Science.gov

Sample records for neuronopathic lysosomal diseases

  1. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    ERIC Educational Resources Information Center

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  2. Non-neuronopathic lysosomal storage disorders: Disease spectrum and treatments.

    PubMed

    Pastores, Gregory M; Hughes, Derralynn A

    2015-03-01

    Distinctive facial features, hepatosplenomegaly or cardiomyopathy with or without associated skeletal dysplasia are clinical manifestations that may be suggestive of an underlying lysosomal storage disorder (LSD), However, these features may not be evident in certain subtypes associated primarily with central nervous system involvement. Age at onset can be broad, ranging from infancy to adulthood. Diagnosis may be delayed, as manifestations may be slow to evolve (taking months to years), particularly in those with later (adult-)onset, and in isolated cases (i.e., those without a prior family history). Diagnosis of individual subtypes can be confirmed using a combination of biochemical and molecular assays. In a few LSDs, treatment with hematopoietic stem cell transplantation, enzyme replacement or substrate reduction therapy is available. Symptomatic and palliative measure may enhance quality of life for both treatable and currently untreatable cases. Genetic counseling is important, so patients and their families can be informed of reproductive risks, disease prognosis and therapeutic options. Investigations of underlying disease mechanisms are enhancing knowledge about rare diseases, but also other more common medical conditions, on account of potential convergent disease pathways.

  3. A Drosophila Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin

    PubMed Central

    Grönke, Sebastian; Castillo-Quan, Jorge Iván; Woodling, Nathaniel S.; Li, Li; Sirka, Ernestas; Gegg, Matthew; Mills, Kevin; Hardy, John; Bjedov, Ivana

    2016-01-01

    Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD. SIGNIFICANCE STATEMENT We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are

  4. Murine models of acute neuronopathic Gaucher disease

    PubMed Central

    Enquist, Ida Berglin; Bianco, Christophe Lo; Ooka, Andreas; Nilsson, Eva; Månsson, Jan-Eric; Ehinger, Mats; Richter, Johan; Brady, Roscoe O.; Kirik, Deniz; Karlsson, Stefan

    2007-01-01

    Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucosidase, beta, acid (GBA) gene that encodes the lysosomal enzyme glucosylceramidase (GCase). GCase deficiency leads to characteristic visceral pathology and, in some patients, lethal neurological manifestations. Here, we report the generation of mouse models with the severe neuronopathic form of GD. To circumvent the lethal skin phenotype observed in several of the previous GCase-deficient animals, we genetically engineered a mouse model with strong reduction in GCase activity in all tissues except the skin. These mice exhibit rapid motor dysfunction associated with severe neurodegeneration and apoptotic cell death within the brain, reminiscent of neuronopathic GD. In addition, we have created a second mouse model, in which GCase deficiency is restricted to neural and glial cell progenitors and progeny. These mice develop similar pathology as the first mouse model, but with a delayed onset and slower disease progression, which indicates that GCase deficiency within microglial cells that are of hematopoietic origin is not the primary determinant of the CNS pathology. These findings also demonstrate that normal microglial cells cannot rescue this neurodegenerative disease. These mouse models have significant implications for the development of therapy for patients with neuronopathic GD. PMID:17954912

  5. Fluorinated Chaperone-β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease.

    PubMed

    García-Moreno, M Isabel; de la Mata, Mario; Sánchez-Fernández, Elena M; Benito, Juan M; Díaz-Quintana, Antonio; Fustero, Santos; Nanba, Eiji; Higaki, Katsumi; Sánchez-Alcázar, José A; García Fernández, José M; Ortiz Mellet, Carmen

    2017-03-09

    Amphiphilic glycomimetics encompassing a rigid, undistortable nortropane skeleton based on 1,6-anhydro-l-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β-glucocerebrosidase mutants associated with the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βCD complexes, the determination of the selectivity profiles toward a panel of commercial and human lysosomal glycosidases, the evaluation of the chaperoning activity in type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (adult neuronopathic) GD fibroblasts, the confirmation of the rescuing mechanism by immunolabeling, and the analysis of the PC:GCase binding mode by docking experiments.

  6. Viable Neuronopathic Gaucher Disease Model in Medaka (Oryzias latipes) Displays Axonal Accumulation of Alpha-Synuclein

    PubMed Central

    Uemura, Norihito; Koike, Masato; Ansai, Satoshi; Kinoshita, Masato; Ishikawa-Fujiwara, Tomoko; Matsui, Hideaki; Naruse, Kiyoshi; Sakamoto, Naoaki; Uchiyama, Yasuo; Todo, Takeshi; Takeda, Shunichi; Yamakado, Hodaka; Takahashi, Ryosuke

    2015-01-01

    Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson’s disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD. PMID:25835295

  7. CNS-accessible Inhibitor of Glucosylceramide Synthase for Substrate Reduction Therapy of Neuronopathic Gaucher Disease

    PubMed Central

    Marshall, John; Sun, Ying; Bangari, Dinesh S; Budman, Eva; Park, Hyejung; Nietupski, Jennifer B; Allaire, Amy; Cromwell, Mary A; Wang, Bing; Grabowski, Gregory A; Leonard, John P; Cheng, Seng H

    2016-01-01

    Gaucher disease (GD) is caused by a deficiency of glucocerebrosidase and the consequent lysosomal accumulation of unmetabolized glycolipid substrates. Enzyme-replacement therapy adequately manages the visceral manifestations of nonneuronopathic type-1 Gaucher patients, but not the brain disease in neuronopathic types 2 and 3 GD. Substrate reduction therapy through inhibition of glucosylceramide synthase (GCS) has also been shown to effectively treat the visceral disease. Here, we evaluated the efficacy of a novel small molecule inhibitor of GCS with central nervous system (CNS) access (Genz-682452) to treat the brain disease. Treatment of the conduritol β epoxide-induced mouse model of neuronopathic GD with Genz-682452 reduced the accumulation of liver and brain glycolipids (>70% and >20% respectively), extent of gliosis, and severity of ataxia. In the genetic 4L;C* mouse model, Genz-682452 reduced the levels of substrate in the brain by >40%, the extent of gliosis, and paresis. Importantly, Genz-682452-treated 4L;C* mice also exhibited an ~30% increase in lifespan. Together, these data indicate that an orally available antagonist of GCS that has CNS access is effective at attenuating several of the neuropathologic and behavioral manifestations associated with mouse models of neuronopathic GD. Therefore, Genz-682452 holds promise as a potential therapeutic approach for patients with type-3 GD. PMID:26948439

  8. Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease

    PubMed Central

    Dai, Mei; Liou, Benjamin; Swope, Brittany; Wang, Xiaohong; Zhang, Wujuan; Inskeep, Venette; Grabowski, Gregory A.; Sun, Ying; Pan, Dao

    2016-01-01

    To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD. PMID:27598339

  9. [Fabry disease and cystinosis, two lysosomal diseases: similarities and differences].

    PubMed

    Grünfeld, J-P; Servais, A

    2010-12-01

    Fabry disease and cystinosis are both lysosomal diseases. Some clinical features (such as renal and corneal involvement) are shared by both diseases whereas many other features are different (mode of inheritance, rate of progression, mechanism of lysosomal storage, therapeutic modalities etc.). Intermediary mechanisms that lead from lysosomal overload to lesions and disease are still incompletely understood.

  10. Identification of a Biomarker in Cerebrospinal Fluid for Neuronopathic Forms of Gaucher Disease

    PubMed Central

    Zigdon, Hila; Savidor, Alon; Levin, Yishai; Meshcheriakova, Anna; Schiffmann, Raphael; Futerman, Anthony H.

    2015-01-01

    Gaucher disease, a recessive inherited metabolic disorder caused by defects in the gene encoding glucosylceramidase (GlcCerase), can be divided into three subtypes according to the appearance of symptoms associated with central nervous system involvement. We now identify a protein, glycoprotein non-metastatic B (GPNMB), that acts as an authentic marker of brain pathology in neurological forms of Gaucher disease. Using three independent techniques, including quantitative global proteomic analysis of cerebrospinal fluid (CSF) in samples from Gaucher disease patients that display neurological symptoms, we demonstrate a correlation between the severity of symptoms and GPNMB levels. Moreover, GPNMB levels in the CSF correlate with disease severity in a mouse model of Gaucher disease. GPNMB was also elevated in brain samples from patients with type 2 and 3 Gaucher disease. Our data suggest that GPNMB can be used as a marker to quantify neuropathology in Gaucher disease patients and as a marker of treatment efficacy once suitable treatments towards the neurological symptoms of Gaucher disease become available. PMID:25775479

  11. Neuroinflammatory paradigms in lysosomal storage diseases.

    PubMed

    Bosch, Megan E; Kielian, Tammy

    2015-01-01

    Lysosomal storage diseases (LSDs) include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  12. Neuroinflammatory paradigms in lysosomal storage diseases

    PubMed Central

    Bosch, Megan E.; Kielian, Tammy

    2015-01-01

    Lysosomal storage diseases (LSDs) include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss. PMID:26578874

  13. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases

    PubMed Central

    Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N.; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin

    2016-01-01

    ABSTRACT Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717

  14. Newborn Screening for Lysosomal Storage Diseases

    PubMed Central

    Gelb, Michael H.; Scott, C. Ronald; Turecek, Frantisek

    2015-01-01

    BACKGROUND There is worldwide interest in newborn screening for lysosomal storage diseases because of the development of treatment options that give better results when carried out early in life. Screens with high differentiation between affected and nonaffected individuals are critical because of the large number of potential false positives. CONTENT This review summarizes 3 screening methods: (a) direct assay of enzymatic activities using tandem mass spectrometry or fluorometry, (b) immunocapture-based measurement of lysosomal enzyme abundance, and (c) measurement of biomarkers. Assay performance is compared on the basis of small-scale studies as well as on large-scale pilot studies of mass spectrometric and fluorometric screens. SUMMARY Tandem mass spectrometry and fluorometry techniques for direct assay of lysosomal enzymatic activity in dried blood spots have emerged as the most studied approaches. Comparative mass spectrometry vs fluorometry studies show that the former better differentiates between nonaffected vs affected individuals. This in turn leads to a manageable number of screen positives that can be further evaluated with second-tier methods. PMID:25477536

  15. A phenotypic compound screening assay for lysosomal storage diseases.

    PubMed

    Xu, Miao; Liu, Ke; Swaroop, Manju; Sun, Wei; Dehdashti, Seameen J; McKew, John C; Zheng, Wei

    2014-01-01

    The lysosome is a vital cellular organelle that primarily functions as a recycling center for breaking down unwanted macromolecules through a series of hydrolases. Functional deficiencies in lysosomal proteins due to genetic mutations have been found in more than 50 lysosomal storage diseases that exhibit characteristic lipid/macromolecule accumulation and enlarged lysosomes. Recently, the lysosome has emerged as a new therapeutic target for drug development for the treatment of lysosomal storage diseases. However, a suitable assay for compound screening against the diseased lysosomes is currently unavailable. We have developed a Lysotracker staining assay that measures the enlarged lysosomes in patient-derived cells using both fluorescence intensity readout and fluorescence microscopic measurement. This phenotypic assay has been tested in patient cells obtained from several lysosomal storage diseases and validated using a known compound, methyl-β-cyclodextrin, in primary fibroblast cells derived from Niemann Pick C disease patients. The results demonstrate that the Lysotracker assay can be used in compound screening for the identification of lead compounds that are capable of reducing enlarged lysosomes for drug development.

  16. Parkinson's Disease Shares the Lysosome with Gaucher's Disease

    PubMed Central

    Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Summary The second most common neurodegenerative disorder, Parkinson's disease (PD) is an age dependent progressive neurodegenerative disorder that affects movement. While many of the causes of PD remain unclear, a consistent finding in PD is the abnormal accumulation of α-synuclein that has lead to the widely held notion that PD is a synucleinopathy. In a recent Cell manuscript Mazzuli et al., provide a potential mechanistic link between Gaucher's disease, a glycolipid lysosomal storage disorder due to Glucocerebrocidase (GBA) deficiency and PD. The authors reveal a reciprocal connection between the loss of GBA activity and accumulation of α-synuclein in the lysosome establishing a bidirectional positive feed back loop with pathologic consequences. These findings should stimulate further work on role of the lysosome in PD pathogenesis and the identification of new treatment strategies for PD. PMID:21753118

  17. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    PubMed

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  18. Autophagic/lysosomal dysfunction in Alzheimer’s disease

    PubMed Central

    2013-01-01

    Autophagy serves as the sole catabolic mechanism for degrading organelles and protein aggregates. Increasing evidence implicates autophagic dysfunction in Alzheimer’s disease (AD) and other neurodegenerative diseases associated with protein misprocessing and accumulation. Under physiologic conditions, the autophagic/lysosomal system efficiently recycles organelles and substrate proteins. However, reduced autophagy function leads to the accumulation of proteins and autophagic and lysosomal vesicles. These vesicles contain toxic lysosomal hydrolases as well as the proper cellular machinery to generate amyloid-beta, the major component of AD plaques. Here, we provide an overview of current research focused on the relevance of autophagic/lysosomal dysfunction in AD pathogenesis as well as potential therapeutic targets aimed at restoring autophagic/lysosomal pathway function. PMID:24171818

  19. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    PubMed

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  20. Lysosome/lipid droplet interplay in metabolic diseases.

    PubMed

    Dugail, Isabelle

    2014-01-01

    Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation.

  1. What lysosomes actually tell us about Parkinson's disease?

    PubMed

    Bourdenx, Mathieu; Dehay, Benjamin

    2016-12-01

    Parkinson's disease is a common neurodegenerative disorder of unknown origin mainly characterized by the loss of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal proteinaceous inclusions called Lewy bodies. Lysosomes are dynamic organelles that degrade, in a controlled manner, cellular components delivered via the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Increasing amounts of evidence suggest a central role of lysosomal impairment in PD aetiology. This review provides an update on how genetic evidence support this connection and highlights how the neuropathologic and mechanistic evidence might relate to the disease process in sporadic forms of Parkinson's disease. Finally, we discuss the influence of ageing on lysosomal impairment and PD aetiology and therapeutic strategies targeting lysosomal function.

  2. Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime.

    PubMed

    McBrayer, MaryKate; Nixon, Ralph A

    2013-12-01

    Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function compromises assembly and proton-pumping activity of the vacuolar-ATPase on lysosomes, leading to defective lysosomal acidification and marked impairment of autophagy. Additional dysregulation of cellular Ca2+ by mutant PS1 in FAD has been ascribed to altered ion channels in the endoplasmic reticulum; however, rich stores of Ca2+ in lysosomes are also abnormally released in PS1-deficient cells secondary to the lysosomal acidification defect. The resultant rise in cytosolic Ca2+ activates Ca2+-dependent enzymes, contributing substantially to calpain overactivation that is a final common pathway leading to neurofibrillary degeneration in all forms of AD (Alzheimer's disease). In the present review, we discuss the close inter-relationships among deficits of lysosomal function, autophagy and Ca2+ homoeostasis as a pathogenic process in PS1-related FAD and their relevance to sporadic AD.

  3. Role of Endosomes and Lysosomes in Human Disease

    PubMed Central

    Maxfield, Frederick R.

    2014-01-01

    In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer’s disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer’s disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases. PMID:24789821

  4. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model

    PubMed Central

    Bagh, Maria B.; Peng, Shiyong; Chandra, Goutam; Zhang, Zhongjian; Singh, Satya P.; Pattabiraman, Nagarajan; Liu, Aiyi; Mukherjee, Anil B.

    2017-01-01

    Defective lysosomal acidification contributes to virtually all lysosomal storage disorders (LSDs) and to common neurodegenerative diseases like Alzheimer's and Parkinson's. Despite its fundamental importance, the mechanism(s) underlying this defect remains unclear. The v-ATPase, a multisubunit protein complex composed of cytosolic V1-sector and lysosomal membrane-anchored V0-sector, regulates lysosomal acidification. Mutations in the CLN1 gene, encoding PPT1, cause a devastating neurodegenerative LSD, INCL. Here we report that in Cln1−/− mice, which mimic INCL, reduced v-ATPase activity correlates with elevated lysosomal pH. Moreover, v-ATPase subunit a1 of the V0 sector (V0a1) requires palmitoylation for interacting with adaptor protein-2 (AP-2) and AP-3, respectively, for trafficking to the lysosomal membrane. Notably, treatment of Cln1−/− mice with a thioesterase (Ppt1)-mimetic, NtBuHA, ameliorated this defect. Our findings reveal an unanticipated role of Cln1 in regulating lysosomal targeting of V0a1 and suggest that varying factors adversely affecting v-ATPase function dysregulate lysosomal acidification in other LSDs and common neurodegenerative diseases. PMID:28266544

  5. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    PubMed Central

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  6. Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis

    PubMed Central

    Napolitano, Gennaro; Johnson, Jennifer L; He, Jing; Rocca, Celine J; Monfregola, Jlenia; Pestonjamasp, Kersi; Cherqui, Stephanie; Catz, Sergio D

    2015-01-01

    Metabolite accumulation in lysosomal storage disorders (LSDs) results in impaired cell function and multi-systemic disease. Although substrate reduction and lysosomal overload-decreasing therapies can ameliorate disease progression, the significance of lysosomal overload-independent mechanisms in the development of cellular dysfunction is unknown for most LSDs. Here, we identify a mechanism of impaired chaperone-mediated autophagy (CMA) in cystinosis, a LSD caused by defects in the cystine transporter cystinosin (CTNS) and characterized by cystine lysosomal accumulation. We show that, different from other LSDs, autophagosome number is increased, but macroautophagic flux is not impaired in cystinosis while mTOR activity is not affected. Conversely, the expression and localization of the CMA receptor LAMP2A are abnormal in CTNS-deficient cells and degradation of the CMA substrate GAPDH is defective in Ctns−/− mice. Importantly, cysteamine treatment, despite decreasing lysosomal overload, did not correct defective CMA in Ctns−/− mice or LAMP2A mislocalization in cystinotic cells, which was rescued by CTNS expression instead, suggesting that cystinosin is important for CMA activity. In conclusion, CMA impairment contributes to cell malfunction in cystinosis, highlighting the need for treatments complementary to current therapies that are based on decreasing lysosomal overload. PMID:25586965

  7. Musings on genome medicine: enzyme-replacement therapy of the lysosomal storage diseases

    PubMed Central

    2009-01-01

    The lysosomal storage diseases, such as Gaucher's disease, mucopolysaccharidosis I, II and IV, Fabry's disease, and Pompe's disease, are rare inherited disorders whose symptoms result from enzyme deficiency causing lysosomal accumulation. Until effective gene-replacement therapy is developed, expensive, and at best incomplete, enzyme-replacement therapy is the only hope for sufferers of rare lysosomal storage diseases. Preventive strategies involving carrier detection should be a priority toward the successful management of these conditions. PMID:20017892

  8. New therapeutic prospects for the glycosphingolipid lysosomal storage diseases.

    PubMed

    Platt, F M; Butters, T D

    1998-08-15

    The glycosphingolipid (GSL) lysosomal storage diseases result from mutations in the genes that encode the enzymes required for glycosphingolipid catabolism within lysosomes. They are relatively rare diseases, but are frequently severe in terms of their pathology. Many involve progressive neurodegeneration, and in the most severe forms result in death in early infancy. The therapeutic options for treating these diseases are limited, and for the majority of these disorders there are currently no therapies available. To date, most research has focused on correcting the genetic lesion by gene therapy or by augmenting the enzyme activity deficient in these patients by introducing fully functional enzyme. This can be achieved by bone marrow transplantation or intravenous infusion of purified or recombinant enzyme (enzyme replacement). Gene therapy and enzyme replacement therapy are disease specific, and pharmacological approaches for the treatment of these disorders have not been fully explored. In this commentary, the problems associated with disease therapy are discussed, and a pharmacological agent (N-butyldeoxynojirimycin) is presented for the potential generic treatment of this family of disorders. Successful prevention of glycosphingolipid storage in a mouse model of Tay-Sachs disease suggests that this strategy merits clinical evaluation.

  9. Enzymatic Screening and Diagnosis of Lysosomal Storage Diseases

    PubMed Central

    Yu, Chunli; Sun, Qin; Zhou, Hui

    2016-01-01

    Lysosomal storage diseases (LSDs) are a group of more than 50 genetic disorders. Clinical symptoms are caused by the deficiency of specific enzyme (enzymes) function and resultant substrate accumulation in the lysosomes, which leads to impaired cellular function and progressive tissue and organ dysfunction. Measurement of lysosomal enzyme activity plays an important role in the clinical diagnosis of LSDs. The major enzymatic testing methods include fluorometric assays using artificial 4-methylumbelliferyl (4-MU) substrates, spectrophotometric assays and radioactive assays with radiolabeled natural substrates. As many effective treatment options have become available, presymptomatic diagnosis and early intervention are imperative. Many methods were developed in the past decade for newborn screening (NBS) of selective LSDs in dried blood spot (DBS) specimens. Modified fluorometric assays with 4-MU substrates, MS/MS or LC-MS/MS multiplex enzyme assays, digital microfluidic fluorometric assays, and immune-quantification assays for enzyme contents have been reported in NBS of LSDs, each with its own advantages and limitations. Active technical validation studies and pilot screening studies have been conducted or are ongoing. These studies have provided insight in the efficacy of various methodologies. In this review, technical aspects of the enzyme assays used in clinical diagnosis and NBS are summarized. The important findings from pilot NBS studies are also reviewed. PMID:27293520

  10. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases

    PubMed Central

    Keeling, Kim M.

    2016-01-01

    In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed. PMID:28367323

  11. BK channel agonist represents a potential therapeutic approach for lysosomal storage diseases

    PubMed Central

    Zhong, Xi Zoë; Sun, Xue; Cao, Qi; Dong, Gaofeng; Schiffmann, Raphael; Dong, Xian-Ping

    2016-01-01

    Efficient lysosomal Ca2+ release plays an essential role in lysosomal trafficking. We have recently shown that lysosomal big conductance Ca2+-activated potassium (BK) channel forms a physical and functional coupling with the lysosomal Ca2+ release channel Transient Receptor Potential Mucolipin-1 (TRPML1). BK and TRPML1 forms a positive feedback loop to facilitate lysosomal Ca2+ release and subsequent lysosome membrane trafficking. However, it is unclear whether the positive feedback mechanism is common for other lysosomal storage diseases (LSDs) and whether BK channel agonists rescue abnormal lysosomal storage in LSDs. In this study, we assessed the effect of BK agonist, NS1619 and NS11021 in a number of LSDs including NPC1, mild cases of mucolipidosis type IV (ML4) (TRPML1-F408∆), Niemann-Pick type A (NPA) and Fabry disease. We found that TRPML1-mediated Ca2+ release was compromised in these LSDs. BK activation corrected the impaired Ca2+ release in these LSDs and successfully rescued the abnormal lysosomal storage of these diseases by promoting TRPML1-mediated lysosomal exocytosis. Our study suggests that BK channel activation stimulates the TRPML1-BK positive reinforcing loop to correct abnormal lysosomal storage in LSDs. Drugs targeting BK channel represent a potential therapeutic approach for LSDs. PMID:27670435

  12. Newborn Screening for Lysosomal Storage Disorders and Other Neuronopathic Conditions

    ERIC Educational Resources Information Center

    Matern, Dietrich; Oglesbee, Devin; Tortorelli, Silvia

    2013-01-01

    Newborn screening (NBS) is a public health program aimed at identifying treatable conditions in presymptomatic newborns to avoid premature mortality, morbidity, and disabilities. Currently, every newborn in the Unites States is screened for at least 29 conditions where evidence suggests that early detection is possible and beneficial. With new or…

  13. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    PubMed Central

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  14. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links.

    PubMed

    Moors, Tim; Paciotti, Silvia; Chiasserini, Davide; Calabresi, Paolo; Parnetti, Lucilla; Beccari, Tommaso; van de Berg, Wilma D J

    2016-06-01

    Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society.

  15. Disease pathogenesis explained by basic science: lysosomal storage diseases as autophagocytic disorders.

    PubMed

    Ballabio, A

    2009-01-01

    Lysosomal storage diseases (LSDs) are characterized by intra-lysosomal accumulation of undegraded metabolites due to the defective activity of lysosomal enzymes. There is a paucity of data, however, relating to the mechanisms that link this accumulation with disease pathology. Several LSDs can be attributed to deficiencies in the activity of sulfatase enzymes. The gene responsible for the post-translational modification that activates sulfatases, sulfatase modifying factor 1 (SUMF1), is defective in the rare autosomal recessive disorder multiple sulfatase deficiency (MSD). A mouse model of MSD (Sumf1 knockout mouse) exhibits a similar phenotype to patients with MSD, with marked lysosomal storage of undegraded metabolites, and increased expression of inflammatory markers and apoptotic markers. Investigation of disease pathology in mouse models of two LSDs (MSD and mucopolysaccharidosis (MPS) Type IIIA) has revealed an increased number of autophagosomes in these animals compared with wild-type mice. This appears to result from impaired autophagosome-lysosome fusion, which may in turn lead to an absence of autophagy. The suggestion that LSDs can be defined as disorders of autophagy implies that there may be some overlap between pathological mechanisms of LSDs and more common neurodegenerative diseases, and this may help provide direction for future therapeutic strategies.

  16. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification

    PubMed Central

    Wolfe, Devin M.; Lee, Ju-hyun; Kumar, Asok; Lee, Sooyeon; Orenstein, Samantha J.; Nixon, Ralph A.

    2013-01-01

    Autophagy is a lysosomal degradative process to recycle cellular waste and eliminate potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are evidenced by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted. In several disorders, including AD, defective lysosomal acidification contributes to this proteolytic failure. The complex regulation of lysosomal pH makes this process vulnerable to disruption by many factors and reliable lysosomal pH measurements have become increasingly important in investigations of disease mechanisms. Although various reagents for pH quantification have been developed over several decades, they are not all equally well-suited for measuring the pH of lysosomes. Here, we evaluate the most commonly used pH probes for sensitivity and localization and identify Lysosensor Yellow/Blue-Dextran, among currently used probes, as having the most optimal profile of properties for measuring lysosomal pH. In addition, we review evidence that lysosomal acidification is defective in Alzheimer’s disease (AD) and extend our original findings of elevated lysosomal pH in presenilin 1 (PS1)-deficient blastocysts and neurons to additional cell models of PS1- and PS1/2-deficiency, to fibroblasts from AD patients with PS1 mutations, and to neurons in the PS/APP mouse model of AD. PMID:23773064

  17. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.

    PubMed

    Dierks, Thomas; Schlotawa, Lars; Frese, Marc-André; Radhakrishnan, Karthikeyan; von Figura, Kurt; Schmidt, Bernhard

    2009-04-01

    Multiple sulfatase deficiency (MSD), mucolipidosis (ML) II/III and Niemann-Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders caused by the genetic defect of non-lysosomal proteins. The NPC1 protein mainly localizes to late endosomes and is essential for cholesterol redistribution from endocytosed LDL to cellular membranes. NPC1 deficiency leads to lysosomal accumulation of a broad range of lipids. The precise functional mechanism of this membrane protein, however, remains puzzling. ML II, also termed I cell disease, and the less severe ML III result from deficiencies of the Golgi enzyme N-acetylglucosamine 1-phosphotransferase leading to a global defect of lysosome biogenesis. In patient cells, newly synthesized lysosomal proteins are not equipped with the critical lysosomal trafficking marker mannose 6-phosphate, thus escaping from lysosomal sorting at the trans Golgi network. MSD affects the entire sulfatase family, at least seven members of which are lysosomal enzymes that are specifically involved in the degradation of sulfated glycosaminoglycans, sulfolipids or other sulfated molecules. The combined deficiencies of all sulfatases result from a defective post-translational modification by the ER-localized formylglycine-generating enzyme (FGE), which oxidizes a specific cysteine residue to formylglycine, the catalytic residue enabling a unique mechanism of sulfate ester hydrolysis. This review gives an update on the molecular bases of these enigmatic diseases, which have been challenging researchers since many decades and so far led to a number of surprising findings that give deeper insight into both the cell biology and the pathobiochemistry underlying these complex disorders. In case of MSD, considerable progress has been made in recent years towards an understanding of disease-causing FGE mutations. First approaches to link molecular parameters with clinical manifestation have been described and even therapeutical options have been

  18. Positive Lysosomal Modulation As a Unique Strategy to Treat Age-Related Protein Accumulation Diseases

    PubMed Central

    Wisniewski, Meagan L.; Butler, David

    2012-01-01

    Abstract Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ1–38 peptide corresponded with decreased levels of Aβ1–42, supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders

  19. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease

    PubMed Central

    Magalhaes, Joana; Gegg, Matthew E.; Migdalska-Richards, Anna; Doherty, Mary K.; Whitfield, Phillip D.; Schapira, Anthony H.V.

    2016-01-01

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. PMID:27378698

  20. Gaucher Disease

    PubMed Central

    Nagral, Aabha

    2014-01-01

    Gaucher disease is the commonest lysosomal storage disease seen in India and worldwide. It should be considered in any child or adult with an unexplained splenohepatomegaly and cytopenia which are seen in the three types of Gaucher disease. Type 1 is the non-neuronopathic form and type 2 and 3 are the neuronopathic forms. Type 2 is a more severe neuronopathic form leading to mortality by 2 years of age. Definitive diagnosis is made by a blood test–the glucocerebrosidase assay. There is no role for histological examination of the bone marrow, liver or spleen for diagnosis of the disease. Molecular studies for mutations are useful for confirming diagnosis, screening family members and prognosticating the disease. A splenectomy should not be performed except for palliation or when there is no response to enzyme replacement treatment or no possibility of getting any definitive treatment. Splenectomy may worsen skeletal and lung manifestations in Gaucher disease. Enzyme replacement therapy (ERT) has completely revolutionized the prognosis and is now the standard of care for patients with this disease. Best results are seen in type 1 disease with good resolution of splenohepatomegaly, cytopenia and bone symptoms. Neurological symptoms in type 3 disease need supportive care. ERT is of no benefit in type 2 disease. Monitoring of patients on ERT involves evaluation of growth, blood counts, liver and spleen size and biomarkers such as chitotriosidase which reflect the disease burden. Therapy with ERT is very expensive and though patients in India have so far got the drug through a charitable access programme, there is a need for the government to facilitate access to treatment for this potentially curable disease. Bone marrow transplantation is an inferior option but may be considered when access to expensive ERT is not possible. PMID:25755533

  1. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease.

    PubMed

    Ihara, Yasuo; Morishima-Kawashima, Maho; Nixon, Ralph

    2012-08-01

    As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.

  2. Gene Therapy for Lysosomal Storage Diseases (LSDs) in Large Animal Models

    PubMed Central

    Haskins, Mark

    2012-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders caused by deficient activity of a single lysosomal enzyme or other defects resulting in deficient catabolism of large substrates in lysosomes. There are more than 40 forms of inherited LSDs known to occur in humans, with an aggregate incidence estimated at 1 in 7,000 live births. Clinical signs result from the inability of lysosomes to degrade large substrates; because most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems. Thus LSDs are associated with high morbidity and mortality and represent a significant burden on patients, their families, the health care system, and society. Because lysosomal enzymes are trafficked by a mannose 6-phosphate receptor mechanism, normal enzyme provided to deficient cells can be localized to the lysosome to reduce and prevent storage. However, many LSDs remain untreatable, and gene therapy holds the promise for effective therapy. Other therapies for some LSDs do exist, or are under evaluation, including heterologous bone marrow or cord blood transplantation (BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these treatments are associated with significant concerns, including high morbidity and mortality (BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT), life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential alternative, albeit with its own attendant concerns, including levels and persistence of expression and insertional mutagenesis resulting in neoplasia. Naturally occurring animal homologues of LSDs have been described in all common domestic animals (and in some that are less common) and these animal models play a critical role in evaluating the efficacy and safety of therapy. PMID:19293456

  3. Combination Therapies for Lysosomal Storage Diseases: A Complex Answer to a Simple Problem

    PubMed Central

    Macauley, Shannon L

    2017-01-01

    Lysosomal storage diseases (LSDs) are a group of 40–50 rare monogenic disorders that result in disrupted lysosomal function and subsequent lysosomal pathology. Depending on the protein or enzyme deficiency associated with each disease, LSDs affect an array of organ systems and elicit a complex set of secondary disease mechanisms that make many of these disorders difficult to fully treat. The etiology of most LSDs is known and the innate biology of lysosomal enzymes favors therapeutic intervention, yet most attempts at treating LSDs with enzyme replacement strategies fall short of being curative. Even with the advent of more sophisticated approaches, like substrate reduction therapy, pharmacologic chaperones, gene therapy or stem cell therapy, comprehensive treatments for LSDs have yet to be achieved. Given the limitations with individual therapies, recent research has focused on using a combination approach to treat LSDs. By coupling protein-, cell-, and gene- based therapies with small molecule drugs, researchers have found greater success in eradicating the clinical features of disease. This review seeks to discuss the positive and negatives of singular therapies used to treat LSDs, and discuss how, in combination, studies have demonstrated a more holistic benefit on pathological and functional parameters. By optimizing routes of delivery, therapeutic timing, and targeting secondary disease mechanisms, combination therapy represents the future for LSD treatment. PMID:27491211

  4. Substrate deprivation: a new therapeutic approach for the glycosphingolipid lysosomal storage diseases.

    PubMed

    Platt, F M; Butters, T D

    2000-02-01

    The glycosphingolipid (GSL) lysosomal storage diseases are a family of human metabolic diseases that, in their severest forms, cause death in early infancy, as a result of progressive neurodegeneration. They are caused by mutations in the genes encoding the glycohydrolases or the activator proteins that catabolise GSLs within lysosomes. In these diseases the GSL substrate of the defective enzyme accumulates in the lysosome, where it is stored and leads to cellular dysfunction and disease. The therapeutic options for treating these diseases are relatively limited; in fact, there are currently no available therapies for most of these disorders. The problem is further compounded by difficulties in delivering therapeutic agents to the central nervous system, which is where the pathology is frequently manifested. To date, research effort has mainly focused on strategies for augmenting enzyme concentrations to compensate for the underlying defect. These strategies include bone-marrow transplantation, enzyme-replacement therapy and gene therapy. Our group has been exploring the alternative strategy of substrate deprivation. This approach aims to balance the rate of GSL synthesis with the impaired rate of GSL breakdown. Studies using an asymptomatic mouse model of Tay-Sachs disease have shown that substrate deprivation prevents GSL storage. In a severe neurodegenerative mouse model of Sandhoff disease, substrate deprivation delayed the onset of symptoms and disease progression, and significantly increased life expectancy. The implications of this research for human therapy have been discussed.

  5. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease.

    PubMed

    Colacurcio, Daniel J; Nixon, Ralph A

    2016-12-01

    Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum.

  6. Characterization and application of a disease-cell model for a neurodegenerative lysosomal disease

    PubMed Central

    Ribbens, Jameson J.; Moser, Ann B.; Hubbard, Walter C.; Bongarzone, Ernesto R.; Maegawa, Gustavo H.B.

    2013-01-01

    Disease-cell models that recapitulate specific molecular phenotypes are essential for the investigation of molecular pathogenesis of neurodegenerative diseases including lysosomal storage diseases (LSDs) with predominant neurological manifestations. Herein we report the development and characterization of a cell model for a rapid neurodegenerative LSDs, globoid-cell leukodystrophy (GLD), mostly known as Krabbe disease. GLD is caused by the deficiency of β-galactocerebrosidase (GALC), a lysosomal enzyme that hydrolysis two glycosphingolipids, psychosine and galactosylceramide. Unfortunately, the available culture fibroblasts from GLD patients consist in a limited research tool as these cells fail to accumulate psychosine, the central pathogenic glycosphingolipid in this LSD that results in severe demyelination. Firstly, we obtained brain samples from the Twitcher (Twi) mice (GALCtwi/twi), the natural mouse model with GALC deficiency. We immortalized the primary neuroglial cultured cells with SV40 large T antigen, generating the 145M-Twi and the 145C-Wt cell lines from the Twi and control mice, respectively. Both cell lines expressed specific oligodendrocyte markers including A2B5 and GalC. The 145M-Twi cells showed biochemical and cellular disturbances related to GLD neuropathogenesis including remarkable caspase-3 activation, release of cytochrome C into the cytosol and expansion of the lysosomal compartment. Under treatment with glycosphingolipids, 145M-Twi cells showed increased LC3B levels, a marker of autophagy. Using LC-MS/MS method we developed, the 145M-Twi cells showed significantly higher levels of psychosine. The 145M-Twi and 145C-Wt lines allowed the development of a robust throughput LC-MS/MS assay to measure cellular psychosine levels. In this throughput assay, L-cycloserine showed to significantly reduce the 145M-Twi cellular levels of psychosine. The established 145M-Twi cells is a powerful research tool to investigate neurologically relevant

  7. Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease

    PubMed Central

    Fox, Christopher; Cocchiaro, Pasquale; Oakley, Fiona; Howarth, Rachel; Callaghan, Krystena; Leslie, Jack; Luli, Saimir; Wood, Katrina M.; Genovese, Federica; Sheerin, Neil S.; Moles, Anna

    2016-01-01

    During chronic kidney disease (CKD) there is a dysregulation of extracellular matrix (ECM) homeostasis leading to renal fibrosis. Lysosomal proteases such as cathepsins (Cts) regulate this process in other organs, however, their role in CKD is still unknown. Here we describe a novel role for cathepsins in CKD. CtsD and B were located in distal and proximal tubular cells respectively in human disease. Administration of CtsD (Pepstatin A) but not B inhibitor (Ca074-Me), in two mouse CKD models, UUO and chronic ischemia reperfusion injury, led to a reduction in fibrosis. No changes in collagen transcription or myofibroblasts numbers were observed. Pepstatin A administration resulted in increased extracellular urokinase and collagen degradation. In vitro and in vivo administration of chloroquine, an endo/lysosomal inhibitor, mimicked Pepstatin A effect on renal fibrosis. Therefore, we propose a mechanism by which CtsD inhibition leads to increased collagenolytic activity due to an impairment in lysosomal recycling. This results in increased extracellular activity of enzymes such as urokinase, triggering a proteolytic cascade, which culminates in more ECM degradation. Taken together these results suggest that inhibition of lysosomal proteases, such as CtsD, could be a new therapeutic approach to reduce renal fibrosis and slow progression of CKD. PMID:26831567

  8. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease

    PubMed Central

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393

  9. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.

    PubMed

    Yi, Haiqing; Sun, Tao; Armstrong, Dustin; Borneman, Scott; Yang, Chunyu; Austin, Stephanie; Kishnani, Priya S; Sun, Baodong

    2017-02-02

    Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease.

  10. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    PubMed

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-01-16

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation.

  11. Magnetic resonance findings of the corpus callosum in canine and feline lysosomal storage diseases.

    PubMed

    Hasegawa, Daisuke; Tamura, Shinji; Nakamoto, Yuya; Matsuki, Naoaki; Takahashi, Kimimasa; Fujita, Michio; Uchida, Kazuyuki; Yamato, Osamu

    2013-01-01

    Several reports have described magnetic resonance (MR) findings in canine and feline lysosomal storage diseases such as gangliosidoses and neuronal ceroid lipofuscinosis. Although most of those studies described the signal intensities of white matter in the cerebrum, findings of the corpus callosum were not described in detail. A retrospective study was conducted on MR findings of the corpus callosum as well as the rostral commissure and the fornix in 18 cases of canine and feline lysosomal storage diseases. This included 6 Shiba Inu dogs and 2 domestic shorthair cats with GM1 gangliosidosis; 2 domestic shorthair cats, 2 familial toy poodles, and a golden retriever with GM2 gangliosidosis; and 2 border collies and 3 chihuahuas with neuronal ceroid lipofuscinoses, to determine whether changes of the corpus callosum is an imaging indicator of those diseases. The corpus callosum and the rostral commissure were difficult to recognize in all cases of juvenile-onset gangliosidoses (GM1 gangliosidosis in Shiba Inu dogs and domestic shorthair cats and GM2 gangliosidosis in domestic shorthair cats) and GM2 gangliosidosis in toy poodles with late juvenile-onset. In contrast, the corpus callosum and the rostral commissure were confirmed in cases of GM2 gangliosidosis in a golden retriever and canine neuronal ceroid lipofuscinoses with late juvenile- to early adult-onset, but were extremely thin. Abnormal findings of the corpus callosum on midline sagittal images may be a useful imaging indicator for suspecting lysosomal storage diseases, especially hypoplasia (underdevelopment) of the corpus callosum in juvenile-onset gangliosidoses.

  12. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  13. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy.

    PubMed

    Platt, F M; Jeyakumar, M; Andersson, U; Priestman, D A; Dwek, R A; Butters, T D; Cox, T M; Lachmann, R H; Hollak, C; Aerts, J M; Van Weely, S; Hrebícek, M; Moyses, C; Gow, I; Elstein, D; Zimran, A

    2001-04-01

    The glycosphingolipid (GSL) lysosomal storage diseases are caused by mutations in the genes encoding the glycohydrolases that catabolize GSLs within lysosomes. In these diseases the substrate for the defective enzyme accumulates in the lysosome and the stored GSL leads to cellular dysfunction and disease. The diseases frequently have a progressive neurodegenerative course. The therapeutic options for treating these diseases are relatively limited, and for the majority there are no effective therapies. The problem is further compounded by difficulties in delivering therapeutic agents to the brain. Most research effort to date has focused on strategies for augmenting enzyme levels to compensate for the underlying defect. These include bone marrow transplantation (BMT), enzyme replacement and gene therapy. An alternative strategy that we have been exploring is substrate deprivation. This approach aims to balance the rate of GSL synthesis with the impaired rate of GSL breakdown. The imino sugar N-butyldeoxynojirimycin (NB-DNJ) inhibits the first step in GSL biosynthesis and has been used to evaluate this approach. Studies in an asymptomatic mouse model of Tay-Sachs disease have shown that substrate deprivation prevents GSL storage in the CNS. In a severe neurodegenerative mouse model of Sandhoff disease, substrate deprivation delayed the onset of symptoms and disease progression and significantly increased life expectancy. Combining NB-DNJ and BMT was found to be synergistic in the Sandhoff mouse model. A clinical trial in type I Gaucher disease has been undertaken and has shown beneficial effects. Efficacy was demonstrated on the basis of significant decreases in liver and spleen volumes, gradual but significant improvement in haematological parameters and disease activity markers, together with diminished GSL biosynthesis and storage as determined by independent biochemical assays. Further trials in type I Gaucher disease are in progress; studies are planned in

  14. [High cost drugs for rare diseases in Brazil: the case of lysosomal storage disorders].

    PubMed

    de Souza, Mônica Vinhas; Krug, Bárbara Corrêa; Picon, Paulo Dornelles; Schwartz, Ida Vanessa Doederlein

    2010-11-01

    This paper approaches in a critical way aspects of Brazilian public policies for drugs, emphasizing those classified as high cost and for rare diseases. The lysosomal storage diseases was taken as an example because of their rarity and the international trend for the development of new drugs for their treatment, all at high costs. Three lysosomal storage diseases were approached: Gaucher disease, Fabry disease and mucopolysaccharidosis type I. Gaucher disease has its treatment drug licensed in Brazil and guidelines for its use are established through a clinical protocol by the Ministry of Health. The others have their drug treatments registered in Brazil; however, no treatment guidelines for them have been developed by the government. The objective of the paper was to foster the discussion on the role of health technology assessment for high-cost drugs for rare diseases in Brazil, emphasizing the need for establishing health policies with legitimacy towards these diseases. Despite the difficulties in establishing a health policy for each rare disease, it is possible to create rational models to deal with this growing challenge.

  15. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

    PubMed Central

    Oh, Doo-Byoung

    2015-01-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444] PMID:25999178

  16. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases.

    PubMed

    Oh, Doo-Byoung

    2015-08-01

    Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy.

  17. Exosome Secretion Ameliorates Lysosomal Storage of Cholesterol in Niemann-Pick Type C Disease*

    PubMed Central

    Strauss, Katrin; Goebel, Cornelia; Runz, Heiko; Möbius, Wiebke; Weiss, Sievert; Feussner, Ivo; Simons, Mikael; Schneider, Anja

    2010-01-01

    Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis. PMID:20554533

  18. A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique.

    PubMed

    de Balogh, K K; Dimande, A P; van der Lugt, J J; Molyneux, R J; Naudé, T W; Welman, W G

    1999-05-01

    A novel plant-induced lysosomal storage disease was observed in goats from a village in Mozambique. Affected animals were ataxic, with head tremors and nystagmus. Because of a lack of suitable feed, the animals consumed an exotic hedge plant growing in the village that was identified as Ipomoea carnea (shrubby morning glory, Convolvulaceae). The toxicosis was reproduced by feeding I. carnea plant material to goats. In acute cases, histologic changes in the brain and spinal cord comprised widespread cytoplasmic vacuolation of neurons and glial cells in association with axonal spheroid formation. Ultrastructurally, cytoplasmic storage vacuoles in neurons were membrane bound and consistent with lysosomes. Cytoplasmic vacuolation was also found in neurons in the submucosal and mesenteric plexuses in the small intestine, in renal tubular epithelial cells, and in macrophage-phagocytic cells in the spleen and lymph nodes in acute cases. Residual alterations in the brain in chronic cases revealed predominantly cerebellar lesions characterized by loss of Purkinje neurons and gliosis of the Purkinje cell layer. Analysis of I. carnea plant material by gas chromatography-mass spectrometry established the presence of the mannosidase inhibitor swainsonine and 2 glycosidase inhibitors, calystegine B2 and calystegine C1, consistent with a plant-induced alpha-mannosidosis in the goats. The described storage disorder is analogous to the lysosomal storage diseases induced by ingestion of locoweeds (Astragalus and Oxytropis) and poison peas (Swainsona).

  19. Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson´s Disease

    PubMed Central

    Rivero-Ríos, Pilar; Madero-Pérez, Jesús; Fernández, Belén; Hilfiker, Sabine

    2016-01-01

    Autophagy is a cellular quality control mechanism crucial for neuronal homeostasis. Defects in autophagy are critically associated with mechanisms underlying Parkinson´s disease (PD), a common and debilitating neurodegenerative disorder. Autophagic dysfunction in PD can occur at several stages of the autophagy/lysosomal degradative machinery, contributing to the formation of intracellular protein aggregates and eventual neuronal cell death. Therefore, autophagy inducers may comprise a promising new therapeutic approach to combat neurodegeneration in PD. Several currently available FDA-approved drugs have been shown to enhance autophagy, which may allow for their repurposing for use in novel clinical conditions including PD. This review summarizes our current knowledge of deficits in the autophagy/lysosomal degradation pathways associated with PD, and highlight current approaches which target this pathway as possible means towards novel therapeutic strategies. PMID:26517050

  20. A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism

    PubMed Central

    Aflaki, Elma; Borger, Daniel K.; Moaven, Nima; Stubblefield, Barbara K.; Rogers, Steven A.; Patnaik, Samarjit; Schoenen, Frank J.; Westbroek, Wendy; Zheng, Wei; Sullivan, Patricia; Fujiwara, Hideji; Sidhu, Rohini; Khaliq, Zayd M; Lopez, Grisel J.; Goldstein, David S.; Ory, Daniel S.; Marugan, Juan

    2016-01-01

    Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT Because GBA1 mutations are the most common

  1. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier.

    PubMed

    Aronovich, Elena L; Hackett, Perry B

    2015-02-01

    Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?

  2. Postnatal and prenatal diagnosis of lysosomal storage diseases in the former Soviet Union.

    PubMed

    Krasnopolskaya, X D; Mirenburg, T V; Akhunov, V S; Voskoboeva, E Y

    1997-02-14

    Diagnosis and prevention of lysosomal storage diseases (LSD) in the former Soviet Union (FSU) is based on the interaction of various local counselling units with the Department of Inherited Metabolic Diseases (DIMD) at the Research Center of Medical Genetics (RAMS). Work began in 1982 using standard, as well as newly developed biochemical techniques. 25 different LSD were diagnosed in 445 patients from 404 families. 106 pregnancies in families at risk were monitored prenatally, and 25 affected fetuses were diagnosed and aborted. The clinical spectrum of diagnosed lysosomal storage diseases (LSD) was surprisingly heterogeneous. Besides classical forms of LSD numerous atypical forms were discovered. They included juvenile and adult forms of some sphingolipidoses manifesting as progressive dystonia, spinocerebellar degeneration and hebephrenic schizophrenia, as well as an atypical form of mucolipidosis III in which the clinical phenotype bore an obvious resemblance to that of mucopolysaccharidosis (MPS) VI. The incidence of MPS was much higher than that of other LSD. It was evaluated as 1:15000 for two regions of the FSU. This investigation revealed some peculiarities of the ethnic distribution of MPS in populations of the FSU and supported the high prevalence of the gene for Tay-Sachs disease gene in Ashkenazi Jews.

  3. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    PubMed

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  4. The Underexploited Role of Non-Coding RNAs in Lysosomal Storage Diseases

    PubMed Central

    de Queiroz, Matheus Trovão; Pereira, Vanessa Gonçalves; do Nascimento, Cinthia Castro; D’Almeida, Vânia

    2016-01-01

    Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of several cellular processes which may modulate disease onset, progression, and prognosis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a wide spectrum of manifestations. The alteration of ncRNA levels is well established in several human diseases such as cancer and auto-immune disorders; however, there is a lack of information focused on the role of ncRNA in rare diseases. Recent reports related to changes in ncRNA expression and its consequences on LSD physiopathology show us the importance to keep advancing in this field. This article will summarize recent findings and provide key points for further studies on LSD and ncRNA association. PMID:27708618

  5. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry☆

    PubMed Central

    Elliott, Susan; Buroker, Norman; Cournoyer, Jason J.; Potier, Anna M.; Trometer, Joseph D.; Elbin, Carole; Schermer, Mack J.; Kantola, Jaana; Boyce, Aaron; Turecek, Frantisek; Gelb, Michael H.; Scott, C. Ronald

    2017-01-01

    Background There is current expansion of newborn screening (NBS) programs to include lysosomal storage disorders because of the availability of treatments that produce an optimal clinical outcome when started early in life. Objective To evaluate the performance of a multiplex-tandem mass spectrometry (MS/MS) enzymatic activity assay of 6 lysosomal enzymes in a NBS laboratory for the identification of newborns at risk for developing Pompe, Mucopolysaccharidosis-I (MPS-I), Fabry, Gaucher, Niemann Pick-A/B, and Krabbe diseases. Methods and Results Enzyme activities (acid α-glucosidase (GAA), galactocerebrosidase (GALC), glucocerebrosidase (GBA), α-galactosidase A (GLA), α-iduronidase (IDUA) and sphingomyeline phosphodiesterase-1 (SMPD-1)) were measured on ~43,000 de-identified dried blood spot (DBS) punches, and screen positive samples were submitted for DNA sequencing to obtain genotype confirmation of disease risk. The 6-plex assay was efficiently performed in the Washington state NBS laboratory by a single laboratory technician at the bench using a single MS/MS instrument. The number of screen positive samples per 100,000 newborns were as follows: GAA (4.5), IDUA (13.6), GLA (18.2), SMPD1 (11.4), GBA (6.8), and GALC (25.0). Discussion A 6-plex MS/MS assay for 6 lysosomal enzymes can be successfully performed in a NBS laboratory. The analytical ranges (enzyme-dependent assay response for the quality control HIGH sample divided by that for all enzyme-independent processes) for the 6-enzymes with the MS/MS is 5- to 15-fold higher than comparable fluorimetric assays using 4-methylumbelliferyl substrates. The rate of screen positive detection is consistently lower for the MS/MS assay compared to the fluorimetric assay using a digital microfluidics platform. PMID:27238910

  6. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice.

    PubMed

    Du, Hong; Cameron, Terri L; Garger, Stephen J; Pogue, Gregory P; Hamm, Lee A; White, Earl; Hanley, Kathleen M; Grabowski, Gregory A

    2008-08-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal(-/-)) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t(1/2) values were: approximately 90 min (plasma), approximately 14 h (liver), and approximately 32 h (spleen), with return to baseline by approximately 150 h in liver and approximately 200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal(-/-) mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal(-/-) mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases.

  7. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice*

    PubMed Central

    Du, Hong; Cameron, Terri L.; Garger, Stephen J.; Pogue, Gregory P.; Hamm, Lee A.; White, Earl; Hanley, Kathleen M.; Grabowski, Gregory A.

    2008-01-01

    Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal−/−) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs. Human LAL (hLAL) was expressed in Nicotiana benthamiana using the GENEWARE® expression system (G-hLAL). Purified G-hLAL showed mannose receptor-dependent uptake into macrophage cell lines (J774E). Intraperitoneal injection of G-hLAL produced peak activities in plasma at 60 min and in the liver and spleen at 240 min. The t1/2 values were: ∼90 min (plasma), ∼14 h (liver), and ∼32 h (spleen), with return to baseline by ∼150 h in liver and ∼200 h in spleen. Ten injections of G-hLAL (every 3 days) into lal−/− mice produced normalization of hepatic color, decreases in hepatic cholesterol and TG contents, and diminished foamy macrophages in liver, spleen, and intestinal villi. All injected lal−/− mice developed anti-hLAL protein antibodies, but suffered no adverse events. These studies demonstrate the feasibility of using plant-expressed, recombinant hLAL for the enzyme therapy of human WD/CESD with general implications for other lysosomal storage diseases. PMID:18413899

  8. Abnormal pupillary light reflex with chromatic pupillometry in Gaucher disease

    PubMed Central

    Narita, Aya; Shirai, Kentarou; Kubota, Norika; Takayama, Rumiko; Takahashi, Yukitoshi; Onuki, Takanori; Numakura, Chikahiko; Kato, Mitsuhiro; Hamada, Yusuke; Sakai, Norio; Ohno, Atsuko; Asami, Maya; Matsushita, Shoko; Hayashi, Anri; Kumada, Tomohiro; Fujii, Tatsuya; Horino, Asako; Inoue, Takeshi; Kuki, Ichiro; Asakawa, Ken; Ishikawa, Hitoshi; Ohno, Koyo; Nishimura, Yoko; Tamasaki, Akiko; Maegaki, Yoshihiro; Ohno, Kousaku

    2014-01-01

    The hallmark of neuronopathic Gaucher disease (GD) is oculomotor abnormalities, but ophthalmological assessment is difficult in uncooperative patients. Chromatic pupillometry is a quantitative method to assess the pupillary light reflex (PLR) with minimal patient cooperation. Thus, we investigated whether chromatic pupillometry could be useful for neurological evaluations in GD. In our neuronopathic GD patients, red light-induced PLR was markedly impaired, whereas blue light-induced PLR was relatively spared. In addition, patients with non-neuronopathic GD showed no abnormalities. These novel findings show that chromatic pupillometry is a convenient method to detect neurological signs and monitor the course of disease in neuronopathic GD. PMID:25356393

  9. Kinetics of lysosomal storage of indigestible matter.

    PubMed Central

    Hurley, J; Alward, J

    1975-01-01

    In lysosomal storage diseases and in accumulation of lipofusion in the lysosomes there is a gradual eroding of the lysosomal system due to overloading the lysosomes by molecules which cannot be digested or expelled. The kinetics of this accumulation is examined for tissue cultures in terms of the cell growth rate, lysosomal production rate, and of generation of the indigestible element. PMID:1125388

  10. Interconversion of the Specificities of Human Lysosomal Enzymes Associated with Fabry and Schindler Diseases

    SciTech Connect

    Tomasic, Ivan B.; Metcalf, Matthew C.; Guce, Abigail I.; Clark, Nathaniel E.; Garman, Scott C.

    2010-09-03

    The human lysosomal enzymes {alpha}-galactosidase ({alpha}-GAL, EC 3.2.1.22) and {alpha}-N-acetylgalactosaminidase ({alpha}-NAGAL, EC 3.2.1.49) share 46% amino acid sequence identity and have similar folds. The active sites of the two enzymes share 11 of 13 amino acids, differing only where they interact with the 2-position of the substrates. Using a rational protein engineering approach, we interconverted the enzymatic specificity of {alpha}-GAL and {alpha}-NAGAL. The engineered {alpha}-GAL (which we call {alpha}-GALSA) retains the antigenicity of {alpha}-GAL but has acquired the enzymatic specificity of {alpha}-NAGAL. Conversely, the engineered {alpha}-NAGAL (which we call {alpha}-NAGAL{sup EL}) retains the antigenicity of {alpha}-NAGAL but has acquired the enzymatic specificity of the {alpha}-GAL enzyme. Comparison of the crystal structures of the designed enzyme {alpha}-GAL{sup SA} to the wild-type enzymes shows that active sites of {alpha}-GAL{sup SA} and {alpha}-NAGAL superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.

  11. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease

    PubMed Central

    Kizuka, Yasuhiko; Kitazume, Shinobu; Fujinawa, Reiko; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi C; Nakano, Miyako; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro; Staufenbiel, Matthias; Hatsuta, Hiroyuki; Murayama, Shigeo; Manya, Hiroshi; Endo, Tamao; Taniguchi, Naoyuki

    2015-01-01

    The β-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-β (Aβ) peptide, is a major drug target for Alzheimer's disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of Aβ-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in Aβ plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics. PMID:25592972

  12. Nonpeptidic Lysosomal Modulators Derived from Z-Phe-Ala-Diazomethylketone for Treating Protein Accumulation Diseases

    PubMed Central

    2012-01-01

    Lysosomes are involved in protein turnover and removing misfolded species, and their enzymes have the potential to offset the defect in proteolytic clearance that contributes to the age-related dementia Alzheimer's disease (AD). The weak cathepsin B and L inhibitor Z-Phe-Ala-diazomethylketone (PADK) enhances lysosomal cathepsin levels at low concentrations, thereby eliciting protective clearance of PHF-τ and Aβ42 in the hippocampus and other brain regions. Here, a class of positive modulators is established with compounds decoupled from the cathepsin inhibitory properties. We utilized PADK as a departure point to develop nonpeptidic structures with the hydroxyethyl isostere. The first-in-class modulators SD1002 and SD1003 exhibit improved levels of cathepsin up-regulation but almost complete removal of cathepsin inhibitory properties as compared to PADK. Isomers of the lead compound SD1002 were synthesized, and the modulatory activity was determined to be stereoselective. In addition, the lead compound was tested in transgenic mice with results indicating protection against AD-type protein accumulation pathology. PMID:24900408

  13. Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases.

    PubMed

    Krivit, William

    2004-11-01

    This is a review of the clinical responses and prospectus of new therapies following use of allogeneic hematopoietic stem cell transplantation for the treatment of the following disorders: Hurlers syndrome (MPS 1-H), globoid cell leukodystrophy (GLD; Krabbes disease), adrenoleukodystrophy, metachromatic leukodystrophy, Wolmans disease, I-cell disease (mucolipidosis II; MLS-II), alpha-mannosidosis, fucosidosis, Niemann-Pick B/A disease, Slys disease (MPS VII), Gauchers disease (Gaucher-II-III), Battens disease, Farbers disease, Sanfilippo syndrome (MPS-III), Hunters disease (MPS-II), Maroteaux-Lamy syndrome (MPS-VI), and aspartylglucosaminuria (AGU). Over 500 patients with lysosomal and peroxisomal metabolic storage diseases due to deficiency of primary enzymes have been treated with hematopoietic stem cell transplantation since the initial patient was treated a quarter of century ago. Normal enzymatic activity has been robust and continuous over these years without the need for any medication. Proof of principle has been reported for multiple positive effects including that of the reconstruction of the central nervous system. Furthermore, the excellent engraftment rate along with significantly diminished graft-vs-host-disease needs to be emphasized. The genetic diseases enumerated above have remarkable differences from those discussed elsewhere in this issue of Seminars in Immunopathology. Each has a greater genetic heterogeneity. Misdiagnosis resulting in delay of treatment and further decline of function and ultimate quality of life occurs almost all the time. Neonatal screening of these diseases will be mandatory to vastly improve outcomes. Plans are being implemented to use dried blood spots on filter paper, as is commonly done for many other genetic diseases. Many new therapies are being adopted which should enhance positivity and acceptance of treatment by hematopoietic stem cell transplantation.

  14. Chronic intestinal pseudo-obstruction. Did you search for lysosomal storage diseases?

    PubMed

    Politei, J; Durand, C; Schenone, A B; Torres, A; Mukdsi, J; Thurberg, B L

    2017-06-01

    Chronic intestinal pseudo-obstruction results in clinical manifestations that resemble intestinal obstruction but in the absence of any physical obstructive process. Fabry disease is an X-linked lysosomal storage disease characterized by the dysfunction of multiple systems, including significant gastrointestinal involvement. We report the occurrence of chronic intestinal pseudo-obstruction in two unrelated patients with Fabry disease and the possible explanation of a direct relation of these two disorders. In Fabry disease, gastrointestinal symptoms occur in approximately 70% of male patients, but the frequency ranges from 19% to 69% in different series. In some patients, colonic dysmotility due glycolipid deposition in autonomic plexus and ganglia can lead to the pseudo-obstruction syndrome, simulating intestinal necrosis. That is why up to this date colostomy has been performed in some cases, even for children with FD without cardiac, renal or cerebrovascular compromise. Early treatment with enzyme replacement therapy in asymptomatic or mildly symptomatic patients may be justified in order to prevent disease progression. Several studies have demonstrated that enzyme replacement therapy alleviates GI manifestations. Because of the non-specific nature of the gastrointestinal symptoms, diagnosis of Fabry disease is often delayed for several years. Gastrointestinal involvement is often misdiagnosed or under-reported. It is therefore very important to consider Fabry disease in the differential diagnosis of chronic intestinal pseudo-obstruction.

  15. Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity

    PubMed Central

    Gupta, N; Oppenheim, IM; Kauvar, EF; Tayebi, N; Sidransky, E

    2010-01-01

    Gaucher disease (GD), the most common lysosomal storage disease, results from a deficiency of the lysosomal enzyme glucocerebrosidase. GD has been classified into 3 types, of which type 2 (the acute neuronopathic form) is most severe, presenting pre- or perinatally, or in the first few months of life. Traditionally, type 2 GD was considered to have the most uniform clinical phenotype when compared to other GD subtypes. However, case studies over time have demonstrated that type 2 GD, like types 1 and 3, manifests with a spectrum of phenotypes. This review includes case reports that illustrate the broad range of clinical presentations encountered in type 2 GD, as well as a discussion of associated manifestations, pathological findings, diagnostic techniques, and a review of current therapies. While type 2 GD is generally associated with severe mutations in the glucocerebrosidase gene, there is also significant genotypic heterogeneity observed. PMID:20880730

  16. Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy.

    PubMed

    Ohmi, Kazuhiro; Kudo, Lili C; Ryazantsev, Sergey; Zhao, Hui-Zhi; Karsten, Stanislav L; Neufeld, Elizabeth F

    2009-05-19

    Sanfilippo syndrome type B (mucopolysaccharidosis III B, MPS III B) is an autosomal recessive, neurodegenerative disease of children, characterized by profound mental retardation and dementia. The primary cause is mutation in the NAGLU gene, resulting in deficiency of alpha-N-acetylglucosaminidase and lysosomal accumulation of heparan sulfate. In the mouse model of MPS III B, neurons and microglia display the characteristic vacuolation of lysosomal storage of undegraded substrate, but neurons in the medial entorhinal cortex (MEC) display accumulation of several additional substances. We used whole genome microarray analysis to examine differential gene expression in MEC neurons isolated by laser capture microdissection from Naglu(-/-) and Naglu(+/-) mice. Neurons from the lateral entorhinal cortex (LEC) were used as tissue controls. The highest increase in gene expression (6- to 7-fold between mutant and control) in MEC and LEC neurons was that of Lyzs, which encodes lysozyme, but accumulation of lysozyme protein was seen in MEC neurons only. Because of a report that lysozyme induced the formation of hyperphosphorylated tau (P-tau) in cultured neurons, we searched for P-tau by immunohistochemistry. P-tau was found in MEC of Naglu(-/-) mice, in the same neurons as lysozyme. In older mutant mice, it was also seen in the dentate gyrus, an area important for memory. Electron microscopy of dentate gyrus neurons showed cytoplasmic inclusions of paired helical filaments, P-tau aggregates characteristic of tauopathies-a group of age-related dementias that include Alzheimer disease. Our findings indicate that the Sanfilippo syndrome type B should also be considered a tauopathy.

  17. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes.

    PubMed Central

    Zimmer, K P; Poremba, C; Weber, P; Ciclitira, P J; Harms, E

    1995-01-01

    Coeliac disease is triggered by ingestion of wheat gliadin and is probably immune mediated. There is evidence by light microscopy that expression of class II major histocompatibility complex (MHC) molecules is increased in the small intestinal epithelium of patients with untreated coeliac disease and that gliadin can be taken up by small intestinal enterocytes. The pathway by which gliadin is transported to class II MHC proteins has not been demonstrated. Using an immunogold technique and thin frozen sections of jejunal biopsy specimens, gliadin, HLA-DR antigens, and IgA were localised at an ultrastructural level in the jejunal epithelium of patients with both untreated and treated coeliac disease and controls. Cathepsin D was used as a marker for late endosomes or lysosomes. The results show that gliadin is translocated into vacuoles positive for HLA-DR antigens as well as cathepsin D in jejunal enterocytes of patients with untreated coeliac disease. Secretory IgA may have a role in this translocation of gliadin, which is a specific event that occurred only in jejunal enterocytes from patients with untreated coeliac disease but not in a patient maintained on a gluten free diet or in controls. These results support a central role for epithelial cells of the human intestinal mucosa in the transport of gliadin to an HLA-DR positive compartment which precedes antigen presentation of gliadin to antigen sensitive T lymphocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7797120

  18. Invariant natural killer T cells are not affected by lysosomal storage in patients with Niemann-Pick disease type C.

    PubMed

    Speak, Anneliese O; Platt, Nicholas; Salio, Mariolina; te Vruchte, Danielle; Smith, David A; Shepherd, Dawn; Veerapen, Natacha; Besra, Gurdyal S; Yanjanin, Nicole M; Simmons, Louise; Imrie, Jackie; Wraith, James E; Lachmann, Robin H; Hartung, Ralf; Runz, Heiko; Mengel, Eugen; Beck, Michael; Hendriksz, Christian J; Porter, Forbes D; Cerundolo, Vincenzo; Platt, Frances M

    2012-07-01

    Invariant natural killer T (iNKT) cells are a specialised subset of T cells that are restricted to the MHC class I like molecule, CD1d. The ligands for iNKT cells are lipids, with the canonical superagonist being α-galactosylceramide, a non-mammalian glycosphingolipid. Trafficking of CD1d through the lysosome is required for the development of murine iNKT cells. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by dysfunction in either of two lysosomal proteins, NPC1 or NPC2, resulting in the storage of multiple lipids, including glycosphingolipids. In the NPC1 mouse model, iNKT cells are virtually undetectable, which is likely due to the inability of CD1d to be loaded with the selecting ligand due to defective lysosomal function and/or CD1d trafficking. However, in this study we have found that in NPC1 patients iNKT cells are present at normal frequencies, with no phenotypic or functional differences. In addi-tion, antigen-presenting cells derived from NPC1 patients are functionally competent to present several different CD1d/iNKT-cell ligands. This further supports the hypothesis that there are different trafficking requirements for the development of murine and human iNKT cells, and a functional lysosomal/late-endosomal compartment is not required for human iNKT-cell development.

  19. [Cestode lysosomes].

    PubMed

    Smirnov, L P; Bogdan, V V

    1989-01-01

    By differential centrifugation method a lysosomal fraction was obtained from five species of cestodes, which possesses the highest specific activity of acidic phosphatases as compared to other subcellular fractions. By isopyknic centrifugation in the density gradient of saccharose the lysosomal fraction is divided into primary and secondary lysosomes. Lysosomes of cestodes are similar to those of vertebrate animals in the character of fractional distribution of acidic phosphatase, sedimentation abilities and sensitivity of membranes to triton X-100.

  20. Lysosome-associated protein 1 (LAMP-1) and lysosome-associated protein 2 (LAMP-2) in a larger family carrier of Fabry disease.

    PubMed

    Pereira, Ester M; do Monte, Semiramis J H; do Nascimento, Fernando F; de Castro, Jose A F; Sousa, Jackeline L M; Filho, Henrique C S A L C; da Silva, Raimundo N; Labilloy, Anatália; Monte Neto, José T; da Silva, Adalberto S

    2014-02-15

    This study investigated the potential relationship between the expression levels of lysosome-associated membrane proteins (LAMP) 1 and 2 and responses to enzyme replacement therapy (ERT) in the members of a single family with Fabry disease (FD). LAMP levels were assessed by flow cytometry in leukocytes from 17 FD patients who received an eight-month course of ERT course and 101 healthy individuals. We found that phagocytic cells from the FD patients had higher expression levels of both LAMP-1 and LAMP-2, relative to the levels in phagocytes from the healthy controls (p=0.001). Furthermore, the LAMP-1 and LAMP-2 levels in phagocytes from the FD carriers continuously decreased with ERT administration to reach levels similar to those in healthy controls. We suggest that LAMP-1 and LAMP-2 could be used as additional markers with which to assess ERT effectiveness in FD.

  1. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells

    PubMed Central

    McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J. Mark; Abramov, Andrey Y.; Gegg, Matthew

    2014-01-01

    Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson’s disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson’s disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson’s disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson’s disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson’s disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased

  2. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells.

    PubMed

    McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J Mark; Abramov, Andrey Y; Gegg, Matthew; Schapira, Anthony H V

    2014-05-01

    Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson's disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson's disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased by a

  3. Oral Health Status of Patients with Lysosomal Storage Diseases in Poland

    PubMed Central

    Drążewski, Damian; Grzymisławska, Małgorzata; Korybalska, Katarzyna; Czepulis, Natasza; Grzymisławski, Marian; Witowski, Janusz; Surdacka, Anna

    2017-01-01

    Patients with lysosomal storage diseases (LSDs) suffer from physical and mental disabilities, which together with poor access to professional care may lead to impaired oral health. This cross-sectional case-control study characterized the status of oral health in patients with LSDs in Poland. Thirty-six children and young adults with various forms of LSDs were examined. The data were compared with those from age- and sex-matched healthy controls. Exemplary cases were presented to highlight typical problems in oral care associated with LSDs. When possible, saliva was collected and analyzed for total protein, inflammatory mediators, and antioxidant status. Generally, patients with LSDs had significantly higher prevalence of caries, inferior gingival status, and inadequate oral hygiene. The severity of oral health impairment in mucopolysaccaridoses, the most common LSD in Poland, was similar to that seen in patients with mannosidoses or Pompe disease. Saliva could be collected only from few less handicapped patients. In MPS, it did not appear to differ significantly from the controls, but in patients with Pompe disease it contained lower concentrations of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1), but higher levels of tumor necrosis factor receptors 1 and 2 (TNF-R1, TNF-R2) and myeloperoxidase (MPO). In conclusion, Polish patients with LSDs have an inadequate level of oral hygiene and substantially deteriorated oral health. PMID:28282939

  4. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease.

    PubMed

    Peters, Judith; Rittger, Andrea; Weisner, Rebecca; Knabbe, Johannes; Zunke, Friederike; Rothaug, Michelle; Damme, Markus; Berkovic, Samuel F; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2015-02-13

    The lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) has been identified as a receptor for enterovirus 71 uptake and mannose-6-phosphate-independent lysosomal trafficking of the acid hydrolase β-glucocerebrosidase. Here we show that LIMP-2 undergoes proteolytic cleavage mediated by lysosomal cysteine proteases. Heterologous expression and in vitro studies suggest that cathepsin-F is mainly responsible for the lysosomal processing of wild-type LIMP-2. Furthermore, examination of purified lysosomes revealed that LIMP-2 undergoes proteolysis in vivo. Mutations in the gene encoding cathepsin-F (CTSF) have recently been associated with type-B-Kufs-disease, an adult form of neuronal ceroid-lipofuscinosis. In this study we show that disease-causing cathepsin-F mutants fail to cleave LIMP-2. Our findings provide evidence that LIMP-2 represents an in vivo substrate of cathepsin-F with relevance for understanding the pathophysiology of type-B-Kufs-disease.

  5. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    PubMed

    Mu, Ting-Wei; Fowler, Douglas M; Kelly, Jeffery W

    2008-02-01

    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  6. Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial-lysosomal axis and alleviates autophagic blockage in Pompe disease.

    PubMed

    Nilsson, M I; MacNeil, L G; Kitaoka, Y; Suri, R; Young, S P; Kaczor, J J; Nates, N J; Ansari, M U; Wong, T; Ahktar, M; Brandt, L; Hettinga, B P; Tarnopolsky, M A

    2015-10-01

    A unifying feature in the pathogenesis of aging, neurodegenerative disease, and lysosomal storage disorders is the progressive deposition of macromolecular debris impervious to enzyme catalysis by cellular waste disposal mechanisms (e.g., lipofuscin). Aerobic exercise training (AET) has pleiotropic effects and stimulates mitochondrial biogenesis, antioxidant defense systems, and autophagic flux in multiple organs and tissues. Our aim was to explore the therapeutic potential of AET as an ancillary therapy to mitigate autophagic buildup and oxidative damage and rejuvenate the mitochondrial-lysosomal axis in Pompe disease (GSD II/PD). Fourteen weeks of combined recombinant acid α-glucosidase (rhGAA) and AET polytherapy attenuated mitochondrial swelling, fortified antioxidant defense systems, reduced oxidative damage, and augmented glycogen clearance and removal of autophagic debris/lipofuscin in fast-twitch skeletal muscle of GAA-KO mice. Ancillary AET potently augmented the pool of PI4KA transcripts and exerted a mild restorative effect on Syt VII and VAMP-5/myobrevin, collectively suggesting improved endosomal transport and Ca(2+)- mediated lysosomal exocytosis. Compared with traditional rhGAA monotherapy, AET and rhGAA polytherapy effectively mitigated buildup of protein carbonyls, autophagic debris/lipofuscin, and P62/SQSTM1, while enhancing MnSOD expression, nuclear translocation of Nrf-2, muscle mass, and motor function in GAA-KO mice. Combined AET and rhGAA therapy reactivates cellular clearance pathways, mitigates mitochondrial senescence, and strengthens antioxidant defense systems in GSD II/PD. Aerobic exercise training (or pharmacologic targeting of contractile-activity-induced pathways) may have therapeutic potential for mitochondrial-lysosomal axis rejuvenation in lysosomal storage disorders and related conditions (e.g., aging and neurodegenerative disease).

  7. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease.

    PubMed

    Raben, Nina; Schreiner, Cynthia; Baum, Rebecca; Takikita, Shoichi; Xu, Sengen; Xie, Tao; Myerowitz, Rachel; Komatsu, Masaaki; Van der Meulen, Jack H; Nagaraju, Kanneboyina; Ralston, Evelyn; Plotz, Paul H

    2010-11-01

    Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.

  8. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder—murine Pompe disease

    PubMed Central

    Takikita, Shoichi; Xu, Sengen; Xie, Tao; Myerowitz, Rachel; Komatsu, Masaaki; Van Der Meulen, Jack H; Nagaraju, Kanneboyina; Ralston, Evelyn; Plotz, Paul H

    2010-01-01

    Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alpha-glucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy. PMID:20861693

  9. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP.

    PubMed

    Coffey, E E; Beckel, J M; Laties, A M; Mitchell, C H

    2014-03-28

    Mutation in presenilin 1 (PS1) is one of the leading causes of familial Alzheimer's disease (fAD). PS1 mutation exacerbates the autophagic and lysosomal pathology in AD patients, leading to accumulation of partially degraded material in bloated lysosomes and autophagosomes - a pathology that bears some resemblance to other diseases characterized by elevated lysosomal pH, like age-related macular degeneration. In this study, we examined the effect of the PS1-fAD mutation A246E on lysosomal pH and lysosomal function, and asked whether restoration of lysosomal pH could reverse some of these changes. Lysosomal pH was elevated by 0.2-0.3 pH units in human fibroblasts with the PS1-fAD mutation. The lysosomal alkalization in PS1-fAD fibroblasts was supported by a reduction in the pH-dependent cleavage of cathepsin D and by a reduction in binding of boron-dipyrromethene (BODIPY) FL-pepstatin A to the cathepsin D active site. PS1-fAD cells had increased LC3B-II/-I ratios and p62 levels, consistent with impaired lysosomal degradation and analogous to changes induced by lysosomal alkalinization with chloroquine. PS1-fAD fibroblasts had increased expression of ATP6V1B2, ATG5, BECN1 TFEB mRNA, and of ATP6V1B2, ATG5 and beclin at the protein level, consistent with chronic impairment of autophagic and lysosomal functions in the mutant cells. Critically, cyclic adenosine monophosphate (cAMP) treatment reacidified lysosomal pH in mutant PS1-fAD; cAMP also increased the availability of active cathepsin D and lowered the LC3B-II/-I ratio. These results confirm a small elevation in the lysosomal pH of human PS1-fAD fibroblasts, demonstrate that this lysosomal alkalization is associated with chronic changes in autophagy and degradation, and suggest that treatment to reacidify the lysosomes with cAMP can reverse these changes.

  10. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    SciTech Connect

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.; McGillivray, B.C.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. This missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.

  11. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease

    PubMed Central

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95–1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61–1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51–0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004–1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241–5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248–0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis. PMID:26288848

  12. Reduced Lysosomal Acid Lipase Activity in Adult Patients With Non-alcoholic Fatty Liver Disease.

    PubMed

    Baratta, Francesco; Pastori, Daniele; Del Ben, Maria; Polimeni, Licia; Labbadia, Giancarlo; Di Santo, Serena; Piemonte, Fiorella; Tozzi, Giulia; Violi, Francesco; Angelico, Francesco

    2015-07-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by intra-hepatic fat accumulation and mechanisms involved in its pathogenesis are not fully explained. Lysosomal Acid Lipase (LAL) is a key enzyme in lipid metabolism. We investigated its activity in patients with fatty liver. LAL activity (nmol/spot/h) was measured in 100 adult healthy subjects (HS) and in 240 NAFLD patients. A sub-analysis on 35 patients with biopsy-proven non-alcoholic steatohepatitis (NASH) was performed. Median LAL activity was 1.15 (0.95-1.72) in HS. It was significantly reduced in NAFLD [0.78 (0.61-1.01), p < 0.001 vs. HS]. A further reduction was observed in the subgroup of NASH [0.67 (0.51-0.77), p < 0.001 vs. HS]. Patients with LAL activity below median had higher values of serum total cholesterol (p < 0.05) and LDL-c (p < 0.05), and increased serum liver enzymes (ALT, p < 0.001; AST, p < 0.01; GGT, p < 0.01). At multivariable logistic regression analysis, factors associated with LAL activity below median were ALT (OR: 1.018, 95% CI 1.004-1.032, p = 0.011) and metabolic syndrome (OR: 2.551, 95% CI 1.241-5.245, p = 0.011), whilst statin use predicted a better LAL function (OR: 0.464, 95% CI 0.248-0.866, p = 0.016). Our findings suggest a strong association between impaired LAL activity and NAFLD. A better knowledge of the role of LAL may provide new insights in NAFLD pathogenesis.

  13. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.

    PubMed

    Tanaka, Yoshinori; Suzuki, Genjiro; Matsuwaki, Takashi; Hosokawa, Masato; Serrano, Geidy; Beach, Thomas G; Yamanouchi, Keitaro; Hasegawa, Masato; Nishihara, Masugi

    2017-01-10

    Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN is implicated in lysosomal functions. Here, we show PGRN is a secretory lysosomal protein that regulates lysosomal function and biogenesis by controlling the acidification of lysosomes. PGRN gene expression and protein levels increased concomitantly with the increase of lysosomal biogenesis induced by lysosome alkalizers or serum starvation. Down-regulation or insufficiency of PGRN led to the increased lysosomal gene expression and protein levels, while PGRN overexpression led to the decreased lysosomal gene expression and protein levels. In particular, the level of mature cathepsin D (CTSDmat) dramatically changed depending upon PGRN levels. The acidification of lysosomes was facilitated in cells transfected with PGRN. Then, this caused degradation of CTSDmat by cathepsin B. Secreted PGRN is incorporated into cells via sortilin or cation-independent mannose 6-phosphate receptor, and facilitated the acidification of lysosomes and degradation of CTSDmat Moreover, the change of PGRN levels led to a cell-type-specific increase of insoluble TDP-43. In the brain tissue of FTLD-TDP patients with PGRN deficiency, CTSD and phosphorylated TDP-43 accumulated in neurons. Our study provides new insights into the physiological function of PGRN and the role of PGRN insufficiency in the pathogenesis of neurodegenerative diseases.

  14. TFEB regulates lysosomal proteostasis.

    PubMed

    Song, Wensi; Wang, Fan; Savini, Marzia; Ake, Ashley; di Ronza, Alberto; Sardiello, Marco; Segatori, Laura

    2013-05-15

    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.

  15. Effect of Readthrough Treatment in Fibroblasts of Patients Affected by Lysosomal Diseases Caused by Premature Termination Codons.

    PubMed

    Matalonga, Leslie; Arias, Ángela; Tort, Frederic; Ferrer-Cortés, Xènia; Garcia-Villoria, Judit; Coll, Maria Josep; Gort, Laura; Ribes, Antonia

    2015-10-01

    Aminoglycoside antibiotics, such as gentamicin, may induce premature termination codon (PTC) readthrough and elude the nonsense-mediated mRNA decay mechanism. Because PTCs are frequently involved in lysosomal diseases, readthrough compounds may be useful as potential therapeutic agents. The aim of our study was to identify patients responsive to gentamicin treatment in order to be used as positive controls to further screen for other PTC readthrough compounds. With this aim, fibroblasts from 11 patients affected by 6 different lysosomal diseases carrying PTCs were treated with gentamicin. Treatment response was evaluated by measuring enzymatic activity, abnormal metabolite accumulation, mRNA expression, protein localization, and cell viability. The potential effect of readthrough was also analyzed by in silico predictions. Results showed that fibroblasts from 5/11 patients exhibited an up to 3-fold increase of enzymatic activity after gentamicin treatment. Accordingly, cell lines tested showed enhanced well-localized protein and/or increased mRNA expression levels and/or reduced metabolite accumulation. Interestingly, these cell lines also showed increased enzymatic activity after PTC124 treatment, which is a PTC readthrough-promoting compound. In conclusion, our results provide a proof-of-concept that PTCs can be effectively suppressed by readthrough drugs, with different efficiencies depending on the genetic context. The screening of new compounds with readthrough activity is a strategy that can be used to develop efficient therapies for diseases caused by PTC mutations.

  16. Glial fibrillary acidic protein is elevated in the lysosomal storage disease classical late-infantile neuronal ceroid lipofuscinosis but is not a component of the storage material

    PubMed Central

    XU, Su; SLEAT, David E.; JADOT, Michel; LOBEL, Peter

    2010-01-01

    Classical late neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease of children caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl peptidase 1. LINCL is characterized by lysosomal accumulation of storage material of which only a single protein component, subunit c of mitochondrial ATP synthase, has been well established to date. Identification of other protein constituents of the storage material could provide useful insights into the pathophysiology of disease and the natural substrates for TPP1. We have therefore initiated a proteomic analysis of storage material in brain from a LINCL mouse model. One protein, glial fibrillary acidic protein (GFAP), was found to be elevated in the LINCL mice compared to normal controls in both isolated storage bodies and a lysosome-enriched subcellular fraction that contains storage material. To determine whether GFAP accumulates within the lysosome in LINCL, we examined its intracellular distribution using subcellular fractionation and morphological methods. These experiments demonstrate that GFAP is not a component of the storage material in LINCL, suggesting that reports of GFAP storage in other NCLs may need to be reexamined. A number of other proteins were elevated in the storage material and/or lysosome-enriched fraction from the LINCL mice but it remains unclear whether these proteins are true constituents of the storage material or, like GFAP, if they associate with this material upon purification. PMID:20370715

  17. Lysosomal cell death mechanisms in aging.

    PubMed

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies.

  18. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease.

    PubMed

    Alvarado, Raquel; O'Brien, Bronwyn; Tanaka, Akane; Dalton, John P; Donnelly, Sheila

    2015-02-01

    Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues.

  19. MRI and MRS findings in fucosidosis; a rare lysosomal storage disease.

    PubMed

    Ediz, Suna Sahin; Aralasmak, Ayse; Yilmaz, Temel Fatih; Toprak, Huseyin; Yesil, Gozde; Alkan, Alpay

    2016-04-01

    Fucosidosis is a rare lysosomal storage disorder caused by deficient activity of the enzyme l-fucosidase in all tissues. We presented magnetic resonance imaging [MRI] and MR spectroscopy [MRS] findings of a 4-year-old boy with genetically proven fucosidosis. He had a history and clinical findings of recurrent sinopulmonary infections, hypertonicity on lower extremities, gingival hypertrophy, bilateral ptosis, angiokeratoma corporis diffusum, and dysostosis multiplex. He had no organomegaly and urine glycosaminoglycan analysis were normal. MRI revealed abnormalities within the globus pallidus and periventricular and subcortical white matter. MRS showed a peak at the 3.8-3.9 ppm as a result of accumulating carbohydrate containing macromolecules and another peak at 1.2 which was doublet and inverted on TE 135, suggesting fructose peak. A final diagnosis of fucosidosis was proved by mutational analysis of FUCA1 gene which is responsible for the Fucosidosis phenotype. Two recent reports of MRS of two patients demonstrated that MRS is specific for fucosidosis. In this case, we aim to discuss fucosidosis with MRI and MRS findings accompanied by the literature.

  20. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors.

    PubMed

    Liu, Gumei; Martins, Inês; Wemmie, John A; Chiorini, John A; Davidson, Beverly L

    2005-10-12

    Lysosomal storage diseases (LSDs) represent a significant portion of inborn metabolic disorders. More than 60% of LSDs have CNS involvement. LSD therapies for systemic diseases have been developed, but efficacy does not extend to the CNS. In this study, we tested whether adeno-associated virus type 4 (AAV4) vectors could mediate global functional and pathological improvements in a murine model of mucopolysaccharidosis type VII (MPS VII) caused by beta-glucuronidase deficiency. Recombinant AAV4 vectors encoding beta-glucuronidase were injected unilaterally into the lateral ventricle of MPS VII mice with established disease. Transduced ependyma expressed high levels of recombinant enzyme, with secreted enzyme penetrating cerebral and cerebellar structures, as well as the brainstem. Immunohistochemical studies revealed close association of recombinant enzyme and brain microvasculature, indicating that beta-glucuronidase reached brain parenchyma via the perivascular spaces lining blood vessels. Aversive associative learning was tested by context fear conditioning. Compared with age-matched heterozygous controls, affected mice showed impaired conditioned fear response and context discrimination. This behavioral deficit was reversed 6 weeks after gene transfer in AAV4 beta-glucuronidase-treated MPS VII mice. Our data show that ependymal cells can serve as a source of enzyme secretion into the surrounding brain parenchyma and CSF. Secreted enzymes subsequently spread via various routes to reach structures throughout the brain and mediated pathological and functional disease correction. Together, our proof-of-principal experiments suggest a unique and efficient manner for treating the global CNS deficits in LSD patients.

  1. Structural Basis of Sterol Binding by NPC2, a Lysosomal Protein Deficient in Niemann-Pick Type C2 Disease

    SciTech Connect

    Xu,S.; Benoff, B.; Liou, H.; Lobel, P.; Stock, A.

    2007-01-01

    NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two {beta}-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the {beta}-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.

  2. Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease.

    PubMed

    Hirst, Jennifer; Edgar, James R; Esteves, Typhaine; Darios, Frédéric; Madeo, Marianna; Chang, Jaerak; Roda, Ricardo H; Dürr, Alexandra; Anheim, Mathieu; Gellera, Cinzia; Li, Jun; Züchner, Stephan; Mariotti, Caterina; Stevanin, Giovanni; Blackstone, Craig; Kruer, Michael C; Robinson, Margaret S

    2015-09-01

    Adaptor proteins (AP 1-5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and 'fingerprint bodies'. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.

  3. STRUCTURAL BASIS OF STEROL BINDING BY NPC2, A LYSOSOMAL PROTEIN DEFICIENT IN NIEMANN-PICK TYPE C2 DISEASE*

    PubMed Central

    Xu, Sujuan; Benoff, Brian; Liou, Heng-Ling; Lobel, Peter; Stock, Ann M.

    2013-01-01

    NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo- and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two β sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the β strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity. PMID:17573352

  4. Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease

    PubMed Central

    Richardson, Katie; Livieratos, Achilleas; Dumbill, Richard; Hughes, Steven; Ang, Gauri; Smith, David A.; Morris, Lauren; Brown, Laurence A.; Peirson, Stuart N.; Platt, Frances M.; Davies, Kay E.; Oliver, Peter L.

    2016-01-01

    Sleep and circadian rhythm disruption is frequently associated with neurodegenerative disease, yet it is unclear how the specific pathology in these disorders leads to abnormal rest/activity profiles. To investigate whether the pathological features of lysosomal storage disorders (LSDs) influence the core molecular clock or the circadian behavioural abnormalities reported in some patients, we examined mouse models of Niemann-Pick Type-C (Npc1 mutant, Npc1nih) and Sandhoff (Hexb knockout, Hexb−/−) disease using wheel-running activity measurement, neuropathology and clock gene expression analysis. Both mutants exhibited regular, entrained rest/activity patterns under light:dark (LD) conditions despite the onset of their respective neurodegenerative phenotypes. A slightly shortened free-running period and changes in Per1 gene expression were observed in Hexb−/− mice under constant dark conditions (DD); however, no overt neuropathology was detected in the suprachiasmatic nucleus (SCN). Conversely, despite extensive cholesterol accumulation in the SCN of Npc1nih mutants, no circadian disruption was observed under constant conditions. Our results indicate the accumulation of specific metabolites in LSDs may differentially contribute to circadian deregulation at the molecular and behavioural level. PMID:26467605

  5. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    PubMed Central

    Rockwell, Hannah E.; McCurdy, Victoria J.; Eaton, Samuel C.; Wilson, Diane U.; Johnson, Aime K.; Randle, Ashley N.; Bradbury, Allison M.; Gray-Edwards, Heather L.; Baker, Henry J.; Hudson, Judith A.; Cox, Nancy R.; Sena-Esteves, Miguel; Seyfried, Thomas N.

    2015-01-01

    Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients. PMID:25873306

  6. IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation

    PubMed Central

    Bayraktar, Oznur; Akkoc, Yunus; Eberhart, Karin; Kosar, Ali

    2016-01-01

    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget’s Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies. PMID:27768726

  7. Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction.

    PubMed

    Kishnani, Priya S; Dickson, Patricia I; Muldowney, Laurie; Lee, Jessica J; Rosenberg, Amy; Abichandani, Rekha; Bluestone, Jeffrey A; Burton, Barbara K; Dewey, Maureen; Freitas, Alexandra; Gavin, Derek; Griebel, Donna; Hogan, Melissa; Holland, Stephen; Tanpaiboon, Pranoot; Turka, Laurence A; Utz, Jeanine J; Wang, Yow-Ming; Whitley, Chester B; Kazi, Zoheb B; Pariser, Anne R

    2016-02-01

    The US Food and Drug Administration (FDA) and National Organization for Rare Disease (NORD) convened a public workshop titled "Immune Responses to Enzyme Replacement Therapies: Role of Immune Tolerance Induction" to discuss the impact of anti-drug antibodies (ADAs) on efficacy and safety of enzyme replacement therapies (ERTs) intended to treat patients with lysosomal storage diseases (LSDs). Participants in the workshop included FDA staff, clinicians, scientists, patients, industry, and advocacy group representatives. The risks and benefits of implementing prophylactic immune tolerance induction (ITI) to reduce the potential clinical impact of antibody development were considered. Complications due to immune responses to ERT are being recognized with increasing experience and lengths of exposure to ERTs to treat several LSDs. Strategies to mitigate immune responses and to optimize therapies are needed. Discussions during the workshop resulted in the identification of knowledge gaps and future areas of research, as well as the following proposals from the participants: (1) systematic collection of longitudinal data on immunogenicity to better understand the impact of ADAs on long-term clinical outcomes; (2) development of disease-specific biomarkers and outcome measures to assess the effect of ADAs and ITI on efficacy and safety; (3) development of consistent approaches to ADA assays to allow comparisons of immunogenicity data across different products and disease groups, and to expedite reporting of results; (4) establishment of a system to widely share data on antibody titers following treatment with ERTs; (5) identification of components of the protein that are immunogenic so that triggers and components of the immune responses can be targeted in ITI; and (6) consideration of early ITI in patients who are at risk of developing clinically relevant ADA that have been demonstrated to worsen treatment outcomes.

  8. Low-dose Gene Therapy Reduces the Frequency of Enzyme Replacement Therapy in a Mouse Model of Lysosomal Storage Disease

    PubMed Central

    Alliegro, Marialuisa; Ferla, Rita; Nusco, Edoardo; De Leonibus, Chiara; Settembre, Carmine; Auricchio, Alberto

    2016-01-01

    Enzyme replacement therapy (ERT) is the standard of care for several lysosomal storage diseases (LSDs). ERT, however, requires multiple and costly administrations and has limited efficacy. We recently showed that a single high dose administration of adeno-associated viral vector serotype 8 (AAV2/8) is at least as effective as weekly ERT in a mouse model of mucopolysaccharidosis type VI (MPS VI). However, systemic administration of high doses of AAV might result in both cell-mediated immune responses and insertional mutagenesis. Here we evaluated whether the combination of low doses of AAV2/8 with a less frequent (monthly) than canonical (weekly) ERT schedule may be as effective as the single treatments at high doses or frequent regimen. A greater reduction of both urinary glycosaminoglycans, considered a sensitive biomarker of therapeutic efficacy, and storage in the myocardium and heart valves was observed in mice receiving the combined than the single therapies. Importantly, these levels of correction were similar to those we obtained in a previous study following either high doses of AAV2/8 or weekly ERT. Our data show that low-dose gene therapy can be used as a means to rarify ERT administration, thus reducing both the risks and costs associated with either therapies. PMID:27658524

  9. Lysosomal Acid Lipase Deficiency in 23 Spanish Patients: High Frequency of the Novel c.966+2T>G Mutation in Wolman Disease.

    PubMed

    Ruiz-Andrés, Carla; Sellés, Elena; Arias, Angela; Gort, Laura

    2017-02-21

    Lysosomal acid lipase (LAL) is a lysosomal key enzyme involved in the intracellular hydrolysis of cholesteryl esters and triglycerides. Patients with very low residual LAL activity present with the infantile severe form Wolman disease (WD), while patients with some residual activity develop the less severe disorder known as Cholesteryl ester storage disorder (CESD). We present the clinical, biochemical, and molecular findings of 23 Spanish patients (22 families) with LAL deficiency. We identified eight different mutations, four of them not previously reported. The novel c.966+2T>G mutation accounted for 75% of the Wolman disease alleles, and the frequent CESD associated c.894G>A mutation accounted for 55% of the CESD alleles in our cohort. Haplotype analysis showed that both mutations co-segregated with a unique haplotype suggesting a common ancestor. Our study contributes to the LAL deficiency acknowledgement with novel mutations and with high frequencies of some unknown mutations for WD.

  10. LITAF mutations associated with Charcot-Marie-Tooth disease 1C show mislocalization from the late endosome/lysosome to the mitochondria.

    PubMed

    Lacerda, Andressa Ferreira; Hartjes, Emily; Brunetti, Craig R

    2014-01-01

    Charcot-Marie-Tooth (CMT) disease is one of the most common heritable neuromuscular disorders, affecting 1 in every 2500 people. Mutations in LITAF have been shown to be causative for CMT type 1C disease. In this paper we explore the subcellular localization of wild type LITAF and mutant forms of LITAF known to cause CMT1C (T49M, A111G, G112S, T115N, W116G, L122V and P135T). The results show that LITAF mutants A111G, G112S, W116G, and T115N mislocalize from the late endosome/lysosome to the mitochondria while the mutants T49M, L122V, and P135T show partial mislocalization with a portion of the total protein present in the late endosome/lysosome and the remainder of the protein localized to the mitochondria. This suggests that different mutants of LITAF will produce differing severity of disease. We also explored the effect of the presence of mutant LITAF on wild-type LITAF localization. We showed that in cells heterozygous for LITAF, CMT1C mutants T49M and G112S are dominant since wild-type LITAF localized to the mitochondria when co-transfected with a LITAF mutant. Finally, we demonstrated how LITAF transits to the endosome and mitochondria compartments of the cell. Using Brefeldin A to block ER to Golgi transport we demonstrated that wild type LITAF traffics through the secretory pathway to the late endosome/lysosome while the LITAF mutants transit to the mitochondria independent of the secretory pathway. In addition, we demonstrated that the C-terminus of LITAF is necessary and sufficient for targeting of wild-type LITAF to the late endosome/lysosome and the mutants to the mitochondria. Together these data provide insight into how mutations in LITAF cause CMT1C disease.

  11. The second report of a new hypomyelinating disease due to a defect in the VPS11 gene discloses a massive lysosomal involvement.

    PubMed

    Hörtnagel, Konstanze; Krägeloh-Mann, Inge; Bornemann, Antje; Döcker, Miriam; Biskup, Saskia; Mayrhofer, Heidi; Battke, Florian; du Bois, Gabriele; Harzer, Klaus

    2016-11-01

    Vesicular protein sorting-associated proteins (VPS, including VPS11) are indispensable in the endocytic network, in particular the endosome-lysosome biogenesis. Exome sequencing revealed the homozygous variant p.Leu387_ Gly395del in the VPS11 gene in two siblings. On immunoblotting, the mutant VPS11 protein showed a distinctly reduced immunostaining intensity. The children presented with primary and severe developmental delay associated with myoclonic seizures, spastic tetraplegia, trunk and neck hypotonia, blindness, hearing loss, and microcephaly. Neuro-imaging showed severe hypomyelination affecting cerebral and cerebellar white matter and corpus callosum, in the absence of a peripheral neuropathy. Electron microscopy of a skin biopsy revealed clusters of membranous cytoplasmic bodies in dermal unmyelinated nerve axons, and numbers of vacuoles in eccrine sweat glands, similar to what is seen in a classic lysosomal storage disease (LSD). Bone marrow cytology showed a high number of storage macrophages with a micro-vacuolated cytoplasm. Biochemically, changes in urinary glycosphingolipids were reminiscent of those in prosaposin deficiency (another LSD). The clinical and neuro-imaged features in our patients were almost identical to those in some recently reported patients with another variant in the VPS11 gene, p.Cys846Gly; underlining the presumed pathogenic potential of VPS11 defects. A new feature was the morphological evidence for lysosomal storage in VPS11 deficiency: This newly characterised disease can be viewed as belonging to the complex field of LSD.

  12. Intracellular Protein Degradation: From a Vague Idea through the Lysosome and the Ubiquitin-Proteasome System and onto Human Diseases and Drug Targeting

    PubMed Central

    Ciechanover, Aaron

    2012-01-01

    Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code was transcribed to RNA and translated to proteins, but how proteins were degraded had remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis was largely non-lysosomal, but the mechanisms involved have remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs. PMID:23908826

  13. Drug induced phospholipidosis: an acquired lysosomal storage disorder.

    PubMed

    Shayman, James A; Abe, Akira

    2013-03-01

    There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  14. Spontaneous lysosomal storage disease caused by Sida carpinifolia (Malvaceae) poisoning in cattle.

    PubMed

    Furlan, F H; Lucioli, J; Veronezi, L O; Medeiros, A L; Barros, S S; Traverso, S D; Gava, A

    2009-03-01

    Clinical and pathologic findings for the spontaneous poisoning by Sida carpinifolia in cattle are described in this study. A survey on field cases of S. carpinifolia in cattle was carried out on farms of Alto Vale do Itajaí, State of Santa Catarina, southern Brazil. Sixteen affected animals were clinically evaluated and 9 were subjected to postmortem examination. The main clinical signs consisted of marching gait, alert gaze, head tremors, and poor growth. Histologic and ultrastructural lesions consisted of vacuolization and distension of neuronal perikarya, mainly from Purkinje cells, and of the cytoplasm of acinar pancreatic and thyroid follicular cells. Clinical signs and lesions varied from mild to severe. Improvement of the clinical signs was observed in cattle after a period of up to 90 days without consuming the plant; however, residual lesions, mainly characterized by axonal spheroids and absence of Purkinje neurons in some areas of the cerebellum, were observed in these cases. It is concluded that the natural chronic consumption of S. carpinifolia was the etiologic cause of storage disease in cattle in this study.

  15. Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases

    PubMed Central

    Gómez-Grau, Marta; Garrido, Elena; Cozar, Mónica; Rodriguez-Sureda, Víctor; Domínguez, Carmen; Arenas, Concepción; Gatti, Richard A.; Cormand, Bru; Grinberg, Daniel; Vilageliu, Lluïsa

    2015-01-01

    Nonsense mutations are quite prevalent in inherited diseases. Readthrough drugs could provide a therapeutic option for any disease caused by this type of mutation. Geneticin (G418) and gentamicin were among the first to be described. Novel compounds have been generated, but only a few have shown improved results. PTC124 is the only compound to have reached clinical trials. Here we first investigated the readthrough effects of gentamicin on fibroblasts from one patient with Sanfilippo B, one with Sanfilippo C, and one with Maroteaux-Lamy. We found that ARSB activity (Maroteaux-Lamy case) resulted in an increase of 2–3 folds and that the amount of this enzyme within the lysosomes was also increased, after treatment. Since the other two cases (Sanfilippo B and Sanfilippo C) did not respond to gentamicin, the treatments were extended with the use of geneticin and five non-aminoglycoside (PTC124, RTC13, RTC14, BZ6 and BZ16) readthrough compounds (RTCs). No recovery was observed at the enzyme activity level. However, mRNA recovery was observed in both cases, nearly a two-fold increase for Sanfilippo B fibroblasts with G418 and around 1.5 fold increase for Sanfilippo C cells with RTC14 and PTC124. Afterwards, some of the products were assessed through in vitro analyses for seven mutations in genes responsible for those diseases and, also, for Niemann-Pick A/B. Using the coupled transcription/translation system (TNT), the best results were obtained for SMPD1 mutations with G418, reaching a 35% recovery at 0.25 μg/ml, for the p.W168X mutation. The use of COS cells transfected with mutant cDNAs gave positive results for most of the mutations with some of the drugs, although to a different extent. The higher enzyme activity recovery, of around two-fold increase, was found for gentamicin on the ARSB p.W146X mutation. Our results are promising and consistent with those of other groups. Further studies of novel compounds are necessary to find those with more consistent

  16. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    SciTech Connect

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L.

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  17. Monitoring Autophagy in Lysosomal Storage Disorders

    PubMed Central

    Raben, Nina; Shea, Lauren; Hill, Victoria; Plotz, Paul

    2009-01-01

    Lysosomes are the final destination of the autophagic pathway. It is in the acidic milieu of the lysosomes that autophagic cargo is metabolized and recycled. One would expect that diseases with primary lysosomal defects would be among the first systems in which autophagy would be studied. In reality, this is not the case. Lysosomal storage diseases, a group of more than 60 diverse inherited disorders, have only recently become a focus of autophagic research. Studies of these clinically severe conditions promise not only to clarify pathogenic mechanisms, but also to expand our knowledge of autophagy itself. In this chapter, we will describe the lysosomal storage diseases in which autophagy has been explored, and present the approaches used to evaluate this essential cellular pathway. PMID:19216919

  18. A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation

    PubMed Central

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-01-01

    To mediate the degradation of bio-macromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca2+ channel TRPML1 cause lysosome storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca2+-dependent centripetal movement of lysosomes towards the perinuclear region, where autophagosomes accumulate, upon autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca2+ sensor that associates physically with the minus-end directed dynactin-dynein motor, while PI(3,5)P2, a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PI(3,5)P2-TRPML1-ALG-2-dynein signaling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Collectively, Ca2+ release from lysosomes provides an on-demand mechanism regulating lysosome motility, positioning, and tubulation. PMID:26950892

  19. 'Doctor Google' ending the diagnostic odyssey in lysosomal storage disorders: parents using internet search engines as an efficient diagnostic strategy in rare diseases.

    PubMed

    Bouwman, Machtelt G; Teunissen, Quirine G A; Wijburg, Frits A; Linthorst, Gabor E

    2010-08-01

    The expansion of the internet has resulted in widespread availability of medical information for both patients and physicians. People increasingly spend time on the internet searching for an explanation, diagnosis or treatment for their symptoms. Regarding rare diseases, the use of the internet may be an important tool in the diagnostic process. The authors present two cases in which concerned parents made a correct diagnosis of a lysosomal storage disorder in their child by searching the internet after a long doctor's delay. These cases illustrate the utility of publicly available internet search engines in diagnosing rare disorders and in addition illustrate the lengthy diagnostic odyssey which is common in these disorders.

  20. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    PubMed Central

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  1. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    NASA Astrophysics Data System (ADS)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1‑/‑) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1‑/‑ cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  2. LYSOSOMAL ACTIVITY ASSOCIATED WITH DEVELOPMENTAL AXON PRUNING

    PubMed Central

    Song, Jae W.; Misgeld, Thomas; Kang, Hyuno; Knecht, Sharm; Lu, Ju; Cao, Yi; Cotman, Susan L.; Bishop, Derron L.; Lichtman, Jeff W.

    2009-01-01

    Clearance of cellular debris is a critical feature of the developing nervous system, as evidenced by the severe neurological consequences of lysosomal storage diseases in children. An important developmental process, that generates considerable cellular debris, is synapse elimination in which many axonal branches are pruned. The fate of these pruned branches is not known. Here, we investigate the role of lysosomal activity in neurons and glia in the removal of axon branches during early postnatal life. Using a probe for lysosomal activity, we observed robust staining associated with retreating motor axons. Lysosomal function was involved in axon removal because retreating axons were cleared more slowly in a mouse model of a lysosomal storage disease. In addition, we found lysosomal activity in the cerebellum at the time of, and at sites where, climbing fibers are eliminated. We propose that lysosomal activity is a central feature of synapse elimination. Moreover, staining for lysosomal activity may serve as a marker for regions of the developing nervous system undergoing axon pruning. PMID:18768693

  3. Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Baker, David J.; Blackburn, Daniel J.; Keatinge, Marcus; Sokhi, Dilraj; Viskaitis, Paulius; Heath, Paul R.; Ferraiuolo, Laura; Kirby, Janine; Shaw, Pamela J.

    2015-01-01

    Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1G93A mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1G93A vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1G93A spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1G93A astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies. PMID:26528138

  4. Lysosomes, cholesterol and atherosclerosis

    PubMed Central

    Jerome, W Gray

    2011-01-01

    Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells. PMID:21643524

  5. Hemoglobin precipitation greatly improves 4-methylumbelliferone-based diagnostic assays for lysosomal storage diseases in dried blood spots.

    PubMed

    Oemardien, L F; Boer, A M; Ruijter, G J G; van der Ploeg, A T; de Klerk, J B C; Reuser, A J J; Verheijen, F W

    2011-01-01

    Derivatives of 4-methylumbelliferone (4MU) are favorite substrates for the measurement of lysosomal enzyme activities in a wide variety of cell and tissue specimens. Hydrolysis of these artificial substrates at acidic pH leads to the formation of 4-methylumbelliferone, which is highly fluorescent at a pH above 10. When used for the assay of enzyme activities in dried blood spots the light emission signal can be very low due to the small sample size so that the patient and control ranges are not widely separated. We have investigated the hypothesis that quenching of the fluorescence by hemoglobin leads to appreciable loss of signal and we show that the precipitation of hemoglobin with trichloroacetic acid prior to the measurement of 4-methylumbelliferone increases the height of the output signal up to eight fold. The modified method provides a clear separation of patients' and controls' ranges for ten different lysosomal enzyme assays in dried blood spots, and approaches the conventional leukocyte assays in outcome quality.

  6. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    PubMed Central

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  7. Identification of an Allosteric Binding Site on Human Lysosomal Alpha-Galactosidase Opens the Way to New Pharmacological Chaperones for Fabry Disease

    PubMed Central

    den-Haan, Helena; Pérez-Sánchez, Horacio; Del Prete, Rosita; Liguori, Ludovica; Cimmaruta, Chiara; Lukas, Jan; Andreotti, Giuseppina

    2016-01-01

    Personalized therapies are required for Fabry disease due to its large phenotypic spectrum and numerous different genotypes. In principle, missense mutations that do not affect the active site could be rescued with pharmacological chaperones. At present pharmacological chaperones for Fabry disease bind the active site and couple a stabilizing effect, which is required, to an inhibitory effect, which is deleterious. By in silico docking we identified an allosteric hot-spot for ligand binding where a drug-like compound, 2,6-dithiopurine, binds preferentially. 2,6-dithiopurine stabilizes lysosomal alpha-galactosidase in vitro and rescues a mutant that is not responsive to a mono-therapy with previously described pharmacological chaperones, 1-deoxygalactonojirimycin and galactose in a cell based assay. PMID:27788225

  8. Clinical manifestations and management of Gaucher disease

    PubMed Central

    Linari, Silvia; Castaman, Giancarlo

    2015-01-01

    Summary Gaucher disease is a rare multi-systemic metabolic disorder caused by the inherited deficiency of the lysosomal enzyme β-glucocerebrosidase, which leads to the accumulation of its normal substrate, glucocerebroside, in tissue macrophages with damage to haematological, visceral and bone systems. Anaemia, thrombocytopenia, enlargement of liver and/or spleen, skeletal abnormalities (osteopenia, lytic lesions, pathological fractures, chronic bone pain, bone crisis, bone infarcts, osteonecrosis and skeletal deformities) are typical manifestations of the most prevalent form of the disease, the so-called non-neuronopathic type 1. However, severity and coexistence of different symptoms are highly variable. The determination of deficient β-glucocerebrosidase activity in leukocytes or fibroblasts by enzymatic assay is the gold standard for the diagnosis of Gaucher disease. Comprehensive and reproducible evaluation and monitoring of all clinically relevant aspects are fundamental for the effective management of Gaucher disease patients. Enzyme replacement therapy has been shown to be effective in reducing glucocerebroside storage burden and diminishing the deleterious effects caused by its accumulation. Tailored treatment plan for each patient should be directed to symptom relief, general improvement of quality of life, and prevention of irreversible damage. PMID:26604942

  9. Involvement of lysosomes in the early stages of axon degeneration.

    PubMed

    Zheng, Jin; Yan, Tingting; Feng, Yan; Zhai, Qiwei

    2010-02-01

    Axon degeneration is a common hallmark of many neurodegenerative diseases, and the underlying mechanism remains largely unknown. Lysosomes are involved in some neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Whether lysosomes are involved in axon degeneration is yet to be elucidated. In this study, we found only about 10% lysosomes remained in axons of cultured superior cervical ganglia (SCGs) after transection for 4h when stained with LysoTracker. Furthermore, we found that lysosomal disruption occurred earlier than morphological changes and loss of mitochondrial membrane potential. In addition, the well-known axon-protective protein Wld(S) delayed injury-induced axon degeneration from both morphological changes and lysosomal disruption. Lysosomal inhibitors including chloroquine and ammonium chloride induced axon degeneration in cultured SCGs, and Wld(S) also slowed down the axon degeneration induced by lysosomal inhibitors. All these data suggest that lysosomal disruption is an early marker of axon degeneration, and inhibition of lysosome induces axon degeneration in a Wld(S)-protectable way. Thus, maintenance of normal lysosomal function might be an important approach to delay axon degeneration in neurodegenerative diseases.

  10. The proteome of lysosomes.

    PubMed

    Schröder, Bernd A; Wrocklage, Christian; Hasilik, Andrej; Saftig, Paul

    2010-11-01

    Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.

  11. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    PubMed

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  12. Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases.

    PubMed

    Krivit, W; Sung, J H; Shapiro, E G; Lockman, L A

    1995-01-01

    Treatment and potential cure of lysosomal and peroxisomal diseases, heretofore considered fatal, has become a reality during the past decade. Bone marrow transplantation, (BMT), has provided a method for replacement of the disease-causing enzyme deficiency. Cells derived from the donor marrow continue to provide enzyme indefinitely. Several scores of patients with diseases as diverse as metachromatic leukodystrophy, adrenoleukodystrophy, globoid cell leukodystrophy, Hurler syndrome (MPS I-H), Maroteaux-Lamy (MPS VI) Gaucher disease, and fucosidosis have been successfully treated following long-term engraftment. Central nervous system (CNS) manifestations are also prevented or ameliorated in animal models of these diseases following engraftment from normal donors. The microglial cell system has been considered to be the most likely vehicle for enzyme activity following bone marrow engraftment. Microglia in the mature animal or human are derived from the newly engrafted bone marrow. Graft-v-host disease activation of the microglia is also of importance. This article will summarize some of the pertinent literature relative to the role of microglia in such transplant processes.

  13. Clinical utility of neuronal cells directly converted from fibroblasts of patients for neuropsychiatric disorders: studies of lysosomal storage diseases and channelopathy.

    PubMed

    Kano, S; Yuan, M; Cardarelli, R A; Maegawa, G; Higurashi, N; Gaval-Cruz, M; Wilson, A M; Tristan, C; Kondo, M A; Chen, Y; Koga, M; Obie, C; Ishizuka, K; Seshadri, S; Srivastava, R; Kato, T A; Horiuchi, Y; Sedlak, T W; Lee, Y; Rapoport, J L; Hirose, S; Okano, H; Valle, D; O'Donnell, P; Sawa, A; Kai, M

    2015-01-01

    Methodologies for generating functional neuronal cells directly from human fibroblasts [induced neuronal (iN) cells] have been recently developed, but the research so far has only focused on technical refinements or recapitulation of known pathological phenotypes. A critical question is whether this novel technology will contribute to elucidation of novel disease mechanisms or evaluation of therapeutic strategies. Here we have addressed this question by studying Tay-Sachs disease, a representative lysosomal storage disease, and Dravet syndrome, a form of severe myoclonic epilepsy in infancy, using human iN cells with feature of immature postmitotic glutamatergic neuronal cells. In Tay-Sachs disease, we have successfully characterized canonical neuronal pathology, massive accumulation of GM2 ganglioside, and demonstrated the suitability of this novel cell culture for future drug screening. In Dravet syndrome, we have identified a novel functional phenotype that was not suggested by studies of classical mouse models and human autopsied brains. Taken together, the present study demonstrates that human iN cells are useful for translational neuroscience research to explore novel disease mechanisms and evaluate therapeutic compounds. In the future, research using human iN cells with well-characterized genomic landscape can be integrated into multidisciplinary patient-oriented research on neuropsychiatric disorders to address novel disease mechanisms and evaluate therapeutic strategies.

  14. Clinical utility of neuronal cells directly converted from fibroblasts of patients for neuropsychiatric disorders: studies of lysosomal storage diseases and channelopathy

    PubMed Central

    Kano, Shin-ichi; Yuan, Ming; Cardarelli, Ross A.; Maegawa, Gustavo; Higurashi, Norimichi; Gaval-Cruz, Meriem; Wilson, Ashley M.; Tristan, Carlos; Kondo, Mari A.; Chen, Yian; Koga, Minori; Obie, Cassandra; Ishizuka, Koko; Seshadri, Saurav; Srivastava, Rupali; Kato, Takahiro A.; Horiuchi, Yasue; Sedlak, Thomas W.; Lee, Yohan; Rapoport, Judith L.; Hirose, Shinichi; Okano, Hideyuki; Valle, David; O'Donnell, Patricio; Sawa, Akira; Kai, Mihoko

    2015-01-01

    Methodologies for generating functional neuronal cells directly from human fibroblasts [induced neuronal (iN) cells] have been recently developed, but the research so far has only focused on technical refinements or recapitulation of known pathological phenotypes. A critical question is whether this novel technology will contribute to elucidation of novel disease mechanisms or evaluation of therapeutic strategies. Here we have addressed this question by studying Tay-Sachs disease, a representative lysosomal storage disease, and Dravet syndrome, a form of severe myoclonic epilepsy in infancy, using human iN cells with feature of immature postmitotic glutamatergic neuronal cells. In Tay-Sachs disease, we have successfully characterized canonical neuronal pathology, massive accumulation of GM2 ganglioside, and demonstrated the suitability of this novel cell culture for future drug screening. In Dravet syndrome, we have identified a novel functional phenotype that was not suggested by studies of classical mouse models and human autopsied brains. Taken together, the present study demonstrates that human iN cells are useful for translational neuroscience research to explore novel disease mechanisms and evaluate therapeutic compounds. In the future, research using human iN cells with well-characterized genomic landscape can be integrated into multidisciplinary patient-oriented research on neuropsychiatric disorders to address novel disease mechanisms and evaluate therapeutic strategies. PMID:25732146

  15. Neuropathic Lysosomal Storage Disorders

    PubMed Central

    Pastores, Gregory M.; Maegawa, Gustavo H.B.

    2014-01-01

    The lysosomal storage disorders (LSDs) are a clinically heterogeneous group of inborn errors of metabolism, associated with the accumulation of incompletely degraded macromolecules within several cellular sites. Affected individuals present with a broad range of clinical problems, including hepatosplenomegaly and skeletal dysplasia. Onset of symptoms may range from birth to adulthood. The majority are associated with neurological features, including developmental delay, behavioral/psychiatric disturbances, seizures, acroparesthesia, motor weakness, cerebrovascular ischemic events and extra-pyramidal signs. It should be noted that later-onset forms are often misdiagnosed as symptoms, which might include psychiatric manifestations, are slowly progressive and may precede other neurologic or systemic features. Inheritance is primarily autosomal recessive. For all subtypes, diagnosis can be confirmed using a combination of biochemical and/or molecular assays. In a few LSDs, treatment with either hematopoietic stem cell transplantation, enzyme replacement or substrate reduction therapy is available. Genetic counseling is important, so patients and their families can be informed of reproductive risks, disease prognosis and therapeutic options. Investigations of disease mechanisms are providing insights into potential therapeutic approaches. Symptomatic care, which remains the mainstay for most subtypes, can lead to significant improvement in quality of life. PMID:24176423

  16. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay

    PubMed Central

    Aits, Sonja; Kricker, Jennifer; Liu, Bin; Ellegaard, Anne-Marie; Hämälistö, Saara; Tvingsholm, Siri; Corcelle-Termeau, Elisabeth; Høgh, Søren; Farkas, Thomas; Holm Jonassen, Anna; Gromova, Irina; Mortensen, Monika; Jäättelä, Marja

    2015-01-01

    Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation. PMID:26114578

  17. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  18. Regulation of lysosomal ion homeostasis by channels and transporters

    PubMed Central

    Xiong, Jian; Zhu, Michael X.

    2016-01-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H+, Ca2+, Na+, K+, and Cl− across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  19. Endo-Lysosomal Dysfunction in Human Proximal Tubular Epithelial Cells Deficient for Lysosomal Cystine Transporter Cystinosin

    PubMed Central

    Van Den Heuvel, Lambertus; Pastore, Anna; Dijkman, Henry; De Matteis, Maria Antonietta; Levtchenko, Elena N.

    2015-01-01

    Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles. PMID:25811383

  20. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases.

    PubMed

    Koç, O N; Peters, C; Aubourg, P; Raghavan, S; Dyhouse, S; DeGasperi, R; Kolodny, E H; Yoseph, Y B; Gerson, S L; Lazarus, H M; Caplan, A I; Watkins, P A; Krivit, W

    1999-11-01

    Human bone marrow contains mesenchymal stem cells (MSCs) that can differentiate into various cells of mesenchymal origin. We developed an efficient method of isolating and culture expanding a homogenous population of MSCs from bone marrow and determined that MSCs express alpha-L-iduronidase, arylsulfatase-A and B, glucocerebrosidase, and adrenoleukodystrophy protein. These findings raised the possibility that MSCs may be useful in the treatment of storage disorders. To determine if donor derived MSCs are transferred to the recipients with lysosomal or peroxisomal storage diseases by allogeneic hematopoietic stem cell (HSC) transplantation, we investigated bone marrow derived MSCs of 13 patients 1-14 years after allogeneic transplantation. Highly purified MSCs were genotyped either by fluorescence in situ hybridization using probes for X and Y-chromosomes in gender mis-matched recipients or by radiolabeled PCR amplification of polymorphic simple sequence repeats. Phenotype was determined by the measurement of disease specific protein/enzyme activity in purified MSCs. We found that MSCs isolated from recipients of allogeneic HSC transplantation are not of donor genotype and have persistent phenotypic defects despite successful donor type hematopoietic engraftment. Whether culture expanded normal MSCs can be successfully transplanted into patients with storage diseases and provide therapeutic benefit needs to be determined.

  1. Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease.

    PubMed

    Cohen-Tannoudji, M; Marchand, P; Akli, S; Sheardown, S A; Puech, J P; Kress, C; Gressens, P; Nassogne, M C; Beccari, T; Muggleton-Harris, A L

    1995-12-01

    Tay-Sachs disease is an autosomal recessive lysosomal storage disease caused by beta-hexosaminidase A deficiency and leads to death in early childhood. The disease results from mutations in the HEXA gene, which codes for the alpha chain of beta-hexosaminidase. The castastrophic neurodegenerative progression of the disease is thought to be a consequence of massive neuronal accumulation of GM2 ganglioside and related glycolipids in the brain and nervous system of the patients. Fuller understanding of the pathogenesis and the development of therapeutic procedures have both suffered from the lack of an animal model. We have used gene targeting in embryonic stem (ES) cells to disrupt the mouse Hexa gene. Mice homozygous for the disrupted allele mimic several biochemical and histological features of human Tay-Sachs disease. Hexa-/- mice displayed a total deficiency of beta-hexosaminidase A activity, and membranous cytoplasmic inclusions typical of GM2 gangliosidoses were found in the cytoplasm of their neurons. However, while the number of storage neurons increased with age, it remained low compared with that found in human, and no apparent motor or behavioral disorders could be observed. This suggests that the presence of beta-hexosaminidase A is not an absolute requirement of ganglioside degradation in mice. These mice should help us to understand several aspects of the disease as well as the physiological functions of hexosaminidase in mice. They should also provide a valuable animal model in which to test new forms of therapy, and in particular gene delivery into the central nervous system.

  2. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  3. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.

  4. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.

    PubMed

    Khanna, Richie; Powe, Allan C; Lun, Yi; Soska, Rebecca; Feng, Jessie; Dhulipala, Rohini; Frascella, Michelle; Garcia, Anadina; Pellegrino, Lee J; Xu, Su; Brignol, Nastry; Toth, Matthew J; Do, Hung V; Lockhart, David J; Wustman, Brandon A; Valenzano, Kenneth J

    2014-01-01

    Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may

  5. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation.

    PubMed

    Appelqvist, Hanna; Nilsson, Cathrine; Garner, Brett; Brown, Andrew J; Kågedal, Katarina; Ollinger, Karin

    2011-02-01

    In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.

  6. Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration

    PubMed Central

    Berg, Russell D.; Levitte, Steven; O’Sullivan, Mary P.; O’Leary, Seónadh M.; Cambier, C.J.; Cameron, James; Takaki, Kevin K.; Moens, Cecilia B.; Tobin, David M.; Keane, Joseph; Ramakrishnan, Lalita

    2016-01-01

    Summary A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers’ susceptibility to tuberculosis. PMID:27015311

  7. Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Turbina cordata in Northeastern Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A disease of the central nervous system in goats was observed in the municipalities of Juazeiro, Casa Nova and Curaça, state of Bahia, and Petrolina, state of Pernambuco, Northeastern Brazil. The disease was produced experimentally in two goats by the administration of dry Turbina cordata mixed with...

  8. Lysosomal Storage Diseases—Regulating Neurodegeneration

    PubMed Central

    Onyenwoke, Rob U.; Brenman, Jay E.

    2015-01-01

    Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders. PMID:27081317

  9. Immunomodulatory gene therapy in lysosomal storage disorders

    PubMed Central

    Koeberl, D.D.; Kishnani, P.S.

    2010-01-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  10. Immunomodulatory gene therapy in lysosomal storage disorders.

    PubMed

    Koeberl, Dwight D; Kishnani, Priya S

    2009-12-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders.

  11. Endosome-lysosomes and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  12. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    PubMed

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  13. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Bird, Andrew; Li, Songtao; Young, Sarah P.; Koeberl, Dwight D.

    2013-01-01

    Background Infantile-onset glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) causes death early in childhood from cardiorespiratory failure in absence of effective treatment, whereas late-onset Pompe disease causes a progressive skeletal myopathy. The limitations of enzyme replacement therapy could potentially be addressed with adeno-associated virus (AAV) vector-mediated gene therapy. Methods AAV vectors containing tissue-specific regulatory cassettes, either liver-specific or muscle-specific, were administered to 12 and 17 month old Pompe disease mice to evaluate the efficacy of gene therapy in advanced Pompe disease. Biochemical correction was evaluated through GAA activity and glycogen content analyses of the heart and skeletal muscle. Western blotting, urinary biomarker, and Rotarod performance were evaluated following vector administration. Results The AAV vector containing the liver-specific regulatory cassette secreted high-level hGAA into the blood and corrected glycogen storage in the heart and diaphragm. The biochemical correction of the heart and diaphragm was associated with efficacy, as reflected by increased Rotarod performance; however, the clearance of glycogen from skeletal muscles was relatively impaired, in comparison with younger Pompe disease mice. An alternative vector containing a muscle-specific regulatory cassette transduced skeletal muscle with high efficiency, but also failed to achieve complete clearance of accumulated glycogen. Decreased transduction of the heart and liver in older mice, especially in females, was implicated as a cause for reduced efficacy in advanced Pompe disease. Conclusion The impaired efficacy of AAV vector-mediated gene therapy in old Pompe disease mice emphasized the need for early treatment to achieve full efficacy. PMID:19621331

  14. Senescent case of cholesterol ester storage disease that progressed to liver cirrhosis with a novel mutation (N250H) of lysosomal acid lipase gene.

    PubMed

    Kojima, Seiichiro; Watanabe, Norihito; Takashimizu, Shinji; Kagawa, Tatehiro; Shiraishi, Koichi; Koizumi, Jun; Hirabayashi, Ken-Ichi; Ohkubo, Tomoichi; Kamiguchi, Hiroshi; Tsuda, Michio; Mine, Tetsuya

    2013-12-01

    The patient, a 69-year-old man, had a chief complaint of hepatomegaly. The liver was palpated four fingerbreadths below the costal margin, and the spleen was three fingerbreadths below the costal margin. There were no other abnormal findings. Laparoscopy showed that the liver resembled an orange-yellow crayon in appearance and was nodular. The pathological findings of the liver biopsy tissue were consistent with liver cirrhosis. Inside the fibrous septum was an apparent aggregation of enlarged macrophages that phagocytosed lipid components, as well as enlarged Kupffer cells that phagocytosed lipid droplets. Electron microscopy showed the lipid droplets to have a moth-eaten appearance. Using monocytes extracted from the peripheral blood, acid lipase activity was measured by fluorescence spectrometry using 4-methylumbelliferone palmitate as a substrate. This patient's human lysosomal acid lipase activity was 0.020 nM/min per 10(6)  cells, corresponding to 5.9% of that in healthy subjects (0.332 ± 0.066 nM/min per 10(6)  cells). Cholesterol ester storage disease was therefore diagnosed. The acid lipase A base sequence obtained from leukocytes by direct sequencing was compared with a library. This patient had a point mutation of N250H/N250H in exon 7, a novel gene abnormality that has not previously been reported.

  15. Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1.

    PubMed

    Schnöder, Laura; Hao, Wenlin; Qin, Yiren; Liu, Shirong; Tomic, Inge; Liu, Xu; Fassbender, Klaus; Liu, Yang

    2016-01-29

    Amyloid β (Aβ) damages neurons and triggers microglial inflammatory activation in the Alzheimer disease (AD) brain. BACE1 is the primary enzyme in Aβ generation. Neuroinflammation potentially up-regulates BACE1 expression and increases Aβ production. In Alzheimer amyloid precursor protein-transgenic mice and SH-SY5Y cell models, we specifically knocked out or knocked down gene expression of mapk14, which encodes p38α MAPK, a kinase sensitive to inflammatory and oxidative stimuli. Using immunological and biochemical methods, we observed that reduction of p38α MAPK expression facilitated the lysosomal degradation of BACE1, decreased BACE1 protein and activity, and subsequently attenuated Aβ generation in the AD mouse brain. Inhibition of p38α MAPK also enhanced autophagy. Blocking autophagy by treating cells with 3-methyladenine or overexpressing dominant-negative ATG5 abolished the deficiency of the p38α MAPK-induced BACE1 protein reduction in cultured cells. Thus, our study demonstrates that p38α MAPK plays a critical role in the regulation of BACE1 degradation and Aβ generation in AD pathogenesis.

  16. Expanding Newborn Screening for Lysosomal Disorders: Opportunities and Challenges

    ERIC Educational Resources Information Center

    Waggoner, Darrel J.; Tan, Christopher A.

    2011-01-01

    Newborn screening (NBS), since its implementation in the 1960s, has traditionally been successful in reducing mortality and disability in children with a range of different conditions. Lysosomal storage disorders (LSD) are a heterogeneous group of inherited metabolic diseases that result from lysosomal dysfunction. Based on available treatment and…

  17. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    PubMed

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  18. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    PubMed

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  19. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function.

    PubMed

    Bharadwaj, Rajnish; Cunningham, Kathleen M; Zhang, Ke; Lloyd, Thomas E

    2016-02-15

    FIG4 is a phosphoinositide phosphatase that is mutated in several diseases including Charcot-Marie-Tooth Disease 4J (CMT4J) and Yunis-Varon syndrome (YVS). To investigate the mechanism of disease pathogenesis, we generated Drosophila models of FIG4-related diseases. Fig4 null mutant animals are viable but exhibit marked enlargement of the lysosomal compartment in muscle cells and neurons, accompanied by an age-related decline in flight ability. Transgenic animals expressing Drosophila Fig4 missense mutations corresponding to human pathogenic mutations can partially rescue lysosomal expansion phenotypes, consistent with these mutations causing decreased FIG4 function. Interestingly, Fig4 mutations predicted to inactivate FIG4 phosphatase activity rescue lysosome expansion phenotypes, and mutations in the phosphoinositide (3) phosphate kinase Fab1 that performs the reverse enzymatic reaction also causes a lysosome expansion phenotype. Since FIG4 and FAB1 are present together in the same biochemical complex, these data are consistent with a model in which FIG4 serves a phosphatase-independent biosynthetic function that is essential for lysosomal membrane homeostasis. Lysosomal phenotypes are suppressed by genetic inhibition of Rab7 or the HOPS complex, demonstrating that FIG4 functions after endosome-to-lysosome fusion. Furthermore, disruption of the retromer complex, implicated in recycling from the lysosome to Golgi, does not lead to similar phenotypes as Fig4, suggesting that the lysosomal defects are not due to compromised retromer-mediated recycling of endolysosomal membranes. These data show that FIG4 plays a critical noncatalytic function in maintaining lysosomal membrane homeostasis, and that this function is disrupted by mutations that cause CMT4J and YVS.

  20. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function

    PubMed Central

    Bharadwaj, Rajnish; Cunningham, Kathleen M.; Zhang, Ke; Lloyd, Thomas E.

    2016-01-01

    FIG4 is a phosphoinositide phosphatase that is mutated in several diseases including Charcot-Marie-Tooth Disease 4J (CMT4J) and Yunis-Varon syndrome (YVS). To investigate the mechanism of disease pathogenesis, we generated Drosophila models of FIG4-related diseases. Fig4 null mutant animals are viable but exhibit marked enlargement of the lysosomal compartment in muscle cells and neurons, accompanied by an age-related decline in flight ability. Transgenic animals expressing Drosophila Fig4 missense mutations corresponding to human pathogenic mutations can partially rescue lysosomal expansion phenotypes, consistent with these mutations causing decreased FIG4 function. Interestingly, Fig4 mutations predicted to inactivate FIG4 phosphatase activity rescue lysosome expansion phenotypes, and mutations in the phosphoinositide (3) phosphate kinase Fab1 that performs the reverse enzymatic reaction also causes a lysosome expansion phenotype. Since FIG4 and FAB1 are present together in the same biochemical complex, these data are consistent with a model in which FIG4 serves a phosphatase-independent biosynthetic function that is essential for lysosomal membrane homeostasis. Lysosomal phenotypes are suppressed by genetic inhibition of Rab7 or the HOPS complex, demonstrating that FIG4 functions after endosome-to-lysosome fusion. Furthermore, disruption of the retromer complex, implicated in recycling from the lysosome to Golgi, does not lead to similar phenotypes as Fig4, suggesting that the lysosomal defects are not due to compromised retromer-mediated recycling of endolysosomal membranes. These data show that FIG4 plays a critical noncatalytic function in maintaining lysosomal membrane homeostasis, and that this function is disrupted by mutations that cause CMT4J and YVS. PMID:26662798

  1. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease

    PubMed Central

    Bondar, Constanza; Ormazabal, Maximiliano; Crivaro, Andrea; Ferreyra-Compagnucci, Malena; Delpino, María Victoria; Rozenfeld, Paula Adriana; Mucci, Juan Marcos

    2017-01-01

    Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD. PMID:28098793

  2. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease

    PubMed Central

    Tamura, Atsushi; Nishida, Kei; Yui, Nobuhiko

    2016-01-01

    Abstract Niemann-Pick type C (NPC) disease is characterized by the accumulation of cholesterol in lysosomes. We have previously reported that biocleavable polyrotaxanes (PRXs) composed of β-cyclodextrins (β-CDs) threaded onto a linear polymer capped with bulky stopper molecules via intracellularly cleavable linkers show remarkable cholesterol reducing effects in NPC disease patient-derived fibroblasts owing to the stimuli-responsive intracellular dissociation of PRXs and subsequent β-CD release from the PRXs. Herein, we describe a series of novel acid-labile 2-(2-hydroxyethoxy)ethyl group-modified PRXs (HEE-PRXs) bearing terminal N-triphenylmethyl (N-Trt) groups as a cleavable component for the treatment of NPC disease. The N-Trt end groups of the HEE-PRXs underwent acidic pH-induced cleavage and led to the dissociation of their supramolecular structure. A kinetic study revealed that the number of HEE groups on the PRX did not affect the cleavage kinetics of the N-Trt end groups of the HEE-PRXs. The effect of the number of HEE groups of the HEE-PRXs, which was modified to impart water solubility to the PRXs, on cellular internalization efficiency, lysosomal localization efficiency, and cholesterol reduction ability in NPC disease-derived fibroblasts (NPC1 fibroblasts) was also investigated. The cellular uptake and lysosomal localization efficiency were almost equivalent for HEE-PRXs with different numbers of HEE groups. However, the cholesterol reducing ability of the HEE-PRXs in NPC1 fibroblasts was affected by the number of HEE groups, and HEE-PRXs with a high number of HEE groups were unable to reduce lysosomal cholesterol accumulation. This deficiency is most likely due to the cholesterol-solubilizing ability of HEE-modified β-CDs released from the HEE-PRXs. We conclude that the N-Trt group acts as a cleavable component to induce the lysosomal dissociation of HEE-PRXs, and acid-labile HEE-PRXs with an optimal number of HEE groups (4.1 to 5.4 HEE groups per

  3. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes

    PubMed Central

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal MD; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-01-01

    Impaired homeostasis of lysosomal Ca2+ causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca2+ are not known. We developed a physiological assay to monitor lysosomal Ca2+ store refilling using specific activators of lysosomal Ca2+ channels to repeatedly induce lysosomal Ca2+ release. In contrast to the prevailing view that lysosomal acidification drives Ca2+ into the lysosome, inhibiting the V-ATPase H+ pump did not prevent Ca2+ refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca2+ prevented lysosomal Ca2+ stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca2+ refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca2+ or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca2+for the lysosome. DOI: http://dx.doi.org/10.7554/eLife.15887.001 PMID:27213518

  4. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  5. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases.

  6. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin.

    PubMed

    Zhou, Xiaolai; Sun, Lirong; Bastos de Oliveira, Francisco; Qi, Xiaoyang; Brown, William J; Smolka, Marcus B; Sun, Ying; Hu, Fenghua

    2015-09-14

    Mutations in the progranulin (PGRN) gene have been linked to two distinct neurodegenerative diseases, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests a critical role of PGRN in lysosomes. However, how PGRN is trafficked to lysosomes is still not clear. Here we report a novel pathway for lysosomal delivery of PGRN. We found that prosaposin (PSAP) interacts with PGRN and facilitates its lysosomal targeting in both biosynthetic and endocytic pathways via the cation-independent mannose 6-phosphate receptor and low density lipoprotein receptor-related protein 1. PSAP deficiency in mice leads to severe PGRN trafficking defects and a drastic increase in serum PGRN levels. We further showed that this PSAP pathway is independent of, but complementary to, the previously identified PGRN lysosomal trafficking mediated by sortilin. Collectively, our results provide new understanding on PGRN trafficking and shed light on the molecular mechanisms behind FTLD and NCL caused by PGRN mutations.

  7. Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca2+ storage

    PubMed Central

    Vienken, Hans; Mabrouki, Nathalie; Grabau, Katja; Claas, Ralf Frederik; Rudowski, Agnes; Schömel, Nina; Pfeilschifter, Josef; Lütjohann, Dieter; van Echten-Deckert, Gerhild; Meyer zu Heringdorf, Dagmar

    2017-01-01

    Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis. PMID:28262793

  8. Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders.

    PubMed

    Kuech, Eva-Maria; Brogden, Graham; Naim, Hassan Y

    2016-11-01

    Lysosomal storage disorders are a heterogeneous group of more than 50 distinct inborn metabolic diseases affecting about 1 in 5000 to 7000 live births. The diseases often result from mutations followed by functional deficiencies of enzymes or transporters within the acidic environment of the lysosome, which mediate the degradation of a wide subset of substrates, including glycosphingolipids, glycosaminoglycans, cholesterol, glycogen, oligosaccharides, peptides and glycoproteins, or the export of the respective degradation products from the lysosomes. The progressive accumulation of uncleaved substrates occurs in multiple organs and finally causes a broad spectrum of different pathologies including visceral, neurological, skeletal and hematologic manifestations. Besides deficient lysosomal enzymes and transporters other defects may lead to lysosomal storage disorders, including activator defects, membrane defects or defects in modifier proteins. In this review we concentrate on four different lysosomal storage disorders: Niemann-Pick type C, Fabry disease, Gaucher disease and Pompe disease. While the last three are caused by defective lysosomal hydrolases, Niemann-Pick type C is caused by the inability to export LDL-derived cholesterol out of the lysosome. We want to emphasise potential implications of membrane trafficking defects on the pathology of these diseases, as many mutations interfere with correct lysosomal protein trafficking and alter cellular lipid homeostasis. Current therapeutic strategies are summarised, including substrate reduction therapy as well as pharmacological chaperone therapy which directly aim to improve folding and lysosomal transport of misfolded mutant proteins.

  9. Systems biology of the autophagy-lysosomal pathway.

    PubMed

    Jegga, Anil G; Schneider, Lonnie; Ouyang, Xiaosen; Zhang, Jianhua

    2011-05-01

    The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagylysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems

  10. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  11. Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity

    PubMed Central

    Pröschel, Christoph; Mayer-Pröschel, Margot; Noble, Mark

    2016-01-01

    Neurodegenerative lysosomal storage disorders (LSDs) are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD]), a central nervous system (CNS)-penetrant protective agent rescued myelin and oligodendrocyte (OL) progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD. PMID:27977664

  12. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export

    PubMed Central

    Li, Jian; Pfeffer, Suzanne R

    2016-01-01

    LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. LAMP2 deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 is needed for chaperone-mediated autophagy, and its expression improves tissue function in models of aging. We show here that human LAMP1 and LAMP2 bind cholesterol in a manner that buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome limiting membrane, and may signal cholesterol availability. Functional rescue experiments show that the ability of human LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to bind cholesterol directly. DOI: http://dx.doi.org/10.7554/eLife.21635.001 PMID:27664420

  13. Autophagy, lipophagy and lysosomal lipid storage disorders.

    PubMed

    Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G; Carroll, Bernadette; Maetzel, Dorothea; Singh, Rajat; Sarkar, Sovan; Korolchuk, Viktor I

    2016-04-01

    Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.

  14. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  15. Lysosomal storage disorders: A review of the musculoskeletal features.

    PubMed

    James, Rebecca A; Singh-Grewal, Davinder; Lee, Senq-J; McGill, Jim; Adib, Navid

    2016-03-01

    The lysosomal storage disorders are a collection of progressive, multisystem disorders that frequently present in childhood. Their timely diagnosis is paramount as they are becoming increasingly treatable. Musculoskeletal manifestations often occur early in the disease course, hence are useful as diagnostics clues. Non-inflammatory joint stiffness or pain, carpal tunnel syndrome, trigger fingers, unexplained pain crises and short stature should all prompt consideration of a lysosomal storage disorder. Recurrent ENT infections, hepatosplenomegaly, recurrent hernias and visual/hearing impairment - especially when clustered together - are important extra-skeletal features. As diagnostic and therapeutic options continue to evolve, children with lysosomal storage disorders and their families are facing more sophisticated options for screening and treatment. The aim of this article is to highlight the paediatric presentations of lysosomal storage disorders, with an emphasis on the musculoskeletal features.

  16. Activity of α1-antitrypsin and some lysosomal enzymes in the blood serum of patients with chronic obstructive pulmonary disease after smoking cessation.

    PubMed

    Woźniak, Bartosz; Woźniak, Alina; Konca, Jacek; Górecki, Dariusz; Mila-Kierzenkowska, Celestyna; Szpinda, Michał; Sutkowy, Paweł; Wesołowski, Roland

    2015-01-01

    The activity of α1-antitrypsin (AAT) and the lysosomal enzymes, cathepsin D (CTS D), arylsulfatase (ASA), and acid phosphatase, (AcP) was determined in patients with COPD (GOLD category A). Moreover, the diagnostic usefulness of these parameters in blood serum was assessed along with establishing whether smoking cessation affects these parameters. The study included 70 patients with COPD who ceased smoking (study group) and two control groups of 33 subjects each: nonsmokers without COPD (control I) and patients with COPD who continued smoking (control II). In control I, blood was taken once and in control II, at the start of the experiment and after the 1st, 2nd, and 3rd months. AAT in the patients exhibited higher activity than in the healthy subjects at all time points. AAT activity in the patients before the start of the experiment was ~80% higher (P < 0.001) than in control I. No statistically significant differences in CTS D, ASA, and AcP activity were found. COPD involves increased AAT activity and unchanged activities of the assessed lysosomal enzymes. Three-month tobacco abstinence does not affect these parameters in peripheral blood. Determining the AAT levels in blood serum can be used in the diagnostics of COPD.

  17. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    PubMed Central

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.

    2015-01-01

    Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508

  18. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL

    PubMed Central

    Vicinanza, Mariella; Luciani, Alessandro; Carissimo, Annamaria; Mutarelli, Margherita; Di Campli, Antonella; Polishchuk, Elena; Di Tullio, Giuseppe; Morra, Valentina; Levtchenko, Elena; Oltrabella, Francesca; Starborg, Tobias; Santoro, Michele; Di Bernardo, Diego; Devuyst, Olivier; Lowe, Martin; Medina, Diego L.; Ballabio, Andrea; De Matteis, Maria Antonietta

    2016-01-01

    Phosphoinositides (PIs) control fundamental cell processes, and inherited defects of PI kinases or phosphatases cause severe human diseases including Lowe syndrome due to mutations in OCRL that encodes a PI(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo where OCRL plays a key role. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PI(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PI(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients. PMID:27398910

  19. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  20. Impact of Lysosome Status on Extracellular Vesicle Content and Release

    PubMed Central

    Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P.

    2016-01-01

    Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. PMID:27238186

  1. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A

    PubMed Central

    Lu, Yingying; Dong, Shichen; Hao, Baixia; Li, Chang; Zhu, Kaiyuan; Guo, Wenjing; Wang, Qian; Cheung, King-Ho; Wong, Connie WM; Wu, Wu-Tian; Markus, Huss; Yue, Jianbo

    2014-01-01

    Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca2+ content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy. PMID:25483964

  2. Genomic organization of the human lysosomal acid lipase gene (LIPA)

    SciTech Connect

    Aslandis, C.; Klima, H.; Lackner, K.J.; Schmitz, G. )

    1994-03-15

    Defects in the human lysosomal acid lipase gene are responsible for cholesteryl ester storage disease (CESD) and Wolman disease. Exon skipping as the cause for CESD has been demonstrated. The authors present here a summary of the exon structure of the entire human lysosomal acid lipase gene consisting of 10 exons, together with the sizes of genomic EcoRI and SacI fragments hybridizing to each exon. In addition, the DNA sequence of the putative promoter region is presented. The EMBL accession numbers for adjacent intron sequences are given. 7 refs., 2 figs., 1 tab.

  3. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection

    PubMed Central

    Malireddi, R.K. Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Lamkanfi, Mohamed

    2016-01-01

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell. PMID:27551156

  4. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    PubMed

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  5. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity.

    PubMed

    Usenovic, Marija; Tresse, Emilie; Mazzulli, Joseph R; Taylor, J Paul; Krainc, Dimitri

    2012-03-21

    The autophagy-lysosomal pathway plays an important role in the clearance of long-lived proteins and dysfunctional organelles. Lysosomal dysfunction has been implicated in several neurodegenerative disorders including Parkinson's disease and related synucleinopathies that are characterized by accumulations of α-synuclein in Lewy bodies. Recent identification of mutations in genes linked to lysosomal function and neurodegeneration has offered a unique opportunity to directly examine the role of lysosomes in disease pathogenesis. Mutations in lysosomal membrane protein ATP13A2 (PARK9) cause familial Kufor-Rakeb syndrome characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While previous data suggested a role of ATP13A2 in α-synuclein misfolding and toxicity, the mechanistic link has not been established. Here we report that loss of ATP13A2 in human fibroblasts from patients with Kufor-Rakeb syndrome or in mouse primary neurons leads to impaired lysosomal degradation capacity. This lysosomal dysfunction results in accumulation of α-synuclein and toxicity in primary cortical neurons. Importantly, silencing of endogenous α-synuclein attenuated the toxicity in ATP13A2-depleted neurons, suggesting that loss of ATP13A2 mediates neurotoxicity at least in part via the accumulation of α-synuclein. Our findings implicate lysosomal dysfunction in the pathogenesis of Kufor-Rakeb syndrome and suggest that upregulation of lysosomal function and downregulation of α-synuclein represent important therapeutic strategies for this disorder.

  6. BACE2 degradation mediated by the macroautophagy-lysosome pathway.

    PubMed

    Liu, Xi; Wang, Zhe; Wu, Yili; Wang, Jianping; Song, Weihong

    2013-06-01

    Neuritic plaque is the pathological hallmark in Alzheimer's disease (AD). Amyloid-β protein (Aβ), the central component of neuritic plaques, is generated from amyloid-β precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. β-site APP cleaving enzyme 2 (BACE2), a homolog of BACE1, functions differently from BACE1 in APP processing. BACE1 is the β-secretase essential for Aβ production, and BACE2, a θ-secretase, cleaves APP within the Aβ domain, preventing Aβ production. Elucidation of the mechanism underlying BACE2 degradation is important for defining its biological features and its potential role in Alzheimer's disease drug development. In this report we first showed that the half-life of BACE2 is approximately 20 h. Lysosomal inhibition increased BACE2 protein levels whereas proteasomal inhibition had no effect on BACE2 protein expression. Furthermore, we identified that macroautophagy mediated BACE2 degradation. Finally, we showed that lysosomal inhibition increased BACE2 cleavage of APP. Taken together, our in vitro study showed that BACE2 is degraded through the macrophagy-lysosome pathway and that lysosomal inhibition affects BACE2 processing of APP. Modulation of BACE2 degradation via the lysosomal pathway could be a new target for AD drug development.

  7. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

    PubMed

    Moskot, Marta; Montefusco, Sandro; Jakóbkiewicz-Banecka, Joanna; Mozolewski, Paweł; Węgrzyn, Alicja; Di Bernardo, Diego; Węgrzyn, Grzegorz; Medina, Diego L; Ballabio, Andrea; Gabig-Cimińska, Magdalena

    2014-06-13

    Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.

  8. The clinical presentation of lysosomal storage disorders.

    PubMed

    Wraith, James E

    2004-09-01

    Lysosomal storage disorders (LSDs) are present from conception and produce a clinical phenotype that evolves with time. The introduction of new therapies has made early diagnosis a priority. Clues to the clinical diagnosis of a LSD can be found in the tempo of the illness especially if the central nervous system is involved. Loss of a previously acquired skill (regression) is very characteristic of this group of disorders. Other clinical clues can include a dysmorphic appearance or the presence of characteristic skeletal involvement (dysostosis multiplex), but in some disorders such as Pompe disease or Krabbe disease, these do not occur. The approach to diagnosis has to involve "screening" as there can be considerable overlap in clinical presentation (e.g. Gaucher disease and Niemann-Pick B). Both urine and blood testing are necessary and the majority of diagnoses can now be confirmed at a molecular level. Prenatal diagnosis is possible for all.

  9. Cellular proteostasis: degradation of misfolded proteins by lysosomes

    PubMed Central

    Jackson, Matthew P.

    2016-01-01

    Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333

  10. Brief exposure to copper activates lysosomal exocytosis.

    PubMed

    Peña, Karina; Coblenz, Jessica; Kiselyov, Kirill

    2015-04-01

    Copper (Cu) is essential mineral, but its toxicity necessitates existence of powerful machinery responsible for the extraction of excess Cu from the cell. Cu exposure was recently shown to induce the translocation of Cu pump ATP7B to the lysosomes followed by lysosomal exocytosis. Here we sought to investigate the mechanisms underlying the effect of Cu on lysosomal exocytosis. We found that brief exposure to Cu activates lysosomal exocytosis, which was measured as a release of the lysosomal digestive enzyme β-hexosaminidase (β-hex) into the extracellular medium and by the presence lysosomal protein LAMP1 at the plasma membrane. Such release depends on calcium (Ca) and on the lysosomal SNARE VAMP7. ATP7B knockdown using RNAi suppressed the basal lysosomal exocytosis, but did not affect the ability of Cu to activate it. ATP7B knockdown was associated with sustained oxidative stress. The removal of Ca from the extracellular medium suppressed the Cu-dependent component of the lysosomal exocytosis. We propose that Cu promotes lysosomal exocytosis by facilitating a Ca-dependent step of the lysosomal exocytosis.

  11. Lysosomal β-glucuronidase regulates Lyme and rheumatoid arthritis severity.

    PubMed

    Bramwell, Kenneth K C; Ma, Ying; Weis, John H; Chen, Xinjian; Zachary, James F; Teuscher, Cory; Weis, Janis J

    2014-01-01

    Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most prevalent arthropod-borne illness in the United States and remains a clinical and social challenge. The spectrum of disease severity among infected patients suggests that host genetics contribute to pathogenic outcomes, particularly in patients who develop arthritis. Using a forward genetics approach, we identified the lysosomal enzyme β-glucuronidase (GUSB), a member of a large family of coregulated lysosomal enzymes, as a key regulator of Lyme-associated arthritis severity. Severely arthritic C3H mice possessed a naturally occurring hypomorphic allele, Gusbh. C57BL/6 mice congenic for the C3H Gusb allele were prone to increased Lyme-associated arthritis severity. Radiation chimera experiments revealed that resident joint cells drive arthritis susceptibility. C3H mice expressing WT Gusb as a transgene were protected from severe Lyme arthritis. Importantly, the Gusbh allele also exacerbated disease in a serum transfer model of rheumatoid arthritis. A known GUSB function is the prevention of lysosomal accumulation of glycosaminoglycans (GAGs). Development of Lyme and rheumatoid arthritis in Gusbh-expressing mice was associated with heightened accumulation of GAGs in joint tissue. We propose that GUSB modulates arthritis pathogenesis by preventing accumulation of proinflammatory GAGs within inflamed joint tissue, a trait that may be shared by other lysosomal exoglycosidases.

  12. Endosome-lysosomes, ubiquitin and neurodegeneration.

    PubMed

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  13. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress.

    PubMed

    Pascua-Maestro, Raquel; Diez-Hermano, Sergio; Lillo, Concepción; Ganfornina, Maria D; Sanchez, Diego

    2017-02-01

    functions, critical for the outcome of a wide variety of neurodegenerative diseases. These results open therapeutic opportunities by providing a route of entry and a repair mechanism for lysosomes in pathological situations.

  14. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress

    PubMed Central

    Pascua-Maestro, Raquel

    2017-01-01

    functions, critical for the outcome of a wide variety of neurodegenerative diseases. These results open therapeutic opportunities by providing a route of entry and a repair mechanism for lysosomes in pathological situations. PMID:28182653

  15. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    PubMed

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  16. (5aR)-5a-C-Pentyl-4-epi-isofagomine: A powerful inhibitor of lysosomal β-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B.

    PubMed

    Front, Sophie; Biela-Banaś, Anna; Burda, Patricie; Ballhausen, Diana; Higaki, Katsumi; Caciotti, Anna; Morrone, Amelia; Charollais-Thoenig, Julie; Gallienne, Estelle; Demotz, Stéphane; Martin, Olivier R

    2017-01-27

    This report is about the identification, synthesis and initial biological characterization of derivatives of 4-epi-isofagomine as pharmacological chaperones (PC) for human lysosomal β-galactosidase. The two epimers of 4-epi-isofagomine carrying a pentyl group at C-5a, namely (5aR)- and (5aS)-5a-C-pentyl-4-epi-isofagomine, were prepared by an innovative procedure involving in the key step the addition of nitrohexane to a keto-pentopyranoside. Both epimers were evaluated as inhibitors of the human β-galactosidase: the (5aR)-stereoisomer (compound 1) was found to be a very potent inhibitor of the enzyme (IC50 = 8 nM, 30× more potent than 4-epi-isofagomine at pH 7.3) with a high selectivity for this glycosidase whereas the (5aS) epimer was a much weaker inhibitor. In addition, compound 1 showed a remarkable activity as a PC. It significantly enhanced the residual activity of mutant β-galactosidase in 15 patient cell lines out of 23, with enhancement factors greater than 3.5 in 10 cell lines and activity restoration up to 91% of normal. Altogether, these results indicated that (5aR)-5a-C-pentyl-4-epi-isofagomine constitutes a promising PC-based drug candidate for the treatment of GM1-gangliosidosis and Morquio disease type B.

  17. Characterization of inducible models of Tay-Sachs and related disease.

    PubMed

    Sargeant, Timothy J; Drage, Deborah J; Wang, Susan; Apostolakis, Apostolos A; Cox, Timothy M; Cachón-González, M Begoña

    2012-09-01

    Tay-Sachs and Sandhoff diseases are lethal inborn errors of acid β-N-acetylhexosaminidase activity, characterized by lysosomal storage of GM2 ganglioside and related glycoconjugates in the nervous system. The molecular events that lead to irreversible neuronal injury accompanied by gliosis are unknown; but gene transfer, when undertaken before neurological signs are manifest, effectively rescues the acute neurodegenerative illness in Hexb-/- (Sandhoff) mice that lack β-hexosaminidases A and B. To define determinants of therapeutic efficacy and establish a dynamic experimental platform to systematically investigate cellular pathogenesis of GM2 gangliosidosis, we generated two inducible experimental models. Reversible transgenic expression of β-hexosaminidase directed by two promoters, mouse Hexb and human Synapsin 1 promoters, permitted progression of GM2 gangliosidosis in Sandhoff mice to be modified at pre-defined ages. A single auto-regulatory tetracycline-sensitive expression cassette controlled expression of transgenic Hexb in the brain of Hexb-/- mice and provided long-term rescue from the acute neuronopathic disorder, as well as the accompanying pathological storage of glycoconjugates and gliosis in most parts of the brain. Ultimately, late-onset brainstem and ventral spinal cord pathology occurred and was associated with increased tone in the limbs. Silencing transgenic Hexb expression in five-week-old mice induced stereotypic signs and progression of Sandhoff disease, including tremor, bradykinesia, and hind-limb paralysis. As in germline Hexb-/- mice, these neurodegenerative manifestations advanced rapidly, indicating that the pathogenesis and progression of GM2 gangliosidosis is not influenced by developmental events in the maturing nervous system.

  18. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis.

    PubMed

    Hendrikx, T; Walenbergh, S M A; Hofker, M H; Shiri-Sverdlov, R

    2014-05-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.

  19. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    PubMed

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  20. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.

    PubMed

    Wexselblatt, Ezequiel; Esko, Jeffrey D; Tor, Yitzhak

    2015-01-01

    GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.

  1. Regulators of Lysosome Function and Dynamics in Caenorhabditis elegans

    PubMed Central

    Gee, Kevin; Zamora, Danniel; Horm, Teresa; George, Laeth; Upchurch, Cameron; Randall, Justin; Weaver, Colby; Sanford, Caitlin; Miller, Austin; Hernandez, Sebastian; Dang, Hope; Fares, Hanna

    2017-01-01

    Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation. PMID:28122949

  2. Regulated lysosomal exocytosis mediates cancer progression

    PubMed Central

    Machado, Eda; White-Gilbertson, Shai; van de Vlekkert, Diantha; Janke, Laura; Moshiach, Simon; Campos, Yvan; Finkelstein, David; Gomero, Elida; Mosca, Rosario; Qiu, Xiaohui; Morton, Christopher L.; Annunziata, Ida; d’Azzo, Alessandra

    2015-01-01

    Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf−⁄− mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance. PMID:26824057

  3. Structure of human saposin A at lysosomal pH

    SciTech Connect

    Hill, Chris H.; Read, Randy J.; Deane, Janet E.

    2015-06-27

    A 1.8 Å resolution structure of the sphingolipid activator protein saposin A has been determined at pH 4.8, the physiologically relevant lysosomal pH for hydrolase enzyme activation and lipid-transfer activity. The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-d-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a ‘closed’ to an ‘open’ conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined ‘closed’ conformation, showing that pH alone is not sufficient for the transition to the ‘open’ conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.

  4. The appearance of newly identified intraocular lesions in Gaucher disease type 3 despite long-term glucocerebrosidase replacement therapy

    PubMed Central

    Sawicka-Gutaj, Nadia; Machaczka, Maciej; Kulińska-Niedziela, Izabela; Bernardczyk-Meller, Jadwiga; Gutaj, Paweł; Sowiński, Jerzy; Ruchała, Marek

    2016-01-01

    Background Gaucher disease (GD) is an autosomal recessive lipid storage disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase. The presence of central nervous system disease is a hallmark of the neuronopathic forms of GD (types 2 and 3). Intraocular lesions (e.g. corneal clouding, retinal lesions, and vitreous opacities) have been infrequently reported in GD type 3 (GD3). Moreover, there are virtually no published data on the occurrence and natural course of intraocular lesions in GD3 patients treated with enzyme replacement therapy (ERT). Case presentation We describe the case of a 26-year-old Polish male with L444P homozygous GD3 (mutation c.1448T > C in the GBA1 gene) who developed fundus lesions despite 10 years of ERT. At the age of 23 years, a spectral domain optical coherence tomography (OCT) examination was performed which disclosed the presence of discrete lesions located preretinally, intraretinally in the nerve fiber layer, and in the vitreous body. A 3-year follow-up OCT examination has not shown any significant progression of the fundus lesions. Conclusions To the best of our knowledge, this is the first published report describing the occurrence of newly identified retinal and preretinal lesions occurring during long-term ERT in GD3. We recommend that a careful ophthalmic assessment, including a dilated fundus examination, should be included as part of annual follow-up in patients with GD3. Further studies are needed to understand the nature and clinical course of these changes and whether or not these intraocular findings have any predictive value in the context of neurologic and skeletal progression in GD3. PMID:27064303

  5. Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Sida rodrigoi Monteiro in North-western Argentina.

    PubMed

    Micheloud, Juan Francisco; Marin, Raúl; Colque-Caro, Luis Adrián; Martínez, Olga Gladys; Gardner, Dale; Gimeno, Eduardo Juan

    2017-03-15

    There are numerous poisonous plants that can induce intralysosomal accumulation of glycoproteins and neurologic syndromes. Here we describe for the first time, a disease caused by ingesting Sida rodrigoi Monteiro in goats in North-western Argentina. The animals showed weight loss, indifference to the environment, unsteady gait and ataxia. Histopathologic studies showed vacuolization in cells of various organs, mainly in the CNS. The material deposited in the cells was positive for LCA (Lens culinaris agglutinin), WGA (Triticum vulgaris agglutinin), sWGA (succinyl-Triticum vulgaris agglutinin) and Con-A (Concanavalia ensiformis agglutinin) lectins. Finally, toxic levels of swansonine were identified in the plant. The present investigation allowed to recognize S. rodrigoi Monteiro poisoning as a plant induced α-mannosidosis.

  6. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases

    PubMed Central

    Redmann, Matthew; Darley-Usmar, Victor; Zhang, Jianhua

    2016-01-01

    Redox and proteotoxic stress contributes to age-dependent accumulation of dysfunctional mitochondria and protein aggregates, and is associated with neurodegeneration. The free radical theory of aging inspired many studies using reactive species scavengers such as alpha-tocopherol, ascorbate and coenzyme Q to suppress the initiation of oxidative stress. However, clinical trials have had limited success in the treatment of neurodegenerative diseases. We ascribe this to the emerging literature which suggests that the oxidative stress hypothesis does not encompass the role of reactive species in cell signaling and therefore the interception with reactive species with antioxidant supplementation may result in disruption of redox signaling. In addition, the accumulation of redox modified proteins or organelles cannot be reversed by oxidant intercepting antioxidants and must then be removed by alternative mechanisms. We have proposed that autophagy serves this essential function in removing damaged or dysfunctional proteins and organelles thus preserving neuronal function and survival. In this review, we will highlight observations regarding the impact of autophagy regulation on cellular bioenergetics and survival in response to reactive species or reactive species generating compounds, and in response to proteotoxic stress. PMID:27114848

  7. [Lysosomal system in hormonal mechanisms. Review].

    PubMed

    Duran Reyes, G; González Macías, G; Hicks, J J

    1995-02-01

    The role of lysosomes in the intracellular mechanism of action of several steroid an proteic hormones has been demonstrated. In presence of the specific hormone the target cell induce membranal changes and the lysosomes are moved toward the nucleus; after this the lysosomal enzymes are released in the perinuclear space. For the moment it is not possible to know the biochemical role of this enzymatic activities upon the nucleic acids function and des-repretion process of specific genes, but the inhibition of lysosomes movement utilizing hormone antagonist or dexamethasone inhibits some reproductive process like the implantation of the mammalian egg. We present herein a review related with the mode action of some hormones through the lysosomes in reproductive processes.

  8. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury

    PubMed Central

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-01-01

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551

  9. Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis

    PubMed Central

    Fernández-Mosquera, Lorena; Diogo, Cátia V.; Yambire, King Faisal; Santos, Gabriela L.; Luna Sánchez, Marta; Bénit, Paule; Rustin, Pierre; Lopez, Luis Carlos; Milosevic, Ira; Raimundo, Nuno

    2017-01-01

    Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases. PMID:28345620

  10. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX.

    PubMed

    Lee, Geum-Hwa; Lee, Mi-Rin; Lee, Hwa-Young; Kim, Seung Hyun; Kim, Hye-Kyung; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.

  11. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation

    PubMed Central

    Jinn, Sarah; Drolet, Robert E.; Cramer, Paige E.; Wong, Andus Hon-Kit; Toolan, Dawn M.; Gretzula, Cheryl A.; Voleti, Bhavya; Vassileva, Galya; Disa, Jyoti; Tadin-Strapps, Marija; Stone, David J.

    2017-01-01

    Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD. PMID:28193887

  12. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C.

    PubMed

    Oliván-Viguera, Aida; Lozano-Gerona, Javier; López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Abarca-Lachen, Edgar; García-Malinis, Ana J; García-Otín, Ángel Luis; Gilaberte, Yolanda; Giraldo, Pilar; Köhler, Ralf

    2017-01-01

    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K(+)-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca(2+)-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression.

  13. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C

    PubMed Central

    Oliván-Viguera, Aida; Lozano-Gerona, Javier; López de Frutos, Laura; Cebolla, Jorge J.; Irún, Pilar; Abarca-Lachen, Edgar; García-Malinis, Ana J.; García-Otín, Ángel Luis; Gilaberte, Yolanda; Giraldo, Pilar; Köhler, Ralf

    2017-01-01

    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression. PMID:28197106

  14. Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death.

    PubMed

    Aits, Sonja; Jäättelä, Marja; Nylandsted, Jesper

    2015-01-01

    Lysosomal cell death is triggered by lysosomal membrane permeabilization (LMP) and subsequent release of lysosomal hydrolases from the lysosomal lumen into the cytosol. Once released into the cytosol, the lysosomal cathepsin proteases act as executioner proteases for the subsequent cell death-either autonomously without caspase activation or in concert with the classical apoptotic machinery. Lysosomal cell death usually remains functional in apoptosis-resistant cancer cells and thus holds great potential as a therapeutic strategy for circumventing apoptosis deficiency in cancers. Notably, lysosomal cell death also plays an important role in normal physiology, e.g., during the regression of the mammary gland. Here we present four complementary methods for the quantification and visualization of LMP during the onset of death: (1) enzymatic activity measurements of released lysosomal hydrolases in the cytosol after digitonin extraction, (2) direct visualization of LMP by monitoring the release of fluorescent dextran from lysosomes into the cytosol, (3) immunocytochemistry to detect cathepsins released into the cytosol, and (4) detection of the translocation of galectins to damaged lysosomes. The methods presented here can ideally be combined as needed to provide solid evidence for LMP after a given cytotoxic stimuli.

  15. Ubiquitination and dynactin regulate TMEPAI lysosomal trafficking

    PubMed Central

    Luo, Shenheng; Jing, Lei; Zhao, Tian; Li, Yuyin; Liu, Zhenxing; Diao, Aipo

    2017-01-01

    The transmembrane prostate androgen-induced protein (TMEPAI) has been reported to be elevated in various tumor cells, is localized to the lysosome and promotes lysosome stability. The molecular mechanism of TMEPAI trafficking however to the lysosome is unknown. Here we report that clathrin and CI-M6PR mediate TMEPAI transport from the Golgi directly into the endo-lysosomal pathway. TMEPAI is ubiquitinated at its C-terminal region and ubiquitination modification of TMEPAI is a signal for its lysosomal trafficking. Moreover, TMEPAI binds the ubiquitin binding proteins Hrs and STAM which is required for its lysosomal transport. In addition, TMEPAI interacts with the dynactin pointed-end complex subunits dynactin 5 and dynactin 6. The aa 132–155 domain is essential for specific TMEPAI binding and deletion of this binding site leads to mis-trafficking of TMEPAI to the plasma membrane. These results reveal the pathway and mechanism regulating transport of TMEPAI to the lysosome, which helps to further understand the role of TMEPAI in tumorigenesis. PMID:28218281

  16. Enzyme therapy for lysosomal acid lipase deficiency in the mouse.

    PubMed

    Du, H; Schiavi, S; Levine, M; Mishra, J; Heur, M; Grabowski, G A

    2001-08-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.

  17. Recent advances in gene therapy for lysosomal storage disorders.

    PubMed

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  18. mTOR and lysosome regulation

    PubMed Central

    2014-01-01

    Lysosomes are key cellular organelles that play a crucial role in catabolism by degrading extracellular and intracellular material. It is, therefore, very intriguing that mTORC1 (mechanistic target of rapamycin complex 1), a major promoter of anabolic processes, localizes in its active form to the surface of lysosomes. In recent years, many exciting observations have revealed a tightly regulated crosstalk between mTORC1 activity and lysosomal function. These findings highlight the complex regulatory network that modulates energy metabolism in cells. PMID:25184042

  19. Electron probe X-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes

    SciTech Connect

    Hanaichi, T.; Kidokoro, R.; Hayashi, H.; Sakamoto, N.

    1984-11-01

    Livers of eight patients with chronic liver diseases were investigated by energy dispersive x-ray analysis. First, three kinds of preparations (osmium-Epon sections, glutaraldehyde-frozen sections, and unfixed-frozen sections) were compared for element detectability at a subcellular level. The glutaraldehyde-frozen sections were satisfactory as far as copper, sulfur, and phosphorus were concerned. Five patients (one patient with Wilson's disease, one chronic cholestasis, one chronic hepatitis, and two asymptomatic primary biliary cirrhosis) yielded x-ray images of copper and sulfur consistent with hepatocellular lysosomes. Second, the glutaraldehyde-frozen sections were utilized for a study of copper deposits in the patients' livers. There was a significant correlation between copper and sulfur contents in the lysosomes of all patients studied but no correlation in the remainder of the cytoplasm. Zinc was not detected in the lysosomes. Whatever the content of copper in the lysosomes, the ratio of delta copper to phosphorus (weight/weight) to delta sulfur to phosphorus was 0.60. These data indicate that most lysosomal copper binds to a thiol protein, probably metallothionein, in the liver.

  20. Screening for lysosomal storage disorders--a clinical perspective.

    PubMed

    Fletcher, Janice M

    2006-01-01

    The availability of therapies for lysosomal storage diseases (LSDs) and clear documentation from animal studies that optimal therapy depends on early diagnosis have set the scene for newborn screening for LSDs. The combined incidence of this group of conditions is approximately 1 in 7000, well within the feasible range for newborn screening programmes. The availability of multiplex technology has facilitated the technical aspects of initial screening. The scientific challenge is to predict disease severity early enough to influence choice of therapy. LSD screening is discussed from the point of view of the scientists, the families affected by these conditions, the community and clinicians.

  1. Lysosomal cysteine proteases: structure, function and inhibition of cathepsins.

    PubMed

    Roberts, Rebecca

    2005-12-01

    Lysosomal cysteine proteases, a subgroup of the cathepsin family, are critical for normal cellular functions such as general protein turnover, antigen processing and bone remodeling. In the past decade, the number of identified human cathepsins has more than doubled and their known role in several pathologies has expanded rapidly. Increased understanding of the structure and mechanism of this class of enzymes has brought on a new fervor in the design of small molecule inhibitors with the hope of producing specific, therapeutic drugs for diseases such as arthritis, allergy, multiple sclerosis, atherosclerosis, Alzheimer's disease and cancer.

  2. Lysosomal Storage Disorders in the Newborn

    PubMed Central

    Staretz-Chacham, Orna; Lang, Tess C.; LaMarca, Mary E.; Krasnewich, Donna; Sidransky, Ellen

    2009-01-01

    Lysosomal storage disorders are rare inborn errors of metabolism, with a combined incidence of 1 in 1500 to 7000 live births. These relatively rare disorders are seldom considered when evaluating a sick newborn. A significant number of the >50 different lysosomal storage disorders, however, do manifest in the neonatal period and should be part of the differential diagnosis of several perinatal phenotypes. We review the earliest clinical features, diagnostic tests, and treatment options for lysosomal storage disorders that can present in the newborn. Although many of the lysosomal storage disorders are characterized by a range in phenotypes, the focus of this review is on the specific symptoms and clinical findings that present in the perinatal period, including neurologic, respiratory, endocrine, and cardiovascular manifestations, dysmorphic features, hepatosplenomegaly, skin or ocular involvement, and hydrops fetalis/congenital ascites. A greater awareness of these features may help to reduce misdiagnosis and promote the early detection of lysosomal storage disorders. Implementing therapy at the earliest stage possible is crucial for several of the lysosomal storage disorders; hence, an early appreciation of these disorders by physicians who treat newborns is essential. PMID:19336380

  3. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    PubMed Central

    Barrios, M. N.; Martín, T.; Sánchez, M. L.; Buitrago, J. M. González; Jiménez, A.

    1995-01-01

    Hydrolytic enzymes are the major constituents of alveolar macrophages (AM) and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs). An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF) protein concentration, BALF LDH and BALF alkaline phosphatase activities). All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease. PMID:18475615

  4. Structure of human saposin A at lysosomal pH.

    PubMed

    Hill, Chris H; Read, Randy J; Deane, Janet E

    2015-07-01

    The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-D-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a `closed' to an `open' conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined `closed' conformation, showing that pH alone is not sufficient for the transition to the `open' conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.

  5. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder.

    PubMed

    Di Malta, Chiara; Fryer, John D; Settembre, Carmine; Ballabio, Andrea

    2012-08-28

    The role of astrocytes in neurodegenerative processes is increasingly appreciated. Here we investigated the contribution of astrocytes to neurodegeneration in multiple sulfatase deficiency (MSD), a severe lysosomal storage disorder caused by mutations in the sulfatase modifying factor 1 (SUMF1) gene. Using Cre/Lox mouse models, we found that astrocyte-specific deletion of Sumf1 in vivo induced severe lysosomal storage and autophagy dysfunction with consequential cytoplasmic accumulation of autophagic substrates. Lysosomal storage in astrocytes was sufficient to induce degeneration of cortical neurons in vivo. Furthermore, in an ex vivo coculture assay, we observed that Sumf1(-/-) astrocytes failed to support the survival and function of wild-type cortical neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. Compared with the astrocyte-specific deletion of Sumf1, the concomitant removal of Sumf1 in both neurons and glia in vivo induced a widespread neuronal loss and robust neuroinflammation. Finally, behavioral analysis of mice with astrocyte-specific deletion of Sumf1 compared with mice with Sumf1 deletion in both astrocytes and neurons allowed us to link a subset of neurological manifestations of MSD to astrocyte dysfunction. This study indicates that astrocytes are integral components of the neuropathology in MSD and that modulation of astrocyte function may impact disease course.

  6. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  7. PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis

    PubMed Central

    Fujiwara, Toshifumi; Ye, Shiqiao; Winchell, Caylin G.; Andrews, Norma W.; Voth, Daniel E.; Varughese, Kottayil I.; Mackintosh, Samuel G.; Feng, Yunfeng; Nakamura, Takashi; Manolagas, Stavros C.

    2016-01-01

    Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7. PMID:27777970

  8. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin.

    PubMed

    Platt, F M; Neises, G R; Reinkensmeier, G; Townsend, M J; Perry, V H; Proia, R L; Winchester, B; Dwek, R A; Butters, T D

    1997-04-18

    The glycosphingolipid (GSL) lysosomal storage diseases result from the inheritance of defects in the genes encoding the enzymes required for catabolism of GSLs within lysosomes. A strategy for the treatment of these diseases, based on an inhibitor of GSL biosynthesis N-butyldeoxynojirimycin, was evaluated in a mouse model of Tay-Sachs disease. When Tay-Sachs mice were treated with N-butyldeoxynojirimycin, the accumulation of GM2 in the brain was prevented, with the number of storage neurons and the quantity of ganglioside stored per cell markedly reduced. Thus, limiting the biosynthesis of the substrate (GM2) for the defective enzyme (beta-hexosaminidase A) prevents GSL accumulation and the neuropathology associated with its lysosomal storage.

  9. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  10. Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes

    PubMed Central

    Naphade, Swati; Sharma, Jay; Chevronnay, Héloïse P. Gaide; Shook, Michael A.; Yeagy, Brian A.; Rocca, Celine J.; Ur, Sarah N.; Lau, Athena J.; Courtoy, Pierre J.; Cherqui, Stephanie

    2014-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins. PMID:25186209

  11. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes.

    PubMed

    Naphade, Swati; Sharma, Jay; Gaide Chevronnay, Héloïse P; Shook, Michael A; Yeagy, Brian A; Rocca, Celine J; Ur, Sarah N; Lau, Athena J; Courtoy, Pierre J; Cherqui, Stephanie

    2015-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.

  12. Gastroprotection and lysosomal membrane stabilization by sulglicotide.

    PubMed

    Porta, R; Niada, R; Pescador, R; Mantovani, M; Prino, G

    1986-07-01

    Well-known agents that induce gastric ulcers cause a decrease in lysosomal stability, with release of lytic enzymes. Some antiulcer and cytoprotective agents have lysosomal membrane stabilizing activity when tested in vitro and ex vivo. Sulglicotide (Gliptide), a polysulfated glycopeptide with antiulcer and cytoprotective activities, was able to stabilize lysosomal membranes in vitro at concentrations between 9 and 36 micrograms/ml. The ratio of potency of sulglicotide to that of carbenoxolone was 12.2. In ex vivo experiments in rats, it was found that sulglicotide stabilized lysosomes after oral treatment. The effect was dose-dependent after intravenous treatment. Carbenoxolone, injected i.v. under the same experimental conditions, was less active (potency ratio 0.65). 16,16-dimethyl-PGE2, administered at a dose of 10 micrograms/kg orally or intravenously, had an activity equivalent to that of sulglicotide at a dose of 12.5 mg/kg i.v. or 200 mg/kg p.o. Sulglicotide (200-400 mg/kg p.o.) was also able to prevent the release of acid phosphatase from stomachs challenged for 10 min or 3 h with absolute ethanol. The same result was obtained with 200 mg/kg p.o. of carbenoxolone. These data show that sulglicotide is a potent lysosomal membrane stabilizer in vitro and ex vivo, and could explain the cytoprotective activity of this compound in different experimental models of ulcer.

  13. Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells.

    PubMed

    Dermentzaki, Georgia; Dimitriou, Evangelia; Xilouri, Maria; Michelakakis, Helen; Stefanis, Leonidas

    2013-01-01

    To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson's disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

  14. Leaving the lysosome behind: novel developments in autophagy inhibition

    PubMed Central

    Solitro, Abigail R; MacKeigan, Jeffrey P

    2016-01-01

    The search for a single silver bullet for the treatment of cancer has now been overshadowed by the identification of multiple therapeutic targets unique to each malignancy and even to each patient. In recent years, autophagy has emerged as one such therapeutic target. In response to both therapeutic and oncogenic stress, cancer cells upregulate and demonstrate an increased dependence upon this intracellular recycling process. Particularly in malignancies that currently lack targeted therapeutic options, autophagy inhibitors are the next hopeful prospects for the treatment of this disease. In this review, we discuss the rapid evolution of autophagy inhibitors from early lysosomotropic agents to next-generation lysosome-targeted drugs and beyond. PMID:26689099

  15. Lysosomal solute carrier transporters gain momentum in research.

    PubMed

    Bissa, B; Beedle, A M; Govindarajan, R

    2016-11-01

    Emerging evidence indicates that lysosome function extends beyond macromolecular degradation. Genetic and functional defects in components of the lysosomal transport machinery cause lysosomal storage disorders implicating the lysosomal solute carrier (SLC) transporters as essential to vital cell processes. The pathophysiology and therapeutic potential of lysosomal SLC transporters are highlighted here, focusing on recent discoveries in autophagic amino acid sensing (SLC38A9), phagocytic regulation in macrophages (SLC29A3, SLC15A3/A4), adenosine triphosphate (ATP) exocytosis in neurotransmission (SLC17A9), and lysosomal transport of maytansine catabolites into the cytoplasm (SLC46A3).

  16. Lysosomal solute carrier transporters gain momentum in research

    PubMed Central

    Beedle, AM; Govindarajan, R

    2016-01-01

    Emerging evidence indicates that lysosome function extends beyond macromolecular degradation. Genetic and functional defects in components of the lysosomal transport machinery cause lysosomal storage disorders implicating the lysosomal solute carrier (SLC) transporters as essential to vital cell processes. The pathophysiology and therapeutic potential of lysosomal SLC transporters are highlighted here, focusing on recent discoveries in autophagic amino acid sensing (SLC38A9), phagocytic regulation in macrophages (SLC29A3, SLC15A3/A4), adenosine triphosphate (ATP) exocytosis in neurotransmission (SLC17A9), and lysosomal transport of maytansine catabolites into the cytoplasm (SLC46A3). PMID:27530302

  17. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway.

    PubMed

    Dixit, Sayali S; Jadot, Michel; Sohar, Istvan; Sleat, David E; Stock, Ann M; Lobel, Peter

    2011-01-01

    Niemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely.

  18. Secretion from Myeloid Cells: Secretory Lysosomes.

    PubMed

    Griffiths, Gillian M

    2016-08-01

    Many cells of the myeloid lineage use an unusual secretory organelle to deliver their effector mechanisms. In these cells, the lysosomal compartment is often modified not only to fulfill the degradative functions of a lysosome but also as a mechanism for secreting additional proteins that are found in the lysosomes of each specialized cell type. These extra proteins vary from one cell type to another according to the specialized function of the cell. For example, mast cells package histamine; cytotoxic T cells express perforin; azurophilic granules in neutrophils express antimicrobial peptides, and platelets von Willebrand factor. Upon release, these very different proteins can trigger inflammation, cell lysis, microbial death, and clotting, respectively, and hence deliver the very different effector mechanisms of these different myeloid cells.

  19. Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses

    PubMed Central

    Corrotte, M.; Castro-Gomes, T.; Koushik, A.B.; Andrews, N.W.

    2016-01-01

    Rapid plasma membrane repair is essential to restore cellular homeostasis and improve cell survival after injury. Several mechanisms for plasma membrane repair have been proposed, including formation of an intracellular vesicle patch, reduction of plasma membrane tension, lesion removal by endocytosis, and/or shedding of the wounded membrane. Under all conditions studied to date, plasma membrane repair is strictly dependent on the entry of calcium into cells, from the extracellular medium. Calcium-dependent exocytosis of lysosomes is an important early step in the plasma membrane repair process, and defects in plasma membrane repair have been observed in cells carrying mutations responsible for serious lysosomal diseases, such as Chediak–Higashi (Huynh, Roth, Ward, Kaplan, & Andrews, 2004) and Niemann–Pick Disease type A (Tam et al., 2010). A functional role for release of the lysosomal enzyme acid sphingomyelinase, which generates ceramide on the cell surface and triggers endocytosis, has been described (Corrotte et al., 2013; Tam et al., 2010). Therefore, procedures for measuring the extent of lysosomal fusion with the plasma membrane of wounded cells are important indicators of the cellular repair response. The importance of carefully selecting the methodology for experimental plasma membrane injury, in order not to adversely impact the membrane repair machinery, is becoming increasingly apparent. Here, we describe physiologically relevant methods to induce different types of cellular wounds, and sensitive assays to measure the ability of cells to secrete lysosomes and reseal their plasma membrane. PMID:25665445

  20. Gene therapy for the neurological manifestations in lysosomal storage disorders.

    PubMed

    Cheng, Seng H

    2014-09-01

    Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.

  1. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    PubMed

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  2. Lysosomal protease expression in mature enamel.

    PubMed

    Tye, Coralee E; Lorenz, Rachel L; Bartlett, John D

    2009-01-01

    The enamel matrix proteins (amelogenin, enamelin and ameloblastin) are degraded by matrix metalloproteinase-20 and kallikrein-4 during enamel development and mature enamel is virtually protein free. The precise mechanism of removal and degradation of the enamel protein cleavage products from the matrix, however, remains poorly understood. It has been proposed that receptor-mediated endocytosis allows for the cleaved proteins to be removed from the matrix during enamel formation and then transported to the lysosome for further degradation. This study aims to identify lysosomal proteases that are present in maturation-stage enamel organ. RNA from first molars of 11-day-old mice was collected and expression was initially assessed by RT-PCR and then quantified by qPCR. The pattern of expression of selected proteases was assessed by immunohistochemical staining of demineralized mouse incisors. With the exception of cathepsin G, all lysosomal proteases assessed were expressed in maturation-stage enamel organ. Identified proteases included cathepsins B, D, F, H, K, L, O, S and Z. Tripeptidyl peptidases I and II as well as dipeptidyl peptidases I, II, III and IV were also found to be expressed. Immunohistochemical staining confirmed that the maturation-stage ameloblasts express cathepsins L and S and tripeptidyl peptidase II. Our results suggest that the ameloblasts are enriched by a large number of lysosomal proteases at maturation that are likely involved in the degradation of the organic matrix.

  3. Lysosomal proteolysis: effects of aging and insulin.

    PubMed

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  4. A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.

    PubMed

    Rappaport, Jeff; Manthe, Rachel L; Solomon, Melani; Garnacho, Carmen; Muro, Silvia

    2016-02-01

    Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.

  5. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion

    PubMed Central

    King, Jason S.; Gueho, Aurélie; Hagedorn, Monica; Gopaldass, Navin; Leuba, Florence; Soldati, Thierry; Insall, Robert H.

    2013-01-01

    Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused. PMID:23885127

  6. HIV-1 Tat Promotes Lysosomal Exocytosis in Astrocytes and Contributes to Astrocyte-mediated Tat Neurotoxicity.

    PubMed

    Fan, Yan; He, Johnny J

    2016-10-21

    Tat interaction with astrocytes has been shown to be important for Tat neurotoxicity and HIV/neuroAIDS. We have recently shown that Tat expression leads to increased glial fibrillary acidic protein (GFAP) expression and aggregation and activation of unfolded protein response/endoplasmic reticulum (ER) stress in astrocytes and causes neurotoxicity. However, the exact molecular mechanism of astrocyte-mediated Tat neurotoxicity is not defined. In this study, we showed that neurotoxic factors other than Tat protein itself were present in the supernatant of Tat-expressing astrocytes. Two-dimensional gel electrophoresis and mass spectrometry revealed significantly elevated lysosomal hydrolytic enzymes and plasma membrane-associated proteins in the supernatant of Tat-expressing astrocytes. We confirmed that Tat expression and infection of pseudotyped HIV.GFP led to increased lysosomal exocytosis from mouse astrocytes and human astrocytes. We found that Tat-induced lysosomal exocytosis was tightly coupled to astrocyte-mediated Tat neurotoxicity. In addition, we demonstrated that Tat-induced lysosomal exocytosis was astrocyte-specific and required GFAP expression and was mediated by ER stress. Taken together, these results show for the first time that Tat promotes lysosomal exocytosis in astrocytes and causes neurotoxicity through GFAP activation and ER stress induction in astrocytes and suggest a common cascade through which aberrant astrocytosis/GFAP up-regulation potentiates neurotoxicity and contributes to neurodegenerative diseases.

  7. Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms.

    PubMed

    Li, Jie; Kanekiyo, Takahisa; Shinohara, Mitsuru; Zhang, Yunwu; LaDu, Mary Jo; Xu, Huaxi; Bu, Guojun

    2012-12-28

    Aggregation of amyloid-β (Aβ) peptides leads to synaptic disruption and neurodegeneration in Alzheimer disease (AD). A major Aβ clearance pathway in the brain is cellular uptake and degradation. However, how Aβ traffics through the endocytic pathway and how AD risk factors regulate this event is unclear. Here we show that the majority of endocytosed Aβ in neurons traffics through early and late endosomes to the lysosomes for degradation. Overexpression of Rab5 or Rab7, small GTPases that function in vesicle fusion for early and late endosomes, respectively, significantly accelerates Aβ endocytic trafficking to the lysosomes. We also found that a portion of endocytosed Aβ traffics through Rab11-positive recycling vesicles. A blockage of this Aβ recycling pathway with a constitutively active Rab11 mutant significantly accelerates cellular Aβ accumulation. Inhibition of lysosomal enzymes results in Aβ accumulation and aggregation. Importantly, apolipoprotein E (apoE) accelerates neuronal Aβ uptake, lysosomal trafficking, and degradation in an isoform-dependent manner with apoE3 more efficiently facilitating Aβ trafficking and degradation than apoE4, a risk factor for AD. Taken together, our results demonstrate that Aβ endocytic trafficking to lysosomes for degradation is a major Aβ clearance pathway that is differentially regulated by apoE isoforms. A disturbance of this pathway can lead to accumulation and aggregation of cellular Aβ capable of causing neurotoxicity and seeding amyloid.

  8. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus

    PubMed Central

    Monteith, Andrew J.; Kang, SunAh; Scott, Eric; Hillman, Kai; Rajfur, Zenon; Jacobson, Ken; Costello, M. Joseph; Vilen, Barbara J.

    2016-01-01

    Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis, leading to autoimmune and inflammatory diseases. Herein, we report that macrophages from lupus-prone MRL/lpr mice have impaired lysosomal maturation, resulting in heightened ROS production and attenuated lysosomal acidification. Impaired lysosomal maturation diminishes the ability of lysosomes to degrade apoptotic debris contained within IgG–immune complexes (IgG-ICs) and promotes recycling and the accumulation of nuclear self-antigens at the membrane 72 h after internalization. Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids, leading to the activation of Toll-like receptors. It also promotes phagosomal membrane permeabilization, allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21. Collectively, these events promote the accumulation of nuclear antigens and activate innate sensors that drive IFNα production and heightened cell death. These data identify a previously unidentified defect in lysosomal maturation that provides a mechanism for the chronic activation of intracellular innate sensors in systemic lupus erythematosus. PMID:27035940

  9. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein.

    PubMed

    Karaca, Ilker; Tamboli, Irfan Y; Glebov, Konstantin; Richter, Josefine; Fell, Lisa H; Grimm, Marcus O; Haupenthal, Viola J; Hartmann, Tobias; Gräler, Markus H; van Echten-Deckert, Gerhild; Walter, Jochen

    2014-06-13

    Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca(2+) from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP.

  10. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.

  11. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes

    PubMed Central

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    ABSTRACT Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy. PMID:27046251

  12. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity

    PubMed Central

    Kam, Tae-In; Yun, Seungpil; Kim, Sangjune; Park, Hyejin; Hwang, Heehong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2015-01-01

    Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher’s disease (GD), Parkinson’s disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer’s disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1–42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1–42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1–42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD. PMID:26629917

  13. Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction.

    PubMed

    Wong, Ching-On; Palmieri, Michela; Li, Jiaxing; Akhmedov, Dmitry; Chao, Yufang; Broadhead, Geoffrey T; Zhu, Michael X; Berdeaux, Rebecca; Collins, Catherine A; Sardiello, Marco; Venkatachalam, Kartik

    2015-09-29

    Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.

  14. Transgene produces massive overexpression of human beta -glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors.

    PubMed

    Vogler, Carole; Galvin, Nancy; Levy, Beth; Grubb, Jeffery; Jiang, Jinxing; Zhou, Xiao Yan; Sly, William S

    2003-03-04

    beta-Glucuronidase (GUSB) is a lysosomal enzyme important in the normal step-wise degradation of glycosaminoglycans. Deficiency of GUSB causes the lysosomal storage disease mucopolysaccharidosis VII (MPS VII, Sly disease). Affected patients have widespread progressive accumulation of beta-glucuronide-containing glycosaminoglycans in lysosomes. Enzyme replacement, bone marrow transplantation, and gene therapy can correct lysosomal storage in the MPS VII mouse model. Gene therapy in MPS VII patients and animals may result in massive overexpression of GUSB in individual tissues, and the toxicity of such overexpression is incompletely investigated. To gain insight into the effect of massive overexpression of GUSB, we established 19 transgenic mouse lines, two of which expressed very high levels of human GUSB in many tissues. The founder overexpressing mice had from >100- to several thousand-fold increases in tissue and serum GUSB. The enzyme expression in most tissues decreased in subsequent generations in one line, and expression in liver and marrow fell in subsequent generations of the other. Both lines had morphologically similar widespread lysosomal storage of GUSB and secondary elevations of other lysosomal enzymes, a finding characteristic of lysosomal storage disease. One line developed tumors, and one did not. These transgenic models show that massive overexpression of a lysosomal enzyme can be associated with dramatic morphological alterations, which, at least in one of the two lines, had little clinical consequence. For the other transgenic line, the high frequency of tumor development in F(2) FVB progeny suggests that the vector used to generate the transgenic lines has an integration site-dependent potential to be oncogenic, at least in this strain background.

  15. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits.

    PubMed

    Yang, Dun-Sheng; Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U; Saito, Mariko; Cuervo, Ana M; Nixon, Ralph A

    2014-12-01

    Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B

  16. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  17. Group XV phospholipase A2, a lysosomal phospholipase A2

    PubMed Central

    Shayman, James A.; Kelly, Robert; Kollmeyer, Jessica; He, Yongqun; Abe, Akira

    2010-01-01

    A phospholipase A2 was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A2 (LPLA2) and subsequently designated group XV phospholipase A2. LPLA2 has 49 percent of amino acid sequence identity to lecithin cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA2 is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA2−/− mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA2−/− mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA2 may play a primary role in phospholipid homeostasis, drug toxicity, and host defense. PMID:21074554

  18. Lysosomal adaptation: How cells respond to lysosomotropic compounds

    PubMed Central

    Lu, Shuyan; Sung, Tae; Lin, Nianwei; Abraham, Robert T.; Jessen, Bart A.

    2017-01-01

    Lysosomes are acidic organelles essential for degradation and cellular homoeostasis and recently lysosomes have been shown as signaling hub to respond to the intra and extracellular changes (e.g. amino acid availability). Compounds including pharmaceutical drugs that are basic and lipophilic will become sequestered inside lysosomes (lysosomotropic). How cells respond to the lysosomal stress associated with lysosomotropism is not well characterized. Our goal is to assess the lysosomal changes and identify the signaling pathways that involve in the lysosomal changes. Eight chemically diverse lysosomotropic drugs from different therapeutic areas were subjected to the evaluation using the human adult retinal pigmented epithelium cell line, ARPE-19. All lysosomotropic drugs tested triggered lysosomal activation demonstrated by increased lysosotracker red (LTR) and lysosensor green staining, increased cathepsin activity, and increased LAMP2 staining. However, tested lysosomotropic drugs also prompted lysosomal dysfunction exemplified by intracellular and extracellular substrate accumulation including phospholipid, SQSTM1/p62, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) and opsin. Lysosomal activation observed was likely attributed to lysosomal dysfunction, leading to compensatory responses including nuclear translocation of transcriptional factors TFEB, TFE3 and MITF. The adaptive changes are protective to the cells under lysosomal stress. Mechanistic studies implicate calcium and mTORC1 modulation involvement in the adaptive changes. These results indicate that lysosomotropic compounds could evoke a compensatory lysosomal biogenic response but with the ultimate consequence of lysosomal functional impairment. This work also highlights a pathway of response to lysosomal stress and evidences the role of TFEB, TFE3 and MITF in the stress response. PMID:28301521

  19. Circulating lysosomal enzymes and acute hepatic necrosis.

    PubMed Central

    Gove, C D; Wardle, E N; Williams, R

    1981-01-01

    The activities of the lysosomal enzymes acid and neutral protease, N-acetylglucosaminidase, and acid phosphatase were measured in the serum of patients with fulminant hepatic failure. Acid protease (cathepsin D) activity was increased about tenfold in patients who died and nearly fourfold in those who survived fulminant hepatic failure after paracetamol overdose, whereas activities were increased equally in patients with fulminant hepatic failure due to viral hepatitis whether or not they survived. A correlation was found between serum acid protease activity and prothrombin time, and the increase in cathepsin D activity was sustained over several days compared with aspartate aminotransferase, which showed a sharp early peak and then a fall. Circulating lysosomal proteases can damage other organs, and measurement of their activity may therefore be of added value in assessing prognosis in this condition. PMID:7007443

  20. The release of lysosomal arylsulfatase from liver lysosomes exposed to 2-chloroethylethyl sulfide.

    PubMed

    Shin, S; Choi, D S; Kim, Y B; Cha, S H; Sok, D E

    1995-08-18

    Treatment of a lysosome-rich fraction from liver with 2-chloroethylethyl sulfide resulted in a dose-dependent release of arylsulfatase. The inclusion of Ca2+ enhanced the enzyme release by approximately 2.3-fold. The enhancing effect of Ca2+, showing an EC50 value of 30 mM, was mimicked by neither Mg2+ nor Mn2+. Studies on a structural requirement and a time-dependent release suggest that the Ca(2+)-dependent release proceeds via a specific process involving the alkylation of lysosomal membranes by 2-chloroethylethyl sulfide. Furthermore, the Ca(2+)-dependent process was prevented partially by either leupeptin or gentamycin, but neither pepstatin nor PMSF, implying that the enzyme release may be partially mediated by lysosomal cysteine-protease or phospholipase. Meanwhile, the Ca(2+)-independent release seems to be expressed non-specifically by various compounds.

  1. Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection.

    PubMed

    Shevchuk, Olga; Pägelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel; Steinert, Michael

    2014-11-01

    L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease.

  2. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin.

    PubMed

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  3. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes.

    PubMed

    Logan, Randall; Kong, Alex; Krise, Jeffrey P

    2013-11-01

    Many currently approved drugs possess weakly basic properties that make them substrates for extensive sequestration in acidic intracellular compartments such as lysosomes through an ion trapping-type mechanism. Lysosomotropic drugs often have unique pharmacokinetic properties that stem from the extensive entrapment in lysosomes, including an extremely large volume of distribution and a long half-life. Accordingly, pharmacokinetic drug-drug interactions can occur when one drug modifies lysosomal volume such that the degree of lysosomal sequestration of secondarily administered drugs is significantly altered. In this work, we have investigated potential mechanisms for drug-induced alterations in lysosomal volume that give rise to drug-drug interactions involving lysosomes. We show that eight hydrophobic amines, previously characterized as perpetrators in this type of drug-drug interaction, cause a significant expansion in lysosomal volume that was correlated with both the induction of autophagy and with decreases in the efficiency of lysosomal egress. We also show that well-known chemical inducers of autophagy caused an increase in apparent lysosomal volume and an increase in secondarily administered lysosomotropic drugs without negatively impacting vesicle-mediated lysosomal egress. These results could help rationalize how the induction of autophagy could cause variability in the pharmacokinetic properties of lysosomotropic drugs.

  4. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.

    PubMed

    Settembre, Carmine; Zoncu, Roberto; Medina, Diego L; Vetrini, Francesco; Erdin, Serkan; Erdin, SerpilUckac; Huynh, Tuong; Ferron, Mathieu; Karsenty, Gerard; Vellard, Michel C; Facchinetti, Valeria; Sabatini, David M; Ballabio, Andrea

    2012-03-07

    The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.

  5. Niemann-Pick disease: a frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients.

    PubMed Central

    Levran, O; Desnick, R J; Schuchman, E H

    1991-01-01

    Although the A and B subtypes of Niemann-Pick disease (NPD) both result from the deficient activity of acid sphingomyelinase (ASM; sphingomyelin cholinephosphohydrolase, EC 3.1.4.12) and the lysosomal accumulation of sphingomyelin, they have remarkably distinct phenotypes. Type A disease is a fatal neurodegenerative disorder of infancy, whereas type B disease has no neurologic manifestations and is characterized primarily by reticuloendothelial involvement and survival into adulthood. Both disorders are more frequent among individual of Ashkenazi Jewish ancestry than in the general population. The recent isolation and characterization of cDNA and genomic sequences encoding ASM has facilitated investigation of the molecular lesions causing the NPD subtypes. Total RNA was reverse-transcribed, and the ASM cDNA from an Ashkenazi Jewish type A patient was specifically amplified by the polymerase chain reaction (PCR). Molecular analysis of the PCR products revealed a G----T transversion of nucleotide 1487, which occurred at a CpG dinucleotide and predicted an Arg----Leu substitution in residue 496. Hybridization of PCR-amplified genomic DNA with allele-specific oligonucleotides indicated that the proband was homoallelic for the Arg----Leu substitution and that both parents and several other relatives were heterozygous. This mutation was detected in 32% (10 of 31) of the Ashkenazi Jewish NPD type A alleles studied and occurred in only 5.6% (2 of 36) of ASM alleles from non-Jewish type A patients. Of interest, the Arg----Leu substitution occurred in one of the ASM alleles from the two Ashkenazi Jewish NPD type B patients studied and in none of the ASM alleles of 15 non-Jewish type B patients. In contrast, the mutation was not present in 180 ASM alleles from normal individuals of Ashkenazi Jewish descent. These findings identify a frequent missense mutation among NPD patients of Ashkenazi Jewish ancestry that results in neuronopathic type A disease when homoallelic and can

  6. A lysosome-centered view of nutrient homeostasis.

    PubMed

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  7. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity

    PubMed Central

    Trudeau, Kyle M.; Colby, Aaron H.; Zeng, Jialiu; Las, Guy; Feng, Jiazuo H.; Shirihai, Orian S.

    2016-01-01

    In pancreatic β-cells, liver hepatocytes, and cardiomyocytes, chronic exposure to high levels of fatty acids (lipotoxicity) inhibits autophagic flux and concomitantly decreases lysosomal acidity. Whether impaired lysosomal acidification is causally inhibiting autophagic flux and cellular functions could not, up to the present, be determined because of the lack of an approach to modify lysosomal acidity. To address this question, lysosome-localizing nanoparticles are described that, upon UV photoactivation, enable controlled acidification of impaired lysosomes. The photoactivatable, acidifying nanoparticles (paNPs) demonstrate lysosomal uptake in INS1 and mouse β-cells. Photoactivation of paNPs in fatty acid–treated INS1 cells enhances lysosomal acidity and function while decreasing p62 and LC3-II levels, indicating rescue of autophagic flux upon acute lysosomal acidification. Furthermore, paNPs improve glucose-stimulated insulin secretion that is reduced under lipotoxicity in INS1 cells and mouse islets. These results establish a causative role for impaired lysosomal acidification in the deregulation of autophagy and β-cell function under lipotoxicity. PMID:27377248

  8. Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders.

    PubMed Central

    Butters, Terry D; Mellor, Howard R; Narita, Keishi; Dwek, Raymond A; Platt, Frances M

    2003-01-01

    Glycosphingolipid (GSL) lysosomal storage disorders are a small but challenging group of human diseases to treat. Although these disorders appear to be monogenic in origin, where the catalytic activity of enzymes in GSL catabolism is impaired, the clinical presentation and severity of disease are heterogeneous. Present attitudes to treatment demand individual therapeutics designed to match the specific disease-related gene defect; this is an acceptable approach for those diseases with high frequency, but it lacks viability for extremely rare conditions. An alternative therapeutic approach termed 'substrate deprivation' or 'substrate reduction therapy' (SRT) aims to balance cellular GSL biosynthesis with the impairment in catalytic activity seen in lysosomal storage disorders. The development of N-alkylated iminosugars that have inhibitory activity against the first enzyme in the pathway for glucosylating sphingolipid in eukaryotic cells, ceramide-specific glucosyltransferase, offers a generic therapeutic for the treatment of all glucosphingolipidoses. The successful use of N-alkylated iminosugars to establish SRT as an alternative therapeutic strategy has been demonstrated in in vitro, in vivo and in clinical trials for type 1 Gaucher disease. The implications of these studies and the prospects of improvement to the design of iminosugar compounds for treating Gaucher and other GSL lysosomal storage disorders will be discussed. PMID:12803927

  9. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function.

    PubMed

    Kim, Dong-Kyu; Lim, Hee-Sun; Kawasaki, Ichiro; Shim, Yhong-Hee; Vaikath, Nishant N; El-Agnaf, Omar M A; Lee, He-Jin; Lee, Seung-Jae

    2016-10-02

    Aging is the major risk factor for neurodegenerative diseases that are also associated with impaired proteostasis, resulting in abnormal accumulation of protein aggregates. However, the role of aging in development and progression of disease remains elusive. Here, we used Caenorhabditis elegans models to show that aging-promoting genetic variations accelerated the rate of cell-to-cell transmission of SNCA/α-synuclein aggregates, hallmarks of Parkinson disease, and the progression of disease phenotypes, such as nerve degeneration, behavioral deficits, and reduced life span. Genetic and pharmacological anti-aging manipulations slowed the spread of aggregates and the associated phenotypes. Lysosomal degradation was significantly impaired in aging models, while anti-aging treatments reduced the impairment. Transgenic expression of hlh-30p::hlh-30, the master controller of lysosomal biogenesis, alleviated intercellular transmission of aggregates in the aging model. Our results demonstrate that the rate of aging closely correlates with the rate of aggregate propagation and that general anti-aging treatments can slow aggregate propagation and associated disease progression by restoring lysosomal function.

  10. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis.

    PubMed

    Chen, Yang; Li, Xiang; Boini, Krishna M; Pitzer, Ashley L; Gulbins, Erich; Zhang, Yang; Li, Pin-Lan

    2015-02-01

    Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.

  11. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    PubMed

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions.

  12. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo.

    PubMed

    Goldman, Stephen D B; Krise, Jeffrey P

    2010-02-12

    The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [(3)H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo.

  13. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    PubMed

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  14. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    NASA Astrophysics Data System (ADS)

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; Te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.

  15. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    PubMed Central

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions. PMID:28134274

  16. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency.

    PubMed

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A; Te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V; Lagae, Liesbet; Impens, Francis; Platt, Frances M; Gevaert, Kris; Annaert, Wim

    2017-01-30

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.

  17. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    PubMed

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  18. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

    2014-06-01

    Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.

  19. Loss of Cathepsin B and L Leads to Lysosomal Dysfunction, NPC-Like Cholesterol Sequestration and Accumulation of the Key Alzheimer's Proteins

    PubMed Central

    Cermak, Stjepko; Kosicek, Marko; Mladenovic-Djordjevic, Aleksandra; Smiljanic, Kosara; Kanazir, Selma

    2016-01-01

    Proper function of lysosomes is particularly important in neurons, as they cannot dilute accumulated toxic molecules and aggregates by cell division. Thus, impairment of lysosomal function plays an important role in neuronal degeneration and in the pathogenesis of numerous neurodegenerative diseases. In this work we analyzed how inhibition and/or loss of the major lysosomal proteases, the cysteine cathepsins B and L (CtsB/L), affects lysosomal function, cholesterol metabolism and degradation of the key Alzheimer's disease (AD) proteins. Here, we show that cysteine CtsB/L, and not the aspartyl cathepsin D (CtsD), represent a major lysosomal protease(s) that control lysosomal function, intracellular cholesterol trafficking and AD-like amyloidogenic features. Intriguingly, accumulation of free cholesterol in late endosomes/lysosomes upon CtsB/L inhibition resembled a phenotype characteristic for the rare neurodegenerative disorder Niemann-Pick type C (NPC). CtsB/L inhibition and not the inhibition of CtsD led to lysosomal impairment assessed by decreased degradation of EGF receptor, enhanced LysoTracker staining and accumulation of several lysosomal proteins LC3II, NPC1 and NPC2. By measuring the levels of NPC1 and ABCA1, the two major cholesterol efflux proteins, we showed that CtsB/L inhibition or genetic depletion caused accumulation of the NPC1 in lysosomes and downregulation of ABCA1 protein levels and its expression. Furthermore, we revealed that CtsB/L are involved in degradation of the key Alzheimer’s proteins: amyloid-β peptides (Aβ) and C-terminal fragments of the amyloid precursor protein (APP) and in degradation of β-secretase (BACE1). Our results imply CtsB/L as major regulators of lysosomal function and demonstrate that CtsB/L may play an important role in intracellular cholesterol trafficking and in degradation of the key AD proteins. Our findings implicate that enhancing the activity or levels of CtsB/L could provide a promising and a common

  20. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance.

    PubMed

    Song, Wensi; Soo Lee, Seung; Savini, Marzia; Popp, Lauren; Colvin, Vicki L; Segatori, Laura

    2014-10-28

    Cerium oxide nanoparticles (nanoceria) are widely used in a variety of industrial applications including UV filters and catalysts. The expanding commercial scale production and use of ceria nanoparticles have inevitably increased the risk of release of nanoceria into the environment as well as the risk of human exposure. The use of nanoceria in biomedical applications is also being currently investigated because of its recently characterized antioxidative properties. In this study, we investigated the impact of ceria nanoparticles on the lysosome-autophagy system, the main catabolic pathway that is activated in mammalian cells upon internalization of exogenous material. We tested a battery of ceria nanoparticles functionalized with different types of biocompatible coatings (N-acetylglucosamine, polyethylene glycol and polyvinylpyrrolidone) expected to have minimal effect on lysosomal integrity and function. We found that ceria nanoparticles promote activation of the transcription factor EB, a master regulator of lysosomal function and autophagy, and induce upregulation of genes of the lysosome-autophagy system. We further show that the array of differently functionalized ceria nanoparticles tested in this study enhance autophagic clearance of proteolipid aggregates that accumulate as a result of inefficient function of the lysosome-autophagy system. This study provides a mechanistic understanding of the interaction of ceria nanoparticles with the lysosome-autophagy system and demonstrates that ceria nanoparticles are activators of autophagy and promote clearance of autophagic cargo. These results provide insights for the use of nanoceria in biomedical applications, including drug delivery. These findings will also inform the design of engineered nanoparticles with safe and precisely controlled impact on the environment and the design of nanotherapeutics for the treatment of diseases with defective autophagic function and accumulation of lysosomal storage material.

  1. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  2. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  3. Factors Influencing the Measurement of Lysosomal Enzymes Activity in Human Cerebrospinal Fluid

    PubMed Central

    Parnetti, Lucilla; Eusebi, Paolo; Paciotti, Silvia; De Carlo, Claudia; Codini, Michela; Tambasco, Nicola; Rossi, Aroldo; Agnaf, Omar M. El.; Calabresi, Paolo; Beccari, Tommaso

    2014-01-01

    Measurements of the activities of lysosomal enzymes in cerebrospinal fluid have recently been proposed as putative biomarkers for Parkinson's disease and other synucleinopathies. To define the operating procedures useful for ensuring the reliability of these measurements, we analyzed several pre-analytical factors that may influence the activity of β-glucocerebrosidase, α-mannosidase, β-mannosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, cathepsin D and cathepsin E in cerebrospinal fluid. Lysosomal enzyme activities were measured by well-established fluorimetric assays in a consecutive series of patients (n = 28) with different neurological conditions, including Parkinson's disease. The precision, pre-storage and storage conditions, and freeze/thaw cycles were evaluated. All of the assays showed within- and between-run variabilities below 10%. At −20°C, only cathepsin D was stable up to 40 weeks. At −80°C, the cathepsin D, cathepsin E, and β-mannosidase activities did not change significantly up to 40 weeks, while β-glucocerebrosidase activity was stable up to 32 weeks. The β-galactosidase and α-fucosidase activities significantly increased (+54.9±38.08% after 4 weeks and +88.94±36.19% after 16 weeks, respectively). Up to four freeze/thaw cycles did not significantly affect the activities of cathepsins D and E. The β-glucocerebrosidase activity showed a slight decrease (−14.6%) after two freeze/thaw cycles. The measurement of lysosomal enzyme activities in cerebrospinal fluid is reliable and reproducible if pre-analytical factors are accurately taken into consideration. Therefore, the analytical recommendations that ensue from this study may contribute to the establishment of actual values for the activities of cerebrospinal fluid lysosomal enzymes as putative biomarkers for Parkinson's disease and other neurodegenerative disorders. PMID:24983953

  4. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells

    PubMed Central

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-01-01

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases. PMID:26258792

  5. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K.

    PubMed

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-03-16

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome-plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases.

  6. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells.

    PubMed

    Wang, Yuexia; Liu, Yanan; Liu, Xiaofang; Jiang, Liping; Yang, Guang; Sun, Xiance; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Chen, Min

    2015-08-06

    Citreoviridin (CIT) is a mycotoxin derived from fungal species in moldy cereals. In our previous study, we reported that CIT stimulated autophagosome formation in human liver HepG2 cells. Here, we aimed to explore the relationship of autophagy with lysosomal membrane permeabilization and apoptosis in CIT-treated cells. Our data showed that CIT increased the expression of LC3-II, an autophagosome biomarker, from the early stage of treatment (6 h). After treatment with CIT for 12 h, lysosomal membrane permeabilization occurred, followed by the release of cathepsin D in HepG2 cells. Inhibition of autophagosome formation with siRNA against Atg5 attenuated CIT-induced lysosomal membrane permeabilization. In addition, CIT induced collapse of mitochondrial transmembrane potential as assessed by JC-1 staining. Furthermore, caspase-3 activity assay showed that CIT induced apoptosis in HepG2 cells. Inhibition of autophagosome formation attenuated CIT-induced apoptosis, indicating that CIT-induced apoptosis was autophagy-dependent. Cathepsin D inhibitor, pepstatin A, relieved CIT-induced apoptosis as well, suggesting the involvement of the lysosomal-mitochondrial axis in CIT-induced apoptosis. Taken together, our data demonstrated that CIT induced autophagy-dependent apoptosis through the lysosomal-mitochondrial axis in HepG2 cells. The study thus provides essential mechanistic insight, and suggests clues for the effective management and treatment of CIT-related diseases.

  7. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    SciTech Connect

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar; Petsko, Gregory A.

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  8. Niemann-Pick disease

    MedlinePlus

    NPD; Sphingomyelinase deficiency; Lipid storage disorder - Niemann-Pick disease; Lysosomal storage disease - Niemann-Pick ... cannot properly break down cholesterol and other fats (lipids). This leads to too much cholesterol in the ...

  9. New form of acid phosphatase during lysosome biogenesis.

    PubMed Central

    Rao, G R; Aithal, H N; Toback, F G; Getz, G S

    1981-01-01

    Lysosome formation was induced in cells of the renal medulla by feeding rats on a K+-deficient diet. The role of the endoplasmic reticulum in the production of acid phosphatase, a typical lysosomal enzyme, was examined. Lysosomal and microsomal fractions were prepared for study by differential centrifugation of homogenates of renal papilla and inner stripe of red medulla. Acid phosphatase activity in the microsomal fraction was distinguished from the activity in the lysosomal fraction in normal tissue by differences in pH optima, tartrate inhibition, distribution of multiple forms after polyacrylamide-gel electrophoresis and detergent-sensitivity. During progressive K+ depletion, acid phosphatase activity in both microsomal and lysosomal fractions of the tissue increased 3-fold. In the lysosomes, K+ depletion was associated with the appearance of a new band of acid phosphatase. The neuraminidase-sensitivity of this band on polyacrylamide-gel electrophoresis indicated that the enzyme protein had been modified by the addition of sialic acid residues. K+ depletion also altered the lysosomal enzyme so that thiol compounds were able to stimulate its activity. Images Fig. 4. PMID:7326004

  10. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    PubMed Central

    2012-01-01

    The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences. PMID:22697169

  11. Mediated calcium transport by isolated human fibroblast lysosomes

    SciTech Connect

    Lemons, R.M.; Thoene, J.G. )

    1991-08-05

    Lysosomes purified by Percoll gradient from normal human fibroblasts (GM0010A) show uptake of Ca2+ in a mediated manner. The uptake is linear over the first 1.5 min and approaches a steady state by 10 min. Uptake is saturable, displaying a Vmax of about 10 pmol/min/unit hexosaminidase at 20 mM Ca2+ (7 nmol/min/mg protein), and a Km of 5.7 mM. Ca2+ uptake increases with increasing extralysosomal pH from 5.0 to 8.5. The Q10 is 1.6, and Ea 8.7 kcal/mol. Uptake of 0.1 mM Ca2+ was inhibited to the extent indicated by 1.0 mM of the following: Cd2+, 100%; Hg2+, 100%; Zn2+, 89%; Mg2+, 77%; Ba2+, 60%; Sr2+, 37%; Fe2+, 20%; Cu2+, 0%. Mono- and trivalent cations had no effect. ATP (1.0 mM) inhibited uptake by 80%, and chloroquine (0.1 mM) inhibited by 60%, as did 1.0 mM L-cystine. Cysteamine, N-ethylmaleimide, and the anions Cl-, SO(2-)4, and acetate had no effect. The calcium ionophore A23187 augmented uptake by 10-fold at 10 microM. Surprisingly, Pb2+ greatly augmented lysosomal Ca2+ uptake in a concentration-dependent manner. Pb2+, however, adversely affected lysosomal latency. Lysosomal calcium uptake was not affected by inositol 1,4,5-triphosphate, and calcium-induced calcium release from lysosomes was not observed. A role for lysosomes in cellular calcium homeostasis has not been previously suggested. This work shows that Ca2+ can be transported into and out of lysosomes and could assist in lysosomal proteolysis. The extent of further lysosomal participation in cellular calcium regulation is unclear.

  12. Unfolded protein response activates glycogen synthase kinase-3 via selective lysosomal degradation.

    PubMed

    Nijholt, Diana A T; Nölle, Anna; van Haastert, Elise S; Edelijn, Hessel; Toonen, Ruud F; Hoozemans, Jeroen J M; Scheper, Wiep

    2013-07-01

    The unfolded protein response (UPR) is a stress response that is activated upon disturbed homeostasis in the endoplasmic reticulum. In Alzheimer's disease, as well as in other tauopathies, the UPR is activated in neurons that contain early tau pathology. A recent genome-wide association study identified genetic variation in a UPR transducer as a risk factor for tauopathy, supporting a functional connection between UPR activation and tau pathology. Here we show that UPR activation increases the activity of the major tau kinase glycogen synthase kinase (GSK)-3 in vitro via a selective removal of inactive GSK-3 phosphorylated at Ser(21/9). We demonstrate that this is mediated by the autophagy/lysosomal pathway. In brain tissue from patients with different tauopathies, lysosomal accumulations of pSer(21/9) GSK-3 are found in neurons with markers for UPR activation. Our data indicate that UPR activation increases the activity of GSK-3 by a novel mechanism, the lysosomal degradation of the inactive pSer(21/9) GSK-3. This may provide a functional explanation for the close association between UPR activation and early tau pathology in neurodegenerative diseases.

  13. Aneuploidy triggers a TFEB-mediated lysosomal stress response.

    PubMed

    Santaguida, Stefano; Amon, Angelika

    2015-01-01

    Aneuploidy, defined as an alteration in chromosome number that is not a multiple of the haploid complement, severely affects cellular physiology. Changes in chromosome number lead to imbalances in cellular protein composition, thus disrupting cellular processes and causing proteins to misfold and aggregate. We recently reported that in mammalian cells protein aggregates are readily encapsulated within autophagosomes but are not degraded by lysosomes. This leads to a lysosomal stress response in which the transcription factor TFEB induces expression of factors needed for macroautophagy-mediated protein degradation. Our studies uncover lysosomal degradation defects as a feature of the aneuploid state, and a role for the transcription factor TFEB in the response thereto.

  14. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    PubMed

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  15. The Yeast Lysosome-like Vacuole: Endpoint and Crossroads

    PubMed Central

    Li, Sheena Claire; Kane, Patricia M.

    2009-01-01

    Summary Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the “garbage dump” of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated. PMID:18786576

  16. Autophagy in astrocytes: a novel culprit in lysosomal storage disorders.

    PubMed

    Di Malta, Chiara; Fryer, John D; Settembre, Carmine; Ballabio, Andrea

    2012-12-01

    Neurodegeneration is a prominent feature of lysosomal storage disorders (LSDs). Emerging data identify autophagy dysfunction in neurons as a major component of the phenotype. However, the autophagy pathway in the CNS has been studied predominantly in neurons, whereas in other cell types it has been largely unexplored. We studied the lysosome-autophagic pathway in astrocytes from a murine model of multiple sulfatase deficiency (MSD), a severe form of LSD. Similar to what was observed in neurons, we found that lysosomal storage in astrocytes impairs autophagosome maturation and this, in turn, has an impact upon the survival of cortical neurons and accounts for some of the neurological features found in MSD. Thus, our data indicate that lysosomal/autophagic dysfunction in astrocytes is an important component of neurodegeneration in LSDs.

  17. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  18. Pulmonary and generalized lysosomal storage induced by amphiphilic drugs.

    PubMed Central

    Hruban, Z

    1984-01-01

    Administration of amphiphilic drugs to experimental animals causes formation of myelinoid bodies in many cell types, accumulation of foamy macrophages in pulmonary alveoli and pulmonary alveolar proteinosis. These changes are the result of an interaction between the drugs and phospholipids which leads to an alteration in physicochemical properties of the phospholipids. Impairment of the digestion of altered pulmonary secretions in phagosomes of macrophages results in accumulation of foam cells in pulmonary alveoli. Impairment of the metabolism of altered phospholipids removed by autophagy induces an accumulation of myelinoid bodies. The administration of amphiphilic compounds thus causes pulmonary intra-alveolar histiocytosis which is a part of a drug-induced lysosomal storage or generalized lipidosis. The accumulation of drug-lipid complexes in myelinoid bodies and in pulmonary foam cells may lead to alteration of cellular functioning and to clinical disease. Currently over 50 amphiphilic drugs are known. Unique pharmacological properties necessitate clinical use of some of these drugs. The occurrence and severity of potential clinical side effects depend on the nature of each drug, dosage and duration of treatment, simultaneous administration of other drugs and foods, individual metabolic pattern of the patient and other factors. Further studies on factors preventing and potentiating adverse effects of amphiphilic drugs are indicated. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:6376111

  19. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    PubMed Central

    Coutinho, Maria Francisca; Santos, Juliana Inês; Alves, Sandra

    2016-01-01

    Lysosomal storage diseases (LSDs) are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT), with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be) investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT), whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s). Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs. PMID:27384562

  20. Passive diffusion of non-electrolytes across the lysosome membrane.

    PubMed Central

    Iveson, G P; Bird, S J; Lloyd, J B

    1989-01-01

    An osmotic-protection method has been used to study the permeability of rat liver lysosomes to 43 organic non-electrolytes of formula weights ranging from 62 to 1000. A lysosome-rich centrifugal fraction of rat liver homogenate was resuspended in an unbuffered 0.25 M solution of test solute, pH 7.0, and incubated at 25 degrees C for 60 min. The free and total activities of 4-methylumbelliferyl N-acetyl-beta-D-glucosaminidase were measured after incubation for 0, 30 and 60 min. Three patterns of results were seen. In pattern A the percentage free activity remained low throughout the 60 min incubation, indicating little or no solute entry into the lysosomes. In pattern B, the percentage free activity was initially low, but rose substantially during the incubation, indicating solute entry. In pattern C there was not even initial osmotic protection, indicating very rapid solute entry. The rapidity of solute entry into the lysosomes showed no correlation with the formula weight, but a perfect inverse correlation with the hydrogen-bonding capacity of the solutes. The results, which can be used to predict the ability of further compounds to cross the lysosome membrane by unassisted diffusion, are discussed in the context of metabolite and drug release from lysosomes in vivo. PMID:2775227

  1. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View

    PubMed Central

    Staudt, Catherine; Puissant, Emeline; Boonen, Marielle

    2016-01-01

    Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review. PMID:28036022

  2. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    PubMed

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  3. The giant organelles in beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes

    PubMed Central

    1993-01-01

    Chediak-Higashi Syndrome (CHS) is an autosomal recessive disease affecting secretory granules and lysosomes-like organelles. In CHS fibroblasts, acidic organelles are abnormally large and clustered in the perinuclear area. We have analyzed fibroblast cell lines from a CHS patient and from the murine model for CHS, the beige mouse, to determine which lysosome-like compartments are affected. Uptake of neutral red showed that in both beige and CHS cell lines, the acidic organelles were markedly clustered in the perinuclear region of the cells. Giant organelles (> 4 microns) were observed in a fraction of the cells, and these were more dramatic in the beige fibroblasts than in the CHS fibroblasts. The total dye uptake of both mutant cell lines was similar to their respective wild type fibroblasts, suggesting that the overall volume of acidic compartments is unaffected by the disorder. Histochemistry and immunofluorescence showed that the giant organelles in both beige and CHS fibroblasts were positive for cathepsin D, lysosome-associated membrane protein (LAMP) 1, LAMP 2, and a 120-kD lysosomal glycoprotein, all marker proteins for late endosomes and lysosomes. The giant organelles were also negative for transferrin receptor and mannose-6-phosphate receptor, and most of them were also negative for rab 7. This distribution of marker proteins shows that the giant organelles in both beige and CHS are derived from late compartments of the endocytic pathway. This conclusion was confirmed using endocytic tracers. BSA was transported to the giant organelles, but only after long incubation times, and only at 37 degrees C. alpha 2- Macroglobulin was taken up and degraded at similar rates by CHS or beige cells and their respective wild type control cells. Taken together, our results indicate that the mutation in CHS specifically affects late endosomes and lysosomes, with little or no effect on early endosomes. Although the mutation clearly causes mislocalization of these

  4. Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway

    PubMed Central

    Di Fruscio, Giuseppina; Schulz, Angela; De Cegli, Rossella; Savarese, Marco; Mutarelli, Margherita; Parenti, Giancarlo; Banfi, Sandro; Braulke, Thomas; Nigro, Vincenzo; Ballabio, Andrea

    2015-01-01

    The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease. PMID:26075876

  5. Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier.

    PubMed

    Urayama, Akihiko; Dohgu, Shinya; Robinson, Sandra M; Sly, William S; Grubb, Jeffery H; Banks, William A

    2015-01-01

    The impermeability of the adult blood-brain barrier (BBB) to lysosomal enzymes impedes the ability to treat the central nervous system manifestations of lysosomal storage diseases. Here, we found that simultaneous stimulation of the alpha1 and alpha2 adrenoreceptor restores in adult mice the high rate of transport for the lysosomal enzyme P-GUS that is seen in neonates but lost with development. Beta adrenergics, other monoamines, and acetylcholine did not restore this transport. A high dose (500 microg/mouse) of clonidine, a strong alpha2 and weak alpha1 agonist, was able to act as monotherapy in the stimulation of P-GUS transport. Neither use of alpha1 plus alpha2 agonists nor the high dose clonidine disrupted the BBB to albumin. In situ brain perfusion and immunohistochemistry studies indicated that adrengerics act on transporters already at the luminal surface of brain endothelial cells. These results show that adrenergic stimulation, including monotherapy with clonidine, could be key for CNS enzyme replacement therapy.

  6. Pharmacologic manipulation of lysosomal enzyme transport across the blood-brain barrier.

    PubMed

    Urayama, Akihiko; Grubb, Jeffrey H; Sly, William S; Banks, William A

    2016-03-01

    The adult blood-brain barrier, unlike the neonatal blood-brain barrier, does not transport lysosomal enzymes into brain, making enzyme replacement therapy ineffective in treating the central nervous system symptoms of lysosomal storage diseases. However, enzyme transport can be re-induced with alpha-adrenergics. Here, we examined agents that are known to alter the blood-brain barrier transport of large molecules or to induce lysosomal enzyme transport across the blood-brain barrier ((±)epinephrine, insulin, retinoic acid, and lipopolysaccharide) in 2-week-old and adult mice. In 2-week-old adolescent mice, all these pharmacologic agents increased brain and heart uptake of phosphorylated human β-glucuronidase. In 8-week-old adult mice, manipulations with (±)epinephrine, insulin, and retinoic acid were significantly effective on uptake by brain and heart. The increased uptake of phosphorylated human β-glucuronidase was inhibited by mannose 6-phosphate for the agents (±)epinephrine and retinoic acid and by L-NG-nitroarginine methyl ester for the agent lipopolysaccharide in neonatal and adult mice. An in situ brain perfusion study revealed that retinoic acid directly modulated the transport of phosphorylated human β-glucuronidase across the blood-brain barrier. The present study indicates that there are multiple opportunities to at least transiently induce phosphorylated human β-glucuronidase transport at the adult blood-brain barrier.

  7. Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier

    PubMed Central

    Urayama, Akihiko; Dohgu, Shinya; Robinson, Sandra M.; Sly, William S.; Grubb, Jeffery H.; Banks, William A

    2015-01-01

    The impermeability of the adult blood-brain barrier (BBB) to lysosomal enzymes impedes the ability to treat the central nervous system manifestations of lysosomal storage diseases. Here, we found that simultaneous stimulation of the alpha1 and alpha2 adrenoreceptor restores in adult mice the high rate of transport for the lysosomal enzyme P-GUS that is seen in neonates but lost with development. Beta adrenergics, other monoamines, and acetylcholine did not restore this transport. A high dose (500 microg/mouse) of clonidine, a strong alpha2 and weak alpha1 agonist, was able to act as monotherapy in the stimulation of P-GUS transport. Neither use of alpha1 plus alpha2 agonists nor the high dose clonidine disrupted the BBB to albumin. In situ brain perfusion and immunohistochemistry studies indicated that adrengerics act on transporters already at the luminal surface of brain endothelial cells. These results show that adrenergic stimulation, including monotherapy with clonidine, could be key for CNS enzyme replacement therapy. PMID:26545208

  8. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders

    PubMed Central

    Parenti, Giancarlo; Andria, Generoso; Valenzano, Kenneth J

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches. PMID:25881001

  9. Pharmacologic manipulation of lysosomal enzyme transport across the blood–brain barrier

    PubMed Central

    Grubb, Jeffrey H; Sly, William S; Banks, William A

    2015-01-01

    The adult blood–brain barrier, unlike the neonatal blood–brain barrier, does not transport lysosomal enzymes into brain, making enzyme replacement therapy ineffective in treating the central nervous system symptoms of lysosomal storage diseases. However, enzyme transport can be re-induced with alpha-adrenergics. Here, we examined agents that are known to alter the blood–brain barrier transport of large molecules or to induce lysosomal enzyme transport across the blood–brain barrier ((±)epinephrine, insulin, retinoic acid, and lipopolysaccharide) in 2-week-old and adult mice. In 2-week-old adolescent mice, all these pharmacologic agents increased brain and heart uptake of phosphorylated human β-glucuronidase. In 8-week-old adult mice, manipulations with (±)epinephrine, insulin, and retinoic acid were significantly effective on uptake by brain and heart. The increased uptake of phosphorylated human  β-glucuronidase was inhibited by mannose 6-phosphate for the agents (±)epinephrine and retinoic acid and by L-NG-nitroarginine methyl ester for the agent lipopolysaccharide in neonatal and adult mice. An in situ brain perfusion study revealed that retinoic acid directly modulated the transport of phosphorylated human β-glucuronidase across the blood–brain barrier. The present study indicates that there are multiple opportunities to at least transiently induce phosphorylated human β-glucuronidase transport at the adult blood–brain barrier. PMID:26661222

  10. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders.

    PubMed

    Parenti, Giancarlo; Andria, Generoso; Valenzano, Kenneth J

    2015-07-01

    Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches.

  11. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes.

    PubMed

    Bolt, Alicia M; Douglas, Randi M; Klimecki, Walter T

    2010-11-30

    Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.

  12. Studies on the involvement of lysosomes in estrogen action, I. Isolation and enzymatic properties of pig endometrial lysosomes.

    PubMed

    Sierralta, W; Truitt, A J; Jungblut, P W

    1978-04-01

    Pig endometrium cells, collected by curettage and homogenized in an all-glass Potter Elvehjem homogenizer, gave a considerably higher yield of intact mitochondria and lysosomes than homogenates of whole uterus obtained with the Ultraturrax or the Parr bomb. After homogenization of the cells and subfractionation in the presence of Mg2, mitochondria and lysosomes equilibrated at the same modal density in isopycnic centrifugation. Homogenization and subfractionation in buffers devoid of divalent cations and containing EDTA resulted in a decrease in the buoyant density of mitochondria, allowing for a separation from lysosomes. The pH optima and the specific activities of two mitochondrial enzymes and eight hydrolyases used as marker enzymes were determined. The morphological characteristics of fractions were established by electron microscopy. Preliminary results indicate an involvement of lysosomes in steroid metabolism rather than in steroid and receptor translocation into the nucleus.

  13. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    SciTech Connect

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.

  14. LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts

    PubMed Central

    Kuwahara, Tomoki; Inoue, Keiichi; D’Agati, Vivette D.; Fujimoto, Tetta; Eguchi, Tomoya; Saha, Shamol; Wolozin, Benjamin; Iwatsubo, Takeshi; Abeliovich, Asa

    2016-01-01

    Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson’s disease (PD), Crohn’s disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models. PMID:27424887

  15. The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity

    PubMed Central

    Fang, Zijun; Luo, Wenwen; Yang, Yunzhi; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Chen, Huaiyong; Chan, Chi bun; Liu, Zhixue

    2016-01-01

    Excessive reactive oxygen species/reactive nitrogen species (ROS/RNS) produced as a result of ageing causes damage to macromolecules and organelles or leads to interference of cell signalling pathways, which in turn results in oxidative stress. Oxidative stress occurs in many neurodegenerative diseases (e.g., Parkinson's disease) and contributes to progressive neuronal loss. In this study, we show that cell apoptosis is induced by oxidative stress and that lysosomes play an important role in cell survival under oxidative stress. As a compensatory response to this stress, lysosomal genes were upregulated via induction of transcription factor EB (TFEB). In addition, localization of TFEB to the nucleus was increased by oxidative stress. We also confirmed that TFEB protects cells from oxidative stress both in vitro and in vivo. Finally, we found that C-ETS2 senses oxidative stress, activates TFEB transcription, and mediates the upregulation of lysosomal genes. Our results demonstrate a mechanistic pathway for inducing lysosomal activity during ageing and neurodegeneration. PMID:27195074

  16. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase independent manner

    PubMed Central

    Neely, Kara M.; Green, Kim N.; LaFerla, Frank M.

    2011-01-01

    Presenilins are ubiquitous, intramembrane proteins that function in Alzheimer’s disease (AD) as the catalytic component of the γ-secretase complex. Familial AD (FAD) mutations in presenilin are known to exacerbate lysosomal pathology. Hence, we sought to elucidate the function endogenous, wild-type presenilins play in autophagy-mediated protein degradation. We report the finding that genetic deletion or knockdown of presenilins alters many autophagy-related proteins demonstrating a buildup of autophagosomes, indicative of dysfunction in the system. Presenilin-deficient cells inefficiently clear long-lived proteins and fail to build-up autophagosomes when challenged with lysosomal inhibitors. Our studies further show that γ-secretase inhibitors do not adversely impact autophagy, indicating that the role of presenilins in autophagy is independent of γ-secretase activity. Based on our findings, we conclude that endogenous, wild-type presenilins are necessary for proper protein degradation through the autophagosome-lysosome system by functioning at the lysosomal level. Presenilins’ role in autophagy has many implications for its function in neurological diseases like AD. PMID:21414900

  17. Convergent regulation of the lysosomal two-pore channel-2 by Mg²⁺, NAADP, PI(3,5)P₂ and multiple protein kinases.

    PubMed

    Jha, Archana; Ahuja, Malini; Patel, Sandip; Brailoiu, Eugen; Muallem, Shmuel

    2014-03-03

    Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.

  18. Endolyn-78, a membrane glycoprotein present in morphologically diverse components of the endosomal and lysosomal compartments: implications for lysosome biogenesis

    PubMed Central

    1989-01-01

    A monoclonal antibody (2C5) raised against rat liver lysosomal membranes was used to identify a 78-kD glycoprotein that is present in the membranes of both endosomes and lysosomes and, therefore, is designated endolyn-78. In cultures of rat hepatoma (Fu5C8) and kidney cells (NRK), this glycoprotein could not be labeled with [35S]methionine or with [32P]inorganic phosphate but was easily labeled with [35S]cysteine and [3H]mannose. Pulse-chase experiments and determinations of endoglycosidase H (endo H) sensitivity showed that endolyn-78 is derived from a precursor of Mr 58-62 kD that is processed to the mature form with a t1/2 of 15-30 min. The protein has a 22-kD polypeptide backbone that is detected after a brief pulse in tunicamycin-treated cells. During a chase in the presence of the drug, this is converted into an O-glycosylated product of 46 kD that despite the absence of N-linked oligosaccharides is effectively transferred to lysosomes. This demonstrates that the delivery of endolyn-78 to this organelle is not mediated by the mannose-6-phosphate receptor (MPR). Immunocytochemical experiments showed that endolyn-78 is present in the limiting membranes and the interior membranous structures of morphologically identifiable secondary lysosomes that contain the lysosomal hydrolase beta-glucuronidase, lack the MPR, and could not be labeled with alpha-2-macroglobulin at 18.5 degrees C, a temperature which prevents appearance of endocytosed markers in lysosomes. Endolyn- 78 was present at low levels in the plasma membrane and in peripheral tubular endosomes, but was prominent in morphologically diverse components of the endosomal compartment (vacuolar endosomes and various types of multivesicular bodies) which acquired alpha-2-macroglobulin at 18.5 degrees C, and frequently contained substantial levels of the MPR and variable levels of beta-glucuronidase. On the other hand, the MPR was very rarely found in endolyn-containing structures that were not labeled with

  19. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders.

    PubMed

    Clarke, Lorne A; Hollak, Carla E M

    2015-03-01

    Lysosomal storage disorders affect multiple organs including the skeleton. Disorders with prominent skeletal symptoms are type 1 and 3 Gaucher disease, the mucopolysaccharidoses, the glycoproteinoses and pycnodysostosis. Clinical manifestations range from asymptomatic radiographical evidence of bone pathology to overt bone crises (Gaucher), short stature with typical imaging features known as dysostosis multiplex (MPS), with spine and joint deformities (mucopolysaccharidoses, mucolipidosis), or osteopetrosis with pathological fractures (pynodysostosis). The pathophysiology of skeletal disease is only partially understood and involves direct substrate storage, inflammation and other complex alterations of cartilage and bone metabolism. Current treatments are enzyme replacement therapy, substrate reduction therapy and hematopoietic stem cell transplantation. However, effects of these interventions on skeletal disease manifestations are less well established and outcomes are highly dependent on disease burden at treatment initiation. It is now clear that adjunctive treatments that target skeletal disease are needed and should be part of future research agenda.

  20. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.

    PubMed

    Sartelet, Arnaud; Stauber, Tobias; Coppieters, Wouter; Ludwig, Carmen F; Fasquelle, Corinne; Druet, Tom; Zhang, Zhiyan; Ahariz, Naima; Cambisano, Nadine; Jentsch, Thomas J; Charlier, Carole

    2014-01-01

    Chloride-proton exchange by the lysosomal anion transporter ClC-7/Ostm1 is of pivotal importance for the physiology of lysosomes and bone resorption. Mice lacking either ClC-7 or Ostm1 develop a lysosomal storage disease and mutations in either protein have been found to underlie osteopetrosis in mice and humans. Some human disease-causing CLCN7 mutations accelerate the usually slow voltage-dependent gating of ClC-7/Ostm1. However, it has remained unclear whether the fastened kinetics is indeed causative for the disease. Here we identified and characterized a new deleterious ClC-7 mutation in Belgian Blue cattle with a severe symptomatology including perinatal lethality and in most cases gingival hamartomas. By autozygosity mapping and genome-wide sequencing we found a handful of candidate variants, including a cluster of three private SNPs causing the substitution of a conserved tyrosine in the CBS2 domain of ClC-7 by glutamine. The case for ClC-7 was strengthened by subsequent examination of affected calves that revealed severe osteopetrosis. The Y750Q mutation largely preserved the lysosomal localization and assembly of ClC-7/Ostm1, but drastically accelerated its activation by membrane depolarization. These data provide first evidence that accelerated ClC-7/Ostm1 gating per se is deleterious, highlighting a physiological importance of the slow voltage-activation of ClC-7/Ostm1 in lysosomal function and bone resorption.

  1. Uncovering the role of Snapin in regulating autophagy-lysosomal function.

    PubMed

    Cai, Qian; Sheng, Zu-Hang

    2011-04-01

    The autophagy-lysosomal system is the major degradation pathway essential for the maintenance and survival of neurons. This process requires efficient late endocytic transport from distal processes to the soma, in which lysosomes are predominantly localized. However, it is not clear how late endocytic transport has an impact upon neuronal autophagy-lysosomal function. We recently revealed that Snapin acts as a dynein motor adaptor and coordinates retrograde transport and late endosomal-lysosomal trafficking, thus maintaining efficient autophagy-lysosomal function in neurons. Snapin(-/-) neurons display impaired retrograde transport and clustering of late endosomes along neuronal processes, aberrant accumulation of immature lysosomes, and impaired clearance of autolysosomes. Snapin deficiency leads to reduced neuron viability, neurodegeneration, and developmental defects in the central nervous system. Reintroducing the snapin transgene rescues these phenotypes by enhancing the delivery of endosomal cargos to lysosomes and by facilitating autophagy-lysosomal function. Our study suggests that Snapin is a candidate molecular target for autophagy-lysosomal regulation.

  2. TGFβ2-INDUCED CHANGES IN LRP-1/TβR-V AND THE IMPACT ON LYSOSOMAL Aβ UPTAKE AND NEUROTOXICITY

    PubMed Central

    Eslami, Pirooz; Johnson, Ming F.; Terzakaryan, Ellen; Chew, Carolyn; Harris-White, Marni E.

    2008-01-01

    Numerous studies suggest a central role for the low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in Alzheimer’s Disease. We continue our investigation of a ligand for this receptor, transforming growth factor beta2, which is also implicated in Alzheimer Disease pathogenesis, but whose mechanism(s) remain elusive. Confocal imaging reveals that transforming growth factor beta2 rapidly targets amyloid beta peptide to the lysosomal compartment in cortical neurons and induces cell death. Low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V is known as an endocytic receptor, delivering proteins to the lysosomal compartment for degradation. Transforming growth factor beta2 may alter this pathway resulting in increased uptake, intracellular accumulation and toxicity of amyloid beta peptide. RT-PCR and Western blot analysis of transforming growth factor beta2-treated cells demonstrate that transforming growth factor beta2 modestly increases the mRNA and protein levels of low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V as well as increases the uptake activity. Furthermore, transforming growth factor beta2 alters the morphology and numbers of lysosomes in neurons. Lucifer yellow and lysosomal hydrolase analysis show that transforming growth factor beta2 makes lysosomal membranes unstable and leaky and this effect is exacerbated with the addition of amyloid beta protein. Our data support a key role for low-density lipoprotein receptor-related protein/transforming growth factor beta receptor V in mediating transforming growth factor beta2 enhancement of amyloid beta peptide uptake and neurotoxicity. PMID:18804458

  3. Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes.

    PubMed

    Busch, Johanna I; Unger, Travis L; Jain, Nimansha; Tyler Skrinak, R; Charan, Rakshita A; Chen-Plotkin, Alice S

    2016-07-01

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is an important cause of dementia in individuals under age 65. Common variants in the TMEM106B gene were previously discovered by genome-wide association to confer genetic risk for FTLD-TDP (p = 1 × 10(-)(11), OR = 1.6). Furthermore, TMEM106B may act as a genetic modifier affecting age at onset and age at death in the Mendelian subgoup of FTLD-TDP due to expansions of the C9orf72 gene. Evidence suggests that TMEM106B variants increase risk for developing FTLD-TDP by increasing expression of Transmembrane Protein 106B (TMEM106B), a lysosomal protein. To further understand the functional role of TMEM106B in disease pathogenesis, we investigated the cell biological effects of increased TMEM106B expression. Here, we report that increased TMEM106B expression results in the appearance of a vacuolar phenotype in multiple cell types, including neurons. Concomitant with the development of this vacuolar phenotype, cells over-expressing TMEM106B exhibit impaired lysosomal acidification and degradative function, as well as increased cytotoxicity. We further identify a potential lysosomal sorting motif for TMEM106B and demonstrate that abrogation of sorting to lysosomes rescues TMEM106B-induced defects. Finally, we show that TMEM106B-induced defects are dependent on the presence of C9orf72, as knockdown of C9orf72 also rescues these defects. In sum, our results suggest that TMEM106B exerts its effects on FTLD-TDP disease risk through alterations in lysosomal pathways. Furthermore, TMEM106B and C9orf72 may interact in FTLD-TDP pathophysiology.

  4. Lysosome-mediated processing of chromatin in senescence.

    PubMed

    Ivanov, Andre; Pawlikowski, Jeff; Manoharan, Indrani; van Tuyn, John; Nelson, David M; Rai, Taranjit Singh; Shah, Parisha P; Hewitt, Graeme; Korolchuk, Viktor I; Passos, Joao F; Wu, Hong; Berger, Shelley L; Adams, Peter D

    2013-07-08

    Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C-negative, but strongly γ-H2AX-positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.

  5. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers.

    PubMed

    Donida, Bruna; Jacques, Carlos Eduardo Diaz; Mescka, Caroline Paula; Rodrigues, Daiane Grigolo Bardemaker; Marchetti, Desirèe Padilha; Ribas, Graziela; Giugliani, Roberto; Vargas, Carmen Regla

    2017-03-01

    Lysosomal Storage Disorders (LSD) comprise a heterogeneous group of >50 genetic disorders caused by mutations in genes that encode lysosomal enzymes, transport proteins or other gene products essential for a functional lysosomal system. As a result, abnormal accumulation of substrates within the lysosome leads to a progressive cellular impairment and dysfunction of numerous organs and systems. The exact mechanisms underlying the pathophysiology of LSD remain obscure. Previous studies proposed a relationship between oxidative stress and the pathogenesis of several inborn errors of metabolism, including LSD. Considering these points, in this paper it was reviewed oxidative stress and emerging antioxidant therapy in LSD, emphasizing studies with biological samples from patients affected by this group of conditions. These studies allow presuming that metabolites accumulated in LSD cause an increase of lysosomes' number and size, which may induce excessive production of reactive species and/or deplete the tissue antioxidant capacity, leading to damage in biomolecules. In vitro and in vivo evidence showed that cell oxidative process occurs in LSD and probably contributes to the pathophysiology of these disorders. In this context, it is possible to suggest that, in the future, antioxidants could come to be used as adjuvant therapy for LSD patients.

  6. Lysosomal Multienzyme Complex: Pros and Cons of Working Together

    PubMed Central

    Bonten, Erik J.; Annunziata, Ida; d’Azzo, Alessandra

    2014-01-01

    The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, Protective Protein/Cathepsin A (PPCA), the sialidase, Neuraminidase-1 (NEU1), and the glycosidase β-Galactosidase (β-GAL). Next to this ‘core’ complex, the existence of sub-complexes, that may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1 and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders. PMID:24337808

  7. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  8. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K

    PubMed Central

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-01-01

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome–plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases. PMID:28300073

  9. A Mouse Model Suggests Two Mechanisms for Thyroid Alterations in Infantile Cystinosis: Decreased Thyroglobulin Synthesis Due to Endoplasmic Reticulum Stress/Unfolded Protein Response and Impaired Lysosomal Processing

    PubMed Central

    Gaide Chevronnay, H. P.; Janssens, V.; Van Der Smissen, P.; Liao, X. H.; Abid, Y.; Nevo, N.; Antignac, C.; Refetoff, S.; Cherqui, S.; Pierreux, C. E.

    2015-01-01

    Thyroid hormones are released from thyroglobulin (Tg) in lysosomes, which are impaired in infantile/nephropathic cystinosis. Cystinosis is a lysosomal cystine storage disease due to defective cystine exporter, cystinosin. Cystinotic children develop subclinical and then overt hypothyroidism. Why hypothyroidism is the most frequent and earliest endocrine complication of cystinosis is unknown. We here defined early alterations in Ctns−/− mice thyroid and identified subcellular and molecular mechanisms. At 9 months, T4 and T3 plasma levels were normal and TSH was moderately increased (∼4-fold). By histology, hyperplasia and hypertrophy of most follicles preceded colloid exhaustion. Increased immunolabeling for thyrocyte proliferation and apoptotic shedding indicated accelerated cell turnover. Electron microscopy revealed endoplasmic reticulum (ER) dilation, apical lamellipodia indicating macropinocytic colloid uptake, and lysosomal cystine crystals. Tg accumulation in dilated ER contrasted with mRNA down-regulation. Increased expression of ER chaperones, glucose-regulated protein of 78 kDa and protein disulfide isomerase, associated with alternative X-box binding protein-1 splicing, revealed unfolded protein response (UPR) activation by ER stress. Decreased Tg mRNA and ER stress suggested reduced Tg synthesis. Coordinated increase of UPR markers, activating transcription factor-4 and C/EBP homologous protein, linked ER stress to apoptosis. Hormonogenic cathepsins were not altered, but lysosome-associated membrane protein-1 immunolabeling disclosed enlarged vesicles containing iodo-Tg and impaired lysosomal fusion. Isopycnic fractionation showed iodo-Tg accumulation in denser lysosomes, suggesting defective lysosomal processing and hormone release. In conclusion, Ctns−/− mice showed the following alterations: 1) compensated primary hypothyroidism and accelerated thyrocyte turnover; 2) impaired Tg production linked to ER stress/UPR response; and 3) altered

  10. Aneuploidy triggers a TFEB-mediated lysosomal stress response

    PubMed Central

    Santaguida, Stefano; Amon, Angelika

    2015-01-01

    Aneuploidy, defined as an alteration in chromosome number that is not a multiple of the haploid complement, severely affects cellular physiology. Changes in chromosome number lead to imbalances in cellular protein composition, thus disrupting cellular processes and causing proteins to misfold and aggregate. We recently reported that in mammalian cells protein aggregates are readily encapsulated within autophagosomes but are not degraded by lysosomes. This leads to a lysosomal stress response in which the transcription factor TFEB induces expression of factors needed for macroautophagy-mediated protein degradation. Our studies uncover lysosomal degradation defects as a feature of the aneuploid state, and a role for the transcription factor TFEB in the response thereto. PMID:26571033

  11. GFP-like proteins stably accumulate in lysosomes.

    PubMed

    Katayama, Hiroyuki; Yamamoto, Akitsugu; Mizushima, Noboru; Yoshimori, Tamotsu; Miyawaki, Atsushi

    2008-01-01

    Green fluorescent protein (GFP) from the jellyfish Aequorea victoria, its GFP variants (Aequorea GFPs), and more recently the novel GFP-like proteins from Anthozoa have greatly advanced our technologies for fluorescently labeling cells, organelles, and proteins. It has been shown, however, that some GFP-like proteins have a tendency to oligomerize and aggregate. Transfection of GFP-like proteins into cultured mammalian cells results in bright punctate structures, which are thought to be cytosolic protein aggregates. In this study, we demonstrate that these structures are not cytosolic aggregates but lysosomes that have accumulated the GFP-like proteins. Our biochemical and immunocytochemical experiments have revealed that certain GFP-like proteins expressed in the cytosol enter lysosomes possibly by an autophagy-related mechanism, but retain their fluorescence because of resistance not only to acidity but also to lysosomal proteases.

  12. Specific lysosomal transport of small neutral amino acids

    SciTech Connect

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-05-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-(/sup 14/C)proline (50 ..mu..M) uptake by fibroblast lysosomes at 37/sup 0/C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-(/sup 14/C)proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na/sup +/ is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na/sup +/.

  13. Lysosome stability during lytic infection by simian virus 40.

    PubMed

    Einck, K H; Norkin, L C

    1979-01-01

    By 48 h postinfection, 40--80% of SV40-infected CV-1 cells have undergone irreversible injury as indicated by trypan blue staining. Nevertheless, at this time the lysosomes of these cells appear as discrete structures after vital staining with either acridine orange or neutral red. Lysosomes, vitally stained with neutral red at 24 h postinfection, were still intact in cells stained with trypan blue at 48 h. Acid phosphatase activity is localized in discrete cytoplasmic particles at 48 h, as indicated by histochemical staining of both fixed and unfixed cells.

  14. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    NASA Astrophysics Data System (ADS)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  15. Protein kinase C-δ isoform mediates lysosome labilization in DNA damage-induced apoptosis

    PubMed Central

    PARENT, NICOLAS; SCHERER, MAX; LIEBISCH, GERHARD; SCHMITZ, GERD; BERTRAND, RICHARD

    2013-01-01

    A lysosomal pathway, characterized by the partial rupture or labilization of lysosomal membranes (LLM) and cathepsin release into the cytosol, is evoked during the early events of 20-S-camptothecin lactone (CPT)-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. Recently, in a comparative proteomics analysis performed on highly-enriched lysosomal extracts, we identified proteins whose translocation to lysosomes correlated with LLM induction after CPT treatment, including protein kinase C-δ (PKC-δ). In this study, we show that the PKC-δ translocation to lysosomes is required for LLM, as silencing its expression with RNA interference or suppressing its activity with the inhibitor, rottlerin, prevents CPT-induced LLM. PKC-δ translocation to lysosomes is associated with lysosomal acidic sphingomyelinase (ASM) phosphorylation and activation, which in turn leads to an increase in ceramide (CER) content in lysosomes. The accumulation of endogenous CER in lysosomes is a critical event for CPT-induced LLM as suppressing PKC-δ or ASM activity reduces both the CPT-mediated CER generation in lysosomes and CPT-induced LLM. These findings reveal a novel mechanism by which PKC-δ mediates ASM phosphorylation/activation and CER accumulation in lysosomes in CPT-induced LLM, rapidly activating the lysosomal pathway of apoptosis after CPT treatment. PMID:21174057

  16. Ferritin-stimulated lipid peroxidation, lysosomal leak, and macroautophagy promote lysosomal "metastability" in primary hepatocytes determining in vitro cell survival.

    PubMed

    Krenn, Margit A; Schürz, Melanie; Teufl, Bernhard; Uchida, Koji; Eckl, Peter M; Bresgen, Nikolaus

    2015-03-01

    Several pathologies are associated with elevated levels of serum ferritin, for which growth inhibitory properties have been reported; however, the underlying mechanisms are still poorly defined. Previously we have described cytotoxic properties of isoferritins released from primary hepatocytes in vitro, which induce apoptosis in an iron and oxidative stress-dependent mode. Here we show that this ferritin species stimulates endosome clustering and giant endosome formation in primary hepatocytes accompanied by enhanced lysosomal membrane permeability (LMP). In parallel, protein modification by lipid peroxidation-derived 4-hydroxynonenal (HNE) is strongly promoted by ferritin, the HNE-modified proteins (HNE-P) showing remarkable aggregation. Emphasizing the prooxidant context, GSH is rapidly depleted and the GSH/GSSG ratio is substantially declining in ferritin-treated cells. Furthermore, ferritin triggers a transient upregulation of macroautophagy which is abolished by iron chelation and apparently supports HNE-P clearance. Macroautophagy inhibition by 3-methyladenine strongly amplifies ferritin cytotoxicity in a time- and concentration-dependent mode, suggesting an important role of macroautophagy on cellular responses to ferritin endocytosis. Moreover, pointing at an involvement of lysosomal proteolysis, ferritin cytotoxicity and lysosome fragility are aggravated by the protease inhibitor leupeptin. In contrast, EGF which suppresses ferritin-induced cell death attenuates ferritin-mediated LMP. In conclusion, we propose that HNE-P accumulation, lysosome dysfunction, and macroautophagy stimulated by ferritin endocytosis provoke lysosomal "metastability" in primary hepatocytes which permits cell survival as long as in- and extrinsic determinants (e.g., antioxidant availability, damage repair, EGF signaling) keep the degree of lysosomal destabilization below cell death-inducing thresholds.

  17. A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair

    PubMed Central

    Encarnação, Marisa; Mateus, Denisa; Michelet, Xavier; Santarino, Inês; Hsu, Victor W.; Brenner, Michael B.

    2016-01-01

    Lysosome exocytosis plays a major role in resealing plasma membrane (PM) disruptions. This process involves two sequential steps. First, lysosomes are recruited to the periphery of the cell and then fuse with the damaged PM. However, the trafficking molecular machinery involved in lysosome exocytosis and PM repair (PMR) is poorly understood. We performed a systematic screen of the human Rab family to identify Rabs required for lysosome exocytosis and PMR. Rab3a, which partially localizes to peripheral lysosomes, was one of the most robust hits. Silencing of Rab3a or its effector, synaptotagmin-like protein 4a (Slp4-a), leads to the collapse of lysosomes to the perinuclear region and inhibition of PMR. Importantly, we have also identified a new Rab3 effector, nonmuscle myosin heavy chain IIA, as part of the complex formed by Rab3a and Slp4-a that is responsible for lysosome positioning at the cell periphery and lysosome exocytosis. PMID:27325790

  18. The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells.

    PubMed

    Meng, Su-Fang; Mao, Wei-Ping; Wang, Fang; Liu, Xiao-Qian; Shao, Luan-Luan

    2015-11-01

    This study shows that Cd induces autophagy in the human's embryonic normal liver cell line (WRL-68). The expression of LC3B-II and the mature cathepsin L were analyzed by Western blotting. The autophagosomes and lysosomes were directly visualized by electron microscopy and confocal microscopy analysis in Cd-exposed WRL-68 cells. In this study, we first found that autophagy induced the activation of lysosomal function in WRL-68 cells. The lysosomal activation was markedly decreased when the cells were co-treated with 3-MA (an inhibitor of autophagy). Secondly, we provided the evidence that the activation of lysosomal function depended on autophagosome-lysosome fusion. The colocalization of lysosome-associated membrane protein-2 (LAMP2) and GFP-LC3 was significantly reduced, when they were treated with thapsigargin (an inhibitor of autophagosome-lysosome fusion). We demonstrated that deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, which suggests that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Thirdly, we provided evidence that the activation of lysosomal function was associated with lysosomal acid. We investigated the relationship between autophagosome-lysosome fusion and pH in acidic compartments by visualizing fusion process in WRL-68 cells. This suggests that increasing pH in acidic compartments in WRL-68 cells inhibits the autophagosome-lysosome fusion. Finally, we found that the activation of lysosomal function was associated with Ca(2+) stores and the intracellular Ca(2+) channels or pumps were possibly pH-dependent.

  19. 78 FR 21613 - Prescription Drug User Fee Act Patient-Focused Drug Development; Announcement of Disease Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... obstructive pulmonary disease, lysosomal storage disorders, peripheral neuropathy, dystonia, and fibromyalgia... Chagas disease; female sexual dysfunction; fibromyalgia; hemophilia A, hemophilia B, von...

  20. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization

    PubMed Central

    Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-01

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897

  1. Sphingosine-induced apoptosis is dependent on lysosomal proteases.

    PubMed Central

    Kågedal, K; Zhao, M; Svensson, I; Brunk, U T

    2001-01-01

    We propose a new mechanism for sphingosine-induced apoptosis, involving relocation of lysosomal hydrolases to the cytosol. Owing to its lysosomotropic properties, sphingosine, which is also a detergent, especially when protonated, accumulates by proton trapping within the acidic vacuolar apparatus, where most of its action as a detergent would be exerted. When sphingosine was added in low-to-moderate concentrations to Jurkat and J774 cells, partial lysosomal rupture occurred dose-dependently, starting within a few minutes. This phenomenon preceded caspase activation, as well as changes of mitochondrial membrane potential. High sphingosine doses rapidly caused extensive lysosomal rupture and ensuing necrosis, without antecedent apoptosis or caspase activation. The sphingosine effect was prevented by pre-treatment with another, non-toxic, lysosomotropic base, ammonium chloride, at 10 mM. The lysosomal protease inhibitors, pepstatin A and epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester ('E-64d'), inhibited markedly sphingosine-induced caspase activity to almost the same degree as the general caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone ('Z-VAD-FMK'), although they did not by themselves inhibit caspases. We conclude that cathepsin D and one or more cysteine proteases, such as cathepsins B or L, are important mediators of sphingosine-induced apoptosis, working upstream of the caspase cascade and mitochondrial membrane-potential changes. PMID:11583579

  2. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    PubMed

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  3. Lysosomal protease cathepsin D; a new driver of apoptosis during acute kidney injury

    PubMed Central

    Cocchiaro, Pasquale; Fox, Christopher; Tregidgo, Nicholas W.; Howarth, Rachel; Wood, Katrina M.; Situmorang, Gerhard R.; Pavone, Luigi M.; Sheerin, Neil S.; Moles, Anna

    2016-01-01

    Acute kidney injury (AKI) is an abrupt reduction in kidney function caused by different pathological processes. It is associated with a significant morbidity and mortality in the acute phase and an increased risk of developing End Stage Renal Disease. Despite the progress in the management of the disease, mortality rates in the last five decades remain unchanged at around 50%. Therefore there is an urgent need to find new therapeutic strategies to treat AKI. Lysosomal proteases, particularly Cathepsin D (CtsD), play multiple roles in apoptosis however, their role in AKI is still unknown. Here we describe a novel role for CtsD in AKI. CtsD expression was upregulated in damaged tubular cells in nephrotoxic and ischemia reperfusion (IRI) induced AKI. CtsD inhibition using Pepstatin A led to an improvement in kidney function, a reduction in apoptosis and a decrease in tubular cell damage in kidneys with nephrotoxic or IRI induced AKI. Pepstatin A treatment slowed interstitial fibrosis progression following IRI induced AKI. Renal transplant biopsies with acute tubular necrosis demonstrated high levels of CtsD in damaged tubular cells. These results support a role for CtsD in apoptosis during AKI opening new avenues for the treatment of AKI by targeting lysosomal proteases. PMID:27271556

  4. Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders.

    PubMed

    Giannotti, Marina I; Abasolo, Ibane; Oliva, Mireia; Andrade, Fernanda; García-Aranda, Natalia; Melgarejo, Marta; Pulido, Daniel; Corchero, José L; Fernández, Yolanda; Villaverde, Antonio; Royo, Miriam; García-Parajo, María F; Sanz, Fausto; Schwartz, Simó

    2016-10-05

    Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.

  5. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis.

    PubMed

    Harrison, Frank; Yeagy, Brian A; Rocca, Celine J; Kohn, Donald B; Salomon, Daniel R; Cherqui, Stephanie

    2013-02-01

    Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. Using the Ctns(-/-) murine model for cystinosis, we tested the use of hematopoietic stem and progenitor cells (HSPC) genetically modified to express a functional CTNS transgene using a self-inactivating-lentiviral vector (SIN-LV). We showed that transduced cells were capable of decreasing cystine content in all tissues and improved kidney function. Transduced HSPC retained their differentiative capabilities, populating all tissue compartments examined and allowing long-term expression of the transgene. Direct correlation between the levels of lentiviral DNA present in the peripheral blood and the levels present in tissues were demonstrated, which could be useful to follow future patients. Using a new model of cystinosis, the DsRed Ctns(-/-) mice, and a LV driving the expression of the fusion protein cystinosin-enhanced green fluorescent protein (eGFP), we showed that cystinosin was transferred from CTNS-expressing cells to Ctns-deficient adjacent cells in vitro and in vivo. This transfer led to cystine decreases in Ctns-deficient cells in vitro. These data suggest that the mechanism of cross-correction is possible in cystinosis.

  6. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells.

    PubMed

    Kaur, Jasber; Cutler, Daniel F

    2002-03-22

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.

  7. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis.

    PubMed

    Sreetama, S C; Takano, T; Nedergaard, M; Simon, S M; Jaiswal, J K

    2016-04-01

    Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.

  8. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B.

    PubMed

    Stagi, Massimiliano; Klein, Zoe A; Gould, Travis J; Bewersdorf, Joerg; Strittmatter, Stephen M

    2014-07-01

    Fronto-temporal lobar degeneration with TDP-43 (FTLD-TDP) is a fatal neurodegeneration. TMEM106B variants are linked to FTLD-TDP risk, and TMEM106B is lysosomal. Here, we focus on neuronal TMEM106B, and demonstrate co-localization and traffic with lysosomal LAMP-1. pH-sensitive reporters demonstrate that the TMEM106B C-terminus is lumenal. The TMEM106B N-terminus interacts with endosomal adaptors and other TMEM106 proteins. TMEM106B knockdown reduces neuronal lysosomal number and diameter by STED microscopy, and overexpression enlarges LAMP-positive structures. Reduction of TMEM106B increases axonally transported lysosomes, while TMEM106B elevation inhibits transport and yields large lysosomes in the soma. TMEM106B overexpression alters lysosomal stress signaling, causing a translocation of the mTOR-sensitive transcription factor, TFEB, to neuronal nuclei. TMEM106B loss-of-function delays TFEB translocation after Torin-1-induced stress. Enlarged TMEM106B-overexpressing lysosomes maintain organelle integrity longer after lysosomal photodamage than do control lysosomes, while small TMEM106B-knockdown lysosomes are more sensitive to illumination. Thus, neuronal TMEM106B plays a central role in regulating lysosomal size, motility and responsiveness to stress, highlighting the possible role of lysosomal biology in FTLD-TDP.

  9. The influence of oxidation of membrane thiol groups on lysosomal proton permeability.

    PubMed Central

    Wan, F Y; Wang, Y N; Zhang, G J

    2001-01-01

    The influence of oxidation of membrane thiol groups on lysosomal proton permeability was studied by measuring lysosomal pH with FITC-conjugated dextran, determining the membrane potential with 3,3'-dipropylthiadicarbocyanine iodide and monitoring their proton leakage with p-nitrophenol. Residual membrane thiol groups were measured with 5,5'-dithiobis-(2-nitrobenzoic acid). The lysosomal membrane thiol groups were modified by treatment with diamide and dithiothreitol. SDS/PAGE revealed aggregations of the membrane proteins induced by the treatment of lysosomes with diamide. The cross-linkage of proteins could be abolished by subsequent treatment with dithiothreitol, indicating that the proteins were linked via disulphide bonds. Treating the lysosomes with diamide decreased their membrane thiol groups and caused increases in lysosomal pH, membrane potential and proton leakage, which could be reversed by treatment of the lysosomes with dithiothreitol. This indicates that the lysosomal proton permeability can be increased by oxidation of the membrane thiol groups and restored to the normal level by reduction of the groups. Treatment of the lysosomes with N-ethylmaleimide reduced their membrane thiol groups but did not change the lysosomal pH or their degree of proton leakage. It suggests that protein aggregation may be an important mechanism for the increase in lysosomal proton permeability. The results raise the possibility that the proton permeability of lysosomes in vivo may be affected by the redox states of their membrane thiol groups. PMID:11716763

  10. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2.

    PubMed

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-04-05

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2-derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.

  11. Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle

    PubMed Central

    Takikita, Shoichi; Schreiner, Cynthia; Baum, Rebecca; Xie, Tao; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2010-01-01

    PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy. PMID:21179212

  12. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2

    PubMed Central

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R.; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-01-01

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2–derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies. PMID:27001828

  13. Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes.

    PubMed

    Li, Xiaobing; Saitoh, Shin-Ichiroh; Shibata, Takuma; Tanimura, Natsuko; Fukui, Ryutaro; Miyake, Kensuke

    2015-02-01

    Toll-like receptor 7 (TLR7) and TLR9 sense microbial single-stranded RNA (ssRNA) and ssDNA in endolysosomes. Nucleic acid (NA)-sensing in endolysosomes is thought to be important for avoiding TLR7/9 responses to self-derived NAs. Aberrant self-derived NA transportation to endolysosomes predisposes to autoimmune diseases. To restrict NA-sensing in endolysosomes, TLR7/9 trafficking is tightly controlled by a multiple transmembrane protein Unc93B1. In contrast to TLR7/9 trafficking, little is known about a mechanism underlying NA transportation. We here show that Mucolipin 1 (Mcoln1), a member of the transient receptor potential (TRP) cation channel gene family, has an important role in ssRNA trafficking into lysosomes. Mcoln1(-/-) dendritic cells (DCs) showed impaired TLR7 responses to ssRNA. A mucolipin agonist specifically enhanced TLR7 responses to ssRNAs. The channel activity of Mcoln1 is activated by a phospholipid phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), which is generated by a class III lipid kinase PIKfyve. A PIKfyve inhibitor completely inhibited TLR7 responses to ssRNA in DCs. Confocal analyses showed that ssRNA transportation to lysosomes in DCs was impaired by PIKfyve inhibitor as well as by the lack of Mcoln1. Transportation of TLR9 ligands was also impaired by the PIKfyve inhibitor. These results demonstrate that the PtdIns(3,5)P2-Mcoln1 axis has an important role in ssRNA transportation into lysosomes in DCs.

  14. The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles.

    PubMed

    Akbar, Mohammed A; Ray, Sanchali; Krämer, Helmut

    2009-03-01

    The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes.

  15. The SM Protein Car/Vps33A Regulates SNARE-mediated Trafficking to Lysosomes and Lysosome-related Organelles

    PubMed Central

    Akbar, Mohammed A.; Ray, Sanchali

    2009-01-01

    The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes. PMID:19158398

  16. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking

    NASA Astrophysics Data System (ADS)

    Song, Nijia; Zhou, Lijuan; Li, Jiehua; Pan, Zhicheng; He, Xueling; Tan, Hong; Wan, Xinyuan; Li, Jianshu; Ran, Rong; Fu, Qiang

    2016-03-01

    A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core

  17. Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy

    PubMed Central

    Bordi, Matteo; Berg, Martin J.; Mohan, Panaiyur S.; Peterhoff, Corrinne M.; Alldred, Melissa J.; Che, Shaoli; Ginsberg, Stephen D.; Nixon, Ralph A.

    2016-01-01

    ABSTRACT Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and protein expression levels for autophagosome components and increased LC3-positive puncta. Increased lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators, particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more strongly with glia than neurons. These findings establish that autophagic sequestration is both competent and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance, as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal size and total area. We propose that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis. PMID:27813694

  18. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

    PubMed

    Roczniak-Ferguson, Agnes; Petit, Constance S; Froehlich, Florian; Qian, Sharon; Ky, Jennifer; Angarola, Brittany; Walther, Tobias C; Ferguson, Shawn M

    2012-06-12

    Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

  19. TM7SF1 (GPR137B): a novel lysosome integral membrane protein.

    PubMed

    Gao, Jialin; Xia, Libin; Lu, Meiqing; Zhang, Binhua; Chen, Yueping; Xu, Rang; Wang, Lizhuo

    2012-09-01

    In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.

  20. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    PubMed

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  1. TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry

    PubMed Central

    Sbano, Luigi; Bonora, Massimo; Marchi, Saverio; Baldassari, Federica; Medina, Diego L.; Ballabio, Andrea; Giorgi, Carlotta; Pinton, Paolo

    2017-01-01

    Lysosomes are membrane-bound organelles mainly involved in catabolic processes. In addition, lysosomes can expel their contents outside of the cell via lysosomal exocytosis. Some of the key steps involved in these important cellular processes, such as vesicular fusion and trafficking, require calcium (Ca2+) signaling. Recent data show that lysosomal functions are transcriptionally regulated by transcription factor EB (TFEB) through the induction of genes involved in lysosomal biogenesis and exocytosis. Given these observations, we investigated the roles of TFEB and lysosomes in intracellular Ca2+ homeostasis. We studied the effect of transient modulation of TFEB expression in HeLa cells by measuring the cytosolic Ca2+ response after capacitative Ca2+ entry activation and Ca2+ dynamics in the endoplasmic reticulum (ER) and directly in lysosomes. Our observations show that transient TFEB overexpression significantly reduces cytosolic Ca2+ levels under a capacitative influx model and ER re-uptake of calcium, increasing the lysosomal Ca2+ buffering capacity. Moreover, lysosomal destruction or damage abolishes these TFEB-dependent effects in both the cytosol and ER. These results suggest a possible Ca2+ buffering role for lysosomes and shed new light on lysosomal functions during intracellular Ca2+ homeostasis. PMID:28084445

  2. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders

    PubMed Central

    Turecek, Frantisek; Scott, C. Ron; Chamoles, Nestor A.

    2008-01-01

    Summary Tandem mass spectrometry is currently used in newborn screening programmes to quantify the level of amino acids and acylcarnitines in dried blood spots for detection of metabolites associated with treatable diseases. We have developed assays for lysosomal enzymes in re-hydrated dried blood spots in which a set of substrates is added and the set of corresponding enzymatic products are quantified using tandem mass spectrometry with the aid of mass-differentiated internal standards. We have developed a multiplex assay of the set of enzymes that, when deficient, cause the lysosomal storage disorders Fabry, Gaucher, Hurler, Krabbe, Niemann–Pick A/B and Pompe diseases. These diseases were selected because treatments are now available or expected to emerge shortly. The discovery that acarbose is a selective inhibitor of maltase glucoamylase allows the Pompe disease enzyme, acid α-glucosidase, to be selectively assayed in white blood cells and dried blood spots. When tested with dried blood spots from 40 unaffected individuals and 10–12 individuals with the lysosomal storage disorder, the tandem mass spectrometry assay led to the correct identification of the affected individuals with 100% sensitivity. Many of the reagents needed for the new assays are commercially available, and those that are not are being prepared under Good Manufacturing Procedures for approval by the FDA. Our newborn screening assay for Krabbe disease is currently being put in place at the Wadsworth Center in New York State for the analysis of ~1000 dried blood spots per day. Summary We have developed tandem mass spectrometry for the direct assay of lysosomal enzymes in rehydrated dried blood spots that can be implemented for newborn screening of lysosomal storage disorders. Several enzymes can be analysed by a single method (multiplex analysis) and in a high-throughput manner appropriate for newborn screening laboratories. PMID:16763908

  3. Effect of pH on the formation of lysosome-alginate beads for antimicrobial activity.

    PubMed

    Park, Hyun Jung; Min, Jiho; Ahn, Joo-Myung; Cho, Sung-Jin; Ahn, Ji-Young; Kim, Yang-Hoon

    2015-02-01

    In this study, we developed lysosome-alginate beads for application as an oral drug delivery system (ODDS). The beads harboring lysosomes, which have antimicrobial activity, and various concentrations of alginate were characterized and optimized. For application as an ODDS, pH-dependent lysosome-alginate beads were generated, and the level of lysosome release was investigated by using antimicrobial tests. At low pH, lysosomes were not released from the lysosome-alginate beads; however, at neutral pH, similar to the pH in the intestine, lysosome release was confirmed, as determined by a high antimicrobial activity. This study shows the potential of such an ODDS for the in vivo treatment of infection with pathogens.

  4. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    NASA Astrophysics Data System (ADS)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  5. Concentration measurement of lysosome enzymes in blood by fluorimetric analysis method

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Strinadko, Elena M.

    2002-02-01

    The diagnostics of heritable disease series and sugar diabetes, myocardial infarction, collagenosis and kidney diseases widely uses the measurement of lysosomic enzymes in blood. In the present research work the definition procedure of concentration (beta) -glucuronidase with the help of fluorimetric analysis is offered, which allows using microamounts of biological fluids and samples with low enzyme activity which is especially important in paediatric practice. Due to the sharp sensibility of fluorimetric analysis and high speed of luminescent reactions the procedure gives an opportunity to obtain the result in the minimum terms as well as the use of small amounts of reaction mixture. The incubation in large dilution leads thereby to the elimination of influence of endogenic inhibitors and activators.

  6. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    PubMed Central

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A; Tesmer, John JG

    2015-01-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high resolution crystal structures of human LPLA2 and a low resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome. PMID:25727495

  7. Ocular manifestations and management recommendations of lysosomal storage disorders I: mucopolysaccharidoses

    PubMed Central

    Fenzl, Carlton R; Teramoto, Kyla; Moshirfar, Majid

    2015-01-01

    The mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by inborn errors of glycosaminoglycan (GAG) metabolism. These diseases are classified by enzyme deficiency into seven groups: type I, II, III, IV, VI, VII, and IX. GAG accumulation leads to characteristic clinical features. Some ophthalmic findings that are characteristic of MPS diseases include corneal clouding, retinal degeneration, decreased electroretinogram wave amplitude, optic atrophy, papilledema, and glaucoma. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy have increased the life span of many MPS patients and created the need to improve management of ocular symptoms. This article aims to provide a comprehensive review of ocular manifestations and treatment options for the various types of MPS. PMID:26379420

  8. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation

    PubMed Central

    Barlow, Carrolee; Ribaut-Barassin, Catherine; Zwingman, Theresa A.; Pope, Amber J.; Brown, Kevin D.; Owens, Jennie W.; Larson, Denise; Harrington, Elizabeth A.; Haeberle, Anne-Marie; Mariani, Jean; Eckhaus, Michael; Herrup, Karl; Bailly, Yannick; Wynshaw-Boris, Anthony

    2000-01-01

    We previously generated a mouse model with a mutation in the murine Atm gene that recapitulates many aspects of the childhood neurodegenerative disease ataxia-telangiectasia. Atm-deficient (Atm−/−) mice show neurological defects detected by motor function tests including the rota-rod, open-field tests and hind-paw footprint analysis. However, no gross histological abnormalities have been observed consistently in the cerebellum of any line of Atm−/− mice analyzed in most laboratories. Therefore, it may be that the neurologic dysfunction found in these animals is associated with predegenerative lesions. We performed a detailed analysis of the cerebellar morphology in two independently generated lines of Atm−/− mice to determine whether there was evidence of neuronal abnormality. We found a significant increase in the number of lysosomes in Atm−/− mice in the absence of any detectable signs of neuronal degeneration or other ultrastructural anomalies. In addition, we found that the ATM protein is predominantly cytoplasmic in Purkinje cells and other neurons, in contrast to the nuclear localization of ATM protein observed in cultured cells. The cytoplasmic localization of ATM in Purkinje cells is similar to that found in human cerebellum. These findings suggest that ATM may be important as a cytoplasmic protein in neurons and that its absence leads to abnormalities of cytoplasmic organelles reflected as an increase in lysosomal numbers. PMID:10639172

  9. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor.

    PubMed

    de Laat, Rian; Meabon, James S; Wiley, Jesse C; Hudson, Mark P; Montine, Thomas J; Bothwell, Mark

    2015-01-01

    Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  10. Deleterious effects of interruption followed by reintroduction of enzyme replacement therapy on a lysosomal storage disorder.

    PubMed

    Schneider, Ana Paula; Matte, Ursula; Pasqualim, Gabriela; Tavares, Angela Maria Vicente; Mayer, Fabiana Quoos; Martinelli, Barbara; Ribas, Graziela; Vargas, Carmen Regla; Giugliani, Roberto; Baldo, Guilherme

    2016-10-01

    Temporary interruption of enzyme replacement therapy (ERT) in patients with different lysosomal storage disorders may happen for different reasons (adverse reactions, issues with reimbursement, logistic difficulties, and so forth), and the impact of the interruption is still uncertain. In the present work, we studied the effects of the interruption of intravenous ERT (Laronidase, Genzyme) followed by its reintroduction in mice with the prototypical lysosomal storage disorder mucopolysaccharidosis type I, comparing to mice receiving continuous treatment, untreated mucopolysaccharidosis type I mice, and normal mice. In the animals which treatment was temporarily interrupted, we observed clear benefits of treatment in several organs (liver, lung, heart, kidney, and testis) after reintroduction, but a worsening in the thickness of the aortic wall was detected. Furthermore, these mice had just partial improvements in behavioral tests, suggesting some deterioration in the brain function. Despite worsening is some disease aspects, urinary glycosaminoglycans levels did not increase during interruption, which indicates that this biomarker commonly used to monitor treatment in patients should not be used alone to assess treatment efficacy. The deterioration observed was not caused by the development of serum antienzyme antibodies. All together our results suggest that temporary ERT interruption leads to deterioration of function in some organs and should be avoided whenever possible.

  11. Cullin 7 mediates proteasomal and lysosomal degradations of rat Eag1 potassium channels

    PubMed Central

    Hsu, Po-Hao; Ma, Yu-Ting; Fang, Ya-Ching; Huang, Jing-Jia; Gan, Yu-Ling; Chang, Pei-Tzu; Jow, Guey-Mei; Tang, Chih-Yung; Jeng, Chung-Jiuan

    2017-01-01

    Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels. PMID:28098200

  12. Lysosomal localization of Japanese medaka (Oryzias latipes) Neu1 sialidase and its highly conserved enzymatic profiles with human.

    PubMed

    Ryuzono, Sena; Takase, Ryo; Oishi, Kazuki; Ikeda, Asami; Chigwechokha, Petros Kingstone; Funahashi, Aki; Komatsu, Masaharu; Miyagi, Taeko; Shiozaki, Kazuhiro

    2016-01-10

    Desialylation in the lysosome is a crucial step for glycoprotein degradation. The abnormality of lysosomal desialylation by NEU1 sialidase is involved in diseases of mammals such as sialidosis and galactosialidosis. Mammalian Neu1 sialidase is also localized at plasma membrane where it regulates several signaling pathways through glycoprotein desialylation. In fish, on the other hand, the mechanism of desialylation in the lysosome and functions of Neu1 sialidase are still unclear. Here, to understand the significance of fish Neu1 sialidase, neu1 gene was cloned from medaka brain and the profiles of its polypeptides were analyzed. Open reading frame of medaka neu1 consisted 1,182 bp and the similarity of its deduced amino acids with human NEU1 was 57%. As this recombinant polypeptide did not show significant sialidase activity, medaka cathepsin A, known in mammals as protective protein activating Neu1, was cloned and then co-expressed with medaka Neu1 to examine whether medaka cathepsin A activates Neu1 activity. As a result, Neu1/cathepsin A showed a drastic increase of sialidase activity toward MU-NANA. Major substrate of medaka Neu1 was 3-sialyllactose and its optimal pH was 4.0. With immunofluorescence analysis, signal of overexpressed medaka Neu1 was found to coincide with Lysotracker signals (organelle marker of lysosome) and co-localized with medaka cathepsin A in fish hepatic Hepa-T1 cells. Furthermore, part of medaka Neu1 was also detected at plasma membrane. Medaka Neu1 possessed signal peptide sequence at N-terminal and incomplete lysosomal targeting sequence at C-terminus. Medaka neu1 gene was ubiquitously expressed in various medaka tissues, and its expression level was significantly higher than other sialidase genes such as neu3a, neu3b and neu4. The present study revealed the profiles of fish Neu1 sialidase and indicated its high conservation with human NEU1 for the first time, suggesting the presence of similar desialylation system in the medaka

  13. Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss.

    PubMed

    Seyrantepe, Volkan; Lema, Pablo; Caqueret, Aurore; Dridi, Larbi; Bel Hadj, Samar; Carpentier, Stephane; Boucher, Francine; Levade, Thierry; Carmant, Lionel; Gravel, Roy A; Hamel, Edith; Vachon, Pascal; Di Cristo, Graziella; Michaud, Jacques L; Morales, Carlos R; Pshezhetsky, Alexey V

    2010-09-16

    Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-);Hexa(-/-)) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/-) or Neu4(-/-) siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2) ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/-) mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/-) mice.

  14. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation

    PubMed Central

    Matias, Andreza Cândido; Manieri, Tânia Maria; Cerchiaro, Giselle

    2016-01-01

    We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation. PMID:27123155

  15. PLEKHM1: Adapting to life at the lysosome.

    PubMed

    McEwan, David G; Dikic, Ivan

    2015-04-03

    The endosomal system and autophagy are 2 intertwined pathways that share a number of common protein factors as well as a final destination, the lysosome. Identification of adaptor platforms that can link both pathways are of particular importance, as they serve as common nodes that can coordinate the different trafficking arms of the endolysosomal system. Using a mass spectrometry approach to identify interaction partners of active (GTP-bound) RAB7, the late endosome/lysosome GTPase, and yeast 2-hybrid screening to identify LC3/GABARAP interaction partners we discovered the multivalent adaptor protein PLEKHM1. We discovered a highly conserved LC3-interaction region (LIR) between 2 PH domains of PLEKHM1 that mediated direct binding to all LC3/GABARAP family members. Subsequent mass spectrometry analysis of PLEKHM1 precipitated from cells revealed the HOPS (homotypic fusion and protein sorting) complex as a prominent interaction partner. Functionally, depletion of PLEKHM1, HOPS, or RAB7 results in decreased autophagosome-lysosome fusion. In Plekhm1 knockout (KO) mouse embryonic fibroblasts (MEFs) we observed increased lipidated LC3B, decreased colocalization between LC3B and LAMP1 under amino acid starvation conditions and decreased autolysosome formation. Finally, PLEKHM1 binding to LC3-positive autophagosomes was also essential for selective autophagy pathways, as shown by clearance of puromycin-aggregates, in a PLEKHM1-LIR-dependent manner. Overall, we have identified PLEKHM1 as an endolysosomal adaptor platform that acts as a central hub to integrate endocytic and autophagic pathways at the lysosome.

  16. Discriminating lysosomal membrane protein types using dynamic neural network.

    PubMed

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  17. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS2 genes independently contribute to the production and function of platelet dense granules, melanosomes, and lysosomes.

    PubMed

    Feng, Lijun; Novak, Edward K; Hartnell, Lisa M; Bonifacino, Juan S; Collinson, Lucy M; Swank, Richard T

    2002-03-01

    Hermansky-Pudlak syndrome (HPS) is an inherited hemorrhagic disease affecting the related subcellular organelles platelet dense granules, lysosomes, and melanosomes. The mouse genes for HPS, pale ear and pearl, orthologous to the human HPS1 and HPS2 (ADTB3A) genes, encode a novel protein of unknown function and the beta(3)A subunit of the AP-3 adaptor complex, respectively. To test for in vivo interactions between these genes in the production and function of intracellular organelles, mice doubly homozygous for the 2 mutant genes were produced by appropriate breeding. Cooperation between the 2 genes in melanosome production was evident in increased hypopigmentation of the coat together with dramatic quantitative and qualitative alterations of melanosomes of the retinal pigment epithelium and choroid of double mutant mice. Lysosomal and platelet dense granule abnormalities, including hyposecretion of lysosomal enzymes from kidneys and depression of serotonin concentrations of platelet dense granules were likewise more severe in double than single mutants. Also, lysosomal enzyme concentrations were significantly increased in lungs of double mutant mice. Interaction between the 2 genes was specific in that effects on organelles were confined to melanosomes, lysosomes, and platelet dense granules. Together, the evidence indicates these 2 HPS genes function largely independently at the whole organism level to affect the production and function of all 3 organelles. Further, the increased lysosomal enzyme levels in lung of double mutant mice suggest a cause of a major clinical problem of HPS, lung fibrosis. Finally, doubly mutant HPS mice are a useful laboratory model for analysis of severe HPS phenotypes.

  18. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    PubMed

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.

  19. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase.

    PubMed

    Taylor, R M; Wolfe, J H

    1997-07-01

    A deficiency of beta-glucuronidase (GUSB) causes the multisystem progressive degenerative syndrome, mucopolysaccharidosis (MPS) type VII (Sly disease), which includes mental retardation. Animal homologues of MPS VII (ref. 3, 4) are models for testing somatic gene transfer approaches to treat the central nervous system in this and other lysosomal storage disorders. Previous attempts to correct murine MPS VII by gene therapy have successfully treated lesions in some organs but not in the brain. Other experimental modalities have forestalled some disease progression in the brain, but only if done at birth, before the onset of severe lesions, when the animals are phenotypically normal. We tested whether therapeutic amounts of GUSB could be delivered to the diseased adult brain by transplanting cells engineered to super-secrete the normal enzyme for export to surrounding neural tissues. Lysosomal distention was cleared from neurons and glial cells in the vicinity of the grafts, showing that the secreted enzyme could reach the diseased cells and reverse lesions in the severely diseased brain. The ability to correct established lesions will be important for the treatment of many lysosomal storage diseases affecting the brain, because most patients are not diagnosed until lesions are advanced enough to affect phenotype or developmental milestones in early childhood, and some forms of the diseases do not become apparent until later in life.

  20. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    PubMed

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.

  1. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency[S

    PubMed Central

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J.; Ribes, Antonia

    2015-01-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  2. Chinese hamster ovary cell lysosomes retain pinocytized horseradish peroxidase and in situ-radioiodinated proteins

    SciTech Connect

    Storrie, B.; Sachdeva, M.; Viers, V.S.

    1984-02-01

    We used Chinese hamster ovary cells, a cell line of fibroblastic origin, to investigate whether lysosomes are an exocytic compartment. To label lysosomal contents, Chinese hamster ovary cells were incubated with the solute marker horseradish peroxidase. After an 18-h uptake period, horseradish peroxidase was found in lysosomes by cell fractionation in Percoll gradients and by electron microscope cytochemistry. Over a 24-h period, lysosomal horseradish peroxidase was quantitatively retained by Chinese hamster ovary cells and inactivated with a t 1/2 of 6 to 8 h. Lysosomes were radioiodinated in situ by soluble lactoperoxidase internalized over an 18-h uptake period. About 70% of the radioiodine incorporation was pelleted at 100,000 X g under conditions in which greater than 80% of the lysosomal marker enzyme beta-hexosaminidase was released into the supernatant. By one-dimensional electrophoresis, about 18 protein species were present in the lysosomal membrane fraction, with radioiodine incorporation being most pronounced into species of 70,000 to 75,000 daltons. After a 30-min or 2-h chase at 37 degrees C, radioiodine that was incorporated into lysosomal membranes and contents was retained in lysosomes. These observations indicate that lysosomes labeled by fluid-phase pinocytosis are a terminal component of endocytic pathways in fibroblasts.

  3. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy

    PubMed Central

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-01-01

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca2+-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca2+ release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell. PMID:27357649

  4. Megalin/Cubulin-Lysosome-mediated Albumin Reabsorption Is Involved in the Tubular Cell Activation of NLRP3 Inflammasome and Tubulointerstitial Inflammation.

    PubMed

    Liu, Dan; Wen, Yi; Tang, Tao-Tao; Lv, Lin-Li; Tang, Ri-Ning; Liu, Hong; Ma, Kun-Ling; Crowley, Steve D; Liu, Bi-Cheng

    2015-07-17

    Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease.

  5. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder.

    PubMed

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu; Eskelinen, Eeva-Liisa; Ballabio, Andrea; Lund, Anders H

    2014-12-19

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase activity and increased clearance of sulfated GAGs. The identification of this regulatory mechanism opens the opportunity for a unique therapeutic approach in MSD patients where the need for exogenous enzyme replacement is circumvented.

  6. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management.

    PubMed

    Camarena, Carmen; Aldamiz-Echevarria, Luis J; Polo, Begoña; Barba Romero, Miguel A; García, Inmaculada; Cebolla, Jorge J; Ros, Emilio

    2017-03-09

    Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.

  7. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    PubMed

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  8. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression.

    PubMed

    Sheriff, S; Du, H; Grabowski, G A

    1995-11-17

    Lysosomal acid lipase (LAL) is essential for the hydrolysis of cholesterol esters and triglycerides that are delivered to the lysosomes via the low density lipoprotein receptor system. The deficiency of LAL is associated with cholesteryl ester storage disease (CESD) and Wolman's disease (WD). We cloned the human LAL cDNA and expressed the active enzyme in the baculovirus system. Two molecular forms (M(r) approximately 41,000 and approximately 46,000) with different glycosylation were found intracellularly, and approximately 24% of the M(r) approximately 46,000 form was secreted into the medium. Tunicamycin treatment produced only an inactive M(r) approximately 41,000 form. This result implicates glycosylation occupancy in the proper folding for active-site function. Catalytic activity was greater toward cis- than trans-unsaturated fatty acid esters of 4-methylumbelliferone and toward esters with 7-carbon length acyl chains. LAL cleaved cholesterol esters and mono-, tri-, and diglycerides. Heparin had a biphasic effect on enzymatic activity with initial activation followed by inhibition. Inhibition of LAL activity by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate suggested the presence of active serines in binding/catalytic domain(s) of the protein. Site-directed mutagenesis at two putative active centers, GXSXG, showed that Ser153 was important to catalytic activity, whereas Ser99 was not and neither was the catalytic nucleophile. Three reported mutations (L179P, L336P, and delta AG302 deletion) from CESD patients were created and expressed in the Sf9 cell system. None cleaved cholesterol esters, and L179P and L336P cleaved only triolein at approximately 4% of wild-type levels. These results suggest that mechanisms, in addition to LAL defects, may operate in the selective accumulation of cholesterol esters or triglycerides in CESD and WD patients.

  9. Phorbol ester induces elevated oxidative activity and alkalization in a subset of lysosomes

    SciTech Connect

    Chen, Chii-Shiarng )

    2002-01-01

    Background: Lysosomes are acidic organelles that play multiple roles in various cellular oxidative activities such as the oxidative burst during cytotoxic killing. It remains to be determined how lysosomal lumen oxidative activity and pH interact and are regulated. Here, I report the use of fluorescent probes to measure oxidative activity and pH of lysosomes in live macrophages upon treatment with the tumor promotor phorbol 12-myristate 13-acetate (PMA), and provide novel insight regarding the regulation of lysosomal oxidative activity and pH. Results: The substrate used to measure oxidative activity was bovine serum albumin covalently coupled to dihydro-2?, 4,5,6,7,7?-hexafluorofluorescein (OxyBURST Green H2HFF BSA). During pulse-chase procedures with live macrophages, this reduced dye was internalized through an endocytic pathway and accumulated in the lysosomes. Oxidation of this compound results in a dramatic increase of fluorescence intensity. By using low-light level fluorescence microscopy, I determined that phorbol ester treatment results in increased oxidative activity and pH elevation in different subsets of lysosomes. Furthermore, lysosomes with stronger oxidative activity tended to exclude the acidotropic lysosomal indicator, and thus exhibit higher alkalinity. Conclusions: Results indicate that there is a regulatory mechanism between lysosomal oxidative activity and pH. Activation of lysosomal Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase by phorbol ester may result in increase of intralysosomal O2?- and H2O2, concurrent with pH elevation due to consumption of H+ and generation of OH-. Furthermore, effect of phorbol ester on elevated oxidative activity and pH is heterogeneous among total lysosomal population. Higher oxidative activity and/or pH are only observed in subsets of lysosomes.

  10. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    SciTech Connect

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.

  11. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  12. Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release.

    PubMed

    Seggewiß, Nicole; Paulmann, Dajana; Dotzauer, Andreas

    2016-01-01

    Early studies on hepatitis A virus (HAV) in cell culture demonstrated the inclusion of several viral particles in an intracellular lipid-bilayer membrane. However, the origin of these virus-associated membranes and the mechanism for the non-lytic release of HAV into bile are still unknown. Analyzing the association of this virus with cell organelles, we found that newly synthesized HAV particles accumulate in lysosomal organelles and that lysosomal enzymes are involved in the maturation cleavage of the virion. Furthermore, by inhibiting the processes of fusion of lysosomes with the plasma membrane, we found that the nonlytic release of HAV from infected cells occurs via lysosome-related organelles.

  13. Lysosomal responses in the digestive gland of the freshwater mussel, Dreissena polymorpha, experimentally exposed to cadmium

    SciTech Connect

    Giamberini, Laure . E-mail: giamb@sciences.univ-metz.fr; Cajaraville, Miren P.

    2005-06-01

    In order to examine the possible use of lysosomal response as a biomarker of freshwater quality, structural changes of lysosomes were measured by image analysis in the digestive gland of the zebra mussel, Dreissena polymorpha, exposed in laboratory conditions to cadmium. Mussels were exposed to the metal (10 and 200 {mu}g/L) for 3 weeks and randomly collected after 7 and 21 days. At each treatment day, digestive tissues were excised and {beta}-glucuronidase activity was revealed in cryotome sections. Four stereological parameters were calculated: lysosomal volume density, lysosomal surface density, lysosomal surface to volume ratio, and lysosomal numerical density. The changes observed in this study reflected a general activation of the lysosomal system, including an increase in both the number and the size of lysosomes in the digestive gland cells of mussels exposed to cadmium. The digestive lysosomal response in zebra mussels was related to exposure time and to metal concentration, demonstrating the potential of this biomarker in freshwater biomonitoring.

  14. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence.

    PubMed

    Davis, Michael J; Eastman, Alison J; Qiu, Yafeng; Gregorka, Brian; Kozel, Thomas R; Osterholzer, John J; Curtis, Jeffrey L; Swanson, Joel A; Olszewski, Michal A

    2015-03-01

    Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans-containing lung cells compared with C. neoformans-free cells. Among C. neoformans-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections.

  15. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    PubMed Central

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797

  16. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    PubMed

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  17. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    PubMed

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  18. hLGDB: a database of human lysosomal genes and their regulation.

    PubMed

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  19. hLGDB: a database of human lysosomal genes and their regulation

    PubMed Central

    Brozzi, Alessandro; Urbanelli, Lorena; Luc Germain, Pierre; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/ PMID:23584836

  20. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C

    PubMed Central

    Pshezhetsky, Alexey V

    2015-01-01

    More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders. PMID:26459666

  1. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1*

    PubMed Central

    Burana, Daocharad; Yoshihara, Hidehito; Tanno, Hidetaka; Yamamoto, Akitsugu; Saeki, Yasushi; Tanaka, Keiji; Komada, Masayuki

    2016-01-01

    Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1. PMID:26797118

  2. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1.

    PubMed

    Burana, Daocharad; Yoshihara, Hidehito; Tanno, Hidetaka; Yamamoto, Akitsugu; Saeki, Yasushi; Tanaka, Keiji; Komada, Masayuki

    2016-03-18

    Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1.

  3. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway

    PubMed Central

    Tam, Joshua H. K.; Cobb, M. Rebecca; Seah, Claudia; Pasternak, Stephen H.

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease. PMID:27776132

  4. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    PubMed

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  5. G Protein–Coupled Receptor Sorting to Endosomes and Lysosomes

    PubMed Central

    Marchese, Adriano; Paing, May M.; Temple, Brenda R.S.; Trejo, JoAnn

    2010-01-01

    The heptahelical G protein–coupled receptors (GPCRs) belong to the largest family of cell surface signaling receptors encoded in the human genome. GPCRs signal to diverse extracellular stimuli and control a vast number of physiological responses, making this receptor class the target of nearly half the drugs currently in use. In addition to rapid desensitization, receptor trafficking is crucial for the temporal and spatial control of GPCR signaling. Sorting signals present in the intracytosolic domains of GPCRs regulate trafficking through the endosomal-lysosomal system. GPCR internalization is mediated by serine and threonine phosphorylation and arrestin binding. Short, linear peptide sequences including tyrosine- and dileucine-based motifs, and PDZ ligands that are recognized by distinct endocytic adaptor proteins also mediate internalization and endosomal sorting of GPCRs. We present new data from bioinformatic searches that reveal the presence of these types of sorting signals in the cytoplasmic tails of many known GPCRs. Several recent studies also indicate that the covalent modification of GPCRs with ubiquitin serves as a signal for internalization and lysosomal sorting, expanding the diversity of mechanisms that control trafficking of mammalian GPCRs. PMID:17995450

  6. USP8 controls the trafficking and sorting of lysosomal enzymes.

    PubMed

    MacDonald, Ewan; Urbé, Sylvie; Clague, Michael J

    2014-08-01

    The endosomal deubiquitylase USP8 has profound effects on endosomal morphology and organisation. Previous reports have proposed both positive (EGFR, MET) and negative roles in the down-regulation of receptors (Frizzled, Smoothened). Here we report an additional influence of USP8 on the retromer-dependent shuttling of ci-M6PR between the sorting endosome and biosynthetic pathway. Depletion of USP8 leads to a steady state redistribution of ci-M6PR from the Trans-Golgi Network (TGN) to endosomal compartments. Consequently we observe a defect in sorting of lysosomal enzymes, evidenced by increased levels of unprocessed Cathepsin D, which is secreted into the medium. The normal distribution of receptor can be restored by expression of siRNA-resistant USP8 but not by a catalytically inactive mutant or a truncated form, lacking a MIT domain required for endosomal localisation. We suggest that effects of USP8 depletion may reflect the loss of ESCRT-0 components which associate with retromer components Vps35 and SNX1, whilst failure to efficiently deliver lysosomal enzymes may also contribute to the observed block in receptor tyrosine kinase degradation.

  7. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover.

    PubMed

    Grumet, Lukas; Eichmann, Thomas O; Taschler, Ulrike; Zierler, Kathrin A; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim

    2016-08-19

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.

  8. Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover*

    PubMed Central

    Grumet, Lukas; Eichmann, Thomas O.; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Lass, Achim

    2016-01-01

    Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis. PMID:27354281

  9. Classification of Subcellular Location by Comparative Proteomic Analysis of Native and Density-shifted Lysosomes*

    PubMed Central

    Della Valle, Maria Cecilia; Sleat, David E.; Zheng, Haiyan; Moore, Dirk F.; Jadot, Michel; Lobel, Peter

    2011-01-01

    One approach to the functional characterization of the lysosome lies in the use of proteomic methods to identify proteins in subcellular fractions enriched for this organelle. However, distinguishing between true lysosomal residents and proteins from other cofractionating organelles is challenging. To this end, we implemented a quantitative mass spectrometry approach based on the selective decrease in the buoyant density of liver lysosomes that occurs when animals are treated with Triton-WR1339. Liver lysosome-enriched preparations from control and treated rats were fractionated by isopycnic sucrose density gradient centrifugation. Tryptic peptides derived from gradient fractions were reacted with isobaric tag for relative and absolute quantitation eight-plex labeling reagents and analyzed by two-dimensional liquid chromatography matrix-assisted laser desorption ionization time-of-flight MS. Reporter ion intensities were used to generate relative protein distribution profiles across both types of gradients. A distribution index was calculated for each identified protein and used to determine a probability of lysosomal residence by quadratic discriminant analysis. This analysis suggests that several proteins assigned to the lysosome in other proteomics studies are not true lysosomal residents. Conversely, results support lysosomal residency for other proteins that are either not or only tentatively assigned to this location. The density shift for two proteins, Cu/Zn superoxide dismutase and ATP-binding cassette subfamily B (MDR/TAP) member 6, was corroborated by quantitative Western blotting. Additional balance sheet analyses on differential centrifugation fractions revealed that Cu/Zn superoxide dismutase is predominantly cytosolic with a secondary lysosomal localization whereas ATP-binding cassette subfamily B (MDR/TAP) member 6 is predominantly lysosomal. These results establish a quantitative mass spectrometric/subcellular fractionation approach for

  10. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders

    PubMed Central

    Belletti, Daniela; D’Avanzo, Francesca; Pederzoli, Francesca; Ruozi, Barbara; Marin, Oriano; Vandelli, Maria Angela; Forni, Flavio; Scarpa, Maurizio; Tomanin, Rosella; Tosi, Giovanni

    2016-01-01

    Lysosomal Storage Disorders (LSDs) are a group of metabolic syndromes, each one due to the deficit of one lysosomal enzyme. Many LSDs affect most of the organ systems and overall about 75% of the patients present neurological impairment. Enzyme Replacement Therapy, although determining some systemic clinical improvements, is ineffective on the CNS disease, due to enzymes' inability to cross the blood-brain barrier (BBB). With the aim to deliver the therapeutic enzymes across the BBB, we here assayed biodegradable and biocompatible PLGA-nanoparticles (NPs) in two murine models for LSDs, Mucopolysaccharidosis type I and II (MPS I and MPS II). PLGA-NPs were modified with a 7-aminoacid glycopeptide (g7), yet demonstrated to be able to deliver low molecular weight (MW) molecules across the BBB in rodents. We specifically investigated, for the first time, the g7-NPs ability to transfer a model drug (FITC-albumin) with a high MW, comparable to the enzymes to be delivered for LSDs brain therapy. In vivo experiments, conducted on wild-type mice and knockout mouse models for MPS I and II, also included a whole series of control injections to obtain a broad preliminary view of the procedure efficiency. Results clearly showed efficient BBB crossing of albumin in all injected mice, underlying the ability of NPs to deliver high MW molecules to the brain. These results encourage successful experiments with enzyme-loaded g7-NPs to deliver sufficient amounts of the drug to the brain district on LSDs, where exerting a corrective effect on the pathological phenotype. PMID:27228099

  11. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  12. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies.

    PubMed

    Bras, Jose; Guerreiro, Rita; Darwent, Lee; Parkkinen, Laura; Ansorge, Olaf; Escott-Price, Valentina; Hernandez, Dena G; Nalls, Michael A; Clark, Lorraine N; Honig, Lawrence S; Marder, Karen; Van Der Flier, Wiesje M; Lemstra, Afina; Scheltens, Philip; Rogaeva, Ekaterina; St George-Hyslop, Peter; Londos, Elisabet; Zetterberg, Henrik; Ortega-Cubero, Sara; Pastor, Pau; Ferman, Tanis J; Graff-Radford, Neill R; Ross, Owen A; Barber, Imelda; Braae, Anne; Brown, Kristelle; Morgan, Kevin; Maetzler, Walter; Berg, Daniela; Troakes, Claire; Al-Sarraj, Safa; Lashley, Tammaryn; Compta, Yaroslau; Revesz, Tamas; Lees, Andrew; Cairns, Nigel; Halliday, Glenda M; Mann, David; Pickering-Brown, Stuart; Dickson, Dennis W; Singleton, Andrew; Hardy, John

    2014-12-01

    Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.

  13. α-Synuclein–induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models

    PubMed Central

    Mazzulli, Joseph R.; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-01-01

    Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi–tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders. PMID:26839413

  14. Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting

    PubMed Central

    Flanagan-Steet, Heather; Aarnio, Megan; Kwan, Brian; Guihard, Pierre; Petrey, Aaron; Haskins, Mark; Blanchard, Frederic; Steet, Richard

    2015-01-01

    Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation. PMID:26404503

  15. Long-term follow-up and sudden unexpected death in Gaucher disease type 3 in Egypt

    PubMed Central

    Blankenship, Derek

    2016-01-01

    Objective: To describe the long-term follow-up and distinct phenotype of a large cohort of patients with Gaucher disease type 3 on enzyme replacement therapy (ERT) in Egypt. Methods: A prospective cohort study of 78 patients on ERT who were followed for up to 9 years with yearly evaluations that included EEG and cognitive testing. Results: Of the patients, 73% were homozygous for the L444P GBA1 mutation; all but 7 were neurologically symptomatic. Supranuclear gaze palsy with variable but stable cognitive function was present in 91% of patients. Convergent strabismus and bulbar dysfunction were noted in 22% and 37%, respectively. Features of oppositional defiant disorder were present in 54% of patients. Twenty-three patients (30%) developed seizures while on ERT for 1–9 years. Of those, 12 patients (15%) died suddenly and unexpectedly at a mean age of 6.7 ± 5.0 years (range 1.5–18). Sudden death was usually associated with a seizure disorder or a terminal seizure, but 7 of 12 patients had a preceding normal EEG. An additional 11% had background slowing or epileptogenic activity on EEG without clinical seizures. There were 3 familial cases of sudden unexpected death. Conclusions: Despite having the most common GBA1 genotype known to be associated with neuronopathic Gaucher disease, patients with Gaucher disease type 3 in Egypt have a phenotype and a clinical outcome on ERT that are very different from those observed in other populations. Identifying putative modifying genes of this ethnic group is likely to lead to better therapy for neuronopathic Gaucher disease generally. PMID:27123474

  16. Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system.

    PubMed

    Kornhuber, Johannes; Henkel, Andreas W; Groemer, Teja W; Städtler, Sven; Welzel, Oliver; Tripal, Philipp; Rotter, Andrea; Bleich, Stefan; Trapp, Stefan

    2010-07-01

    Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pK(a) value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution.

  17. Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy.

    PubMed

    Zhang, Jiqian; Zhou, Wei; Lin, Jun; Wei, Pengfei; Zhang, Yunjiao; Jin, Peipei; Chen, Ming; Man, Na; Wen, Longping

    2016-01-01

    Autophagic lysosomal reformation, a key cellular process for maintaining lysosome homeostasis in elevated autophagy, so far has only been reported for cells under certain forms of starvation. For this reason, it is controversial that whether this phenomenon is starvation-specific and its importance in lysosomal regeneration at the late stage of autophagy is often challenged. Here we show that exogenous hydrogen peroxide (H2O2) induced lysosome depletion and recovery characteristic of autophagic lysosomal reformation, and we confirmed the occurrence of autophagic lysosomal reformation after H2O2 treatment by demonstrating Rab7 dissociation from autolysosomes, recruitment of Phosphatidylinositol 4-phosphate (PI4P) and clathrin to the surface of autolysosomes, and the existence of tubular "pro-lysosome" structures extending from autolysosomes. Similar to starvation, H2O2 caused an initial deactivation and a subsequent reactivation for mTOR, and mTOR reactivation was essential for ALR. Our results provided a first non-starvation example of autophagic lysosomal reformation and provide evidence for its importance for some autophagic processes other than that of starvation.

  18. Failure of lysosome clustering and positioning in the juxtanuclear region in cells deficient in rapsyn

    PubMed Central

    Aittaleb, Mohamed; Chen, Po-Ju; Akaaboune, Mohammed

    2015-01-01

    ABSTRACT Rapsyn, a scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at contacts between motor neurons and differentiating muscle cells. Rapsyn is also expressed in cells that do not express AChRs. However, its function in these cells remains unknown. Here, we show that rapsyn plays an AChR-independent role in organizing the distribution and mobility of lysosomes. In cells devoid of AChRs, rapsyn selectively induces the clustering of lysosomes at high density in the juxtanuclear region without affecting the distribution of other intracellular organelles. However, when the same cells overexpress AChRs, rapsyn is recruited away from lysosomes to colocalize with AChR clusters on the cell surface. In rapsyn-deficient (Rapsn−/−) myoblasts or cells overexpressing rapsyn mutants, lysosomes are scattered within the cell and highly dynamic. The increased mobility of lysosomes in Rapsn−/− cells is associated with a significant increase in lysosomal exocytosis, as evidenced by increased release of lysosomal enzymes and plasma membrane damage when cells were challenged with the bacterial pore-forming toxin streptolysin-O. These findings uncover a new link between rapsyn, lysosome positioning, exocytosis and plasma membrane integrity. PMID:26330529

  19. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  20. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    PubMed

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  1. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    PubMed

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  2. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    PubMed

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05) in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  3. Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    PubMed Central

    Adar, Y; Stark, M; Bram, E E; Nowak-Sliwinska, P; van den Bergh, H; Szewczyk, G; Sarna, T; Skladanowski, A; Griffioen, A W; Assaraf, Y G

    2012-01-01

    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC50 values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction. PMID:22476101

  4. Impact of high glucose and AGEs on cultured kidney-derived cells. Effects on cell viability, lysosomal enzymes and effectors of cell signaling pathways.

    PubMed

    Peres, Giovani B; Schor, Nestor; Michelacci, Yara M

    2017-04-01

    We have previously reported decreased expression and activities of lysosomal cathepsins B and L in diabetic kidney. Relevant morphological changes were observed in proximal tubules, suggesting that these cells are implicated in the early stages of the disease. The aim of the present study was to investigate the mechanisms that lead to these changes. The effects of high glucose (HG) and advanced glycation end products (AGEs) on cell viability, lysosomal enzymes and other effectors of cell signaling of cultured kidney cells were studied. HG increased viable mesangial cells (ihMC) in 48 h, while epithelial tubular cells were not affected (LLC-PK1 and MDCK). In contrast, the number of viable cells was markedly decreased, for all cell lines, by AGE-BSA. Concerning lysosomal enzymes, the main cysteine-protease expressed by these cells was cathepsin B, and its concentration was much higher in epithelial than in mesangial cells. Exposure to HG had no effect on the cathepsin B activity, but AGE-BSA caused a marked decrease in LLC-PK1, and increased the enzyme activities in the other cell lines. The levels of nitric oxide (NO) was increased by AGE-BSA in all cell lines, suggesting oxidative stress, and Western blotting has shown that, among the investigated proteins, cathepsin B, mTOR and transcription factor EB (TFEB) were the most significantly affected by exposure to AGE-BSA. As mTOR induces anabolism and inhibits autophagy, and TFEB is a master transcription factor for lysosomal enzymes, it is possible that this pathway plays a role in the inhibition of lysosomal enzymes in proximal tubule cells.

  5. Cardiomyopathy in Pompe's disease.

    PubMed

    Fayssoil, A

    2008-01-01

    Pompe's disease (glycogen storage disease type II) is a lysosomal storage disorder resulting from a deficiency in alpha 1, 4 glucosidase. Prognosis is poor because of heart involvement. Treatment in adult form relies on supportive therapy. Enzyme replacement therapy with recombinant human alpha glucosidase remains a hope for patients.

  6. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles.

    PubMed

    Pryor, P R; Mullock, B M; Bright, N A; Gray, S R; Luzio, J P

    2000-05-29

    We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.

  7. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol‐dependent cytolysins

    PubMed Central

    Malet, Julien Karim

    2016-01-01

    Abstract Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins. PMID:27739224

  8. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    PubMed

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  9. The lysosome as a command-and-control center for cellular metabolism

    PubMed Central

    2016-01-01

    Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation. PMID:27621362

  10. Automated measurement of lysosomal structure alterations in oocytes of mussels exposed to petroleum hydrocarbons.

    PubMed

    Cajaraville, M P; Marigómez, J A; Angulo, E

    1991-09-01

    The present study examines the structure of the lysosomal system of mature oocytes in mussels, Mytilus galloprovincialis, after a 21 day exposure to the water accommodated fraction (WAF) of two crude oils (types Ural and Maya) and of a commercial lubricant oil. The automated image analysis indicates that lysosomes, showing cytochemically demonstrable beta-glucuronidase activity, are smaller and much more numerous in oocytes of mussels treated with a 40% dose of Ural- and Lubricant-WAF when compared to controls. It is suggested that the structure of the lysosomal system of oocytes is different from that of somatic cells (i.e., digestive cells) and that budding or "fission" into smaller bodies occurs in oocyte lysosomes under certain petroleum hydrocarbon-exposure conditions. These changes in the lysosomal compartment appear to be associated to the process of gamete release or spawning.

  11. Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

    PubMed

    Jäättelä, Marja; Nylandsted, Jesper

    2015-11-02

    Programmed cell death involving lysosomal membrane permeabilization (LMP) is an alternative cell death pathway induced under various cellular conditions and by numerous cytotoxic stimuli. The method presented here to quantify LMP takes advantage of the detergent digitonin, which creates pores in cellular membranes by replacing cholesterol. The difference in cholesterol content between the plasma membrane (high) and lysosomal membrane (low) allows titration of digitonin to a concentration that permeabilizes the plasma membrane but leaves lysosomal membranes intact. The extent of LMP is determined by measuring the cytosolic activity of lysosomal hydrolases (e.g., cysteine cathepsins) and/or β-N-acetyl-glucosaminidase in the digitonin-extracted cytoplasm and comparing it to the total cellular enzyme activity. Digitonin extraction of the cytosol can be combined with precipitation of protein and/or western blot analysis for detection of lysosomal proteins (e.g., cathepsins).

  12. A Neuroprotective Function of NSF1 Sustains Autophagy and Lysosomal Trafficking in Drosophila

    PubMed Central

    Babcock, Daniel T.; Shen, Wei; Ganetzky, Barry

    2015-01-01

    A common feature of many neurodegenerative diseases is the accumulation of toxic proteins that disrupt vital cellular functions. Degradative pathways such as autophagy play an important protective role in breaking down misfolded and long-lived proteins. Neurons are particularly vulnerable to defects in these pathways, but many of the details regarding the link between autophagy and neurodegeneration remain unclear. We previously found that temperature-sensitive paralytic mutants in Drosophila are enriched for those exhibiting age-dependent neurodegeneration. Here we show that one of these mutants, comatose (comt), in addition to locomotor defects, displays shortened lifespan and progressive neurodegeneration, including loss of dopaminerigic (DA) neurons. comt encodes N-ethyl-maleimide sensitive fusion protein (NSF1), which has a well-documented role in synaptic transmission. However, the neurodegenerative phenotypes we observe in comt mutants do not appear to depend on defects in synaptic transmission, but rather from their inability to sustain autophagy under stress, due at least in part to a defect in trafficking of lysosomal proteases such as cathepsin-L. Conversely, overexpression of NSF1 rescues α-synuclein-induced toxicity of DA neurons in a model of Parkinson’s disease. Our results demonstrate a neuroprotective role for NSF1 that involves mediation of fusion events crucial for degradative pathways such as autophagy, providing greater understanding of cellular dysfunctions common to several neurodegenerative diseases. PMID:25519897

  13. [Therapeutic targets in Gaucher's disease].

    PubMed

    Giraldo, Pilar; Roca, Mercedes

    2011-09-01

    Gaucher's disease (GD) occurs because of deficiency of the enzyme beta-glucocerebrosidase that results in accumulation of this glycolipid compound in the cells of the macrophage-monocyte system. There are 3 types: type 1 is non-neuronopathic with primarily visceral signs and symptoms which range tremendously in severity; infantile-onset type 2 and later-onset type 3 involve the central nervous system. More than 300 mutations have been described in the gene, partially explaining phenotypic heterogeneity. Commercialization in 1991 of the first enzyme replacement therapy, alglucerase, resulted in a revolution in the management of patients with symptomatic GD (i.e., by improving the hematological and visceral signs and symptoms). Within the first 5 years of alglucerase, its safety and efficacy in improving hemoglobin levels and platelet counts, and in reducing splenic and hepatic enlargement were confirmed albeit recognizing its inability to impact neurological symptoms and signs because of its large molecular size. Recombinant imiglucerase soon replaced alglucerase as the standard of care for GD. The therapeutic targets recently defined as treatment goals were: normalization of cell counts; reduction of liver and spleen volume; elimination of the infiltration in the bone marrow to prevent the complications, and improvement in surrogate biomarkers.

  14. Oxidant-induced autophagy and ferritin degradation contribute to epithelial–mesenchymal transition through lysosomal iron

    PubMed Central

    Sioutas, Apostolos; Vainikka, Linda K; Kentson, Magnus; Dam-Larsen, Sören; Wennerström, Urban; Jacobson, Petra; Persson, Hans Lennart

    2017-01-01

    Purpose Transforming growth factor (TGF)-β1 triggers epithelial–mesenchymal transition (EMT) through autophagy, which is partly driven by reactive oxygen species (ROS). The aim of this study was to determine whether leaking lysosomes and enhanced degradation of H-ferritin could be involved in EMT and whether it could be possible to prevent EMT by iron chelation targeting of the lysosome. Materials and methods EMT, H-ferritin, and autophagy were evaluated in TGF-β1-stimulated A549 human lung epithelial cells cultured in vitro using Western blotting, with the additional morphological assessment of EMT. By using immunofluorescence and flow cytometry, lysosomes and ROS were assessed by acridine orange and 6-carboxy-2′,7′-dichlorodihydrofluorescein acetate assays, respectively. Results TGF-β1-stimulated cells demonstrated a loss of H-ferritin, which was prevented by the antioxidant N-acetyl-L-cysteine (NAC) and inhibitors of lysosomal degradation. TGF-β1 stimulation generated ROS and autophagosome formation and led to EMT, which was further promoted by the additional ROS-generating cytokine, tumor necrosis factor-α. Lysosomes of TGF-β1-stimulated cells were sensitized to oxidants but also completely protected by lysosomal loading with dextran-bound deferoxamine (DFO). Autophagy and EMT were prevented by NAC, DFO, and inhibitors of autophagy and lysosomal degradation. Conclusion The findings of this study support the role of enhanced autophagic degradation of H-ferritin as a mechanism for increasing the vulnerability of lysosomes to iron-driven oxidant injury that triggers further autophagy during EMT. This study proposes that lysosomal leakage is a novel pathway of TGF-β1-induced EMT that may be prevented by iron-chelating drugs that target the lysosome.

  15. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    PubMed

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  16. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    PubMed

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  17. [Lysosomal enzyme activity in white blood cells in leukemias].

    PubMed

    Rybakova, L P; Kharchenko, M F

    1996-01-01

    Total enzyme activity of acidic hydrolases and total neutral proteinase were compared in the post-nuclear fraction of leukocytes from healthy subjects and leukemia patients. The levels of acidic phosphotase and neutral proteinase in lymphoid cells of healthy donors were 11 and 7 times lower than those in myeloid cells, respectively. Patients suffering chronic myeloid leukemia revealed enhanced levels of beta-glucuronidase and neutral proteinases whereas B-chronic lymphoid leukemia involved acidic hydrolase concentrations lower than normal. As chronic myeloid leukemia advanced, neutral proteinase activity dropped dramatically (2.5 times); an aggressive course of B-chronic lymphoid leukemia was accompanied by a 3-fold decrease in acidic hydrolase level. The results may be used as indirect evidence of differences in the role of lysosomal enzymes in the mechanism of protein processing involved in myeloid and lymphoid proliferative pathologies.

  18. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    PubMed

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-10-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain.

  19. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    PubMed Central

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  20. Critical Roles of Lysosomal Acid Lipase in Myelopoiesis

    PubMed Central

    Qu, Peng; Shelley, William C.; Yoder, Mervin C.; Wu, Lingyan; Du, Hong; Yan, Cong

    2010-01-01

    Lysosomal acid lipase (LAL) is a key enzyme that cleaves cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in lysosomes. Genetic ablation of the lal gene (lal−/−) in mice has resulted in a systemic increase of macrophages and neutrophils, causing severe inflammation and pathogenesis in multiple organs. We hypothesized that aberrant growth and differentiation of myeloid cells in lal−/− mice arises from dysregulated production of progenitor cells in the bone marrow. Indeed, lal−/− mice displayed increased numbers of primitive lin−Sca-1+c-Kit+ (LSK) cells and granulocyte-macrophage precursors (GMP). Increased high proliferative potential colony-forming cells (HPP-CFC) were enumerated from cultured lal−/− bone marrow cells, as were significantly more CFU-GM, CFU-G, and CFU-M colonies. As a consequence, lal−/− mice developed significant myeloid infiltration, particularly with CD11b+/Gr-1+ myeloid-derived suppressive cells in multiple organs. Both decreased apoptosis and increased proliferation contribute to the systemic increase of myeloid cells in lal−/− myeloid cells. These lal−/− CD11b+/Gr-1+ cells displayed suppressive activity on T cell proliferation and function in vitro. Bone marrow chimeras confirmed that the myeloproliferative disorder in lal−/− mice was primarily attributable to autonomous defects in myeloid progenitor cells, although the hematopoietic microenvironment in the lal−/− mice did not support hematopoiesis normally. These results provide evidence that LAL is an important regulator of myelopoiesis during hematopoietic development, differentiation, and homeostasis. PMID:20348241

  1. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  2. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  3. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis.

    PubMed

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan

    2014-04-01

    In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24h at 18°C and 26°C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18°C and 26°C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution monitoring programmes and, vice versa, the presence of pollutants may condition the capacity of mussels to respond against thermal stress in a climate change scenario.

  4. Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes

    PubMed Central

    Kameyama, Hirokazu; Nakajima, Hiroyuki; Nishitsuji, Kazuchika; Mikawa, Shiho; Uchimura, Kenji; Kobayashi, Norihiro; Okuhira, Keiichiro; Saito, Hiroyuki; Sakashita, Naomi

    2016-01-01

    The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIowa) is the first mutation that was associated with familial AApoA1 amyloidosis. The N-terminal fragments (amino acid residues 1–83) of apoA-I containing this mutation deposit as amyloid fibrils in patients’ tissues and organs, but the mechanisms of cellular degradation and cytotoxicity have not yet been clarified. In this study, we demonstrated degradation of apoA-IIowa fibrils via the autophagy-lysosomal pathway in human embryonic kidney 293 cells. ApoA-IIowa fibrils induced an increase in lysosomal pH and the cytosolic release of the toxic lysosomal protease cathepsin B. The mitochondrial dysfunction caused by apoA-IIowa fibrils depended on cathepsin B and was ameliorated by increasing the degradation of apoA-IIowa fibrils. Thus, although apoA-IIowa fibril transport to lysosomes and fibril degradation in lysosomes may have occurred, the presence of an excess number of apoA-IIowa fibrils, more than the lysosomes could degrade, may be detrimental to cells. Our results thus provide evidence that the target of apoA-IIowa fibrils is lysosomes, and we thereby gained a novel insight into the mechanism of AApoA1 amyloidosis. PMID:27464946

  5. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    NASA Astrophysics Data System (ADS)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  6. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes

    PubMed Central

    1996-01-01

    We have followed the transfer of EGF-EGF receptor (EGFR) complexes from endosomal vacuoles that contain transferrin receptors (TfR) to lysosome vacuoles identified by their content of HRP loaded as a 15-min pulse 4 h previously. We show that the HRP-loaded lysosomes are lysosomal- associated membrane protein-1 (LAMP-1) positive, mannose-6-phosphate receptor (M6PR) negative. and contain active acid hydrolase. EGF-EGFR complexes are delivered to these lysosomes intact and are then rapidly degraded. Preactivating the HRP contained within the preloaded lysosomes inhibits the delivery of EGFR and degradation of EGF, and results in the accumulation of EGFR-containing multivesicular bodies (MVB). With time these accumulating MVB undergo a series of maturation changes that include the loss of TfR, the continued recruitment of EGFR, and the accumulation of internal vesicles, but they remain LAMP-1 and M6PR negative. The mature MVB are often seen to make direct contact with lysosomes containing preactivated HRP, but their perimeter membranes remain intact. Together our observations suggest that the transfer of EGF-EGFR complexes from the TfR-containing endosome compartment to the lysosomes that degrade them employs a single vacuolar intermediate, the maturing MVB, and can be achieved by a single heterotypic fusion step. PMID:8601581

  7. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes

    PubMed Central

    Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak

    2015-01-01

    The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847

  8. Intracellular target for alpha-terthienyl photosensitization: involvement of lysosomal membrane damage.

    PubMed

    Sasaki, M; Koyama, S; Tokiwa, K; Fujita, H

    1993-05-01

    Intracellular targets for the photosensitizer alpha-terthienyl (alpha T) were examined by fluorescence microscopy and microfluorospectrometry using human nonkeratinized buccal cells. Intracellular distribution of alpha T was observed as fluorescent patches widely dispersed in the cytoplasm. The distribution of the fluorescent patches was compared with that of acid phosphatase activity visualized as an azo dye produced by the fast garnet 2-methyl-4-[(2-methyl-phenyl)azo]benzenediasonium sulfate reaction. Because both the distribution sites coincided, lysosomes were the likely sites of intracellular affinity of alpha T. However, because acid phosphatase is not a specific lysosomal marker, we tried to detect another lysosomal enzyme, beta-galactosidase, to confirm if the fluorescent patches were lysosomes, using fluorescein-di-(beta-D-galactopyranoside) (FDG) as a fluorogenic substrate. Without UV-A (320-400 nm) irradiation of the cells after uptake of alpha T and FDG, no significant fluorescence was observed. In contrast, with prior UV-A irradiation in the presence of alpha T and FDG, the bright yellow fluorescence of fluorescein, which is the digested product of FDG, was clearly detected in the cells by fluorescence microscopy. This observation implied that inflow of external FDG into the lysosomes is caused by lysosomal membrane damage on alpha T photosensitization. The present results indicated that lysosomes are the primary photosensitization site of alpha T.

  9. An unusual lysosome compartment involved in vitellogenin endocytosis by Xenopus oocytes

    PubMed Central

    1985-01-01

    We have investigated the lysosomal compartment of Xenopus oocytes to determine the possible role of this organelle in the endocytic pathway of the yolk protein precursor, vitellogenin. Oocytes have lysosome-like organelles of unusual enzymatic composition at all stages of their development, and the amount of hydrolase activity increases steadily throughout oogenesis. These unusual lysosomes appear to be located primarily in a peripheral zone of oocyte cytoplasm. At least two distinct populations of lysosomal organelles can be identified after sucrose density gradient fractionation of vitellogenic oocytes. Most enzyme activity resides in a compartment of large size and high density that appears to be a subpopulation of yolk platelets that are less dense than most platelets within the cell. The appearance of this high density peak of lysosomal enzyme activity coincides with the time of onset of vitellogenin endocytosis during oocyte development. The data suggest that endocytic vesicles that contain vitellogenin fuse with modified lysosomes shortly after their internalization by the oocyte. Pulse-chase experiments with radiolabeled vitellogenin suggest that the ligand passes through the low density platelet compartment en route to the heavy platelets. The accumulation of yolk proteins apparently results from a failure of these molecules to undergo complete digestion after their entry into an unusual lysosomal compartment. The yolk platelets that these proteins finally enter for prolonged storage appear to be a postlysosomal organelle. PMID:4055890

  10. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    PubMed

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  11. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway

    PubMed Central

    Bouché, Valentina; Espinosa, Alma Perez; Leone, Luigi; Sardiello, Marco; Ballabio, Andrea; Botas, Juan

    2016-01-01

    ABSTRACT An evolutionarily conserved gene network regulates the expression of genes involved in lysosome biogenesis, autophagy, and lipid metabolism. In mammals, TFEB and other members of the MiTF-TFE family of transcription factors control this network. Here we report that the lysosomal-autophagy pathway is controlled by Mitf gene in Drosophila melanogaster. Mitf is the single MiTF-TFE family member in Drosophila and prior to this work was known only for its function in eye development. We show that Mitf regulates the expression of genes encoding V-ATPase subunits as well as many additional genes involved in the lysosomal-autophagy pathway. Reduction of Mitf function leads to abnormal lysosomes and impairs autophagosome fusion and lipid breakdown during the response to starvation. In contrast, elevated Mitf levels increase the number of lysosomes, autophagosomes and autolysosomes, and decrease the size of lipid droplets. Inhibition of Drosophila MTORC1 induces Mitf translocation to the nucleus, underscoring conserved regulatory mechanisms between Drosophila and mammalian systems. Furthermore, we show Mitf-mediated clearance of cytosolic and nuclear expanded ATXN1 (ataxin 1) in a cellular model of spinocerebellar ataxia type 1 (SCA1). This remarkable observation illustrates the potential of the lysosomal-autophagy system to prevent toxic protein aggregation in both the cytoplasmic and nuclear compartments. We anticipate that the genetics of the Drosophila model and the absence of redundant MIT transcription factors will be exploited to investigate the regulation and function of the lysosomal-autophagy gene network. PMID:26761346

  12. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    PubMed

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria.

  13. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa

    PubMed Central

    Su, Kim; Donaldson, Emma; Sharma, Reena

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians. PMID:27799810

  14. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy.

    PubMed

    Rood, Ilse M; Merchant, Michael L; Wilkey, Daniel W; Zhang, Terry; Zabrouskov, Vlad; van der Vlag, Johan; Dijkman, Henry B; Willemsen, Brigith K; Wetzels, Jack F; Klein, Jon B; Deegens, Jeroen K

    2015-11-01

    Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.

  15. Cloning the mouse homologue of the human lysosomal acid {alpha}-glucosidase gene

    SciTech Connect

    Ding, J.H.; Yang, B.Z.; Liu, H.M.

    1994-09-01

    Pompe disease (GSD II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid {alpha}-glucosidase (GAA). In an attempt to create a mouse model for Pompe disease, we isolated and characterized the gene encoding the mouse homologue of the human GAA. Twenty clones that extend from exon 2 to the poly(A) tail were isolated from a mouse liver cDNA library, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-2 were cloned by RACE from mouse liver RNA. The full-length liver GAA cDNA contains 3365 nucleotides with a coding region of 2859 nucleotides and a 394 base pair 3{prime}-nontranslated region. The deduced amino acid sequence of the mouse GAA shows 84% identity to the human GAA. Southern blot analysis demonstrated that the mouse GAA was encoded by a single copy gene. Then six bacteriophages containing DNA from the GAA gene were isolated by screening 10{sup 6} phage plaques of a mouse 129 genomic library using a mouse GAA cDNA as a probe. From one of these bacteriophages, an 11-kilobase EcoRI fragment containing exons 3 to 15 was subcloned and sequenced. Work is in progress using this genomic clone to disrupt the GAA gene in murine embryonic stem cells in order to create GSD II mice.

  16. Curcumin targets the TFEB-lysosome pathway for induction of autophagy

    PubMed Central

    Xu, Jian; Lu, Yuanqiang; Jiang, Jiukun; Wang, Liming; Shen, Han-Ming; Xia, Dajing

    2016-01-01

    Curcumin is a hydrophobic polyphenol derived from the herb Curcumalonga and its wide spectrum of pharmacological activities has been widely studied. It has been reported that Curcumin can induce autophagy through inhibition of the Akt-mTOR pathway. However, the effect of Curcumin on lysosome remains largely elusive. In this study, we first found that Curcumin treatment enhances autophagic flux in both human colon cancer HCT116 cells and mouse embryonic fibroblasts (MEFs). Moreover, Curcumin treatment promotes lysosomal function, evidenced by the increased lysosomal acidification and enzyme activity. Second, Curcumin is capable of suppressing the mammalian target of rapamycin (mTOR). Interestingly, Curcumin fails to inhibit mTOR and to activate lysosomal function in Tsc2−/−MEFs with constitutive activation of mTOR, indicating that Curcumin-mediated lysosomal activation is achieved via suppression of mTOR. Third, Curcumin treatment activates transcription factor EB (TFEB), a key nuclear transcription factor in control of autophagy and lysosome biogenesis and function, based on the following observations: (i) Curcumin directly binds to TFEB, (ii) Curcumin promotes TFEB nuclear translocation; and (iii) Curcumin increases transcriptional activity of TFEB. Finally, inhibition of autophagy and lysosome leads to more cell death in Curcumin-treated HCT116 cells, suggesting that autophagy and lysosomal activation serves as a cell survival mechanism to protect against Curcumin-mediated cell death. Taken together, data from our study provide a novel insight into the regulatory mechanisms of Curcumin on autophagy and lysosome, which may facilitate the development of Curcumin as a potential cancer therapeutic agent. PMID:27689333

  17. Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport.

    PubMed Central

    Ohkuma, S; Sato, T; Okamoto, M; Matsuya, H; Arai, K; Kataoka, T; Nagai, K; Wasserman, H H

    1998-01-01