating a loss of function by this subunit in native neurons. To understand how α5DN impairs heteromeric nAChR functions, we coexpressed α4, α5, or α5DN subunits with a dimeric concatemer (β2α4) in a heterologous system, to obtain nAChRs with fixed stoichiometry. Both α5(β2α4)2 and α5DN(β2α4)2 nAChRs yielded similar levels of functional expression and Ca(2+) permeability, measured as fractional Ca(2+) currents (8.2 ± 0.7% and 8.0 ± 1.9%, respectively), 2-fold higher than α4(β2α4)2. Our results indicate that the loss of function of nicotinic responses observed in α5DN-expressing ventral midbrain neurons is neither due to an intrinsic inability of this subunit to form functional nAChRs nor to an altered Ca(2+) permeability but likely to intracellular modulation.

  17. Brain β2*-nicotinic acetylcholine receptor occupancy after use of a nicotine inhaler

    PubMed Central

    Esterlis, Irina; Mitsis, Effie M.; Batis, Jeffery C.; Bois, Frederic; Picciotto, Marina R.; Stiklus, Stephanie M.; Kloczynski, Tracy; Perry, Edward; Seibyl, John P.; McKee, Sherry; Staley, Julie K.; Cosgrove, Kelly P.

    2012-01-01

    The Nicotrol® (Pfizer, USA) nicotine inhaler reduces craving by mimicking the behavioural component of cigarettes and delivering controlled doses of nicotine, which binds to the beta-2 subunit-containing nicotinic acetylcholine receptors (β2*-nAChRs). Previous studies examined β2*-nAChR occupancy after administration of regular and low-nicotine cigarettes. Here, we measured occupancy of β2*-nAChRs after administration of nicotine via inhaler, and the relationship between occupancy and changes in craving for tobacco smoking and withdrawal symptoms. Tobacco smokers participated in [123I]5-IA-85380 SPECT studies with either a nicotine inhaler (n=9) or tobacco cigarette (n=4) challenge. [123I]5-IA was administered as a bolus plus constant infusion. After equilibrium was achieved, three 30-min baseline scans were collected, and subjects either used the nicotine inhaler or a regular cigarette, and up to six additional scans were obtained. Receptor occupancy was determined based on the Lassen plot method. Craving for tobacco smoking and withdrawal symptoms were evaluated pre- and post-challenge. Use of the nicotine inhaler produced an average 55.9±6.4% occupancy of β2*-nAChRs 2–5 h post-challenge, whereas use of a cigarette produced significantly higher receptor occupancy (F=10.6, p=0.009) with an average 67.6±14.1% occupancy 1.5–5 h post-challenge. There was a significant decrease in withdrawal symptoms post-nicotine inhaler use (F=6.13, p=0.04). These results demonstrate significant differences in occupancy of β2*-nAChRs by nicotine after use of the inhaler vs. a cigarette and confirm the ability of the nicotine inhaler to relieve withdrawal symptoms. PMID:21029513

  18. Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells.

    PubMed

    Fu, Xiao Wen; Lindstrom, Jon; Spindel, Eliot R

    2009-07-01

    Prenatal nicotine exposure impairs normal lung development and leads to diminished pulmonary function after birth. Previous work from our laboratory has demonstrated that nicotine alters lung development by affecting a nonneuronal cholinergic autocrine loop that is expressed in lung. Bronchial epithelial cells (BECs) express choline acetyltransferase, the choline high-affinity transporter and nicotinic acetylcholine (ACh) receptor (nAChR) subunits. We now demonstrate through a combination of morphological and electrophysiological techniques that nicotine affects this autocrine loop by up-regulating and activating cholinergic signaling. RT-PCR showed the expression of alpha 3, alpha 4, alpha 7, alpha 9, alpha 10, beta2, and beta 4 nAChR mRNAs in rhesus monkey lung and cultured BECs. The expression of alpha 7, alpha 4, and beta2 nAChR was confirmed by immunofluorescence in the cultured BECs and lung. The electrophysiological characteristics of nAChR in BECs were determined using whole-cell patch-clamp on cultured BECs. Both ACh and nicotine evoked an inward current, with a rapid desensitizing current. Nicotine induced inward currents in a concentration-dependent manner, with an EC(50) of 26.7 microM. Nicotine-induced currents were reversibly blocked by the nicotinic antagonists, mecamylamine, dihydro-beta-erythroidine, and methyllcaconitine. Incubation of BECs with 1 microM nicotine for 48 hours enhanced nicotine-induced currents by roughly 26%. The protein tyrosine phosphorylation inhibitor, genistein, increased nicotine-induced currents by 58% and enhanced methyllcaconitine-sensitive currents (alpha 7 nAChR activities) 2.3-fold, whereas the protein tyrosine phosphatase inhibitor, pervanadate, decreased the effects of nicotine. These results demonstrate that chronic nicotine exposure up-regulates nAChR activity in developing lung, and that nAChR activity can be further modified by tyrosine phosphorylation.

  19. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration.

    PubMed

    Marks, Michael J; Grady, Sharon R; Salminen, Outi; Paley, Miranda A; Wageman, Charles R; McIntosh, J Michael; Whiteaker, Paul

    2014-07-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are down-regulated following chronic nicotine exposure (unlike other subtypes that have been investigated - most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR down-regulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than up-regulation of α4β2*-nAChR. In contrast, nAChR-mediated [(3) H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [(3) H]-DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function. This study examined dose-response relationships for murine α6β2*-nicotinic acetylcholine receptor (nAChR) down-regulation by chronic nicotine treatment. The ID50 value for α6β2* down-regulation (35 nM) is ≈ 3x lower than the ED50 value for α4β2* nAChR up-regulation (95 nM), both well within the range reached by human smokers. Chronic nicotine treatment altered α6β2*- and α4

  20. Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes.

    PubMed

    Tritto, Theresa; Stitzel, Jerry A; Marks, Michael J; Romm, Elena; Collins, Allan C

    2002-04-01

    Several studies have shown that genetic factors influence the effects of nicotine on respiration, acoustic startle, Y-maze crosses and rears, heart rate and body temperature in the mouse. Recently, we identified restriction fragment length polymorphisms (RFLPs) associated with the alpha4 (Chrna4) and alpha6 (Chrna6) nicotinic cholinergic receptor genes in the recombinant inbred (RI) strains derived from the Long-Sleep (LS) and Short-Sleep (SS) mouse lines. The alpha4 polymorphism has been identified as a point-mutation at position 529 (threonine to alanine) and the alpha6 polymorphism has not yet been identified. The studies described here evaluated the potential role of these polymorphisms in regulating sensitivity to nicotine by constructing dose-response curves for the effects of nicotine on six responses in the LSxSS RI strains. The results obtained suggest that both of the polymorphisms may play a role in regulating variability in sensitivity to nicotine. Those RI strains carrying the LS-like alpha4 RFLP were significantly more sensitive to the effects of nicotine on Y-maze crosses and rears, temperature and respiration and were less sensitive to the effects of nicotine on acoustic startle than those strains carrying the SS-like alpha4 RFLP. Those RI strains carrying the LS-like alpha6 RFLP were more sensitive to the effects of nicotine on respiration and acoustic startle, and less sensitive to the effects of nicotine on Y-maze crosses than those strains carrying the SS-like alpha6 RFLP. These results suggest that genetically determined differences in sensitivity to nicotine may be explained, in part, by variability associated with at least two of the neuronal nicotinic receptor genes, alpha4 and alpha6.

  1. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  2. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    PubMed Central

    2010-01-01

    Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline

  3. Differential rate responses to nicotine in rat heart: evidence for two classes of nicotinic receptors.

    PubMed

    Ji, Susan; Tosaka, Toshimasa; Whitfield, Bernard H; Katchman, Alexander N; Kandil, Abdurrahman; Knollmann, Bjoern C; Ebert, Steven N

    2002-06-01

    Nicotinic acetylcholine receptors are pentameric, typically being composed of two or more different subunits. To investigate which receptor subtypes are active in the heart, we initiated a series of experiments using an isolated perfused rat heart (Langendorff) preparation. Nicotine administration (100 microM) caused a brief decrease (-7 +/- 2%) followed by a much larger increase (17 +/- 5%) in heart rate that slowly returned to baseline within 10 to 15 min. The nicotine-induced decrease in heart rate could be abolished by an alpha7-specific antagonist, alpha-bungarotoxin (100 nM). In contrast, the nicotine-induced increase in heart rate persisted in the presence of alpha-bungarotoxin. These results suggest that the nicotinic acetylcholine receptors (nAChRs) that mediate the initial decrease in heart rate probably contain alpha7 subunits, whereas those that mediate the increase in heart rate probably do not contain alpha7 subunits. To investigate which subunits may contribute to the nicotine-induced increase in heart rate, we repeated our experiments with cytisine, an agonist at nAChRs that contain beta4 subunits. The cytisine results were similar to those obtained with nicotine, thereby suggesting that the nAChRs on sympathetic nerve terminals in the heart probably contain beta4 subunits. Thus, the results of this study show that pharmacologically distinct nAChRs are responsible for the differential effects of nicotine on heart rate. More specifically, our results suggest that alpha7 subunits participate in the initial nicotine-induced heart rate decrease, whereas beta4 subunits help to mediate the subsequent nicotine-induced rise in heart rate.

  4. Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats.

    PubMed

    Frías-Domínguez, Carmen; Garduño, Julieta; Hernández, Salvador; Drucker-Colin, René; Mihailescu, Stefan

    2013-09-01

    Major depression is characterized by a diminished activity of the brain serotonergic system as well as by the flattening of plasma cortisol levels. Nicotine improves mood in patients with major depression and in experimentally depressed animals by increasing brain serotonin (5-HT), noradrenaline and dopamine levels. The present study was directed to determine if flattening plasma glucocorticoid levels changes nicotine's stimulatory effects upon 5-HT DRN neurons. The experiments were performed in brain slices obtained from rats previously (14 days) adrenalectomised and implanted subcutaneously with one pellet containing 75mg of corticosterone (Adx+CSR rats). Whole cell voltage and current clamp techniques were used to study the activity of immunocitochemically identified 5-HT DRN neurons. Administration of nicotine (1μM) in sham-operated animals produced stimulatory effects in all 5-HT DRN neurons studied. In Adx+CSR rats however, nicotine inhibited 75% of 5-HT DRN neurons and increased the potassium-dependent inward rectifying current. The inhibitory effect of nicotine upon 5-HT DRN neurons was dependent on serotonin release inside the DRN, since it was converted into a stimulatory response by the selective antagonist of 5-HT1A receptors N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (WAY100635, 25nM). Adx+CSR rats also presented an increased function of 5-HT1A autoreceptors, since, in these rats, serotonin (1-10μM) produced a higher increase in the potassium dependent inward rectifying current in comparison with sham-operated animals. Serotonin release inside DRN was mediated by α4β2 nicotinic acetylcholine receptors since the selective antagonist of these receptors dihydro-β-erytroidine hydrobromide (DHβE, 100nM) blocked the inhibitory effects of nicotine 5-HT DRN neurons. These data indicate that, in the experimental model of adrenalectomised rats implanted with corticosterone pellets, nicotine increases the function of

  5. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression.

    PubMed

    Upton, Montana; Lotfipour, Shahrdad

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.

  6. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  7. Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

    PubMed

    Stoker, Astrid K; Marks, Michael J; Markou, Athina

    2015-04-15

    The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished

  8. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  9. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  10. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  11. MICE EXPRESSING THE ADNFLE VALINE 287 LEUCINE MUTATION OF THE β2 NICOTINIC ACETYLCHOLINE RECEPTOR SUBUNIT DISPLAY INCREASED SENSITIVITY TO ACUTE NICOTINE ADMINISTRATION AND ALTERED PRESYNAPTIC NICOTINIC RECEPTOR FUNCTION

    PubMed Central

    O’Neill, Heidi C.; Laverty, Duncan C.; Patzlaff, Natalie E.; Cohen, Bruce N.; Fonck, Carlos; McKinney, Sheri; McIntosh, J. Michael; Lindstrom, Jon M.; Lester, Henry A.; Grady, Sharon R.; Marks, Michael J.

    2012-01-01

    Several mutations in α4 or β2 nicotinic receptor subunits are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). One such missense mutation in the gene encoding the β2 neuronal nicotinic acetylcholine receptor (nAChR) subunit (CHRNB2) is a valine-to-leucine substitution in the second transmembrane domain at position 287 (β2VL). Previous studies indicated that the β2VL mutation in mice alters circadian rhythm consistent with sleep alterations observed in ADNFLE patients (Xu et al., 2011). The current study investigates changes in nicotinic receptor function and expression that may explain the behavioral phenotype of β2VL mice. No differences in β2 mRNA expression were found between wild-type (WT) and heterozygous (HT) or homozygous mutant (MT) mice. However, antibody and ligand binding indicated that the mutation resulted in a reduction in receptor protein. Functional consequences of the β2VL mutation were assessed biochemically using crude synaptosomes. A gene-dose dependent increase in sensitivity to activation by acetylcholine and decrease in maximal nAChR-mediated [3H]-dopamine release and 86Rb efflux were observed. Maximal nAChR-mediated [3H]-GABA release in the cortex was also decreased in the MT, but maximal [3H]-GABA release was retained in the hippocampus. Behaviorally both HT and MT mice demonstrated increased sensitivity to nicotine-induced hypolocomotion and hypothermia. Furthermore, WT mice display only a tonic-clonic seizure (EEG recordable) 3 min after injection of a high dose of nicotine, while MT mice also display a dystonic arousal complex (non-EEG recordable) event 30 s after nicotine injection. Data indicate decreases in maximal response for certain measures are larger than expected given the decrease in receptor expression. PMID:23123803

  12. Mice expressing the ADNFLE valine 287 leucine mutation of the Β2 nicotinic acetylcholine receptor subunit display increased sensitivity to acute nicotine administration and altered presynaptic nicotinic receptor function.

    PubMed

    O'Neill, Heidi C; Laverty, Duncan C; Patzlaff, Natalie E; Cohen, Bruce N; Fonck, Carlos; McKinney, Sheri; McIntosh, J Michael; Lindstrom, Jon M; Lester, Henry A; Grady, Sharon R; Marks, Michael J

    2013-01-01

    Several mutations in α4 or β2 nicotinic receptor subunits are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). One such missense mutation in the gene encoding the β2 neuronal nicotinic acetylcholine receptor (nAChR) subunit (CHRNB2) is a valine-to-leucine substitution in the second transmembrane domain at position 287 (β2VL). Previous studies indicated that the β2VL mutation in mice alters circadian rhythm consistent with sleep alterations observed in ADNFLE patients (Xu et al., 2011). The current study investigates changes in nicotinic receptor function and expression that may explain the behavioral phenotype of β2VL mice. No differences in β2 mRNA expression were found between wild-type (WT) and heterozygous (HT) or homozygous mutant (MT) mice. However, antibody and ligand binding indicated that the mutation resulted in a reduction in receptor protein. Functional consequences of the β2VL mutation were assessed biochemically using crude synaptosomes. A gene-dose dependent increase in sensitivity to activation by acetylcholine and decrease in maximal nAChR-mediated [(3)H]-dopamine release and (86)Rb efflux were observed. Maximal nAChR-mediated [(3)H]-GABA release in the cortex was also decreased in the MT, but maximal [(3)H]-GABA release was retained in the hippocampus. Behaviorally both HT and MT mice demonstrated increased sensitivity to nicotine-induced hypolocomotion and hypothermia. Furthermore, WT mice display only a tonic-clonic seizure (EEG recordable) 3 min after injection of a high dose of nicotine, while MT mice also display a dystonic arousal complex (non-EEG recordable) event 30s after nicotine injection. Data indicate decreases in maximal response for certain measures are larger than expected given the decrease in receptor expression.

  13. Role of the D3 dopamine receptor in nicotine sensitization.

    PubMed

    Smith, Laura N; Bachus, Susan E; McDonald, Craig G; Smith, Robert F

    2015-08-01

    Adolescent cigarette use is associated with reduced quitting success and continued smoking in adulthood. Interestingly, polymorphisms of the dopamine D3 receptor (DRD3) gene have been associated with smoking behavior, and the receptor is expressed in an age- and brain region-dependent manner that suggests relevance to addiction. Here, we investigate the possible role of dopamine-related receptors, including DRD3 and an intriguing splice variant known as D3nf, in nicotine-induced sensitization. In adolescent and adult male rats, we examined (1) alterations occurring in dopamine receptor-related mRNAs (DRD1, DRD2, DRD3 and D3nf) at two time points during a sensitizing regimen of nicotine and (2) whether DRD3 antagonism either during the initial treatment (induction) or at a later challenge exposure (expression) is able to block nicotine sensitization. Nicotine-induced changes were seen for DRD3 and D3nf mRNAs in the nucleus accumbens shell early in repeated exposure in both age groups. DRD3 antagonism only blocked the induction of sensitization in adolescents and did not block the expression of sensitization in either age group. Adolescents and adults showed opposite DRD1 mRNA responses to nicotine treatment, while no age- and nicotine-related changes in DRD2 mRNA were observed. These data reveal important age-dependent regulation of DRD1- and DRD3-related mRNAs during the course of nicotine exposure. Furthermore, they highlight a requirement for DRD3 signaling in the development of adolescent nicotine sensitization, suggesting it may represent an appropriate target in the prevention of nicotine dependence initiated at this age.

  14. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  15. Spectral Confocal Imaging of Fluorescently tagged Nicotinic Receptors in Knock-in Mice with Chronic Nicotine Administration

    PubMed Central

    Renda, Anthony; Nashmi, Raad

    2012-01-01

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain1. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue1-3. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates4-6. Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons. Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology7.By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo7-10. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells11.More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer

  16. Spectral confocal imaging of fluorescently tagged nicotinic receptors in knock-in mice with chronic nicotine administration.

    PubMed

    Renda, Anthony; Nashmi, Raad

    2012-02-10

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates. Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons. Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology. By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells. More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer resolution in CNS

  17. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  18. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release.

    PubMed

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  19. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex.

  20. A Role for Hypocretin/Orexin Receptor-1 in Cue-Induced Reinstatement of Nicotine-Seeking Behavior

    PubMed Central

    Plaza-Zabala, Ainhoa; Flores, África; Martín-García, Elena; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2013-01-01

    Hypocretin/orexin signaling is critically involved in relapse to drug-seeking behaviors. In this study, we investigated the involvement of the hypocretin system in the reinstatement of nicotine-seeking behavior induced by nicotine-associated cues. Pretreatment with the hypocretin receptor-1 antagonist SB334867, but not with the hypocretin receptor-2 antagonist TCSOX229, attenuated cue-induced reinstatement of nicotine-seeking, which was associated with an activation of hypocretin neurons of the lateral and perifornical hypothalamic areas. In addition, relapse to nicotine-seeking increased the phosphorylation levels of GluR2-Ser880, NR1-Ser890, and p38 MAPK in the nucleus accumbens (NAc), but not in the prefrontal cortex. Notably, phosphorylation levels of NR1-Ser890 and p38 MAPK, but not GluR2-Ser880, were dependent on hypocretin receptor-1 activation. The intra-accumbens infusion of the protein kinase C (PKC) inhibitor NPC-15437 reduced nicotine-seeking behavior elicited by drug-paired cues consistent with the PKC-dependent phosphorylations of GluR2-Ser880 and NR1-Ser890. SB334867 failed to modify cue-induced reinstatement of food-seeking, which did not produce any biochemical changes in the NAc. These data identify hypocretin receptor-1 and PKC signaling as potential targets for the treatment of relapse to nicotine-seeking induced by nicotine-associated cues. PMID:23518606

  1. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex.

    PubMed

    McClure-Begley, Tristan D; Esterlis, Irina; Stone, Kathryn L; Lam, TuKiet T; Grady, Sharon R; Colangelo, Christopher M; Lindstrom, Jon M; Marks, Michael J; Picciotto, Marina R

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein-protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets. PMID:27559543

  2. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    PubMed Central

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets. PMID:27559543

  3. A Transgenic Mouse Model Reveals Fast Nicotinic Transmission in Hippocampal Pyramidal Neurons

    PubMed Central

    Grybko, Michael J.; Hahm, Eu-teum; Perrine, Wesley; Parnes, Jason A.; Chick, Wallace S.; Sharma, Geeta; Finger, Thomas E.; Vijayaraghavan, Sukumar

    2011-01-01

    The relative contribution, to brain cholinergic signaling, by synaptic- and diffusion-based mechanisms remains to be elucidated. In this study, we examined the prevalence of fast nicotinic signaling in the hippocampus. We describe a mouse model where cholinergic axons are labeled with the tauGFP fusion protein driven by the choline acetyltransferase (ChAT) promoter. The model provides for the visualization of individual cholinergic axons at greater resolution than other available models and techniques, even in thick, live, slices. Combining calcium imaging and electrophysiology, we demonstrate that local stimulation of visualized cholinergic fibers results in rapid EPSCs mediated by the activation of α7-subunit containing nicotinic receptors (α7-nAChRs) on CA3 pyramidal neurons. These responses were blocked by the α7-nAChR antagonist methyllycaconitine (MLA) and potentiated by the receptor specific allosteric modulator 1-(5-chloro-2,4- dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596). Our results suggest, for the first time, that synaptic nAChRs can modulate pyramidal cell plasticity and development. Fast nicotinic transmission might play a greater role in cholinergic signaling than previously assumed. We provide a model for the examination of synaptic properties of basal forebrain cholinergic innervation in the brain. PMID:21501254

  4. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation

    PubMed Central

    Mohamed, Tasnim S.; Jayakar, Selwyn S.; Hamouda, Ayman K.

    2015-01-01

    Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity. PMID:26635524

  5. Functional interaction between Lypd6 and nicotinic acetylcholine receptors.

    PubMed

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj; Wang, Hong; Klein, Anders B; Thiriet, Nathalie; Pinborg, Lars H; Muldoon, Pretal P; Wienecke, Jacob; Imad Damaj, M; Kohlmeier, Kristi A; Gondré-Lewis, Marjorie C; Mikkelsen, Jens D; Thomsen, Morten S

    2016-09-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain. PMID:27344019

  6. The α3β4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the α5 subunit in the mouse

    PubMed Central

    Jackson, Kia J.; Sanjakdar, Sarah S.; Muldoon, Pretal P.; McIntosh, J. Michael; Damaj, M. Imad

    2013-01-01

    The 15q25 gene cluster contains genes that code for the α5, α3, and β4 nicotinic acetylcholine receptor (nAChRs) subunits, and in human genetic studies, has shown the most robust association with smoking behavior and nicotine dependence to date. The limited available animal studies implicate a role for the α5 and β4 nAChR subunits in nicotine dependence and withdrawal; however studies focusing on the behavioral role of the α3β4* nAChR receptor subtype in nicotine dependence are lacking. Because of the apparent role of the α3β4* nAChR subtype in nicotine dependence, the goal of the current study was to better evaluate the involvement of this subtype in nicotine mediated behavioral responses. Using the selective α3β4* nAChR antagonist, α-conotoxin AuIB, we assessed the role of α3β4* nAChRs in acute nicotine, nicotine reward, and physical and affective nicotine withdrawal. Because α5 has also been implicated in nicotine dependence behaviors in mice and can form functional receptors with α3β4*, we also evaluated the role of the α3β4α5* nAChR subtype in nicotine reward and somatic nicotine withdrawal signs by blocking the α3β4* nAChR subtype in α5 nAChR knockout mice with AuIB. AuIB had no significant effect on acute nicotine behaviors, but dose-dependently attenuated nicotine reward and physical withdrawal signs, with no significant effect in affective withdrawal measures. Interestingly, AuIB also attenuated nicotine reward and somatic signs in α5 nAChR knockout mice. This study shows that α3β4* nAChRs mediate nicotine reward and physical nicotine withdrawal, but not acute nicotine behaviors or affective nicotine withdrawal signs in mice. The α5 subunit is not required in the receptor assembly to mediate these effects. Our findings suggest an important role for the α3β4* nAChR subtype in nicotine reward and physical aspects of the nicotine withdrawal syndrome. PMID:23416040

  7. The α3β4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the α5 subunit in the mouse.

    PubMed

    Jackson, Kia J; Sanjakdar, Sarah S; Muldoon, Pretal P; McIntosh, J Michael; Damaj, M Imad

    2013-07-01

    The 15q25 gene cluster contains genes that code for the α5, α3, and β4 nicotinic acetylcholine receptor (nAChRs) subunits, and in human genetic studies, has shown the most robust association with smoking behavior and nicotine dependence to date. The limited available animal studies implicate a role for the α5 and β4 nAChR subunits in nicotine dependence and withdrawal; however studies focusing on the behavioral role of the α3β4* nAChR receptor subtype in nicotine dependence are lacking. Because of the apparent role of the α3β4* nAChR subtype in nicotine dependence, the goal of the current study was to better evaluate the involvement of this subtype in nicotine mediated behavioral responses. Using the selective α3β4* nAChR antagonist, α-conotoxin AuIB, we assessed the role of α3β4* nAChRs in acute nicotine, nicotine reward, and physical and affective nicotine withdrawal. Because α5 has also been implicated in nicotine dependence behaviors in mice and can form functional receptors with α3β4*, we also evaluated the role of the α3β4α5* nAChR subtype in nicotine reward and somatic nicotine withdrawal signs by blocking the α3β4* nAChR subtype in α5 nAChR knockout mice with AuIB. AuIB had no significant effect on acute nicotine behaviors, but dose-dependently attenuated nicotine reward and physical withdrawal signs, with no significant effect in affective withdrawal measures. Interestingly, AuIB also attenuated nicotine reward and somatic signs in α5 nAChR knockout mice. This study shows that α3β4* nAChRs mediate nicotine reward and physical nicotine withdrawal, but not acute nicotine behaviors or affective nicotine withdrawal signs in mice. The α5 subunit is not required in the receptor assembly to mediate these effects. Our findings suggest an important role for the α3β4* nAChR subtype in nicotine reward and physical aspects of the nicotine withdrawal syndrome.

  8. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  9. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  10. Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Gopalakrishnan, M; Buisson, B; Touma, E; Giordano, T; Campbell, J E; Hu, I C; Donnelly-Roberts, D; Arneric, S P; Bertrand, D; Sullivan, J P

    1995-08-15

    The alpha 7 neuronal nicotinic acetylcholine receptor subtype forms a Ca(2+)-permeable homooligomeric ion channel sensitive to alpha-bungarotoxin in Xenopus oocytes. In this study, we have stably and functionally expressed the human alpha 7 cDNA in a mammalian cell line, HEK-293 and examined its pharmacologic properties. [125I] alpha-Bungarotoxin bound to transfected cells with a Kd value of 0.7 nM and a Bmax value of 973 pmoL/mg protein. No specific binding was detected in untransfected cells. Specific binding could be displaced by unlabeled alpha-bungarotoxin (Ki = 0.5 nM) and an excellent correlation was observed between binding affinities of a series of nicotinic cholinergic ligands in transfected cells and those in the human neuroblastoma IMR-32 cell line. Additionally, cell surface expression of alpha 7 receptors was detected by fluorescein isothiocyanate-conjugated alpha-bungarotoxin in transfected cells. Whole cell currents sensitive to blockade by alpha-bungarotoxin, and with fast kinetics of activation and inactivation, were recorded from transfected cells upon rapid application of (-)-nicotine or acetylcholine with EC50 values of 49 microM and 155 microM respectively. We conclude that the human alpha 7 subunit when expressed alone can form functional ion channels and that the stably transfected HEK-293 cell line serves as a unique system for studying human alpha 7 nicotinic receptor function and regulation, and for examining ligand interactions.

  11. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  12. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors.

    PubMed

    Kirsch, Glenn E; Fedorov, Nikolai B; Kuryshev, Yuri A; Liu, Zhiqi; Armstrong, Lucas C; Orr, Michael S

    2016-08-01

    The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  13. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.

    PubMed

    Gahring, Lorise C; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  14. N-Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists.

    PubMed

    Criado, Manuel; Mulet, José; Sala, Francisco; Sala, Salvador; Colmena, Inés; Gandía, Luis; Bautista-Aguilera, Oscar M; Samadi, Abdelouahid; Chioua, Mourad; Marco-Contelles, José

    2016-08-17

    A series of multitarget directed propargylamines, as well as other differently susbstituted piperidines have been screened as potential modulators of neuronal nicotinic acetylcholine receptors (nAChRs). Most of them showed antagonist actions on α7 nAChRs. Especially, compounds 13, 26, and 38 displayed submicromolar IC50 values on homomeric α7 nAChRs, whereas they were less effective on heteromeric α3β4 and α4β2 nAChRs (up to 20-fold higher IC50 values in the case of 13). Antagonism was concentration dependent and noncompetitive, suggesting that these compounds behave as negative allosteric modulators of nAChRs. Upon the study of a series of less complex derivatives, the N-benzylpiperidine motif, common to these compounds, was found to be the main pharmacophoric group. Thus, 2-(1-benzylpiperidin-4-yl)-ethylamine (48) showed an inhibitory potency comparable to the one of the previous compounds and also a clear preference for α7 nAChRs. In a neuroblastoma cell line, representative compounds 13 and 48 also inhibited, in a concentration-dependent manner, cytosolic Ca(2+) signals mediated by nAChRs. Finally, compounds 38 and 13 inhibited 5-HT3A serotonin receptors whereas they had no effect on α1 glycine receptors. Given the multifactorial nature of many pathologies in which nAChRs are involved, these piperidine antagonists could have a therapeutic potential in cases where cholinergic activity has to be negatively modulated. PMID:27254782

  15. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.

    PubMed

    Gahring, Lorise C; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.

  16. Nicotinic Receptor Alpha7 Expression during Mouse Adrenal Gland Development

    PubMed Central

    Gahring, Lorise C.; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W.

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7G). At embryonic day 12.5 (E12.5) α7G expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7G cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7G expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7G, TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7G. Occasional α7G cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7G cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  17. Identification, characterization, and regulation of a nicotinic acetylcholine receptor on bovine adrenal chromaffin cells in culture

    SciTech Connect

    Higgins, L.S.

    1988-01-01

    Synaptic input to bovine adrenal chromaffin cells is mediated by nicotinic acetylcholine receptors (AChRs) and results in secretion of catecholamines. Three probes previously shown to recognize AChRs on neurons were used to identify the AChR on bovine adrenal chromaffin cells in culture: monoclonal antibody mAb 35, a toxin that blocks receptor function, and the agonist nicotine. Competition for {sup 3}H-nicotine binding was used to measure the affinity of cholinergic ligands, and revealed the pharmacological profile expected for a neuronal-type AChR. At steady state the rate both of receptor insertion into and loss from the plasma membrane is about 3%/hour, resulting in a half-life in the surface of about 24 hours. Exposure to the anti-AChR antibody results in a loss of AChRs from the surface of the cells through a process that has the characteristics of antigenic modulation. The number of AChRs on the surface of the chromaffin cells can also be modulated by agonists and hormones, including glucocotricoids. Catecholamines, three peptides that may be secreted by chromaffin cells, and K{sup +}-induced secretion reduce agonist-induced catecholamine release by decreasing the number of AChRs, providing a mechanism for autoregulation.

  18. Protective effect of nicotine through nicotinic acetylcholine receptor alpha 7 on hypoxia-induced membrane disintegration and DNA fragmentation of cultured PC12 cells.

    PubMed

    Tohgi, H; Utsugisawa, K; Nagane, Y

    2000-05-12

    To investigate the effect of nicotine on hypoxic neuronal damage, cultured PC12 cells were exposed to hypoxia for 9 h and then reoxygenated for 72 h. The cells were stained by propidium iodide (PI), a marker of cell membrane disintegration and the TUNEL method, which indicates DNA fragmentation. In control cultures, the ratio of PI-positive cells to total cells progressively increased during and after exposure to hypoxia, constituting 39% of total cells at 72 h posthypoxia. This increase in PI-positive cells was completely inhibited by nicotine until 12 h posthypoxia, and was partially and dose-dependently inhibited thereafter. The ratio of TUNEL-positive cells to total cells started to increase at 24 h posthypoxia and reached 36% at 72 h in control cultures. This ratio was also dose-dependently inhibited by nicotine. These inhibitory effects of nicotine on the increase in PI-positive and TUNEL-positive cells were abolished by the addition to the medium of alpha-bungarotoxin, an antagonistic ligand for nicotinic acetylcholine receptor (AChR) alpha7. These findings suggest that nicotine inhibits, through AChR alpha7, hypoxia-induced cell membrane disintegration and DNA fragmentation of cultured PC12 cells exposed to hypoxia.

  19. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  20. Looking below the surface of nicotinic acetylcholine receptors.

    PubMed

    Stokes, Clare; Treinin, Millet; Papke, Roger L

    2015-08-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype has a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains have defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein-binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction.

  1. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons

    PubMed Central

    Cheng, Qing; Yakel, Jerrel L.

    2015-01-01

    The activation of α7 nAChRs has been shown to improve hippocampal-dependent learning and memory. However, the molecular mechanism of α7 nAChRs’ action remains elusive. We previously reported that activation of α7 nAChRs induced a prolonged enhancement of glutamatergic synaptic transmission in a PKA-dependent manner. Here, we investigated any connection between the activation of the α7 nAChR and cAMP signaling in hippocampal neurons. To address this question, we employed a FRET-based biosensor to measure the intracellular cAMP levels directly via live cell imaging. We found that application of the α7 nAChR-selective agonist choline, in the presence of the α7 nAChR positive allosteric modulator PNU-120596, induced a significant change in emission ratio of F535/F470, which indicated an increase in intracellular cAMP levels. This choline-induced increase was abolished by the α7 nAChR antagonist MLA and the calcium chelator BAPTA, suggesting that the cAMP increase depends on the α7 nAChR activation and subsequent intracellular calcium rise. The selective AC1 inhibitor CB-6673567 and siRNA-mediated deletion of AC1 both blocked the choline-induced cAMP increase, suggesting that calcium-dependent AC1 is required for choline’s action. Furthermore, α7 nAChR activation stimulated the phosphorylation of synapsin, which serves as a downstream effector to regulate neurotransmitter release. Our findings provide the first direct evidence to link activation of α7 nAChRs to a cAMP rise via AC1, which defines a new signaling pathway employed by α7 nAChRs. Our study sheds light into potential molecular mechanisms of the positive cognitive actions of α7 nAChR agonists and development of therapeutic treatments for cognitive impairments. PMID:25937212

  2. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    PubMed Central

    Li, Zong-Zhuang; Dai, Qiu-Yan

    2012-01-01

    Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs), although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs) such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs). In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs. PMID:22529515

  3. Activation of the recombinant human alpha 7 nicotinic acetylcholine receptor significantly raises intracellular free calcium.

    PubMed

    Delbono, O; Gopalakrishnan, M; Renganathan, M; Monteggia, L M; Messi, M L; Sullivan, J P

    1997-01-01

    The alpha 7 nicotinic acetylcholine receptor (nAChR) subtype, unlike other neuronal nicotinic receptors, exhibits a relatively high permeability to Ca++ ions. Although Ca++ entry through this receptor subtype has been implicated in various Ca(++)-dependent processes in the central nervous system, little is known about how this receptor modulates mammalian intracellular Ca++ dynamics. Intracellular Ca++ responses evoked by activation of the human alpha 7 nAChRs stably expressed in HEK-293 (human embryonic kidney) cells were studied. Inward current and intracellular Ca++ transients were recorded simultaneously in response to a fast drug application system. Current recordings under whole-cell voltage-clamp and fast ratiometric intracellular Ca++ imaging acquisition were synchronized to drug pulses. The mean peak [Ca++]i observed with 100 microM (-)-nicotine was 356 +/- 48 nM (n = 8). The magnitude of the intracellular Ca++ elevation corresponds to a 20% fractional current carried by Ca++ ions. The EC50 of the intracellular Ca++ responses for (-)-nicotine, (+/-)-epibatidine, 1,1 dimethyl-4-phenyl-piperazinium and acetylcholine were 51, 3.5, 75 and 108 microM, respectively. These EC50 values strongly correlate with those recorded for the cationic inward current through alpha 7 nAChR. alpha-Bungarotoxin, methyllcaconitine or extracellular Ca++ chelation ablated (-)-nicotine-evoked increase in intracellular Ca++ concentration. This study provides evidence that cation influx through the human alpha 7 nAChR is sufficient to mediate a significant, transient, rise in intracellular Ca++ concentration.

  4. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

  5. Mechanisms of Nicotine Addiction

    SciTech Connect

    McGehee, Daniel

    2002-06-26

    Nicotine reinforces the use of tobacco products primarily through its interaction with specific receptor proteins within the brain's reward centers. A critical step in the process of addiction for many drugs, including nicotine, is the release of the neurotransmitter dopamine. A single nicotine exposure will enhance dopamine levels for hours, however, nicotinic receptors undergo both activation and then desensitization in minutes, which presents an important problem. How does the time course of receptor activity lead to the prolonged release of dopamine? We have found that persistent modulation of both inhibitory and excitatory synaptic connections by nicotine underlies the sustained increase in dopamine release. Because these inputs express different types of nicotinic receptors there is a coordinated shift in the balance of synaptic inputs toward excitation of the dopamine neurons. Excitatory inputs are turned on while inhibitory inputs are depressed, thereby boosting the brain's reward system.

  6. Mechanisms of Nicotine Addiction

    SciTech Connect

    McGehee, Daniel

    2009-06-26

    Nicotine reinforces the use of tobacco products primarily through its interaction with specific receptor proteins within the brain’s reward centers. A critical step in the process of addiction for many drugs, including nicotine, is the release of the neurotransmitter dopamine. A single nicotine exposure will enhance dopamine levels for hours, however, nicotinic receptors undergo both activation and then desensitization in minutes, which presents an important problem. How does the time course of receptor activity lead to the prolonged release of dopamine? We have found that persistent modulation of both inhibitory and excitatory synaptic connections by nicotine underlies the sustained increase in dopamine release. Because these inputs express different types of nicotinic receptors there is a coordinated shift in the balance of synaptic inputs toward excitation of the dopamine neurons. Excitatory inputs are turned on while inhibitory inputs are depressed, thereby boosting the brain’s reward system.

  7. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  8. Topographical studies of the nicotinic acetylcholine receptor. [Torpedo californica

    SciTech Connect

    Middlemas, D.S.

    1987-01-01

    All four subunits of the nicotinic acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with the photoactivated hydrophobic probe, (/sup 3/H)adamantanediazirine, which selectively labels regions of integral membrane proteins in contact with the hydrocarbon core of the lipid bilayer. All four subunits of the acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with (/sup 3/H)cholesteryl diazoacetate. As this probe incorporates into lipid bilayers analogously to cholesterol, this result indicates that acetylcholine receptor interacts with cholesterol. Since the photogenerated carbene is situated near the lipid-water interface, this probe has potential as a topographic tool for mapping membrane protein structure. The labeling studies with both (/sup 3/H)adamantanediazirine and (/sup 3/H)cholesteryl diazoacetate support the concept that the acetylcholine receptor is a pseudosymmetric complex of homologous subunits, all of which interact with and span the membrane. The synthesis of the fluorine-containing agonists for the Torpedo californica nicotinic acetylcholine receptor, fluoroacetylcholine bromide and p-fluorophenyltrimethylammonium iodide, are described. It is demonstrated that both are agonists using a cation flux assay with acetylcholine receptor enriched membrane vesicles. The affinity cleavage reagent, p-thiocyanophenyltrimethylammonium iodide, specifically cleaves a peptide bond of the nicotinic acetylcholine receptor in membrane vesicles isolated from Torpedo californica. It is demonstrated that this reagent is an agonist using a cation flux assay. The cleavage is blocked by stoichiometric quantities of ..cap alpha..-bungarotoxin.

  9. Chronic decentralization of the heart differentially remodels canine intrinsic cardiac neuron muscarinic receptors.

    PubMed

    Smith, F M; McGuirt, A S; Hoover, D B; Armour, J A; Ardell, J L

    2001-11-01

    The objective of the study was to determine if chronic interruption of all extrinsic nerve inputs to the heart alters cholinergic-mediated responses within the intrinsic cardiac nervous system (ICN). Extracardiac nerve inputs to the ICN were surgically interrupted (ICN decentralized). Three weeks later, the intrinsic cardiac right atrial ganglionated plexus (RAGP) was removed and intrinsic cardiac neuronal responses were evaluated electrophysiologically. Cholinergic receptor abundance was evaluated using autoradiography. In sham controls and chronic decentralized ICN ganglia, neuronal postsynaptic responses were mediated by acetylcholine, acting at nicotinic and muscarinic receptors. Muscarine- but not nicotine-mediated synaptic responses that were enhanced after chronic ICN decentralization. After chronic decentralization, muscarine facilitation of orthodromic neuronal activation increased. Receptor autoradiography demonstrated that nicotinic and muscarinic receptor density associated with the RAGP was unaffected by decentralization and that muscarinic receptors were tenfold more abundant than nicotinic receptors in the right atrial ganglia in each group. After chronic decentralization of the ICN, intrinsic cardiac neurons remain viable and responsive to cholinergic synaptic inputs. Enhanced muscarinic responsiveness of intrinsic cardiac neurons occurs without changes in receptor abundance.

  10. Activation of α4β2*/α6β2* nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors.

    PubMed

    Yohn, Nicole L; Turner, Jill R; Blendy, Julie A

    2014-05-01

    Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4β2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and β2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids.

  11. Activation of α4β2*/α6β2* nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors.

    PubMed

    Yohn, Nicole L; Turner, Jill R; Blendy, Julie A

    2014-05-01

    Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4β2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and β2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids. PMID:24627467

  12. Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation.

    PubMed

    Kaltwasser, Susanne; Schmitz, Luise; Michel-Schmidt, Rosmarie; Anspach, Laura; Kirkpatrick, Charles James; Wessler, Ignaz

    2015-11-01

    Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation. CGR8 cells expressed multiple nicotinic receptor subtypes (α3, α4, α7, α9, α10, β1, β2, β3, β4, γ, δ, ε) and muscarinic receptors (M1, M3, M4, M5); M2 was detected only in 2 out of 8 cultures. LIF removal caused a down-regulation only of the α4- and β4-subunit. In conclusion, more or less the whole repertoire of cholinergic receptors is expressed on the murine embryonic stem cell line CGR8 for mediating cellular signaling of non-neuronal acetylcholine which acts via auto- and paracrine pathways. During early differentiation of the murine CGR8 stem cell signaling via nicotinic receptors containing α4- or β4 subunits is reduced. Thus, the so-called neuronal α4 nicotine receptor composed of these subunits may be involved in the regulation of pluripotency in this murine stem cell line.

  13. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons.

    PubMed

    Pasumarthi, Ravi K; Fadel, Jim

    2010-05-01

    The hypothalamus is a prominent target of nicotine action. We have previously shown that acute systemic nicotine treatment induces Fos expression in the lateral hypothalamus and perifornical area (LH/PFA), with orexin/hypocretin neurons being particularly responsive. However, the neurochemical correlates of acute nicotine treatment in the LH/PFA have not been described. Anatomical studies have revealed that this area receives afferents from cholinergic, glutamatergic, and GABAergic telencephalic brain regions, suggesting a potential role for these neurotransmitters in mediating the hypothalamic component of nicotine effects on homeostatic phenomena, such as arousal and appetite. Here, we used in vivo microdialysis to determine the effect of acute systemic or local nicotine on glutamate, acetylcholine, and GABA efflux in the LH/PFA of rats. Local administration of nicotine significantly increased acetylcholine and glutamate, but not GABA, in the LH/PFA. Thus, we further tested the role of afferent sources of glutamate and acetylcholine in mediating acute nicotine-induced activation of orexin neurons by unilaterally lesioning the prefrontal cortex or basal forebrain cholinergic regions. Lesioned animals showed reduced Fos-positive orexin neurons following nicotine treatment. These data suggest that both acetylcholine and glutamate may mediate the effects of acute nicotine on the activity of hypothalamic neurons, including orexin/hypocretin cells. Changes in cholinergic or glutamatergic transmission in this region with chronic nicotine may contribute to long-term alterations in functions mediated by LH/PFA neurons, including feeding and arousal.

  14. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  15. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats.

    PubMed

    Hopkins, Thomas J; Rupprecht, Laura E; Hayes, Matthew R; Blendy, Julie A; Schmidt, Heath D

    2012-09-01

    Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Galantamine has recently been shown to reverse nicotine withdrawal-induced cognitive impairments in mice, which suggests that galantamine may function to prevent relapse in human smokers. However, there are no studies examining whether galantamine administration modulates nicotine self-administration and/or reinstatement of nicotine seeking in rodents. The present experiments were designed to determine the effects of galantamine administration on nicotine taking and reinstatement of nicotine-seeking behavior, an animal model of relapse. Moreover, the effects of galantamine on sucrose-maintained responding and sucrose seeking were also examined to determine whether galantamine's effects generalized to other reinforced behaviors. An inverted U-shaped dose-response curve was obtained when animals self-administered different unit doses of nicotine with the highest responding for 0.03 mg/kg per infusion of nicotine. Acute galantamine administration (5.0 mg/kg, i.p.) attenuated nicotine self-administration when animals were maintained on either a fixed-ratio 5 (FR5) or progressive ratio (PR) schedule of reinforcement. Galantamine administration also attenuated the reinstatement of nicotine-seeking behavior. No significant effects of galantamine on sucrose self-administration or sucrose reinstatement were noted. Acetylcholinesterase inhibitors have also been shown to produce nausea and vomiting in humans. However, at doses required to attenuate nicotine self-administration, no effects of galantamine on nausea/malaise as measured by pica were noted. These results indicate that increased extracellular acetylcholine levels and/or nicotinic acetylcholine receptor stimulation is sufficient to attenuate

  16. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  17. Nicotine Withdrawal

    PubMed Central

    McLaughlin, Ian; Dani, John A.; De Biasi, Mariella

    2015-01-01

    An aversive abstinence syndrome manifests 4–24 h following cessation of chronic use of nicotine-containing products. Symptoms peak on approximately the 3rd day and taper off over the course of the following 3–4 weeks. While the severity of withdrawal symptoms is largely determined by how nicotine is consumed, certain short nucleotide polymorphisms (SNPs) have been shown to predispose individuals to consume larger amounts of nicotine more frequently—as well as to more severe symptoms of withdrawal when trying to quit. Additionally, rodent behavioral models and transgenic mouse models have revealed that specific nicotinic acetylcholine receptor (nAChR) subunits, cellular components, and neuronal circuits are critical to the expression of withdrawal symptoms. Consequently, by continuing to map neuronal circuits and nAChR subpopulations that underlie the nicotine withdrawal syndrome—and by continuing to enumerate genes that predispose carriers to nicotine addiction and exacerbated withdrawal symptoms—it will be possible to pursue personalized therapeutics that more effectively treat nicotine addiction. PMID:25638335

  18. Variation in the α 5 nicotinic acetylcholine receptor subunit gene predicts cigarette smoking intensity as a function of nicotine content.

    PubMed

    Macqueen, D A; Heckman, B W; Blank, M D; Janse Van Rensburg, K; Park, J Y; Drobes, D J; Evans, D E

    2014-02-01

    A single-nucleotide polymorphism (SNP) in the α5 nicotinic acetylcholine receptor subunit gene, rs16969968, has been repeatedly associated with both smoking and respiratory health phenotypes. However, there remains considerable debate as to whether associations with lung cancer are mediated through effects on smoking behavior. Preclinical studies suggest that α5 receptor subunit expression and function may have a direct role in nicotine titration during self administration. The present study investigated the association of CHRNA5 polymorphisms and smoking topography in 66 smokers asked to smoke four nicotine-containing (nicotine yield=0.60 mg) and four placebo (nicotine yield <0.05 mg) cigarettes, during separate experimental sessions. Genotype at rs16969968 predicted nicotine titration, with homozygotes for the major allele (G:G) displaying significantly reduced puff volume in response to nicotine, whereas minor allele carriers (A:G or A:A) produced equivalent puff volumes for placebo and nicotine cigarettes. The present results suggest that puff volume may be a more powerful objective phenotype of smoking behavior than self-reported cigarettes per day and nicotine dependence. Further, these results suggest that the association between rs16969968 and lung cancer may be mediated by the quantity of smoke inhaled.

  19. A multi-route model of nicotine-cotinine pharmacokinetics, pharmacodynamics and brain nicotinic acetylcholine receptor binding in humans.

    PubMed

    Teeguarden, Justin G; Housand, Conrad J; Smith, Jordan N; Hinderliter, Paul M; Gunawan, Rudy; Timchalk, Charles A

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  20. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    SciTech Connect

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  1. In vitro screening strategies for nicotinic receptor ligands.

    PubMed

    Dunlop, John; Roncarati, Renza; Jow, Brian; Bothmann, Hendrick; Lock, Tim; Kowal, Dianne; Bowlby, Mark; Terstappen, Georg C

    2007-10-15

    A common historical strategy to the discovery of nicotinic receptor ligands has involved the use of radioligand-binding assays for ligand identification in combination with two-electrode voltage clamp in Xenopus oocytes for electrophysiological characterization. More recently, higher-throughput methodologies have replaced these approaches to accommodate screening of large compound libraries and to provide increased capacity for electrophysiological profiling in mammalian cell lines. We, and others, have implemented cell-based screening assays using the fluorometric imaging plate reader (FLIPR) for primary and lead optimization screening of nicotinic receptor agonists and positive allosteric modulators (PAMs). Using GH4C1 cells expressing the rat alpha7 nicotinic receptor, both acetylcholine and nicotine produced concentration-dependent elevations of intracellular calcium with EC(50) values of 5.5 and 1.6 microM, respectively. PAM activity was robustly detected using the FLIPR assay; for example, the known alpha7 receptor PAM 5-hydroxyindole failed to directly activate the receptor but produced a leftward shift of the nicotine concentration-response curve in combination with a potentiation of the maximum evoked response to nicotine. Electrophysiological confirmation of agonist activity was achieved using the Dynaflow rapid perfusion system and patch clamp in the same GH4C1 cell expression system. Estimated EC(50) values for acetylcholine-evoked currents in GH4C1/alpha7 cells were 55 and 576 microM for area-under-the-curve (AUC) and maximum peak height calculations, respectively. Similarly, PAM activity was confirmed using electrophysiological recordings while also allowing for the mechanistic discrimination of compounds, not possible using the FLIPR assay. Specifically, PAMs capable of slowing the rapid desensitization of alpha7 receptors to different extents were discernable in these studies. Further improvements in the capacity to screen compounds using

  2. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the alpha 7-subunit.

    PubMed

    Baranowska, Urszula; Göthert, Manfred; Rudz, Radoslaw; Malinowska, Barbara

    2008-09-01

    Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.

  3. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  4. Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons.

    PubMed

    Wang, Jiangang; Wang, Yali; Wang, Yang; Wang, Ran; Zhang, Yunpeng; Zhang, Qian; Lu, Chengbiao

    2014-12-10

    The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.

  5. Route of nicotine administration influences in vivo dopamine neuron activity: habituation, needle injection, and cannula infusion.

    PubMed

    Dong, Yu; Zhang, Tianxiang; Li, Wei; Doyon, William M; Doyon, William; Dani, John A

    2010-01-01

    Mesolimbic dopamine (DA) systems play a critical role in tobacco addiction driven by nicotine. Nicotine activates midbrain DA neurons and, consequently, elevates DA concentrations in targets, especially in the nucleus accumbens (NAc) of the ventral striatum. The route of drug administration influences the impact of addictive drugs. Here, we examine whether the nature of the administration alters DA neuron activity and DA concentrations in the NAc. Using unhabituated naïve freely moving rats, microdialysis measurements showed that nicotine administered via needle injection caused greater DA release in the NAc than the same dose administered via an implanted chronic cannula. After habituation to the needle injections, however, there was no significant difference in DA signaling between the needle and cannula routes of administration. Consistent with these microdialysis results after habituation, our in vivo tetrode unit recordings showed no significant difference in midbrain DA neuron activity in response to nicotine delivered by needle or cannula as long as predictive cues were avoided

  6. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease

    SciTech Connect

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-03-05

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of (/sup 3/H)-ketanserin to serotonin receptors in frontal cortex and of (/sup 3/H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of (/sup 3/H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens.

  7. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction.

  8. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. PMID:26688111

  9. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption.

    PubMed

    Kamens, Helen M; Miyamoto, Jill; Powers, Matthew S; Ro, Kasey; Soto, Marissa; Cox, Ryan; Stitzel, Jerry A; Ehringer, Marissa A

    2015-12-01

    Genetic factors explain approximately half of the variance in smoking behaviors, but the molecular mechanism by which genetic variation influences behavior is poorly understood. SNPs in the putative promoter region of CHRNB3, the gene that encodes the β3 subunit of the nicotinic acetylcholine receptor (nAChR), have been repeatedly associated with nicotine behaviors. In this work we sought to identify putative function of three SNPs in the promoter region of CHRNB3 on in vitro gene expression. Additionally, we used β3 null mutant mice as a model of reduced gene expression to assess the effects on nicotine behaviors. The effect of rs13277254, rs6474413, and rs4950 on reporter gene expression was examined using a luciferase reporter assay. A major and minor parent haplotype served as the background on which alleles at the three SNPs were flipped onto different backgrounds (e.g. minor allele on major haplotype background). Constructs were tested in three human cell lines: BE(2)-C, SH-SY5Y and HEK293T. In all cell types the major haplotype led to greater reporter gene expression compared to the minor haplotype, and results indicate that this effect is driven by rs6474413. Moreover, mice lacking the β3 subunit showed reduced voluntary nicotine consumption compared that of wildtype animals. These data provide evidence that the protective genetic variant at rs6474413 identified in human genetic studies reduces gene expression and that decreased β3 gene expression in mice reduces nicotine intake. This work contributes to our understanding of the molecular mechanisms that contribute to the human genetic associations of tobacco behaviors.

  10. AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks.

    PubMed

    Damijonaitis, Arunas; Broichhagen, Johannes; Urushima, Tatsuya; Hüll, Katharina; Nagpal, Jatin; Laprell, Laura; Schönberger, Matthias; Woodmansee, David H; Rafiq, Amir; Sumser, Martin P; Kummer, Wolfgang; Gottschalk, Alexander; Trauner, Dirk

    2015-05-20

    Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans. PMID:25741856

  11. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  12. Prenatal Exposure to Nicotine Stimulates Neurogenesis of Orexigenic Peptide-Expressing Neurons in Hypothalamus and Amygdala

    PubMed Central

    Chang, Guo-Qing; Karatayev, Olga

    2013-01-01

    Animal and clinical studies show that gestational exposure to nicotine increases the propensity of offspring to consume nicotine, but the precise mechanism mediating this behavioral phenomenon is unclear. The present study in Sprague Dawley rats examined the possibility that the orexigenic peptide systems, enkephalin (ENK) and orexin (OX), which are stimulated by nicotine in adult animals and promote consummatory behavior, may be similarly responsive to nicotine's stimulatory effect in utero while having long-term behavioral consequences. The results demonstrated that nicotine exposure during gestation at low doses (0.75 or 1.5 mg/kg/d) significantly increased mRNA levels and density of neurons that express ENK in the hypothalamic paraventricular nucleus and central nucleus of the amygdala, OX, and another orexigenic peptide, melanin-concentrating hormone, in the perifornical lateral hypothalamus in preweanling offspring. These effects persisted in the absence of nicotine, at least until puberty. Colabeling of the cell proliferation marker BrdU with the neuronal marker NeuN and peptides revealed a marked stimulatory effect of prenatal nicotine on neurogenesis, but not gliogenesis, and also on the number of newly generated neurons expressing ENK, OX, or melanin-concentrating hormone. During adolescence, offspring also exhibited significant behavioral changes, increased consumption of nicotine and other substances of abuse, ethanol and a fat-rich diet, with no changes in chow and water intake or body weight. These findings reveal a marked sensitivity during gestation of the orexigenic peptide neurons to low nicotine doses that may increase the offspring's propensity to overconsume substances of abuse during adolescence. PMID:23966683

  13. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway.

    PubMed

    Di, Xiaojing; Yan, Jingqi; Zhao, Yan; Chang, Yanzhong; Zhao, Baolu

    2012-12-01

    In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHβE). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the α(4), β(2) and α(7) nicotine acetylcholine receptor (nAChR) subunits induced by nicotine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of tobacco addiction.

  14. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions. PMID:26318763

  15. Differential block of nicotinic synapses on B versus C neurones in sympathetic ganglia of frog by α-conotoxins MII and ImI

    PubMed Central

    Tavazoie, Sohail F; Tavazoie, Masoud F; McIntosh, J Michael; Olivera, Baldomero M; Yoshikami, Doju

    1997-01-01

    The effects of two new acetylcholine receptor antagonists, α-conotoxin MII and α-conotoxin ImI, on nicotinic synaptic transmission in the 10th paravertebral sympathetic ganglion of the leopard frog (Rana pipiens) were examined. The preganglionic nerve was electrically stimulated (at low frequency, ⩽1 min−1, to avoid use-dependent changes) while compound action potentials of B and C neurones were monitored from the postganglionic nerve.α-Conotoxins MII and ImI, at low micromolar concentrations, reversibly blocked both B and C waves. α-Conotoxin MII blocked the C wave more effectively than the B wave, whereas the potency of α-conotoxin ImI was opposite that of MII. The observation that nicotinic antagonists can differentially block synaptic transmission of B versus C neurones with opposite selectivities strongly suggests that these neurones possess distinct nicotinic receptors.In addition to fast and slow B waves described by others, C waves with two temporally distinguishable components were present in our recordings. Each α-conotoxin affected fast and slow B waves similarly. Likewise, toxins did not discriminate between the two components of C waves. This suggests that all neurones within each major class (B or C) may have the same nicotinic receptors.Synthetic forms of α-conotoxins MII and ImI were used in the present study. Their ease of synthesis and their specificities should make these toxins useful probes to investigate the various subtypes of neuronal nicotinic acetylcholine receptors. PMID:9134208

  16. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  17. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    PubMed Central

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  18. Receptor subtypes mediating depressor responses to microinjections of nicotine into medial NTS of the rat.

    PubMed

    Dhar, S; Nagy, F; McIntosh, J M; Sapru, H N

    2000-07-01

    Microinjections (50 nl) of nicotine (0.01-10 microM) into the nucleus of the solitary tract (NTS) of adult, urethan-anesthetized, artificially ventilated, male Wistar rats, elicited decreases in blood pressure and heart rate. Prior microinjections of alpha-bungarotoxin (alpha-BT) and alpha-conotoxin ImI (specific toxins for nicotinic receptors containing alpha7 subunits) elicited a 20-38% reduction in nicotine responses. Similarly, prior microinjections of hexamethonium, mecamylamine, and alpha-conotoxin AuIB (specific blockers or toxin for nicotinic receptors containing alpha3beta4 subunits) elicited a 47-79% reduction in nicotine responses. Nicotine responses were completely blocked by prior sequential microinjections of alpha-BT and mecamylamine into the NTS. Complete blockade of excitatory amino acid receptors (EAARs) in the NTS did not attenuate the responses to nicotine. It was concluded that 1) the predominant type of nicotinic receptor in the NTS contains alpha3beta4 subunits, 2) a smaller proportion contains alpha7 subunits, 3) the presynaptic nicotinic receptors in the NTS do not contribute to nicotine-induced responses, and 4) EAARs in the NTS are not involved in mediating responses to nicotine.

  19. [Amyloid cascade hypothesis of Alzheimer's disease and alpha 7 nicotinic receptor].

    PubMed

    Hashimoto, Kenji; Iyo, Masaomi

    2002-04-01

    It is known that beta amyloid protein (A beta) plays an important role in the pathology of Alzheimer's disease (AD). In this review, the role of cellular signaling in the protective action of nicotine for A beta-induced neurotoxicity is described. Recent biochemical and functional studies have demonstrated that A beta interacts directly with the alpha 7 nicotinic receptor, suggesting that A beta might have a function as an endogenous ligand for this receptor. Thus the role of alpha 7 nicotinic receptor in the A beta cascade hypothesis of AD and the possibility of alpha 7 nicotine receptor agonists as the therapeutic drugs for AD are discussed.

  20. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    PubMed Central

    Di Cesare Mannelli, Lorenzo; Tenci, Barbara; Zanardelli, Matteo; Failli, Paola; Ghelardini, Carla

    2015-01-01

    Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR) agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU). Oxaliplatin (1 μM, 48 h) reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase). On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes. PMID:26146570

  1. A signal peptide missense mutation associated with nicotine dependence alters α2*-nicotinic acetylcholine receptor function.

    PubMed

    Dash, Bhagirathi; Lukas, Ronald J; Li, Ming D

    2014-04-01

    A cytosine to thymidine (C → T) missense mutation in the signal peptide (SP) sequence (rs2472553) of the nicotinic acetylcholine receptor (nAChR) α2 subunit produces a threonine-to-isoleucine substitution (T22I) often associated with nicotine dependence (ND). We assessed effects on function of α2*-nAChR ('*'indicates presence of additional subunits) of this mutation, which could alter SP cleavage, RNA/protein secondary structure, and/or efficiency of transcription, translation, subunit assembly, receptor trafficking or cell surface expression. Two-electrode voltage clamp analyses indicate peak current responses to ACh or nicotine are decreased 2.8-5.8-fold for putative low sensitivity (LS; 10:1 ratio of α:β subunit cRNAs injected) α2β2- or α2β4-nAChR and increased for putative high sensitivity (HS; 1:10 α:β subunit ratio) α2β2- (5.7-15-fold) or α2β4- (1.9-2.2-fold) nAChR as a result of the mutation. Agonist potencies are decreased 1.6-4-fold for putative LS or HS α2(T22I)β2-nAChR or for either α2*-nAChR subtype formed in the presence of equal amounts of subunit cRNA, slightly decreased for LS α2(T22I)β4-nAChR, but increased 1.4-2.4-fold for HS α2(T22I)β4-nAChR relative to receptors containing wild-type α2 subunits. These effects suggest that the α2 subunit SP mutation generally favors formation of LS receptor isoforms. We hypothesize that lower sensitivity of human α2*-nAChR to nicotine could contribute to increased susceptibility to ND. To our knowledge this is the first report of a SP mutation having a functional effect in a member of cys-loop family of ligand-gated ion channels.

  2. Chronic nicotine treatment attenuates alpha 7 nicotinic receptor deficits following traumatic brain injury.

    PubMed

    Verbois, S L; Scheff, S W; Pauly, J R

    2003-02-01

    Traumatic brain injury (TBI) often causes a persistent and debilitating impairment of cognitive function. Although the neurochemical basis for TBI-induced cognitive dysfunction is not well characterized, some studies suggest prominent involvement of the CNS cholinergic system. Previous studies from our laboratories have shown that alpha 7* nicotinic cholinergic receptors (nAChrs) are especially vulnerable to the pathophysiological effects of TBI. Hippocampal and cortical alpha-[(125)I]-bungarotoxin (BTX) expression of alpha 7* nAChrs is significantly decreased in many brain regions following TBI and this reduction persists for at least 3 weeks following injury. In the present study we evaluated whether chronic nicotine infusion could attenuate TBI-induced deficits in alpha 7* nAChr expression. Male Sprague-Dawley rats were sham-operated, or subjected to mild or moderate unilateral cortical contusion injury. Immediately following brain injury, osmotic mini-pumps that delivered chronic saline or nicotine (0.125 or 0.25 mg/kg/h) were implanted. The animals were euthanatized and the brains prepared for nAChr quantitative autoradiography, 7 days following surgery. Brain injury caused significant decreases in BTX binding in several regions of the hippocampus. TBI-induced deficits in alpha 7* nAChr density were reversed in four of the six hippocampal brain regions evaluated following chronic nicotine administration. If TBI-induced deficits in alpha 7* nAChr expression play a role in post-injury cognitive impairment, pharmacological treatments which restore nAChr binding to control levels may be therapeutically useful.

  3. Function of Partially Duplicated Human α7 Nicotinic Receptor Subunit CHRFAM7A Gene

    PubMed Central

    de Lucas-Cerrillo, Ana M.; Maldifassi, M. Constanza; Arnalich, Francisco; Renart, Jaime; Atienza, Gema; Serantes, Rocío; Cruces, Jesús; Sánchez-Pacheco, Aurora; Andrés-Mateos, Eva; Montiel, Carmen

    2011-01-01

    The neuronal α7 nicotinic receptor subunit gene (CHRNA7) is partially duplicated in the human genome forming a hybrid gene (CHRFAM7A) with the novel FAM7A gene. The hybrid gene transcript, dupα7, has been identified in brain, immune cells, and the HL-60 cell line, although its translation and function are still unknown. In this study, dupα7 cDNA has been cloned and expressed in GH4C1 cells and Xenopus oocytes to study the pattern and functional role of the expressed protein. Our results reveal that dupα7 transcript was natively translated in HL-60 cells and heterologously expressed in GH4C1 cells and oocytes. Injection of dupα7 mRNA into oocytes failed to generate functional receptors, but when co-injected with α7 mRNA at α7/dupα7 ratios of 5:1, 2:1, 1:1, 1:5, and 1:10, it reduced the nicotine-elicited α7 current generated in control oocytes (α7 alone) by 26, 53, 75, 93, and 94%, respectively. This effect is mainly due to a reduction in the number of functional α7 receptors reaching the oocyte membrane, as deduced from α-bungarotoxin binding and fluorescent confocal assays. Two additional findings open the possibility that the dominant negative effect of dupα7 on α7 receptor activity observed in vitro could be extrapolated to in vivo situations. (i) Compared with α7 mRNA, basal dupα7 mRNA levels are substantial in human cerebral cortex and higher in macrophages. (ii) dupα7 mRNA levels in macrophages are down-regulated by IL-1β, LPS, and nicotine. Thus, dupα7 could modulate α7 receptor-mediated synaptic transmission and cholinergic anti-inflammatory response. PMID:21047781

  4. Activation of muscarinic receptors by non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz Karl; Kirkpatrick, Charles James

    2012-01-01

    The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.

  5. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  6. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  7. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25514383

  8. Purification and characterization of an. alpha. -bungarotoxin receptor that forms a functional nicotinic channel

    SciTech Connect

    Gotti, C.; Ogando, A.E.; Moretti, M.; Clementi, F. ); Hanke, W.; Schlue, R. )

    1991-04-15

    Neither the structure nor the function of {alpha}-bungarotoxin ({alpha}Bgtx) binding molecules in the nervous system have yet been completely defined, although it is known that some of these molecules are related to cation channels and some are not. Using an improved method of affinity chromatography, the authors have isolated a toxin binding molecule from chicken optic lobe that contains at least three subunits with apparent M{sub r} values of 52,000, 57,000, and 67,000. The M{sub r} 57,000 subunit binds {alpha}Bgtx receptors of human neuroblastoma cells, fetal calf muscle, and chicken optic lobe but not by antibodies raised against Torpedo acetylcholine receptor, the serum of myasthenic patients, or monoclonal antibody 35. {sup 125}I-labeled {alpha}Bgtx binding to the isolated receptor is blocked, with the same potency, by nicotinic agonists and antagonists, such as nicotine, neuronal bungarotoxin and, d-tubocurarine. When reconstituted in a planar lipid bilayer, the purified {alpha}Bgtx receptor forms cationic channels with a conductance of 50 pS. These channels are activated in a dose-dependent manner by carbamylcholine and blocked by d-tubocurarine.

  9. Presynaptic targeting of alpha4beta 2 nicotinic acetylcholine receptors is regulated by neurexin-1beta.

    PubMed

    Cheng, Shi-Bin; Amici, Stephanie A; Ren, Xiao-Qin; McKay, Susan B; Treuil, Magdalen W; Lindstrom, Jon M; Rao, Jayaraman; Anand, Rene

    2009-08-28

    The mechanisms involved in the targeting of neuronal nicotinic acetylcholine receptors (AChRs), critical for their functional organization at neuronal synapses, are not well understood. We have identified a novel functional association between alpha4beta2 AChRs and the presynaptic cell adhesion molecule, neurexin-1beta. In non-neuronal tsA 201 cells, recombinant neurexin-1beta and mature alpha4beta2 AChRs form complexes. alpha4beta2 AChRs and neurexin-1beta also coimmunoprecipitate from rat brain lysates. When exogenous alpha4beta2 AChRs and neurexin-1beta are coexpressed in hippocampal neurons, they are robustly targeted to hemi-synapses formed between these neurons and cocultured tsA 201 cells expressing neuroligin-1, a postsynaptic binding partner of neurexin-1beta. The extent of synaptic targeting is significantly reduced in similar experiments using a mutant neurexin-1beta lacking the extracellular domain. Additionally, when alpha4beta2 AChRs, alpha7 AChRs, and neurexin-1beta are coexpressed in the same neuron, only the alpha4beta2 AChR colocalizes with neurexin-1beta at presynaptic terminals. Collectively, these data suggest that neurexin-1beta targets alpha4beta2 AChRs to presynaptic terminals, which mature by trans-synaptic interactions between neurexins and neuroligins. Interestingly, human neurexin-1 gene dysfunctions have been implicated in nicotine dependence and in autism spectrum disorders. Our results provide novel insights as to possible mechanisms by which dysfunctional neurexins, through downstream effects on alpha4beta2 AChRs, may contribute to the etiology of these neurological disorders.

  10. Differential Responses of Hippocampal Neurons and Astrocytes to Nicotine and Hypoxia in the Fetal Guinea Pig

    PubMed Central

    Blutstein, Tamara; Castello, Michael A.; Viechweg, Shaun S.; Hadjimarkou, Maria M.; McQuail, Joseph A.; Holder, Mary; Thompson, Loren P.; Mong, Jessica A.

    2012-01-01

    In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. The present study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms. PMID:23192463

  11. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  12. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  13. A key role for the N/OFQ-NOP receptor system in modulating nicotine taking in a model of nicotine and alcohol co-administration

    PubMed Central

    Cippitelli, Andrea; Schoch, Jennifer; Debevec, Ginamarie; Brunori, Gloria; Zaveri, Nurulain T.; Toll, Lawrence

    2016-01-01

    Alcohol and nicotine are often co-abused. Although the N/OFQ-NOP receptor system is considered a potential target for development of drug abuse pharmacotherapies, especially for alcoholism, little is known about the role of this system in nicotine dependence. Furthermore, the effect of prior history of nicotine dependence on subsequent nicotine and alcohol taking is understudied. Using an operant co-administration paradigm, in which rats concurrently self-administer nicotine and alcohol, we found that nicotine dependent rats increased nicotine self-administration over time as compared to non-dependent animals, while patterns of alcohol lever pressing did not change between groups. Pretreatment with the potent NOP receptor agonist AT-202 (0.3–3 mg/kg) increased nicotine lever pressing of both dependent and non-dependent groups, whereas the selective antagonist SB612111 (1–10 mg/kg) elicited a clear reduction of nicotine responses, in both dependent and non-dependent rats. In parallel, AT-202 only produced minor changes on alcohol responses and SB612111 reduced alcohol taking at a dose that also reduced locomotor behavior. Results indicate that a history of nicotine dependence affects subsequent nicotine- but not alcohol-maintained responding, and that NOP receptor antagonism, rather than agonism, blocks nicotine self-administration, which strongly suggests a critical role for the endogenous N/OFQ in the modulation of nicotine reinforcement processes. PMID:27199205

  14. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway.

    PubMed

    Xu, Tian-Ying; Guo, Ling-Ling; Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.

  15. The role of alpha-7 nicotinic receptors in food intake behaviors.

    PubMed

    McFadden, Kristina L; Cornier, Marc-Andre; Tregellas, Jason R

    2014-01-01

    Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.

  16. Nicotinic receptors regulate the dynamic range of dopamine release in vivo.

    PubMed

    Koranda, Jessica L; Cone, Jackson J; McGehee, Daniel S; Roitman, Mitchell F; Beeler, Jeff A; Zhuang, Xiaoxi

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.

  17. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  18. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    PubMed

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  19. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala

    PubMed Central

    Kenny, Paul J.; Chartoff, Elena; Roberto, Marisa; Carlezon, William A.; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5–2.5 mg/kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg/kg) or intravenously self-administered (0.03 mg/kg/infusion) nicotine injections. The highest LY235959 dose (5 mg/kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 μM) increased NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1–10 ng/side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug. PMID:18418357

  20. The activation of the nicotinic acetylcholine receptor by the transmitter.

    PubMed

    Taylor, D B; Spivak, C E

    1985-02-01

    Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation.

  1. Administration of nicotine to adolescent rats evokes regionally selective upregulation of CNS alpha 7 nicotinic acetylcholine receptors.

    PubMed

    Slotkin, Theodore A; Cousins, Mandy M; Seidler, Frederic J

    2004-12-24

    Alpha 7 Nicotinic acetylcholine receptors (nAChRs) play a role in axonogenesis, synaptogenesis and synaptic plasticity, and are therefore targets for developmental neurotoxicants. We administered nicotine to adolescent rats and evaluated the effects on alpha 7 nAChRs in the striatum, brainstem and cerebellum. During the period of nicotine administration (30-47.5 days of age), nicotine elicited alpha 7 nAChR upregulation with a regional hierarchy of striatum>brainstem>cerebellum. Values returned to normal or became slightly subnormal almost immediately after the cessation of treatment (50 days of age) with no further changes through 75 days of age. The temporal and regional patterns of the effects on alpha 7 nAChRs were distinct from those reported earlier for the alpha 4 beta 2 subtype, and neither adult nor fetal/neonatal administration upregulates the alpha 7 subtype in the striatum. Targeting of the striatum is thus unique to nicotine exposure during adolescence and parallels earlier work showing regionally selective effects of this treatment on synaptic signaling. We obtained preliminary evidence for nicotine-induced oxidative stress as a potential contributory mechanism. The present findings reinforce the concept of biologically distinct effects of nicotine in the adolescent brain and provide evidence for a mechanistic involvement of alpha 7 nAChRs in its unique effects during this developmental period.

  2. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure.

    PubMed

    Buczynski, Matthew W; Herman, Melissa A; Hsu, Ku-Lung; Natividad, Luis A; Irimia, Cristina; Polis, Ilham Y; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J; Cravatt, Benjamin F; Roberto, Marisa; Parsons, Loren H

    2016-01-26

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.

  3. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-01

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. PMID:21968142

  4. Hippocampal neuronal nitric oxide synthase (nNOS) is regulated by nicotine and stress in female but not in male rats.

    PubMed

    Keser, Aysegul; Balkan, Burcu; Gozen, Oguz; Kanit, Lutfiye; Pogun, Sakire

    2011-01-12

    NO (nitric oxide) produced in limbic brain regions has important roles in the regulation of autonomic nervous system and HPA axis activity, anxiety, fear learning, long-term memory formation, and depression. NO is synthesized from l-arginine in a reaction catalyzed by nitric oxide synthase (NOS). Neuronal nitric oxide synthase (nNOS), one of the three isoforms of NOS, is synthesized constitutively in nerve cells. Increasing evidence indicates that nNOS expression in the nervous system may be regulated by stress and nicotinic receptors. Furthermore, data obtained from several studies suggest that signaling pathways induced by stress and nicotinic receptors may converge on various signal transduction molecules to regulate nNOS expression in brain. In the present study, we used Western Blot analysis to test the effect of forced swim stress, chronic nicotine administration, and the combined effect of both procedures on nNOS expression in the hippocampus, amygdala and frontal cortex of the male and female rat brain. Basal nNOS levels of the three brain regions examined did not show sex differences. However, forced swim stress and chronic nicotine administration increased nNOS expression in the hippocampus of female rats. When stress and nicotine were applied together, no additional increment was observed. Stress and nicotine did not regulate nNOS expression in the amygdala and the frontal cortex of either sex. Data obtained from the present study indicate that the regulation of stress and nicotine induced-nNOS expression in rat hippocampus shows sexual dimorphism and nNOS expression in the female rat hippocampus increases by nicotine and stress.

  5. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  6. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Connor, David A; Gould, Thomas J

    2015-06-01

    Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ. PMID:25666034

  7. Local application of drugs to study nicotinic acetylcholine receptor function in mouse brain slices.

    PubMed

    Engle, Staci E; Broderick, Hilary J; Drenan, Ryan M

    2012-10-29

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9'A mice (1) and α6 L9'S mice (2), allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  8. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  9. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

    PubMed Central

    Shirvan, M H; Pollard, H B; Heldman, E

    1991-01-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features. Images PMID:2052567

  10. Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine.

    PubMed

    Arredondo, Juan; Hall, Leon L; Ndoye, Assane; Nguyen, Vu Thuong; Chernyavsky, Alexander I; Bercovich, Dani; Orr-Urtreger, Avi; Beaudet, Arthur L; Grando, Sergei A

    2003-02-01

    Smoking is associated with aberrant cutaneous tissue remodeling, such as precocious skin aging and impaired wound healing. The mechanism is not fully understood. Dermal fibroblasts (DF) are the primary cellular component of the dermis and may provide a target for pathobiologic effects of tobacco products. The purpose of this study was to characterize a mechanism of nicotine (Nic) effects on the growth and tissue remodeling function of DF. We hypothesized that the effects of Nic on DF result from its binding to specific nicotinic acetylcholine receptors (nAChRs) expressed by these cells and that downstream signaling from the receptors alters normal cell functioning, leading to changes in skin homeostasis. Using RT-PCR and Western blotting, we found that a 24-hour exposure of human DF to 10 micro M Nic causes a 1.9- to 28-fold increase of the mRNA and protein levels of the cell cycle regulators p21, cyclin D1, Ki-67, and PCNA and a 1.7- to 2-fold increase of the apoptosis regulators Bcl-2 and caspase 3. Nic exposure also up-regulated expression of the dermal matrix proteins collagen type Ialpha1 and elastin as well as matrix metalloproteinase-1. Mecamylamine (Mec), the specific antagonist of nAChRs, abolished Nic-induced alterations, indicating that they resulted from a pharmacologic stimulation of nAChRs expressed by DF. To establish the relevance of these findings to a specific nicotinergic pathway, we studied human DF transfected with anti-alpha3 antisense oligonucleotides and murine DF from alpha3 nAChR knockout mice. In both cases, lack of alpha3 was associated with alterations in fibroblast growth and function that were opposite to those observed in DF treated with Nic, suggesting that the nicotinic effects on DF were mostly mediated by alpha3 nAChR. In addition to alpha3, the nAChR subunits detected in human DF were alpha5, alpha7, beta2, and beta4. The exposure of DF to Nic altered the relative amounts of each of these subunits, leading to reciprocal changes

  11. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes.

    PubMed

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M; Shulepko, Mikhail A; Dolgikh, Dmitry A; Pinborg, Lars H; Härtig, Wolfgang; Lyukmanova, Ekaterina N; Mikkelsen, Jens D

    2016-10-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease. PMID:27460145

  12. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine.

    PubMed

    Palmatier, Matthew I; Liu, Xiu; Caggiula, Anthony R; Donny, Eric C; Sved, Alan F

    2007-05-01

    The primary reinforcing effects of nicotine are mediated by the drugs action at central nervous system nicotinic acetylcholine receptors (nAChRs). Although previous studies have demonstrated that nicotine potently enhances responding for non-pharmacological stimuli, the role of nAChRs in this reinforcement-enhancing effect is not known. The two reinforcement-related effects of nicotine can be dissociated in a paradigm that provides concurrent access to drug infusions and a non-pharmacological visual stimulus (VS). The present study characterized the role of nAChRs in the primary reinforcing effect of nicotine and the reinforcement-enhancing effect of nicotine. For rats with access to VS (VS-Only), nicotine (NIC-Only), both reinforcers contingent upon one response (NIC+VS) or both reinforcers contingent upon separate responses (2-Lever), unit dose-response relationships (0, 30, 60, or 90 microg/kg/infusion, free base) were determined over a 22-day acquisition period. Expression of the two reinforcement-related effects of nicotine was manipulated by pharmacological antagonism of nAChRs (1 mg/kg mecamylamine, subcutaneous, 5-min before the session) or by substituting saline for nicotine infusions (ie extinction) over a series of seven test sessions. Unit dose manipulations yielded an inverse dose-response relationship for active lever responding in the NIC+VS group. The dose-response relationships for rats with independent access to each reinforcer (2-Lever group) were relatively flat. For the 2-Lever group, acute mecamylamine challenge blocked the reinforcement-enhancing effects of nicotine, VS-lever responding decreased to basal levels on the first day of mecamylamine treatment or saline substitution (to the level of the VS-Only group). In contrast, nicotine-lever responding decreased gradually over the 7-day testing period (similar to saline extinction). The two reinforcement-related effects of nicotine are mediated by nAChRs but can be dissociated by acute and

  13. Potentiation of the actions of acetylcholine, epibatidine, and nicotine by methyllycaconitine at fetal muscle-type nicotinic acetylcholine receptors.

    PubMed

    Green, Benedict T; Welch, Kevin D; Cook, Daniel; Gardner, Dale R

    2011-07-15

    Methyllycaconitine (MLA) is a norditerpenoid alkaloid found in high abundance in toxic Delphinium (larkspur) species. It is a potent and selective antagonist of α(7)-nicotinic acetylcholine receptors, but has not been well investigated for activity aside from receptor antagonism. The aim of this study was to investigate the effects of MLA alone and in combination with acetylcholine, epibatidine, nicotine, and neostigmine for actions other than receptor antagonism in TE-671 cells expressing (α(1))(2)β(1)γδ nicotinic acetylcholine receptors. Ligand activity was assessed through measurements of membrane potential changes in TE-671 cells using a fluorescent membrane potential-sensitive dye and normalized to the maximum response to epibatidine (10μM). MLA was ineffective in changing cell membrane potential in the absence of other receptor agonists. However at nanomolar concentrations, it acted as a co-agonist to potentiate TE-671 cell responses to acetylcholine, epibatidine, nicotine, and neostigmine. These results suggest that the poisoning of cattle by norditerpenoid alkaloids found in larkspur may be more complex than previously determined.

  14. Functional expression of alpha 7 nicotinic acetylcholine receptors in human periodontal ligament fibroblasts and rat periodontal tissues.

    PubMed

    Wang, Xiao-Jing; Liu, Ying-Feng; Wang, Qing-Yu; Tsuruoka, Morito; Ohta, Kazumasa; Wu, Sheng-Xi; Yakushiji, Masashi; Inoue, Takashi

    2010-05-01

    Tobacco smoking is the main risk factor associated with chronic periodontitis, but the mechanisms that underlie this relationship are largely unknown. Recent reports proposed that nicotine plays an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. The aim of this study was to investigate whether alpha 7 nAChR was expressed in periodontal tissues and whether it functions by regulating IL-1 beta in the process of periodontitis. In vitro, human periodontal ligament (PDL) cells were cultured with 10(-12) M of nicotine and/or 10(-9) M of alpha-bungarotoxin (alpha-Btx), a alpha 7 nAChR antagonist. The expression of alpha 7 nAChR and IL-1 beta in PDL cells and the effects of nicotine/alpha-Btx administration on their expression were explored. In vivo, an experimental periodontitis rat model was established, and the effects of nicotine/alpha-Btx administration on expression of alpha 7 nAChR and development of periodontitis were evaluated. We found that alpha 7 nAChR was present in human PDL cells and rat periodontal tissues. The expressions of alpha 7 nAChR and IL-1 beta were significantly increased by nicotine administration, whereas alpha-Btx treatment partially suppressed these effects. This study was the first to demonstrate the functional expression of alpha 7 nAChR in human PDL cells and rat periodontal tissues. Our results may be pertinent to a better understanding of the relationships among smoking, nicotine, and periodontitis.

  15. Mode of action of the positive modulator PNU-120596 on α7 nicotinic acetylcholine receptors.

    PubMed

    Szabo, Anett K; Pesti, Krisztina; Mike, Arpad; Vizi, E Sylvester

    2014-06-01

    We investigated the mode of action of PNU-120596, a type II positive allosteric modulator of the rat α7 nicotinic acetylcholine receptor expressed by GH4C1 cells, using patch-clamp and fast solution exchange. We made two important observations: first, while PNU-120596 rapidly associated to desensitized receptors, it had at least hundredfold lower affinity to resting conformation, therefore at 10 μM concentration it dissociated from resting receptors; and second, binding of PNU-120596 slowed down dissociation of choline molecules from the receptor radically. We propose that when agonist concentration is transiently elevated in the continuous presence of the modulator (as upon the neuronal release of acetylcholine in a modulator-treated animal) these two elements together cause occurrence of a cycle of events: Binding of the modulator is limited in the absence of the agonist. When the agonist is released, it binds to the receptor, and induces desensitization, thereby enabling modulator binding. Modulator binding in turn traps the agonist within its binding site for a prolonged period of time. Once the agonist finally dissociated, the modulator can also dissociate without re-binding, and the receptor assumes its original resting conformation. In kinetic simulations this "trapped agonist cycle" mechanism did not require that the orthosteric and allosteric ligands symmetrically modify each other's affinity, only the modulator must decrease agonist accessibility, and the agonist must induce a conformation that is accessible to the modulator. This mechanism effectively prolongs and amplifies the effect of the agonist. PMID:24486377

  16. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata)

    SciTech Connect

    Watson, J.T.; Adkins-Regan, E.; Whiting, P.; Lindstrom, J.M.; Podleski, T.R.

    1988-08-08

    We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors. Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by (125I)-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei.

  17. Abolishment of serotonergic neurotransmission to cardiac vagal neurons during and after hypoxia and hypercapnia with prenatal nicotine exposure.

    PubMed

    Kamendi, H W; Cheng, Q; Dergacheva, O; Gorini, C; Jameson, H S; Wang, X; McIntosh, J M; Mendelowitz, D

    2009-03-01

    Cardioinhibitory cardiac vagal neurons (CVNs) do not receive inspiratory-related excitatory inputs under normal conditions. However, excitatory purinergic and serotonergic pathways are recruited during inspiratory activity after episodes of hypoxia and hypercapnia (H/H). Prenatal nicotine (PNN) exposure is known to dramatically change cardiorespiratory responses and decrease the ability to resuscitate from H/H. This study tested whether PNN exposure alters excitatory neurotransmission to CVNs in the nucleus ambiguus during and after H/H. Spontaneous and inspiratory evoked excitatory postsynaptic currents were recorded in CVNs from rats that were exposed to nicotine (6 mg x kg(-1) x d(-1)) throughout the prenatal period. In contrast to unexposed animals, in PNN animals H/H recruited excitatory neurotransmission to CVNs during inspiratory-related activity that was blocked by the alpha3beta4 nicotinic acetylcholine receptor (nAChR) blocker alpha-conotoxin AuIB (alpha-CTX AuIB, 100 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 50 microM) and d(-)-2-amino-5-phosphonopentanoic acid (AP5, 50 microM), selective AMPA/kainate and N-methyl-d-aspartate receptor blockers, respectively. Following H/H, there was a significant increase in inspiratory-related excitatory postsynaptic currents that were unaltered by alpha-CTX AuIB or ondansetron, a 5-HT3 receptor blocker, but were subsequently inhibited by pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (100 microM), a purinergic receptor blocker and CNQX and AP5. The results from this study demonstrate that with PNN exposure, an excitatory neurotransmission to CVNs is recruited during H/H that is glutamatergic and dependent on activation of alpha3beta4-containing nAChRs. Furthermore, exposure to PNN abolishes a serotonergic long-lasting inspiratory-related excitation of CVNs that is replaced by recruitment of a glutamatergic pathway to CVNs post H/H.

  18. Thyroid Receptor β Involvement in the Effects of Acute Nicotine on Hippocampus-Dependent Memory

    PubMed Central

    Leach, Prescott T.; Kenney, Justin W.; Connor, David; Gould, Thomas J.

    2015-01-01

    Cigarette smoking is common despite adverse health effects. Nicotine’s effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ. PMID:25666034

  19. Targeted deletion of the mouse α2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors.

    PubMed

    Lotfipour, Shahrdad; Byun, Janet S; Leach, Prescott; Fowler, Christie D; Murphy, Niall P; Kenny, Paul J; Gould, Thomas J; Boulter, Jim

    2013-05-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.

  20. Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

    PubMed Central

    Lotfipour, Shahrdad; Byun, Janet S.; Leach, Prescott; Fowler, Christie D.; Murphy, Niall P.; Kenny, Paul J.; Gould, Thomas J.; Boulter, Jim

    2013-01-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors. PMID:23637165

  1. Olfactory receptor neuron profiling using sandalwood odorants.

    PubMed

    Bieri, Stephan; Monastyrskaia, Katherine; Schilling, Boris

    2004-07-01

    The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.

  2. Contribution of NMDA glutamate and nicotinic acetylcholine receptor mechanisms in the discrimination of ethanol-nicotine mixtures.

    PubMed

    Ford, Matthew M; Davis, Natalie L; McCracken, Aubrey D; Grant, Kathleen A

    2013-10-01

    Ethanol and nicotine are commonly coabused drugs, and the incidence of codependence is greater than would be expected on the basis of the summed probability of dependence on each drug alone. Previous findings from our laboratory and others suggest that interactive mechanisms at the level of discriminative stimulus (S(D)) effects may contribute to this coabuse phenomenon. Specifically, ethanol overshadows the nicotine S(D) whereas nicotine potentiates the stimulus salience of ethanol when the two drugs are conditioned as a drug mixture. The goal of the current study was to begin to delineate the pharmacological bases of these ethanol-nicotine interactions. Three groups of C57BL/6J mice were trained to discriminate 0.8 mg/kg nicotine + 0.5 g/kg ethanol (0.8 N + 0.5 E), 0.8 N + 1.0 E, or 0.8 N + 2.0 E. An NMDA receptor antagonist (MK-801) and three nACh receptor ligands were tested for their ability to generalize from or antagonize, respectively, the drug mixtures. MK-801 fully generalized from the 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures and partially generalized from 0.8 N + 0.5 E. In contrast, nACh receptor ligands had minimal influence in blocking the perception of 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures, and only mecamylamine partially blocked 0.8 N+0.5 E. Reduced and enhanced contributions of nACh and NMDA receptors, respectively, in the discrimination of ethanol-nicotine mixtures may contribute to the overshadowing and potentiation phenomena observed previously.

  3. Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor.

    PubMed

    Corringer, P J; Galzi, J L; Eiselé, J L; Bertrand, S; Changeux, J P; Bertrand, D

    1995-05-19

    Tryptophan 54 of the alpha 7 neuronal nicotinic homooligomeric receptor is homologous to gamma-Trp-55 and delta-Trp-57 of non-alpha subunits of Torpedo receptor labeled by d-tubocurarine. This residue was mutated on the alpha 7-V201-5-hydroxytryptamine (5HT)3 homooligomeric chimera, which displays alpha 7 nicotinic pharmacology, and for which both equilibrium binding studies and electrophysiological recordings could be carried out in parallel. Replacement of Trp-54 by a Phe, Ala, or His causes a progressive decrease both in binding affinity and in responses (EC50 or IC50) for acetylcholine, nicotine, and dihydro-beta-erythroidine, without significant modification in alpha-Bgtx binding. Except for Gln-56, comparatively small effects are observed when the other residues of the 52-58 region are mutated into alanine. These data support the participation of Trp-54 to ligand binding, and provide evidence for a new "complementary component" of the alpha 7 nicotinic binding site, distinct from its three-loop "principal component," and homologous to the "non-alpha component" present on gamma and delta subunits.

  4. Involvement of NMDA receptors in nicotine-mediated central control of hypotensive effects.

    PubMed

    Hong, Ling-Zong; Cheng, Pei-Wen; Cheng, Wen-Han; Chen, Siang-Ru; Wang, Ling-Lin; Tseng, Ching-Jiunn

    2012-10-31

    It is known that enrichment of glutamatergic transmission in the nucleus tractus solitarii (NTS) plays an important role in central cardiovascular regulation. Our previous study demonstrated that nicotine decreased blood pressure and heart rate in the NTS probably acting via the nicotinic acetylcholine receptors (nAChRs)-Ca²⁺-calmodulin-eNOS-NO signaling pathway. The possible relationship between glutamate and nicotine in the NTS for cardiovascular regulation is poorly understood. This study investigated the involvement of glutamate receptors in the cardiovascular effects of nicotine in the NTS. Nicotine (a non-selective nAChRs agonist), MK801 (a non-competitive NMDA receptor antagonist), APV (a competitive NMDA receptor antagonist), or NBQX (a selective AMPA receptor antagonist) was microinjected into the NTS of anesthetized Wistar-Kyoto rats. Microinjection of nicotine (1.5 pmol) into the NTS produced decreases in blood pressure and heart rate. The hypotensive and bradycardic effects of nicotine were abolished by prior administration of MK801 (1 nmol) and APV (10 nmol), but was completely restored after 60 min of recovery. In contrast, prior administration of NBQX (10 pmol) into the NTS did not alter the cardiovascular effects of nicotine. The nitrate (served as total NO) production in response to nicotine microinjection into the NTS was suppressed by prior administration of APV. These results suggest that the hypotensive and bradycardic effects of nicotine in the NTS might be mediated through NMDA receptors, and that the nAChRs-NMDA receptor-NO pathway could be involved.

  5. The effects of nicotine on the alpha-7 and beta-2 nicotinic acetycholine receptor subunits in the developing piglet brainstem.

    PubMed

    Browne, Cherylea J; Sharma, Nidhi; Waters, Karen A; Machaalani, Rita

    2010-02-01

    Exposure to cigarette smoke is a major risk factor for sudden infant death syndrome (SIDS). We tested the hypothesis that nicotine increases expression of the nicotinic acetylcholine receptor (nAChR) subunits alpha7 and beta2 in a piglet model. Piglets exposed to 2mg/kg/day nicotine for 14 days postnatally (n=14) were compared to non-exposed controls (n=14), (equal gender proportions). Immunohistochemistry was performed to identify and quantify changes in, alpha7 and beta2 nAChR subunits in 8 nuclei of the medulla at both the rostral and caudal levels. Compared to controls, nicotine exposed piglets had decreased alpha7 in the rostral dorsal motor nucleus of the vagus (rDMNV) (p=0.01), and increased beta2 in the caudal DMNV (cDMNV) (p=0.05), caudal nucleus of the spinal trigeminal tract (cNSTT) (p=0.03) and caudal nucleus of the solitary tract (cNTS) (p=0.04). Analysis by gender showed that in the control group, compared to males, females had higher beta2 in the caudal hypoglossal (cXII) (p<0.01) and caudal inferior olivary (p=0.04) nuclei, while in the nicotine group females had higher beta2 in the cDMNV (p=0.02). Compared to control males, nicotine exposed males had lower beta2 in the cXII (p<0.01). Overall, changes in alpha7 were specific to nicotine exposure with no gender differentiation. Changes in beta2 were more widespread but showed gender-specific effects. These findings provide evidence that early postnatal exposure to nicotine significantly affects nAChR subunit expressions in the developing brainstem.

  6. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor.

    PubMed

    Rezonzew, Gabriel; Chumley, Phillip; Feng, Wenguang; Hua, Ping; Siegal, Gene P; Jaimes, Edgar A

    2012-07-15

    Clinical studies have established the role of cigarette smoking as a risk factor in the progression of chronic kidney disease (CKD). We have shown that nicotine promotes mesangial cell proliferation and hypertrophy via nonneuronal nicotinic acetylcholine receptors (nAChRs). The α7-nAChR is one of the most important subunits of the nAChRs. These studies were designed to test the hypothesis that nicotine worsens renal injury in rats with 5/6 nephrectomy (5/6Nx) and that the α7-nAChR subunit is required for these effects. We studied five different groups: Sham, 5/6Nx, 5/6Nx + nicotine (Nic; 100 μg/ml dry wt), 5/6Nx + Nic + α7-nAChR blocker methyllicaconitine (MLA; 3 mg·kg(-1)·day(-1) sq), and Sham + Nic. Blood pressure was measured by the tail-cuff method, and urine was collected for proteinuria. After 12 wk, the rats were euthanized and kidneys were collected. We observed expression of the α7-nAChR in the proximal and distal tubules. The administration of nicotine induced a small increase in blood pressure and resulted in cotinine levels similar to those found in the plasma of smokers. In 5/6Nx rats, the administration of nicotine significantly increased urinary protein excretion (onefold), worsened the glomerular injury score and increased fibronectin (∼ 50%), NADPH oxidase 4 (NOX4; ∼100%), and transforming growth factor-β expression (∼200%). The administration of nicotine to sham rats increased total proteinuria but not albuminuria, suggesting direct effects on tubular protein reabsorption. These effects were prevented by MLA, demonstrating a critical role for the α7-nAChR as a mediator of the effects of nicotine in the progression of CKD.

  7. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  8. Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation.

    PubMed

    Inestrosa, Nibaldo C; Godoy, Juan A; Vargas, Jessica Y; Arrazola, Macarena S; Rios, Juvenal A; Carvajal, Francisco J; Serrano, Felipe G; Farias, Ginny G

    2013-09-01

    An emerging view on Alzheimer disease's (AD) pathogenesis considers amyloid-β (Aβ) oligomers as a key factor in synaptic impairment and rodent spatial memory decline. Alterations in the α7-nicotinic acetylcholine receptor (α7-nAChR) have been implicated in AD pathology. Herein, we report that nicotine, an unselective α7-nAChR agonist, protects from morphological and synaptic impairments induced by Aβ oligomers. Interestingly, nicotine prevents both early postsynaptic impairment and late presynaptic damage induced by Aβ oligomers through the α7-nAChR/phosphatidylinositol-3-kinase (PI3K) signaling pathway. On the other hand, a cross-talk between α7-nAChR and the Wnt/β-catenin signaling pathway was revealed by the following facts: (1) nicotine stabilizes β-catenin, in a concentration-dependent manner; (2) nicotine prevents Aβ-induced loss of β-catenin through the α7-nAChR; and (3) activation of canonical Wnt/β-catenin signaling induces α7-nAChR expression. Analysis of the α7-nAChR promoter indicates that this receptor is a new Wnt target gene. Taken together, these results demonstrate that nicotine prevents memory deficits and synaptic impairment induced by Aβ oligomers. In addition, nicotine improves memory in young APP/PS1 transgenic mice before extensive amyloid deposition and senile plaque development, and also in old mice where senile plaques have already formed. Activation of the α7-nAChR/PI3K signaling pathway and its cross-talk with the Wnt signaling pathway might well be therapeutic targets for potential AD treatments.

  9. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity.

  10. Nicotinic acetylcholine receptors in glucose homeostasis: the acute hyperglycemic and chronic insulin-sensitive effects of nicotine suggest dual opposing roles of the receptors in male mice.

    PubMed

    Vu, Christine U; Siddiqui, Jawed A; Wadensweiler, Paul; Gayen, Jiaur R; Avolio, Ennio; Bandyopadhyay, Gautam K; Biswas, Nilima; Chi, Nai-Wen; O'Connor, Daniel T; Mahata, Sushil K

    2014-10-01

    Cigarette smoking causes insulin resistance. However, nicotine induces anti-inflammation and improves glucose tolerance in insulin-resistant animal models. Here, we determined the effects of nicotine on glucose metabolism in insulin-sensitive C57BL/J6 mice. Acute nicotine administration (30 min) caused fasting hyperglycemia and lowered insulin sensitivity acutely, which depended on the activation of nicotinic-acetylcholine receptors (nAChRs) and correlated with increased catecholamine secretion, nitric oxide (NO) production, and glycogenolysis. Chlorisondamine, an inhibitor of nAChRs, reduced acute nicotine-induced hyperglycemia. qRT-PCR analysis revealed that the liver and muscle express predominantly β4 > α10 > α3 > α7 and β4 > α10 > β1 > α1 mRNA for nAChR subunits respectively, whereas the adrenal gland expresses β4 > α3 > α7 > α10 mRNA. Chronic nicotine treatment significantly suppressed expression of α3-nAChR (predominant peripheral α-subunit) in liver. Whereas acute nicotine treatment raised plasma norepinephrine (NE) and epinephrine (Epi) levels, chronic nicotine exposure raised only Epi. Acute nicotine treatment raised both basal and glucose-stimulated insulin secretion (GSIS). After chronic nicotine treatment, basal insulin level was elevated, but GSIS after acute saline or nicotine treatment was blunted. Chronic nicotine exposure caused an increased buildup of NO in plasma and liver, leading to decreased glycogen storage, along with a concomitant suppression of Pepck and G6Pase mRNA, thus preventing hyperglycemia. The insulin-sensitizing effect of chronic nicotine was independent of weight loss. Chronic nicotine treatment enhanced PI-3-kinase activities and increased Akt and glycogen synthase kinase (GSK)-3β phosphorylation in an nAChR-dependent manner coupled with decreased cAMP response element-binding protein (CREB) phosphorylation. The latter effects caused suppression of Pepck and G6Pase gene expression. Thus, nicotine causes both

  11. The Nicotinic Receptor of Cochlear Hair Cells: A Possible Pharmacotherapeutic Target?

    PubMed Central

    Elgoyhen, Ana Belén; Katz, Eleonora; Fuchs, Paul A.

    2009-01-01

    Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the α9α10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of α9α10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed. PMID:19481062

  12. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  13. Rhesus monkey alpha7 nicotinic acetylcholine receptors: comparisons to human alpha7 receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; McCormack, Thomas J; Jack, Brian A; Wang, Daguang; Bugaj-Gaweda, Bozena; Schiff, Hillary C; Buhr, Joshua D; Waber, Amanda J; Stokes, Clare

    2005-11-01

    An alpha7 nicotinic acetylcholine receptor sequence was cloned from Rhesus monkey (Macaca mulatta). This clone differs from the mature human alpha7 nicotinic acetylcholine receptor in only four amino acids, two of which are in the extracellular domain. The monkey alpha7 nicotinic receptor was characterized in regard to its functional responses to acetylcholine, choline, cytisine, and the experimental alpha7-selective agonists 4OH-GTS-21, TC-1698, and AR-R17779. For all of these agonists, the EC(50) for activation of monkey receptors was uniformly higher than for human receptors. In contrast, the potencies of mecamylamine and MLA for inhibiting monkey and human alpha7 were comparable. Acetylcholine and 4OH-GTS-21 were used to probe the significance of the single point differences in the extracellular domain. Mutants with the two different amino acids in the extracellular domain of the monkey receptor changed to the corresponding sequence of the human receptor had responses to these agonists that were not significantly different in EC(50) from wild-type human alpha7 nicotinic receptors. Monkey alpha7 nicotinic receptors have a serine at residue 171, while the human receptors have an asparagine at this site. Monkey S171N mutants were more like human alpha7 nicotinic receptors, while mutations at the other site (K186R) had relatively little effect. These experiments point toward the basic utility of the monkey receptor as a model for the human alpha7 nicotinic receptor, albeit with the caveat that these receptors will vary in their agonist concentration dependency. They also point to the potential importance of a newly identified sequence element for modeling the specific amino acids involved with receptor activation. PMID:16266703

  14. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  15. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics.

  16. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. PMID:26049014

  17. Nicotinic acetylcholine receptor ligands; a patent review (2006-2011)

    PubMed Central

    Gündisch, Daniela; Eibl, Christoph

    2012-01-01

    Introduction Nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated cation channels, are potential targets for the development of therapeutics for a variety of disease states. Areas covered This article is reviewing recent advances in the development of small molecule ligands for diverse nAChR subtypes and is a continuation of an earlier review in this journal. Expert opinion The development of nAChR ligands with preference for α4β2 or α7 subtypes for the treatment of CNS disorders are in the most advanced developmental stage. In addition, there is a fast growing interest to generate so-called PAMs, positive allosteric modulators, to influence the channels’ functionalities. PMID:22098319

  18. A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors

    PubMed Central

    Favreau, Philippe; Benoit, Evelyne; Hocking, Henry G; Carlier, Ludovic; D' hoedt, Dieter; Leipold, Enrico; Markgraf, René; Schlumberger, Sébastien; Córdova, Marco A; Gaertner, Hubert; Paolini-Bertrand, Marianne; Hartley, Oliver; Tytgat, Jan; Heinemann, Stefan H; Bertrand, Daniel; Boelens, Rolf; Stöcklin, Reto; Molgó, Jordi

    2012-01-01

    BACKGROUND AND PURPOSE The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant. EXPERIMENTAL APPROACH µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. µ-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data. KEY RESULTS Synthetic µ-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC50= 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with µ-SIIIA, µ-SmIIIA and µ-PIIIA. µ-CnIIIC blocked NaV1.4 (IC50= 1.3 nM) and NaV1.2 channels in a long-lasting manner. Cardiac NaV1.5 and DRG-specific NaV1.8 channels were not blocked at 1 µM. µ-CnIIIC also blocked the α3β2 nAChR subtype (IC50= 450 nM) and, to a lesser extent, on the α7 and α4β2 subtypes. Structure determination of µ-CnIIIC revealed some similarities to α-conotoxins acting on nAChRs. CONCLUSION AND IMPLICATIONS µ-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels. PMID:22229737

  19. The selective dopamine D3 receptor antagonist SB-277011A reduces nicotine-enhanced brain reward and nicotine-paired environmental cue functions.

    PubMed

    Pak, Arlene C; Ashby, Charles R; Heidbreder, Christian A; Pilla, Maria; Gilbert, Jeremy; Xi, Zheng-Xiong; Gardner, Eliot L

    2006-10-01

    Increasing evidence suggests that enhanced dopamine (DA) neurotransmission in the nucleus accumbens (NAc) may play a role in mediating the reward and reinforcement produced by addictive drugs and in the attentional processing of drug-associated environmental cues. The meso-accumbens DA system is selectively enriched with DA D3 receptors, a DA receptor subtype increasingly implicated in reward-related brain and behavioural processes. From a variety of evidence, it has been suggested that selective DA D3 receptor antagonism may be a useful pharmacotherapeutic approach for treating addiction. The present experiments tested the efficacy of SB-277011A, a selective DA D3 receptor antagonist, in rat models of nicotine-enhanced electrical brain-stimulation reward (BSR), nicotine-induced conditioned locomotor activity (LMA), and nicotine-induced conditioned place preference (CPP). Nicotine was given subcutaneously within the dose range of 0.25-0.6 mg/kg (nicotine-free base). SB-277011A, given intraperitoneally within the dose range of 1-12 mg/kg, dose-dependently reduced nicotine-enhanced BSR, nicotine-induced conditioned LMA, and nicotine-induced CPP. The results suggest that selective D3 receptor antagonism constitutes a new and promising pharmacotherapeutic approach to the treatment of nicotine dependence. PMID:16942635

  20. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  1. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal.

    PubMed

    Evans, D E; Sutton, S K; Jentink, K G; Lin, H-Y; Park, J Y; Drobes, D J

    2016-09-01

    Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use. Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation. Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning. We targeted CNR1 variants as moderators of a validated neural marker of nicotine withdrawal-related cognitive disruption. CNR1 polymorphisms comprising the 'TAG' haplotype (rs806379, rs1535255 and rs2023239) were tested independently, as no participants in this sample possessed this haplotype. Nicotine withdrawal-related cognitive disruption was indexed as increased resting electroencephalogram (EEG) alpha-1 power density across 17 electrodes. Seventy-three Caucasian Non-Hispanic smokers (≥15 cigarettes per day) visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Either two nicotine or two placebo cigarettes were smoked prior to collecting EEG data at each session. Analyses showed that rs806379 moderated the effects of nicotine deprivation increasing slow wave EEG (P = 0.004). Smokers homozygous for the major allele exhibited greater nicotine withdrawal-related cognitive disruption. The current findings suggest potential efficacy of cannabinoid receptor antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption. PMID:27453054

  2. Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment.

    PubMed

    Ke, L; Eisenhour, C M; Bencherif, M; Lukas, R J

    1998-08-01

    Nicotinic acetylcholine receptors (nAChRs) exist as a diverse family of physiologically important ligand-gated ion channels active in classic, excitatory neurotransmission and perhaps in more novel forms of neurochemical signaling. Because of their critical functional roles centrally and peripherally, nAChRs are ideal targets for the regulation of nervous system function. nAChRs also are targets of nicotine, which acts acutely like acetylcholine to stimulate nAChR function. Here, we report studies using model cell culture systems testing the general hypothesis that more chronic nicotine exposure has unique effects on nAChRs. Chronic nicotine treatment induces increases in numbers of human muscle-type nAChRs containing alpha-1, beta-1, gamma and delta subunits, a human ganglionic nAChR subtype containing alpha-3 and beta-4 subunits and a human ganglionic nAChR containing alpha-7 subunits in intracellular and (except for alpha-7 nAChRs) in cell surface pools. However, the half-maximal potency with which nicotine has these effects differs across these nAChR subtypes, as do rates and magnitudes of the "nicotine-induced nAChR up-regulation." These changes in nAChR numbers are not attributable to either transient or sustained changes in nAChR subunit mRNA levels. Nicotine exposure more potently, more rapidly, and with nAChR-subtype specificity, induces two phases of losses in functional responsiveness of muscle-type nAChRs and alpha-3 beta-4 nAChRs, including a "persistent inactivation" that is distinct from classicly defined "desensitization." Based on these results, we hypothesize that chronic nicotine treatment induces persistent functional inactivation and numerical up-regulation of all nAChR subtypes via distinct post-transcriptional mechanisms and with potencies, at rates and with magnitudes that are nAChR-subtype specific. We also hypothesize that chronic nicotine exposure produces long-lasting changes in nervous system function, at least in part, by disabling

  3. [Discovery of potential nicotinic acid receptor agonists from Chinese herbal medicines based on molecular simulation].

    PubMed

    Jiang, Lu-Di; He, Yu-Su; Zhang, Yan-Ling

    2014-12-01

    Nicotinic acid could increase high density lipoprotein and reduce serum total cholesterol, low density lipoprotein cholesterol and triglycerides in human bodies, thus is frequently applied in treating low high-density lipoprotein cholesterol and hypertriglyceridemia in clinic. However, according to the findings, nicotinic acid could also cause adverse effects, such as skin flush, beside its curative effects. In this study, bioisosterism, fragment-based search and Lipinski's Rule of Five were used to preliminarily screen out potential TCM ingredients that may have similar pharmacological effects with nicotinic acid from Traditional Chinese medicine database (TCMD). Afterwards, homology modeling and flexible docking were used to further screen out potential nicotinic acid receptor agonists. As a result, eleven candidate compounds were derived from eight commonly used traditional Chinese medicines. Specifically, all of the candidate compounds' interaction with nicotinic acid receptor was similar to nicotinic acid, and their docking scores were all higher than that of nicotinic acid, but their druggability remained to be further studied. Some of the eight source traditional Chinese medicines were used to lower lipid according to literature studies, implying that they may show effect through above means. In summary, this study provides basis and reference for extracting new nicotinic acid receptor agonists from traditional Chinese medicines and improving the medication status of hyperlipidemia.

  4. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  5. Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic alpha7 receptors.

    PubMed

    Suemaru, Katsuya; Yasuda, Kayo; Umeda, Kenta; Araki, Hiroaki; Shibata, Kazuhiko; Choshi, Tominari; Hibino, Satoshi; Gomita, Yutaka

    2004-07-01

    Nicotine has been reported to normalize deficits in auditory sensory gating in the cases of schizophrenia, suggesting an involvement of nicotinic acetylcholine receptors in attentional abnormalities. However, the mechanism remains unclear. The present study investigated the effects of nicotine on the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by apomorphine or phencyclidine in rats. Over the dose range tested, nicotine (0.05-1 mg kg(-1), s.c.) did not disrupt PPI. Neither methyllycaconitine (0.5-5 mg kg(-1), s.c.), an alpha(7) nicotinic receptor antagonist, nor dihydro-beta-erythroidine (0.5-2 mg kg(-1), s.c.), an alpha(4)beta(2) nicotinic receptor antagonist, had any effect on PPI. Nicotine (0.01-0.2 mg kg(-1), s.c.) dose-dependently reversed the disruption of PPI induced by apomorphine (1 mg kg(-1), s.c.), but had no effect on the disruption of PPI induced by phencyclidine (2 mg kg(-1), s.c.). The reversal of apomorphine-induced PPI disruption by nicotine (0.2 mg kg(-1)) was eliminated by mecamylamine (1 mg kg(-1), i.p.), but not by hexamethonium (10 mg kg(-1), i.p.), indicating the involvement of central nicotinic receptors. The antagonistic action of nicotine on apomorphine-induced PPI disruption was dose-dependently blocked by methyllycaconitine (1 and 2 mg kg(-1), s.c.). However, dihydro-beta-erythroidine (1 and 2 mg kg(-1), s.c.) had no effect. These results suggest that nicotine reverses the disruption of apomorphine-induced PPI through central alpha(7) nicotinic receptors.

  6. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  7. Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases.

    PubMed

    Fuenzalida, Marco; Pérez, Miguel Ángel; Arias, Hugo R

    2016-01-01

    The cholinergic activity in the brain is fundamental for cognitive functions. The modulatory activity of the neurotransmitter acetylcholine (ACh) is mediated by activating a variety of nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (mAChR). Accumulating evidence indicates that both nAChR and mAChRs can modulate the release of several other neurotransmitters, modify the threshold of long-term plasticity, finally improving learning and memory processes. Importantly, the expression, distribution, and/or function of these systems are altered in several neurological diseases. The aim of this review is to discuss our current knowledge on cholinergic receptors and their regulating synaptic functions and neuronal network activities as well as their use as targets for the development of new and clinically useful cholinergic ligands. These new therapies involve the development of novel and more selective cholinergic agonists and allosteric modulators as well as selective cholinesterase inhibitors, which may improve cognitive and behavioral symptoms, and also provide neuroprotection in several brain diseases. The review will focus on two nAChR receptor subtypes found in the mammalian brain and the most commonly targeted in drug discovery programs for neuropsychiatric disorder, the ligands of α4β2 nAChR and α7 nAChRs. PMID:26818867

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  9. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    PubMed Central

    Wu, Jie; Liu, Qiang; Tang, Pei; Mikkelsen, Jens D.; Shen, Jianxin; Whiteaker, Paul; Yakel, Jerrel L.

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co-assembled with β2 subunits to form a novel type of α7β2 nAChR. Interestingly, the α7β2 nAChR exhibits distinctive function and pharmacology from traditional homomeric α7 nAChRs. We review recent advances in probing the distribution, function, pharmacology, pathophysiology, and stoichiometry of the heteromeric α7β2 nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling. PMID:27179601

  10. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways

    PubMed Central

    Zdanowski, Robert; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways. PMID:26648784

  11. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways.

    PubMed

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.

  12. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  13. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  14. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish.

    PubMed

    Bencan, Zachary; Levin, Edward D

    2008-10-20

    Zebrafish (Danio rerio) have been widely used to study the molecular mechanisms of development including neurodevelopment. More recently, they have begun to be used to study neuropharmacology and neurotoxicology. Critical for this line of research are methods to study behavioral function in zebrafish. Previous studies have compared zebrafish with mammalian models to determine similarities and differences in locomotor behavior, learning and memory. Relatively little research has been conducted on stress response and anxiety behavior as well as the pharmacologic response in zebrafish. We have developed a test for zebrafish to assess stress response and anxiety: the novel tank diving test. In this short test normally zebrafish dive to the bottom of a novel tank and then gradually over the 5-min test begin exploring higher levels of the tank. Nicotine, which has anxiolytic effects in rodents and humans was found to diminish this novel tank diving response in zebrafish. The current study examined the nicotinic receptor subtype selectivity involved in the actions of nicotine. Two nicotinic receptor subtype selective antagonists were used: MLA (an alpha7 antagonist) and DHbetaE (an alpha4beta2 antagonist). We replicated our previous finding of the anxiolytic effect of nicotine with significantly less bottom dwelling by the fish after nicotine treatment. This nicotine-induced anxiolytic effect was reversed by both MLA and DHbetaE, indicating that both nicotinic alpha7 and alpha4beta2 receptors are involved in the nicotinic effect on anxiety in zebrafish.

  15. The Smoking Gun in Nicotine-Induced Anorexia

    PubMed Central

    Rubinstein, Marcelo; Low, Malcolm J.

    2013-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons are the major source of anorectic melanocortin peptides in the brain. A recent study (Mineur et al., 2011) demonstrates that nicotine directly stimulates arcuate POMC neurons through nicotinic acetylcholinergic α3β4 receptors, suggesting a new mechanism to understand the inverse relationship between tobacco smoking and body weight. PMID:21803282

  16. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex.

    PubMed

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  17. The Alteration of Neonatal Raphe Neurons by Prenatal-Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome.

    PubMed

    Cerpa, Verónica J; Aylwin, María de la Luz O; Beltrán-Castillo, Sebastián; Bravo, Eduardo U; Llona, Isabel R; Richerson, George B; Eugenín, Jaime L

    2015-10-01

    Nicotine may link maternal cigarette smoking with respiratory dysfunctions in sudden infant death syndrome (SIDS). Prenatal-perinatal nicotine exposure blunts ventilatory responses to hypercapnia and reduces central respiratory chemoreception in mouse neonates at Postnatal Days 0 (P0) to P3. This suggests that raphe neurons, which are altered in SIDS and contribute to central respiratory chemoreception, may be affected by nicotine. We therefore investigated whether prenatal-perinatal nicotine exposure affects the activity, electrical properties, and chemosensitivity of raphe obscurus (ROb) neurons in mouse neonates. Osmotic minipumps, implanted subcutaneously in 5- to 7-day-pregnant CF1 mice, delivered nicotine bitartrate (60 mg kg(-1) d(-1)) or saline (control) for up to 28 days. In neonates, ventilation was recorded by head-out plethysmography, c-Fos (neuronal activity marker), or serotonin autoreceptors (5HT1AR) were immunodetected using light microscopy, and patch-clamp recordings were made from raphe neurons in brainstem slices under normocarbia and hypercarbia. Prenatal-perinatal nicotine exposure decreased the hypercarbia-induced ventilatory responses at P1-P5, reduced both the number of c-Fos-positive ROb neurons during eucapnic normoxia at P1-P3 and their hypercapnia-induced recruitment at P3, increased 5HT1AR immunolabeling of ROb neurons at P3-P5, and reduced the spontaneous firing frequency of ROb neurons at P3 without affecting their CO2 sensitivity or their passive and active electrical properties. These findings reveal that prenatal-perinatal nicotine reduces the activity of neonatal ROb neurons, likely as a consequence of increased expression of 5HT1ARs. This hypoactivity may change the functional state of the respiratory neural network leading to breathing vulnerability and chemosensory failure as seen in SIDS.

  18. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery.

    PubMed

    Lester, Henry A; Xiao, Cheng; Srinivasan, Rahul; Son, Cagdas D; Miwa, Julie; Pantoja, Rigo; Banghart, Matthew R; Dougherty, Dennis A; Goate, Alison M; Wang, Jen C

    2009-03-01

    The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.

  19. Positive allosteric modulation of alpha-7 nicotinic receptors promotes cell death by inducing Ca(2+) release from the endoplasmic reticulum.

    PubMed

    Guerra-Álvarez, María; Moreno-Ortega, Ana J; Navarro, Elisa; Fernández-Morales, José Carlos; Egea, Javier; López, Manuela G; Cano-Abad, María F

    2015-05-01

    Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7-nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca(2+) signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca(2+) signaling and cell viability. We used human SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca(2+) with Fura-2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch-clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7-SH but not of C-SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca(2+) concentration; (iii) released Ca(2+) from the ER by a Ca(2+) -induced Ca(2+) release mechanism only in α7-SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7-nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7-nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca(2+) , overloading of intracellular Ca(2+) , and neuronal cell death. This study focuses on how the type II positive allosteric modulator PNU120596 (PAM II PNU12) affects intracellular Ca(2+) signaling and cell viability. Using SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH), we find that PAM of α7-nAChRs with PNU120596: (i) increases inward calcium current (ICa ) and cytosolic Ca(2+) concentration ([Ca(2+) ]cyt ); (ii) releases Ca(2+) from the ER ([Ca(2

  20. A component of Premarin® enhances multiple cognitive functions and influences nicotinic receptor expression

    PubMed Central

    Talboom, Joshua S.; Engler-Chiurazzi, Elizabeth B.; Whiteaker, Paul; Simard, Alain R.; Lukas, Ronald; Acosta, Jazmin I.; Prokai, Laszlo; Bimonte-Nelson, Heather A.

    2010-01-01

    In women, ovarian hormone loss at menopause has been related to cognitive decline, and some studies suggest that estrogen-containing hormone therapy (HT) can mitigate these effects. Recently, the Women’s Health Initiative study found that conjugated equine estrogens, the most commonly prescribed HT, do not benefit cognition. Isolated components of conjugated equine estrogens (tradename Premarin®) have been evaluated in vitro, with Δ8,9-dehydroestrone (Δ8E1) and equilin showing the strongest neuroprotective profiles. It has not been evaluated whether Δ8E1 or equilin impact cognition or the cholinergic system, which is affected by other estrogens and known to modulate cognition. Here, in middle-aged, ovariectomized rats, we evaluated the effects of Δ8E1 and equilin treatments on a cognitive battery and cholinergic nicotinic receptors (nAChR). Specifically, we used 125I-labeled epibatidine binding to assay the neuronal nicotinic receptor containing 4α and 2β subunits (α4β2-nAChR), since this nicotinic receptor subtype has been shown previously to be sensitive to other estrogens. Δ8E1 enhanced spatial working, recent and reference memory. Δ8E1 also decreased hippocampal and entorhinal cortex α4β2-nAChR expression, which was related to spatial reference memory performance. Equilin treatment did not affect spatial memory or rat α4β2-nAChR expression. Neither estrogen impacted 86Rb+ efflux, indicating lack of direct action on human α4β2 nAChR function. Both estrogens influenced vaginal smear profiles, uterine weights, and serum luteinizing hormone levels, analogous to classic estrogens. The findings indicate that specific isolated Premarin® components differ in their ability to affect cognition and nAChR expression. Taken with the works of others showing Δ8E1-induced benefits on several dimensions of health-related concerns associated with menopause, this identifies Δ8E1 as a new avenue to be investigated as a potential component of HT that may

  1. Effects of blockade of α4β2 and α7 nicotinic acetylcholine receptors on cue-induced reinstatement of nicotine-seeking behaviour in rats.

    PubMed

    Liu, Xiu

    2014-01-01

    Exposure to environmental stimuli conditioned to nicotine consumption critically contributes to the high relapse rates of tobacco smoking. Our previous work demonstrated that non-selective blockade of nicotinic acetylcholine receptors (nAChRs) reversed the cue-induced reinstatement of nicotine seeking, indicating a role for cholinergic neurotransmission in the mediation of the conditioned incentive properties of nicotine cues. The present study further examined the relative roles of the two major nAChR subtypes, α4β2 and α7, in the cue-induced reinstatement of nicotine seeking. Male Sprague-Dawley rats were trained to intravenously self-administer nicotine (0.03 mg/kg/infusion, free base) on a fixed-ratio 5 schedule of reinforcement. A nicotine-conditioned cue was established by associating a sensory stimulus with each nicotine infusion. After nicotine-maintained responding was extinguished by withholding the nicotine infusion and its paired cue, reinstatement test sessions were conducted with re-presentation of the cue but without the availability of nicotine. Thirty minutes before the tests, the rats were administered the α4β2-selective antagonist dihydro-β-erythroidine (DHβE) and α7-selective antagonist methyllycaconitine (MLA). Pretreatment with MLA, but not DHβE, significantly reduced the magnitude of the cue-induced reinstatement of responses on the active, previously nicotine-reinforced lever. In different sets of rats, MLA altered neither nicotine self-administration nor cue-induced reinstatement of food seeking. These results demonstrate that activation of α7 nAChRs participates in the mediation of the conditioned incentive properties of nicotine cues and suggest that α7 nAChRs may be a promising target for the development of medications for the prevention of cue-induced smoking relapse.

  2. Effects of blockade of α4β2 and α7 nicotinic acetylcholine receptors on cue-induced reinstatement of nicotine-seeking behaviour in rats.

    PubMed

    Liu, Xiu

    2014-01-01

    Exposure to environmental stimuli conditioned to nicotine consumption critically contributes to the high relapse rates of tobacco smoking. Our previous work demonstrated that non-selective blockade of nicotinic acetylcholine receptors (nAChRs) reversed the cue-induced reinstatement of nicotine seeking, indicating a role for cholinergic neurotransmission in the mediation of the conditioned incentive properties of nicotine cues. The present study further examined the relative roles of the two major nAChR subtypes, α4β2 and α7, in the cue-induced reinstatement of nicotine seeking. Male Sprague-Dawley rats were trained to intravenously self-administer nicotine (0.03 mg/kg/infusion, free base) on a fixed-ratio 5 schedule of reinforcement. A nicotine-conditioned cue was established by associating a sensory stimulus with each nicotine infusion. After nicotine-maintained responding was extinguished by withholding the nicotine infusion and its paired cue, reinstatement test sessions were conducted with re-presentation of the cue but without the availability of nicotine. Thirty minutes before the tests, the rats were administered the α4β2-selective antagonist dihydro-β-erythroidine (DHβE) and α7-selective antagonist methyllycaconitine (MLA). Pretreatment with MLA, but not DHβE, significantly reduced the magnitude of the cue-induced reinstatement of responses on the active, previously nicotine-reinforced lever. In different sets of rats, MLA altered neither nicotine self-administration nor cue-induced reinstatement of food seeking. These results demonstrate that activation of α7 nAChRs participates in the mediation of the conditioned incentive properties of nicotine cues and suggest that α7 nAChRs may be a promising target for the development of medications for the prevention of cue-induced smoking relapse. PMID:23953129

  3. Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Sílvia V; Monteiro, Emília C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DHβE and α-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DHβE>mecamylamine>D-tubocurarine>α-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DHβE, a selective nicotinic receptor antagonist. The ecto-5′-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with α4 and β2 receptor subunits. PMID:16444287

  4. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  5. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    PubMed

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  6. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  7. Nicotinic cholinergic receptors in rat brain. Annual report No. 2

    SciTech Connect

    Kellar, K.J.

    1985-05-13

    We have conducted experiments to determine if 3H acetylcholine (3Hach) nicotinic recognition sites are located presynaptically on catecholamine and/or serotonin axons. Lesions of these axons by intraventricular injections of neurotoxins resulted in marked decreases in 3Hach binding sites in the striatum and hypothalamus, but not in the cortex or thalamus. These results indicate that 3Hach nicotinic binding sites are located on catecholamine and serotonin axons in specific areas of the brain. In other experiments, we determined that repeated administration of nicotine results in enhanced behavioral responses to a subsequent injection of nicotine, and that there appears to be a correlation between the enhanced response to nicotine and increased 3Hach binding sites in cerebral cortex.

  8. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  9. In vivo labeling of nicotinic cholinergic receptors in brain with [3H]cytisine.

    PubMed

    Flesher, J E; Scheffel, U; London, E D; Frost, J J

    1994-01-01

    [3H]Cytisine was evaluated as an in vivo ligand for the nicotinic cholinergic receptor (nAchR) in mouse brain. The tracer was injected intravenously, and radioactivity in brain regions was analyzed. Radioactivity peaked in the brain at 30 minutes. It was highest in the thalamus, intermediate in the superior colliculi, prefrontal cortex and hippocampus, and low in the cerebellum. Pretreatment with unlabeled cytisine inhibited binding in the thalamus, but not in the cerebellum. Binding was displaced by l-nicotine, but not by d-nicotine or dexetimide. The results suggest that cytisine, appropriately labeled with a positron emitting radionuclide, may be useful for study of nicotinic cholinergic receptors in humans by emission computed tomography. PMID:8196506

  10. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  11. Understanding the Role α7 Nicotinic Receptors Play in Dopamine Efflux in Nucleus Accumbens

    PubMed Central

    2015-01-01

    Neuronal nicotinic acetylcholine receptors (NNRs) of the α7 subtype have been shown to contribute to the release of dopamine in the nucleus accumbens. The site of action and the underlying mechanism, however, are unclear. Here we applied a circuit modeling approach, supported by electrochemical in vivo recordings, to clarify this issue. Modeling revealed two potential mechanisms for the drop in accumbal dopamine efflux evoked by the selective α7 partial agonist TC-7020. TC-7020 could desensitize α7 NNRs located predominantly on dopamine neurons or glutamatergic afferents to them or, alternatively, activate α7 NNRs located on the glutamatergic afferents to GABAergic interneurons in the ventral tegmental area. Only the model based on desensitization, however, was able to explain the neutralizing effect of coapplied PNU-120596, a positive allosteric modulator. According to our results, the most likely sites of action are the preterminal α7 NNRs controlling glutamate release from cortical afferents to the nucleus accumbens. These findings offer a rationale for the further investigation of α7 NNR agonists as therapy for diseases associated with enhanced mesolimbic dopaminergic tone, such as schizophrenia and addiction. PMID:25147933

  12. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain.

    PubMed

    Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J

    2014-05-01

    Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. PMID:24422997

  13. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    PubMed

    Vivekanandarajah, Arunnjah; Waters, Karen A; Machaalani, Rita

    2015-12-01

    Postnatal exposure to cigarette smoke during infancy is associated with increased number of respiratory illnesses, impaired pulmonary function, and the occurrence of Sudden Infant Death Syndrome (SIDS). It is also associated with reduced cognitive functioning and attention deficits in childhood. Nicotine, the major neurotoxic component of cigarette smoke, induces its actions by binding to nicotinic acetylcholine receptors (nAChR). Using a piglet model of postnatal nicotine exposure, we studied the immunohistochemical expression of nAChR subunits α2, α3, α4, α5, α7, α9, β1 and β2 in the brainstem medulla and the hippocampus, given the role of these structures in cardiorespiratory control and cognition, respectively. We compared piglets exposed postnatally to 2mg/kg/day nicotine for 14 days (n=14: 7 males: 7 females) to controls (n=14: 7 males: 7 females). In the hippocampus, decreased expression was seen for α3 in CA1 (p=0.017), α9 in CA1 (p<0.001) and CA2 (p<0.001), β1 in CA1 (p=0.001) and CA2 (p=0.001) and β2 in CA3 (p=0.036). In the medulla, the nucleus of the spinal trigeminal tract had increased α2 and α4; vestibular nucleus increased α2 and α3, and decreased α4; hypoglossal decreased α3 and β1; dorsal motor nucleus of the vagus decreased α4 and β1. This is the first demonstration that non-classical nAChR subunits are affected by postnatal nicotine in the developing brain, and the implications are discussed. PMID:26440997

  14. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    PubMed

    Vivekanandarajah, Arunnjah; Waters, Karen A; Machaalani, Rita

    2015-12-01

    Postnatal exposure to cigarette smoke during infancy is associated with increased number of respiratory illnesses, impaired pulmonary function, and the occurrence of Sudden Infant Death Syndrome (SIDS). It is also associated with reduced cognitive functioning and attention deficits in childhood. Nicotine, the major neurotoxic component of cigarette smoke, induces its actions by binding to nicotinic acetylcholine receptors (nAChR). Using a piglet model of postnatal nicotine exposure, we studied the immunohistochemical expression of nAChR subunits α2, α3, α4, α5, α7, α9, β1 and β2 in the brainstem medulla and the hippocampus, given the role of these structures in cardiorespiratory control and cognition, respectively. We compared piglets exposed postnatally to 2mg/kg/day nicotine for 14 days (n=14: 7 males: 7 females) to controls (n=14: 7 males: 7 females). In the hippocampus, decreased expression was seen for α3 in CA1 (p=0.017), α9 in CA1 (p<0.001) and CA2 (p<0.001), β1 in CA1 (p=0.001) and CA2 (p=0.001) and β2 in CA3 (p=0.036). In the medulla, the nucleus of the spinal trigeminal tract had increased α2 and α4; vestibular nucleus increased α2 and α3, and decreased α4; hypoglossal decreased α3 and β1; dorsal motor nucleus of the vagus decreased α4 and β1. This is the first demonstration that non-classical nAChR subunits are affected by postnatal nicotine in the developing brain, and the implications are discussed.

  15. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model.

    PubMed

    Raffa, Robert B; Baron, Steve; Bhandal, Jaspreet S; Brown, Tevin; Song, Kevin; Tallarida, Christopher S; Rawls, Scott M

    2013-11-01

    Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) (μ, MOR), naltrindole (δ, DOR), and nor-BNI (norbinaltorphimine) (κ, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus demonstrated in a sensitive and facile invertebrate model.

  16. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  17. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  18. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    PubMed

    Hernández-Vivanco, Alicia; Hone, Arik J; Scadden, Mick L; Carmona-Hidalgo, Beatriz; McIntosh, J Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  19. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  20. alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells.

    PubMed

    Peña, Victoria B Ayala; Bonini, Ida C; Antollini, Silvia S; Kobayashi, Toshihide; Barrantes, Francisco J

    2011-11-01

    The neuronal-type α7 nicotinic acetylcholine receptor (α7AChR) is also found in various non-neural tissues, including vascular endothelium, where its peculiar ionotropic properties (high Ca(2+) permeability) and its supervening Ca(2+) -mediated intracellular cascades may play important roles in physiology (angiogenesis) and pathology (inflammation and atherogenesis). Changes in molecular (up-regulation, affinity, and conformational states) and cellular (distribution, association with membranes) properties of the α7AChR related to angiogenesis (wound-repair cell migration) and atherogenesis (alterations in cholesterol content) were studied in living endothelial cells, with the aim of determining whether such changes constitute early markers of inflammatory response. The combination of pharmacological, biochemical, and fluorescence microscopy tools showed that α7AChRs in rat arterial endothelial (RAEC) and human venous endothelial (HUVEC) cells occur at extremely low expression levels (∼50 fmol/mg protein) but undergo agonist-induced up-regulation at relatively high nicotine concentrations (∼300-fold with 50 µM ligand), increasing their cell-surface exposure. When analyzed in terms of cold Triton X-100 solubility and subcellular distribution, α7AChRs occur in the "non-raft" subcellular membrane fractions. Acute cholesterol depletion reduced not only cholesterol levels but also the number of cell-surface α7AChRs. Nicotine exposure markedly stimulated cell migration and accelerated wound repair, which drastically diminished in cells deprived of the sterol. The angiogenic effect of nicotine appears to be synergistic with cholesterol content. Finally, the apparent K(D) of α7AChRs for the open-channel blocker crystal violet was found to be ∼600-fold lower in receptor-enriched membranes obtained from up-regulated HUVEC.

  1. Modulation of Neuronal Migration by NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Komuro, Hitoshi; Rakic, Pasko

    1993-04-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is essential for neuronal differentiation and establishment or elimination of synapses in a developing brain. The activity of the NMDA receptor has now been shown to also regulate the migration of granule cells in slice preparations of the developing mouse cerebellum. First, blockade of NMDA receptors by specific antagonists resulted in the curtailment of cell migration. Second, enhancement of NMDA receptor activity by the removal of magnesium or by the application of glycine increased the rate of cell movement. Third, increase of endogenous extracellular glutamate by inhibition of its uptake accelerated the rate of cell migration. These results suggest that NMDA receptors may play an early role in the regulation of calcium-dependent cell migration before neurons reach their targets and form synaptic contacts.

  2. Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling.

    PubMed

    Puddifoot, Clare A; Wu, Meilin; Sung, Rou-Jia; Joiner, William J

    2015-02-25

    α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction. PMID:25716842

  3. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells.

    PubMed

    Zia, S; Ndoye, A; Nguyen, V T; Grando, S A

    1997-09-01

    The purpose of this study was to investigate the possibility of direct toxic effects of nicotine (Nic) on human bronchial epithelial cells (BEC) suggested by our previous findings of functional nicotinic acetylcholine receptors (nAChRs) in the epithelial cells lining mucocutaneous membranes. We now demonstrate for the first time that human and murine BEC both in vivo and in vitro express functional nAChRs, and that classic alpha 3, alpha 4, alpha 5 and alpha 7 subunits can contribute to formation of these acetylcholine-gated ion channels. In human bronchial and mouse lung tissues, and in cultures of human BEC, the nAChRs were visualized by subunit-specific antibodies on the cell membranes, particularly at the sites of cell-to-cell contacts. The epithelial cells of submucosal glands abundantly expressed alpha 7 nAChRs. Smoking significantly (p < 0.05) increased the relative numbers of nAChRs, and this effects could be reproduced in cultures of BEC exposed to 10 microM Nic. At a higher dose, Nic decreased the relative numbers of alpha 5-containing nAChRs, suggesting a role for receptor desensitization. The function of the nAChR channels expressed by BEC was demonstrated by biphasic increase in the concentrations of intracellular calcium ([Ca++]i) in response to activation of the channel by Nic and fluctuations of [Ca++]i due to channel blockade by mecamylamine (Mec). Long-term exposure to milimolar concentrations of Nic resulted in a steady increase of [Ca++]i, which may lead to cell damage. The biological roles of epithelial nAChRs apparently involve regulation of cell-to-cell communications, adhesion and motility, because Mec caused rapid and profound changes in these cell functions which were reversible by Nic. An over exposure of BEC to Nic, however, produced an antagonist-like effect, suggesting that the pathobiological effects of Nic toxicity might result from both activation of nAChR channels and nAChR desensitization. We conclude that medical consequences of

  4. Sensitivity to the seizure-inducing effects of nicotine is associated with strain-specific variants of the alpha 5 and alpha 7 nicotinic receptor subunit genes.

    PubMed

    Stitzel, J A; Blanchette, J M; Collins, A C

    1998-03-01

    Restriction fragment length polymorphisms (rflps) have been identified for the nicotinic ACh receptor subunit genes alpha 5 and alpha 7 between two mouse strains (C3H/2ibg and DBA/2ibg) that differ in sensitivity to the convulsant effects of nicotine. In the study reported here, F2 animals derived from these two parental stains were tested for their sensitivity to the convulsant effects of nicotine as measured by seizure frequency and overall sensitivity score. Subsequently, the animals were genotyped for the alpha 5 and alpha 7 rflps. In addition, levels of alpha-bungarotoxin (alpha-BTX) binding were measured in four brain regions (colliculi, hippocampus, hypothalamus and striatum) to determine whether there is a correlation among alpha-BTX binding levels, sensitivity to nicotine and nicotinic ACh receptor subunit genotype. A significant relationship was observed between alpha 5 and alpha 7 genotype and sensitivity to nicotine. In addition, the alpha 7 rflp significantly correlated with levels of alpha-BTX binding in hippocampus, colliculi and striatum. The alpha 5 rflp did not correlate with alpha-BTX binding levels in any brain region. Levels of alpha-BTX binding did not correlate with nicotine-induced seizure sensitivity or overall nicotine sensitivity score in any of the four brain regions examined.

  5. Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans.

    PubMed

    Shorey-Kendrick, Lyndsey E; Ford, Matthew M; Allen, Daicia C; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A; Spindel, Eliot R

    2015-09-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25661700

  6. Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts.

    PubMed

    Oshikawa, Jin; Toya, Yoshiyuki; Fujita, Takayuki; Egawa, Masato; Kawabe, Junichi; Umemura, Satoshi; Ishikawa, Yoshihiro

    2003-09-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are made of multiple subunits with diversified functions. The nAChR alpha 7-subunit has a property of high Ca2+ permeability and may have specific functions and localization within the plasma membrane as a signal transduction molecule. In PC-12 cells, fractionation by sucrose gradient centrifugation revealed that nAChR alpha 7 existed in low-density, cholesterol-enriched plasma membrane microdomains known as lipid rafts where flotillin also exists. In contrast, nAChR alpha 5- and beta2-subunits were located in high-density fractions, out of the lipid rafts. Type 6 adenylyl cyclase (AC6), a calcium-inhibitable isoform, was also found in lipid rafts and was coimmunoprecipitated with nAChR alpha 7. Cholesterol depletion from plasma membranes with methyl-beta-cyclodextrin redistributed nAChR alpha 7 and AC6 diffusely within plasma membranes. Nicotine stimulation reduced forskolin-stimulated AC activity by 35%, and this inhibition was negated by either treatment with alpha-bungarotoxin, a specific antagonist of nAChR alpha 7, or cholesterol depletion from plasma membranes. The effect of cholesterol depletion was negated by the addition of cholesterol. These data suggest that nAChR alpha 7 has a specific membrane localization relative to other nAChR subunits and that lipid rafts are necessary to localize nAChR alpha 7 with AC within plasma membranes. In addition, nAChR alpha 7 may regulate the AC activity via Ca2+ within lipid rafts.

  7. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  8. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion.

    PubMed

    Thany, Steeve H

    2009-11-01

    Clothianidin is new neonicotinoid insecticide acting selectively on insect nicotinic acetylcholine receptors (nAChRs). Its effects on nAChRs expressed on cercal afferent/giant interneuron synapses and DUM neurons have been studied using mannitol-gap and whole-cell patch-clamp techniques, respectively. Bath-application of clothianidin-induced dose-dependent depolarizations of cockroach cercal afferent/giant interneuron synapses which were not reversed after wash-out suggesting a strong desensitization of postsynaptic interneurons at the 6th abdominal ganglion (A6). Clothinidin activity on the nerve preparation was characterized by an increased firing rate of action potentials which then ceased when the depolarization reached a peak. Clothianidin responses were insensitive to all muscarinic antagonists tested but were blocked by co-application of specific nicotinic antagonists methyllicaconitine, alpha-bungarotoxin and d-tubocurarine. In a second round of experiment, clothianidin actions were tested on DUM neurons isolated from the A6. There was a strong desensitization of nAChRs which was not affected by muscarinic antagonists, pirenzepine and atropine, but was reduced with nicotinic antagonist alpha-bungarotoxin. In addition, clothianidin-induced currents were completely blocked by methyllicaconitine suggesting that (1) clothianidin acted as a specific agonist of nAChR subtypes and (2) a small proportion of receptors blocked by MLA was insensitive to alpha-bungarotoxin. Moreover, because clothianidin currents were blocked by d-tubocurarine and mecamylamine, we provided that clothianidin was an agonist of both nAChRs: imidacloprid-sensitive nAChR1 and -insensitive nAChR2 subtypes. PMID:19583978

  9. Nicotinic acetylcholine receptor beta2 subunit (CHRNB2) gene and short-term ability to quit smoking in response to nicotine patch.

    PubMed

    Perkins, Kenneth A; Lerman, Caryn; Mercincavage, Melissa; Fonte, Carolyn A; Briski, Jessica L

    2009-10-01

    Genes coding for nicotinic acetylcholine receptors may influence response to nicotine replacement therapy for smoking cessation. We examined the association of a 3' untranslated region polymorphism (rs2072661) in the nicotinic acetylcholine receptor beta2 subunit (CHRNB2) gene with quitting success in response to nicotine versus placebo patch during a short-term test of patch effects. In a within-subjects cross-over design, smokers of European descent (n = 156) received 21 mg nicotine and placebo patch in counter-balanced order, during two separate 5-day simulated quit attempts, each preceded by a week of ad libitum smoking. Abstinence was assessed daily by CO < 5 ppm. Smokers with the CHRNB2 GG genotype had more days of abstinence during the nicotine versus placebo patch week compared with those with the AG or AA genotypes (P < 0.01). Moreover, nicotine patch increased the probability of quitting on the target quit day, quitting anytime during the patch week, and avoiding relapse among those with the GG genotype but not the AA/AG genotypes, although the nicotine x genotype interaction was significant only for quitting on the target quit day (P < 0.05). Regardless of patch condition, quitting on the target quit day was more likely in those with the GG genotype versus AA/AG genotypes (P < 0.05). Genetic associations were not observed for craving or withdrawal responses to nicotine versus placebo patch. These findings are consistent with previous evidence of association of this variant with smoking cessation and suggest that polymorphisms in the nicotinic acetylcholine receptor beta2 subunit gene may influence therapeutic responsiveness to cessation medications.

  10. BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.

    PubMed

    de Oliveira, Adriele Silva Alves; Santiago, Fernando Enrique; Balioni, Laiz Furlan; Ferrari, Merari de Fatima Ramires; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-01-01

    The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7

  11. Role of nicotinic receptors in the lateral habenula in the attenuation of amphetamine-induced prepulse inhibition deficits of the acoustic startle response in rats

    PubMed Central

    Larrauri, José A.; Burke, Dennis A.; Hall, Brandon J.; Levin, Edward D.

    2015-01-01

    Rationale Prepulse inhibition (PPI) refers to the reduction of the startle response magnitude when a startling stimulus is closely preceded by a weak stimulus. PPI is commonly used to measure sensorimotor gating. In rats, the PPI reduction induced by the dopamine-agonist apomorphine can be reversed by systemic administration of nicotine. A high concentration of nicotinic receptors is found in the lateral habenula (LHb), an epithalamic structure with efferent projections to brain regions involved in the modulation of PPI, which has been shown to regulate the activity of midbrain dopamine neurons. Objectives The prospective role of nicotinic receptors in the LHb in the regulation of PPI was assessed in this study, using different pharmacological models of sensorimotor gating deficits. Methods Interactions between systemic amphetamine and haloperidol and intra-LHb infusions of mecamylamine (10 µg/side) or nicotine (30 µg/side) on PPI were analyzed in Experiments 1 and 2. Intra-LHb infusions of different nicotine doses (25, and 50 µg/side) and their interactions with systemic administration of amphetamine or dizocilpine on PPI were examined in Experiments 3 and 4. Results Infusions of nicotine into the LHb dose-dependently attenuated amphetamine-induced PPI deficits, but had no effect on PPI disruptions caused by dizocilpine. Intra-LHb mecamylamine infusions did not affect PPI nor interact with dopaminergic manipulations. Conclusions These results are congruent with previous reports of systemic nicotine effects on PPI, suggesting a role of the LHb in the attenuation of sensorimotor gating deficits caused by the hyperactivity of dopamine systems. PMID:25912180

  12. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  13. Cortical control of VTA function and influence on nicotine reward.

    PubMed

    Wu, Jie; Gao, Ming; Shen, Jian-Xin; Shi, Wei-Xing; Oster, Andrew M; Gutkin, Boris S

    2013-10-15

    Tobacco use is a major public health problem. Nicotine acts on widely distributed nicotinic acetylcholine receptors (nAChRs) in the brain and excites dopamine (DA) neurons in the ventral tegmental area (VTA). The elicited increase of DA neuronal activity is thought to be an important mechanism for nicotine reward and subsequently the transition to addiction. However, the current understanding of nicotine reward is based predominantly on the data accumulated from in vitro studies, often from VTA slices. Isolated VTA slices artificially terminate communications between neurons in the VTA and other brain regions that may significantly alter nicotinic effects. Consequently, the mechanisms of nicotinic excitation of VTA DA neurons under in vivo conditions have received only limited attention. Building upon the existing knowledge acquired in vitro, it is now time to elucidate the integrated mechanisms of nicotinic reward on intact systems that are more relevant to understanding the action of nicotine or other addictive drugs. In this review, we summarize recent studies that demonstrate the impact of prefrontal cortex (PFC) on the modulation of VTA DA neuronal function and nicotine reward. Based on existing evidence, we propose a new hypothesis that PFC-VTA functional coupling serves as an integration mechanism for nicotine reward. Moreover, addiction may develop due to nicotine perturbing the PFC-VTA coupling and thereby eliminating the PFC-dependent cognitive control over behavior.

  14. Association of a nicotinic receptor gene polymorphism with spontaneous eyeblink rates

    PubMed Central

    Nakano, Tamami; Kuriyama, Chiho; Himichi, Toshiyuki; Nomura, Michio

    2015-01-01

    Spontaneous eyeblink rates greatly vary among individuals from several blinks to a few dozen blinks per minute. Because dopamine agonists immediately increase the blink rate, individual differences in blink rate are used as a behavioral index of central dopamine functioning. However, an association of the blink rate with polymorphisms in dopamine-related genes has yet not been found. In this study, we demonstrated that a genetic variation of the nicotinic acetylcholine receptor CHRNA4 (rs1044396) increased the blink rate while watching a video. A receiver operating characteristic analysis revealed that the blink rate predicts a genetic variation in the nicotinic receptor gene with a significant discrimination level (0.66, p < 0.004). The present study suggests that differences in sensitivity to acetylcholine because of the genetic variation of the nicotinic receptor are associated with individual differences in spontaneous eye blink rate. PMID:25729002

  15. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy

    PubMed Central

    Becchetti, Andrea; Aracri, Patrizia; Meneghini, Simone; Brusco, Simone; Amadeo, Alida

    2015-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex. PMID:25717303

  16. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    PubMed

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-01

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  17. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers

    PubMed Central

    Brasic, James R.; Contoreggi, Carlo; Cascella, Nicola; Mackowick, Kristen M.; Taylor, Richard; Rousset, Olivier; Willis, William; Huestis, Marilyn A.; Concheiro, Marta; Wand, Gary; Wong, Dean F.; Volkow, Nora D.

    2014-01-01

    The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward. PMID:25493427

  18. Sex Differences in Hippocampal Neuronal Sensitization by Nicotine in M. gerbils

    PubMed Central

    Hur, Young-Na; Lee, Joon; Sohn, Seung-Chan; Won, Chung-Gil; Lee, Hyung-Ha; Kim, Dong-Hoon; Choi, Sang-Hyun; Shin, Kyung-Ho

    2013-01-01

    We studied the sex different nicotine effect on evoked population spike amplitudes (ePSA) and connexin (Cx) expression in the hippocampus CA1 area of gerbils. Acute doses of nicotine bitartrate (0.5 mg/kg: NT-0.5) slightly reduced ePSA in males but markedly augmented that in females. Acute NT (5.0 mg/kg) markedly increased the ePSA in all gerbils. Unlike acute NT-0.5, repeated NT-0.5 injection (twice a day for 7 days) significantly increased the ePSA in males and slightly affected the NT-0.5 effect in females. The Cx36 and Cx43 expression levels as well as Cx expressing neuronal populations were significantly increased by repeated NT-0.5 in in both male and female gerbils, and particularly, Cx43 expression was somewhat prominent in females. These results demonstrated a sex difference with respect to the nicotine effect on hippocampal bisynaptic excitability, irrelevant to connexin expression. PMID:24227940

  19. Role of CB2 Cannabinoid Receptors in the Rewarding, Reinforcing, and Physical Effects of Nicotine

    PubMed Central

    Navarrete, Francisco; Rodríguez-Arias, Marta; Martín-García, Elena; Navarro, Daniela; García-Gutiérrez, María S; Aguilar, María A; Aracil-Fernández, Auxiliadora; Berbel, Pere; Miñarro, José; Maldonado, Rafael; Manzanares, Jorge

    2013-01-01

    This study was aimed to evaluate the involvement of CB2 cannabinoid receptors (CB2r) in the rewarding, reinforcing and motivational effects of nicotine. Conditioned place preference (CPP) and intravenous self-administration experiments were carried out in knockout mice lacking CB2r (CB2KO) and wild-type (WT) littermates treated with the CB2r antagonist AM630 (1 and 3 mg/kg). Gene expression analyses of tyrosine hydroxylase (TH) and α3- and α4-nicotinic acetylcholine receptor subunits (nAChRs) in the ventral tegmental area (VTA) and immunohistochemical studies to elucidate whether CB2r colocalized with α3- and α4-nAChRs in the nucleus accumbens and VTA were performed. Mecamylamine-precipitated withdrawal syndrome after chronic nicotine exposure was evaluated in CB2KO mice and WT mice treated with AM630 (1 and 3 mg/kg). CB2KO mice did not show nicotine-induced place conditioning and self-administered significantly less nicotine. In addition, AM630 was able to block (3 mg/kg) nicotine-induced CPP and reduce (1 and 3 mg/kg) nicotine self-administration. Under baseline conditions, TH, α3-nAChR, and α4-nAChR mRNA levels in the VTA of CB2KO mice were significantly lower compared with WT mice. Confocal microscopy images revealed that CB2r colocalized with α3- and α4-nAChRs. Somatic signs of nicotine withdrawal (rearings, groomings, scratches, teeth chattering, and body tremors) increased significantly in WT but were absent in CB2KO mice. Interestingly, the administration of AM630 blocked the nicotine withdrawal syndrome and failed to alter basal behavior in saline-treated WT mice. These results suggest that CB2r play a relevant role in the rewarding, reinforcing, and motivational effects of nicotine. Pharmacological manipulation of this receptor deserves further consideration as a potential new valuable target for the treatment of nicotine dependence. PMID:23817165

  20. Nicotinic modulation of serotonergic activity in the dorsal raphe nucleus.

    PubMed

    Hernandez-Lopez, Salvador; Garduño, Julieta; Mihailescu, Stefan

    2013-01-01

    Cholinergic signaling mediated by nicotinic receptors has been associated to a large number of physiological and behavioral processes such as learning, memory, attention, food-intake and mood disorders. Although it is well established that many nicotinic actions are mediated through an increase in serotonin (5-HT) release, the physiological mechanisms by which nicotine produces these effects are still unclear. The dorsal raphe nucleus (DRN) contains the major amount of 5-HT neurons projecting to different parts of the brain. DRN also contains nicotinic acetylcholine receptors (nAChRs) located at somatic and presynaptic elements. Nicotine produces both inhibitory and excitatory effects on different subpopulations of 5-HT DRN neurons. In this review, we describe the presynaptic and postsynaptic mechanisms by which nicotine increases the excitability of DRN neurons as well as the subtypes of nAChRs involved. We also describe the inhibitory effects of nicotine and the role of 5-HT1A receptors in this effect. These nicotinic actions modulate the activity of different neuronal subpopulations in the DRN, changing the 5-HT tone in the brain areas where these groups of neurons project. Some of the physiological implications of nicotine-induced 5-HT release are discussed. PMID:24021594

  1. Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties.

    PubMed

    Gerzanich, V; Anand, R; Lindstrom, J

    1994-02-01

    alpha 8 subunits of alpha-bungarotoxin-sensitive chick neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes from cRNA are shown to form homomeric, acetylcholine-gated, rapidly desensitizing, inwardly rectifying, Ca(2+)-permeable cation channels similar to those of alpha 7 homomers. alpha 8 forms oligomers of several sizes, of which < 14% are expressed on the oocyte surface, which is less efficient than for alpha 7 homomers. alpha 8 homomers are more sensitive to agonists but less sensitive to antagonists than are alpha 7 homomers, and some agonists for alpha 8 homomers are partial agonists or antagonists for alpha 7 homomers. The pharmacological properties of homomers of alpha 8 and alpha 7 subunits generally reflect those of native alpha 8 and alpha 7 receptors.

  2. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

    PubMed Central

    Kichko, Tatjana I.; Kobal, Gerd

    2015-01-01

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1−/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1−/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811

  3. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx.

    PubMed

    Kichko, Tatjana I; Kobal, Gerd; Reeh, Peter W

    2015-10-15

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.

  4. Peer Smoking and the Nicotinic Receptor Genes: An Examination of Genetic and Environmental Risks for Nicotine Dependence

    PubMed Central

    Johnson, Eric O.; Chen, Li-Shiun; Breslau, Naomi; Hatsukami, Dorothy; Robbins, Tania; Saccone, Nancy L.; Grucza, Richard A.; Bierut, Laura J.

    2010-01-01

    Background Peer smoking provides a socially reinforcing context of friends’ encouragement and approval that contributes to smoking behavior. Twin studies show correlations and interactions between peer substance use and genetic liability for substance use. However, none examined specific genes. Here we test the hypothesis that the nicotinic receptor genes CHRNA5 (rs16969968), CHRNA3 (rs578776), CHRNB3 (rs13277254), and CHRND (rs12466358) modify the risk for nicotine dependence (ND) associated with peer smoking. Methods Cases of current nicotine dependence (FTND ≥ 4) and smoking-exposed (smoked 100+ cigarettes lifetime), but non-dependent controls (lifetime FTND = 0) came from the Collaborative Genetic Study of Nicotine Dependence (n=2,038). Peer smoking was retrospectively assessed for grades 9–12. Results Peer smoking and the four SNPs were associated with ND. A statistically significant interaction was found between peer smoking and rs16969968 (p = 0.0077). Overall risk of ND was highest for the rs16969968 AA genotype. However, variance in ND attributable to peer smoking was substantially lower among those with the AA genotype at rs16969968 than the lower risk genotypes: AA = 2.5%, GA/AG = 11.2%, GG = 14.2%; p ≤ 0.004. Conclusions Peer smoking had a substantially lower effect on ND among those with the high risk AA genotype at the functional SNP rs16969968 (CHRNA5) than among those with lower risk genotypes. Such results highlight the possibility that given drug exposure those with specific genetic risks may be less affected by social contexts and intervention strategies focused on social factors could have less influence on those at highest genetic risk. PMID:20840187

  5. Cholinergic Modulation of Locomotion and Striatal Dopamine Release is Mediated by α6α4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Drenan, Ryan M.; Grady, Sharon R.; Steele, Andrew D.; McKinney, Sheri; Patzlaff, Natalie E.; McIntosh, J. Michael; Marks, Michael J.; Miwa, Julie M.; Lester, Henry A.

    2012-01-01

    Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express α6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive α6L9′S* receptors. α6L9′S mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by α6α4* pentamers, as α6L9′S mice lacking α4 subunits displayed essentially normal behavior. In α6L9′S mice, receptor numbers are normal, but loss of α4 subunits leads to fewer and less sensitive α6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires α4 subunits, implicating α6α4β2* nAChRs in α6L9′S mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by α6L9′S nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in α6L9′S, but not WT or α4KO/α6L9′S, mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from α6L9′S presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate α6α4β2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system. PMID:20660270

  6. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    PubMed

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25582289

  7. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    SciTech Connect

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-09-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining (/sup 3/H)nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure (/sup 3/H)nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-(/sup 3/H)nicotine-binding characteristics.

  8. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    PubMed

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  9. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  10. Silent, fluorescent labeling of native neuronal receptors.

    PubMed

    Vytla, Devaiah; Combs-Bachmann, Rosamund E; Hussey, Amanda M; Hafez, Ismail; Chambers, James J

    2011-10-21

    We have developed a minimally-perturbing strategy that enables labeling and subcellular visualization of endogenous dendritic receptors on live, wild-type neurons. Specifically, calcium-permeable non-NMDA glutamate receptors expressed in hippocampal neurons can be targeted with this novel synthetic tri-functional molecule. This ligand-directed probe was targeted towards AMPA receptors and bears an electrophilic group for covalent bond formation with an amino acid side chain on the extracellular side of the ion channel. This molecule was designed in such a way that the use-dependent, polyamine-based ligand accumulates the chemically-reactive group at the extracellular side of these polyamine-sensitive receptors, thereby allowing covalent bond formation between an electrophilic moiety on the nanoprobe and a nucleophilic amino acid sidechain on the receptor. Bioconjugation of this molecule results in a stable covalent bond between the nanoprobe and the target receptor. Subsequent photolysis of a portion of the nanoprobe may then be employed to effect ligand release allowing the receptor to re-enter the non-liganded state, all the while retaining the fluorescent beacon for visualization. This technology allows for rapid fluorescent labeling of native polyamine-sensitive receptors and further advances the field of fluorescent labeling of native biological molecules.

  11. The kappa-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety.

    PubMed

    Marco, Eva Maria; Llorente, Ricardo; Pérez-Alvarez, Laura; Moreno, Enrique; Guaza, Carmen; Viveros, Maria Paz

    2005-09-01

    The kappa (kappa) opioid system appears to interact with nicotine in the modulation of locomotion and addiction related processes. In this study we have investigated the possible implication of the kappa-opioid system in the effects of nicotine on anxiety and adrenocortical activity. In two different experiments, we analysed the possible interaction between nicotine (0.5 mg/kg i.p.) and either the kappa-opioid receptor antagonist nor-binaltorphimine (5 mg/kg i.p.) or the kappa-opioid receptor agonist U50,488H (1 mg/kg s.c.). Behavioural and endocrine experiments were performed in different groups of animals. Animals were exposed to the holeboard immediately followed by the plus-maze. Serum corticosterone levels were determined by radioimmunoassay. Nicotine induced an anxiogenic-like effect in the plus-maze and a significant decrease of holeboard activity. The anxiogenic-like effect in the plus-maze was not modified by any of the kappa-opioid receptor ligands. Nicotine also induced a significant increase in the corticosterone levels, and the kappa antagonist, which did not exert any effect per se, antagonised this effect. The kappa-agonist U50,488H induced a significant increase in corticosterone concentration when administered alone. We provide the first evidence for the involvement of the kappa-opioid receptor in the stimulatory effect of nicotine on adrenocortical activity.

  12. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    SciTech Connect

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin . E-mail: chcho@cuhk.edu.hk

    2007-06-15

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.

  13. Enhanced alcohol-seeking behavior by nicotine in the posterior ventral tegmental area of female alcohol-preferring (P) rats: modulation by serotonin-3 and nicotinic cholinergic receptors

    PubMed Central

    Deehan, Gerald A.; Toalston, Jamie E.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Rationale Alcohol and nicotine co-use can reciprocally promote self-administration and drug-craving/drug-seeking behaviors. To date, the neurocircuitry in which nicotine influences ethanol (EtOH) seeking has not been elucidated. Clinical and preclinical research has suggested that the activation of the mesolimbic dopamine system is involved in the promotion of drug seeking. Alcohol, nicotine, and serotonin-3 (5-HT3) receptors interact within the posterior ventral tegmental area (pVTA) to regulate drug reward. Recently, our laboratory has reported that systemic administration of nicotine can promote context-induced EtOH seeking. Objectives The goals of the current study were to (1) determine if microinjections of pharmacologically relevant levels of nicotine into the pVTA would enhance EtOH seeking, (2) determine if coadministration of nicotinic cholinergic receptor antagonist (nACh) or 5-HT3 receptor antagonists would block the ability of nicotine microinjected into the pVTA to promote EtOH seeking, and (3) determine if 5-HT3 receptors in the pVTA can modulate EtOH seeking. Results Nicotine (100 and 200 µM) microinjected into the pVTA enhanced EtOH seeking. Coinfusion with 200 µM mecamylamine (nACh antagonist) or 100 and 200 µM zacopride (5-HT3 receptor antagonist) blocked the observed nicotine enhancement of EtOH seeking. The data also indicated that microinjection of 1 µM CPBG (5-HT3 receptor agonist) promotes context-induced EtOH seeking; conversely microinjection of 100 and 200 µM zacopride alone reduced context-induced EtOH seeking. Conclusions Overall, the results show that nicotine-enhanced EtOH-seeking behavior is modulated by 5-HT3 and nACh receptors within the pVTA and that the 5-HT3 receptor system within pVTA may be a potential pharmacological target to inhibit EtOH-seeking behaviors. PMID:24599396

  14. Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells.

    PubMed

    Wu, Mingchun; Jia, Ji; Lei, Chong; Ji, Ling; Chen, Xiaodan; Sang, Hanfei; Xiong, Lize

    2015-03-01

    Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

  15. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking.

    PubMed

    Naudé, Jérémie; Tolu, Stefania; Dongelmans, Malou; Torquet, Nicolas; Valverde, Sébastien; Rodriguez, Guillaume; Pons, Stéphanie; Maskos, Uwe; Mourot, Alexandre; Marti, Fabio; Faure, Philippe

    2016-03-01

    Cholinergic neurotransmission affects decision-making, notably through the modulation of perceptual processing in the cortex. In addition, acetylcholine acts on value-based decisions through as yet unknown mechanisms. We found that nicotinic acetylcholine receptors (nAChRs) expressed in the ventral tegmental area (VTA) are involved in the translation of expected uncertainty into motivational value. We developed a multi-armed bandit task for mice with three locations, each associated with a different reward probability. We found that mice lacking the nAChR β2 subunit showed less uncertainty-seeking than their wild-type counterparts. Using model-based analysis, we found that reward uncertainty motivated wild-type mice, but not mice lacking the nAChR β2 subunit. Selective re-expression of the β2 subunit in the VTA was sufficient to restore spontaneous bursting activity in dopamine neurons and uncertainty-seeking. Our results reveal an unanticipated role for subcortical nAChRs in motivation induced by expected uncertainty and provide a parsimonious account for a wealth of behaviors related to nAChRs in the VTA expressing the β2 subunit. PMID:26780509

  16. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking.

    PubMed

    Naudé, Jérémie; Tolu, Stefania; Dongelmans, Malou; Torquet, Nicolas; Valverde, Sébastien; Rodriguez, Guillaume; Pons, Stéphanie; Maskos, Uwe; Mourot, Alexandre; Marti, Fabio; Faure, Philippe

    2016-03-01

    Cholinergic neurotransmission affects decision-making, notably through the modulation of perceptual processing in the cortex. In addition, acetylcholine acts on value-based decisions through as yet unknown mechanisms. We found that nicotinic acetylcholine receptors (nAChRs) expressed in the ventral tegmental area (VTA) are involved in the translation of expected uncertainty into motivational value. We developed a multi-armed bandit task for mice with three locations, each associated with a different reward probability. We found that mice lacking the nAChR β2 subunit showed less uncertainty-seeking than their wild-type counterparts. Using model-based analysis, we found that reward uncertainty motivated wild-type mice, but not mice lacking the nAChR β2 subunit. Selective re-expression of the β2 subunit in the VTA was sufficient to restore spontaneous bursting activity in dopamine neurons and uncertainty-seeking. Our results reveal an unanticipated role for subcortical nAChRs in motivation induced by expected uncertainty and provide a parsimonious account for a wealth of behaviors related to nAChRs in the VTA expressing the β2 subunit.

  17. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  18. Mouse chromosome 11 harbors genetic determinants of hippocampal strain-specific nicotinic receptor expression.

    PubMed

    Rogers, Scott W; Weis, Janis J; Ma, Ying; Teuscher, Cory; Gahring, Lorise C

    2008-01-01

    Differences between isogenic mouse strains in cellular expression of the neuronal nicotinic acetylcholine (ACh) receptor subunit alpha 4 (nAChR alpha 4) by the dorsal hippocampus are well known. To investigate further the genetic basis of these variations, expression of the nAChR alpha 4 subunit was measured in congenic mouse lines derived from two strains exhibiting notable divergence in the expression of this subunit: C3H and C57BL/6. Congenic lines carrying reciprocally introgressed regions (quantitative trait loci; QTL) from chromosomes 4, 5, and 12 each retained the phenotype most closely associated with the parental strain. However, in congenic lines harboring the reciprocal transfer of a chromosome 11 QTL, a characteristic difference in the ratio of interneurons versus astrocytes expressing nAChR alpha 4 in the CA1 region is reversed relative to the parental strain. These finding suggest that this chromosomal segment harbors genes that regulate strain distinct hippocampal morphology that is revealed by nAChR alpha 4 expression.

  19. Tonic modulation of GABA release by nicotinic acetylcholine receptors in layer V of the murine prefrontal cortex.

    PubMed

    Aracri, Patrizia; Consonni, Silvia; Morini, Raffaella; Perrella, Marco; Rodighiero, Simona; Amadeo, Alida; Becchetti, Andrea

    2010-07-01

    By regulating the neocortical excitability, nicotinic acetylcholine receptors (nAChRs) control vigilance and cognition and are implicated in epileptogenesis. Modulation of gamma-aminobutyric acid (GABA) release often accompanies these processes. We studied how nAChRs regulate GABAergic transmission in the murine neocortex with immunocytochemical and patch-clamp methods. The cholinergic fibers densely innervated the somatosensory, visual, motor, and prefrontal cortices (PFC). Laminar distribution was broadly homogeneous, especially in the PFC. The cholinergic terminals were often adjacent to the soma and dendrites of GABAergic interneurons, but well-differentiated synapses were rare. Tonically applied nicotine (1-100 microM) increased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) on pyramidal neurons in PFC layer V. The contribution of nAChR types was assessed by using 1 microM dihydro-beta-erythroidine (DHbetaE), to block heteromeric nAChRs, and 10 nM methyllycaconitine (MLA), to block homomeric nAChRs. Both inhibitors antagonized the effect of nicotine on IPSCs, suggesting that mixed nAChR types control pyramidal neuron inhibition in layer V. To determine whether nAChRs are expressed on basket cells' terminals, we studied miniature IPSCs (mIPSCs). These were revealed using 0.5 microM tetrodotoxin and 50 microM Cd(2+) to isolate the GABAergic terminals from the action potential drive. The nicotinic stimulation of mIPSCs was antagonized by DHbetaE, but not MLA, indicating that heteromeric nAChRs prevail in GABAergic terminals. Immunocytochemistry confirmed the expression of nAChRs on basket cells' somata and terminals. Finally, when the ionotropic glutamatergic transmission was blocked, nicotine partially inhibited the IPSCs, an effect counteracted by both DHbetaE and MLA. Therefore, a fraction of nAChRs are capable of activating GABAergic interneurons that in turn inhibit other GABAergic interneurons, thereby reducing the IPSCs. We

  20. Neuroprotective effect of vitamin C against the ethanol and nicotine modulation of GABA(B) receptor and PKA-alpha expression in prenatal rat brain.

    PubMed

    Naseer, M I; Lee, H Y; Kim, M O

    2010-06-01

    Prenatal ethanol exposure has various deleterious effects on neuronal development and can induce various defects in developing brain, resulting in fetal alcohol syndrome (FAS). gamma-Aminobutyric acid (GABA(B)) receptor (R) is known to play an important role during the development of the central nervous system (CNS). Our study was designed to investigate the effect of ethanol (100 mM), nicotine (50 microM) (for 30 min and 1 h), vitamin C (vitC, 0.5 mM), ethanol plus vitC, and nicotine plus vitC on expression level of GABA(B1), GABA(B2)R, and protein kinase A-alpha (PKA) in prenatal rat cortical and hippocampal neurons at gestational days (GD) 17.5. The results showed that, upon ethanol and nicotine exposure, GABA(B1) and GABA(B2)R protein expression increased significantly in the cortex and hippocampus for a short (30 min) and long term (1 h), whereas only GABA(B2)R subunit was decreased upon nicotine exposure for a long term in the cortex. Furthermore, PKA expression in cortex and hippocampus increased with ethanol exposure during short term, whereas long-term exposure results increased in cortex and decreased in hippocampus. Moreover, the cotreatment of vitC with ethanol and nicotine showed significantly decreased expression of GABA(B1), GABA(B2)R, and PKA in cortex and hippocampus for a long-term exposure. Mitochondrial membrane potential, Fluoro-jade-B, and propidium iodide staining were used to elucidate possible neurodegeneration. Our results suggest the involvement of GABA(B)R and PKA in nicotine and ethanol-mediated neurodevelopmental defects and the potential use of vitC as a effective protective agent for FAS-related deficits.

  1. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    SciTech Connect

    Stollberg, J.

    1985-01-01

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (/sup 3/H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane.

  2. Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study.

    PubMed

    Brown, L A; Jones, A K; Buckingham, S D; Mee, C J; Sattelle, D B

    2006-05-31

    Following the complete sequencing of the genome of the free-living nematode, Caenorhabditis elegans, in 1998, rapid advances have been made in assigning functions to many genes. Forward and reverse genetics have been used to identify novel components of synaptic transmission as well as determine the key components of antiparasitic drug targets. The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels. The functions of these transmembrane proteins and the roles of the different members of their extensive subunit families are increasingly well characterised. The simple nervous system of C. elegans possesses one of the largest nicotinic acetylcholine receptor gene families known for any organism and a combination of genetic, microarray, physiological and reporter gene expression studies have added greatly to our understanding of the components of nematode muscle and neuronal nAChR subtypes. Chemistry-to-gene screens have identified five subunits that are components of nAChRs sensitive to the antiparasitic drug, levamisole. A novel, validated target acting downstream of the levamisole-sensitive nAChR has also been identified in such screens. Physiology and molecular biology studies on nAChRs of parasitic nematodes have also identified levamisole-sensitive and insensitive subtypes and further subdivisions are under investigation. PMID:16620825

  3. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival

    PubMed Central

    St-Pierre, Stéphanie; Jiang, Wei; Roy, Patrick; Champigny, Camille; LeBlanc, Éric; Morley, Barbara J.; Hao, Junwei; Simard, Alain R.

    2016-01-01

    It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1β and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers. PMID:26925951

  4. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice.

    PubMed

    Alijanpour, S; Rezayof, A

    2013-08-15

    The present study examined whether nicotinic acetylcholine receptors (nAChRs) of the CA1 regions of the dorsal hippocampus and medial septum (MS) are involved in cross state-dependent memory retrieval between WIN55, 212-2 (WIN, a non-selective CB1/CB2 receptor agonist) and nicotine or ethanol. Memory retrieval was measured in one-trial step-down type passive avoidance apparatus in male adult mice. Pre-training intraperitoneal administration of WIN (0.1-1mg/kg) dose-dependently impaired memory retrieval when it was tested 24h later. Pre-test systemic administration of nicotine (0.6 and 0.7mg/kg, s.c.) or ethanol (0.5g/kg, i.p.) improved WIN-induced memory impairment, suggesting a cross state-dependent memory retrieval between the drugs. Pre-test intra-CA1 microinjection of nicotine (1 and 2μg/mouse) before systemic administration of an ineffective dose of nicotine (0.5mg/kg, s.c.) or ethanol (0.25g/kg) significantly reversed WIN-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (1 and 3μg/mouse) inhibited cross state-dependent memory between WIN and nicotine or ethanol. Moreover, pre-test intra-MS microinjection of nicotine (1 and 2μg/mouse) in combination with systemic administration of a lower dose of nicotine (0.5mg/kg), but not ethanol (0.25g/kg), improved memory impairment induced by pre-training administration of WIN. On the other hand, in the animals that received pre-training WIN and pre-test systemic administration of nicotine (0.7mg/kg), but not ethanol (0.5g/kg), pre-test intra-MS microinjection of mecamylamine (1-5μg/mouse) inhibited WIN-nicotine state-dependent memory retrieval. It should be noted that pre-test intra-CA1 or intra-MS microinjection of nicotine or mecamylamine by itself had no effect on memory retrieval and also could not reverse memory impairment induced by pre-training administration of WIN. It can be concluded that WIN and nicotine or WIN and ethanol can induce state-dependent memory retrieval. In

  5. Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans

    PubMed Central

    Shorey-Kendrick, Lyndsey E.; Ford, Matthew M.; Allen, Daicia C.; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A.; Spindel, Eliot R.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. PMID:25661700

  6. The antidepressant-like activity of nicotine, but not of 3-furan-2-yl-N-p-tolyl-acrylamide, is regulated by the nicotinic receptor β4 subunit.

    PubMed

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    The current study compares the antidepressant-like effect elicited by nicotine between wild-type (β4+/+) and knockout (β4-/-) mice, and subsequently, the effect of 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a positive allosteric modulator of α7 nicotinic receptors, on the previously determined activity of nicotine. Mice from each sex were injected daily with nicotine base (0.2 mg/kg; s.c.) or co-administered with PAM-2 (1.0 mg/kg; i.p.) for 3 weeks. Forced swim tests were performed to determine the acute (day 1), subchronic (day 7), and chronic (days 14 and 21) effects of the drugs, as well as their residual effects after treatment cessation (days 28 and 35). Our results indicate that nicotine mediates antidepressant-like activity after acute, subchronic, and chronic treatments in β4+/+, but not β4-/-, mice, and that these effects are not mediated by unspecific locomotor stimulation. Nicotine co-administered with PAM-2 produces antidepressant-like activity in both β4+/+ and β4-/- mice, except after the acute treatment of β4-/- mice, and decreases locomotor activity. This suggests that although the β4 subunit regulates the antidepressant-like activity of nicotine it does not affect the activity elicited by PAM-2 when is co-administered with nicotine. The residual antidepressant-like activity of PAM-2 + nicotine was observed only in female mice, suggesting gender-specific differences. Our findings clearly indicate that β4-containing nAChRs play an important role in the antidepressant-like activity elicited by nicotine but they are not essential for the modulatory activity of PAM-2. In fact, PAM-2 inhibits α4β4 and α3β4 AChRs at higher concentration ranges compared to that for the PAM activity previously found at the α7 AChR.

  7. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  8. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    PubMed

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  9. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was admin