Science.gov

Sample records for neuronal substrate fuel

  1. Energy substrates that fuel fast neuronal network oscillations.

    PubMed

    Galow, Lukas V; Schneider, Justus; Lewen, Andrea; Ta, Thuy-Truc; Papageorgiou, Ismini E; Kann, Oliver

    2014-01-01

    Fast neuronal network oscillations in the gamma-frequency band (30--100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity, and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.

  2. Energy substrates that fuel fast neuronal network oscillations

    PubMed Central

    Galow, Lukas V.; Schneider, Justus; Lewen, Andrea; Ta, Thuy-Truc; Papageorgiou, Ismini E.; Kann, Oliver

    2014-01-01

    Fast neuronal network oscillations in the gamma-frequency band (30–−100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity, and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective. PMID:25538552

  3. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  4. Neurons on Parafilm: versatile elastic substrates for neuronal cell cultures.

    PubMed

    Yoo, Sang Jin; Nam, Yoonkey

    2012-02-15

    A variety of materials has been applied to neuronal cell culture substrates to improve the efficiency of the culture and to provide pertinent cell growth environment. Here we report the application of Parafilm(®) M ('Parafilm') as a novel substrate for neuronal culture and patterning. Cell culture results show that elastic Parafilm had effects on cell viability, length and number of neurites, and soma spreading. Parafilm was also an effective substrate to obtain patterned neuronal cultures using a conventional micro-contract printing (μCP) technique. Polylysine micropatterns in line or grid forms were readily transferred from PDMS stamp to bare Parafilm surfaces and spatially confined neuronal cultures were successfully maintained for over three weeks. We also demonstrate that batch-processing cell culture substrates can be easily fabricated using a piece of Parafilm. The softness, plasticity, and hydrophobicity were main features that made it attractive for Parafilm to be considered as a practical cell culture platform. The results can be extended to develop an inexpensive and practical neuronal culture substrates in tissue engineering and biochip applications.

  5. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth

    PubMed Central

    Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241

  6. Conductive Single-Walled Carbon Nanotube Substrates Modulate Neuronal Growth

    PubMed Central

    Malarkey, Erik B.; Fisher, Kirk A.; Bekyarova, Elena; Liu, Wei; Haddon, Robert C.; Parpura, Vladimir

    2009-01-01

    We used conductive nanotube films as substrates with which we could systematically vary the conductance to see how this property affects neuronal growth. Here we show that nanotube substrates in a narrow range of conductivity promote the outgrowth of neurites with a decrease in the number of growth cones as well as an increase in cell body area, while at higher conductance these effects disappear. PMID:19143503

  7. Glutamate affects dendritic morphology of neurons grown on compliant substrates.

    PubMed

    Previtera, Michelle L; Firestein, Bonnie L

    2015-01-01

    Brain stiffness changes in response to injury or disease. As a secondary consequence, glutamate is released from neurons and astroglia. Two types of glutamate receptors, N-methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, sense mechanotransduction, leading to downstream signaling in neurons. Recently, our group reported that these two receptors affect dendrite morphology in hippocampal neurons grown on compliant substrates. Blocking receptor activity has distinct effects on dendrites, depending on whether neurons are grown on soft or stiff gels. In the current study, we examine whether exposure to glutamate itself alters stiffness-mediated changes to dendrites in hippocampal neurons. We find that glutamate augments changes seen when neurons are grown on soft gels of 300 or 600 Pa, but in contrast, glutamate attenuates changes seen when neurons are grown on stiff gels of 3,000 Pa. These results suggest that there is interplay between mechanosensing and glutamate receptor activation in determining dendrite morphology in neurons.

  8. Neuronal oscillations as a mechanistic substrate of auditory temporal prediction

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.

    2014-01-01

    Neuronal oscillations are comprised of rhythmic fluctuations of excitability that are synchronized in ensembles of neurons and thus function as temporal filters that dynamically organize sensory processing. When perception relies on anticipatory mechanisms, ongoing oscillations also provide a neurophysiological substrate for temporal prediction. In this article we review evidence for this account with a focus on auditory perception. We argue that such “oscillatory temporal predictions” can selectively amplify neuronal sensitivity to inputs that occur in a predicted, task-relevant rhythm and optimize temporal selection. We elaborate this argument for a prototypic example, speech processing, where information is present at multiple time scales, with delta, theta, and low-gamma oscillations being specifically and simultaneously engaged, enabling multiplexing. We then consider the origin of temporal predictions, specifically the idea that the motor system is involved in the generation of such prior information. Finally, we place temporal predictions in the general context of internal models, discussing how they interact with feature-based or spatial predictions. We propose that complementary predictions interact synergistically according to a dominance hierarchy, shaping perception in the form of a multidimensional filter mechanism. PMID:25773613

  9. Neuronal oscillations as a mechanistic substrate of auditory temporal prediction.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E

    2015-03-01

    Neuronal oscillations are comprised of rhythmic fluctuations of excitability that are synchronized in ensembles of neurons and thus function as temporal filters that dynamically organize sensory processing. When perception relies on anticipatory mechanisms, ongoing oscillations also provide a neurophysiological substrate for temporal prediction. In this article, we review evidence for this account with a focus on auditory perception. We argue that such "oscillatory temporal predictions" can selectively amplify neuronal sensitivity to inputs that occur in a predicted, task-relevant rhythm and optimize temporal selection. We elaborate this argument for a prototypic example, speech processing, where information is present at multiple time scales, with delta, theta, and low-gamma oscillations being specifically and simultaneously engaged, enabling multiplexing. We then consider the origin of temporal predictions, specifically the idea that the motor system is involved in the generation of such prior information. Finally, we place temporal predictions in the general context of internal models, discussing how they interact with feature-based or spatial predictions. We propose that complementary predictions interact synergistically according to a dominance hierarchy, shaping perception in the form of a multidimensional filter mechanism.

  10. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    PubMed

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning.

  11. Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development

    PubMed Central

    Shelly, Maya; Lee, Seong-Il; Suarato, Giulia; Meng, Yizhi; Pautot, Sophie

    2016-01-01

    Summary Protein micropatterning techniques, including microfluidic devices and protein micro-contact printing, enable the generation of highly controllable substrates for spatial manipulation of intracellular and extracellular signaling determinants to examine the development of cultured dissociated neurons in vitro. In particular, culture substrates coated with proteins of interest in defined stripes, including cell adhesion molecules and secreted proteins, have been successfully used to study neuronal polarization, a process in which the neuron establishes axon and dendrite identities, a critical architecture for the input/output functions of the neuron. We have recently used this methodology to pattern the extracellular protein Semaphorin 3A (Sema3A), a secreted factor known to control neuronal development in the mammalian embryonic cortex. We showed that stripe patterned Sema3A regulates axon and dendrite formation during the early phase of neuronal polarization in cultured rat hippocampal neurons. Here, we describe microfabrication and substrate stripe micropatterning of Sema3A. We note that same methodologies can be applied to pattern other extracellular proteins that regulate neuronal development in the embryonic brain, as Nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), and Netrin-1. We describe modifications of these methodologies for stripe micropatterning of membrane-permeable analogs of the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP), intracellular regulators of neuronal polarization that might act downstream of Sema3A. PMID:27787862

  12. Ceria catalyst for inert-substrate-supported tubular solid oxide fuel cells running on methane fuel

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Kim, Bok-Hee; Du, Yanhai; Xu, Qing; Ahn, Byung-Guk

    2016-05-01

    A ceria catalyst is applied to an inert-substrate supported tubular single cell for direct operation on methane fuel. The tubular single cell comprises a porous yttria-stabilized zirconia (YSZ) supporter, a Ni-Ce0.8Sm0.2O1.9 anode, a YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. The ceria catalyst is incorporated into the porous YSZ supporter layer by a cerium nitrate impregnation. The effects of ceria on the microstructure and electrochemical performance of the tubular single cell are investigated with respect to the number of impregnations. The optimum number of impregnations is determined to be four based on the maximum power density and polarization property of the tubular single cell in hydrogen and methane fuels. At 700 °C, the tubular single cell shows similar maximum power densities of ˜260 mW cm-2 in hydrogen and methane fuels, respectively. Moreover, the ceria catalyst significantly improves the performance stability of the cell running on methane fuel. At a current density of 350 mA cm-2, the single cell shows a low degradation rate of 2.5 mV h-1 during the 13 h test in methane fuel. These results suggest the feasibility of applying the ceria catalyst to the inert-substrate supported tubular single cell for direct operation on methane fuel.

  13. Characterization of dorsal root ganglion neurons cultured on silicon micro-pillar substrates

    PubMed Central

    Repić, Tihana; Madirazza, Katarina; Bektur, Ezgi; Sapunar, Damir

    2016-01-01

    Our study focuses on characterization of dorsal root ganglion (DRG) neurons cultured on silicon micro-pillar substrates (MPS) with the ultimate goal of designing micro-electrode arrays (MEAs) for successful electrophysiological recordings of DRG neurons. Adult and neonatal DRG neurons were cultured on MPS and glass coverslips for 7 days in vitro. DRG neuronal distribution and morphometric analysis, including neurite alignment and length, was performed on MPS areas with different pillar width and spacing. We showed that MPS provide an environment for growth of adult and neonatal DRG neurons as permissive as control glass surfaces. Neonatal DRG neurons were present on MPS areas with narrow pillar spacing, while adult neurons preferred wider pillar spacing. Compared to the control glass surfaces the neonatal and adult DRG neurons in regions with narrow pillar spacing range developed a smaller number of longer neurites. In the same area, neurites were preferentially oriented along three directional axes at 30°, 90° and 150°. MPS architecture influenced growth directionality of all main DRG neuronal subtypes. We can conclude that specific micro-pillar substrate topography affects the morphology of DRG neurons. This knowledge can enable development of MEAs with precisely defined physical features for various neuroscience applications. PMID:28008963

  14. Nitrite as a candidate substrate in microbial fuel cells.

    PubMed

    Faraghi, Neda; Ebrahimi, Sirous

    2012-08-01

    Current generation using nitrite as substrate (pH 6.9, 40 mgN l(-1)) in a nitrite-fed microbial fuel cell was investigated under anaerobic and aerobic anodic conditions as an alternative to the biological nitrite oxidation process. Cell current, coulombic efficiency (CE) and power generation of 0.04 mA, 30 ± 2 % and 19.3 ± 3.3 μW m(-2), respectively, were observed under anaerobic conditions while complete nitrite degradation (no current) was obtained under aerobic conditions. Switching from aerobic to anaerobic anode enhanced the CE and power generation (39 ± 1 % and 29 ± 4.3 μW m(-2)).

  15. Agarose-Based Substrate Modification Technique for Chemical and Physical Guiding of Neurons In Vitro.

    PubMed

    Krumpholz, Katharina; Rogal, Julia; El Hasni, Akram; Schnakenberg, Uwe; Bräunig, Peter; Bui-Göbbels, Katrin

    2015-08-26

    A new low cost and highly reproducible technique is presented that provides patterned cell culture substrates. These allow for selective positioning of cells and a chemically and mechanically directed guiding of their extensions. The patterned substrates consist of structured agarose hydrogels molded from reusable silicon micro templates. These templates consist of pins arranged equidistantly in squares, connected by bars, which mold corresponding wells and channels in the nonadhesive agarose hydrogel. Subsequent slice production with a standard vibratome, comprising the described template pattern, completes substrate production. Invertebrate neurons of locusts and pond snails are used for this application as they offer the advantage over vertebrate cells as being very large and suitable for cultivation in low cell density. Their neurons adhere to and grow only on the adhesive areas not covered by the agarose. Agarose slices of 50 μm thickness placed on glass, polystyrene, or MEA surfaces position and immobilize the neurons in the wells, and the channels guide their neurite outgrowth toward neighboring wells. In addition to the application with invertebrate neurons, the technique may also provide the potential for the application of a wide range of cell types. Long-term objective is the achievement of isolated low-density neuronal networks on MEAs or different culture substrates for various network analysis applications.

  16. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  17. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices

    PubMed Central

    Millet, Larry J.; Stewart, Matthew E.; Nuzzo, Ralph G.

    2010-01-01

    Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organised neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and flourescein-conjugated poly-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on coverslips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 μm-wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers

  18. Substrate Three-Dimensionality Induces Elemental Morphological Transformation of Sensory Neurons on a Physiologic Timescale

    PubMed Central

    Ribeiro, Andreia; Vargo, Shelby; Powell, Elizabeth M.

    2012-01-01

    The natural environment of a neuron is the three-dimensional (3D) tissue. In vivo, embryonic sensory neurons transiently express a bipolar morphology with two opposing neurites before undergoing cytoplasmic and cytoskeletal rearrangement to a more mature pseudo-unipolar axonal arbor before birth. The unipolar morphology is crucial in the adult for correct information transmission from the periphery to the central nervous system. On two-dimensional (2D) substrates this transformation is delayed significantly or absent. We report that a 3D culture platform can invoke the characteristic transformation to the unipolar axonal arbor within a time frame similar to in vivo, overcoming the loss of this essential milestone in 2D substrates. Additionally, 3D substrates alone provided an environment that promoted axonal branching features that reflect morphological patterns observed in vivo. We have also analyzed the involvement of soluble cues in these morphogenic processes by culturing the neurons in the presence and absence of nerve growth factor (NGF), a molecule that plays distinct roles in the development of the peripheral and central nervous systems. Without NGF, both 2D and 3D cultures had significant decreases in the relative population of unipolar neurons as well as shorter neurite lengths and fewer branch points compared to cultures with NGF. Interestingly, branching features of neurons cultured in 3D without NGF resemble those of neurons cultured in 2D with NGF. Therefore, neurons cultured in 3D without NGF lost the ability to differentiate into unipolar neurons, suggesting that this morphological hallmark requires not only presentation of soluble cues like NGF, but also the surrounding 3D presentation of adhesive ligands to allow for realization of the innate morphogenic program. We propose that in a 3D environment, various matrix and soluble cues are presented toward all surfaces of the cell; this optimized milieu allows neurons to elaborate their genuine

  19. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth.

    PubMed

    Hu, Hui; Ni, Yingchun; Mandal, Swadhin K; Montana, Vedrana; Zhao, Bin; Haddon, Robert C; Parpura, Vladimir

    2005-03-17

    We report the synthesis of a single-walled carbon nanotube (SWNT) graft copolymer. This polymer was prepared by the functionalization of SWNTs with polyethyleneimine (PEI). We used this graft copolymer, SWNT-PEI, as a substrate for cultured neurons and found that it promotes neurite outgrowth and branching.

  20. Stopped-flow analysis of substrate binding to neuronal nitric oxide synthase.

    PubMed

    Abu-Soud, H M; Wang, J; Rousseau, D L; Stuehr, D J

    1999-09-21

    The kinetics of binding L-arginine and three alternative substrates (homoarginine, N-methylarginine, and N-hydroxyarginine) to neuronal nitric oxide synthase (nNOS) were characterized by conventional and stopped-flow spectroscopy. Because binding these substrates has only a small effect on the light absorbance spectrum of tetrahydrobiopterin-saturated nNOS, their binding was monitored by following displacement of imidazole, which displays a significant change in Soret absorbance from 427 to 398 nm. Rates of spectral change upon mixing Im-nNOS with increasing amounts of substrates were obtained and found to be monophasic in all cases. For each substrate, a plot of the apparent rate versus substrate concentration showed saturation at the higher concentrations. K(-)(1), k(2), k(-)(2), and the apparent dissociation constant were derived for each substrate from the kinetic data. The dissociation constants mostly agreed with those calculated from equilibrium spectral data obtained by titrating Im-nNOS with each substrate. We conclude that nNOS follows a two-step, reversible mechanism of substrate binding in which there is a rapid equilibrium between Im-nNOS and the substrate S followed by a slower isomerization process to generate nNOS'-S: Im-nNOS + S if Im-nNOS-S if nNOS'-S + Im. All four substrates followed this general mechanism, but differences in their kinetic values were significant and may contribute to their varying capacities to support NO synthesis.

  1. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  2. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    PubMed

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  3. Retinal flat cells are a substrate that facilitates retinal neuron growth and fiber formation.

    PubMed

    Li, H P; Sheffield, J B

    1986-03-01

    When embryonic chick neural retinas are dissociated into a suspension of single cells and plated in stationary cultures, "flat cells" spread out and form a monolayer to which the neuronal cells attach. It has been shown previously that the flat cells are related to the Müller cell population of the retina. The neuronal cells form aggregates interconnected by bundles of axon-like fibers. The authors have been able to isolate relatively pure flat cells by shaking off the neuronal aggregates after 5 or 6 days of culture. In order to determine if the flat cells have a unique relationship with the neuronal cells, freshly dissociated neural retina cells were added to monolayers of flat cells and their behavior compared to that on chick embryo mesodermal cells. It has been observed by phase contrast and scanning electron microscopy that the growth behavior of the retina cells on flat cells is significantly different from that on mesodermal cells. On flat cells, neuronal retina cells form flat patches in which new growing flat cells fuse with the monolayer, and neuronal cells attach as single cells or small clusters. Axon-like fibers are present several hours after plating, and by day 4 an extensive network of fibers connects single cells and clusters on the surface of the monolayer. When retina cells are plated onto mesodermal cells, the cells form aggregates which are organized along the long axis of the mesodermal cells. The flat cells provide a unique substrate for the differentiation and neurite extension of neuronal cells from embryonic chick retina.

  4. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction.

    PubMed

    Lupica, Carl R; Riegel, Arthur C

    2005-06-01

    Substantial evidence suggests that all commonly abused drugs act upon the brain reward circuitry to ultimately increase extracellular concentrations of the neurotransmitter dopamine in the nucleus accumbens and other forebrain areas. Many drugs of abuse appear to increase dopamine levels by dramatically increase the firing and bursting rates of dopamine neurons located in the ventral mesencephalon. Recent clinical evidence in humans and behavioral evidence in animals indicate that cannabinoid receptor antagonists such as SR141716A (Rimonabant) can reduce the self-administration of, and craving for, several commonly addictive drugs. However, the mechanism of this potentially beneficial effect has not yet been identified. We propose, on the basis of recent studies in our laboratory and others, that these antagonists may act by blocking the effects of endogenously released cannabinoid molecules (endocannabinoids) that are released in an activity- and calcium-dependent manner from mesencephalic dopamine neurons. It is hypothesized that, through the antagonism of cannabinoid CB1 receptors located on inhibitory and excitatory axon terminals targeting the midbrain dopamine neurons, the effects of the endocannabinoids are occluded. The data from these studies therefore suggest that the endocannabinoid system and the CB1 receptors located in the ventral mesencephalon may play an important role in regulating drug reward processes, and that this substrate is recruited whenever dopamine neuron activity is increased.

  5. Reward expectancy-related prefrontal neuronal activities: are they neural substrates of "affective" working memory?

    PubMed

    Watanabe, Masataka; Hikosaka, Kazuo; Sakagami, Masamichi; Shirakawa, Shu-ichiro

    2007-01-01

    Primate prefrontal delay neurons are involved in retaining task-relevant cognitive information in working memory (WM). Recent studies have also revealed primate prefrontal delay neurons that are related to reward/omission-of-reward expectancy. Such reward-related delay activities might constitute "affective WM" (Davidson, 2002). "Affective" and "cognitive" WM are both concerned with representing not what is currently being presented, but rather what was presented previously or might be presented in the future. However, according to the original and widely accepted definition, WM is the "temporary storage and manipulation of information for complex cognitive tasks". Reward/omission-of-reward expectancy-related neuronal activity is neither prerequisite nor essential for accurate task performance; thus, such activity is not considered to comprise the neural substrates of WM. Also, "affective WM" might not be an appropriate usage of the term "WM". We propose that WM- and reward/omission-of-reward expectancy-related neuronal activity are concerned with representing which response should be performed in order to attain a goal (reward) and the goal of the response, respectively. We further suggest that the prefrontal cortex (PFC) plays a crucial role in the integration of cognitive (for example, WM-related) and motivational (for example, reward expectancy-related) operations for goal-directed behaviour. The PFC could then send this integrated information to other brain areas to control the behaviour.

  6. Magnetron sputtering of metallic coatings onto elastomeric substrates for a decrease in fuel permeation rate

    NASA Astrophysics Data System (ADS)

    Myntti, Matthew F.

    The purpose of this research was to investigate the application of a metallic coating by magnetron sputtering onto elastomeric substrates, as an inhibiting layer to permeation transport. The metallic coatings which were deposited were aluminum, titanium, and copper. The substrates used were NBR, FVMQ, and FKM elastomers. The permeating fluids were ASTM Fuel C, isooctane, and toluene. The magnetron sputtering properties of these metallic elements were unique to each material, with the titanium sputtering rate being very low. The sputtering rates of these materials correlated well with their sublimation temperature. It was found that some of the metallic particles which were sputtered onto the substrates, implanted into the surface of the elastomeric membranes, with the total amount and distance of implantation being related to the density of the substrate material. The permeation of these solvents through the composite materials was reduced by the presence of these coatings with the reduction in permeation rate ranging from 12 to 25% for Fuel C. The pervaporation properties of these substrates were also evaluated. It was found from this analysis that for the FVMQ and NBR substrates, the permeation rate of the permeating solute molecules was proportional to the size of the permeation molecule. The substrate materials were not significantly stiffened by the addition of the thin metallic coatings. The coated materials were cohesive and well adhered, as determined by stretching of the substrate materials with the metallic layer in place. Upon stretching, there was no evidence of damage to the metallic coating.

  7. Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell.

    PubMed

    Chen, Hui; Zheng, Ping; Zhang, Jiqiang; Xie, Zuofu; Ji, Junyuan; Ghulam, Abbas

    2014-06-01

    Nitrification-based microbial fuel cell (N-MFC) is a novel inorganic microbial fuel cell based on nitrification in the anode compartment. So far, little information is available on the substrates and pathway of N-MFC. The results of this study indicated that apart from the primary nitrification substrate (ammonium), the intermediates (hydroxylamine and nitrite) could also serve as anodic fuel to generate current, and the end product nitrate showed an inhibitory effect on electricity generation. Based on the research, a pathway of electricity generation was proposed for N-MFC: ammonium was oxidized first to nitrite by ammonia-oxidizing bacteria (AOB), then the nitrite in anolyte and the potassium permanganate in catholyte constituted a chemical cell to generate current. In other words, the electricity generation in N-MFC was not only supported by microbial reaction as we expected, but both biological and electrochemical reactions contributed.

  8. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC).

    PubMed

    Zhang, Jiqiang; Zheng, Ping; Zhang, Meng; Chen, Hui; Chen, Tingting; Xie, Zuofu; Cai, Jing; Abbas, Ghulam

    2013-12-01

    Effect of substrate concentration on substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC) was investigated over a broad range of substrate concentrations. Substrate degradation rates and power generation could be promoted with increasing substrate concentration in a certain range, but both of them would be inhibited at high substrate concentrations. Maximum denitrification rate of 1.26 ± 0.01 kg NO(-)-N/m(3)d and maximum output voltage of 1016.75 ± 4.74 mV could be achieved when initial NO3(-)-N concentration was 1999.95 ± 2.86 mg/L. Based on Han-Levenspiel model, kinetics of substrate degradation and power generation in the AD-MFC were established. According to the kinetic model, the half-saturation coefficient and the critical inhibitory concentration for nitrate were more than 200 and 4300 mg/L, respectively. The results demonstrated that AD-MFC was capable of treating nitrate-containing wastewater and generating electricity simultaneously, and tolerant to high strength nitrate-containing wastewater.

  9. Glutamine as an energy substrate in cultured neurons during glucose deprivation.

    PubMed

    Peng, Liang; Gu, Li; Zhang, Hongliang; Huang, Xueshi; Hertz, Elna; Hertz, Leif

    2007-11-15

    During glucose deprivation an increase in aspartate formation from glutamine has been observed in different brain preparations, including synaptosomes and cultured astrocytes. To what extent this reaction, which provides a substantial amount of energy, occurs in different types of neurons is unknown. The present study shows that (14)CO(2) formation from [U-(14)C]glutamine in cerebellar granule neurons, a glutamatergic preparation, increased by 60% during glucose deprivation, indicating enhanced aspartate formation or increased complete oxidative degradation of glutamine. In primary cultures of cerebrocortical interneurons, a GABAergic preparation, the rate of (14)CO(2) production from [U-(14) C] glutamine was four times lower and not stimulated by glucose deprivation. During incubation with glutamine (0.8 mM) as the only metabolic substrate, cerebellar granule cells maintained an oxygen consumption rate of 12 nmol/min/mg protein, corresponding to an aspartate formation of 8 nmol/min/mg protein (three oxidations occur between glutamine and aspartate) or to a total oxidative degradation of 3 nmol/min/mg protein. During glucose deprivation, the rate of aspartate formation increased, and during a 20-min incubation in phosphate-buffered saline it amounted to 3.3 nmol/min/mg protein at 0.2 mM glutamine, which might have been more if measured at 0.8 mM glutamine. These values are consistent with the rate of glutamine utilization calculated based on oxygen consumption and leaves open the possibility that some glutamine is completely degraded oxidatively, as has been shown by other authors based on pyruvate recycling and labeling of lactate from aspartate in cerebellar granule neurons.

  10. New method to visualize neurons with DAT in slices of rat VTA using fluorescent substrate for DAT, ASP+

    PubMed

    Inyushin, Mikhail U; Arencibia-Albite, Francisco; de la Cruz, Angel; Vázquez-Torres, Rafael; Colon, Katiria; Sanabria, Priscila; Jiménez-Rivera, Carlos A

    2013-04-01

    The ventral tegmental area (VTA), and in particular dopamine (DA) neurons in this region of midbrain, has been shown to play an important role in motivation (goal-directed behavior), reward, and drug addiction. Most evidence that implicates VTA DA neurons in these functions are based on widely accepted but indirect electrophysiological characterization, including the hyperpolarization activated non-specific cation current (Ih), spike frequency, and inhibition by D2 receptor agonists. In this study, we used a known neuronal dopamine transporter (DAT) fluorescent substrate [4-(4- (dimethylamino) styryl)-N-methylpyridinium iodide] (ASP+) to visualize DAT-containing cell bodies of DA neurons in VTA region in rat brain slices. Uptake of 100 nM of ASP+ in brain slices of rat VTA region marked 38% of visible neurons, while other neurons from this region and 100% neurons from hippocampus slices were not fluorescent. Using patch-clamp techniques, we have found that pronounced Ih current was present in all fluorescent neurons from VTA area, also spike frequency was similar to the widely accepted values for DA neurons. Furthermore, additional study has shown that there are 84% coincidence of ASP+ fluorescence in neuronal cell bodies and Falck-Hillarp labeling of DA cells. Electrophysiological recordings during ASP+ application have confirmed that low concentrations (100 nM) of ASP+ have no visible effect on neuronal activity during 1-2 hours after staining. Thus, uptake of fluorescent monoamine analog ASP+ by DAT can be an additional criterion for identification of DAT-containing neurons in slices.

  11. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  12. Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

    PubMed Central

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  13. Specific Neuron Placement on Gold and Silicon Nitride-Patterned Substrates through a Two-Step Functionalization Method.

    PubMed

    Mescola, Andrea; Canale, Claudio; Prato, Mirko; Diaspro, Alberto; Berdondini, Luca; Maccione, Alessandro; Dante, Silvia

    2016-06-28

    The control of neuron-substrate adhesion has been always a challenge for fabricating neuron-based cell chips and in particular for multielectrode array (MEA) devices, which warrants the investigation of the electrophysiological activity of neuronal networks. The recent introduction of high-density chips based on the complementary metal oxide semiconductor (CMOS) technology, integrating thousands of electrodes, improved the possibility to sense large networks and raised the challenge to develop newly adapted functionalization techniques to further increase neuron electrode localization to avoid the positioning of cells out of the recording area. Here, we present a simple and straightforward chemical functionalization method that leads to the precise and exclusive positioning of the neural cell bodies onto modified electrodes and inhibits, at the same time, cellular adhesion in the surrounding insulator areas. Different from other approaches, this technique does not require any adhesion molecule as well as complex patterning technique such as μ-contact printing. The functionalization was first optimized on gold (Au) and silicon nitride (Si3N4)-patterned surfaces. The procedure consisted of the introduction of a passivating layer of hydrophobic silane molecules (propyltriethoxysilane [PTES]) followed by a treatment of the Au surface using 11-amino-1-undecanethiol hydrochloride (AT). On model substrates, well-ordered neural networks and an optimal coupling between a single neuron and single micrometric functionalized Au surface were achieved. In addition, we presented the preliminary results of this functionalization method directly applied on a CMOS-MEA: the electrical spontaneous spiking and bursting activities of the network recorded for up to 4 weeks demonstrate an excellent and stable neural adhesion and functional behavior comparable with what expected using a standard adhesion factor, such as polylysine or laminin, thus demonstrating that this procedure can be

  14. Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates.

    PubMed

    Xiao, Li; Ge, Zheng; Kelly, Patrick; Zhang, Fei; He, Zhen

    2014-04-01

    The objective of this study is to provide an initial evaluation of normalized energy recovery (NER - a new parameter for presenting energy performance) in microbial fuel cells (MFCs) through investigation of the effects of reactor dimensions and anode substrates. Although the larger-size MFCs generally have lower maximum power densities, their maximum NER is comparable to that of the smaller MFCs at the same anolyte flow rate. The mixed messages obtained from the MFC size tests suggest that MFCs can be further scaled up without decreasing energy recovery under certain conditions. The low-strength substrates seem to be more suitable for MFC treatment of wastewater, in terms of both energy recovery and organic removal. However, because the MFCs could not achieve the maximum NER and the maximum organic removal efficiency at the same time, one must determine a major goal for MFCs treating wastewater between energy recovery and contaminant removal.

  15. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.

    PubMed

    Pant, Deepak; Van Bogaert, Gilbert; Diels, Ludo; Vanbroekhoven, Karolien

    2010-03-01

    Microbial fuel cells (MFCs) have gained a lot of attention in recent years as a mode of converting organic waste including low-strength wastewaters and lignocellulosic biomass into electricity. Microbial production of electricity may become an important form of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. A large number of substrates have been explored as feed. The major substrates that have been tried include various kinds of artificial and real wastewaters and lignocellulosic biomass. Though the current and power yields are relatively low at present, it is expected that with improvements in technology and knowledge about these unique systems, the amount of electric current (and electric power) which can be extracted from these systems will increase tremendously providing a sustainable way of directly converting lignocellulosic biomass or wastewaters to useful energy. This article reviews the various substrates that have been explored in MFCs so far, their resulting performance, limitations as well as future potential substrates.

  16. Influence of substrate concentration and feed frequency on ammonia inhibition in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tice, Ryan C.; Kim, Younggy

    2014-12-01

    Excessive amounts of ammonia are known to inhibit exoelectrogenic activities in microbial fuel cells (MFCs). However, the threshold ammonia concentration that triggers toxic effects is not consistent among literature papers, indicating that ammonia inhibition can be affected by other operational factors. Here, we examined the effect of substrate concentration and feed frequency on the capacity of exoelectrogenic bacteria to resist against ammonia inhibition. The high substrate condition (2 g L-1 sodium acetate, 2-day feed) maintained high electricity generation (between 1.1 and 1.9 W m-2) for total ammonia concentration up to 4000 mg-N L-1. The less frequent feed condition (2 g L-1 sodium acetate, 6-day feed) and the low substrate condition (0.67 g L-1 sodium acetate, 2-day feed) resulted in substantial decreases in electricity generation at total ammonia concentration of 2500 and 3000 mg-N L-1, respectively. It was determined that the power density curve serves as a better indicator than continuously monitored electric current for predicting ammonia inhibition in MFCs. The chemical oxygen demand (COD) removal gradually decreased at high ammonia concentration even without ammonia inhibition in electricity generation. The experimental results demonstrated that high substrate concentration and frequent feed substantially enhance the capacity of exoelectrogenic bacteria to resist against ammonia inhibition.

  17. Lactate is an alternative energy fuel to glucose in neurons under anesthesia.

    PubMed

    Yamada, Akifumi; Yamamoto, Keisuke; Imamoto, Natsumi; Momosaki, Sotaro; Hosoi, Rie; Yamaguchi, Masatoshi; Inoue, Osamu

    2009-11-25

    The uptake of [14C]lactate was measured in the brains of mice anesthetized with pentobarbital or chloral hydrate. The results showed significant increase of the [14C]lactate uptake in the brain under both anesthesia. Despite energy metabolism in the brain being suppressed by both pentobarbital and chloral hydrate, the [14C]lactate uptake was unexpectedly increased under anesthesia. [14C]Lactate uptake in rat brain injured by infusion of quinolic acid was significantly decreased, and the reduction of [14C]lactate uptake was parallel to neural cell death, suggesting that exogenous lactate might be selectively taken up by neuron. These results indicated that lactate rather than glucose might serve as an energy substrate for neuron in intact brain under anesthesia.

  18. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.

    PubMed

    Chae, Kyu-Jung; Choi, Mi-Jin; Lee, Jin-Wook; Kim, Kyoung-Yeol; Kim, In S

    2009-07-01

    Four microbial fuel cells (MFCs) were inoculated with anaerobic sludge and fed four different substrates for over one year. The Coulombic efficiency (CE) and power output varied with different substrates, while the bacterial viability was similar. Acetate fed-MFC showed the highest CE (72.3%), followed by butyrate (43.0%), propionate (36.0%) and glucose (15.0%). Glucose resulted in the lowest CE because of its fermentable nature implying its consumption by diverse non-electricity-generating bacteria. 16S rDNA sequencing results indicated phylogenetic diversity in the communities of all anode biofilms, and there was no single dominant bacterial species. A relative abundance of beta-Proteobacteria but an absence of gamma-Proteobacteria was observed in all MFCs except for propionate-fed system in which Firmicutes dominating. The glucose-fed-MFC showed the widest community diversity, resulting in the rapid generation of current without lag time when different substrates were suddenly fed. Geobacter-like species with the most representative Geobactersulfurreducens PCA(T) were integral members of the bacterial community in all MFCs except for the propionate-fed system.

  19. Regeneration of Aplysia Bag Cell Neurons is Synergistically Enhanced by Substrate-Bound Hemolymph Proteins and Laminin

    NASA Astrophysics Data System (ADS)

    Hyland, Callen; Dufrense, Eric R.; Forscher, Paul

    2014-04-01

    We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.

  20. Regeneration of Aplysia bag cell neurons is synergistically enhanced by substrate-bound hemolymph proteins and laminin.

    PubMed

    Hyland, Callen; Dufresne, Eric R; Dufrense, Eric R; Forscher, Paul

    2014-04-11

    We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.

  1. Quantitative characterization of crude oils and fuels in mineral substrates using reflectance spectroscopy: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de

    2016-08-01

    The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.

  2. Designing Photoelectrodes for Photocatalytic Fuel Cells and Elucidating the Effects of Organic Substrates.

    PubMed

    Hu, Chenyan; Kelm, Denis; Schreiner, Manuel; Wollborn, Tobias; Mädler, Lutz; Teoh, Wey Yang

    2015-12-07

    Photocatalytic fuel cells (PFCs) are constructed from anodized photoanodes with the aim of effectively converting organic materials into solar electricity. The syntheses of the photoanodes (TiO2 , WO3 , and Nb2 O5 ) were optimized using the statistical 2(k) factorial design. A systematic study was carried out to catalog the influence of eleven types of organic substrate on the photocurrent responses of the photoanodes, showing dependence on the adsorption of the organic substrates and on the associated photocatalytic degradation mechanisms. Strong adsorbates, such as carboxylic acids, generated high photocurrent enhancements. Simple and short-chained molecules, such as formic acid and methanol, are the most efficient in the corresponding carboxylic acid and alcohol groups as a result of their fast degradation kinetics. The TiO2 -based PFC yielded the highest photocurrent and obtainable power, whereas the Nb2 O5 -based PFC achieved the highest open-circuit voltage, which is consistent with its most negative Fermi level.

  3. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes.

    PubMed

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H; Skytt, Dorte M; Schousboe, Arne; Waagepetersen, Helle S

    2015-07-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels of extracellular glutamate independently of the GDH expression level. Moreover, increased intracellular glutamate content was observed in the GDH-deficient cells after a 2-hr incubation in the presence of 100 µM glutamate. It is significant that GDH-deficient cells exhibited an increased utilization of glucose in the presence of 250 and 500 µM glutamate, monitored as an increase in the accumulation of tritiated 2-deoxyglucose-6-phosphate. These findings underscore the importance of the expression level of GDH for the ability to utilize glutamate as an energy source fueling its own energy-requiring uptake.

  4. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture.

    PubMed

    Branch, D W; Wheeler, B C; Brewer, G J; Leckband, D E

    2001-05-01

    Crucial to long-term stability of neuronal micropatterns is functional retention of the underlying substratum while exposed to cell culture conditions. We report on the ability of covalently bound PEG films in long-term cell culture to continually retard protein adhesion and cell growth. PDMS microstamps were used to create poly-d-lysine (PDL) substrates permissive to cell attachment and growth, and polyethylene glycol (PEG) substrates were used to minimize protein and cell adhesion. Film thickness was measured using null ellipsometry and atomic force microscopy (AFM). Organosilane film structure was examined using Fourier transform infrared (FT-IR) spectroscopy. Long-term film stability in cell culture conditions was tested by immersion in 0.1 M sodium phosphate buffer pH 7.4 for up to one month. Null ellipsometry and water contact measurements indicated that organosilane films were stable up to one month, whereas the PEG film thickness declined rapidly after day 25. Hippocampal cells plated at 200 cells/mm2 on uniform PEG substrates gave a steady increase in biofilm thickness on PEG films throughout the culture, possibly from proteins of neuronal origin. We found that all the layers in the cross-linking procedure were stable in cell culture conditions, with the exception of PEG, which degraded after day 25.

  5. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate.

    PubMed Central

    Tsacopoulos, M; Evêquoz-Mercier, V; Perrottet, P; Buchner, E

    1988-01-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system. Images PMID:3186756

  6. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  7. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    PubMed

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic

  8. Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application

    NASA Astrophysics Data System (ADS)

    Besra, Laxmidhar; Compson, Charles; Liu, Meilin

    This paper report the results of our investigation on electrophoretic deposition (EPD) of YSZ particles from its suspension in acetylacetone onto a non-conducting NiO-YSZ substrate. In principle, it is not possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of YSZ particles on a NiO-YSZ substrate was made possible through the use of an adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension. Deposition rate was found to increase with increasing substrate porosity up to a certain value. The higher the applied voltage, the faster the deposition. For a given applied voltage, there exists a threshold porosity value below which EPD becomes practically impossible. An SOFC constructed on bi-layers of NiO-YSZ/YSZ with YSZ layer thickness of 40 μm exhibited an open circuit voltage (OCV) of 0.97 V at 650 °C and peak power density of 263.8 mW cm -2 at 850 °C when tested with H 2 as fuel and ambient air as oxidant.

  9. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.

    PubMed

    Min, Booki; Logan, Bruce E

    2004-11-01

    A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.

  10. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states

    PubMed Central

    Eban-Rothschild, Ada; de Lecea, Luis

    2017-01-01

    Animals continuously alternate between sleep and wake states throughout their life. The daily organization of sleep and wakefulness is orchestrated by circadian, homeostatic, and motivational processes. Over the last decades, much progress has been made toward determining the neuronal populations involved in sleep/wake regulation. Here, we will discuss how the application of advanced in vivo tools for cell type–specific manipulations now permits the functional interrogation of different features of sleep/wake state regulation: initiation, maintenance, and structural organization. We will specifically focus on recent studies examining the roles of wake-promoting neuronal populations. PMID:28357049

  11. Neural substrates of awakening probed with optogenetic control of hypocretin neurons.

    PubMed

    Adamantidis, Antoine R; Zhang, Feng; Aravanis, Alexander M; Deisseroth, Karl; de Lecea, Luis

    2007-11-15

    The neural underpinnings of sleep involve interactions between sleep-promoting areas such as the anterior hypothalamus, and arousal systems located in the posterior hypothalamus, the basal forebrain and the brainstem. Hypocretin (Hcrt, also known as orexin)-producing neurons in the lateral hypothalamus are important for arousal stability, and loss of Hcrt function has been linked to narcolepsy. However, it is unknown whether electrical activity arising from Hcrt neurons is sufficient to drive awakening from sleep states or is simply correlated with it. Here we directly probed the impact of Hcrt neuron activity on sleep state transitions with in vivo neural photostimulation, genetically targeting channelrhodopsin-2 to Hcrt cells and using an optical fibre to deliver light deep in the brain, directly into the lateral hypothalamus, of freely moving mice. We found that direct, selective, optogenetic photostimulation of Hcrt neurons increased the probability of transition to wakefulness from either slow wave sleep or rapid eye movement sleep. Notably, photostimulation using 5-30 Hz light pulse trains reduced latency to wakefulness, whereas 1 Hz trains did not. This study establishes a causal relationship between frequency-dependent activity of a genetically defined neural cell type and a specific mammalian behaviour central to clinical conditions and neurobehavioural physiology.

  12. Isolating single primary rat hippocampal neurons & astrocytes on ultra-thin patterned parylene-C/silicon dioxide substrates.

    PubMed

    Unsworth, Charles P; Delivopoulos, Evangelos; Gillespie, Trudi; Murray, Alan F

    2011-04-01

    We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized 'on', 'adjacent to' and 'away from' the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.

  13. Characterization of spiral ganglion neurons cultured on silicon micro-pillar substrates for new auditory neuro-electronic interfaces

    NASA Astrophysics Data System (ADS)

    Mattotti, M.; Micholt, L.; Braeken, D.; Kovačić, D.

    2015-04-01

    Objective. One of the strategies to improve cochlear implant technology is to increase the number of electrodes in the neuro-electronic interface. The objective was to characterize in vitro cultures of spiral ganglion neurons (SGN) cultured on surfaces of novel silicon micro-pillar substrates (MPS). Approach. SGN from P5 rat pups were cultured on MPS with different micro-pillar widths (1-5.6 μm) and spacings (0.6-15 μm) and were compared with control SGN cultures on glass coverslips by immunocytochemistry and scanning electron microscopy (SEM). Main results. Overall, MPS support SGN growth equally well as the control glass surfaces. Micro-pillars of a particular size-range (1.2-2.4 μm) were optimal in promoting SGN presence, neurite growth and alignment. On this specific micro-pillar size, more SGN were present, and neurites were longer and more aligned. SEM pictures highlight how cells on micro-pillars with smaller spacings grow directly on top of pillars, while at wider spacings (from 3.2 to 15 μm) they grow on the bottom of the surface, losing contact guidance. Further, we found that MPS encourage more monopolar and bipolar SGN morphologies compared to the control condition. Finally, MPS induce longest neurite growth with minimal interaction of S100+ glial cells. Significance. These results indicate that silicon micro-pillar substrates create a permissive environment for the growth of primary auditory neurons promoting neurite sprouting and are a promising technology for future high-density three-dimensional CMOS-based auditory neuro-electronic interfaces.

  14. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate.

    PubMed

    Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-Il Dan

    2016-12-01

    This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  15. Neuronal substrate and effective connectivity of abnormal movement sequencing in schizophrenia.

    PubMed

    Zemankova, Petra; Lungu, Ovidiu; Huttlova, Jitka; Kerkovsky, Milos; Zubor, Jozef; Lipova, Petra; Bares, Martin; Kasparek, Tomas

    2016-06-03

    Movement sequencing difficulties are part of the neurological soft signs (NSS), they have high clinical value because they are not always present in schizophrenia. We investigated the neuronal correlates of movement sequencing in 24 healthy controls and 24 schizophrenia patients, with (SZP SQ+) or without (SZP SQ-) sequencing difficulties. We characterized simultaneous and lagged functional connectivity between brain regions involved in movement sequencing using psychophysiological interaction (PPI) and the Granger causality modeling (GCM), respectively. Left premotor cortex (PMC) and superior parietal lobule (SPL) were specifically activated during sequential movements in all participants. Right PMC and precuneus, ipsilateral to the hand executing the task, activated during sequential movements only in healthy controls and SZP SQ-. SZP SQ+ showed hyperactivation in contralateral PMC, as compared to the other groups. PPI analysis revealed a deficit in inhibitory connections within this fronto-parietal network in SZP SQ+ during sequential task. GCM showed a significant lagged effective connectivity from right PMC to left SPL during task and rest periods in all groups and from right PMC to right precuneus in SZP SQ+ group only. Both SZP groups had a significant lagged connectivity from right to left PMC, during sequential task. Our results indicate that aberrant fronto-parietal network connectivity with cortical inhibition deficit and abnormal reliance on previous network activity are related to movement sequencing in SZP. The overactivation of motor cortex seems to be a good compensating strategy, the hyperactivation of parietal cortex is linked to motor deficit symptoms.

  16. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    PubMed Central

    Jung, Suk Won; Shin, Jong Yoon; Pi, Kilwha; Goo, Yong Sook; Cho, Dong-il “Dan”

    2016-01-01

    This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW)-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110×110 μm and a resolution of 32×32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1) mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity. PMID:27916963

  17. Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain.

    PubMed

    Luz, Liliana L; Fernandes, Elisabete C; Sivado, Miklos; Kokai, Eva; Szucs, Peter; Safronov, Boris V

    2015-10-01

    Referred pain is a phenomenon of feeling pain at a site other than the site of the painful stimulus origin. It arises from a pathological mixing of nociceptive processing pathways for visceral and somatic inputs. Despite numerous studies based on unit recordings from spinal and supraspinal neurons, the exact mechanism and site of this mixing within the central nervous system are not known. Here, we selectively recorded from lamina I neurons, using a visually guided patch-clamp technique, in thoracic spinal cord preparation with preserved intercostal (somatic) and splanchnic (visceral) nerves. We show that somatic and visceral C fibers converge monosynaptically onto a group of lamina I neurons, which includes both projection and local circuit neurons. Other groups of lamina I neurons received inputs from either somatic or visceral afferents. We have also identified a population of lamina I local circuit neurons showing overall inhibitory responses upon stimulation of both nerves. Thus, the present data allow us to draw two major conclusions. First, lamina I of the spinal cord is the first site in the central nervous system where somatic and visceral pathways directly converge onto individual projection and local circuit neurons. Second, the mechanism of somatovisceral convergence is complex and based on functional integration of monosynaptic and polysynaptic excitatory as well as inhibitory inputs in specific groups of neurons. This complex pattern of convergence provides a substrate for alterations in the balance between visceral and somatic inputs causing referred pain.

  18. X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease

    PubMed Central

    Brudvig, Jon J.; Weimer, Jill M.

    2015-01-01

    Intracellular protein-protein interactions are dynamic events requiring tightly regulated spatial and temporal checkpoints. But how are these spatial and temporal cues integrated to produce highly specific molecular response patterns? A helpful analogy to this process is that of a cellular map, one based on the fleeting localization and activity of various coordinating proteins that direct a wide array of interactions between key molecules. One such protein, myristoylated alanine-rich C-kinase substrate (MARCKS) has recently emerged as an important component of this cellular map, governing a wide variety of protein interactions in every cell type within the brain. In addition to its well-documented interactions with the actin cytoskeleton, MARCKS has been found to interact with a number of other proteins involved in processes ranging from intracellular signaling to process outgrowth. Here, we will explore these diverse interactions and their role in an array of brain-specific functions that have important implications for many neurological conditions. PMID:26528135

  19. Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository

    NASA Astrophysics Data System (ADS)

    Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.

    2016-12-01

    Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.

  20. A model for the neuronal substrate of dead reckoning and memory in arthropods: a comparative computational and behavioral study.

    PubMed

    Bernardet, Ulysses; Bermúdez I Badia, Sergi; Verschure, Paul F M J

    2008-06-01

    Returning to the point of departure after exploring the environment is a key capability for most animals. In the absence of landmarks, this task will be solved by integrating direction and distance traveled over time. This is referred to as path integration or dead reckoning. An important question is how the nervous systems of navigating animals such as the 1 mm(3) brain of ants can integrate local information in order to make global decision. In this article we propose a neurobiologically plausible system of storing and retrieving direction and distance information. The path memory of our model builds on the well established concept of population codes, moreover our system does not rely on trigonometric functions or other complex non-linear operations such as multiplication, but only uses biologically plausible operations such as integration and thresholding. We test our model in two paradigms; in the first paradigm the system receives input from a simulated compass, in the second paradigm, the model is tested against behavioral data recorded from 17 ants. We were able to show that our path memory system was able to reliably encode and compute the angle of the vector pointing to the start location, and that the system stores the total length of the trajectory in a dependable way. From the structure and behavior of our model, we derive testable predictions both at the level of observable behavior as well as on the anatomy and physiology of its underlying neuronal substrate.

  1. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.

    PubMed

    Yu, Jaecheul; Park, Younghyun; Cho, Haein; Chun, Jieun; Seon, Jiyun; Cho, Sunja; Lee, Taeho

    2012-01-01

    Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (COD(ini)) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of COD(ini)) and acetate (21.4% of COD(ini)) through lactate (80.3% of COD(ini)) and butyrate (6.1% of COD(ini)). However, an unknown source (62.0% of COD(ini)) and the current (34.5% of COD(ini)) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.

  2. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    PubMed Central

    Ji, Sanghoon; Tanveer, Waqas Hassan; Yu, Wonjong; Kang, Sungmin; Cho, Gu Young; Kim, Sung Han

    2015-01-01

    Summary Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C. PMID:26425432

  3. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    SciTech Connect

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak; Tanveer, Waqas Hassan; Cha, Suk Won; Ji, Sanghoon; An, Jihwan

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visibly higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.

  4. Comparing the effects of various fuel alcohols on the natural attenuation of Benzene Plumes using a general substrate interaction model

    NASA Astrophysics Data System (ADS)

    Gomez, Diego E.; Alvarez, Pedro J. J.

    2010-04-01

    The effects of five fuel alcohols (methanol, ethanol, 1-propanol, iso-butanol and n-butanol) on the natural attenuation of benzene were compared using a previously developed numerical model (General Substrate Interaction Module — GSIM) and a probabilistic sensitivity analysis. Simulations with a 30 gal dissolving LNAPL (light non-aqueous phase liquid) source consisting of a range of gasoline blends (10% and 85% v:v alcohol content) suggest that all fuel alcohols can hinder the natural attenuation of benzene, due mainly to accelerated depletion of dissolved oxygen and a decrease in the specific degradation rate for benzene (due to catabolite repression and metabolic flux dilution). Simulations for blends with 10% alcohol, assuming a homogeneous sandy aquifer, inferred maximum benzene plume elongations (relative to a regular gasoline release) of 26% for ethanol, 47% for iso-butanol, 147% for methanol, 188% for 1-propanol, and 265% for n-butanol. The corresponding elongation percentages for blends with 85% alcohol were generally smaller (i.e., 25%, 54%, 135%, 163%, and 181%, respectively), reflecting a lower content of benzene in the simulated release. Benzene plume elongation and longevity were more pronounced in the presence of alcohols that biodegrade slower (e.g., propanol and n-butanol), forming longer and more persistent alcohol plumes. Conversely, ethanol and iso-butanol exhibited the lowest potential to hinder the natural attenuation of benzene, illustrating the significant effect that a small difference in chemical structure (e.g., isomers) can have on biodegradation. Overall, simulations were highly sensitive to site-specific biokinetic coefficients for alcohol degradation, which forewarns against generalizations about the level of impact of specific fuel alcohols on benzene plume dynamics.

  5. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study.

    PubMed

    Javor, Kristina; Tisserant, Jean-Nicolas; Stemmer, Andreas

    2017-01-15

    It is known that electrochemical energy can be harvested from mammalian cells, more specifically from white blood cells (WBC). This study focuses on an improved biofuel cell operating on phorbol myristate acetate (PMA) activated THP-1 human monocytic cells. Electrochemical investigation showed strong evidence pointing towards hydrogen peroxide being the primary current source, confirming that the current originates from NADPH oxidase activity. Moreover, an adequate substrate for differentiation and activation of THP-1 cells was examined. ITO, gold, platinum and glass were tested and the amount of superoxide anion produced by NADPH oxidase was measured by spectrophotometry through WST-1 reduction at 450nm and used as an indicator of cellular activity and viability. These substrates were subsequently used in a conventional two-compartment biofuel cell where the power density output was recorded. The material showing the highest cell activity compared to the reference cell culture plate and the highest power output was ITO. Under our experimental conditions, a power density of 4.5μW/cm(2) was reached. To the best of our knowledge, this is a threefold higher power output than other leukocyte biofuel cells.

  6. The neuronal substrate of risky choice: an insight into the contributions of neuroimaging to the understanding of theories on decision making under risk.

    PubMed

    Vorhold, Verena

    2008-04-01

    This chapter provides an overview of studies in the field of neuroscience that investigate some of the processes and concepts of risk perception, risky choice, and decision making under risk. First, early studies in the field of neuroscience addressing the diminished decision-making abilities in lesion patients are presented. A classical task in this research field is described along with its neural implications. After this, the underlying model, its hypotheses, and neuronal implications are discussed. Different aspects within risky decision making, such as the influence of memory, inhibition, motivation, and personality, on risky choice and the respective underlying neuronal substrate are described. After this, studies of risky decision making in healthy subjects are reviewed. A selection of studies shows that theories focusing on cognitive aspects only have to be enriched in order to allow for additional aspects within risky decision making (e.g., emotion). Next, the classical economic approaches and the development of theories incorporating further aspects within economical decision making and the underlying neuronal substrate will be presented. Finally, research in the field of neuroeconomics, focusing on the role of social decision making and evaluative judgment within risky decision making, is reviewed.

  7. Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0-2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen.

    PubMed

    Deloulme, J C; Janet, T; Au, D; Storm, D R; Sensenbrenner, M; Baudier, J

    1990-10-01

    Neuromodulin (also called GAP43, G50, F1, pp46), a neural-specific calmodulin binding protein, is a major protein kinase C substrate found in developing and regenerating neurons. Here, we report the immunocytochemical characterization of neuromodulin in cultured 0-2A bipotential glial precursor cells obtained from newborn rat brain. Neuromodulin is also present in oligodendrocytes and type 2 astrocytes (stellate-shaped astrocytes), which are both derived from the bipotential glial 0-2A progenitor cells, but is absent of type 1 astrocytes (flat protoplasmic astrocytes). These results support the hypothesis of a common cell lineage for neurons and bipotential 0-2A progenitor cells and suggest that neuromodulin plays a more general role in plasticity during development of the central nervous system. The expression of neuromodulin in secondary cultures of newborn rat oligodendrocytes and its absence in type 1 astrocytes was confirmed by Northern blot analysis of isolated total RNA from these different types of cells using a cDNA probe for the neuromodulin mRNA and by Western blot analysis of the cell extracts using polyclonal antibodies against neuromodulin. The properties of the neuromodulin protein in cultured oligodendrocytes and neuronal cells have been compared. Although neuromodulin in oligodendrocytes is soluble in 2.5% perchloric acid like the neuronal counterpart it migrates essentially as a single protein spot on two-dimensional gel electrophoresis whereas the neuronal antigen can be resolved into at least three distinct protein spots. To obtain precise alignments of the different neuromodulin spots from these two cell types, oligodendrocyte and neuronal cell extracts were mixed together and run on the same two-dimensional gel electrophoresis system. Oligodendroglial neuromodulin migrates with a pI identical to the basic forms of the neuronal protein in isoelectric focusing gel. However, the glial neuromodulin shows a slightly lower mobility in the second

  8. Branched-chain amino acid administration in surgical patients. Effects on amino acid and fuel substrate profiles.

    PubMed

    Desai, S P; Bistrian, B R; Palombo, J D; Moldawer, L L; Blackburn, G L

    1987-07-01

    During the first five days following gastric bypass surgery, 15 patients received near isotonic amino acid solutions that varied in their branched-chain amino acid (BCAA) content and amino acid profiles (15.6%, 50%, or 100% BCAA solutions). Plasma valine concentrations were elevated in patients receiving 50% and 100% BCAA solutions. Plasma alanine concentrations were highest in patients receiving 50% BCAA. Plasma free fatty acids and blood lactate concentrations were unchanged by either the operation or BCAA administration. Serum glucose concentration was unaffected by the different amino acid administrations and followed the pattern induced by stress initially and later by starvation. beta-Hydroxybutyrate concentrations increased as starvation proceeded and were highest in patients receiving the 15.6% BCAA solution. Branched-chain amino acid-enriched solutions without additional energy may be administered safely to patients recovering from operative trauma. Plasma amino acid concentrations and fuel substrate profiles appear to follow metabolic patterns determined by the physiologic response to stress and starvation and can be affected by large quantities of BCAAs.

  9. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater.

    PubMed

    Wang, Haiping; Jiang, Sunny C; Wang, Yun; Xiao, Bo

    2013-06-01

    Microbial fuel cells have gained popularity in recent years due to its promise in converting organic wastewater into renewable electrical energy. In this study, a membrane-less MFC with a biocathode was developed to evaluate its performance in electricity generation while simultaneously treating wastewater. The MFC fed with a continuous flow of 2g/day acetate produced a power density of 30 mW/m(2) and current density of 245 mA/m(2). A substrate degradation efficiency (SDE) of 75.9% was achieved with 48.7% attributed to the anaerobic process and 27.2% to the aerobic process. Sequencing analysis of the microbial consortia using 16S rDNA pryosequencing showed the predominance of Bacteroidia in the anode after one month of operation, while the microbial community in the cathode chamber was dominated by Gamma-proteobacteria and Beta-proteobacteria. Coulombic efficiencies varied from 19.8% to 58.1% using different acetate concentrations, indicating power density can be further improved through the accumulation of electron-transferring bacteria.

  10. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks.

    PubMed

    Smith, Imogen; Silveirinha, Vasco; Stein, Jason L; de la Torre-Ubieta, Luis; Farrimond, Jonathan A; Williamson, Elizabeth M; Whalley, Benjamin J

    2015-02-25

    Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  12. The behavior of neuronal cells on tendon-derived collagen sheets as potential substrates for nerve regeneration.

    PubMed

    Alberti, Kyle A; Hopkins, Amy M; Tang-Schomer, Min D; Kaplan, David L; Xu, Qiaobing

    2014-04-01

    Peripheral nervous system injuries result in a decreased quality of life, and generally require surgical intervention for repair. Currently, the gold standard of nerve autografting, based on the use of host tissue such as sensory nerves is suboptimal as it results in donor-site loss of function and requires a secondary surgery. Nerve guidance conduits fabricated from natural polymers such as collagen are a common alternative to bridge nerve defects. In the present work, tendon sections derived through a process named bioskiving were studied for their potential for use as a substrate to fabricate nerve guidance conduits. We show that cells such as rat Schwann cells adhere, proliferate, and align along the fibrous tendon substrate which has been shown to result in a more mature phenotype. Additionally we demonstrate that chick dorsal root ganglia explants cultured on the tendon grow to similar lengths compared to dorsal root ganglia cultured on collagen gels, but also grow in a more oriented manner on the tendon sections. These results show that tendon sections produced through bioskiving can support directional nerve growth and may be of use as a substrate for the fabrication of nerve guidance conduits.

  13. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease.

    PubMed

    Rothaug, Michelle; Stroobants, Stijn; Schweizer, Michaela; Peters, Judith; Zunke, Friederike; Allerding, Mirka; D'Hooge, Rudi; Saftig, Paul; Blanz, Judith

    2015-01-31

    The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.

  14. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    PubMed

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.

  15. Action-potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea.

    PubMed

    Gillette, R; Gillette, M U; Davis, W J

    1980-03-01

    1. The ventral white cells (VWC's) of the buccal ganglion of Pleurobranchaea, so named for their position and color, are a bilateral pair of neuron somata. Each sends a single axon out its contralateral stomatogastric nerve and has a dendritic field originating close to the soma. 2. The vwcs exhibit spontaneous episodes of prolonged depolarization (duration 1--4 min) accompanied by repetitive action-potential activity and separated by regular intervals of 3--30 min. Such prolonged burst episodes can be triggered by short pulses of depolarizing current. During the repetitive activity of the spontaneous bursts or that driven by imposed depolarization, the action potentials progressively broaden to 5--16 times their initial duration. 3. During spontaneous bursting or activity driven by imposed depolarization, the cyclic motor output of the feeding network is initiated or accelerated with a latency corresponding with the development of appreciable VWC spike broadening. When broadening of antidromic VWC spikes is suppressed by imposed hyperpolarization of the soma, the frequency of feeding cycles is significantly lower than when broadened spikes are allowed to develop. When trains of spikes are driven by depolarizing current, the motor output of the feeding network is not initiated until the VWC spikes have broadened to a repeatable "threshold" duration, regardless of the intensity of the depolarizing current. 4. The endogenous production of prolonged burst episodes, triggered by depolarizing current pulses, and progressive spike broadening can be demonstrated in the surgically isolated VWC soma. 5. The paired VWCs are strongly electrically coupled and display highly synchronous activity. They receive synaptic inputs from many previously identified interneurons of the feeding network and are thus reciprocally coupled within the network. 6. These results demonstrate that the capacity of this neuron to generate broadened action potentials during repetitive activity

  16. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.

    PubMed

    Cao, Yunqing; Hu, Yongyou; Sun, Jian; Hou, Bin

    2010-08-01

    Microbial fuel cell (MFC) holds a great promise to harvest electricity directly from a wide range of ready degradable organic matters and enhance degradation of some recalcitrant contaminants. Glucose, acetate sodium and ethanol were separately examined as co-substrates for simultaneous bioelectricity generation and Congo red degradation in a proton exchange membrane (PEM) air-cathode single-chamber MFC. The batch test results showed that more than 98% decolorization at the dye concentration of 300 mg/L were achieved within 36 h for all tested co-substrates during electricity generation. The decolorization rate was different with the co-substrates used. The fastest decolorization rate was achieved with glucose followed by ethanol and sodium acetate. Accumulated intermediates were observed during Congo red degradation which was demonstrated by UV-Visible spectra and high performance liquid chromatography (HPLC). Electricity generation was sustained and not significantly affected by the Congo red degradation. Glucose, acetate sodium and ethanol produced maximum power densities of 103 mW/m(2), 85.9 mW/m(2) and 63.2 mW/m(2), respectively, and the maximum voltage output decreased by only 7% to 15%. Our results demonstrated the feasibility of using various co-substrates for simultaneous decolorization of Congo red and bioelectricity generation in the MFC and showed that glucose was the preferred co-substrate.

  17. QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays

    PubMed Central

    Mahmud, Mufti; Pulizzi, Rocco; Vasilaki, Eleni; Giugliano, Michele

    2014-01-01

    Micro-Electrode Arrays (MEAs) have emerged as a mature technique to investigate brain (dys)functions in vivo and in in vitro animal models. Often referred to as “smart” Petri dishes, MEAs have demonstrated a great potential particularly for medium-throughput studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs are employed to screen compounds by monitoring non-invasively the spontaneous and evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive equipment. However, in order to acquire sufficient statistical significance, recordings last up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA, 16 bits A/D conversion, 20 kHz sampling rate: approximately 8 GB/MEA,h uncompressed). Thus, when the experimental conditions to be tested are numerous, the availability of fast, standardized, and automated signal preprocessing becomes pivotal for any subsequent analysis and data archiving. To this aim, we developed an in-house cloud-computing system, named QSpike Tools, where CPU-intensive operations, required for preprocessing of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc.), are decomposed and batch-queued to a multi-core architecture or to a computers cluster. With the commercial availability of new and inexpensive high-density MEAs, we believe that disseminating QSpike Tools might facilitate its wide adoption and customization, and inspire the creation of community-supported cloud-computing facilities for MEAs users. PMID:24678297

  18. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects.

  19. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    PubMed

    Medina Benavente, Johan Jaime; Mogami, Hideo; Sakurai, Takashi; Sawada, Kazuaki

    2014-01-01

    Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  20. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  1. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With insulin-resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives (markers of incomple...

  2. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.

    PubMed

    Jayasinghe, Nadeera; Franks, Ashley; Nevin, Kelly P; Mahadevan, Radhakrishnan

    2014-10-01

    Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode-associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst-Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome-scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.

  3. Microalgae as substrate in low cost terracotta-based microbial fuel cells: Novel application of the catholyte produced.

    PubMed

    Salar-García, M J; Gajda, I; Ortiz-Martínez, V M; Greenman, J; Hanczyc, M M; de los Ríos, A P; Ieropoulos, I A

    2016-06-01

    In this work, the by-product generated during the operation of cylindrical MFCs, made out of terracotta material, is investigated as a feasible means of degrading live microalgae for the first time. In addition to the low cost materials of this design, the reuse of the solution produced in the cathode renders the technology truly green and capable of generating bioenergy. In this study, the effect of a light/dark cycle or dark conditions only on the digestion of live microalgae with the catholyte is investigated. The results show that a combination of light/dark improves degradation and allows algae to be used as substrate in the anode. The addition of 12.5mL of a 1:1 mix of catholyte and microalgae (pre-digested over 5days under light/dark) to the anode, increases the power generation from 7μW to 44μW once all the organic matter in the anode had been depleted.

  4. Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates.

    PubMed

    Biffi, Emilia; Menegon, Andrea; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Rasponi, Marco

    2012-01-01

    In vitro recording of neuronal electrical activity is a widely used technique to understand brain functions and to study the effect of drugs on the central nervous system. The integration of microfluidic devices with microelectrode arrays (MEAs) enables the recording of networks activity in a controlled microenvironment. In this work, an integrated microfluidic system for neuronal cultures was developed, reversibly coupling a PDMS microfluidic device with a commercial flat MEA through magnetic forces. Neurons from mouse embryos were cultured in a 100 µm channel and their activity was followed up to 18 days in vitro. The maturation of the networks and their morphological and functional characteristics were comparable with those of networks cultured in macro-environments and described in literature. In this work, we successfully demonstrated the ability of long-term culturing of primary neuronal cells in a reversible bonded microfluidic device (based on magnetism) that will be fundamental for neuropharmacological studies.

  5. Regulation of carbohydrate metabolism in lymphoid tissue. Nature of the endogenous substrates and their contribution to the respiratory fuel of the sliced rat spleen in vitro.

    PubMed

    Suter, D; Weidemann, M J

    1976-04-15

    1. Tissue glycogen contributes, maximally, only 10% of the respiratory fuel of the rat spleen slice in the absence of an added carbon source, and makes no significant contribution when glucose (3mM) is added. 2. The reserves of fatty acid in the form of triglyceride (35.5mumol of fatty acid/g dry wt. of tissue) fall by approx. 25% after incubation of spleen slices with or without added glucose for 2h, and , on this basis, account for 32% of the oxidative fuel. 3. In contrast, the total oxidative contribution of fatty acid reserves to the respiratory fuel, determined on the basis of inhibiton of respiration by 2-bromostearate, is 42-52%. This range includes tissue from both starved and well-fed animals and is not significantly altered by the presence of added glycose (3mM). 4. Large quantities of NH3 (31-35mumol//h per g dry wt. of tissue) are produced by spleen slices incubated in the absence of added substrates, and this value is suppressed by approx. 50% on incubation with glucose (3mM). Adenine nucleotide breakdown can account for only 17% of the total ammonia produced. 5. Individual free amino acid concentrations in spleen were determined, both in vivo and in slices before and after 60 min of incubation. Although the total free amino acid pool size increases by 45% during incubation, owing to protein breakdown, the tissue concentrations of aspartate, glutamate, glutamine and alanine do not increase. It is suggested that these amino acids areoxidized in a net sense to CO2 and water with the liberation of free NH3 via transamination reactions, glutaminase, the purine nucleotide cycle and the tricarboxylic acid cycle. 6. It is concluded that the normal endogenous metabolism of sliced rat spleen (43-52% due to lipids, 30% due to amino acids and 10% due to glycogen) is modified by added glycose only to the extent that glycogen oxidation and 50% of the contribtion made by ino acids are suppressed; endogenous lipid metabolism is unaffected.

  6. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater.

    PubMed

    Park, Younghyun; Park, Seonghwan; Nguyen, Van Khanh; Kim, Jung Rae; Kim, Hong Suck; Kim, Byung Goon; Yu, Jaecheul; Lee, Taeho

    2017-02-01

    In order to confirm the effects of the low conductivity and biodegradability of wastewater, flat-panel air-cathode microbial fuel cells (FA-MFCs) were operated by supplying substrates with different volume ratios of domestic wastewater mixed with an artificial medium: the artificial medium only, 25% wastewater, 50% wastewater, 75% wastewater, 100% of wastewater with 500mg-COD/L by adding acetate, and raw domestic wastewater (230mg-COD/L). With the increase of wastewater ratio, the maximum power density and organic removal efficiency decreased from 187 to 60W/m(3) and 51.5 to 37.4%, respectively, but the Coulombic efficiency was maintained in the range of 18.0-18.9%. The FA-MFCs could maintain their low internal resistances and overcome the decreasing conductivity. The acetate concentration was more important than the total organics for power production. This study suggests that the FA-MFC configuration has great applicability for practical applications when supplied by domestic wastewater with low conductivity and biodegradability.

  7. Critical State of Energy Metabolism in Brain Slices: The Principal Role of Oxygen Delivery and Energy Substrates in Shaping Neuronal Activity

    PubMed Central

    Ivanov, Anton; Zilberter, Yuri

    2011-01-01

    The interactive vasculo-neuro-glial system controlling energy supply in the brain is absent in vitro where energy provision is determined by experimental conditions. Despite the fact that neuronal activity is extremely energy demanding, little has been reported on the state of energy metabolism in submerged brain slices. Without this information, the arbitrarily chosen oxygenation and metabolic provisions make questionable the efficient oxidative metabolism in slices. We show that in mouse hippocampal slices (postnatal day 19–44), evoked neuronal discharges, spontaneous network activity (initiated by 4-aminopyridine), and synaptic stimulation-induced NAD(P)H autofluorescence depend strongly on the oxygen availability. Only the rate of perfusion as high as ~15 ml/min (95% O2) provided appropriate oxygenation of a slice. Lower oxygenation resulted in the decrease of both local field potentials and spontaneous network activity as well as in significant modulation of short-term synaptic plasticity. The reduced oxygen supply considerably inhibited the oxidation phase of NAD(P)H signaling indicating that the changes in neuronal activity were paralleled by the decrease in aerobic energy metabolism. Interestingly, the dependence of neuronal activity on oxygen tension was clearly shifted toward considerably larger pO2 values in slices when compared to in vivo conditions. With sufficient pO2 provided by a high perfusion rate, partial substitution of glucose in ACSF for β-hydroxybutyrate, pyruvate, or lactate enhanced both oxidative metabolism and synaptic function. This suggests that the high pO2 in brain slices is compulsory for maintaining oxidative metabolism, and glucose alone is not sufficient in fulfilling energy requirements during neuronal activity. Altogether, our results demonstrate that energy metabolism determines the functional state of neuronal network, highlighting the need for the adequate metabolic support to be insured in the in vitro experiments. PMID

  8. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety.

    PubMed

    Noseda, Rodrigo; Kainz, Vanessa; Borsook, David; Burstein, Rami

    2014-01-01

    Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a 'decision' is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.

  9. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  10. Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo.

    PubMed

    Montiel, T; Camacho, A; Estrada-Sánchez, A M; Massieu, L

    2005-01-01

    The extracellular concentration of glutamate is highly regulated by transporter proteins, due to its neurotoxic properties. Dysfunction or reverse activation of these transporters is related to the extracellular accumulation of excitatory amino acids and neuronal damage associated with ischemia and hypoglycemia. We have investigated by microdialysis the effects of the substrate and the non-substrate inhibitors of glutamate transporters, l-trans-2,4-pyrrolidine dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA), respectively, on the extracellular levels of amino acids in the rat hippocampus in vivo. In addition, we have studied the effect of both inhibitors on neuronal damage after direct administration into the hippocampus and striatum. Electroencephalographic activity was recorded after the intrahippocampal infusion of DL-TBOA or PDC. Microdialysis administration of 500 microM DL-TBOA into the hippocampus increased 3.4- and nine-fold the extracellular levels of aspartate and glutamate, respectively. Upon stereotaxic administration it induced neuronal damage dose-dependently in CA1 and dentate gyrus, and convulsive behavior. Electroencephalographic recording showed the appearance of limbic seizures in the hippocampus after DL-TBOA infusion. In the striatum it also induced dose-dependent neuronal damage. These effects were prevented by the i.p. administration of the glutamate receptor antagonists (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-iminemaleate and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline. In contrast to dl-TBOA, PDC (500 microM) induced a more discrete elevation of excitatory amino acids levels (2.6- and three-fold in aspartate and glutamate, respectively), no neuronal damage or behavioral changes, and no alterations in electroencephalographic activity. The differential results obtained with DL-TBOA and PDC might be attributed to their distinct effects on the extracellular concentration of amino acids. Results

  11. A Tribute to Mary C. McKenna: Glutamate as Energy Substrate and Neurotransmitter-Functional Interaction Between Neurons and Astrocytes.

    PubMed

    Schousboe, Arne

    2017-01-01

    Glutamate metabolism in the brain is extremely complex not only involving a large variety of enzymes but also a tight partnership between neurons and astrocytes, the latter cells being in control of de novo synthesis of glutamate. This review provides an account of the processes involved, i.e. pyruvate carboxylation and recycling as well as the glutamate-glutamine cycle, focusing on the many seminal contributions from Dr. Mary McKenna. The ramification of the astrocytic end feet allowing contact and control of hundreds of thousands of synapses at the same time obviously puts these cells in a prominent position to regulate neural activity. Additionally, the astrocytes take active part in the neurotransmission processes by releasing a variety of gliotransmitters including glutamate. Hence, the term "the tripartite synapse", in which there is an active and dynamic interplay between the pre- and post-synaptic neurons and the ensheathing astrocytes, has been coined. The studies of Mary McKenna and her colleagues over several decades have been of paramount importance for the elucidation of compartmentation in astrocytes and synaptic terminals and the intricate metabolic processes underlying the glutamatergic neurotransmission process.

  12. Polyacrylamide gel substrates that simulate the mechanical stiffness of normal and malignant neuronal tissues increase protoporphyin IX synthesis in glioma cells

    NASA Astrophysics Data System (ADS)

    Niu, Carolyn J.; Fisher, Carl; Scheffler, Kira; Wan, Rachel; Maleki, Hoda; Liu, Haijiao; Sun, Yu; Simmons, Craig A.; Birngruber, Reginald; Lilge, Lothar

    2015-09-01

    Protoporphyrin IX (PPIX) produced following the administration of exogenous 5d-aminolevulinic acid is clinically approved for photodynamic therapy and fluorescence-guided resection in various jurisdictions around the world. For both applications, quantification of PPIX forms the basis for accurate therapeutic dose calculation and identification of malignant tissues for resection. While it is well established that the PPIX synthesis and accumulation rates are subject to the cell's biochemical microenvironment, the effect of the physical microenvironment, such as matrix stiffness, has received little attention to date. Here we studied the proliferation rate and PPIX synthesis and accumulation in two glioma cell lines U373 and U118 cultured under five different substrate conditions, including the conventional tissue culture plastic and polyacrylamide gels that simulated tissue stiffness of normal brain (1 kPa) and glioblastoma tumors (12 kPa). We found that the proliferation rate increased with substrate stiffness for both cell lines, but not in a linear fashion. PPIX concentration was significantly higher in cells cultured on tissue-simulating gels than on the much stiffer tissue culture plastic for both cell lines. These findings, albeit preliminary, suggest that the physical microenvironment might be an important determinant of tumor aggressiveness and PPIX synthesis in glioma cells.

  13. A multidisciplinary approach to study the functional properties of neuron-like cell models constituting a living bio-hybrid system: SH-SY5Y cells adhering to PANI substrate

    NASA Astrophysics Data System (ADS)

    Caponi, S.; Mattana, S.; Ricci, M.; Sagini, K.; Juarez-Hernandez, L. J.; Jimenez-Garduño, A. M.; Cornella, N.; Pasquardini, L.; Urbanelli, L.; Sassi, P.; Morresi, A.; Emiliani, C.; Fioretto, D.; Dalla Serra, M.; Pederzolli, C.; Iannotta, S.; Macchi, P.; Musio, C.

    2016-11-01

    A living bio-hybrid system has been successfully implemented. It is constituted by neuroblastic cells, the SH-SY5Y human neuroblastoma cells, adhering to a poly-anyline (PANI) a semiconductor polymer with memristive properties. By a multidisciplinary approach, the biocompatibility of the substrate has been analyzed and the functionality of the adhering cells has been investigated. We found that the PANI films can support the cell adhesion. Moreover, the SH-SY5Y cells were successfully differentiated into neuron-like cells for in vitro applications demonstrating that PANI can also promote cell differentiation. In order to deeply characterize the modifications of the bio-functionality induced by the cell-substrate interaction, the functional properties of the cells have been characterized by electrophysiology and Raman spectroscopy. Our results confirm that the PANI films do not strongly affect the general properties of the cells, ensuring their viability without toxic effects on their physiology. Ascribed to the adhesion process, however, a slight increase of the markers of the cell suffering has been evidenced by Raman spectroscopy and accordingly the electrophysiology shows a reduction at positive stimulations in the cells excitability.

  14. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.

    PubMed

    Coimbra, N C; De Oliveira, R; Freitas, R L; Ribeiro, S J; Borelli, K G; Pacagnella, R C; Moreira, J E; da Silva, L A; Melo, L L; Lunardi, L O; Brandão, M L

    2006-01-01

    Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly

  15. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  16. Nanomechanics controls neuronal precursors adhesion and differentiation.

    PubMed

    Migliorini, Elisa; Ban, Jelena; Grenci, Gianluca; Andolfi, Laura; Pozzato, Alessandro; Tormen, Massimo; Torre, Vincent; Lazzarino, Marco

    2013-08-01

    The ability to control the differentiation of stem cells into specific neuronal types has a tremendous potential for the treatment of neurodegenerative diseases. In vitro neuronal differentiation can be guided by the interplay of biochemical and biophysical cues. Different strategies to increase the differentiation yield have been proposed, focusing everything on substrate topography, or, alternatively on substrate stiffness. Both strategies demonstrated an improvement of the cellular response. However it was often impossible to separate the topographical and the mechanical contributions. Here we investigate the role of the mechanical properties of nanostructured substrates, aiming at understanding the ultimate parameters which govern the stem cell differentiation. To this purpose a set of different substrates with controlled stiffness and with or without nanopatterning are used for stem cell differentiation. Our results show that the neuronal differentiation yield depends mainly on the substrate mechanical properties while the geometry plays a minor role. In particular nanostructured and flat polydimethylsiloxane (PDMS) substrates with comparable stiffness show the same neuronal yield. The improvement in the differentiation yield obtained through surface nanopatterning in the submicrometer scale could be explained as a consequence of a substrate softening effect. Finally we investigate by single cell force spectroscopy the neuronal precursor adhesion on the substrate immediately after seeding, as a possible critical step governing the neuronal differentiation efficiency. We observed that neuronal precursor adhesion depends on substrate stiffness but not on surface structure, and in particular it is higher on softer substrates. Our results suggest that cell-substrate adhesion forces and mechanical response are the key parameters to be considered for substrate design in neuronal regenerative medicine.

  17. Advanced bioreactor concepts for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases. CRADA final report

    SciTech Connect

    Kaufman, E.N.; Selvaraj, P.T.

    1997-10-01

    The purpose of the proposed research program was the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from coal combustion flue gas. This study addressed the further investigation of optimal bacterial strains, growth media and kinetics for the biocatalytic conversion of coal synthesis gas to liquid fuel such as ethanol and the reduction of gaseous flue gas constituents. The primary emphasis was on the development of advanced bioreactor systems coupled with innovative biocatalytic systems that will provide increased productivity under controlled conditions. It was hoped that this would result in bioprocessing options that have both technical and economic feasibility, thus, ensuring early industrial use. Predictive mathematical models were formulated to accommodate hydrodynamics, mass transport, and conversion kinetics, and provide the data base for design and scale-up. The program was separated into four tasks: (1) Optimization of Biocatalytic Kinetics; (2) Development of Well-mixed and Columnar Reactors; (3) Development of Predictive Mathematical Models; and (4) Industrial Demonstration. Research activities addressing both synthesis gas conversion and flue gas removal were conducted in parallel by BRI and ORNL respectively.

  18. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  19. Micropatterning neuronal networks.

    PubMed

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-07

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture.

  20. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  1. Effects of surface asymmetry on neuronal growth

    NASA Astrophysics Data System (ADS)

    Staii, Cristian

    Understanding the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. A growing body of evidence shows that physical stimuli (stiffness of the growth substrate, gradients of various molecular species, geometry of the surrounding environment, traction forces etc.) play a key role in the wiring up of the nervous system. I will present a systematic experimental and theoretical investigation of neuronal growth on substrates with asymmetric geometries and textures. The experimental results show unidirectional axonal growth on these substrates. We demonstrate that the unidirectional bias is imparted by the surface ratchet geometry and quantify the geometrical guidance cues that control neuronal growth. Our results provide new insight into the role played by physical cues in neuronal growth, and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue. We acknowledge support from NSF through CBET 1067093.

  2. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    PubMed

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2016-09-12

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  3. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    SciTech Connect

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  4. [Neuronal ageing].

    PubMed

    Piechota, Małgorzata; Sunderland, Piotr

    2014-01-01

    Ageing leads to irreversible alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. In old neurons and brain, similarly to what may take place in other cells, there is increased oxidative stress, disturbed energetic homeostasis and metabolism, accumulation of damage in proteins and nucleic acids. Characteristic of old neurons are alterations in plasticity, synaptic transmission, sensitivity to neurotrophic factors and cytoskeletal changes. Some markers of senescence, whose one of them is SA-beta-galactosidase were used to show the process of neuronal ageing both in vitro, and in vivo. Some research suggest that, despite the fact that neurons are postmitotic cells, it is cell cycle proteins which play a certain role in their biology, e.g. differentiation. However, their role in neuronal ageing is not known or explained. Ageing is the serious factor of development of neurodegenerative diseases among others Alzheimer disease.

  5. Catalyst Substrates Remove Contaminants, Produce Fuel

    NASA Technical Reports Server (NTRS)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  6. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  7. Ecological constraints on the origin of neurones.

    PubMed

    Monk, Travis; Paulin, Michael G; Green, Peter

    2015-12-01

    The basic functional characteristics of spiking neurones are remarkably similar throughout the animal kingdom. Their core design and function features were presumably established very early in their evolutionary history. Identifying the selection pressures that drove animals to evolve spiking neurones could help us interpret their design and function today. This paper provides a quantitative argument, based on ecology, that animals evolved neurones after they started eating each other, about 550 million years ago. We consider neurones as devices that aid an animal's foraging performance, but incur an energetic cost. We introduce an idealised stochastic model ecosystem of animals and their food, and obtain an analytic expression for the probability that an animal with a neurone will fix in a neurone-less population. Analysis of the fixation probability reveals two key results. First, a neurone will never fix if an animal forages low-value food at high density, even if that neurone incurs no cost. Second, a neurone will fix with high probability if an animal is foraging high-value food at low density, even if that neurone is expensive. These observations indicate that the transition from neurone-less to neurone-armed animals can be facilitated by a transition from filter-feeding or substrate grazing to episodic feeding strategies such as animal-on-animal predation (macrophagy).

  8. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    PubMed Central

    Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367

  9. Neuron Biomechanics Probed by Atomic Force Microscopy

    PubMed Central

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications. PMID:23921683

  10. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  11. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  12. Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease

    PubMed Central

    Choi, Won Jun; Oh, Ki-Wook; Nahm, Minyeop; Xue, Yuanchao; Choi, Jae Hyeok; Choi, Ji Young; Kim, Young-Eun; Chung, Ki Wha; Fu, Xiang-Dong; Ki, Chang-Seok; Kim, Seung Hyun

    2016-01-01

    Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by defective β-galactosylceramidase (GALC), a lysosomal enzyme responsible for cleavage of several key substrates including psychosine. Accumulation of psychosine to the cytotoxic levels in KD patients is thought to cause dysfunctions in myelinating glial cells based on a comprehensive study of demyelination in KD. However, recent evidence suggests myelin-independent neuronal death in the murine model of KD, thus indicating defective GALC in neurons as an autonomous mechanism for neuronal cell death in KD. These observations prompted us to generate induced neurons (iNeurons) from two adult-onset KD patients carrying compound heterozygous mutations (p.[K563*];[L634S]) and (p.[N228_S232delinsTP];[G286D]) to determine the direct contribution of autonomous neuronal toxicity to KD. Here we report that directly converted KD iNeurons showed not only diminished GALC activity and increased psychosine levels, as expected, but also neurite fragmentation and abnormal neuritic branching. The lysosomal-associated membrane proteins 1 (LAMP1) was expressed at higher levels than controls, LAMP1-positive vesicles were significantly enlarged and fragmented, and mitochondrial morphology and its function were altered in KD iNeurons. Strikingly, we demonstrated that psychosine was sufficient to induce neurite defects, mitochondrial fragmentation, and lysosomal alterations in iNeurons derived in healthy individuals, thus establishing the causal effect of the cytotoxic GALC substrate in KD and the autonomous neuronal toxicity in KD pathology. PMID:27780934

  13. Neuronal SUMOylation: Mechanisms, Physiology, and Roles in Neuronal Dysfunction

    PubMed Central

    Henley, Jeremy M.; Craig, Tim J.; Wilkinson, Kevin A.

    2014-01-01

    Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons. PMID:25287864

  14. Respiratory Modulation Of Premotor Cardiac Vagal Neurons In The Brainstem

    PubMed Central

    Dergacheva, Olga; Griffioen, Kathleen J.; Neff, Robert A.; Mendelowitz, David

    2010-01-01

    The respiratory and cardiovascular systems are highly intertwined, both anatomically and physiologically. Respiratory and cardiovascular neurons are often co-localized in the same brainstem regions, and this is particularly evident in the ventral medulla which contains pre-sympathetic neurons in the rostral ventrolateral medulla, premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus, and the ventral respiratory group, which includes the pre-Botzinger complex. Anatomical studies of respiratory and cardiovascular neurons have demonstrated that many of these neurons have projections and axon collateral processes which extend into their neighboring cardiorespiratory regions providing an anatomical substrate for cardiorespiratory interactions. As other reports in this Special Issue of Respiratory Physiology & Neurobiology focus on interactions between the respiratory network and baroreceptors, neurons in the nucleus tractus solitarius, presympathetic neurons and sympathetic activity, this report will focus on the respiratory modulation of parasympathetic activity and the neurons that generate parasympathetic activity to the heart, cardiac vagal neurons. PMID:20452467

  15. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  16. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  18. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Hydrogenase electrodes for fuel cells.

    PubMed

    Karyakin, A A; Morozov, S V; Karyakina, E E; Zorin, N A; Perelygin, V V; Cosnier, S

    2005-02-01

    Considering crucial problems that limit use of platinum-based fuel cells, i.e. cost and availability, poisoning by fuel impurities and low selectivity, we propose electrocatalysis by enzymes as a valuable alternative to noble metals. Hydrogenase electrodes in neutral media achieve hydrogen equilibrium potential (providing 100% energy conversion), and display high activity in H(2) electrooxidation, which is similar to that of Pt-based electrodes in sulphuric acid. In contrast with platinum, enzyme electrodes are highly selective for their substrates, and are not poisoned by fuel impurities. Hydrogenase electrodes are capable of consuming hydrogen directly from microbial media, which ensures their use as fuel electrodes in treatment of organic wastes.

  20. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  1. Neuronal-glial interactions in rats fed a ketogenic diet.

    PubMed

    Melø, Torun Margareta; Nehlig, Astrid; Sonnewald, Ursula

    2006-01-01

    Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism. Rats were kept on a standard or ketogenic diet. After 21 days all animals received an injection of [1-(13)C]glucose plus [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex and plasma were analyzed by (13)C and (1)H nuclear magnetic resonance spectroscopy and HPLC. Increased amounts of valine, leucine and isoleucine and a decreased amount of glutamate were found in the brains of rats receiving the ketogenic diet. Glycolysis was decreased in ketotic rats compared with controls, evidenced by the reduced amounts of [3-(13)C]alanine and [3-(13)C]lactate. Additionally, neuronal oxidative metabolism of [1-(13)C]glucose was decreased in ketotic rats compared with controls, since amounts of [4-(13)C]glutamate and [4-(13)C]glutamine were lower than those of controls. Although the amount of glutamate from [1-(13)C]glucose was decreased, this was not the case for GABA, indicating that relatively more [4-(13)C]glutamate is converted to GABA. Astrocytic metabolism was increased in response to ketosis, shown by increased amounts of [4,5-(13)C]glutamine, [4,5-(13)C]glutamate, [1,2-(13)C]GABA and [3,4-(13)C]-/[1,2-(13)C]aspartate derived from [1,2-(13)C]acetate. The pyruvate carboxylation over dehydrogenation ratio for glutamine was increased in the ketotic animals compared to controls, giving further indication of increased astrocytic metabolism. Interestingly, pyruvate recycling was higher in glutamine than in glutamate in both groups of animals. An increase in this pathway was detected in glutamate in response to ketosis. The decreased glycolysis and oxidative

  2. Metabolic fuel utilization and pyruvate oxidation during the postnatal period.

    PubMed

    Medina, J M; Tabernero, A; Tovar, J A; Martín-Barrientos, J

    1996-01-01

    The transplacental supply of nutrients is interrupted at birth, which diverts maternal metabolism to lactation. After birth, energy homeostasis is rapidly regained through milk nutrients which supply the newborn with the fatty acids and ketone bodies required for neonatal development. However, immediately after birth and before the onset of suckling there is a time lapse in which the newborn undergoes a unique kind of starvation. During this period glucose is scarce and ketone bodies are not available owing to the delay in ketogenesis. Under these circumstances, the newborn is supplied with another metabolic fuel, lactate, which is utilized as a source of energy and carbon skeletons. Neonatal rat lung, heart, liver and brain utilize lactate for energy production and lipogenesis. Lactate is also utilized by the brain of human babies with type I glycogenosis. Both rat neurons and astrocytes in primary culture actively use lactate as an oxidizable substrate and as a precursor of phospholipids and sterols. Lactate oxidation is enhanced by dichloroacetate, an inhibitor of the pyruvate dehydrogenase kinase in neurons but not in astrocytes, suggesting that the pyruvate dehydrogenase is regulated differently in each type of cell. Despite the low activity of this enzyme in newborn brain, pyruvate decarboxylation is the main fate of glucose in both neurons and astrocytes. The occurrence of a yeast-like pyruvate decarboxylase activity in neonatal brain may explain these results.

  3. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  4. Fuel cell oxygen electrode

    DOEpatents

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  5. Fuel cell oxygen electrode

    DOEpatents

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  6. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  7. Programmed to Learn? The Ontogeny of Mirror Neurons

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Manera, Valeria; Keysers, Christian

    2009-01-01

    Mirror neurons are increasingly recognized as a crucial substrate for many developmental processes, including imitation and social learning. Although there has been considerable progress in describing their function and localization in the primate and adult human brain, we still know little about their ontogeny. The idea that mirror neurons result…

  8. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  9. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  10. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  11. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  12. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  13. Involvement of dopaminergic neuronal cystatin C in neuronal injury-induced microglial activation and neurotoxicity.

    PubMed

    Dutta, Garima; Barber, David S; Zhang, Ping; Doperalski, Nicholas J; Liu, Bin

    2012-08-01

    Factors released from injured dopaminergic (DA) neurons may trigger microglial activation and set in motion a vicious cycle of neuronal injury and inflammation that fuels progressive DA neurodegeneration in Parkinson's disease. In this study, using proteomic and immunoblotting analysis, we detected elevated levels of cystatin C in conditioned media (CM) from 1-methyl-4-phenylpyridinium and dieldrin-injured rat DA neuronal cells. Immunodepletion of cystatin C significantly reduced the ability of DA neuronal CM to induce activation of rat microglial cells as determined by up-regulation of inducible nitric oxide synthase, production of free radicals and release of proinflammatory cytokines as well as activated microglia-mediated DA neurotoxicity. Treatment of the cystatin C-containing CM with enzymes that remove O- and sialic acid-, but not N-linked carbohydrate moieties markedly reduced the ability of the DA neuronal CM to activate microglia. Taken together, these results suggest that DA neuronal cystatin C plays a role in the neuronal injury-induced microglial activation and neurotoxicity. These findings from the rat DA neuron-microglia in vitro model may help guide continued investigation to define the precise role of cystatin C in the complex interplay among neurons and glia in the pathogenesis of Parkinson's disease.

  14. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  15. Neuronal circuits of fear extinction.

    PubMed

    Herry, Cyril; Ferraguti, Francesco; Singewald, Nicolas; Letzkus, Johannes J; Ehrlich, Ingrid; Lüthi, Andreas

    2010-02-01

    Fear extinction is a form of inhibitory learning that allows for the adaptive control of conditioned fear responses. Although fear extinction is an active learning process that eventually leads to the formation of a consolidated extinction memory, it is a fragile behavioural state. Fear responses can recover spontaneously or subsequent to environmental influences, such as context changes or stress. Understanding the neuronal substrates of fear extinction is of tremendous clinical relevance, as extinction is the cornerstone of psychological therapy of several anxiety disorders and because the relapse of maladaptative fear and anxiety is a major clinical problem. Recent research has begun to shed light on the molecular and cellular processes underlying fear extinction. In particular, the acquisition, consolidation and expression of extinction memories are thought to be mediated by highly specific neuronal circuits embedded in a large-scale brain network including the amygdala, prefrontal cortex, hippocampus and brain stem. Moreover, recent findings indicate that the neuronal circuitry of extinction is developmentally regulated. Here, we review emerging concepts of the neuronal circuitry of fear extinction, and highlight novel findings suggesting that the fragile phenomenon of extinction can be converted into a permanent erasure of fear memories. Finally, we discuss how research on genetic animal models of impaired extinction can further our understanding of the molecular and genetic bases of human anxiety disorders.

  16. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  17. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    PubMed Central

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  18. Simple and effective graphene laser processing for neuron patterning application

    PubMed Central

    Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno

    2013-01-01

    A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors. PMID:23739674

  19. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity

    NASA Astrophysics Data System (ADS)

    Leach, Jennie B.; Brown, Xin Q.; Jacot, Jeffrey G.; Di Milla, Paul A.; Wong, Joyce Y.

    2007-06-01

    Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g., outgrowth), physical cues such as substrate stiffness have only recently been recognized to influence cell behavior. In this work, we examine the response of PC12 neurites to substrate stiffness. We quantified and controlled fibronectin density on the substrates and measured multiple neurite behaviors (e.g., growth, branching, neurites per cell, per cent cells expressing neurites) in a large sample population. We found that PC12 neurons display a threshold response to substrate stiffness. On the softest substrates tested (shear modulus ~10 Pa), neurites were relatively few, short in length and unbranched. On stiffer substrates (shear modulus ~102-104 Pa), neurites were longer and more branched and a greater percentage of cells expressed neurites; significant differences in these measures were not found on substrates with a shear modulus >102 Pa. Based on these data and comparisons with published neurobiology and neuroengineering reports of neurite mechanotransduction, we hypothesize that results from studies of neuronal response to compliant substrates are cell-type dependent and sensitive to ligand density, sample size and the range of stiffness investigated.

  20. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain.

    PubMed

    Hatanaka, Yumiko; Zhu, Yan; Torigoe, Makio; Kita, Yoshiaki; Murakami, Fujio

    2016-01-01

    Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons' site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits.

  1. Thin film fuel cell electrodes.

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  2. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-08-05

    This patent describes distillate fuel for indirect injection compression ignition engines containing, in an amount sufficient to minimize coking, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel, at least the combination of (i) organic nitrate ignition accelerator and (ii) an esterified cycle dehydration product of sorbitol which, when added to the fuel in combination with the organic nitrate ignition accelerator minimizes the coking.

  3. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  4. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  5. Motor fuel

    SciTech Connect

    Burns, L.D.

    1982-07-13

    Liquid hydrocarbon fuel compositions are provided containing antiknock quantities of ashless antiknock agents comprising selected furyl compounds including furfuryl alcohol, furfuryl amine, furfuryl esters, and alkyl furoates.

  6. Alternative fuels

    SciTech Connect

    Not Available

    1991-07-01

    This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

  7. Modeling neural differentiation on micropatterned substrates coated with neural matrix components

    PubMed Central

    García-Parra, Patricia; Cavaliere, Fabio; Maroto, Marcos; Bilbao, Leire; Obieta, Isabel; López de Munain, Adolfo; Álava, José Iñaki; Izeta, Ander

    2012-01-01

    Topographical and biochemical characteristics of the substrate are critical for neuronal differentiation including axonal outgrowth and regeneration of neural circuits in vivo. Contact stimuli and signaling molecules allow neurons to develop and stabilize synaptic contacts. Here we present the development, characterization and functional validation of a new polymeric support able to induce neuronal differentiation in both PC12 cell line and adult primary skin-derived precursor cells (SKPs) in vitro. By combining a photolithographic technique with use of neural extracellular matrix (ECM) as a substrate, a biocompatible and efficient microenvironment for neuronal differentiation was developed. PMID:22435050

  8. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  9. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  10. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  11. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  12. Process entanglement as a neuronal anchorage mechanism to rough surfaces

    NASA Astrophysics Data System (ADS)

    Sorkin, Raya; Greenbaum, Alon; David-Pur, Moshe; Anava, Sarit; Ayali, Amir; Ben-Jacob, Eshel; Hanein, Yael

    2009-01-01

    The organization of neurons and glia cells on substrates composed of pristine carbon nanotube islands was investigated using high resolution scanning electron microscopy, immunostaining and confocal microscopy. Neurons were found bound and preferentially anchored to the rough surfaces; moreover, the morphology of the neuronal processes on the small, isolated islands of high density carbon nanotubes was found to be conspicuously curled and entangled. We further demonstrate that the roughness of the surface must match the diameter of the neuronal processes in order to allow them to bind. The results presented here suggest that entanglement, a mechanical effect, may constitute an additional mechanism by which neurons (and possibly other cell types) anchor themselves to rough surfaces. Understanding the nature of the interface between neurons and carbon nanotubes is essential to effectively harness carbon nanotube technology in neurological applications such as neuro-prosthetic and retinal electrodes.

  13. Biodesulfurization of fossil fuels.

    PubMed

    Gray, Kevin A; Mrachko, Gregory T; Squires, Charles H

    2003-06-01

    Biotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.

  14. Neuronal substrates and functional consequences of prenatal cannabis exposure

    PubMed Central

    Calvigioni, Daniela; Hurd, Yasmin L.; Keimpema, Erik

    2015-01-01

    Cannabis remains one of the world’s most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal “legal” highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities. PMID:24793873

  15. Neuronal-glial networks as substrate for CNS integration

    PubMed Central

    Verkhratsky, A; Toescu, E C

    2006-01-01

    Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator.

  16. Neuronal substrates and functional consequences of prenatal cannabis exposure.

    PubMed

    Calvigioni, Daniela; Hurd, Yasmin L; Harkany, Tibor; Keimpema, Erik

    2014-10-01

    Cannabis remains one of the world's most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal "legal" highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities.

  17. Neuronal substrates characterizing two stages in visual object recognition.

    PubMed

    Taminato, Tomoya; Miura, Naoki; Sugiura, Motoaki; Kawashima, Ryuta

    2014-12-01

    Visual object recognition is classically believed to involve two stages: a perception stage in which perceptual information is integrated, and a memory stage in which perceptual information is matched with an object's representation. The transition from the perception to the memory stage can be slowed to allow for neuroanatomical segregation using a degraded visual stimuli (DVS) task in which images are first presented at low spatial resolution and then gradually sharpened. In this functional magnetic resonance imaging study, we characterized these two stages using a DVS task based on the classic model. To separate periods that are assumed to dominate the perception, memory, and post-recognition stages, subjects responded once when they could guess the identity of the object in the image and a second time when they were certain of the identity. Activation of the right medial occipitotemporal region and the posterior part of the rostral medial frontal cortex was found to be characteristic of the perception and memory stages, respectively. Although the known role of the former region in perceptual integration was consistent with the classic model, a likely role of the latter region in monitoring for confirmation of recognition suggests the advantage of recently proposed interactive models.

  18. Studying neuronal biomechanics and its role in CNS development

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Svoboda, Hanno; da F. Costa, Luciano; Guck, Jochen; Holt, Christine

    2013-03-01

    During the development of the nervous system, neurons migrate and grow over great distances. Currently, our understanding of nervous tissue development is, in large part, based on studies of biochemical signaling. Despite the fact that forces are involved in any kind of cell motion, mechanical aspects have so far rarely been considered. Here we used deformable cell culture substrates, traction force microscopy and calcium imaging to investigate how neurons probe and respond to their mechanical environment. While the growth rate of retinal ganglion cell axons was increased on stiffer substrates, their tendency to grow in bundles, which they show in vivo, was significantly enhanced on more compliant substrates. Moreover, if grown on substrates incorporating linear stiffness gradients, neuronal axons were repelled by stiff substrates. Mechanosensing involved the application of forces driven by the interaction of actin and myosin II, and the activation of stretch-activated ion channels leading to calcium influxes into the cells. Applying a modified atomic force microscopy techniquein vivo, we found mechanical gradients in developing brain tissue along which neurons grow. The application of chondroitin sulfate, which is a major extracellular matrix component in the developing brain, changed tissue mechanics and disrupted axonal pathfinding. Hence, our data suggest that neuronal growth is not only guided by chemical signals - as it is currently assumed - but also by the nervous tissue's mechanical properties.

  19. Neuronal Migration Disorders

    MedlinePlus

    ... Understanding Sleep The Life and Death of a Neuron Order Publications Support Resources Patient Organizations Professional Societies ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  20. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  1. Neurofibromin and Neuronal Apoptosis

    DTIC Science & Technology

    2005-07-01

    for these differences in the response of Nfl-/- neurons. "So What" Section. The learning disabilities associated with NF I constitute a highly variable...and +/+ neurons appear to become more significant with age. Our results may have implications for two areas: 1) the pathogenesis of learning ... disabilities in children with NF I, and 2) therapeutic strategies or targets for prolonging neuron survival, or for increasing neuronal response to protective

  2. Fuels research: Fuel thermal stability overview

    NASA Technical Reports Server (NTRS)

    Cohen, S. M.

    1980-01-01

    Alternative fuels or crude supplies are examined with respect to satisfying aviation fuel needs for the next 50 years. The thermal stability of potential future fuels is discussed and the effects of these characteristics on aircraft fuel systems are examined. Advanced fuel system technology and design guidelines for future fuels with lower thermal stability are reported.

  3. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  4. Modelling small-patterned neuronal networks coupled to microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Massobrio, Paolo; Martinoia, Sergio

    2008-09-01

    Cultured neurons coupled to planar substrates which exhibit 'well-defined' two-dimensional network architectures can provide valuable insights into cell-to-cell communication, network dynamics versus topology, and basic mechanisms of synaptic plasticity and learning. In the literature several approaches were presented to drive neuronal growth, such as surface modification by silane chemistry, photolithographic techniques, microcontact printing, microfluidic channel flow patterning, microdrop patterning, etc. This work presents a computational model fit for reproducing and explaining the dynamics exhibited by small-patterned neuronal networks coupled to microelectrode arrays (MEAs). The model is based on the concept of meta-neuron, i.e., a small spatially confined number of actual neurons which perform single macroscopic functions. Each meta-neuron is characterized by a detailed morphology, and the membrane channels are modelled by simple Hodgkin-Huxley and passive kinetics. The two main findings that emerge from the simulations can be summarized as follows: (i) the increasing complexity of meta-neuron morphology reflects the variations of the network dynamics as a function of network development; (ii) the dynamics displayed by the patterned neuronal networks considered can be explained by hypothesizing the presence of several short- and a few long-term distance interactions among small assemblies of neurons (i.e., meta-neurons).

  5. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  6. Advanced Fuel-Cell Modules

    NASA Technical Reports Server (NTRS)

    Bell, William F., III; Martin, Ronald E.; Struning, Albin J.; Whitehill, Robert

    1989-01-01

    Modules designed for long life, light weight, reliability, and low cost. Stack of alkaline fuel cells based on modules, consisting of three fuel cells and cooler. Each cell includes following components: ribbed carbon fine-pore anode electrolyte-reservoir plate; platinum-on-carbon catalyst anode; potassium titanate matrix bonded with butyl rubber; gold-plated nickel-foil electrode substrates; and silver plated, gold-flashed molded polyphenylene sulfide cell holder. Each cell has active area of 1ft to the 2nd power (0.09 m to the 2nd power). Materials and configurations of parts chosen to extend life expectancy, reduce weight and manufacturing cost, and increase reliability.

  7. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  8. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.

    PubMed

    Himi, T; Ikeda, M; Yasuhara, T; Nishida, M; Morita, I

    2003-12-01

    Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.

  9. Multistructural biomimetic substrates for controlled cellular differentiation

    NASA Astrophysics Data System (ADS)

    Orza, Anamaria I.; Mihu, Carmen; Soritau, Olga; Diudea, Mircea; Florea, Adrian; Matei, Horea; Balici, Stefana; Mudalige, Thilak; Kanarpardy, Ganesh K.; Biris, Alexandru S.

    2014-02-01

    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues.

  10. Cajal bodies in neurons.

    PubMed

    Lafarga, Miguel; Tapia, Olga; Romero, Ana M; Berciano, Maria T

    2016-09-14

    Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.

  11. Signal transfer within a cultured asymmetric cortical neuron circuit

    NASA Astrophysics Data System (ADS)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  12. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    PubMed

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-08

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  13. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  14. Somatosensory Substrates of Flight Control in Bats

    PubMed Central

    Marshall, Kara L.; Chadha, Mohit; deSouza, Laura A.; Sterbing-D’Angelo, Susanne J.; Moss, Cynthia F.; Lumpkin, Ellen A.

    2015-01-01

    Summary Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections. PMID:25937277

  15. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  16. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  17. Life and death of neurons in the aging brain

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.

  18. Nanoscale surface cues and in vitro neuronal growth

    NASA Astrophysics Data System (ADS)

    Nam, Yoonkey; Jang, Min Jee; Kang, Kyungtae; Choi, Insung S.

    2012-10-01

    Nerve cells (neurons) have been used for a convenient and effective model for basic neurobiology and it has also served as a test bed for the development of neural prosthetic devices. The characterization of neuronal growth in vitro has become an important part of neural tissue engineering. In this talk, I will present recent progresses on the investigation of nano-scale effects on neuronal growth in vitro. Hippocampal neurons from a small brain tissue dissected from E-18 (embryonic stage 18 days) Sprague-Dawley rat were used as a developing neuron model. They were seeded on substrates with carbon nanotube patterned glass substrates, anodized aluminum oxide surfaces with two different pitch sizes (60 nm, 400 nm), and silica nano bead surfaces with five different bead sizes (110, 190, 320, 480, 670 nm). These surfaces uniquely defined nano-scale surfaces with different topographical features. We observed longer neurite outgrowth and faster neuronal development on nano-scale surfaces compared to plain glass surfaces. The results from nano-scale cell culture platforms will be useful to understand nano-environments of the brain during the early neural developments. In addition, the promoted neuronal development could be further applied for neural tissue scaffolds or implantable neural interface systems.

  19. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  20. Fuel bundle

    SciTech Connect

    Lui, C.K.

    1989-04-04

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate.

  1. Colloidal Drop Deposition on Porous Substrates

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin

    2015-11-01

    Printable electronics and in particular paper and textile-based electronics have fueled research in inkjet printing on porous substrates. On nonporous substrates, the particle motion of the particles and evaporation of the solvent are the two main mechanisms that drive the final deposition morphology. For porous substrates another factor, mainly infiltration, adds a layer of complexity to the deposition patterns that has not yet been elucidated in literature. In this study, a high-speed camera was used to capture the imbibition of picoliter-sized polystyrene nanoparticles in water droplets into nano-porous anodic aluminum oxide substrates of various porosities and wettabilities. For water, the infiltration rate is much faster than both evaporation and particle motion and thus when the substrate fully imbibes the droplet, the well-known ``coffee ring'' is suppressed. However, when a residual droplet forms upon the termination of the infiltration regime, the competing particle motion and evaporation regimes, tP and tEI respectively, define the critical time scales for which the coffee ring will be formed (tP /tEI <1) or suppressed (tP /tEI >1). National Science Foundation under Grant No. CMMI-1401438.

  2. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  3. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    PubMed Central

    Stobart, Jillian L.; Anderson, Christopher M.

    2013-01-01

    Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular dysfunction. PMID:23596393

  4. Pacemaking Kisspeptin Neurons

    PubMed Central

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  5. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  6. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  7. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  8. Alternative Fuels

    DTIC Science & Technology

    2009-06-11

    Swedish Biofuels AB • Cellulosic and algal feedstocks that are non-competitive with food material $ P r o d u c t P r o d u c t Traditional fuels...JP-8 BACK-UP SLIDES Unclassified 19 What Are Biofuels ? Cellulose “first generation”“second generation” C18:0 C16:1 Triglycerides (fats, oils

  9. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  10. Culturing rat hippocampal neurons.

    PubMed

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  11. Neuronal Mechanisms of Intelligence.

    DTIC Science & Technology

    1986-03-21

    The underlying premise of this research is that the neuron itself is the functional unit in the brain for positive reinforcement . Our early studies...preference studies (an alternative method to self-stimulation for measuring reward). Keywords: Neuronal conditioning; Positive reinforcement ; Learning; and Adaptive networks.

  12. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  13. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  14. Distinct roles for direct and indirect pathway striatal neurons in reinforcement.

    PubMed

    Kravitz, Alexxai V; Tye, Lynne D; Kreitzer, Anatol C

    2012-06-01

    Dopamine signaling is implicated in reinforcement learning, but the neural substrates targeted by dopamine are poorly understood. We bypassed dopamine signaling itself and tested how optogenetic activation of dopamine D1 or D2 receptor–expressing striatal projection neurons influenced reinforcement learning in mice. Stimulating D1 receptor–expressing neurons induced persistent reinforcement, whereas stimulating D2 receptor–expressing neurons induced transient punishment, indicating that activation of these circuits is sufficient to modify the probability of performing future actions.

  15. Neuronal signaling through endocytosis.

    PubMed

    Cosker, Katharina E; Segal, Rosalind A

    2014-02-01

    The distinctive morphology of neurons, with complex dendritic arbors and extensive axons, presents spatial challenges for intracellular signal transduction. The endosomal system provides mechanisms that enable signaling molecules initiated by extracellular cues to be trafficked throughout the expanse of the neuron, allowing intracellular signals to be sustained over long distances. Therefore endosomes are critical for many aspects of neuronal signaling that regulate cell survival, axonal growth and guidance, dendritic branching, and cell migration. An intriguing characteristic of neuronal signal transduction is that endosomal trafficking enables physiological responses that vary based on the subcellular location of signal initiation. In this review, we will discuss the specialized mechanisms and the functional significance of endosomal signaling in neurons, both during normal development and in disease.

  16. Neuronal Signaling through Endocytosis

    PubMed Central

    Cosker, Katharina E.; Segal, Rosalind A.

    2014-01-01

    The distinctive morphology of neurons, with complex dendritic arbors and extensive axons, presents spatial challenges for intracellular signal transduction. The endosomal system provides mechanisms that enable signaling molecules initiated by extracellular cues to be trafficked throughout the expanse of the neuron, allowing intracellular signals to be sustained over long distances. Therefore endosomes are critical for many aspects of neuronal signaling that regulate cell survival, axonal growth and guidance, dendritic branching, and cell migration. An intriguing characteristic of neuronal signal transduction is that endosomal trafficking enables physiological responses that vary based on the subcellular location of signal initiation. In this review, we will discuss the specialized mechanisms and the functional significance of endosomal signaling in neurons, both during normal development and in disease. PMID:24492712

  17. NEURON and Python

    PubMed Central

    Hines, Michael L.; Davison, Andrew P.; Muller, Eilif

    2008-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications. PMID:19198661

  18. Imaging calcium in neurons.

    PubMed

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  19. NEURON and Python.

    PubMed

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  20. Scalable cell alignment on optical media substrates.

    PubMed

    Anene-Nzelu, Chukwuemeka G; Choudhury, Deepak; Li, Huipeng; Fraiszudeen, Azmall; Peh, Kah-Yim; Toh, Yi-Chin; Ng, Sum Huan; Leo, Hwa Liang; Yu, Hanry

    2013-07-01

    Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture. These optical media, including CD-R, DVD-R and optical grating, allow different cell types to attach and grow well on them. The physical dimension of the grooves in these optical media allowed cells to be aligned in confluent cell culture with maximal cell-cell interaction and these cell alignment affect the morphology and differentiation of cardiac (H9C2), skeletal muscle (C2C12) and neuronal (PC12) cell lines. The optical media is amenable to various chemical modifications with fibronectin, laminin and gelatin for culturing different cell types. These low-cost commercially available optical media can serve as scalable substrates for research or drug safety screening applications in industry scales.

  1. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.

  2. Enhanced neurite outgrowth of PC-12 cells on graphene-monolayer-coated substrates as biomimetic cues

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Han, Dong-Wook; Kang, Seok Hee; Hong, Suck Won; Kim, Jong Man

    2012-11-01

    Neurons are electrically excitable cells that transmit and process information in the nervous system. Recently, the differentiation of human neural stem cells to neurons has been shown to be enhanced on graphene substrates, and differentiated neurons have been shown to be able to still carry electrical signals when stimulated by graphene electrodes. Graphene films grown by using chemical vapor deposition were transferred onto glass coverslips by using the scooping method and were then coated with fetal bovine serum for a neuronal cell culture. The graphene substrates as biomimetic cues have been shown to enhance the neurite outgrowth of PC-12 cells. Our findings suggest that graphene has a unique surface property that can promote neuronal cells, which should open tremendous opportunities in neuroscience, neural engineering and regenerative medicine.

  3. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  4. Growth of primary motor neurons on horizontally aligned carbon nanotube thin films and striped patterns

    NASA Astrophysics Data System (ADS)

    Roberts, Megan J.; Leach, Michelle K.; Bedewy, Mostafa; Meshot, Eric R.; Copic, Davor; Corey, Joseph M.; Hart, A. John

    2014-06-01

    Objective. Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs). Approach. We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites. We next presented motor neurons with substrates of alternating stripes of HACNTs and SiO2. Main results. The neurons survived on HACNT substrates for up to eight days, which was the full duration of our experiments. Statistical analysis of the length and orientation of neurites indicated that the longest neurites on HACNTs tended to align with the CNT direction, although the average neurite length was similar between HACNTs and glass control substrates. We observed that when motor neurons were presented with alternating stripes of HACNTs and SiO2, the proportion of neurons on HACNTs increases over time, suggesting that neurons selectively migrate toward and adhere to the HACNT surface. Significance. The behavior of motor neurons on CNTs has not been previously investigated, and we show that aligned CNTs could provide a viable interface material to motor neurons. Combined with emerging techniques to build complex hierarchical structures of CNTs, our results suggest that organised CNTs could be incorporated into nerve grafts that use physical and electrical cues to guide regenerating axons.

  5. Signal Propagation between Neuronal Populations Controlled by Micropatterning

    PubMed Central

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  6. Cellular Links between Neuronal Activity and Energy Homeostasis

    PubMed Central

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply. PMID:22470340

  7. The neural substrate of gesture recognition.

    PubMed

    Villarreal, Mirta; Fridman, Esteban A; Amengual, Alejandra; Falasco, German; Gerschcovich, Eliana Roldan; Gerscovich, Eliana Roldan; Ulloa, Erlinda R; Leiguarda, Ramon C

    2008-01-01

    Previous studies have linked action recognition with a particular pool of neurons located in the ventral premotor cortex, the posterior parietal cortex and the superior temporal sulcus (the mirror neuron system). However, it is still unclear if transitive and intransitive gestures share the same neural substrates during action-recognition processes. In the present study, we used event-related functional magnetic resonance imaging (fMRI) to assess the cortical areas active during recognition of pantomimed transitive actions, intransitive gestures, and meaningless control actions. Perception of all types of gestures engaged the right pre-supplementary motor area (pre-SMA), and bilaterally in the posterior superior temporal cortex, the posterior parietal cortex, occipitotemporal regions and visual cortices. Activation of the posterior superior temporal sulcus/superior temporal gyrus region was found in both hemispheres during recognition of transitive and intransitive gestures, and in the right hemisphere during the control condition; the middle temporal gyrus showed activation in the left hemisphere when subjects recognized transitive and intransitive gestures; activation of the left inferior parietal lobe and intraparietal sulcus (IPS) was mainly observed in the left hemisphere during recognition of the three conditions. The most striking finding was the greater activation of the left inferior frontal gyrus (IFG) during recognition of intransitive actions. Results show that a similar neural substrate, albeit, with a distinct engagement underlies the cognitive processing of transitive and intransitive gestures recognition. These findings suggest that selective disruptions in these circuits may lead to distinct clinical deficits.

  8. Fuel cell

    SciTech Connect

    Struthers, R.C.

    1983-06-28

    An improved fuel cell comprising an anode section including an anode terminal, an anode fuel, and an anolyte electrolyte, a cathode section including a cathode terminal, an electron distributor and a catholyte electrolyte, an ion exchange section between the anode and cathode sections and including an ionolyte electrolyte, ion transfer membranes separating the ionolyte from the anolyte and the catholyte and an electric circuit connected with and between the terminals conducting free electrons from the anode section and delivering free electrons to the cathode section, said ionolyte receives ions of one polarity moving from the anolyte through the membrane related thereto preventing chemical equilibrium in the anode section and sustaining chemical reaction and the generating of free electrons therein, said ions received by the ionolyte from the anolyte release different ions from the ionolyte which move through the membrane between the ionolyte and catholyte and which add to the catholyte.

  9. Fuel additives

    SciTech Connect

    Gheysens, J.L.G.

    1990-11-27

    This patent describes a composition for the improvement of hydrocarbon fuels exhibiting a boiling range of gasoline being suitable for use in spark ignition-type engines. It comprises an aromatic amine; a polyaminated detergent; a catalyst comprising a colloidal suspension or amine salt of transition/alkali/alkaline earth metal organic coordinations having at least one metal oxidehydroxide linked to an alkyl chain via a carboxyl group; and a solvent comprising an alkanol-aliphatic ether oxygenated hydrocarbon.

  10. Future Fuels

    DTIC Science & Technology

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...traction power – mission payloads – mobile electric power • Improved survivability • Inherent modularity improves maintainability & upgradability ...threatened the output of the Ploesti oil fields and refineries. In the FT process, so-called syngas (a mixture of molecular hydrogen and carbon monoxide

  11. Fuel conditioner

    SciTech Connect

    Nelson, M.L.; Nelson, O.L. Jr.

    1988-06-28

    A fuel conditioner is described comprising 10 to 80% of a polar oxygenated hydrocarbon having an average molecular weight from about 250 to about 500, an acid acid number from about 25 to about 125, and a saponification number from about 30 to about 250; and 5 to 50% of an oxygenated compatibilizing agent having a solubility parameter of from about 8.8 to about 11.5 and moderate to strong hydrogen-bonding capacity.

  12. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila.

    PubMed

    Azanchi, Reza; Kaun, Karla R; Heberlein, Ulrike

    2013-12-24

    The neural circuits that mediate behavioral choice evaluate and integrate information from the environment with internal demands and then initiate a behavioral response. Even circuits that support simple decisions remain poorly understood. In Drosophila melanogaster, oviposition on a substrate containing ethanol enhances fitness; however, little is known about the neural mechanisms mediating this important choice behavior. Here, we characterize the neural modulation of this simple choice and show that distinct subsets of dopaminergic neurons compete to either enhance or inhibit egg-laying preference for ethanol-containing food. Moreover, activity in α'β' neurons of the mushroom body and a subset of ellipsoid body ring neurons (R2) is required for this choice. We propose a model where competing dopaminergic systems modulate oviposition preference to adjust to changes in natural oviposition substrates.

  13. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  14. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  15. Densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  16. Sol-gel derived ceramic electrolyte films on porous substrates

    SciTech Connect

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  17. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  18. Effects of estradiol on glycemic and CNS neuronal activational responses to recurrent insulin-induced hypoglycemia in the ovariectomized female rat.

    PubMed

    Nedungadi, T P; Goleman, W L; Paranjape, S A; Kale, A Y; Briski, K P

    2006-01-01

    neuronal reactivity to recurring hypoglycemia in central metabolic structures, whereas hypoglycemic patterns of Fos expression in each site become habituated during RIIH in the absence of this steroid. The brain sites characterized here by estrogen-dependent maintenance of neuronal genomic reactivity to this substrate fuel imbalance may contain direct and/or indirect cellular targets for hormonal actions that prevent adaptation of CNS-controlled motor responses to this metabolic stress.

  19. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  20. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain.

    PubMed

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-09-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains.

  1. Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks.

    PubMed

    An, Bo; Tang-Schomer, Min D; Huang, Wenwen; He, Jiuyang; Jones, Justin A; Lewis, Randolph V; Kaplan, David L

    2015-04-01

    Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.

  2. Combined Optogenetic and Chemogenetic Control of Neurons

    PubMed Central

    Berglund, Ken; Tung, Jack K.; Higashikubo, Bryan; Gross, Robert E.; Moore, Christopher I.; Hochgeschwender, Ute

    2016-01-01

    Optogenetics provides an array of elements for specific biophysical control, while designer chemogenetic receptors provide a minimally invasive method to control circuits in vivo by peripheral injection. We developed a strategy for selective regulation of activity in specific cells that integrates opto- and chemogenetic approaches, and thus allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon peripheral injection of a small molecule substrate. Such luminescent opsins, luminopsins, allow conventional fiber optic use of optogenetic sensors, while at the same time providing chemogenetic access to the same sensors. We describe applications of this approach in cultured neurons in vitro, in brain slices ex vivo, and in awake and anesthetized animals in vivo. PMID:26965125

  3. Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival

    PubMed Central

    Zurashvili, Tinatin; Cordón-Barris, Lluís; Ruiz-Babot, Gerard; Zhou, Xiangyu; Lizcano, Jose M.; Gómez, Nestor; Giménez-Llort, Lydia

    2013-01-01

    3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation. PMID:23275438

  4. Axon Stretch Growth: The Mechanotransduction of Neuronal Growth

    PubMed Central

    Loverde, Joseph R.; Tolentino, Rosa E.; Pfister, Bryan J.

    2011-01-01

    During pre-synaptic embryonic development, neuronal processes traverse short distances to reach their targets via growth cone. Over time, neuronal somata are separated from their axon terminals due to skeletal growth of the enlarging organism (Weiss 1941; Gray, Hukkanen et al. 1992). This mechanotransduction induces a secondary mode of neuronal growth capable of accommodating continual elongation of the axon (Bray 1984; Heidemann and Buxbaum 1994; Heidemann, Lamoureux et al. 1995; Pfister, Iwata et al. 2004). Axon Stretch Growth (ASG) is conceivably a central factor in the maturation of short embryonic processes into the long nerves and white matter tracts characteristic of the adult nervous system. To study ASG in vitro, we engineered bioreactors to apply tension to the short axonal processes of neuronal cultures (Loverde, Ozoka et al. 2011). Here, we detail the methods we use to prepare bioreactors and conduct ASG. First, within each stretching lane of the bioreactor, neurons are plated upon a micro-manipulated towing substrate. Next, neurons regenerate their axonal processes, via growth cone extension, onto a stationary substrate. Finally, stretch growth is performed by towing the plated cell bodies away from the axon terminals adhered to the stationary substrate; recapitulating skeletal growth after growth cone extension. Previous work has shown that ASG of embryonic rat dorsal root ganglia neurons are capable of unprecedented growth rates up to 10mm/day, reaching lengths of up to 10cm; while concurrently resulting in increased axonal diameters (Smith, Wolf et al. 2001; Pfister, Iwata et al. 2004; Pfister, Bonislawski et al. 2006; Pfister, Iwata et al. 2006; Smith 2009). This is in dramatic contrast to regenerative growth cone extension (in absence of mechanical stimuli) where growth rates average 1mm/day with successful regeneration limited to lengths of less than 3cm (Fu and Gordon 1997; Pfister, Gordon et al. 2011). Accordingly, further study of ASG may help

  5. Biaxially textured composite substrates

    DOEpatents

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  6. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  7. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  8. Motor neurone disease.

    PubMed

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  9. Neuronal Mechanisms of Intelligence

    DTIC Science & Technology

    1987-11-01

    numbtr) FIELOD GROUP ]SUB-GROJP operant conditioning; neuronal conditioning; positive reinforcement ; reward; learning; adaptive networks; self...gratuitous capacity for operant conditioning, the individual neuron could be an important functional unit for positive reinforcement in the brain. These...the following conditions: 1) if a brain cell with the capacity for positive reinforcement discharges in a burst of activity, and 2) if that cell’s

  10. Ghrelin in Central Neurons

    PubMed Central

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-01-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission. PMID:19721816

  11. Ghrelin in central neurons.

    PubMed

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-03-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.

  12. Neuron-Microdevice Connections.

    NASA Astrophysics Data System (ADS)

    Regehr, Wade Gordon

    1988-12-01

    A new method for long-term recording and stimulation applicable to cultured neurons has been developed. Silicon -based microelectrodes have been fabricated using integrated -circuit technology and micromachining. The chronic connection is made by positioning the electrode tip into contact with the cell body, and gluing the device to the bottom of the culture dish. These "diving-board electrodes" consist of an insulated lead exposed only at the tip sealed to the cell body of a cultured neuron: A two-way electrical connection to Helisoma B19 neurons has been established for up to four days. Preliminary experiments with cultured superior cervical ganglion neurons indicate diving-board electrodes can be used with cultured neurons larger than 20mum in diameter. In a related technique Helisoma neurons grown on a special dish containing a multielectrode array were found to seal to the dish electrodes, establishing similar long-term connections. This capability will make it possible to conduct experiments with either diving-board electrodes or dishes that cannot be performed using conventional techniques.

  13. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    PubMed Central

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  14. Aniosotropically organized LDH on PVDF: a geometrically templated electrospun substrate for advanced anion conducting membranes.

    PubMed

    Sailaja, G S; Zhang, Peilin; Anilkumar, Gopinathan M; Yamaguchi, Takeo

    2015-04-01

    A bioinspired geometric templating of an electrospun PVDF substrate with hexagonal platelets of Mg-Al layered double hydroxide (LDH), an intrinsic anion conductor, is presented. The distinctive morphology restructures the internal pore geometry and modulates the dynamic wetting profile of PVDF, transforming it into a highly functional substrate for SAFC anion conducting membranes. The membrane fabricated with PVDF-LDH substrate exhibited exceptionally high durability (>140 °C), high anionic conductivity, ion exchange capacity (IEC), restricted swelling, and improved tensile strength, overcoming critical challenges associated with PVDF electrospun substrates and validating its immense potential as a high-temperature-stable and durable substrate for advanced fuel cell membrane applications.

  15. Cell-Type Dependent Effect of Surface-Patterned Microdot Arrays on Neuronal Growth

    PubMed Central

    Jang, Min Jee; Kim, Woon Ryoung; Joo, Sunghoon; Ryu, Jae Ryun; Lee, Eunsoo; Nam, Yoonkey; Sun, Woong

    2016-01-01

    Surface micropatterns have been widely used as chemical cues to control the microenvironment of cultured neurons, particularly for neurobiological assays and neurochip designs. However, the cell-type dependency on the interactions between neurons and underlying micropatterns has been rarely investigated despite the inherent differences in the morphology of neuronal types. In this study, we used surface-printed microdot arrays to investigate the effect of the same micropatterns on the growth of mouse spinal interneuron, mouse hippocampal neurons, and rat hippocampal neurons. While mouse hippocampal neurons showed no significantly different growth on control and patterned substrates, we found the microdot arrays had different effects on early neuronal growth depending on the cell type; spinal interneurons tended to grow faster in length, whereas hippocampal neurons tended to form more axon collateral branches in response to the microdot arrays. Although there was a similar trend in the neurite length and branch number of both neurons changed across the microdot arrays with the expanded range of size and spacing, the dominant responses of each neuron, neurite elongation of mouse spinal interneurons and branching augmentation of rat hippocampal neurons were still preserved. Therefore, our results demonstrate that the same design of micropatterns could cause different neuronal growth results, raising an intriguing issue of considering cell types in neural interface designs. PMID:27242421

  16. Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545

  17. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.

    PubMed

    Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju

    2010-01-01

    Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.

  18. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  19. Enamides: valuable organic substrates.

    PubMed

    Carbery, David R

    2008-10-07

    Enamides display a fine balance of stability and reactivity, which is now leading to their increasing use in organic synthesis. Enamides offer multiple opportunities for the inclusion of nitrogen based functionality into organic systems. Recent examples of these compounds as substrates are discussed in this article.

  20. Fuel Burn Estimation Model

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  1. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  2. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  3. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  4. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Fuel extender

    SciTech Connect

    Dorn, G.K.; Gilbert, H.A.

    1989-02-21

    An efficient and cost competitive fuel extender liquid is described for blending with lead-free gasoline as an additive thereto in a maximum amount of up to about 35% thereof with 65% by volume of the gasoline in a blended mixture wherein. The content of the extender in the resultant fuel as proportioned on the basis of its thus representative maximum content consists essentially of: naphtha X as represented by C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons having a Reid vapor pressure of about 8.5 to 9.6 per ASTM, D323 test procedure and an initial distillation point of about 101/sup 0/F. and an end point of about 280/sup 0/F. within a range of about 10 to 25% by volume, about 3.8 to 6.0% by volume of anhydrous ethanol, a stabilizing amount of a water repellent of the class consisting of ethyl acetate and methyl isotubyl ketone; and about 4 to 10.5% by volume of aromatics benzene and toluene, of benzene and xylene or of benzene with toluene and xylene; the extender having a specific gravity substantially comparable with that of the lead-free gasoline to which it is to be added and having phase stability in the presence of water when mixed with the gasoline.

  6. The role of dimensionality in neuronal network dynamics

    PubMed Central

    Ulloa Severino, Francesco Paolo; Ban, Jelena; Song, Qin; Tang, Mingliang; Bianconi, Ginestra; Cheng, Guosheng; Torre, Vincent

    2016-01-01

    Recent results from network theory show that complexity affects several dynamical properties of networks that favor synchronization. Here we show that synchronization in 2D and 3D neuronal networks is significantly different. Using dissociated hippocampal neurons we compared properties of cultures grown on a flat 2D substrates with those formed on 3D graphene foam scaffolds. Both 2D and 3D cultures had comparable glia to neuron ratio and the percentage of GABAergic inhibitory neurons. 3D cultures because of their dimension have many connections among distant neurons leading to small-world networks and their characteristic dynamics. After one week, calcium imaging revealed moderately synchronous activity in 2D networks, but the degree of synchrony of 3D networks was higher and had two regimes: a highly synchronized (HS) and a moderately synchronized (MS) regime. The HS regime was never observed in 2D networks. During the MS regime, neuronal assemblies in synchrony changed with time as observed in mammalian brains. After two weeks, the degree of synchrony in 3D networks decreased, as observed in vivo. These results show that dimensionality determines properties of neuronal networks and that several features of brain dynamics are a consequence of its 3D topology. PMID:27404281

  7. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  8. Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  9. Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures.

    PubMed

    Cullen, D Kacy; Gilroy, Meghan E; Irons, Hillary R; Laplaca, Michelle C

    2010-11-04

    Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral cortical neurons were plated in planar culture at densities ranging from 10 to 5000 neurons/mm², and synapse number and distribution were evaluated via immunocytochemistry over 21 days in vitro (DIV). High-resolution confocal microscopy revealed an elaborate three-dimensional distribution of neurites and synapses across the heights of high-density neuronal networks by 21 DIV, which were up to 18 μm thick, demonstrating the complex degree of spatial interactions even in planar high-density cultures. At 7 DIV, the mean number of synapses per neuron was less than 5, and this did not vary as a function of neuronal density. However, by 21 DIV, the number of synapses per neuron had jumped 30- to 80-fold, and the synapse-to-neuron ratio was greatest at lower neuronal densities (< 500 neurons/mm²; mean approximately 400 synapses/neuron) compared to mid and higher neuronal densities (500-4500 neurons/mm²; mean of approximately 150 synapses/neuron) (p<0.05). These results suggest a relationship between neuronal density and synapse number that may have implications in the neurobiology of developing neuronal networks as well as processes of cell death and regeneration.

  10. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  11. Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth

    NASA Astrophysics Data System (ADS)

    Edgington, R. J.; Thalhammer, A.; Welch, J. O.; Bongrain, A.; Bergonzo, P.; Scorsone, E.; Jackman, R. B.; Schoepfer, R.

    2013-10-01

    Objective. Detonation nanodiamond monolayer coatings are exceptionally biocompatible substrates for in vitro cell culture. However, the ability of nanodiamond coatings of different origin, size, surface chemistry and morphology to promote neuronal adhesion, and the ability to pattern neurons with nanodiamonds have yet to be investigated. Approach. Various nanodiamond coatings of different type are investigated for their ability to promote neuronal adhesion with respect to surface coating parameters and neurite extension. Nanodiamond tracks are patterned using photolithography and reactive ion etching. Main results. Universal promotion of neuronal adhesion is observed on all coatings tested and analysis shows surface roughness to not be a sufficient metric to describe biocompatibility, but instead nanoparticle size and curvature shows a significant correlation with neurite extension. Furthermore, neuronal patterning is achieved with high contrast using patterned nanodiamond coatings down to at least 10 µm. Significance. The results of nanoparticle size and curvature being influential upon neuronal adhesion has great implications towards biomaterial design, and the ability to pattern neurons using nanodiamond tracks shows great promise for applications both in vitro and in vivo.

  12. Axon guidance of rat cortical neurons by microcontact printed gradients.

    PubMed

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H

    2011-03-01

    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  13. Equine neuronal ceroid lipofuscinosis.

    PubMed

    Url, A; Bauder, B; Thalhammer, J; Nowotny, N; Kolodziejek, J; Herout, N; Fürst, S; Weissenböck, H

    2001-04-01

    Neuronal ceroid lipofuscinosis (NCL) is an inherited, neurodegenerative disorder with fatal outcome in humans. It has also been described in some animal species; this is the first report of NCL in equines. Three horses showed developmental retardation, slow movements and loss of appetite at the age of six months. Neurological symptoms, as well as visual failure in one case, were noticed at the age of 1 year. Due to slowly progressing deterioration, euthanasia was indicated 1.5 years after onset of conspicuous behavior. At necropsy, slight flattening of the gyri and discoloring of the brain was noticed. Histopathology revealed eosinophilic, autofluorescent material in the perikarya of neurons throughout the brain and spinal cord. Identical material was found in neurons of retina, submucous and myenteric ganglia, as well as in glial cells. Immunohistochemistry, using antiserum against subunit c of mitochondrial ATP synthase, showed positive signals in neurons and glial cells. Electron microscopical studies revealed fingerprint profiles mixed with rectilinear structures in markedly enlarged lysosomes of neurons and renal tubules, and rectilinear structures mixed with curvilinear bodies in macrophages and lymphocytes of lymph nodes. Thus, our study presents the first occurrence of lysosomal storage disease in horses, further characterized by immunohistochemical and electron microscopical investigations as NCL.

  14. Future aviation fuels overview

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  15. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  16. Fuel cell technology: A sweeter fuel

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin

    2002-12-01

    Eating sugar gives us a boost when we feel tired because our cells use it as fuel to produce energy. Likewise, sugar can now be used to produce power in artificial biological fuel cells that function in a physiological environment.

  17. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  18. Fuel Reformer Nozzle Development

    NASA Technical Reports Server (NTRS)

    Lai, Ming-Chia D.

    2003-01-01

    The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).

  19. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  20. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  1. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  2. GaAs-based optoelectronic neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H. (Inventor); Kim, Jae H. (Inventor); Psaltis, Demetri (Inventor)

    1993-01-01

    An integrated, optoelectronic, variable thresholding neuron implemented monolithically in GaAs integrated circuit and exhibiting high differential optical gain and low power consumption is presented. Two alternative embodiments each comprise an LED monolithically integrated with a detector and two transistors. One of the transistors is responsive to a bias voltage applied to its gate for varying the threshold of the neuron. One embodiment is implemented as an LED monolithically integrated with a double heterojunction bipolar phototransistor (detector) and two metal semiconductor field effect transistors (MESFET's) on a single GaAs substrate and another embodiment is implemented as an LED monolithically integrated with three MESFET's (one of which is an optical FET detector) on a single GaAs substrate. The first noted embodiment exhibits a differential optical gain of 6 and an optical switching energy of 10 pJ. The second embodiment has a differential optical gain of 80 and an optical switching energy of 38 pJ. Power consumption is 2.4 and 1.8 mW, respectively. Input 'light' power needed to turn on the LED is 2 micro-W and 54 nW, respectively. In both embodiments the detector is in series with a biasing MESFET and saturates the other MESFET upon detecting light above a threshold level. The saturated MESFET turns on the LED. Voltage applied to the biasing MESFET gate controls the threshold.

  3. Deciphering Neuron-Glia Compartmentalization in Cortical Energy Metabolism

    PubMed Central

    Jolivet, Renaud; Magistretti, Pierre J.; Weber, Bruno

    2009-01-01

    Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy (∼80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production (∼6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying

  4. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  5. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    NASA Astrophysics Data System (ADS)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  6. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel, fuel additives, and renewable fuels. 80.8 Section 80.8 Protection of Environment ENVIRONMENTAL... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels. The..., blendstocks, fuel additives and renewable fuels for purposes of determining compliance with the...

  7. Nanoresolution radiology of neurons

    NASA Astrophysics Data System (ADS)

    Wu, H. R.; Chen, S. T.; Chu, Y. S.; Conley, R.; Bouet, N.; Chien, C. C.; Chen, H. H.; Lin, C. H.; Tung, H. T.; Chen, Y. S.; Margaritondo, G.; Je, J. H.; Hwu, Y.

    2012-06-01

    We report recent advances in hard-x-ray optics—including record spatial resolution—and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  8. The Reliability of Neurons

    PubMed Central

    Bullock, Theodore Holmes

    1970-01-01

    The prevalent probabilistic view is virtually untestable; it remains a plausible belief. The cases usually cited can not be taken as evidence for it. Several grounds for this conclusion are developed. Three issues are distinguished in an attempt to clarify a murky debate: (a) the utility of probabilistic methods in data reduction, (b) the value of models that assume indeterminacy, and (c) the validity of the inference that the nervous system is largely indeterministic at the neuronal level. No exception is taken to the first two; the second is a private heuristic question. The third is the issue to which the assertion in the first two sentences is addressed. Of the two kinds of uncertainty, statistical mechanical (= practical unpredictability) as in a gas, and Heisenbergian indeterminancy, the first certainly exists, the second is moot at the neuronal level. It would contribute to discussion to recognize that neurons perform with a degree of reliability. Although unreliability is difficult to establish, to say nothing of measure, evidence that some neurons have a high degree of reliability, in both connections and activity is increasing greatly. An example is given from sternarchine electric fish. PMID:5462670

  9. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H. R.; Chen, S. T.; Chu, Y. S.; Conley, R.; Bouet, N.; Chien, C. C.; Chen, H. H.; Lin, C. H.; Tung, H. T.; Chen, Y. S.; Margaritondo, G.; Je, J. H.; Hwu, Y.

    2012-05-29

    We report recent advances in hard-x-ray optics—including record spatial resolution—and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  10. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y.

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  11. Clustered protocadherins and neuronal diversity.

    PubMed

    Hirayama, Teruyoshi; Yagi, Takeshi

    2013-01-01

    Neuronal diversity is a fundamental requirement for complex neuronal networks and brain function. The clustered protocadherin (Pcdh) family possesses several characteristic features that are important for the molecular basis of neuronal diversity. Clustered Pcdhs are expressed predominantly in the central nervous system, in neurites, growth cones, and synapses. They consist of about 60 isoforms, and their expression is stochastically and combinatorially regulated in individual neurons. The multiple clustered Pcdhs expressed in individual neurons form heteromultimeric protein complexes that exhibit homophilic adhesion properties. Theoretically, the clustered Pcdhs could generate more than 3×10(10) possible variations in each neuron and 12,720 types of cis-tetramers per neuron. The clustered Pcdhs are important for normal neuronal development. The clustered Pcdh genes have also attracted attention as a target for epigenetic regulation.

  12. Stabilizing platinum in phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  13. Nitrification in a zeoponic substrate.

    PubMed

    McGilloway, R L; Weaver, R W; Ming, D W; Gruener, J E

    2003-10-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  14. Nitrification in a zeoponic substrate

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.

    2003-01-01

    Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.

  15. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  16. CB₂ cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons.

    PubMed

    Atwood, Brady K; Straiker, Alex; Mackie, Ken

    2012-09-01

    The role of CB₂ in the central nervous system, particularly in neurons, has generated much controversy. Fueling the controversy are imperfect tools, which have made conclusive identification of CB₂ expressing neurons problematic. Imprecise localization of CB₂ has made it difficult to determine its function in neurons. Here we avoid the localization controversy and directly address the question if CB₂ can modulate neurotransmission. CB₂ was expressed in excitatory hippocampal autaptic neurons obtained from CB₁ null mice. Whole-cell patch clamp recordings were made from these neurons to determine the effects of CB₂ on short-term synaptic plasticity. CB₂ expression restored depolarization induced suppression of excitation to these neurons, which was lost following genetic ablation of CB₁. The endocannabinoid 2-arachidonylglycerol (2-AG) mimicked the effects of depolarization in CB₂ expressing neurons. Interestingly, ongoing basal production of 2-AG resulted in constitutive activation of CB₂, causing a tonic inhibition of neurotransmission that was relieved by the CB₂ antagonist AM630 or the diacylglycerol lipase inhibitor RHC80267. Through immunocytochemistry and analysis of spontaneous EPSCs, paired pulse ratios and coefficients of variation we determined that CB₂ exerts its function at a presynaptic site of action, likely through inhibition of voltage gated calcium channels. Therefore CB₂ expressed in neurons effectively mimics the actions of CB₁. Thus neuronal CB₂ is well suited to integrate into conventional neuronal endocannabinoid signaling processes, with its specific role determined by its unique and highly inducible expression profile.

  17. Concentric layer ramjet fuel

    SciTech Connect

    Burdette, G.W.; Francis, J.P.

    1988-03-08

    This patent describes a solid fuel ramjet grain comprising concentric layers of solid ramjet fuel having a perforation therethrough along the center axis of the grain. The performation is connected to a combustion after-chamber. The solid ramjet fuel layers comprises a pure hydroxyl-terminated polybutadiene hydrocarbon fuel or a mixture of a hydroxyl-terminated polybutadiene hydrocarbon fuel and from about 5 to about 60 percent by weight of an additive to increase the fuel regression rate selected from the group consisting of magnesium, boron carbide, aluminum, and zirconium such that, when buried in the operation of the ramjet, each fuel layer produces a different level of thrust.

  18. Neuronal cell growth on polymeric scaffolds studied by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Fink, Helen; Kuhn, Hans-Georg

    2012-03-01

    For studies of neuronal cell integration and neurite outgrowth in polymeric scaffold materials as a future alternative for the treatment of damages in the neuronal system, we have developed a protocol employing CARS microscopy for imaging of neuronal networks. The benefits of CARS microscopy come here to their best use; (i) the overall three-dimensional (3D) arrangement of multiple cells and their neurites can be visualized without the need for chemical preparations or physical sectioning, potentially affecting the architecture of the soft, fragile scaffolds and (ii) details on the interaction between single cells and scaffold fibrils can be investigated by close-up images at sub-micron resolution. The establishment of biologically more relevant 3D neuronal networks in a soft hydrogel composed of native Extra Cellular Matrix (ECM) components was compared with conventional two-dimensional networks grown on a stiff substrate. Images of cells in the hydrogel scaffold reveal significantly different networking characteristics compared to the 2D networks, raising the question whether the functionality of neurons grown as layers in conventional cultivation dishes represents that of neurons in the central and peripheral nervous systems.

  19. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  20. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  1. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  2. Substrate and drug binding sites in LeuT.

    PubMed

    Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan; Marden, Jennifer; Reith, Maarten E; Wang, Da-Neng

    2010-08-01

    LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.

  3. Dewetting on microstructured substrates

    NASA Astrophysics Data System (ADS)

    Kim, Taehong; Kim, Wonjung

    2016-11-01

    A thin liquid film has an equilibrium thickness in such a way as to minimize the free energy. When a liquid film thickness is out of its equilibrium, the film seeks its equilibrium state, resulting in dynamics of liquid film, which are referred to as wetting and dewetting, depending on the flow direction. We here present a combined experimental and theoretical investigation of dewetting on a substrate with parallel microstructures. Our experiments show that residue may remain on the substrate after dewetting, and residue morphologies can be classified into three modes. Based on our experimental observations, we elucidate how the modes depend on the pattern morphology and contact angle, and develop a model for the contact line motion. Our results provide a basis for controlling the thickness film, which is important for many practical applications such as oil recovery, detergency, lithography, and cleaning. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  4. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  5. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  6. Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons.

    PubMed

    Clerc, Pascaline; Polster, Brian M

    2012-01-01

    Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria.

  7. Neuronal cell cycle: the neuron itself and its circumstances.

    PubMed

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.

  8. A Simplified Method for Ultra-Low Density, Long-Term Primary Hippocampal Neuron Culture.

    PubMed

    Lu, Zhongming; Piechowicz, Mariel; Qiu, Shenfeng

    2016-03-05

    Culturing primary hippocampal neurons in vitro facilitates mechanistic interrogation of many aspects of neuronal development. Dissociated embryonic hippocampal neurons can often grow successfully on glass coverslips at high density under serum-free conditions, but low density cultures typically require a supply of trophic factors by co-culturing them with a glia feeder layer, preparation of which can be time-consuming and laborious. In addition, the presence of glia may confound interpretation of results and preclude studies on neuron-specific mechanisms. Here, a simplified method is presented for ultra-low density (~2,000 neurons/cm2), long-term (>3 months) primary hippocampal neuron culture that is under serum free conditions and without glia cell support. Low density neurons are grown on poly-D-lysine coated coverslips, and flipped on high density neurons grown in a 24-well plate. Instead of using paraffin dots to create a space between the two neuronal layers, the experimenters can simply etch the plastic bottom of the well, on which the high density neurons reside, to create a microspace conducive to low density neuron growth. The co-culture can be easily maintained for >3 months without significant loss of low density neurons, thus facilitating the morphological and physiological study of these neurons. To illustrate this successful culture condition, data are provided to show profuse synapse formation in low density cells after prolonged culture. This co-culture system also facilitates the survival of sparse individual neurons grown in islands of poly-D-lysine substrates and thus the formation of autaptic connections.

  9. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons

    PubMed Central

    Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies. PMID:23951361

  10. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures.

    PubMed

    Chen, Yongmei; Swanson, Raymond A

    2003-03-01

    Cysteine availability is normally the rate-limiting factor in glutathione synthesis. How neurons obtain cysteine from extracellular space is not well established. Here we used mouse cortical neuron cultures to examine the role of the excitatory amino acid transporters (EAATs) in neuronal cysteine uptake. The cultured neurons expressed both EAAT2 and EAAT3. Cysteine uptake was predominantly (> 85%) Na+-dependent, with an apparent Km of 37 microm. Cysteine uptake was reduced by the EAAT substrates l-glutamate and l-aspartate and by synthetic EAAT inhibitors. The non-selective EAAT inhibitor threo-beta-hydroxyaspartate had a significantly greater maximal inhibitory effect than did the EAAT2-selective inhibitor, dihydrokainate, indicating uptake by both EAAT2 and EAAT3. Serine, a substrate of ASC uptake system, had negligible effects on cysteine uptake at 10-fold excess concentrations. To assess the functional importance of EAAT-mediated cysteine uptake in neuronal glutathione synthesis, cultures were treated with diethylmaleate to deplete glutathione, then incubated with cysteine in the presence or absence of EAAT inhibitors. Threo-beta-benzyloxyaspartate and the non-transportable inhibitor threo-beta-hydroxyaspartate both inhibited the cysteine-dependent glutathione synthesis. The findings suggest that neuronal EAAT activity can be a rate-limiting step for neuronal glutathione synthesis and that the primary function of EAATs expressed by neurons in vivo may be to transport cysteine.

  11. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    PubMed

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  12. A MoS2-based coplanar neuron transistor for logic applications.

    PubMed

    Hu, Shaogang; Liu, Y; Li, Huakai; Chen, Tupei; Yu, Q; Deng, Longjiang

    2017-04-04

    The human brain is an extremely complex system of 1010~1011 neurons. To construct brain-like neuromorphic hardware, neuron unit should be implemented effectively. Here, we report a neuron transistor based on MoS2 flake, which has the summation and threshold functions similar to biological neuron and may act as basic neuron unit in neuromorphic hardware. The neuron transistor is composed of a floating gate and two control gates. A heavily doped silicon substrate serves as the floating gate, while the two control gates are capacitively coupled with the floating gate. The neuron transistor can be well controlled by the two control gates individually or simultaneously. The drain current can be modulated by the input voltages at the control gates, which is useful in digital applications. While the current response of the neuron transistor has a large dependence on the magnitude of input signal, it shows little dependence on the frequency of input signal. To demonstrate the potential neuromorphic application of the neuron transistor, functions including abacus-like function, AND logic and OR logic are realized in the neuron transistor.

  13. Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro.

    PubMed

    Mendes-de-Aguiar, Cláudia Beatriz Nedel; Alchini, Ricardo; Zucco, Juliana Klein; Costa-Silva, Bruno; Decker, Helena; Alvarez-Silva, Marcio; Tasca, Carla Inês; Trentin, Andréa Gonçalves

    2010-11-15

    Astrocytes clearly play a role in neuronal development. An indirect mechanism of thyroid hormone (T3) in the regulation of neuronal development mediated by astrocytes has been proposed. T3 alters the production and organization of the extracellular matrix (ECM) proteins and proteoglycans, producing a high-quality substrate for neuronal differentiation. The present study investigated the effect of hypothyroidism on the astrocyte production of fibronectin (FN) and laminin (LN) as well as their involvement in neuronal growth and neuritogenesis. Our results demonstrated that the amount of both FN and LN were significantly reduced in cultures of hypothyroid astrocytes from rat cerebellum compared with normal cells. This effect was accompanied by reduced numbers of neurons and neuritogenesis. Similarly, the proportions of neurons and neurons with neurites were reduced in cultures on ECM prepared from hypothyroid astrocytes in comparison with normal cells. The proportion of both normal and hypothyroid neurons is strongly reduced in astrocyte ECM compared with cocultures on astrocyte monolayers, suggesting that extracellular factors other than ECM proteins are involved in this process. Moreover, treatment of hypothyroid astrocytic cultures with T3 restored the area of both FN and LN immunostaining to normal levels and partially reestablished neuronal survival and neuritogenesis. Taken together, our results demonstrated that hypothyroidism involves impairment of the astrocytic microenvironment and affects the production of ECM proteins. Thus, hypothyroidism is implicated in impaired neuronal development.

  14. Bilaminar Co-culture of Primary Rat Cortical Neurons and Glia

    PubMed Central

    Meucci, Olimpia

    2011-01-01

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions1. At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods1-3. Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology4, cellular and molecular biology5-8, biochemistry5, imaging and microscopy4,6,7,9,10. The primary neurons extend axons and dendrites to form functional synapses11, a process which is not observed in neuronal cell lines, although some cell lines do

  15. FGF-2 induces neuronal death through upregulation of system xc-.

    PubMed

    Liu, Xiaoqian; Albano, Rebecca; Lobner, Doug

    2014-02-14

    The cystine/glutamate antiporter (system xc-) transports cystine into cell in exchange for glutamate. Fibroblast growth factor-2 (FGF-2) upregulates system xc- selectively on astrocytes, which leads to increased cystine uptake, the substrate for glutathione production, and increased glutamate release. While increased intracellular glutathione can limit oxidative stress, the increased glutamate release can potentially lead to excitotoxicity to neurons. To test this hypothesis, mixed neuronal and glial cortical cultures were treated with FGF-2. Treatment with FGF-2 for 48 h caused a significant neuronal death in these cultures. Cell death was not observed in neuronal-enriched cultures, or astrocyte-enriched cultures, suggesting the toxicity was the result of neuron-glia interaction. Blocking system xc- eliminated the neuronal death as did the AMPA/kainate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), but not the NMDA receptor antagonist memantine. When cultures were exposed directly to glutamate, both NBQX and memantine blocked the neuronal toxicity. The mechanism of this altered profile of glutamate receptor mediated toxicity by FGF-2 is unclear. The selective calcium permeable AMPA receptor antagonist 1-naphthyl acetyl spermine (NASPM) failed to offer protection. The most likely explanation for the results is that 48 h FGF-2 treatment induces AMPA/kainate receptor toxicity through increased system xc- function resulting in increased release of glutamate. At the same time, FGF-2 alters the sensitivity of the neurons to glutamate toxicity in a manner that promotes selective AMPA/kainate receptor mediated toxicity.

  16. Add neurons, subtract anxiety

    PubMed Central

    Kheirbek, Mazen A.; Hen, René

    2014-01-01

    IN BRIEF To keep memories from becoming jumbled, the brain must encode the distinct features of events and situations in a way that allows them to be distinguished from one another—a process called pattern separation. Pattern separation enables us to distinguish dangerous situations from similar ones that pose no risk. People with defects in this ability may be prone to anxiety disorders. The process occurs in one of the two regions of the brain that generate neurons throughout life. These fledgling cells seem to be critical to pattern separation. Interventions that specifically boost the ranks of rookie neurons could provide new ways to regulate mood and possibly treat conditions such as post-traumatic stress disorder. PMID:24974712

  17. Zinc oxide nanostructures as low-cost templates for neuronal circuit

    NASA Astrophysics Data System (ADS)

    Kritharidou, A.; Georgoussi, Z.; Tsamis, C.; Makarona, E.

    2013-05-01

    ZnO nanostructures were explored as templates for the development of topography-mediated neuronal cultures. Nanostructures of varying features were produced on 4" Si substrates via a rapid, facile and low-cost technique that allows the systematic investigation of nanotopographically-mediated formation of neuronal cultures. The developed ZnO-nanowire based templates were seeded with Neuro-2A mouse neuroblastoma cells and their viability over the course of 1 to 4 days was assessed. Our studies demonstrate that the ZnO-templates can support neuronal cell growth and proliferation suggesting that ZnO substrate can be used for the development of neuronal cell-based platform technologies.

  18. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  19. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  20. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  1. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  2. Genetic enhancement of visual learning by activation of protein kinase C pathways in small groups of rat cortical neurons.

    PubMed

    Zhang, Guo-Rong; Wang, Xiaodan; Kong, Lingxin; Lu, Xiu-Gui; Lee, Brian; Liu, Meng; Sun, Mei; Franklin, Corinna; Cook, Robert G; Geller, Alfred I

    2005-09-14

    Although learning and memory theories hypothesize that memories are encoded by specific circuits, it has proven difficult to localize learning within a cortical area. Neural network theories predict that activation of a small fraction of the neurons in a circuit can activate that circuit. Consequently, altering the physiology of a small group of neurons might potentiate a specific circuit and enhance learning, thereby localizing learning to that circuit. In this study, we activated protein kinase C (PKC) pathways in small groups of neurons in rat postrhinal (POR) cortex. We microinjected helper virus-free herpes simplex virus vectors that expressed a constitutively active PKC into POR cortex. This PKC was expressed predominantly in glutamatergic and GABAergic neurons in POR cortex. This intervention increased phosphorylation of five PKC substrates that play critical roles in neurotransmitter release (GAP-43 and dynamin) or glutamatergic neurotransmission (specific subunits of AMPA or NMDA receptors and myristoylated alanine-rich C kinase substrate). Additionally, activation of PKC pathways in cultured cortical neurons supported activation-dependent increases in release of glutamate and GABA. This intervention enhanced the learning rate and accuracy of visual object discriminations. In individual rats, the numbers of transfected neurons positively correlated with this learning. During learning, neuronal activity was increased in neurons proximal to the transfected neurons. These results demonstrate that potentiating small groups of glutamatergic and GABAergic neurons in POR cortex enhances visual object learning. More generally, these results suggest that learning can be mediated by specific cortical circuits.

  3. History-Dependent Excitability as a Single-Cell Substrate of Transient Memory for Information Discrimination

    PubMed Central

    Baroni, Fabiano; Torres, Joaquín J.; Varona, Pablo

    2010-01-01

    Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron “sees” through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and functional

  4. Fuel economy of hybrid fuel cell vehicles.

    SciTech Connect

    Ahluwalia, R.; Wang, X.; Rousseau, A.; Nuclear Engineering Division

    2004-01-01

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  5. Pyruvate protects neurons against hydrogen peroxide-induced toxicity.

    PubMed

    Desagher, S; Glowinski, J; Prémont, J

    1997-12-01

    Hydrogen peroxide (H2O2) is suspected to be involved in numerous brain pathologies such as neurodegenerative diseases or in acute injury such as ischemia or trauma. In this study, we examined the ability of pyruvate to improve the survival of cultured striatal neurons exposed for 30 min to H2O2, as estimated 24 hr later by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay. Pyruvate strongly protected neurons against both H2O2 added to the external medium and H2O2 endogenously produced through the redox cycling of the experimental quinone menadione. The neuroprotective effect of pyruvate appeared to result rather from the ability of alpha-ketoacids to undergo nonenzymatic decarboxylation in the presence of H2O2 than from an improvement of energy metabolism. Indeed, several other alpha-ketoacids, including alpha-ketobutyrate, which is not an energy substrate, reproduced the neuroprotective effect of pyruvate. In contrast, lactate, a neuronal energy substrate, did not protect neurons from H2O2. Optimal neuroprotection was achieved with relatively low concentrations of pyruvate (neurons. Indeed, cytosolic acidification both enhanced the H2O2-induced neurotoxicity and decreased the rate of pyruvate decarboxylation by H2O2. Together, these results indicate that pyruvate efficiently protects neurons against both exogenous and endogenous H2O2. Its low toxicity and its capacity to cross the blood-brain barrier open a new therapeutic perspective in brain pathologies in which H2O2 is involved.

  6. Nanostructured thin solid oxide fuel cells with high power density.

    PubMed

    Ignatiev, Alex; Chen, Xin; Wu, Naijuan; Lu, Zigui; Smith, Laverne

    2008-10-28

    Nanostructured thin film solid oxide fuel cells (SOFC) have been developed for reduced temperature operation, with high power density, and to be self reforming. A thin film electrolyte (1-2 microm thickness), e.g., yttria-stabilized zirconia (YSZ), is deposited on a nickel foil substrate. The electrolyte thin film is polycrystalline when deposited on a polycrystalline nickel foil substrate, and is (100) textured when deposited on an atomically textured nickel foil substrate. The Ni foil substrate is then converted into a porous SOFC anode by photolithographic patterning and etching to develop porosity. A composite La(0.5)Sr(0.5)CoO(3) cathode is then deposited on the thin film electrolyte. The resultant thin film hetero structure fuel cells have operated at a significantly reduced temperature: as low as 470 degrees C, with a maximum power density of 140 mW cm(-2) at 575 degrees C, and an efficiency of >50%. This drastic reduction in operating temperature for an SOFC now also allows for the use of hydrocarbon fuels without the need for a separate reformer as the nickel anode effectively dissociates hydrocarbons within this temperature range. These nanostructured fuel cells show excellent potential for high power density, small volume, high efficiency fuel cells for power generation applications.

  7. From Synapse to Nucleus and Back Again – Communication Over Distance Within Neurons

    PubMed Central

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A.; Kreutz, Michael R.

    2011-01-01

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at SfN 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, utilizing motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions. PMID:22072654

  8. Mimics and chameleons in motor neurone disease.

    PubMed

    Turner, Martin R; Talbot, Kevin

    2013-06-01

    The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the 'split hand', head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life.

  9. Mimics and chameleons in motor neurone disease

    PubMed Central

    Turner, Martin R; Talbot, Kevin

    2013-01-01

    The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the ‘split hand’, head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life. PMID:23616620

  10. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  11. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  12. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  13. Fuel injection nozzle

    SciTech Connect

    Kato, M.; Tojo, S.; Arai, K.

    1986-07-22

    A fuel injection nozzle is described connected to a fuel injection pump to inject fuel into a combustion chamber of an internal combustion engine consisting of: a nozzle housing defining therein a fuel sump chamber, an injection hole communicating with the sump chamber and opened at the outer surface of the nozzle housing, a stepped cylinder bore having a smaller diameter bore section and a larger diameter bore section and a fuel passage communicating at one end with the sump chamber and at the other end with the smaller diameter bore section of the stepped cylinder bore; a stepped plunger fitted in the stepped cylinder bore and having a smaller diameter plunger section fitted into the smaller diameter bore section and a larger diameter plunger section fitted into the larger diameter bore section in which the smaller diameter bore section together with the end face of the smaller diameter plunger section defines a pump chamber communicating with the fuel passage and the larger diameter bore section together with the end face of the larger diameter plunger section defines a main fuel chamber into which a main fuel is supplied from the fuel injection pump; auxiliary fuel supply means for supplying an auxiliary fuel into the sump chamber and pump chamber through the fuel passage; valve means for opening and closing an injection hole; communication means for permitting the main fuel chamber to communicate with the fuel passage when the main fuel is supplied from the injection pump into the main fuel chamber to cause the stepped plunger to be moved a predetermined distance in a direction in which the auxiliary fuel in the pump chamber is pressurized.

  14. Fuel injection system

    SciTech Connect

    Miyaki, M.; Iwanaga, T.; Fujisawa, H.

    1988-10-18

    This patent describes a fuel injection system for a diesel engine comprising: condition detection means for detecting operating conditions of the diesel engine including a rotational position thereof; low pressure fuel supply means for supplying fuel at a low pressure at an output port thereof; high pressure fuel pump means, having a pump chamber communicating with the output port of the low pressure fuel supply means, and plunger means reciprocable within the pump chamber for introducing fuel from the output port of the low pressure fuel supply means into the pump chamber during a movement in a predetermined direction of the plunger means and for pressurizing the introduced fuel during a movement of the plunger means in the opposite direction so that pressurized fuel is delivered from the high pressure fuel pump means at an output port thereof; common rail fuel storage means, connected to the output port of the high pressure fuel pump means, for storing pressurized fuel delivered from the high pressure pump therein at a substantially continuous pressure.

  15. Fuel injection pump

    SciTech Connect

    Miyaki, M.

    1986-01-07

    This patent describes a fuel injection pump for delivering fuel to the cylinders of an internal combustion engine consisting of: a pump housing with a fuel chamber therein to which fuel is supplied from a fuel tank; means for compressing fuel in the pump chamber and delivering the compressed fuel to the engine cylinders with such means including a pump plunger adapted to be reciprocated so as to introduce fuel into the pump chamber and to pressurize the introduced fuel; spill means for spilling to a low-pressure side on a fuel tank side the compressed fuel which was pressurized in the pump chamber to be delivered from the pump chamber to the engine cylinders, the spill mechanism including a spill passage communicating with the pump chamber and including a solenoid valve located in the spill passage for opening and closing the spill passage with predetermined timing; escape for allowing the compressed fuel pressurized in the pump chamber to escape to the low-pressure side of the fuel tank side.

  16. Differentiation of papillae and rostral sensory neurons in the larva of the ascidian Botryllus schlosseri (Tunicata).

    PubMed

    Caicci, Federico; Zaniolo, Giovanna; Burighel, Paolo; Degasperi, Valentina; Gasparini, Fabio; Manni, Lucia

    2010-02-15

    During the metamorphosis of tunicate ascidians, the swimming larva uses its three anterior papillae to detect the substrate for settlement, reabsorbs its chordate-like tail, and becomes a sessile oozooid. In view of the crucial role played by the anterior structures and their nerve relations, we applied electron microscopy and immunocytochemistry to study the larva of the colonial ascidian Botryllus schlosseri, following differentiation of the anterior epidermis during late embryogenesis, the larval stage, and the onset of metamorphosis. Rudiments of the papillae appear in the early tail-bud stage as ectodermic protrusions, the apexes of which differentiate into central and peripheral bipolar neurons. Axons fasciculate into two nerves direct to the brain. Distally, the long, rod-like dendritic terminations extend during the larval stage, becoming exposed to sea water. After the larva selects and adheres to the substrate, these neurons retract and regress. Adjacent to the papillae, other scattered neurons insinuate dendrites into the tunic and form the net of rostral trunk epidermal neurons (RTENs) which fasciculate together with the papillary neurons. Our data indicate that the papillae are simple and coniform, the papillary neurons are mechanoreceptors, and the RTENs are chemoreceptors. The interpapillary epidermal area, by means of an apocrine secretion, provides sticky material for temporary adhesion of the larva to the substrate.

  17. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  18. Graphene: Substrate preparation and introduction.

    PubMed

    Pantelic, Radosav S; Suk, Ji Won; Magnuson, Carl W; Meyer, Jannik C; Wachsmuth, Philipp; Kaiser, Ute; Ruoff, Rodney S; Stahlberg, Henning

    2011-04-01

    This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast. However, in a practical illustration of the new substrates properties, positively stained DNA is imaged across pristine graphene in striking contrast without the need of metal shadowing. We go onto discuss technical considerations and the potential applications of pristine graphene substrates as well as their ongoing development.

  19. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  20. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  1. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function

    PubMed Central

    Kuhn, Peer-Hendrik; Colombo, Alessio Vittorio; Schusser, Benjamin; Dreymueller, Daniela; Wetzel, Sebastian; Schepers, Ute; Herber, Julia; Ludwig, Andreas; Kremmer, Elisabeth; Montag, Dirk; Müller, Ulrike; Schweizer, Michaela; Saftig, Paul; Bräse, Stefan; Lichtenthaler, Stefan F

    2016-01-01

    Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain. DOI: http://dx.doi.org/10.7554/eLife.12748.001 PMID:26802628

  2. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  3. FUEL CELL ELECTRODE MATERIALS

    DTIC Science & Technology

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  4. Integrated fuel management system

    SciTech Connect

    Barbeau, D.E.

    1987-09-29

    An aircraft fuel management system to regulate fuel from an airframe reservoir is described. The system comprises: an aircraft turbine engine having a combustor providing propulsion for the aircraft; a fuel pump receiving fuel from the reservoir and supplying fuel to the turbine engine; a motor controlling the pump so as to provide fuel to the turbine engine; means for sensing at least one engine condition; means responsive to the sensing means for controlling fuel flow to the turbine engine, and wherein the pump and the motor are of the constant speed type and further comprising valve means for controlling the fuel flow rate to the turbine engine and wherein the controlling means modulates the position of the valve means.

  5. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  6. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  7. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  8. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  9. Substrate recognition strategy for botulinum neurotoxin serotype A.

    PubMed

    Breidenbach, Mark A; Brunger, Axel T

    2004-12-16

    Clostridal neurotoxins (CNTs) are the causative agents of the neuroparalytic diseases botulism and tetanus. CNTs impair neuronal exocytosis through specific proteolysis of essential proteins called SNAREs. SNARE assembly into a low-energy ternary complex is believed to catalyse membrane fusion, precipitating neurotransmitter release; this process is attenuated in response to SNARE proteolysis. Site-specific SNARE hydrolysis is catalysed by the CNT light chains, a unique group of zinc-dependent endopeptidases. The means by which a CNT properly identifies and cleaves its target SNARE has been a subject of much speculation; it is thought to use one or more regions of enzyme-substrate interaction remote from the active site (exosites). Here we report the first structure of a CNT endopeptidase in complex with its target SNARE at a resolution of 2.1 A: botulinum neurotoxin serotype A (BoNT/A) protease bound to human SNAP-25. The structure, together with enzyme kinetic data, reveals an array of exosites that determine substrate specificity. Substrate orientation is similar to that of the general zinc-dependent metalloprotease thermolysin. We observe significant structural changes near the toxin's catalytic pocket upon substrate binding, probably serving to render the protease competent for catalysis. The novel structures of the substrate-recognition exosites could be used for designing inhibitors specific to BoNT/A.

  10. Synaptic activity bidirectionally regulates a novel sequence-specific S-Q phosphoproteome in neurons

    PubMed Central

    Siddoway, Benjamin; Hou, Hailong; Yang, Hongtian; Petralia, Ronald; Xia, Houhui

    2013-01-01

    Protein phosphorylation plays a critical role in neuronal transcription, translation, cell viability, and synaptic plasticity. In neurons, phospho-enzymes and specific substrates directly link glutamate release and post-synaptic depolarization to these cellular functions; however, many of these enzymes and their protein substrates remain uncharacterized or unidentified. In this article, we identify a novel, synaptically-driven neuronal phosphoproteome characterized by a specific motif of serine/threonine-glutamine ([S/T]-Q, abbreviated as SQ). These SQ-containing substrates are predominantly localized to dendrites, synapses, the soma; and activation of this SQ phosphoproteome by bicuculline application is induced via calcium influx through L-type calcium channels. On the other hand, acute application of NMDA can inactivate this SQ phosphoproteome. We demonstrate that the SQ motif kinase Ataxia-telangiectasia mutated (ATM) can also localize to dendrites and dendritic spines, in addition to other subcellular compartments, and is activated by bicuculline application. Pharmacology studies indicate that ATM and its sister kinase ATR up-regulate these neuronal SQ substrates. Phosphoproteomics identified over 150 SQ-containing substrates whose phosphorylation is bidirectionally-regulated by synaptic activity. PMID:24117848

  11. Fuel collecting and recycling system

    SciTech Connect

    Cole, E.F.

    1980-06-10

    This system serves to collect and recycle fuel leftover in the fuel manifold and fuel distribution system of a gas turbine power plant when it is shutdown and operates in conjunction with the power plant's existing fuel control.

  12. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  13. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  14. Navy Fuel Specification Standardization

    DTIC Science & Technology

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  15. Fakir fuel pump

    NASA Technical Reports Server (NTRS)

    1922-01-01

    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  16. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  17. Transportation fuels from wood

    SciTech Connect

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  18. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  19. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  20. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  1. Human Temporal Cortical Single Neuron Activity during Language: A Review

    PubMed Central

    Ojemann, George A.

    2013-01-01

    Findings from recordings of human temporal cortical single neuron activity during several measures of language, including object naming and word reading are reviewed and related to changes in activity in the same neurons during recent verbal memory and verbal associative learning measures, in studies conducted during awake neurosurgery for the treatment of epilepsy. The proportion of neurons changing activity with language tasks was similar in either hemisphere. Dominant hemisphere activity was characterized by relative inhibition, some of which occurred during overt speech, possibly to block perception of one’s own voice. However, the majority seems to represent a dynamic network becoming active with verbal memory encoding and especially verbal learning, but inhibited during performance of overlearned language tasks. Individual neurons are involved in different networks for different aspects of language, including naming or reading and naming in different languages. The majority of the changes in activity were tonic sustained shifts in firing. Patterned phasic activity for specific language items was very infrequently recorded. Human single neuron recordings provide a unique perspective on the biologic substrate for language, for these findings are in contrast to many of the findings from other techniques for investigating this. PMID:24961418

  2. Aging and Neuronal Vulnerability

    PubMed Central

    Mattson, Mark P.; Magnus, Tim

    2011-01-01

    Everyone ages, but only some will acquire a neurodegenerative disorder in the process. Disease might occur when cells fail to respond adaptively to age-related increases in oxidative, metabolic and ionic stress resulting in excessive accumulation of damaged proteins, DNA and membranes. Determinants of neuronal vulnerability might include cell size and location, metabolism of disease-specific proteins, and repertoire of signal transduction pathways and stress resistance mechanisms. Emerging evidence on protein interaction networks that monitor and respond to the normal aging process suggests that successful neural aging is possible for most, but also cautions that cures for neurodegenerative disorders are unlikely in the near future. PMID:16552414

  3. Ensemble Recording of Electrical Activity in Neurons Derived from P19 Embryonal Carcinoma Cells

    NASA Astrophysics Data System (ADS)

    Takayama, Yuzo; Saito, Atushi; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Jimbo, Yasuhiko

    Regeneration of the central nervous system (CNS) is one of the most important research themes in neuroscience and neuroengineering. It is essential to replenish the lost neurons and to establish appropriate functional neuronal networks using pluripotent stem cells. Little is known, however, about the properties of stem cell-derived neuronal networks, particularly under the differentiation and development processes. In this work, we cultured P19 embryonal carcinoma cells on micro-electrode arrays (MEAs). P19 cells were differentiated into neurons by retinoic acid application and formed densely connected networks. Spontaneous electrical activity was extracellulary recorded through substrate electrodes and analyzed. Synchronized periodic bursts, which were the characteristic features in primary cultured CNS neurons, were observed. Pharmacological studies demonstrated that the glutamatergic excitatory synapses and the GABAergic inhibitory synapses were active in these P19-derived neuronal networks. The results suggested that MEA-based recording was useful for monitoring differentiation processes of stem cells. P19-derived neuronal networks had quite similar network properties to those of primary cultured neurons, and thus provide a novel model system to investigate stem cell-based neuronal regeneration.

  4. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  5. Metallic fuel development

    SciTech Connect

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising.

  6. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  7. Fireplaces and Fireplace Fuels.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  8. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  9. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  10. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  11. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    Experiments are proposed to examine the molecular mechanism by which mustard chemical warfare agents induce neuronal cell death . DNA damage is the...proposed underlying mechanism of mustard-induced neuronal cell death . We propose a novel research strategy to test this hypothesis by using mice with...perturbed DNA repair to explore the relationship between mustard-induced DNA damage and neuronal cell death . Initial in vitro studies (Years 1, 2 & 3

  12. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle.

    PubMed

    Pellerin, L; Pellegri, G; Bittar, P G; Charnay, Y; Bouras, C; Martin, J L; Stella, N; Magistretti, P J

    1998-01-01

    Mounting evidence from in vitro experiments indicates that lactate is an efficient energy substrate for neurons and that it may significantly contribute to maintain synaptic transmission, particularly during periods of intense activity. Since lactate does not cross the blood-brain barrier easily, blood-borne lactate cannot be a significant source. In vitro studies by several laboratories indicate that astrocytes release large amounts of lactate. In 1994, we proposed a mechanism whereby lactate could be produced by astrocytes in an activity-dependent, glutamate-mediated manner. Over the last 2 years we have obtained further evidence supporting the notion that a transfer of lactate from astrocytes to neurons might indeed take place. In this article, we first review data showing the presence of mRNA encoding for two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Second, by using monoclonal antibodies selectively directed against the two distinct lactate dehydrogenase isoforms, LDH1 and LDH5, a specific cellular distribution between neurons and astrocytes is revealed which suggests that a population of astrocytes is a lactate 'source' while neurons may be a lactate 'sink'. Third, we provide biochemical evidence that lactate is interchangeable with glucose to support oxidative metabolism in cortical neurons. This set of data is consistent with the existence of an activity-dependent astrocyte-neuron lactate shuttle for the supply of energy substrates to neurons.

  13. [Neuronal plasticity and gene expression].

    PubMed

    Sokolova, O O; Shtark, M B; Lisachev, P D

    2010-01-01

    Neuronal plasticity--a fundamental feature of brain--provides adequate interactions with dynamic environment. One of the most deeply investigated forms of the neuronal plasticity is a long-term potentiation (LTP)--a phenomenon underlying learning and memory. Signal paths activated during LTP converge into the nuclear of the neuron, giving rise to launch of the molecular-genetic programs, which mediate structural and functional remodeling of synapses. In the review data concerning involvement of multilevel gene expression into plastic change under neuronal activation are summarized.

  14. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  15. The biophysics of neuronal growth

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Guck, Jochen

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  16. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    PubMed

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-02-24

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U-(13)C]glucose, [U-(13)C]glutamate or [U-(13)C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF(e)96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U-(13)C]Glutamate and [U-(13)C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U-(13)C]glutamate was higher than that from [U-(13)C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  17. Six Networks on a Universal Neuromorphic Computing Substrate

    PubMed Central

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A.; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality. PMID:23423583

  18. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  19. Substrate With Low Secondary Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    2000-01-01

    The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  20. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  1. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  2. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  3. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  4. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells.

    PubMed

    Tang, Xin; Zhou, Li; Wagner, Alecia M; Marchetto, Maria C N; Muotri, Alysson R; Gage, Fred H; Chen, Gong

    2013-09-01

    Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na(+) and K(+) currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening.

  5. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells

    PubMed Central

    Tang, Xin; Zhou, Li; Wagner, Alecia M.; Marchetto, Maria C.N.; Muotri, Alysson R.; Gage, Fred H.; Chen, Gong

    2014-01-01

    Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na+ and K+ currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening. PMID:23759711

  6. Hippocampal neurons in schizophrenia

    PubMed Central

    Heckers, S.; Konradi, C.

    2014-01-01

    Summary The hippocampus is crucial for normal brain function, especially for the encoding and retrieval of multimodal sensory information. Neuropsychiatric disorders such as temporal lobe epilepsy, amnesia, and the dementias are associated with structural and functional abnormalities of specific hippocampal neurons. More recently we have also found evidence for a role of the hippocampus in the pathophysiology of schizophrenia. The most consistent finding is a subtle, yet significant volume difference in schizophrenia. Here we review the cellular and molecular basis of smaller hippocampal volume in schizophrenia. In contrast to neurodegenerative disorders, total hippocampal cell number is not markedly decreased in schizophrenia. However, the intriguing finding of a selective loss of hippocampal inter-neurons deserves further study. Two neurotransmitter receptors, the GABAA and AMPA/kainate glutamate receptors, appear to be abnormal, whereas changes of the NMDA glutamate receptor are less robust. The expression of several genes, including those related to the GABAergic system, neurodevelopment, and synaptic function, is decreased in schizophrenia. Taken together, recent studies of hippocampal cell number, protein expression, and gene regulation point towards an abnormality of hippocampal architecture in schizophrenia. PMID:12111476

  7. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  8. Fuel Cell Handbook update

    SciTech Connect

    Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

    1993-11-01

    The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

  9. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  10. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  11. Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states.

    PubMed

    Ros, H; Magill, P J; Moss, J; Bolam, J P; Mena-Segovia, J

    2010-09-29

    The pedunculopontine nucleus (PPN) is critically involved in brain-state transitions that promote neocortical activation. In addition, the PPN is involved in the control of several behavioral processes including locomotion, motivation and reward, but the neuronal substrates that underlie such an array of functions remain elusive. Here we analyzed the physiological properties of non-cholinergic PPN neurons in vivo across distinct brain states, and correlated these with their morphological properties after juxtacellular labeling. We show that non-cholinergic neurons in the PPN whose firing is not strongly correlated to neocortical activity are highly heterogeneous and are composed of at least three different subtypes: (1) "quiescent" neurons, which are nearly silent during slow-wave activity (SWA) but respond robustly to neocortical activation; (2) "tonic firing" neurons, which have a stationary firing rate that is independent of neocortical activity across different brain states; and (3) "irregular firing" neurons, which exhibit a variable level of correlation with neocortical activity. The majority of non-cholinergic neurons have an ascending axonal trajectory, with the exception of some irregular firing neurons that have descending axons. Furthermore, we observed asymmetric synaptic contacts within the PPN arising from the axon collaterals of labeled neurons, suggesting that excitatory, non-cholinergic neurons can shape the activity of neighboring cells. Our results provide the first evidence of distinct firing properties associated with non-cholinergic neuronal subtypes in the PPN, suggesting a functional heterogeneity, and support the notion of a local network assembled by projection neurons, the properties of which are likely to determine the output of the PPN in diverse behavioral contexts.

  12. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  13. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  14. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  15. Fuel injection apparatus

    SciTech Connect

    Omori, T.; Sakakibara, S.; Kato, M.; Masuda, A.

    1986-06-10

    A fuel injection apparatus is described for supplying fuel from a fuel tank to at least one combustion chamber of an internal combustion engine, comprising: an injector housing defining therein a pressure cylinder bore, an injection cylinder bore and a timing cylinder bore connected in series with the pressure cylinder bore; a pressure plunger, fitted in the pressure cylinder bore and having one end defining, in the pressure cylinder bore, a pressure pump chamber communicating with the injection cylinder bore and the timing cylinder bore; first fuel supply means for supplying fuel from the fuel tank to the pressure pump chamber; pressurizing means for reciprocating the pressure plunger in the pressure cylinder bore in synchronism with the engine operation so as to pressurize fuel in the pressure pump chamber; an injection plunger, having a diameter smaller than the pressure plunger, fitted in the injection cylinder bore and having two ends defining, in the injection cylinder bore, an injection pump chamber and a first communicating chamber communicating with the pressure pump chamber; second fuel supply means for adjusting the quantity of the fuel from the fuel tank in accordance with engine operation conditions so as to supply the adjusted fuel quantity to the injection pump chamber; injection valve means for injecting the fuel into the fuel pump chamber toward a combustion chamber of the engine when the pressure in the pressure pump chamber is applied to the injection plunger through the first communicating chamber, and the fuel pressure in the injection pump chamber reaches a predetermined injection pressure.

  16. Sizing up soft substrate laminates

    NASA Astrophysics Data System (ADS)

    Woermbke, J. D.; Derencz, R. J.

    1985-02-01

    The basic performance parameters of several soft substrates for microwave and RF circuitry were evaluated experimentally with some custom built resonators. The trials were run with high and low dielectric constant substrates to quantify their variability over a wide range of operating temperatures. The low dielectric constant substrates were made of polytetrafluoroethylene (PTFE) loaded with either chopped or microfiber glass filler. The material was hot-pressed between a thin copper foil sheet and thick Al ground sheet. The high dielectric constant substrates were impregnated with a TiO2 ceramic powder. Tests measured insertion losses in 50 ohm lines from 1-18 GHz and the Q and dielectric constant at 3 GHz with half-wave resonators. The resonators were formed on the substrates with various conditioning treatments and were also examined for adhesion strength. The adhesion did not degrade until heated past 150 C. The substrate properties remained intact after numerous thermal cycles up to 250 C. High dielectric constant soft substrates did maintain good contact with the Cu foil up to 250 C.

  17. The Neuronal Ceroid-Lipofuscinoses

    ERIC Educational Resources Information Center

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  18. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  19. Neuronal avalanches and coherence potentials

    NASA Astrophysics Data System (ADS)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  20. Cryopreservation of adherent neuronal networks.

    PubMed

    Ma, Wu; O'Shaughnessy, Thomas; Chang, Eddie

    2006-07-31

    Neuronal networks have been widely used for neurophysiology, drug discovery and toxicity testing. An essential prerequisite for future widespread application of neuronal networks is the development of efficient cryopreservation protocols to facilitate their storage and transportation. Here is the first report on cryopreservation of mammalian adherent neuronal networks. Dissociated spinal cord cells were attached to a poly-d-lysine/laminin surface and allowed to form neuronal networks. Adherent neuronal networks were embedded in a thin film of collagen gel and loaded with trehalose prior to transfer to a freezing medium containing DMSO, FBS and culture medium. This was followed by a slow rate of cooling to -80 degrees C for 24 h and then storage for up to 2 months in liquid nitrogen at -196 degrees C. The three components: DMSO, collagen gel entrapment and trehalose loading combined provided the highest post-thaw viability, relative to individual or two component protocols. The post-thaw cells with this protocol demonstrated similar neuronal and astrocytic markers and morphological structure as those detected in unfrozen cells. Fluorescent dye FM1-43 staining revealed active recycling of synaptic vesicles upon depolarizing stimulation in the post-thaw neuronal networks. These results suggest that a combination of DMSO, collagen gel entrapment and trehalose loading can significantly improve conventional slow-cooling methods in cryopreservation of adherent neuronal networks.

  1. Method of processing a substrate

    DOEpatents

    Babayan, Steven E.; Hicks, Robert F.

    2008-02-12

    The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.

  2. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  3. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  4. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  5. Metabolic fuels: regulating fluxes to select mix.

    PubMed

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  6. Method of forming densified edge seals for fuel cell components

    DOEpatents

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1981-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  7. Cell biology of neuronal endocytosis.

    PubMed

    Parton, R G; Dotti, C G

    1993-09-01

    Endocytosis is the process by which cells take in fluid and components of the plasma membrane. In this way cells obtain nutrients and trophic factors, retrieve membrane proteins for degradation, and sample their environment. In neuronal cells endocytosis is essential for the recycling of membrane after neurotransmitter release and plays a critical role during early developmental stages. Moreover, alterations of the endocytic pathway have been attributed a crucial role in the pathophysiology of certain neurological diseases. Although well characterized at the ultrastructural level, little is known of the dynamics and molecular organization of the neuronal endocytic pathways. In this respect most of our knowledge comes from studies of non-neuronal cells. In this review we will examine the endocytic pathways in neurons from a cell biological viewpoint by making comparisons with non-neuronal cells and in particular with another polarized cell, the epithelial cell.

  8. Phenotypic checkpoints regulate neuronal development.

    PubMed

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  9. A neural extracellular matrix-based method for in vitro hippocampal neuron culture and dopaminergic differentiation of neural stem cells

    PubMed Central

    2013-01-01

    Background The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine. PMID:23594371

  10. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis.

    PubMed

    Jordan, Sabine D; Könner, A Christine; Brüning, Jens C

    2010-10-01

    The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.

  11. [Neurons and values].

    PubMed

    Camps, Victoria

    2013-09-01

    This article examines the advances made by neuroscience in the attempt to find an answer to the question regarding the origin and foundation of moral judgements and of human behaviour in compliance with them. The conception of the brain as something dynamic and capable of adapting to the social and cultural surroundings is seen to be an important point for philosophy. At the same time, the complexity of ethical issues that cannot be reduced to observations based strictly on neurons alone also becomes quite apparent. Nevertheless, scientists and philosophers should get together and communicate with one another so as to be able to pose their questions with greater rigour and take advantage of each other's respective knowledge.

  12. Neuron's function revealed

    SciTech Connect

    2009-01-01

    There's a new way to explore biologys secrets. With a flash of light, scientists from the U.S. Department of Energys Lawrence Berkeley National Laboratory and the University of California, Berkeley zeroed in on the type of neural cell that controls swimming in larval zebrafish. Using innovative light-activated proteins and gene expression techniques, the scientists zapped several zebrafish with a pulse of light, and initiated a swimming action in a subset of fish that was traced back to the type of neuron that drives the side-to-side motion of their tail fins. The technique behind this needle-in-haystack search for the neural roots of a specific behavior could become a powerful way to learn how any biological system works. http://newscenter.lbl.gov/press-releases/2009/09/16/light-activated-protein/

  13. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons.

    PubMed

    Corey, Joseph M; Gertz, Caitlyn C; Wang, Bor-Shuen; Birrell, Lisa K; Johnson, Sara L; Martin, David C; Feldman, Eva L

    2008-07-01

    Aligned electrospun nanofibers direct neurite growth and may prove effective for repair throughout the nervous system. Applying nanofiber scaffolds to different nervous system regions will require prior in vitro testing of scaffold designs with specific neuronal and glial cell types. This would be best accomplished using primary neurons in serum-free media; however, such growth on nanofiber substrates has not yet been achieved. Here we report the development of poly(L-lactic acid) (PLLA) nanofiber substrates that support serum-free growth of primary motor and sensory neurons at low plating densities. In our study, we first compared materials used to anchor fibers to glass to keep cells submerged and maintain fiber alignment. We found that poly(lactic-co-glycolic acid) (PLGA) anchors fibers to glass and is less toxic to primary neurons than bandage and glue used in other studies. We then designed a substrate produced by electrospinning PLLA nanofibers directly on cover slips pre-coated with PLGA. This substrate retains fiber alignment even when the fiber bundle detaches from the cover slip and keeps cells in the same focal plane. To see if increasing wettability improves motor neuron survival, some fibers were plasma etched before cell plating. Survival on etched fibers was reduced at the lower plating density. Finally, the alignment of neurons grown on this substrate was equal to nanofiber alignment and surpassed the alignment of neurites from explants tested in a previous study. This substrate should facilitate investigating the behavior of many neuronal types on electrospun fibers in serum-free conditions.

  14. Multiplying with Neurons

    NASA Astrophysics Data System (ADS)

    Gabbiani, F.; Krapp, H.; Koch, C.; Laurent, G.

    1998-03-01

    LGMD and DCMD are a pair of identified neurons in the locust brain thought to be involved in visually triggered escape behavior. LGMD integrates visual inputs in its dendritic arbor, converts them into spikes transmitted in a 1:1 manner to DCMD which relays this information to motor centers. We measured the spike activity of DCMD during simulated object approach and observed that its peak occured prior to the expected collision. The time difference between peak activity and collision depended linearly on the ratio of object size to approach velocity, as expected if LGMD/DCMD were detecting the moment in time when the approaching object reaches a fixed angular threshold θ_thresh on the locust's retina. The response of LGMD/DCMD could be fitted by multiplying the angular velocity at which an approaching object is increasing in size over the retina, dot θ, with an exponential function of the object's angular size, θ: f(t) = g(dot θ(t-δ) e^-α θ(t-δ)) where g is a static non-linearity, α a constant related to the angular threshold detected by LGMD/DCMD (θ_thresh = arctan (2/α)) and δ denotes the lag of the neuronal response with respect to the stimulus. This suggests that LGMD/DCMD derives its angular threshold sensitivity by multiplying dot θ with an exponential of θ. A biophysical implementation would be through linear summation of excitatory and inhibitory inputs proportional to log(dot θ) and -α θ, followed by a conversion to spike rate according to the static non-linearity (g circ exp). We have performed several experiments to test this hypothesis.

  15. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse

    PubMed Central

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523

  16. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse.

    PubMed

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved.

  17. Fuel cell market applications

    SciTech Connect

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  18. Diesel fuel injection system

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1986-04-22

    A fuel injection pump is described of the multiple plunger spill port type for an automotive type internal combustion engine, the pump including at least four axially spaced engine camshaft driven pump plungers grouped in pairs and sequentially and in succession moved in one direction through a fuel pumping stroke and oppositely through a fuel intake stroke. A fuel pressurization/supply chamber is contiquous to the end of each plunger for pressurization of the fuel therein or supply of fuel thereto from a supply passage upon coordinate movement of the plunger, fill/spill passage means connected to a single fuel return spill port and in parallel flow relationship to each of the plunger bores as a function of the position of the plungers, each plunger having a pair of internal passages connected at all times to its chamber and alternately alignable with the supply or fill/spill passage means as a function of the position of the plunger. A fuel discharge passage is operatively connecting each of the chambers to an individual engine cylinder, a single spill port control valve movable to block or permit the spill of fuel through the spill port to a return line to control the pressurization of fuel in all of the fuel chambers and associated discharge passages, a single solenoid connected to the spill control valve for moving it to block or unblock the spill port, and a single shuttle valve operatively associated with all of the fill/spill passage means and spill port reciprocably movable between positions to sequentially connect the plunger chambers one at a time in succession to the spill port during the pumping pressurization stroke of its plunger for the injection of fuel to an individual cylinder while the other chambers are in various stages of being refilled with fuel and preparing for pressurization upon successive actuation of the plungers by the camshaft.

  19. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  20. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations.

    PubMed

    Feng, Yinghua; Harper, Willie F

    2013-11-30

    In this study microbial fuel cell-based biosensing was integrated with artificial neural networks (ANNs) in laboratory and field testing of water samples. Inoculation revealed two types of anode-respiring bacteria (ARB) induction profiles, a relatively slow gradual profile and a faster profile that was preceded by a significant lag time. During laboratory testing, the MFCs generated well-organized normally distributed profiles but during field experiments the peaks had irregular shapes and were smaller in magnitude. Generally, the COD concentration correlated better with peak area than with peak height. The ANN predicted the COD concentration (R(2) = 0.99) with one layer of hidden neurons and for concentrations as low as 5 mg acetate-COD/L. Adding 50 mM of 2-bromoethanesulfonate amplified the electrical signals when glucose was the substrate. This report is the first to identify two types of ARB induction profiles and to demonstrate the power of ANNs for interpreting a wide variety of electrical response peaks.

  1. Alternative fuels for road vehicles

    SciTech Connect

    Poulton, M.L.

    1994-12-31

    The finite nature of global fossil fuel resources underscores the need to develop alternative vehicular fuels. Increased use of renewable and alternative fuels can extend fossil fuel supplies and help resolve air pollution problems inherent in automotive use of conventional fuels. Fuel characteristics, safety implications, feedstocks, infrastructure, fuel production costs, emissions performance, required vehicle modifications, and outlook are described for LPG, reformulated gasoline, natural gas, hydrogen, electricity, biofuels, ethanol, and methanol. 26 fig., 288 refs., 29 tabs.

  2. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    SciTech Connect

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  3. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  4. Spectral mixing of rhythmic neuronal signals in sensory cortex

    PubMed Central

    Ahrens, Kurt F.; Levine, Herbert; Suhl, Harry; Kleinfeld, David

    2002-01-01

    The ability to compute the difference between two frequencies depends on a nonlinear operation that mixes two periodic signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the mammalian nervous system as a means to compare two rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. However, a neurological substrate for mixing has not been identified. Here we address the issue of nonlinear mixing of neuronal activity in the vibrissa primary sensory cortex of rat, a region that receives intrinsic as well as sensory-driven rhythmic input during natural whisking. In our preparation, the intrinsic signal originates from cortical oscillations that were induced by anesthetics, and the extrinsic input is introduced by periodic stimulation of vibrissae. We observed that the local extracellular current in vibrissa primary sensory cortex contained oscillatory components at the sum and difference of the intrinsic and extrinsic frequencies. In complementary experiments, we observed that the simultaneous stimulation of contralateral and ipsilateral vibrissae at different frequencies also led to current flow at the sum and difference frequencies. We show theoretically that the relative amplitudes of the observed mixture terms can be accounted for by a threshold nonlinearity in the input–output relation of the underlying neurons. In general, our results provide a neurological substrate for the modulation and demodulation of rhythmic neuronal signals for sensory coding and feedback stabilization of motor output. PMID:12403828

  5. Parthanatos Mediates AIMP2 Activated Age Dependent Dopaminergic Neuronal Loss

    PubMed Central

    Lee, Yunjong; Karuppagounder, Senthilkumar S.; Shin, Joo-Ho; Lee, Yun-Il; Ko, Han Seok; Swing, Debbie; Jiang, Haisong; Kang, Sung-Ung; Lee, Byoung Dae; Kang, Ho Chul; Kim, Donghoon; Tessarollo, Lino; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    The defining pathogenic feature of Parkinson’s disease is the age dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, cause Parkinson’s disease through accumulation of pathogenic substrates. Here we show that transgenic overexpression of the parkin substrate, aminoacyl-tRNA synthetase complex interacting multifunctional protein-2 (AIMP2) leads to a selective, age-dependent progressive loss of dopaminergic neurons via activation of poly(ADP-ribose) polymerase-1 (PARP1). AIMP2 accumulation in vitro and in vivo results in PARP1 overactivation and dopaminergic cell toxicity via direct association of these proteins in the nucleus providing a new path to PARP1 activation other than DNA damage. Inhibition of PARP1 through gene deletion or drug inhibition reverses behavioral deficits and protects in vivo against dopamine neuron death in AIMP2 transgenic mice. These data indicate that brain permeable PARP inhibitors could be effective in delaying or preventing disease progression in Parkinson’s disease. PMID:23974709

  6. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds

    PubMed Central

    Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  7. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  8. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  9. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  10. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  11. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  12. Spiral cooled fuel nozzle

    DOEpatents

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  13. Alcohol fuels for aviation

    SciTech Connect

    Schauffler, P.

    1982-06-01

    The ten-fold increase in aviation fuel prices in eight years has caused a reassessment of alcohol fuels. In a recent test, methanol fuel-flow rate was high at takeoff, and levelled off at 10,000 feet, but above 18,000 fell 30% below avgas use. Because methanol sells thirty cents below avgas per gallon it is already an attractive fuel for piston-engine aircraft. But as 95% of aviation fuel is burned as kerosene in turbines a test program has been set up to look at the performance of small shaft turbine engines with various combinations of alcohols and water, and of straight methanol, and to look at major thrust engine at optimum fuel as well. These tests should determine the overall alcohol potentials for aviation. The tests will also tell if the breakthrough will be modest or major.

  14. Cortical Substrate of Haptic Representation

    DTIC Science & Technology

    1993-08-24

    H.M. Eisenberg, & A.L Benton (Eds.), Frontal Lobe Function and Dysfunction, Oxford University Press , New York, pp. 59-71, 1991. J.M. Fuster - Up and...Perrett and M. Fukuda (Eds.), Brain Mechanisms of Perception and Memory: From Neuron to Behavior. Oxford University Press , New York, pp. 426-444

  15. Influence of human skin injury on regeneration of sensory neurons.

    PubMed

    Taherzadeh, O; Otto, W R; Anand, U; Nanchahal, J; Anand, P

    2003-06-01

    The regeneration of sensory nerve fibres is regulated by trophic factors released from their target tissue, particularly the basal epidermis, and matrix molecules. Means to modulate this response may be useful for the treatment of neuromas and painful hypertrophic scars and of sensory deficits in skin grafts and flaps. We have developed an in vitro model of sensory neuron regeneration on human skin in order to study the mechanisms of sensory dysfunction in pathological conditions. Adult rat sensory neurons were co-cultured with unfixed cryosections of normal or injured (crushed) human skin for 72 h. Neurons were immunostained for growth-associated protein-43 and the neurite lengths of neuronal cell bodies situated in various skin regions were measured. Two-way analysis of variance was performed. Neurites of sensory cell bodies on epidermis of normal skin were the shortest, with a mean +/- SEM of 75+/-10 micrometer, whereas those of cells on the dermo-epidermal junction were the longest, with a mean +/- SEM of 231+/-18 micrometer. Neurons on the dermo-epidermal junction of injured skin had significantly longer neurites than those on the same region of normal skin (mean +/- SEM = 289+/-21 micrometer). Regeneration of sensory neurons may be influenced by extracellular matrix molecules, matrix-binding growth factors and trophic factors. Altered substrate or trophic factors in injured skin may explain the increase of neurite lengths. This in vitro model may be useful for studying the molecular mechanisms of sensory recovery and the development of neuropathic pain following peripheral nerve injury.

  16. Structural Properties of the Caenorhabditis elegans Neuronal Network

    PubMed Central

    Varshney, Lav R.; Chen, Beth L.; Paniagua, Eric; Hall, David H.; Chklovskii, Dmitri B.

    2011-01-01

    Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation. PMID:21304930

  17. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    PubMed

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  18. The Chandelier Neuron in Schizophrenia

    PubMed Central

    Lewis, David A.

    2010-01-01

    Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. These alterations are most marked in cortical layers 2–3. In addition, other determinants of the function of chandelier cell-pyramidal neuron synapses, such as ankyrin-G (which regulates the recruitment of sodium channels to the AIS), are also selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia. Each of these components of chandelier cell-pyramidal neuron connectivity exhibits distinctive developmental trajectories in the primate DLPFC, suggesting that disturbances in these trajectories could contribute to the pathogenesis of schizophrenia. Recent findings that inputs from neocortical chandelier neurons are excitatory provide new ideas about the role of this circuitry in the pathophysiology of cortical dysfunction in schizophrenia. PMID:21154915

  19. The chandelier neuron in schizophrenia.

    PubMed

    Lewis, David A

    2011-01-01

    Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABA(A) receptor α2 subunit is increased in postsynaptic AIS. These alterations are most marked in cortical layers 2-3. In addition, other determinants of the function of chandelier cell-pyramidal neuron synapses, such as ankyrin-G (which regulates the recruitment of sodium channels to the AIS), are also selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia. Each of these components of chandelier cell-pyramidal neuron connectivity exhibits distinctive developmental trajectories in the primate DLPFC, suggesting that disturbances in these trajectories could contribute to the pathogenesis of schizophrenia. Recent findings that inputs from neocortical chandelier neurons are excitatory provide new ideas about the role of this circuitry in the pathophysiology of cortical dysfunction in schizophrenia.

  20. Fuel Tank Technology

    DTIC Science & Technology

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  1. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  2. Fuels Combustion Research.

    DTIC Science & Technology

    1984-07-18

    uncertainties in the future sources and characteristics of fuels has emphasized the need to better understand fuel effects on combustion , e.g. energy release...experimentally to be made. Unsuccessful comparisons can lead to impro- vements in modelling concepts . Two simplified models for the combustion of slurry...AD-A149 186 FUELS COMBUSTION RESEACCH(U) PRINCETON UNIV NJ DEPT OF i/i MECHANICAL AND AEROSPACE ENGINEERING F L DRYER ET AL. 18 JUL 84 NAE-i668 AFOSR

  3. Food for fuel

    SciTech Connect

    Bell, J.

    1982-05-01

    Cassava, sugar cane, grain crops, molasses - all are potential feedstocks for ethanol production. Brazil has taken a clear lead in converting food crops into ethanol fuels for the automobile, but other countries may follow and the economic consequences could be considerable. This article looks at the various options. The total activity involved in fuel ethanol production and usage is considered as comprising three related components: feedstock production, ethanol production and application of the ethanol as a transport fuel.

  4. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.

    2010-06-30

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels. Thailand is of particular interest since it introduced E20 to its commercial market in 2007 and the US is now considering introducing E20 into the US market.

  5. High energy fuel compositions

    SciTech Connect

    Fisher, D.H.

    1983-07-19

    A high density liquid hydrocarbon fuel composition is disclosed, singularly suited for propelling turbojet limited volume missile systems designed for shipborne deployment. The contemplated fuels are basically composed of the saturated analogues of dimers of methyl cyclopentadiene and of dicyclopentadiene and optionally include the saturated analogues of the co-trimers of said dienes or the trimers of cyclopentadiene. The various dimers and trimers are combined in a relative relationship to provide optimal performing fuels for the indicated purpose.

  6. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  7. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  8. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock

    2013-07-01

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  9. Dopaminergic regulation of orexin neurons.

    PubMed

    Bubser, Michael; Fadel, Jim R; Jackson, Lela L; Meador-Woodruff, James H; Jing, Deqiang; Deutch, Ariel Y

    2005-06-01

    Orexin/hypocretin neurons in the lateral hypothalamus and adjacent perifornical area (LH/PFA) innervate midbrain dopamine (DA) neurons that project to corticolimbic sites and subserve psychostimulant-induced locomotor activity. However, it is not known whether dopamine neurons in turn regulate the activity of orexin cells. We examined the ability of dopamine agonists to activate orexin neurons in the rat, as reflected by induction of Fos. The mixed dopamine agonist apomorphine increased Fos expression in orexin cells, with a greater effect on orexin neurons located medial to the fornix. Both the selective D1-like agonist, A-77636, and the D2-like agonist, quinpirole, also induced Fos in orexin cells, suggesting that stimulation of either receptor subtype is sufficient to activate orexin neurons. Consistent with this finding, combined SCH 23390 (D1 antagonist)-haloperidol (D2 antagonist) pretreatment blocked apomorphine-induced activation of medial as well as lateral orexin neurons; in contrast, pretreatment with either the D1-like or D2-like antagonists alone did not attenuate apomorphine-induced activation of medial orexin cells. In situ hybridization histochemistry revealed that LH/PFA cells rarely express mRNAs encoding dopamine receptors, suggesting that orexin cells are transsynaptically activated by apomorphine. We therefore lesioned the nucleus accumbens, a site known to regulate orexin cells, but this treatment did not alter apomorphine-elicited activation of medial or lateral orexin neurons. Interestingly, apomorphine failed to activate orexin cells in isoflurane-anaesthetized animals. These data suggest that apomorphine-induced arousal but not accumbens-mediated hyperactivity is required for dopamine to transsynaptically activate orexin neurons.

  10. Inhibition of neuronal cell-cell adhesion measured by the microscopic aggregation assay and impedance sensing

    NASA Astrophysics Data System (ADS)

    Wiertz, R. W. F.; Marani, E.; Rutten, W. L. C.

    2010-10-01

    Microscopic aggregation assay and impedance sensing (IS) were used to monitor a change in in vitro neuron-neuron adhesion in response to blocking of cell adhesion molecules. By blocking neuron-neuron adhesion, migration and aggregation of neuronal cells can be inhibited. This leads to better control of spatial arrangement of cells in culture. In the literature N-CAM, L1 and N-cadherin proteins are pointed out as main regulators of neuronal adhesion. In this study, these three main cell adhesion molecules were used to inhibit neuron-to-neuron adhesion and aggregation. Both soluble extracellular domains and antigen antibodies were added to these adhesion molecules. They were investigated for their blocking ability in neuronal cultures. First, in a 96 h aggregation assay on a low-adhesive substrate, the effect of inhibition of the three proteins on aggregation of cortical neurons was investigated optically. Both L1 antibody and L1 protein had no effect on the degree of aggregation. An N-cadherin antibody however was shown to be effective in aggregation inhibition at concentrations of 1 and 3 µg ml-1. Up to 96 h no aggregation occurred. A similar effect was achieved by the N-cadherin protein, although less distinct. N-CAM blocking revealed no inhibition of aggregation. Second, results from IS corresponded to those of the aggregation assays. In these experiments neuron-neuron adhesion was also inhibited by blocking N-CAM L1 and N-cadherin. Cortical neurons were cultured in small wells containing circular 100 µm diameter gold electrodes, so small changes in cell-cell interactions in monolayers of neurons could be monitored by IS. Impedances of neuron-covered electrodes were significantly lower in the presence of the N-cadherin antibody and protein at concentrations of 1, 3 and 10 µg ml-1, indicating a less profound binding between adjacent neurons. Results from the aggregation assays and impedance measurements demonstrate the applicability of blocking cell adhesion

  11. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    PubMed

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  12. Lactate Modulates the Activity of Primary Cortical Neurons through a Receptor-Mediated Pathway

    PubMed Central

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism. PMID:23951229

  13. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  14. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1983-10-01

    AFWAL-TR-83-2057 AD A13 8 5 7 5 ALTERNATE FUELS COMBUSTION RESEARCH PHASE RI ’~*~~4 & IWITEY CMAAA * ’s~t:Uwz, ONTARIO October 1983 I•oerls Report...83-2057 P_______________ C TITLE (mod ,,--tt-) 5. TYPE OF REPORT A PERIOD COVERED Alternate Fuels ioahusticn Research Interim Report for Period Phase...I$. KEY WORDS (Continue on reverse sirte it necessear and identify by block number) FUELS ALTERNATE FUELS GAS TURBINE COMBUSTION EXHAUST EMISSIONS 0

  15. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  16. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. Thailand has continued to work to promote increased consumption of gasohol especially for highethanol content fuels like E85. The government has confirmed its effort to draw up incentives for auto makers to invest in manufacturing E85-compatible vehicles in the country. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels.

  17. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  18. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  19. Centrifugal main fuel pump

    SciTech Connect

    Cole, E.F.

    1986-08-26

    For a gas turbine power plant having a fuel supply and a fuel metering valve and variable geometry for the power plant including servo actuating mechanisms for the fuel metering valve and variable geometry, a fuel pumping system, is described to supply pressurized fuel for the servo actuating mechanisms and for the engine working fluid medium. The pumping system includes a centrifugal pump solely supplying the fuel to the fuel metering valve to be delivered to the power plant for its working fluid medium, a positive displacement pump in parallel with the centrifugal pump and solely to supply pressurized fuel to the servo actuating mechanisms for the fuel metering valve and for the variable geometry, and a boost pump means disposed in serial relationship with the positive displacement pump and the centrifugal pump for augmenting the pressure supplied by the positive displacement pump and the centrifugal pump during predetermined operating conditions of the power plant. The combined boost pump and centrifugal pump capability is sufficient to satisfy the vapor to liquid ratio requirements of the power during its entire operating envelope.

  20. Fuel injection pump

    SciTech Connect

    Luscomb, D.A.

    1984-05-22

    A fuel injection pump including a plunger and a piston movably disposed in a pumping chamber, means for initiating fuel injection and means for terminating fuel injection, the plunger periodically pressurizing fuel in a pressure chamber and the piston spaced from the plunger and allowing a metering chamber to fill with a metered quantity of fuel to be injected to an engine. The means for initiating injection comprises a pilot valve having a solenoid to selectively operate between either of two states and a control valve movable between first and second positions in response to the state of pilot valve, the first position filling the metering chamber with the metered quantity of fuel. The pilot valve determines the fuel quantity to be delivered to the engine relative to a signal from an electronic controller. An accumulator is pressurized during each cycle of the plunger to provide pressurized fuel during a metering phase. A variable orifice adjusts the rate of flow during the time fuel is being metered to metering chamber.

  1. Fuel injection pump

    SciTech Connect

    Iiyama, A.; Nishimura, T.

    1988-12-06

    This patent describes a fuel injection pump comprising: (a) engageable first and second cam members, the first cam member reciprocating axially as the first cam member moves angularly relative to the second cam member when the first and second cam members are in engagement; (b) means for urging the first cam member toward the second cam member to engage the first and second cam members; (c) a plunger connected to the first cam member for reciprocation with the first cam member, the plunger defining at least a part of a pumping chamber, the pumping chamber contracting and expanding as the plunger reciprocates; (d) means for allowing fuel to move into the pumping chamber as the pumping chamber expands in a fuel intake stroke; (e) means for allowing the fuel to move out of the pumping chamber as the pumping chamber contracts in a fuel compression stroke; and (f) means for resisting movement of the plunger in at least part of the fuel compression stroke and relieving resistance to the movement of the plunger in the fuel intake stroke wherein the resisting means comprises a piston slidably mounted on the plunger, a spring urging the piston to seat the piston on a shoulder on the plunger so that the piston reciprocates as the plunger reciprocates, wherein the piston is seated on the shoulder in the fuel compression stroke and separates from the shoulder against the force of the spring in the fuel intake stroke, a second fluid chamber at least partially defined by the piston.

  2. Particle fuel diversion structure

    SciTech Connect

    Eshleman, R. D.

    1985-07-30

    A particle fuel burning furnace has an upper combustion chamber for holding a pile of particle fuel and burning the same from the bottom thereof. The furnace also includes a lower combustion chamber for after-burning combustible gases given off by the burning of solid fuel in the upper chamber and a series of spaced apart vertically-extending passageways arranged in a row and interconnecting the upper and lower chambers for communicating the combustible gases from the upper to the lower chamber. A first improved feature relates to a particle fuel delivery control device which operates an auger for filling the upper chamber with particle fuel to a desired level. A beam of light is transmitted and reflected between a photoelectric cell and reflector respectively of the device. When the particle fuel pile has grown in height during filling to the desired level the light beam is interrupted and filling is terminated. A second improved feature relates to a particle fuel diversion structure positioned in spaced relationship above and overlying the row of passageways. The structure forms a horizontal slot which extends laterally from the passageways which prevents particles of fuel from falling through the passageways and relocates the flame which burns the particle fuel pile from the bottom to a region away from the passageways.

  3. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  4. FUEL ASSAY REACTOR

    DOEpatents

    Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

    1962-12-25

    A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)

  5. Energy: Reimagine Fuel Cells

    SciTech Connect

    Lemmon, John P.

    2015-09-24

    New types of fuel cell on the horizon could eliminate the need for such trade-offs and ease the integration of renewables into the grid. Currently, fuel cells are used to generate only electricity and heat. They can be modified to store energy and produce liquid fuels such as methanol, thanks to breakthroughs in materials and designs. Developing fuel cells with a battery mode is one focus of the programme I direct at the US Advanced Research Projects Agency–Energy (ARPA-E). I lead 13 projects across academia, industry and national laboratories.

  6. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  7. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  8. Amtrak fuel consumption study

    SciTech Connect

    Hitz, J.

    1981-02-01

    This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

  9. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  10. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  11. Ensemble Neuron Tracer for 3D Neuron Reconstruction.

    PubMed

    Wang, Ching-Wei; Lee, Yu-Ching; Pradana, Hilmil; Zhou, Zhi; Peng, Hanchuan

    2017-02-09

    Tracing of neuron paths is important in neuroscience. Recent studies have shown that it is possible to segment and reconstruct three-dimensional morphology of axons and dendrites using fully automatic neuron tracing methods. A specific tracer may be better than others for a specific dataset, but another tracer could perform better for some other datasets. Ensemble of learners is an effective way to improve learning accuracy in machine learning. We developed automatic ensemble neuron tracers, which consistently perform well on 57 datasets of 5 species collected from 7 laboratories worldwide. Quantitative evaluation based on the data generated by human annotators shows that the proposed ensemble tracers are valuable for 3D neuron tracing and can be widely applied to different datasets.

  12. Neuronal pathway finding: from neurons to initial neural networks.

    PubMed

    Roscigno, Cecelia I

    2004-10-01

    Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.

  13. First human hNT astrocytes patterned to single cell resolution on parylene-C/silicon dioxide substrates.

    PubMed

    Unsworth, Charles P; Graham, Euan S; Delivopoulos, Evangelos; Murray, Alan F

    2011-01-01

    In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO(2) substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO(2) substrate and elegant single cell isolation at 10 μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.

  14. Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey.

    PubMed

    Briggs, Farran; Kiley, Caitlin W; Callaway, Edward M; Usrey, W Martin

    2016-04-20

    Corticothalamic circuits are essential for reciprocal information exchange between the thalamus and cerebral cortex. Nevertheless, the role of corticothalamic circuits in sensory processing remains a mystery. In the visual system, afferents from retina to the lateral geniculate nucleus (LGN) and from LGN to primary visual cortex (V1) are organized into functionally distinct parallel processing streams. Physiological evidence suggests corticogeniculate feedback may be organized into parallel streams; however, little is known about the diversity of corticogeniculate neurons, their local computations, or the structure-function relationship among corticogeniculate neurons. We used a virus-mediated approach to label and reconstruct the complete dendritic and local axonal arbors of identified corticogeniculate neurons in the macaque monkey. Our results reveal morphological substrates for parallel streams of corticogeniculate feedback based on distinct classes of neurons in V1 and V2. These results support the hypothesis that distinct populations of feedback neurons provide independent and unique information to the LGN.

  15. Towards Automatic Classification of Neurons

    PubMed Central

    Armañanzas, Rubén; Ascoli, Giorgio A.

    2015-01-01

    The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting information growth of morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and availability of suitable data and resources, highlighting prominent challenges and opportunities. The effective solution of the neuronal classification problem will require continuous development of computational methods, high-throughput data production, and systematic metadata organization to enable cross-lab integration. PMID:25765323

  16. Fuel Cells: Reshaping the Future

    ERIC Educational Resources Information Center

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  17. Solid oxide fuel cell generator

    DOEpatents

    Di Croce, A. Michael; Draper, Robert

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  18. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  19. Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease

    PubMed Central

    Pienaar, Ilse S.; Elson, Joanna L.; Racca, Claudia; Nelson, Glyn; Turnbull, Douglass M.; Morris, Christopher M.

    2014-01-01

    Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions, including certain motor and nonmotor symptoms. This realization has led to low-frequency stimulation of the PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities. However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward designing more efficient therapies aimed at restoring the PPN's normal functions during progressive parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mitochondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic outflow. PMID:24099985

  20. A fish on the hunt, observed neuron by neuron

    SciTech Connect

    2010-01-01

    This three-dimensional microscopy image reveals an output neuron of the optic tectum lighting up in response to visual information from the retina. The scientists used this state-of-the-art imaging technology to learn how neurons in the optic tectum take visual information and convert it into an output that drives action. More information: http://newscenter.lbl.gov/feature-stories/2010/10/29/zebrafish-vision/

  1. Behavioral State Modulates the Activity of Brainstem Sensorimotor Neurons

    PubMed Central

    McArthur, Kimberly L.

    2011-01-01

    Sensorimotor processing must be modulated according to the animal's behavioral state. A previous study demonstrated that motion responses were strongly state dependent in birds. Vestibular eye and head responses were significantly larger and more compensatory during simulated flight, and a flight-specific vestibular tail response was also characterized. In the current study, we investigated the neural substrates for these state-dependent vestibular behaviors by recording extracellularly from neurons in the vestibular nuclear complex and comparing their spontaneous activity and sensory responses during default and simulated flight states. We show that motion-sensitive neurons in the lateral vestibular nucleus are state dependent. Some neurons increased their spontaneous firing rates during flight, though their increased excitability was not reflected in higher sensory gains. However, other neurons exhibited state-dependent gating of sensory inputs, responding to rotational stimuli only during flight. These results demonstrate that vestibular processing in the brainstem is state dependent and lay the foundation for future studies to investigate the synaptic mechanisms responsible for these modifications. PMID:22090497

  2. Mapping protease substrates by using a biotinylated phage substrate library.

    PubMed

    Scholle, Michael D; Kriplani, Ushma; Pabon, Amanda; Sishtla, Kamakshi; Glucksman, Marc J; Kay, Brian K

    2006-05-01

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  3. Mapping protease substrates using a biotinylated phage substrate library.

    SciTech Connect

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  4. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  5. 33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  6. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    PubMed

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  7. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  8. Npas1+ Pallidal Neurons Target Striatal Projection Neurons

    PubMed Central

    Glajch, Kelly E.; Kelver, Daniel A.; Hegeman, Daniel J.; Cui, Qiaoling; Xenias, Harry S.; Augustine, Elizabeth C.; Hernández, Vivian M.; Verma, Neha; Huang, Tina Y.; Luo, Minmin; Justice, Nicholas J.

    2016-01-01

    Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1+ pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease. PMID:27194328

  9. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... unfarmed land in other countries into cropland for energy grass-based renewable fuel production... AGENCY 40 CFR Part 80 RIN 2060-AR85 Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program; Final Rule Approving Renewable...

  10. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  11. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  12. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  13. Polyphenolic Antioxidants and Neuronal Regeneration

    PubMed Central

    Ataie, Amin; Shadifar, Mohammad; Ataee, Ramin

    2016-01-01

    Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations’ sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases. PMID:27303602

  14. Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation

    PubMed Central

    Ojovan, Silviya M.; McDonald, Mathew; Rabieh, Noha; Shmuel, Nava; Erez, Hadas; Nesladek, Milos; Spira, Micha E.

    2014-01-01

    Using a variety of proliferating cell types, it was shown that the surface of nanocrystalline diamond (NCD) provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices. Nevertheless, we also found that classical chemical functionalization methods render the “hostile” bare NCD surfaces with adhesive properties that match those of classically functionalized substrates used extensively in biomedical research and applications. Based on the results, we propose a mechanism that accounts for the conflicting results; which on one hand claim that un-functionalized NCD provides a permissive substrate for cell adhesion and growth, while other reports demonstrate the opposite. PMID:24966832

  15. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.

    PubMed

    Tovar-y-Romo, Luis B; Penagos-Puig, Andrés; Ramírez-Jarquín, Josué O

    2016-01-01

    Neuronal survival depends on multiple factors that comprise a well-fueled energy metabolism, trophic input, clearance of toxic substances, appropriate redox environment, integrity of blood-brain barrier, suppression of programmed cell death pathways and cell cycle arrest. Disturbances of brain homeostasis lead to acute or chronic alterations that might ultimately cause neuronal death with consequent impairment of neurological function. Although we understand most of these processes well when they occur independently from one another, we still lack a clear grasp of the concerted cellular and molecular mechanisms activated upon neuronal damage that intervene in protecting damaged neurons from death. In this review, we summarize a handful of endogenously activated mechanisms that balance molecular cues so as to determine whether neurons recover from injury or die. We center our discussion on mechanisms that have been identified to participate in stroke, although we consider different scenarios of chronic neurodegeneration as well. We discuss two central processes that are involved in endogenous repair and that, when not regulated, could lead to tissue damage, namely, trophic support and neuroinflammation. We emphasize the need to construct integrated models of neuronal degeneration and survival that, in the end, converge in neuronal fate after injury. Under neurodegenerative conditions, endogenously activated mechanisms balance out molecular cues that determine whether neurons contend toxicity or die. Many processes involved in endogenous repair may as well lead to tissue damage depending on the strength of stimuli. Signaling mediated by trophic factors and neuroinflammation are examples of these processes as they regulate different mechanisms that mediate neuronal demise including necrosis, apoptosis, necroptosis, pyroptosis and autophagy. In this review, we discuss recent findings on balanced regulation and their involvement in neuronal death.

  16. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    products • 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell...FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell Energy, Inc. Electrical Balance Of Plant (EBOP): • Converts DC power to grid...logo, Direct FuelCell and “ DFC ” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat

  17. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  18. Influence of Substrate on PFSA Thin-Film Morphology

    NASA Astrophysics Data System (ADS)

    Dudenas, Peter; Kusoglu, Ahmet; Venkatakrishnan, Singanallur; Hexemer, Alexander; Weber, Adam

    Perfluorosulfonic-acid (PFSA) ionomers are the most commonly used electrolyte for polymer-electrolyte fuel cells (PEFCs) due to their high conductivity and good electrochemical and thermo-mechanical stability. A PFSA's chemical structure is comprised of a polytetrafluoroethylene (PTFE) backbone that provides mechanical and chemical stability, and randomly placed tethered perfluoroether side chains terminated with sulfonic-acid groups, which impart its remarkable proton-conduction capabilities. Controlled by substrate/film interactions, long-range structural order in PFSAs change when confined to thin films (<200 nm), as does its transport and mechanical properties. The nature of change is substrate dependent, where stronger interactions create a more dramatic change in properties. In this talk, grazing-incidence c-Ray scattering (GIXS) is used to demonstrate induced structural order on metallic substrates, which is not present on other substrates like silicon and carbon. The higher degree of ordering is correlated with measured changes in mechanical properties for the thin films. Scattering data is also modeled using the recently released program high-performance GISAXS (HipGISAXS), to estimate the size and distribution of the ordered domains. -/a

  19. Vehicle and Fuel Emissions Testing

    EPA Pesticide Factsheets

    EPA's National Vehicle and Fuel Emissions Laboratory's primary responsibilities include: evaluating emission control technology; testing vehicles, engines and fuels; and determining compliance with federal emissions and fuel economy standards.

  20. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  1. CEROLYTE FUEL CELL.

    DTIC Science & Technology

    construction of a power plant for space. A 50-watt cerolyte battery will be constructed and a 500-watt fuel - cell power plant will be designed. Research...evaluation of a 500-watt cerolyte fuel - cell power system for space. During the first quarter work has been concentrated in the first two areas.

  2. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  3. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  4. Guide to fuel suppliers

    SciTech Connect

    Not Available

    1992-10-01

    This article is a directory of fuel suppliers to the electric power industry. The directory contains the company name, address, telephone and FAX numbers, contact person and a description of the fuels and services offered by the companies and their market areas. The directory's scope covers North America.

  5. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  6. Aminoamide fuel detergents

    SciTech Connect

    Bonazza, B.R.; Holtz, H.D.

    1981-02-10

    A detergent additive aminoamide, prepared by reacting a polycarboxylic amino acid with alkylamines, is combined into fuel for an internal combustion engine or lubricating oil as a composition suitable for reducing deposits in an internal combustion engine. In an embodiment of the invention, the aminoamide is further combined with a sulfonic acid to obtain a fuel detergent of improved operability.

  7. Imidazoline fuel detergents

    SciTech Connect

    Bonazza, B. R.; Holtz, H. D.

    1981-01-27

    A detergent additive imidazoline prepared by reacting carboxylic acid with polyamine is combined into fuel for an internal combustion engine or lubricating oil as a composition suitable for reducing deposits in an internal combustion engine. In an embodiment of the invention, the imidazoline is further combined with a sulfonic acid to obtain a fuel detergent of improved operability.

  8. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  9. Transportation fuels: Desulfurizing diesel

    NASA Astrophysics Data System (ADS)

    Lamonier, Carole

    2017-02-01

    Transportation fuels such as diesel contain organosulfur molecules that, when combusted, form sulfur oxides that are toxic and poison vehicles' catalytic convertors. Now, a method is demonstrated that can reduce the sulfur concentration of diesel fuel to very low levels at low temperatures and pressures.

  10. CO2-Neutral Fuels

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  11. Fuels Combustion Research.

    DTIC Science & Technology

    1982-07-30

    the more complex fuels I1. Extensive flow reactor data over the temperature range 1110-1235 and at 1 atm suggested that the overall pyrolyses rate...differently than the aliphatic fuels and more Importantly during Its pyrolyses step forms butadiene and vinyl acetylene, other important precursors to

  12. Solar Fuel Generator

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  13. Fuel injection nozzle

    SciTech Connect

    Kato, M.; Nakatsuka, H.; Tojo, S.; Arai, K.

    1986-12-09

    A fuel injection nozzle is described which is adapted to be connected to a fuel injection pump and which serves to inject fuel into a combustion chamber in an internal combustion engine. The nozzle consists of: a body in which a suction passage and an accumulating chamber are defined, the suction passage being adapted to be connected with a fuel injection pump and the accumulating chamber being connected with the suction passage; a non-return valve means for allowing the fuel to flow from the suction passage to the accumulating chamber but prohibiting the fuel from flowing from the accumulating chamber to the suction passage; a needle valve means for injecting the fuel stored in the accumulating chamber into a combustion chamber in an engine, the needle valve means including a nozzle needle arranged coaxially and in series with the valve with end portions thereof being adjacent; a damping plunger coaxially fitted into the valve member in the manner that the damping plunger is urged toward the nozzle needle and has one end protruding into the damping chamber and engageable by the nozzle needle, throttle means disposed in the through hole in the damping plunger, for restricting the fuel flow between the damping chamber and the connector recess.

  14. Solar fuel generator

    DOEpatents

    Lewis, Nathan S.; West, William C.

    2017-01-17

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  15. The Fuel Schools Use

    ERIC Educational Resources Information Center

    CEFP Journal, 1977

    1977-01-01

    Nearly 3,000 U.S. school districts reported to the Federal Energy Administration on comparative fuel costs and use in 1972-3 and 1974-5. The FEA survey represents the first major national effort to assess the impact of rising fuel costs on education. (Author/MLF)

  16. Alternative Fuels in Transportation

    ERIC Educational Resources Information Center

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  17. Fuel Cells for Society

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.

  18. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  19. Metallic fuels handbook

    SciTech Connect

    Hofman, G. L.; Leibowitz, L.; Kramer, J. M.; Billone, M. C.; Koenig, J. F.

    1985-11-01

    This compilation of Thermophysical and Mechanical Properties of certain metallic fuels is meant to be used as a common source of data in work related to the Integral Fast Reactor. This handbook focuses on the two fuel compositions chosen for the IFR; namely, Uranium-Zirconium and Uranium-Plutonium-Zirconium.

  20. Fuel cells: Operating flexibly

    NASA Astrophysics Data System (ADS)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.