Science.gov

Sample records for neurons coding action

  1. Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.

    PubMed

    Yang, Yang; Ramamurthy, Bina; Neef, Andreas; Xu-Friedman, Matthew A

    2016-11-23

    Auditory nerve fibers encode sounds in the precise timing of action potentials (APs), which is used for such computations as sound localization. Timing information is relayed through several cell types in the auditory brainstem that share an unusual property: their APs are not overshooting, suggesting that the cells have very low somatic sodium conductance (gNa). However, it is not clear how gNa influences temporal precision. We addressed this by comparing bushy cells (BCs) in the mouse cochlear nucleus with T-stellate cells (SCs), which do have normal overshooting APs. BCs play a central role in both relaying and refining precise timing information from the auditory nerve, whereas SCs discard precise timing information and encode the envelope of sound amplitude. Nucleated-patch recording at near-physiological temperature indicated that the Na current density was 62% lower in BCs, and the voltage dependence of gNa inactivation was 13 mV hyperpolarized compared with SCs. We endowed BCs with SC-like gNa using two-electrode dynamic clamp and found that synaptic activity at physiologically relevant rates elicited APs with significantly lower probability, through increased activation of delayed rectifier channels. In addition, for two near-simultaneous synaptic inputs, the window of coincidence detection widened significantly with increasing gNa, indicating that refinement of temporal information by BCs is degraded by gNa Thus, reduced somatic gNa appears to be an adaption for enhancing fidelity and precision in time-coding neurons.

  2. The neuronal code(s) of the cerebellum.

    PubMed

    Heck, Detlef H; De Zeeuw, Chris I; Jaeger, Dieter; Khodakhah, Kamran; Person, Abigail L

    2013-11-06

    Understanding how neurons encode information in sequences of action potentials is of fundamental importance to neuroscience. The cerebellum is widely recognized for its involvement in the coordination of movements, which requires muscle activation patterns to be controlled with millisecond precision. Understanding how cerebellar neurons accomplish such high temporal precision is critical to understanding cerebellar function. Inhibitory Purkinje cells, the only output neurons of the cerebellar cortex, and their postsynaptic target neurons in the cerebellar nuclei, fire action potentials at high, sustained frequencies, suggesting spike rate modulation as a possible code. Yet, millisecond precise spatiotemporal spike activity patterns in Purkinje cells and inferior olivary neurons have also been observed. These results and ongoing studies suggest that the neuronal code used by cerebellar neurons may span a wide time scale from millisecond precision to slow rate modulations, likely depending on the behavioral context.

  3. Prospective Coding by Spiking Neurons

    PubMed Central

    Brea, Johanni; Gaál, Alexisz Tamás; Senn, Walter

    2016-01-01

    Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100

  4. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  5. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    PubMed

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  6. Nonspatial Sequence Coding in CA1 Neurons

    PubMed Central

    Allen, Timothy A.; Salz, Daniel M.; McKenzie, Sam

    2016-01-01

    The hippocampus is critical to the memory for sequences of events, a defining feature of episodic memory. However, the fundamental neuronal mechanisms underlying this capacity remain elusive. While considerable research indicates hippocampal neurons can represent sequences of locations, direct evidence of coding for the memory of sequential relationships among nonspatial events remains lacking. To address this important issue, we recorded neural activity in CA1 as rats performed a hippocampus-dependent sequence-memory task. Briefly, the task involves the presentation of repeated sequences of odors at a single port and requires rats to identify each item as “in sequence” or “out of sequence”. We report that, while the animals' location and behavior remained constant, hippocampal activity differed depending on the temporal context of items—in this case, whether they were presented in or out of sequence. Some neurons showed this effect across items or sequence positions (general sequence cells), while others exhibited selectivity for specific conjunctions of item and sequence position information (conjunctive sequence cells) or for specific probe types (probe-specific sequence cells). We also found that the temporal context of individual trials could be accurately decoded from the activity of neuronal ensembles, that sequence coding at the single-cell and ensemble level was linked to sequence memory performance, and that slow-gamma oscillations (20–40 Hz) were more strongly modulated by temporal context and performance than theta oscillations (4–12 Hz). These findings provide compelling evidence that sequence coding extends beyond the domain of spatial trajectories and is thus a fundamental function of the hippocampus. SIGNIFICANCE STATEMENT The ability to remember the order of life events depends on the hippocampus, but the underlying neural mechanisms remain poorly understood. Here we addressed this issue by recording neural activity in hippocampal

  7. High-Fidelity Coding with Correlated Neurons

    PubMed Central

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  8. Action Recognition Using Visual-Neuron Feature

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    This letter proposes a neurobiological approach for action recognition. In this approach, actions are represented by a visual-neuron feature (VNF) based on a quantitative model of object representation in the primate visual cortex. A supervised classification technique is then used to classify the actions. The proposed VNF is invariant to affine translation and scaling of moving objects while maintaining action specificity. Moreover, it is robust to the deformation of actors. Experiments on publicly available action datasets demonstrate the proposed approach outperforms conventional action recognition models based on computer-vision features.

  9. Action observation activates neurons of the monkey ventrolateral prefrontal cortex

    PubMed Central

    Simone, Luciano; Bimbi, Marco; Rodà, Francesca; Fogassi, Leonardo; Rozzi, Stefano

    2017-01-01

    Prefrontal cortex is crucial for exploiting contextual information for the planning and guidance of behavioral responses. Among contextual cues, those provided by others’ behavior are particularly important, in primates, for selecting appropriate reactions and suppressing the inappropriate ones. These latter functions deeply rely on the ability to understand others’ actions. However, it is largely unknown whether prefrontal neurons are activated by action observation. To address this issue, we recorded the activity of ventrolateral prefrontal (VLPF) neurons of macaque monkeys during the observation of videos depicting biological movements performed by a monkey or a human agent, and object motion. Our results show that a population of VLPF neurons respond to the observation of biological movements, in particular those representing goal directed actions. Many of these neurons also show a preference for the agent performing the action. The neural response is present also when part of the observed movement is obscured, suggesting that these VLPF neurons code a high order representation of the observed action rather than a simple visual description of it. PMID:28290511

  10. A memristive spiking neuron with firing rate coding

    PubMed Central

    Ignatov, Marina; Ziegler, Martin; Hansen, Mirko; Petraru, Adrian; Kohlstedt, Hermann

    2015-01-01

    Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2) and on the chemical electromigration cell Ag/TiO2−x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926. PMID:26539074

  11. Computer Simulation of the Neuronal Action Potential.

    ERIC Educational Resources Information Center

    Solomon, Paul R.; And Others

    1988-01-01

    A series of computer simulations of the neuronal resting and action potentials are described. Discusses the use of simulations to overcome the difficulties of traditional instruction, such as blackboard illustration, which can only illustrate these events at one point in time. Describes systems requirements necessary to run the simulations.…

  12. Astrocytic Actions on Extrasynaptic Neuronal Currents

    PubMed Central

    Pál, Balázs

    2015-01-01

    In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance. PMID:26696832

  13. Multisynaptic activity in a pyramidal neuron model and neural code.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2006-01-01

    The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.

  14. Distinct mechanisms for coding of visual actions in macaque temporal cortex.

    PubMed

    Vangeneugden, Joris; De Mazière, Patrick A; Van Hulle, Marc M; Jaeggli, Tobias; Van Gool, Luc; Vogels, Rufin

    2011-01-12

    Temporal cortical neurons are known to respond to visual dynamic-action displays. Many human psychophysical and functional imaging studies examining biological motion perception have used treadmill walking, in contrast to previous macaque single-cell studies. We assessed the coding of locomotion in rhesus monkey (Macaca mulatta) temporal cortex using movies of stationary walkers, varying both form and motion (i.e., different facing directions) or varying only the frame sequence (i.e., forward vs backward walking). The majority of superior temporal sulcus and inferior temporal neurons were selective for facing direction, whereas a minority distinguished forward from backward walking. Support vector machines using the temporal cortical population responses as input classified facing direction well, but forward and backward walking less so. Classification performance for the latter improved markedly when the within-action response modulation was considered, reflecting differences in momentary body poses within the locomotion sequences. Responses to static pose presentations predicted the responses during the course of the action. Analyses of the responses to walking sequences wherein the start frame was varied across trials showed that some neurons also carried a snapshot sequence signal. Such sequence information was present in neurons that responded to static snapshot presentations and in neurons that required motion. Our data suggest that actions are analyzed by temporal cortical neurons using distinct mechanisms. Most neurons predominantly signal momentary pose. In addition, temporal cortical neurons, including those responding to static pose, are sensitive to pose sequence, which can contribute to the signaling of learned action sequences.

  15. Simple models for reading neuronal population codes.

    PubMed Central

    Seung, H S; Sompolinsky, H

    1993-01-01

    In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models. PMID:8248166

  16. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.

  17. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    PubMed

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  18. Neural coding of cooperative vs. affective human interactions: 150 ms to code the action's purpose.

    PubMed

    Proverbio, Alice Mado; Riva, Federica; Paganelli, Laura; Cappa, Stefano F; Canessa, Nicola; Perani, Daniela; Zani, Alberto

    2011-01-01

    The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS) in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box) or affective (e.g., 2 people smiling and holding hands) interactions. The action's goal was automatically discriminated at about 150-170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC) for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37), the posterior CC, and the medial frontal gyrus (BA10/11) for the processing of affective interactions, particularly in the 155-175 ms time window. In a later time window (200-250 ms) the processing of cooperative interactions activated the left post-central gyrus (BA3), the left parahippocampal gyrus, the left superior frontal gyrus (BA10), as well as the right premotor cortex (BA6). Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220-500 ms). These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS.

  19. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will

  20. Extra-coding RNAs regulate neuronal DNA methylation dynamics

    PubMed Central

    Savell, Katherine E.; Gallus, Nancy V. N.; Simon, Rhiana C.; Brown, Jordan A.; Revanna, Jasmin S.; Osborn, Mary Katherine; Song, Esther Y.; O'Malley, John J.; Stackhouse, Christian T.; Norvil, Allison; Gowher, Humaira; Sweatt, J. David; Day, Jeremy J.

    2016-01-01

    Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states. PMID:27384705

  1. Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons

    PubMed Central

    Lee, Philip R.; Cohen, Jonathan E.; Iacobas, Dumitru A.; Iacobas, Sanda; Fields, R. Douglas

    2017-01-01

    Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. PMID:28256583

  2. Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons.

    PubMed

    Lee, Philip R; Cohen, Jonathan E; Iacobas, Dumitru A; Iacobas, Sanda; Fields, R Douglas

    2017-03-03

    Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life.

  3. A neuronal learning rule for sub-millisecond temporal coding

    NASA Astrophysics Data System (ADS)

    Gerstner, Wulfram; Kempter, Richard; van Hemmen, J. Leo; Wagner, Hermann

    1996-09-01

    A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3-8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.

  4. Action-space coding in social contexts

    PubMed Central

    Ciardo, Francesca; Lugli, Luisa; Nicoletti, Roberto; Rubichi, Sandro; Iani, Cristina

    2016-01-01

    In two behavioural experiments we tested whether performing a spatial task along with another agent changes space representation by rendering some reference frames more/less salient than others. To this end, we used a Simon task in which stimuli were presented in four horizontal locations thus allowing for spatial coding according to multiple frames of reference. In Experiment 1 participants performed a go/no-go Simon task along another agent, each being in charge of one response. In Experiment 2 they performed a two-choice Simon task along another agent, each being in charge of two responses. Results showed that when participants were in charge of only one response, stimulus position was coded only with reference to the centre of the screen hence suggesting that the co-actor’s response, or the position of the co-actor, was represented and used as a reference for spatial coding. Differently, when participants were in charge of two responses, no effect of the social context emerged and spatial coding relied on multiple frames of reference, similarly to when the Simon task is performed individually. These findings provide insights on the influence played by the interaction between the social context (i.e. the presence of others) and task features on individual performance. PMID:26940396

  5. Effects of Action Relations on the Configural Coding between Objects

    ERIC Educational Resources Information Center

    Riddoch, M. J.; Pippard, B.; Booth, L.; Rickell, J.; Summers, J.; Brownson, A.; Humphreys, G. W.

    2011-01-01

    Configural coding is known to take place between the parts of individual objects but has never been shown between separate objects. We provide novel evidence here for configural coding between separate objects through a study of the effects of action relations between objects on extinction. Patients showing visual extinction were presented with…

  6. Dopamine gates action potential backpropagation in midbrain dopaminergic neurons.

    PubMed

    Gentet, Luc J; Williams, Stephen R

    2007-02-21

    Dopamine is released from both axonal and somatodendritic sites of midbrain dopaminergic neurons in an action potential-dependent manner. In contrast to the majority of central neurons, the axon of dopaminergic neurons typically originates from a dendritic site, suggesting a specialized computational function. Here, we examine the initiation and spread of action potentials in dopaminergic neurons of the substantia nigra pars reticulata and reveal that the displacement of the axon to a dendritic site allows highly compartmentalized electrical signaling. In response to a train of synaptic input, action potentials initiated at axon-bearing dendritic sites formed a variable trigger for invasion to the soma and contralateral dendritic tree, with action potentials often confined to the axon-bearing dendrite. The application of dopamine increased this form of electrical compartmentalization, an effect mediated by a tonic membrane potential hyperpolarization leading to an increased availability of a class of voltage-dependent potassium channel. These data suggest that the release of dopamine from axonal and somatodendritic sites are dissociable, and that dopamine levels within the midbrain are dynamically controlled by the somatodendritic spread of action potentials.

  7. Cholecystokinin action on layer 6b neurons in somatosensory cortex

    PubMed Central

    Chung, Leeyup; Moore, Scott D.; Cox, Charles L.

    2009-01-01

    Layer 6b in neocortex is a distinct sublamina at the ventral portion of layer 6. Corticothalamic projections arise from 6b neurons, but few studies have examined the functional properties of these cells. In the present study we examined the actions of cholecystokinin (CCK) on layer 6b neocortical neurons using whole-cell patch clamp recording techniques. We found that the general CCK receptor agonist CCK8S (sulfated CCK octapeptide) strongly depolarized the neurons, and this action persisted in the presence of tetrodotoxin, suggesting a postsynaptic site of action. The excitatory actions of CCK8S were mimicked by the selective CCKB receptor agonist CCK4, and attenuated by the selective CCKB receptor antagonist L365260, indicating a role for CCKB receptors. Voltage clamp recordings revealed that CCK8S produced a slow inward current associated with a decreased conductance with a reversal potential near the K+ equilibrium potential. In addition, intracellular cesium also blocked the inward current, suggesting the involvement of a K+ conductance, likely Kleak. Our data indicate that CCK, acting via CCKB receptors, produces a long-lasting excitation of layer 6b neocortical neurons, and this action may play a critical role in modulation of corticothalamic circuit activity. PMID:19497313

  8. Trophic actions of GABA on neuronal development.

    PubMed

    Represa, Alfonso; Ben-Ari, Yehezkel

    2005-06-01

    During brain development, transmitter-gated receptors are operative before synapse formation, suggesting that their action is not restricted to synaptic transmission. GABA, which is the principal excitatory transmitter in the developing brain, acts as an epigenetic factor to control processes including cell proliferation, neuroblast migration and dendritic maturation. These effects appear to be mediated through a paracrine, diffuse, non-synaptic mode of action that precedes the more focused, rapid mode of operation characteristic of synaptic connections. This sequential operation implies that GABA is used as an informative agent but in a unique context at an early developmental stage. This sequence also implies that by altering these effects, drugs acting on the GABA system could be pathogenic during pregnancy.

  9. Thyroid Hormone Action: Astrocyte–Neuron Communication

    PubMed Central

    Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone (TH) action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by D2. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article, we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local TH action during development. PMID:24910631

  10. The Mirror Neuron System: Grasping Others' Actions from Birth?

    ERIC Educational Resources Information Center

    Lepage, Jean-Francois; Theoret, Hugo

    2007-01-01

    In the adult human brain, the presence of a system matching the observation and the execution of actions is well established. This mechanism is thought to rely primarily on the contribution of so-called "mirror neurons", cells that are active when a specific gesture is executed as well as when it is seen or heard. Despite the wealth of evidence…

  11. Excitatory actions of peptide histidine isoleucine on thalamic relay neurons.

    PubMed

    Lee, Sang-Hun; Cox, Charles L

    2008-12-01

    Peptide histidine isoleucine (PHI) and vasoactive intestinal peptide (VIP) are neuropeptides synthesized from a common precursor, prepro-VIP, and share structural similarity and biological functions in many systems. Within the central nervous system and peripheral tissues, PHI and VIP have overlapping distribution. PHI-mediated functions are generally via activation of VIP receptors; however, the potency and affinity of PHI for VIP receptors are significantly lower than VIP. In addition, several studies suggest distinct PHI receptors that are independent of VIP receptors. PHI receptors have been cloned and characterized in fish, but their existence in mammals is still unknown. This study focuses on the functional role of PHI in the thalamus because of the localization of both PHI and VIP receptors in this brain region. Using extracellular multiple-unit recording techniques, we found that PHI strongly attenuated the slow intrathalamic rhythmic activity. Using intracellular recording techniques, we found that PHI selectively depolarized thalamic relay neurons via an enhancement of the hyperpolarization-activated mixed cation current, Ih. Further, the actions of PHI were occluded by VIP and dopamine, indicating these modulators converge onto a common mechanism. In contrast to previous work, we found that PHI was more potent than VIP in producing excitatory actions on thalamic neurons. We next used the transgenic mice lacking a specific VIP receptor, VPAC2, to identify its possible role in PHI-mediated actions in the thalamus. PHI depolarized all relay neurons tested from wild-type mice (VPAC2(+/+)); however, in knockout mice (VPAC2(-/-)), PHI produced no change in membrane potential in all neurons tested. Our findings indicate that excitatory actions of PHI are mediated by VPAC2 receptors, not by its own PHI receptors and the excitatory actions of PHI clearly attenuate intrathalamic rhythmic activities, and likely influence information transfer through thalamocortical

  12. Interpersonal predictive coding, not action perception, is impaired in autism

    PubMed Central

    von der Lühe, T.; Manera, V.; Barisic, I.; Becchio, C.; Vogeley, K.

    2016-01-01

    This study was conducted to examine interpersonal predictive coding in individuals with high-functioning autism (HFA). Healthy and HFA participants observed point-light displays of two agents (A and B) performing separate actions. In the ‘communicative’ condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the ‘individual’ condition, agent A's communicative action was substituted by a non-communicative action. Using a simultaneous masking-detection task, we demonstrate that observing agent A's communicative gesture enhanced visual discrimination of agent B for healthy controls, but not for participants with HFA. These results were not explained by differences in attentional factors as measured via eye-tracking, or by differences in the recognition of the point-light actions employed. Our findings, therefore, suggest that individuals with HFA are impaired in the use of social information to predict others' actions and provide behavioural evidence that such deficits could be closely related to impairments of predictive coding. PMID:27069050

  13. The adrenergic-neurone blocking action of some coumaran compounds

    PubMed Central

    Fielden, R.; Roe, A. M.; Willey, G. L.

    1964-01-01

    Ethyldimethyl(7-methylcoumaran-3-yl)ammonium iodide (SK&F 90,109) and its guanidine analogue [N-(7-methylcoumaran-3-yl)guanidine nitrate] (SK&F 90,238) abolish the effects of adrenergic nerve stimulation in cats, as do xylocholine and bretylium. SK&F 90,109 has slight sympathomimetic actions; these are less marked than in SK&F 90,238. Large doses of SK&F 90,109 have an action, dependent on local noradrenaline stores, that delays the appearance of adrenergic-neurone blockade in conscious cats. Responses to adrenaline are, in general, enhanced by each drug, but SK&F 90,238 transiently antagonizes tachycardia induced by adrenaline and isoprenaline. Both drugs inhibit the release of noradrenaline from the spleen during splenic nerve stimulation, but the release of catechol amines from the adrenal glands, in response to electrical or chemical stimulation, is unimpaired. In contrast to the prolonged adrenergic-neurone blocking action, any inhibition of the effects of cholinergic nerve stimulation is transient. Large intravenous doses produce neuromuscular blockade. The compounds have a slight central depressant action. In contrast to reserpine and guanethidine the noradrenaline content of rat hearts is not appreciably lowered 24 hr after a single dose of either drug. Unlike xylocholine they are not local anaesthetics. Related compounds also block the effects of adrenergic-nerve stimulation. The possible modes of action of these drugs are discussed. PMID:14256809

  14. Excitatory actions of GABA in developing rat hypothalamic neurones.

    PubMed Central

    Chen, G; Trombley, P Q; van den Pol, A N

    1996-01-01

    1. Gramicidin-perforated patch clamp recording was employed to study GABA-mediated responses in rat hypothalamic neurones (n = 102) with an intracellular Cl- concentration unaltered by the pipette solution. 2. In young cultures after 1-7 days in vitro (DIV), GABA induced depolarizing membrane potentials (+16.5 +/- 1.3 mV) that often surpassed the threshold for the firing of action potentials (-42 +/- 1 mV) and resulted in an increase in neuronal activity. The depolarizing responses to GABA in young cultures were dose dependent. The concentration of GABA necessary to evoke the half-maximal depolarization (EC50) was 2.8 microM. In contrast, GABA induced hyperpolarizing membrane potentials (-12.0 +/- 1.4 mV) and a decrease in neuronal activity in older neurones (20-33 DIV). Both the depolarization and the hyperpolarization induced by GABA were blocked by bicuculline, indicating a mediation by GABAA receptors. 3. The reversal potentials of the GABA-evoked currents were between -40 to -50 mV during the first week of culture, and shifted to below -70 mV after 3 weeks of culture. In parallel, neurones that were dissociated from older animals (postnatal day 5) had a more negative reversal potential for the GABA-evoked currents than cells from younger animals (embryonic day 15), suggesting that the negative shift of the reversal potential occurs both in vitro and in vivo. Our data suggest that the mechanism for GABA-induced depolarization is the depolarized Cl- reversal potential found in young but not older neurones. 4. Consistent with the depolarizing response to exogenous application of GABA, some spontaneous depolarizing postsynaptic potentials in young cultures were insensitive to AP5-CNQX, but were eliminated by bicuculline, indicating that synaptically released GABA mediated excitatory synaptic transmission in early development. 5. By combining a rapid computer-controlled delivery of GABA with subthreshold positive current injections into recorded neurones, we found

  15. Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons

    PubMed Central

    Lourenço, Joana; Pacioni, Simone; Rebola, Nelson; van Woerden, Geeske M.; Marinelli, Silvia; DiGregorio, David; Bacci, Alberto

    2014-01-01

    In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information. PMID:25003184

  16. The actions of Pasteurella multocida toxin on neuronal cells.

    PubMed

    Surguy, Susan M; Duricki, Denise A; Reilly, Joanne M; Lax, Alistair J; Robbins, Jon

    2014-02-01

    Pasteurella multocida toxin (PMT) activates the G-proteins Gαi(₁₋₃), Gα(q), Gα₁₁, Gα₁₂ and Gα₁₃ by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gα(q) and Gα₁₁ could be identified in SCGs with immunocytochemistry. PMT had no direct action on Kv7 or Cav2 channels in SCGs. However PMT treatment enhanced muscarinic receptor mediated inhibition of M-current (Kv7.2 + 7. 3) as measured by a 19-fold leftward shift in the oxotremorine-M concentration-inhibition curve. Agonists of other receptors, such as bradykinin or angiotensin, that inhibit M-current did not produce this effect. However the amount of PIP₂ hydrolysis could be enhanced by PMT for all three agonists. In a transduction system in SCGs that is unlikely to be affected by PMT, Go mediated inhibition of calcium current, PMT was ineffective whereas the response was blocked by pertussis toxin as expected. M1 muscarinic receptor evoked calcium mobilisation in transformed NG108-15 cells was enhanced by PMT. The calcium rises evoked by uridine triphosphate acting on endogenous P2Y₂ receptors in NG108-15 cells were enhanced by PMT. The time and concentration dependence of the PMT effect was different for the resting calcium compared to the calcium rise produced by activation of P2Y₂ receptors. PMT's action on these neuronal cells would suggest that if it got into the brain, symptoms of a hyperexcitable nature would be seen, such as seizures.

  17. Action potential initiation and propagation in rat neocortical pyramidal neurons.

    PubMed

    Stuart, G; Schiller, J; Sakmann, B

    1997-12-15

    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell-attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to

  18. Spatio-temporal Laplacian pyramid coding for action recognition.

    PubMed

    Shao, Ling; Zhen, Xiantong; Tao, Dacheng; Li, Xuelong

    2014-06-01

    We present a novel descriptor, called spatio-temporal Laplacian pyramid coding (STLPC), for holistic representation of human actions. In contrast to sparse representations based on detected local interest points, STLPC regards a video sequence as a whole with spatio-temporal features directly extracted from it, which prevents the loss of information in sparse representations. Through decomposing each sequence into a set of band-pass-filtered components, the proposed pyramid model localizes features residing at different scales, and therefore is able to effectively encode the motion information of actions. To make features further invariant and resistant to distortions as well as noise, a bank of 3-D Gabor filters is applied to each level of the Laplacian pyramid, followed by max pooling within filter bands and over spatio-temporal neighborhoods. Since the convolving and pooling are performed spatio-temporally, the coding model can capture structural and motion information simultaneously and provide an informative representation of actions. The proposed method achieves superb recognition rates on the KTH, the multiview IXMAS, the challenging UCF Sports, and the newly released HMDB51 datasets. It outperforms state of the art methods showing its great potential on action recognition.

  19. Efficacy and kinetics of opioid action on acutely dissociated neurons.

    PubMed

    Ingram, S; Wilding, T J; McCleskey, E W; Williams, J T

    1997-07-01

    Opioids have been shown to cause a potent inhibition of neurons in the locus ceruleus (LC) in vivo in brain slices and isolated neurons; however, the kinetics of opioid action have not been described. In this study, we used acutely isolated LC neurons to examine opioid and alpha2-adrenoceptor action on potassium and calcium currents. [Met]Enkephalin (ME), [D-Ser2,Leu5,Thr6]-enkephalin, etorphine, and [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin increased potassium conductance, whereas morphine and naloxone were antagonists. The time constant of potassium channel activation was approximately 0.7 sec and was the same for each agonist. The amplitude of the current and the time constant of decay were dependent on the agonist, suggesting that agonist efficacy and affinity, respectively, determined these parameters. The amplitude of potassium current induced by the alpha2-adrenoceptor agonist UK14304 was not significantly different from that induced by ME, but the time constant of current activation was half that of ME, and the decline was more rapid. When potassium conductances were blocked with the combination of internal cesium and external barium, opioid and alpha2 agonists had no effect at potentials more negative than -50 mV and decreased barium currents at potentials between -40 and +20 mV. Both morphine and clonidine caused a small inhibition of barium current. In dorsal root ganglion cells, morphine alone had small and inconsistent effects on the calcium current, but it always competitively antagonized the inhibition caused by [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin. The results in isolated LC neurons suggest 1) the amplitude and time course of the opioid-induced potassium current depend on agonist efficacy and affinity and 2) the coupling of both mu-opioid and alpha2-adrenoceptors to calcium channels seems to be more efficient than that to potassium channels.

  20. A dynamic code for economic object valuation in prefrontal cortex neurons

    PubMed Central

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-01-01

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices. PMID:27618960

  1. Documents Pertaining to Resource Conservation and Recovery Act Corrective Action Event Codes

    EPA Pesticide Factsheets

    Document containing RCRA Corrective Action event codes and definitions, including national requirements, initiating sources, dates, and guidance, from the first facility assessment until the Corrective Action is terminated.

  2. Temperature dependence of action potential parameters in Aplysia neurons.

    PubMed

    Hyun, Nam Gyu; Hyun, Kwang-Ho; Lee, Kyungmin; Kaang, Bong-Kiun

    2012-01-01

    Although the effects of temperature changes on the activity of neurons have been studied in Aplysia, the reproducibility of the temperature dependence of the action potential (AP) parameters has not been verified. To this end, we performed experiments using Aplysia neurons. Fourteen AP parameters were analyzed using the long-term data series recorded during the experiments. Our analysis showed that nine of the AP parameters decreased as the temperature increased: the AP amplitude (A(AP)), membrane potential at the positive peak (V(pp)), interspike interval, first half (Δt(r1)) and last half (Δt(r2)) of the temperature rising phase, first half (Δt(f1)) and last half (Δt(f2)) of the temperature falling phase, AP (Δt(AP, 1/2)), and differentiated signal (Δt(DS, 1/2)) half-width durations. Five of the AP parameters increased with temperature: the differentiated signal amplitude (A(DS)), absolute value of the membrane potential at negative peak (|V(np)|), absolute value of the maximum slope of the AP during the temperature rising (|-MSR|) and falling (|MSF|) phases, and spiking frequency (Frequency). This work could provide the basis for a better understanding of the elementary processes underlying the temperature-dependent neuronal activity in Aplysia.

  3. Endomorphins: localization, release and action on rat dorsal horn neurons.

    PubMed

    Dun, N J; Dun, S L; Wu, S Y; Williams, C A; Kwok, E H

    2000-01-01

    Endomorphin (Endo) 1 and 2, two tetrapeptides isolated from the bovine and human brain, have been proposed to be the endogenous ligand for the mu-opiate receptor. A multi-disciplinary study was undertaken to address the issues of localization, release and biological action of Endo with respect to the rat dorsal horn. First, immunohistochemical studies showed that Endo-1- or Endo-2-like immunoreactivity (Endo-1- or Endo-2-LI) is selectively expressed in fiber-like elements occupying the superficial layers of the rat dorsal horn, which also exhibit a high level of mu-opiate receptor immunoreactivity. Second, release of immunoreactive Endo-2-like substances (irEndo) from the in vitro rat spinal cords upon electrical stimulation of dorsal root afferent fibers was detected by the immobilized antibody microprobe technique. The site of release corresponded to laminae I and II where the highest density of Endo-2-LI fibers was localized. Lastly, whole-cell patch clamp recordings from substantia gelatinosa (SG) neurons of rat lumbar spinal cord slices revealed two distinct actions of exogenous Endo-1 and Endo-2: (1) depression of excitatory and/or inhibitory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (2) hyperpolarization of SG neurons. These two effects were prevented by the selective mu-opiate receptor antagonist beta-funaltrexamine. The localization of endomorphin-positive fibers in superficial layers of the dorsal horn and the release of irEndo upon stimulation of dorsal root afferents together with the observation that Endo inhibits the activity of SG neurons by interacting with mu-opiate receptors provide additional support of a role of Endo as the endogenous ligand for the mu-opiate receptor in the rat dorsal horn.

  4. Energy-efficient population coding constrains network size of a neuronal array system

    NASA Astrophysics Data System (ADS)

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-01

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost.

  5. Energy-efficient population coding constrains network size of a neuronal array system

    PubMed Central

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-01

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost. PMID:26781354

  6. Energy-efficient population coding constrains network size of a neuronal array system.

    PubMed

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-19

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost.

  7. Stimulus features coded by single neurons of a macaque body category selective patch.

    PubMed

    Popivanov, Ivo D; Schyns, Philippe G; Vogels, Rufin

    2016-04-26

    Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons' responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category).

  8. Teaching Neurophysiology to Undergraduates using Neurons in Action

    PubMed Central

    Stuart, Ann E.

    2009-01-01

    Neurons in Action, a set of 25 hyperlinked tutorials and interactive simulations on CD-ROM, provides the student with a completely different approach to neurophysiology from that of textbooks. Guided by the tutorials, by their professor, by the urge to test their understanding, or simply by curiosity, students specify the parameters of a patch of membrane, an axon, a postsynaptic membrane, or a cell and run virtual experiments. Parameters include geometry, the number and type of ion channels in the membrane, the number of myelin wraps of the axon, the ion concentrations inside and out, synaptic variables, and temperature. Hyperlinked explanations, historical information, and classic papers on the CD provide the “textbook” material. This article describes this learning tool and details several ways in which it is being used at the undergraduate level. PMID:23493486

  9. Geometric constraints on neuronal connectivity facilitate a concise synaptic adhesive code

    PubMed Central

    Itzkovitz, Shalev; Baruch, Leehod; Shapiro, Ehud; Segal, Eran

    2008-01-01

    The nervous system contains trillions of neurons, each forming thousands of synaptic connections. It has been suggested that this complex connectivity is determined by a synaptic “adhesive code,” where connections are dictated by a variable set of cell surface proteins, combinations of which form neuronal addresses. The estimated number of neuronal addresses is orders of magnitude smaller than the number of neurons. Here, we show that the limited number of addresses dictates constraints on the possible neuronal network topologies. We show that to encode arbitrary networks, in which each neuron can potentially connect to any other neuron, the number of neuronal addresses needed scales linearly with network size. In contrast, the number of addresses needed to encode the wiring of geometric networks grows only as the square root of network size. The more efficient encoding in geometric networks is achieved through the reutilization of the same addresses in physically independent portions of the network. We also find that ordered geometric networks, in which the same connectivity patterns are iterated throughout the network, further reduce the required number of addresses. We demonstrate our findings using simulated networks and the C. elegans neuronal network. Geometric neuronal connectivity with recurring connectivity patterns have been suggested to confer an evolutionary advantage by saving biochemical resources on the one hand and reutilizing functionally efficient neuronal circuits. Our study suggests an additional advantage of these prominent topological features—the facilitation of the ability to genetically encode neuronal networks given constraints on the number of addresses. PMID:18583478

  10. EquiFACS: The Equine Facial Action Coding System

    PubMed Central

    Wathan, Jen; Burrows, Anne M.; Waller, Bridget M.; McComb, Karen

    2015-01-01

    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices. PMID:26244573

  11. Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine.

    PubMed

    Tindell, Amy J; Berridge, Kent C; Zhang, Jun; Peciña, Susana; Aldridge, J Wayne

    2005-11-01

    Neurons in ventral pallidum fire to reward and its predictive cues. We tested mesolimbic activation effects on neural reward coding. Rats learned that a Pavlovian conditioned stimulus (CS+1 tone) predicted a second conditioned stimulus (CS+2 feeder click) followed by an unconditioned stimulus (UCS sucrose reward). Some rats were sensitized to amphetamine after training. Electrophysiological activity of ventral pallidal neurons to stimuli was later recorded under the influence of vehicle or acute amphetamine injection. Both sensitization and acute amphetamine increased ventral pallidum firing at CS+2 (population code and rate code). There were no changes at CS+1 and minimal changes to UCS. With a new 'Profile Analysis', we show that mesolimbic activation by sensitization/amphetamine incrementally shifted neuronal firing profiles away from prediction signal coding (maximal at CS+1) and toward incentive coding (maximal at CS+2), without changing hedonic impact coding (maximal at UCS). This pattern suggests mesolimbic activation specifically amplifies a motivational transform of CS+ predictive information into incentive salience coded by ventral pallidal neurons. Our results support incentive-sensitization predictions and suggest why cues temporally proximal to drug presentation may precipitate cue-triggered relapse in human addicts.

  12. Modulation of spike coding by subthreshold extracellular electric fields and neuronal morphology

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Li, Bingjie; Lu, Meili; Yi, Guosheng; Wang, Jiang

    2015-07-01

    We use a two-compartment model, which includes soma and dendrite, to explore how extracellular subthreshold sinusoidal electric fields (EFs) influence the spike coding of an active neuron. By changing the intensity and the frequency of subthreshold EFs, we find that subthreshold EFs indeed affect neuronal coding remarkably within several stimulus frequency windows where the field effects on spike timing are stronger than that on spiking rate. The field effects are maximized at several harmonics of the intrinsic spiking frequency of an active neuron. Our findings implicate the potential resonance mechanism underlying subthreshold field effects. We also discuss how neuronal morphologic properties constrain subthreshold EF effects on spike timing. The morphologic properties are represented by two parameters, gc and p, where gc is the internal conductance between soma and dendrite and geometric factor p characterizes the proportion of area occupied by soma. We find that the contribution to field effects from the variation of p is stronger than that from gc, which suggests that neuronal geometric features play a crucial role in subthreshold field effects. Theoretically, these insights into how subthreshold sinusoidal EFs modulate ongoing neuron behaviors could contribute to uncovering the relevant mechanism of subthreshold sinusoidal EFs effects on neuronal coding. Furthermore, they are useful in rationally designing noninvasive brain stimulation strategies and developing electromagnetic stimulus techniques.

  13. Molecular codes for neuronal individuality and cell assembly in the brain.

    PubMed

    Yagi, Takeshi

    2012-01-01

    The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporation into "cell assemblies" and neural networks. In development, each neuron expresses diverse cellular recognition molecules that permit the formation of the appropriate neural cell assemblies to elicit various brain functions. The mechanism for generating neuronal assemblies and networks must involve molecular codes that give neurons individuality and allow them to recognize one another and join appropriate networks. The extensive molecular diversity of cell-surface proteins on neurons is likely to contribute to their individual identities. The clustered protocadherins (Pcdh) is a large subfamily within the diverse cadherin superfamily. The clustered Pcdh genes are encoded in tandem by three gene clusters, and are present in all known vertebrate genomes. The set of clustered Pcdh genes is expressed in a random and combinatorial manner in each neuron. In addition, cis-tetramers composed of heteromultimeric clustered Pcdh isoforms represent selective binding units for cell-cell interactions. Here I present the mathematical probabilities for neuronal individuality based on the random and combinatorial expression of clustered Pcdh isoforms and their formation of cis-tetramers in each neuron. Notably, clustered Pcdh gene products are known to play crucial roles in correct axonal projections, synaptic formation, and neuronal survival. Their molecular and biological features induce a hypothesis that the diverse clustered Pcdh molecules provide the molecular code by which neuronal individuality and cell assembly permit the combinatorial explosion of networks that supports enormous processing capability and plasticity of the brain.

  14. Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code

    PubMed Central

    Rotman, Ziv

    2013-01-01

    Temporal codes are believed to play important roles in neuronal representation of information. Neuronal ability to classify and learn temporal spiking patterns is thus essential for successful extraction and processing of information. Understanding neuronal learning of temporal code has been complicated, however, by the intrinsic stochasticity of synaptic transmission. Using a computational model of a learning neuron, the tempotron, we studied the effects of synaptic unreliability and short-term dynamics on the neuron's ability to learn spike timing rules. Our results suggest that such a model neuron can learn to classify spike timing patterns even with unreliable synapses, albeit with a significantly reduced success rate. We explored strategies to improve correct spike timing classification and found that firing clustered spike bursts significantly improves learning performance. Furthermore, rapid activity-dependent modulation of synaptic unreliability, implemented with realistic models of dynamic synapses, further improved classification of different burst properties and spike timing modalities. Neuronal models with only facilitating or only depressing inputs exhibited preference for specific types of spike timing rules, but a mixture of facilitating and depressing synapses permitted much improved learning of multiple rules. We tested applicability of these findings to real neurons by considering neuronal learning models with the naturally distributed input release probabilities found in excitatory hippocampal synapses. Our results suggest that spike bursts comprise several encoding modalities that can be learned effectively with stochastic dynamic synapses, and that distributed release probabilities significantly improve learning performance. Synaptic unreliability and dynamics may thus play important roles in the neuron's ability to learn spike timing rules during decoding. PMID:23926043

  15. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  16. Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions

    PubMed Central

    de Lafuente, Victor; Romo, Ranulfo

    2011-01-01

    Midbrain dopamine (DA) neurons respond to sensory stimuli associated with future rewards. When reward is delivered probabilistically, DA neurons reflect this uncertainty by increasing their firing rates in a period between the sensory cue and reward delivery time. Probability of reward, however, has been externally conveyed by visual cues, and it is not known whether DA neurons would signal uncertainty arising internally. Here we show that DA neurons code the uncertainty associated with a perceptual judgment about the presence or absence of a vibrotactile stimulus. We observed that uncertainty modulates the activity elicited by a go cue instructing monkey subjects to communicate their decisions. That is, the same go cue generates different DA responses depending on the uncertainty level of a judgment made a few seconds before the go instruction. Easily detected suprathreshold stimuli elicit small DA responses, indicating that future reward will not be a surprising event. In contrast, the absence of a sensory stimulus generates large DA responses associated with uncertainty: was the stimulus truly absent, or did a low-amplitude vibration go undetected? In addition, the responses of DA neurons to the stimulus itself increase with vibration amplitude, but only when monkeys correctly detect its presence. This finding suggests that DA activity is not related to actual intensity but rather to perceived intensity. Therefore, in addition to their well-known role in reward prediction, DA neurons code subjective sensory experience and uncertainty arising internally from perceptual decisions. PMID:22106310

  17. Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae

    PubMed Central

    van Giesen, Lena; Hernandez-Nunez, Luis; Delasoie-Baranek, Sophie; Colombo, Martino; Renaud, Philippe; Bruggmann, Rémy; Benton, Richard; Samuel, Aravinthan D. T.; Sprecher, Simon G.

    2016-01-01

    Accurate perception of taste information is crucial for animal survival. In adult Drosophila, gustatory receptor neurons (GRNs) perceive chemical stimuli of one specific gustatory modality associated with a stereotyped behavioural response, such as aversion or attraction. We show that GRNs of Drosophila larvae employ a surprisingly different mode of gustatory information coding. Using a novel method for calcium imaging in the larval gustatory system, we identify a multimodal GRN that responds to chemicals of different taste modalities with opposing valence, such as sweet sucrose and bitter denatonium, reliant on different sensory receptors. This multimodal neuron is essential for bitter compound avoidance, and its artificial activation is sufficient to mediate aversion. However, the neuron is also essential for the integration of taste blends. Our findings support a model for taste coding in larvae, in which distinct receptor proteins mediate different responses within the same, multimodal GRN. PMID:26864722

  18. Optical magnetic detection of single-neuron action potentials using NV-diamond

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  19. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes.

    PubMed

    Enriquez, Jonathan; Venkatasubramanian, Lalanti; Baek, Myungin; Peterson, Meredith; Aghayeva, Ulkar; Mann, Richard S

    2015-05-20

    How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.

  20. Encoding binary neural codes in networks of threshold-linear neurons.

    PubMed

    Curto, Carina; Degeratu, Anda; Itskov, Vladimir

    2013-11-01

    Networks of neurons in the brain encode preferred patterns of neural activity via their synaptic connections. Despite receiving considerable attention, the precise relationship between network connectivity and encoded patterns is still poorly understood. Here we consider this problem for networks of threshold-linear neurons whose computational function is to learn and store a set of binary patterns (e.g., a neural code) as "permitted sets" of the network. We introduce a simple encoding rule that selectively turns "on" synapses between neurons that coappear in one or more patterns. The rule uses synapses that are binary, in the sense of having only two states ("on" or "off"), but also heterogeneous, with weights drawn from an underlying synaptic strength matrix S. Our main results precisely describe the stored patterns that result from the encoding rule, including unintended "spurious" states, and give an explicit characterization of the dependence on S. In particular, we find that binary patterns are successfully stored in these networks when the excitatory connections between neurons are geometrically balanced--i.e., they satisfy a set of geometric constraints. Furthermore, we find that certain types of neural codes are natural in the context of these networks, meaning that the full code can be accurately learned from a highly undersampled set of patterns. Interestingly, many commonly observed neural codes in cortical and hippocampal areas are natural in this sense. As an application, we construct networks that encode hippocampal place field codes nearly exactly, following presentation of only a small fraction of patterns. To obtain our results, we prove new theorems using classical ideas from convex and distance geometry, such as Cayley-Menger determinants, revealing a novel connection between these areas of mathematics and coding properties of neural networks.

  1. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  2. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

    PubMed Central

    Bogacz, Rafal; Martin Moraud, Eduardo; Abdi, Azzedine; Magill, Peter J.; Baufreton, Jérôme

    2016-01-01

    The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions. PMID:27389780

  3. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-08-11

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  4. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    NASA Astrophysics Data System (ADS)

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-08-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  5. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons.

    PubMed

    Nguyenkim, Jerry D; DeAngelis, Gregory C

    2003-08-06

    Gradients of binocular disparity across the visual field provide a potent cue to the three-dimensional (3-D) orientation of surfaces in a scene. Neurons selective for 3-D surface orientation defined by disparity gradients have recently been described in parietal cortex, but little is known about where and how this selectivity arises within the visual pathways. Because the middle temporal area (MT) has previously been implicated in depth perception, we tested whether MT neurons could signal the 3-D orientation (as parameterized by tilt and slant) of planar surfaces that were depicted by random-dot stereograms containing a linear gradient of horizontal disparities. We find that many MT neurons are tuned for 3-D surface orientation, and that tilt and slant generally have independent effects on MT responses. This separable coding of tilt and slant is reminiscent of the joint coding of variables in other areas (e.g., orientation and spatial frequency in V1). We show that tilt tuning remains unchanged when all coherent motion is removed from the visual stimuli, indicating that tilt selectivity is not a byproduct of 3-D velocity coding. Moreover, tilt tuning is typically insensitive to changes in the mean disparity (depth) of gradient stimuli, indicating that tilt tuning cannot be explained by conventional tuning for frontoparallel disparities. Finally, we explore the receptive field mechanisms underlying selectivity for 3-D surface orientation, and we show that tilt tuning arises through heterogeneous disparity tuning within the receptive fields of MT neurons. Our findings show that MT neurons carry high-level signals about 3-D surface structure, in addition to coding retinal image velocities.

  6. Head direction is coded more strongly than movement direction in a population of entorhinal neurons

    PubMed Central

    Raudies, Florian; Brandon, Mark P.; Chapman, G. William; Hasselmo, Michael E.

    2014-01-01

    The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/sec and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex. PMID:25451111

  7. Head direction is coded more strongly than movement direction in a population of entorhinal neurons.

    PubMed

    Raudies, Florian; Brandon, Mark P; Chapman, G William; Hasselmo, Michael E

    2015-09-24

    The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex. This article is part of a Special Issue entitled SI: Brain and Memory.

  8. Prefrontal cortex gates acute morphine action on dopamine neurons in the ventral tegmental area.

    PubMed

    Liu, Changliang; Fang, Xing; Wu, Qianqian; Jin, Guozhang; Zhen, Xuechu

    2015-08-01

    Morphine excites dopamine (DA) neurons in the ventral tegmental area (VTA), an effect mediated by both local and systemic mechanisms. While the importance of the prefrontal cortex (PFC) - VTA circuit in opiate addiction is well established, little is known about how the PFC regulates the activity of VTA DA neurons upon morphine stimulation. One major challenge is that VTA DA neurons are highly heterogeneous in terms of projection and regulation, making their responses to PFC manipulations variable. Our previous work has identified a subgroup of VTA DA neurons exhibiting significant slow oscillation in their firing sequence, and demonstrated that most of these neurons are functionally connected with the PFC. In the present study, we focus our efforts only on VTA DA neurons expressing strong slow oscillation, and report that blocking the neuronal activity in the PFC remarkably attenuates the morphine-induced excitation of these neurons. Using in vivo microdialysis, we find that inactivation of the PFC also reduces the morphine-induced elevation of DA levels in the nucleus accumbens (NAc). Furthermore, 24 h after only single morphine exposure, PFC-inactivation failed to prevent subsequent morphine challenge from exciting VTA DA neurons, which is paralleled by altered response of PFC pyramidal neurons to morphine stimulation. Our results indicate that the PFC gates acute morphine action on a subset of VTA DA neurons, which is highly plastic and can be functionally remodeled by morphine exposure.

  9. Hebbian learning and predictive mirror neurons for actions, sensations and emotions

    PubMed Central

    Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Spike-timing-dependent plasticity is considered the neurophysiological basis of Hebbian learning and has been shown to be sensitive to both contingency and contiguity between pre- and postsynaptic activity. Here, we will examine how applying this Hebbian learning rule to a system of interconnected neurons in the presence of direct or indirect re-afference (e.g. seeing/hearing one's own actions) predicts the emergence of mirror neurons with predictive properties. In this framework, we analyse how mirror neurons become a dynamic system that performs active inferences about the actions of others and allows joint actions despite sensorimotor delays. We explore how this system performs a projection of the self onto others, with egocentric biases to contribute to mind-reading. Finally, we argue that Hebbian learning predicts mirror-like neurons for sensations and emotions and review evidence for the presence of such vicarious activations outside the motor system. PMID:24778372

  10. Integration of the olfactory code across dendritic claws of single mushroom body neurons

    PubMed Central

    Gruntman, Eyal; Turner, Glenn C.

    2013-01-01

    In the olfactory system, sensory inputs are arranged in different glomerular channels, which respond in combinatorial ensembles to the various chemical features of an odor. Here we investigate where and how this combinatorial code is read out deeper in the brain. We exploit the unique morphology of neurons in the mushroom body (MB), which receive input on large dendritic claws. Imaging odor responses of these dendritic claws shows that input channels with distinct odor tuning converge on individual MB neurons. We determined how these inputs interact to drive the cell to spike threshold using intracellular recordings to examine MB responses to optogenetically controlled input. Our results provide an elegant explanation for the characteristic selectivity of MB neurons: these cells receive different types of input, and require those inputs to be coactive in order to spike. These results establish the MB as an important site of integration in the fly olfactory system. PMID:24141312

  11. Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding.

    PubMed

    Shea-Brown, Eric; Josić, Kresimir; de la Rocha, Jaime; Doiron, Brent

    2008-03-14

    We study how pairs of neurons transfer correlated input currents into correlated spikes. Over rapid time scales, correlation transfer increases with both spike time variability and rate; the dependence on variability disappears at large time scales. This persists for a nonlinear membrane model and for heterogeneous cell pairs, but strong nonmonotonicities follow from refractory effects. We present consequences for population coding and for the encoding of time-varying stimuli.

  12. Ca2+ involvement in the action potential generation of myenteric neurones in the rat oesophagus.

    PubMed

    De Laet, A; Cornelissen, W; Adriaensen, D; Van Bogaert, P-P; Scheuermann, D W; Timmermans, J-P

    2002-04-01

    Intracellular recordings were used to study the physiological behaviour of rat oesophageal myenteric neurones, which are embedded in striated muscle. Injection of depolarizing pulses evoked action potentials with a clear 'shoulder' in all neurones. This shoulder disappeared under low Ca2+/high Mg2+ conditions. Tetrodotoxin (TTX; 1 micromol L-1) did not impede spike firing, whereas under combined TTX and low Ca2+/high Mg2+ conditions the action potentials were completely abolished, indicating that TTX- resistant action potentials are mediated by a Ca2+ current. Further experiments with omega-conotoxin GVIA (100 nmol L-1) revealed that these Ca2+ currents enter the cell via N-type voltage-activated Ca2+ channels (see also accompanying paper). Tetraethylammonium (10 mmol L-1) caused broadening of the action potentials, which probably resulted from prolonged Ca2+ influx due to blockade of the delayed rectifier K+ channel. Although Ca2+ appears to be involved in the spike generation of all rat oesophageal myenteric neurones, only a minority (14%) shows a slow afterhyperpolarization. Thus, no strict correlation exists between the presence of a shoulder and a slow afterhyperpolarization. Furthermore, morphological identification of 25 of the impaled neurones revealed that there was no strict correlation between morphology and electrophysiological behaviour. Consequently, rat oesophageal myenteric neurones appear to differ in several aspects from myenteric neurones in smooth muscle regions of the gastrointestinal tract.

  13. Additivity of Pyrethroid Actions on Sodium Influx in Cortical Neurons in Cerebrocortical Neurons in Primary Culture

    EPA Science Inventory

    BACKGROUND: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular ...

  14. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons.

    PubMed

    Raman, I M; Bean, B P

    1997-06-15

    Voltage-dependent sodium channels were studied in dissociated cerebellar Purkinje neurons from rats. In whole-cell recordings, a tetrodotoxin (TTX)-sensitive inward current was elicited when the membrane was repolarized to voltages between -60 and -20 mV after depolarizations to +30 mV long enough to produce maximal inactivation. At -40 mV, this "resurgent" current peaked in 8 msec and decayed with a time constant of 30 msec. With 50 mM sodium as a charge carrier, the resurgent current was on average approximately 120 pA. CA3 pyramidal neurons had no such current. The current may reflect recovery of inactivated channels through open states, because in Purkinje neurons (but not CA3 neurons) there was partial recovery from inactivation at -40 mV, coinciding with the rise of resurgent current. In single-channel recordings, individual channels gave openings corresponding to resurgent and conventional transient current. Action potentials were recorded from dissociated neurons under current clamp to investigate the role of the resurgent current in action potential formation. Purkinje neurons fired spontaneously at approximately 30 Hz. Hyperpolarization to -85 mV prevented spontaneous firing, and brief depolarization then induced all-or-none firing of conglomerate action potentials comprising three to four spikes. When conglomerate action potentials were used as command voltages in voltage-clamp experiments, TTX-sensitive sodium current was elicited between spikes. The falling phase of an action potential is similar to voltage patterns that activate resurgent sodium current, and thus, resurgent sodium current likely contributes to the formation of conglomerate action potentials in Purkinje neurons.

  15. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    PubMed

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  16. The role of action potentials in determining neuron-type-specific responses to nitric oxide.

    PubMed

    Estes, Stephen; Zhong, Lei Ray; Artinian, Liana; Tornieri, Karine; Rehder, Vincent

    2015-05-01

    The electrical activity in developing and mature neurons determines the intracellular calcium concentration ([Ca(2+)]i), which in turn is translated into biochemical activities through various signaling cascades. Electrical activity is under control of neuromodulators, which can alter neuronal responses to incoming signals and increase the fidelity of neuronal communication. Conversely, the effects of neuromodulators can depend on the ongoing electrical activity within target neurons; however, these activity-dependent effects of neuromodulators are less well understood. Here, we present evidence that the neuronal firing frequency and intrinsic properties of the action potential (AP) waveform set the [Ca(2+)]i in growth cones and determine how neurons respond to the neuromodulator nitric oxide (NO). We used two well-characterized neurons from the freshwater snail Helisoma trivolvis that show different growth cone morphological responses to NO: B5 neurons elongate filopodia, while those of B19 neurons do not. Combining whole-cell patch clamp recordings with simultaneous calcium imaging, we show that the duration of an AP contributes to neuron-specific differences in [Ca(2+)]i, with shorter APs in B19 neurons yielding lower growth cone [Ca(2+)]i. Through the partial inhibition of voltage-gated K(+) channels, we increased the B19 AP duration resulting in a significant increase in [Ca(2+)]i that was then sufficient to cause filopodial elongation following NO treatment. Our results demonstrate a neuron-type specific correlation between AP shape, [Ca(2+)]i, and growth cone motility, providing an explanation to how growth cone responses to guidance cues depend on intrinsic electrical properties and helping explain the diverse effects of NO across neuronal populations.

  17. Prolonged modification of action potential shape by synaptic inputs in molluscan neurones.

    PubMed

    Winlow, W

    1985-01-01

    1. Somatic action potentials of Lymnaea neurons are modified by excitatory or inhibitory synaptic inputs and have been studied using phase-plane techniques and an action potential duration monitor. 2. Excitatory synaptic inputs increase the rate of neuronal discharge, cause action potential broadening, a decrease in the maximum rate of depolarization (Vd) and a decrease in the maximum rate of repolarization (Vr). 3. Inhibitory synaptic inputs decrease the discharge rate and cause narrowing of action potentials, an increase in Vd and an increase in Vr. 4. The effects reported above outlast the original synaptic inputs by many seconds and, if the somatic action potentials are similar to those in the axon terminals, they may have far-reaching effects on transmitter release.

  18. Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans

    PubMed Central

    Hickok, Gregory

    2009-01-01

    The discovery of mirror neurons in macaque frontal cortex has sparked a resurgence of interest in motor/embodied theories of cognition. This critical review examines the evidence in support of one of these theories, namely that the mirror neurons provide the basis of action understanding. It is argued that there is no evidence from monkey data that directly tests this theory, and evidence from humans makes a strong case against the position. PMID:19199415

  19. Encoding of High Frequencies Improves with Maturation of Action Potential Generation in Cultured Neocortical Neurons

    PubMed Central

    Nikitin, Evgeny S.; Bal, Natalia V.; Malyshev, Aleksey; Ierusalimsky, Victor N.; Spivak, Yulia; Balaban, Pavel M.; Volgushev, Maxim

    2017-01-01

    The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11–25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation. PMID

  20. Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action

    PubMed Central

    Viader, Andreu; Blankman, Jacqueline L.; Zhong, Peng; Liu, Xiaojie; Schlosburg, Joel E.; Joslyn, Christopher M.; Liu, Qing-Song; Tomarchio, Aaron J.; Lichtman, Aron H.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Summary The endocannabinoid 2-arachidonoylglycerol (2-AG) is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis—a reaction that is principally performed by monoacylglycerol lipase (MAGL). MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to regulating 2-AG activity have remained unclear. Here, we genetically dissect the cellular anatomy of MAGL-mediated 2-AG metabolism in the brain and show that neurons and astrocytes coordinately regulate 2-AG content and endocannabinoid-dependent forms of synaptic plasticity and behavior. We also find that astrocytic MAGL is mainly responsible for converting 2-AG to neuroinflammatory prostaglandins via a mechanism that may involve transcellular shuttling of lipid substrates. Astrocytic-neuronal interplay thus provides distributed oversight of 2-AG metabolism and function, and, through doing so, protects the nervous system from excessive CB1 receptor activation and promotes endocannabinoid crosstalk with other lipid transmitter systems. PMID:26212325

  1. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    PubMed

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  2. Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee.

    PubMed

    Froese, Anja; Szyszka, Paul; Menzel, Randolf

    2014-03-01

    Kenyon cells, the intrinsic neurons of the insect mushroom body, have the intriguing property of responding in a sparse way to odorants. Sparse neuronal codes are often invariant to changes in stimulus intensity and duration, and sparse coding often depends on global inhibition. We tested if this is the case for honeybees' Kenyon cells, too, and used in vivo Ca²⁺ imaging to record their responses to different odorant concentrations. Kenyon cells responded not only to the onset of odorant stimuli (ON responses), but also to their termination (OFF responses). Both, ON and OFF responses increased with increasing odorant concentration. ON responses were phasic and invariant to the duration of odorant stimuli, while OFF responses increased with increasing odorant duration. Pharmacological blocking of GABA receptors in the brain revealed that ionotropic GABA(A) and metabotropic GABA(B) receptors attenuate Kenyon cells' ON responses without changing their OFF responses. Ionotropic GABA(A) receptors attenuated Kenyon cell ON responses more strongly than metabotropic GABA(B) receptors. However, the response dynamic, temporal resolution and paired-pulse depression did not depend on GABA(A) transmission. These data are discussed in the context of mechanisms leading to sparse coding in Kenyon cells.

  3. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation.

    PubMed

    Aliperti, Vincenza; Donizetti, Aldo

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF.

  4. M-type potassium conductance controls the emergence of neural phase codes: a combined experimental and neuron modelling study.

    PubMed

    Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong

    2014-10-06

    Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin-Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons.

  5. Acetylsalicylic acid-induced changes in the chemical coding of extrinsic sensory neurons supplying the prepyloric area of the porcine stomach.

    PubMed

    Rytel, L; Calka, J

    2016-03-23

    Acetylsalicylic acid is a popular drug that is commonly used to treat fever and inflammation, but which can also negativity affect the mucosal layer of the stomach, although knowledge concerning its influence on gastric innervation is very scarce. Thus, the aim of the present study was to study the influence of prolonged acetylsalicylic acid supplementation on the extrinsic primary sensory neurons supplying the porcine stomach prepyloric region. Fast Blue (FB) was injected into the above-mentioned region of the stomach. Acetylsalicylic acid was then given orally to the experimental gilts from the seventh day after FB injection to the 27th day of the experiment. After euthanasia, the nodose ganglia (NG) and dorsal root ganglia (DRG) were collected. Sections of these ganglia were processed for routine double-labelling immunofluorescence technique for substance P (SP), calcitonine gene related peptide (CGRP), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Under physiological conditions within the nodose ganglia, the percentage of the FB-labeled neurons immunoreactive to particular substances ranged between 17.9 ± 2.7% (VIP-like immunoreactive (LI) neurons in the right NG) and 60.4 ± 1.7% (SP-LI cells within the left NG). Acetylsalicylic acid supplementation caused a considerable increase in the expression of all active substances studied within both left and right NG and the percentage of neurons positive to particular substances fluctuated from 47.2 ± 3.6% (GAL-LI neurons in the right NG) to 67.2 ± 2.0% (cells immunoreactive to SP in the left NG). All studied substances were also observed in DRG neurons supplying the prepyloric region of the stomach, but the number of immunoreactive neurons was too small to conduct a statistical analysis. The obtained results show that ASA may influence chemical coding of the sensory neurons supplying the porcine stomach, but the exact mechanisms of this action still

  6. Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where

    PubMed Central

    Komorowski, Robert W.; Manns, Joseph R.; Eichenbaum, Howard

    2009-01-01

    Previous research indicates a critical role of the hippocampus in memory for events in the context in which they occur. However, studies to date have not provided compelling evidence that hippocampal neurons encode event-context conjunctions directly associated with this kind of learning. Here we report that, as animals learn different meanings for items in distinct contexts, individual hippocampal neurons develop responses to specific stimuli in the places where they have differential significance. Furthermore, this conjunctive coding evolves in the form of enhanced item-specific responses within a subset of the pre-existing spatial representation. These findings support the view that conjunctive representations in the hippocampus underlie the acquisition of context specific memories. PMID:19657042

  7. Scene-selective coding by single neurons in the human parahippocampal cortex

    PubMed Central

    Mormann, Florian; Kornblith, Simon; Cerf, Moran; Kraskov, Alexander; Tran, Michelle; Knieling, Simeon; Quian Quiroga, Rodrigo; Koch, Christof; Fried, Itzhak

    2017-01-01

    Imaging, electrophysiological, and lesion studies have shown a relationship between the parahippocampal cortex (PHC) and the processing of spatial scenes. Our present knowledge of PHC, however, is restricted to the macroscopic properties and dynamics of bulk tissue; the behavior and selectivity of single parahippocampal neurons remains largely unknown. In this study, we analyzed responses from 630 parahippocampal neurons in 24 neurosurgical patients during visual stimulus presentation. We found a spatially clustered subpopulation of scene-selective units with an associated event-related field potential. These units form a population code that is more distributed for scenes than for other stimulus categories, and less sparse than elsewhere in the medial temporal lobe. Our electrophysiological findings provide insight into how individual units give rise to the population response observed with functional imaging in the parahippocampal place area. PMID:28096381

  8. Bat and rat neurons differ in theta-frequency resonance despite similar coding of space.

    PubMed

    Heys, James G; MacLeod, Katrina M; Moss, Cynthia F; Hasselmo, Michael E

    2013-04-19

    Both bats and rats exhibit grid cells in medial entorhinal cortex that fire as they visit a regular array of spatial locations. In rats, grid-cell firing field properties correlate with theta-frequency rhythmicity of spiking and membrane-potential resonance; however, bat grid cells do not exhibit theta rhythmic spiking, generating controversy over the role of theta rhythm. To test whether this discrepancy reflects differences in rhythmicity at a cellular level, we performed whole-cell patch recordings from entorhinal neurons in both species to record theta-frequency resonance. Bat neurons showed no theta-frequency resonance, suggesting grid-cell coding via different mechanisms in bats and rats or lack of theta rhythmic contributions to grid-cell firing in either species.

  9. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons

    PubMed Central

    Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies. PMID:23951361

  10. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals

    PubMed Central

    Andrews, Zane B.; Liu, Zhong-Wu; Walllingford, Nicholas; Erion, Derek M.; Borok, Erzsebet; Friedman, Jeffery M.; Tschöp, Matthias H.; Shanabrough, Marya; Cline, Gary; Shulman, Gerald I.; Coppola, Anna; Gao, Xiao-Bing; Horvath, Tamas L.; Diano, Sabrina

    2014-01-01

    The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour. PMID:18668043

  11. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    PubMed

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  12. Networks of spiking neurons that compute linear functions using action potential timing

    NASA Astrophysics Data System (ADS)

    Ruf, Berthold

    1999-03-01

    For fast neural computations within the brain it is very likely that the timing of single firing events is relevant. Recently Maass has shown that under certain weak assumptions a weighted sum can be computed in temporal coding by leaky integrate-and-fire neurons. This construction can be extended to approximate arbitrary functions. In comparison to integrate-and-fire neurons there are several sources in biologically more realistic neurons for additional nonlinear effects like e.g. the spatial and temporal interaction of postsynaptic potentials or voltage-gated ion channels at the soma. Here we demonstrate with the help of computer simulations using GENESIS that despite of these nonlinearities such neurons can compute linear functions in a natural and straightforward way based on the main principles of the construction given by Maass. One only has to assume that a neuron receives all its inputs in a time interval of approximately the length of the rising segment of its excitatory postsynaptic potentials. We also show that under certain assumptions there exists within this construction some type of activation function being computed by such neurons. Finally we demonstrate that on the basis of these results it is possible to realize in a simple way pattern analysis with spiking neurons. It allows the analysis of a mixture of several learned patterns within a few milliseconds.

  13. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  14. Differential Sensitivity of Specific Neuronal Populations of the Rat Hypothalamus to Prolactin Action

    PubMed Central

    Sapsford, Tony J.; Kokay, Ilona C.; Östberg, Lovisa; Bridges, Robert S.; Grattan, David R.

    2014-01-01

    Prolactin stimulates dopamine release from neuroendocrine dopaminergic (NEDA) neurons in the hypothalamic arcuate nucleus (ARC) to maintain low levels of serum prolactin. Elevated prolactin levels during pregnancy and lactation may mediate actions in other hypothalamic regions such as the paraventricular nucleus (PVN) and rostral preoptic area (rPOA). We predicted that NEDA neurons would be more sensitive prolactin targets than neurons in other regions because they are required to regulate basal prolactin secretion. Moreover, differences in the accessibility of the ARC to prolactin in blood may influence the responsiveness of this population. Therefore, we compared prolactin-induced signaling in different hypothalamic neuronal populations following either systemic or intracerebroventricular (icv) prolactin administration. Phosphorylation of the signal transduction factor, STAT5 (pSTAT5), was used to identify prolactin-responsive neurons. In response to systemic prolactin, pSTAT5-labeled cells were widely observed in the ARC but absent from the rPOA and PVN. Many of these responsive cells in the ARC were identified as NEDA neurons. The lowest icv prolactin dose (10 ng) induced pSTAT5 in the ARC, but with higher doses (>500 ng) pSTAT5 was detected in numerous regions, including the rPOA and PVN. NEDA neurons were maximally labeled with nuclear pSTAT5 in response to 500 ng prolactin and appeared to be more sensitive than dopaminergic neurons in the rPOA. Subpopulations of oxytocin neurons in the hypothalamus were also found to be differentially sensitive to prolactin. These data suggest that differences in the accessibility of the arcuate nucleus to prolactin, together with intrinsic differences in the NEDA neurons, may facilitate homeostatic feedback regulation of prolactin release. PMID:21953590

  15. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin.

    PubMed

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L; Mosher, Christina; Berglund, Eric D; Elmquist, Joel K; Zigman, Jeffrey M

    2014-02-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreER(T2) transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.

  16. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  17. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond

    PubMed Central

    Barry, John F.; Turner, Matthew J.; Schloss, Jennifer M.; Glenn, David R.; Song, Yuyu; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2016-01-01

    Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution—e.g., magnetic resonance imaging methods and magnetoencephalography—or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector. PMID:27911765

  18. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  19. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  20. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  1. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states

    PubMed Central

    Barry, Guy; Briggs, James A.; Hwang, Do Won; Nayler, Sam P.; Fortuna, Patrick R. J.; Jonkhout, Nicky; Dachet, Fabien; Maag, Jesper L. V.; Mestdagh, Pieter; Singh, Erin M.; Avesson, Lotta; Kaczorowski, Dominik C.; Ozturk, Ezgi; Jones, Nigel C.; Vetter, Irina; Arriola-Martinez, Luis; Hu, Jianfei; Franco, Gloria R.; Warn, Victoria M.; Gong, Andrew; Dinger, Marcel E.; Rigo, Frank; Lipovich, Leonard; Morris, Margaret J.; O’Brien, Terence J.; Lee, Dong Soo; Loeb, Jeffrey A.; Blackshaw, Seth; Mattick, John S.; Wolvetang, Ernst J.

    2017-01-01

    Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy. PMID:28054653

  2. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons.

    PubMed

    Liu, Pin W; Bean, Bruce P

    2014-04-02

    Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.

  3. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  4. Plasticity-driven individualization of olfactory coding in mushroom body output neurons

    PubMed Central

    Hige, Toshihide; Aso, Yoshinori; Rubin, Gerald M.; Turner, Glenn C.

    2015-01-01

    Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies (MBs) have been an important model system for studying sparse coding in the olfactory system1–3, where this format is important for accurate memory formation4–6. In Drosophila, it has recently been shown that the 2000 Kenyon cells (KCs) of the MB converge onto a population of only 35 MB output neurons (MBONs), that fall into 22 anatomically distinct cell types7,8. Here we provide the first comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit2,9. Instead, at the population level, odor representations are reformatted so that positive and negative correlations arise between representations of different odors. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system. PMID:26416731

  5. Direct Evaluation of L-DOPA Actions on Neuronal Activity of Parkinsonian Tissue In Vitro

    PubMed Central

    Plata, Víctor; Pérez-Ortega, Jesús E.; Galarraga, Elvira; Bargas, José

    2013-01-01

    Physiological and biochemical experiments in vivo and in vitro have explored striatal receptor signaling and neuronal excitability to posit pathophysiological models of Parkinson's disease. However, when therapeutic approaches, such as dopamine agonists, need to be evaluated, behavioral tests using animal models of Parkinson's disease are employed. To our knowledge, recordings of population neuronal activity in vitro to assess anti-Parkinsonian drugs and the correlation of circuit dynamics with disease state have only recently been attempted. We have shown that Parkinsonian pathological activity of neuronal striatal circuits can be characterized in in vitro cerebral tissue. Here, we show that calcium imaging techniques, capable of recording dozens of neurons simultaneously with single-cell resolution, can be extended to assess the action of therapeutic drugs. We used L-DOPA as a prototypical anti-Parkinsonian drug to show the efficiency of this proposed bioassay. In a rodent model of early Parkinson's disease, Parkinsonian neuronal activity can be returned to control levels by the bath addition of L-DOPA in a reversible way. This result raises the possibility to use calcium imaging techniques to measure, quantitatively, the actions of anti-Parkinsonian drugs over time and to obtain correlations with disease evolution and behavior. PMID:24151606

  6. Direct evaluation of L-DOPA actions on neuronal activity of Parkinsonian tissue in vitro.

    PubMed

    Plata, Víctor; Duhne, Mariana; Pérez-Ortega, Jesús E; Barroso-Flores, Janet; Galarraga, Elvira; Bargas, José

    2013-01-01

    Physiological and biochemical experiments in vivo and in vitro have explored striatal receptor signaling and neuronal excitability to posit pathophysiological models of Parkinson's disease. However, when therapeutic approaches, such as dopamine agonists, need to be evaluated, behavioral tests using animal models of Parkinson's disease are employed. To our knowledge, recordings of population neuronal activity in vitro to assess anti-Parkinsonian drugs and the correlation of circuit dynamics with disease state have only recently been attempted. We have shown that Parkinsonian pathological activity of neuronal striatal circuits can be characterized in in vitro cerebral tissue. Here, we show that calcium imaging techniques, capable of recording dozens of neurons simultaneously with single-cell resolution, can be extended to assess the action of therapeutic drugs. We used L-DOPA as a prototypical anti-Parkinsonian drug to show the efficiency of this proposed bioassay. In a rodent model of early Parkinson's disease, Parkinsonian neuronal activity can be returned to control levels by the bath addition of L-DOPA in a reversible way. This result raises the possibility to use calcium imaging techniques to measure, quantitatively, the actions of anti-Parkinsonian drugs over time and to obtain correlations with disease evolution and behavior.

  7. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.

    PubMed

    Kapucu, Fikret E; Tanskanen, Jarno M A; Mikkonen, Jarno E; Ylä-Outinen, Laura; Narkilahti, Susanna; Hyttinen, Jari A K

    2012-01-01

    In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  8. Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions

    PubMed Central

    Rouach, N; Segal, M; Koulakoff, A; Giaume, C; Avignone, E

    2003-01-01

    Spontaneous activity in the central nervous system is strongly suppressed by blockers of gap junctions (GJs), suggesting that GJs contribute to network activity. However, the lack of selective GJ blockers prohibits the determination of their site of action, i.e. neuronal versus glial. Astrocytes are strongly coupled through GJs and have recently been shown to modulate synaptic transmission, yet their role in neuronal network activity was not analysed. The present study investigated the effects and site of action of the GJ blocker, carbenoxolone (CBX), on neuronal network activity. To this end, we used cultures of hippocampal or cortical neurons, plated on astrocytes. In these cultures neurons display spontaneous synchronous activity and GJs are found only in astrocytes. CBX induced in these neurons a reversible suppression of spontaneous action potential discharges, synaptic currents and synchronised calcium oscillations. Moreover, CBX inhibited oscillatory activity induced by the GABAA antagonist, bicuculline. These effects were not due to blockade of astrocytic GJs, since they were not mimicked nor occluded by endothelin-1 (ET-1), a peptide known to block astrocytic GJs. Also, these effects were still present in co-cultures of wild-type neurons plated on astrocytes originating from connexin-43 (Cx43) knockout mice, and in neuronal cultures which contain few isolated astrocytes. CBX was not likely to exert its effect through neuronal GJs either, as immunostaining for major neuronal connexins (Cx) as well as dye or electrical coupling, were not detected in the different models of cultured neurons examined. Finally while CBX (at 100 μm) did not modify presynaptic transmitter release and postsynaptic responses to glutamate, it did cause an increase in the action potential threshold and strongly decreased the firing rate in response to a sustained depolarising current. These data demonstrate that CBX does not exert its action on network activity of cultured neurons

  9. A Shab potassium channel contributes to action potential broadening in peptidergic neurons.

    PubMed

    Quattrocki, E A; Marshall, J; Kaczmarek, L K

    1994-01-01

    We have cloned the gene for a potassium channel, Aplysia Shab, that is expressed in the bag cell neurons of Aplysia. The voltage dependence and kinetics of the Aplysia Shab current in oocytes match those of IK2, one of the two delayed rectifiers in these neurons. Like IK2, but in contrast with other members of the Shab subfamily, the Aplysia Shab current inactivates within several hundred milliseconds. This inactivation occurs by a process whose properties do not match those previously described for C-type and N-type mechanisms. Neither truncation of the N-terminus nor block by tetraethylammonium alters the time course of inactivation. By incorporating the characteristics of Aplysia Shab into a computational model, we have shown how this current contributes to the normal enhancement of action potentials that occurs in the bag cell neurons at the onset of neuropeptide secretion.

  10. Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons

    PubMed Central

    Chabrol, François P.; Arenz, Alexander; Wiechert, Martin T.; Margrie, Troy W.; DiGregorio, David A.

    2015-01-01

    The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses within the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways. The majority of GCs receive inputs from different modalities, which when co-activated, produced enhanced GC firing rates and distinct first spike latencies. Thus, pathway-specific synaptic response properties permit temporal coding of correlated multisensory input by single GCs, thereby enriching sensory representation and facilitating pattern separation. PMID:25821914

  11. Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae).

    PubMed

    Burrows, Malcolm; Bräunig, Peter

    2010-04-15

    To understand the catapult mechanism that propels jumping in a planthopper insect, the innervation and action of key muscles were analyzed. The large trochanteral depressor muscle, M133b,c, is innervated by two motor neurons and by two dorsal unpaired median (DUM) neurons, all with axons in N3C. A smaller depressor muscle, M133a, is innervated by two neurons, one with a large-diameter cell body, a large, blind-ending dendrite, and a giant ovoid, axon measuring 50 microm by 30 microm in nerve N5A. The trochanteral levator muscles (M132) and (M131) are innervated by N4 and N3B, respectively. The actions of these muscles in a restrained jump were divisible into a three-phase pattern. First, both hind legs were moved into a cocked position by high-frequency bursts of spikes in the levator muscles lasting about 0.5 seconds. Second, and once both legs were cocked, M133b,c received a long continuous sequence of motor spikes, but the two levators spiked only sporadically. The spikes in the two motor neurons to M133b,c on one side were closely coupled to each other and to the spikes on the other side. If one hind leg was cocked then the spikes only occurred in motor neurons to that side. The final phase was the jump movement itself, which occurred when the depressor spikes ceased and which lasted 1 ms. Muscles 133b,c activated synchronously on both sides, are responsible for generating the power, and M133a and its giant neuron may play a role in triggering the release of a jump.

  12. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    PubMed Central

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  13. Vibrotactile Discrimination in the Rat Whisker System is Based on Neuronal Coding of Instantaneous Kinematic Cues

    PubMed Central

    Waiblinger, Christian; Brugger, Dominik; Schwarz, Cornelius

    2015-01-01

    Which physical parameter of vibrissa deflections is extracted by the rodent tactile system for discrimination? Particularly, it remains unclear whether perception has access to instantaneous kinematic parameters (i.e., the details of the trajectory) or relies on temporally integration of the movement trajectory such as frequency (e.g., spectral information) and intensity (e.g., mean speed). Here, we use a novel detection of change paradigm in head-fixed rats, which presents pulsatile vibrissa stimuli in seamless sequence for discrimination. This procedure ensures that processes of decision making can directly tap into sensory signals (no memory functions involved). We find that discrimination performance based on instantaneous kinematic cues far exceeds the ones provided by frequency and intensity. Neuronal modeling based on barrel cortex single units shows that small populations of sensitive neurons provide a transient signal that optimally fits the characteristic of the subject's perception. The present study is the first to show that perceptual read-out is superior in situations allowing the subject to base perception on detailed trajectory cues, that is, instantaneous kinematic variables. A possible impact of this finding on tactile systems of other species is suggested by evidence for instantaneous coding also in primates. PMID:24169940

  14. Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons.

    PubMed

    Wu, Dongsheng; Zhang, Yi; Bo, Xuenong; Huang, Wenlong; Xiao, Fang; Zhang, Xinyu; Miao, Tizong; Magoulas, Charalambos; Subang, Maria C; Richardson, Peter M

    2007-03-01

    A conditioning lesion to peripheral axons of primary sensory neurons accelerates regeneration of their central axons in vivo or neurite outgrowth if the neurons are grown in vitro. Previous evidence has implicated neuropoietic cytokines and also cyclic AMP in regenerative conditioning. In experiments reported here, delivery through a lentivirus vector of ciliary neurotrophic factor to the appropriate dorsal root ganglion in rats was sufficient to mimic the conditioning effect of peripheral nerve injury on the regeneration of dorsal spinal nerve root axons. Regeneration in this experimental preparation was also stimulated by intraganglionic injection of dibutyryl cyclic AMP but the effects of ciliary neurotrophic factor and dibutyryl cyclic AMP were not additive. Dibutyryl cyclic AMP injection into the dorsal root ganglion induced mRNAs for two other neuropoietic cytokines, interleukin-6 and leukemia inhibitory factor and increased the accumulation of phosphorylated STAT3 in neuronal nuclei. The in vitro conditioning action of dibutyryl cyclic AMP was partially blocked by a pharmacological inhibitor of Janus kinase 2, a neuropoietic cytokine signaling molecule. We suggest that the beneficial actions of increased cyclic AMP activity on axonal regeneration of primary sensory neurons are mediated, at least in part, through the induction of neuropoietic cytokine synthesis within the dorsal root ganglion.

  15. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex.

    PubMed

    Deleuze, Charlotte; David, François; Béhuret, Sébastien; Sadoc, Gérard; Shin, Hee-Sup; Uebele, Victor N; Renger, John J; Lambert, Régis C; Leresche, Nathalie; Bal, Thierry

    2012-08-29

    The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.e., tonic firing), enabling the reliable transfer of incoming sensory inputs to cortex. Because of their nearly complete inactivation at the depolarized potentials that are experienced during the wake state, T-channels are not believed to modulate tonic action potential discharges. Here, we demonstrate using mice brain slices that activation of T-channels in thalamocortical neurons maintained in the depolarized/wake-like state is critical for the reliable expression of tonic firing, securing their excitability over changes in membrane potential that occur in the depolarized state. Our results establish a novel mechanism for the integration of sensory information by thalamocortical neurons and point to an unexpected role for T-channels in the early stage of information processing.

  16. Effects of some heavy metals on the action potentials of an identified Helix pomatia photosensitive neuron.

    PubMed

    Kartelija, Gordana; Radenović, Lidija; Todorović, Natasa; Nedeljković, Miodrag

    2005-06-01

    In the photosensitive MB neuron in the left parietal ganglion of Helix pomatia, the onset of light prolongs significantly (by about 40%) the duration of the action potential. The broadening of the action potential after the onset of light was found to be due to its calcium component and could not be induced after blocking Ca(2+) channels by Cd(2+) and Pb(2+) and in absence of Ca(2+) in medium. The blocking effect of both compounds was reversible. It was found that CdCl(2) exhibited a more intense blocking effect than PbCl(2).

  17. User-action-driven view and rate scalable multiview video coding.

    PubMed

    Chakareski, Jacob; Velisavljevic, Vladan; Stankovic, Vladimir

    2013-09-01

    We derive an optimization framework for joint view and rate scalable coding of multi-view video content represented in the texture plus depth format. The optimization enables the sender to select the subset of coded views and their encoding rates such that the aggregate distortion over a continuum of synthesized views is minimized. We construct the view and rate embedded bitstream such that it delivers optimal performance simultaneously over a discrete set of transmission rates. In conjunction, we develop a user interaction model that characterizes the view selection actions of the client as a Markov chain over a discrete state-space. We exploit the model within the context of our optimization to compute user-action-driven coding strategies that aim at enhancing the client's performance in terms of latency and video quality. Our optimization outperforms the state-of-the-art H.264 SVC codec as well as a multi-view wavelet-based coder equipped with a uniform rate allocation strategy, across all scenarios studied in our experiments. Equally important, we can achieve an arbitrarily fine granularity of encoding bit rates, while providing a novel functionality of view embedded encoding, unlike the other encoding methods that we examined. Finally, we observe that the interactivity-aware coding delivers superior performance over conventional allocation techniques that do not anticipate the client's view selection actions in their operation.

  18. Emotional Actions Are Coded via Two Mechanisms: With and without Identity Representation

    PubMed Central

    Wincenciak, Joanna; Ingham, Jennie; Jellema, Tjeerd; Barraclough, Nick E.

    2016-01-01

    Accurate perception of an individual's identity and emotion derived from their actions and behavior is essential for successful social functioning. Here we determined the role of identity in the representation of emotional whole-body actions using visual adaptation paradigms. Participants adapted to actors performing different whole-body actions in a happy and sad fashion. Following adaptation subsequent neutral actions appeared to convey the opposite emotion. We demonstrate two different emotional action aftereffects showing distinctive adaptation characteristics. For one short-lived aftereffect, adaptation to the emotion expressed by an individual resulted in biases in the perception of the expression of emotion by other individuals, indicating an identity-independent representation of emotional actions. A second, longer lasting, aftereffect was observed where adaptation to the emotion expressed by an individual resulted in longer-term biases in the perception of the expressions of emotion only by the same individual; this indicated an additional identity-dependent representation of emotional actions. Together, the presence of these two aftereffects indicates the existence of two mechanisms for coding emotional actions, only one of which takes into account the actor's identity. The results that we observe might parallel processing of emotion from face and voice. PMID:27242606

  19. Emotional Actions Are Coded via Two Mechanisms: With and without Identity Representation.

    PubMed

    Wincenciak, Joanna; Ingham, Jennie; Jellema, Tjeerd; Barraclough, Nick E

    2016-01-01

    Accurate perception of an individual's identity and emotion derived from their actions and behavior is essential for successful social functioning. Here we determined the role of identity in the representation of emotional whole-body actions using visual adaptation paradigms. Participants adapted to actors performing different whole-body actions in a happy and sad fashion. Following adaptation subsequent neutral actions appeared to convey the opposite emotion. We demonstrate two different emotional action aftereffects showing distinctive adaptation characteristics. For one short-lived aftereffect, adaptation to the emotion expressed by an individual resulted in biases in the perception of the expression of emotion by other individuals, indicating an identity-independent representation of emotional actions. A second, longer lasting, aftereffect was observed where adaptation to the emotion expressed by an individual resulted in longer-term biases in the perception of the expressions of emotion only by the same individual; this indicated an additional identity-dependent representation of emotional actions. Together, the presence of these two aftereffects indicates the existence of two mechanisms for coding emotional actions, only one of which takes into account the actor's identity. The results that we observe might parallel processing of emotion from face and voice.

  20. Ionic differences between somatic and axonal action potentials in snail giant neurones

    PubMed Central

    Wald, Flora

    1972-01-01

    1. The ionic requirements of the somatic and axonal action potentials of `H' neurones of the snail Cryptomphallus aspersa were studied using intracellular micro-electrodes. 2. The overshoot of the somatic action potential increased by 10 mV for a tenfold increase in [Ca2+]o. In calcium-free media the action potential decreased gradually to values of 50 to 90% of the control and they could be completely eliminated with 2 mM-EGTA. The maximum rate of rise also varied with [Ca2+]o. 3. After 2 hr in sodium-free solution the somatic action potential decreased 6% in overshoot and 24% in rate of rise. 4. The somatic action potential was not affected by TTX, 5 × 10-6 g/ml. Procaine, 18 mM, reduced its rate of rise but did not eliminate it whereas 30 mM-CoCl2 did. 5. The size of the axonal action potential increased with increased [Na+]o, but decreased with an increase in [Ca2+]o. 6. Procaine, 18 mM, abolished the axonal action potential whereas it was not affected by TTX, 5 × 10-6 g/ml., nor, usually, by 30 mM-CoCl2. 7. The results obtained by studying the compound action potential of the nerves were similar to those from axonal action potentials. 8. The possibility that the somatic action potential is mainly calcium dependent while the axonal action potential is mainly produced by sodium is discussed. PMID:5014099

  1. Frequency-dependent action potential prolongation in Aplysia pleural sensory neurones.

    PubMed

    Edstrom, J P; Lukowiak, K D

    1985-10-01

    The effects of repetitive activity on action-potential shape in Aplysia californica pleural sensory cells are described. Action potentials were evoked by intracellular current injection at frequencies between 7.41 and 0.2 Hz. In contrast to other molluscan neurons having brief action potentials, it was found that at these firing rates the normally brief action potential develops a prominent shoulder or plateau during the repolarization phase. Higher stimulus rates broaden the action potential more rapidly and to a greater extent than lower stimulus rates. Inactivation is slow relative to activation; effects of 3-s 6-Hz trains are detectable after 1 min rest. The amplitude of the plateau voltage reaches a maximum of 50-70 mV at the highest stimulus rates tested. Frequency-dependent increases in action-potential duration measured at half-amplitude normally range between 6 and 15 ms. Cadmium, at concentrations between 0.05 and 0.5 mM, antagonizes frequency-dependent broadening. The increases in duration induced by repetitive activity are more sensitive to cadmium than are the increases in plateau amplitude. Tetraethylammonium, at concentrations between 0.5 and 10 mM, slightly increases the duration and amplitude of single action potentials. During repetitive activity at high stimulus rates the maximum duration and rate of broadening are both increased but the amplitude of the plateau potential is not affected by these tetraethylammonium concentrations. Above 10 mM, tetraethylammonium greatly increases the duration and amplitude of single action potentials as well as the rates of action-potential duration and amplitude increase during repetitive activity. These high tetraethylammonium concentrations also cause the normally smoothly increasing duration and amplitude to reach a maximum value early in a train and then decline slowly during the remainder of the train. The consequences of frequency-dependent spike broadening in these neurons have not yet been investigated

  2. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.

    PubMed

    Zhou, F M; Hablitz, J J

    1996-08-01

    1. Whole cell patch-clamp techniques, combined with direct visualization of neurons, were used to study action potential (AP) and repetitive firing properties of layer I neurons in slices of rat neocortex. 2. Layer I neurons had resting membrane potentials (RMP) of -59.8 +/- 4.7 mV (mean +/- SD) and input resistances (RN) of 592 +/- 284 M Omega. Layer II/III pyramidal neurons had RMPs and RNs of -61.5 +/- 5.6 mV and 320 +/- 113 M omega, respectively. A double exponential function was needed to describe the charging curves of both neuron types. In layer I neurons, tau(0) was 45 +/- 22 ms and tau(1) was 5 +/- 3.3 ms whereas in layer II/III pyramidal neurons, tau(0) was 41 +/- 11 ms and tau(1) was 3 +/- 2.6 ms. Estimates of specific membrane resistance (Rm) for layer I and layer II/III cells were 45 +/- 22 and 41 +/- 11 k omega cm2, respectively (Cm was assumed to be 1 microF/cm2). 3. AP threshold was -41 +/- 2 mV in layer I neurons. Spike amplitudes, measured from threshold to peak, were 90.6 +/- 7.7 mV. AP durations, measured both at the base and half maximal amplitude, were 2.5 +/- 0.4 and 1.1 +/- 0.2 ms, respectively. AP 10-90% rise and repolarization times were 0.6 +/- 0.1 and 1.1 +/- 0.2 ms, respectively. In layer II/III pyramidal neurons, AP threshold was -41 +/- 2.5 mV and spike amplitude was 97 +/- 9.7 mV. AP duration at base and half maximal amplitude was 5.4 +/- 1.1 ms and 1.8 +/- 0.2 ms, respectively. AP 10-90% rise and decay times were 0.6 +/- 0.1 ms and 2.8 +/- 0.6 ms, respectively. 4. Layer I neurons were fast spiking cells that showed little frequency adaptation, a large fast afterhyperpolarization (fAHP), and no slow afterhyperpolarization (sAHP). Some cells had a medium afterhyperpolarization (mAHP) and a slow afterdepolarization (sADP). All pyramidal cells in layer II/III and "atypical" pyramidal neurons in upper layer II showed regular spiking behavior, prominent frequency adaptation, and marked sAHPs. 5. In both layer I neurons and layer II

  3. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord

    PubMed Central

    Ishii, Hideaki; Kohno, Tatsuro; Yamakura, Tomohiro; Ikoma, Miho; Baba, Hiroshi

    2008-01-01

    Dexmedetomidine is a highly specific, potent and selective α2-adrenoceptor agonist. Although intrathecal and epidural administration of dexmedetomidine has been found to produce analgesia, whether this analgesia results from an effect on spinal cord substantia gelatinosa (SG) neurons remains unclear. Here, we investigated the effects of dexmedetomidine on postsynaptic transmission in SG neurons of rat spinal cord slices using the whole-cell patch-clamp technique. In 92% of the SG neurons examined (n= 84), bath-applied dexmedetomidine induced outward currents at −70 mV in a concentration-dependent manner, with the value of effective concentration producing a half-maximal response (0.62 μm). The outward currents induced by dexmedetomidine were suppressed by the α2-adrenoceptor antagonist yohimbine, but not by prazosin, an α1-, α2B- and α2C-adrenoceptor antagonist. Moreover, the dexmedetomidine-induced currents were partially suppressed by the α2C-adrenoceptor antagonist JP-1302, while simultaneous application of JP-1302 and the α2A-adrenoceptor antagonist BRL44408 abolished the current completely. The action of dexmedetomidine was mimicked by the α2A-adrenoceptor agonist oxymetazoline. Plots of the current–voltage relationship revealed a reversal potential at around −86 mV. Dexmedetomidine-induced currents were blocked by the addition of GDP-β-S [guanosine-5′-O-(2-thiodiphosphate)] or Cs+ to the pipette solution. These findings suggest that dexmedetomidine hyperpolarizes the membrane potentials of SG neurons by G-protein-mediated activation of K+ channels through α2A- and α2C-adrenoceptors. This action of dexmedetomidine might contribute, at least in part, to its antinociceptive action in the spinal cord. PMID:18554299

  4. Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia.

    PubMed

    Kawa, K

    1979-09-14

    In giant neurons of subesophageal ganglion of the Japanese land snail, Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method. All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24 mM Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations. The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 microM. It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane. On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967, J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.

  5. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons

    PubMed Central

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C.

    2016-01-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377724

  6. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons.

    PubMed

    Sun, Yan-Gang; Pita-Almenar, Juan D; Wu, Chia-Shan; Renger, John J; Uebele, Victor N; Lu, Hui-Chen; Beierlein, Michael

    2013-01-30

    Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4β2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.

  7. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro.

    PubMed

    Bourque, C W; Renaud, L P

    1985-06-01

    Action potential durations, measured at one-third peak amplitude, were examined during intracellular recordings in 134 supraoptic nucleus neurones maintained in vitro in perfused hypothalamic explants. Spike durations ranged between 1.2 and 3.9 ms and were dependent on firing frequency. Shortest measurements (1.74 +/- 0.03 ms; mean +/- S.E. of mean) were obtained during relative quiescence, i.e. less than or equal to 0.5 Hz. A gradual increase in firing frequency through continuous injection of depolarizing current prolonged spike duration, with maximum levels (2.68 +/- 0.05 ms) achieved at 20 Hz. When interspike interval variability was eliminated and firing was more precisely regulated by brief 15-20 ms intracellular current pulses given at pre-determined frequencies, a proportional relationship between increasing spike duration and firing frequency was retained but the change in spike duration at frequencies between 2 and 10 Hz was less pronounced. Once action potentials had achieved the long duration configuration, their return to the shorter duration took place gradually during any succeeding silent interval with a time constant of 4.9 s. Action potential broadening occurred progressively and was most pronounced at the onset of spontaneous or current-induced bursts. In thirty-six phasically active neurones, spike broadening at the onset of a burst was concurrent with the presence of 5-10 consecutive short (less than or equal to 100 ms) interspike intervals; thereafter, despite a greater than 50% reduction in firing frequency, action potential durations remained prolonged throughout the burst. In all of nineteen cells tested, frequency-dependent changes in spike duration were reversibly decreased or blocked by Cd2+, Co2+ and Mn2+, or when CaCl2 was exchanged for equimolar amounts of EGTA in the perfusion medium. These observations indicate that a Ca2+ conductance contributes to frequency- and firing-pattern-dependent changes in spike duration in rat supraoptic

  8. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

    PubMed Central

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-01-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz–10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology. PMID:24785307

  9. Depolarising and hyperpolarising actions of GABAA receptor activation on GnRH neurons: towards an emerging consensus

    PubMed Central

    Herbison, Allan E.; Moenter, Suzanne M.

    2011-01-01

    The gonadotropin-releasing hormone (GnRH) neurons represent the final output neurons of a complex neuronal network that controls fertility. It is now appreciated that GABAergic neurons within this network provide an important regulatory influence on GnRH neurons. However, the consequences of direct GABAA receptor activation on adult GnRH neurons have been controversial for nearly a decade now, with both hyperpolarising and depolarising effects reported. This review provides (i) an overview of GABAA receptor function and its investigation using electrophysiological approaches and (ii) re-examines the past and present results relating to GABAergic regulation of the GnRH neuron, with a focus on mouse brain slice data. Although it remains difficult to reconcile the results of the early studies, there is a growing consensus that GABA can act through the GABAA receptor to exert both depolarising and hyperpolarising effects on GnRH neurons. The most recent studies examining the effects of endogenous GABA release on GnRH neurons indicate that the predominant action is that of excitation. However, we are still far from a complete understanding of the effects of GABAA receptor activation upon GnRH neurons. We argue that this will require not only a better understanding of chloride ion homeostasis in individual GnRH neurons, and within subcellular compartments of the GnRH neuron, but also a more integrative view of how multiple neurotransmitters, neuromodulators and intrinsic conductances act together to regulate the activity of these important cells. PMID:21518033

  10. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe.

    PubMed

    Jin, Lei; Han, Zhou; Platisa, Jelena; Wooltorton, Julian R A; Cohen, Lawrence B; Pieribone, Vincent A

    2012-09-06

    Monitoring neuronal electrical activity using fluorescent protein-based voltage sensors has been limited by small response magnitudes and slow kinetics of existing probes. Here we report the development of a fluorescent protein voltage sensor, named ArcLight, and derivative probes that exhibit large changes in fluorescence intensity in response to voltage changes. ArcLight consists of the voltage-sensing domain of Ciona intestinalis voltage-sensitive phosphatase and super ecliptic pHluorin that carries the point mutation A227D. The fluorescence intensity of ArcLight A242 decreases by 35% in response to a 100 mV depolarization when measured in HEK293 cells, which is more than five times larger than the signals from previously reported fluorescent protein voltage sensors. We show that the combination of signal size and response speed of these new probes allows the reliable detection of single action potentials and excitatory potentials in individual neurons and dendrites.

  11. Ecstasy and methamphetamine elicit action potential bursts via different mechanisms in a central snail neuron.

    PubMed

    Lin, Pei-Lin; Tsai, Ming-Cheng; Lu, Guan-Ling; Lu, Dah-Yuu; Chuang, Chieh-Min; Yang, Han-Yin; Huang, Shiang-Suo; Chen, Yi-Hung

    2010-01-01

    This study sought to determine the effects of (+) methamphetamine (METH) and its ring-substituted analog (+/-)3,4-methylenedioxymethamphetamine (MDMA; ecstasy) on electrophysiological behavior and their relationships to second messenger systems in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. Extracellular application of MDMA at 1mM and METH at 3mM elicited action potential bursts that were not blocked after immersing the neurons in Ca(2+)-free solution. Notably, MDMA- (1mM) elicited action potential bursts were blocked by pretreatment with the protein kinase C (PKC) inhibitors chelerythrine (20 microM) and Ro 31-8220 (20 microM), but not by the PKA inhibitors KT-5720 (10 microM) and H89 (10 microM). The PKC activator phorbol 12,13-dibutyrate (PDBu; 3 microM), but not the PKA activator forskolin (50 microM), facilitated the induction of bursts elicited by MDMA at a lower concentration (0.3mM). In contrast, METH- (3mM) elicited action potential bursts were blocked by pretreatment with KT-5720 (10 microM) and H89 (10 microM), but not by chelerythrine (20 microM) and Ro 31-8220 (20 microM). Forskolin (50 microM), but not PDBu (3 microM) facilitated the induction of bursts elicited by METH at a lower concentration (1mM). Tetraethylammonium chloride (TEA), a blocker of the delayed rectifying K(+) current (I(KD)), did not elicit bursts at a concentration of 5mM but did facilitate the induction of action potential bursts elicited by both METH and MDMA. Voltage clamp studies revealed that both METH and MDMA decreased the TEA-sensitive I(KD) of the RP4 neuron. Forskolin (50 microM) or dibutyryl cAMP (1mM), a membrane-permeable cAMP analog, alone did not elicit action potential bursts. However, co-administration with forskolin (50 microM) and TEA (5mM) or co-administration with dibutyryl cAMP (1mM) and TEA (50mM) elicited action potential bursts in the presence of the PKC inhibitor chelerythrine (20 microM). Similarly, PDBu (10 microM) or phorbol

  12. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-03

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor.

  13. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  14. Adult-like action potential properties and abundant GABAergic synaptic responses in amygdala neurons from newborn marmosets

    PubMed Central

    Yamada, Daisuke; Miyajima, Moeko; Ishibashi, Hidetoshi; Wada, Keiji; Seki, Kazuhiko; Sekiguchi, Masayuki

    2012-01-01

    The amygdala plays an important role in the processing of emotional events. This information processing is altered by development, but little is known about the development of electrophysiological properties of neurons in the amygdala. We studied the postnatal development of electrophysiological properties of neurons in the basolateral amygdala (BLA) of the common marmoset (Callithrix jacchus). Whole-cell patch-clamp recordings were obtained from BLA pyramidal neurons in brain slices prepared from developing and adult marmosets, and electrophysiological properties known to change during development in rats were analysed. Two passive electrical properties of the neuronal membrane – the input resistance (Rin) and the membrane time constant (τ) – significantly decreased with postnatal development. In contrast, the action potential only showed a slight decrease in duration during the first month of life, whereas the amplitude did not change after birth. Passive electrical properties and action potentials in neurons of 4-week-old marmosets were similar to those in neurons of 4-year-old marmosets. The development of the action potential duration was not correlated with the development of Rin or τ, whereas the development of Rin and τ was correlated with each other. Abundant spontaneous and noradrenaline-induced GABAergic currents were present immediately after birth and did not change during postnatal development. These results suggest that newborn infant marmoset BLA pyramidal neurons possess relatively mature action potentials and receive vigorous GABAergic synaptic inputs, and that they acquire adult-like electrophysiological properties by the fourth week of life. PMID:22966158

  15. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles

    PubMed Central

    Tucker, Kristal R.; Block, Ethan R.; Levitan, Edwin S.

    2015-01-01

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H+-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca2+-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP+), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H+ countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs. PMID:26216995

  16. Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder.

    PubMed

    Bossowska, A; Majewski, M

    2012-01-01

    Botulinum toxin type A (BTX) is a potent neurotoxin, which in recent years has been effectively applied in experimental treatments of many neurogenic disorders of the urinary bladder. BTX is a selective, presynaptically-acting blocking agent of acetylcholine release from nerve terminals what, in turn, leads to the cessation of somatic motor and/or parasympathetic transmission. However, application of this toxin in urological practice is still in the developmental stages and the full mechanism of its action remain elusive. Thus, the present study was aimed at investigating the neurochemical characterization of dorsal root ganglion (DRG) neurons supplying the porcine urinary bladder after BTX treatment. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall in six juvenile female pigs and three weeks later, intramural bladder injections of BTX (100 IU per animal) were carried out in all the animals. After a week, DRG from L1 to Cql were harvested from the pigs and neurochemical characterization of FB+ neurons was performed using double- labeling immunofluorescence technique on 10-microm-thick cryostat sections. BTX injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), calbindin (CB), somatostatin (SOM) and neuronal nitric oxide synthase (nNOS) when compared with that found in the healthy animals (19% vs. 45%, 18% vs. 36%, 0.6% vs. 3%, 0.4 vs. 4% and 0.1% vs. 6%, respectively) These data demonstrated that BTX changed the chemical coding of bladder sensory neurons, and therefore this drug should be taken into consideration when it planning experimental therapy of selected neurogenic bladder disorders.

  17. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals.

    PubMed

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  18. Do monkey F5 mirror neurons show changes in firing rate during repeated observation of natural actions?

    PubMed

    Kilner, J M; Kraskov, A; Lemon, R N

    2014-03-01

    Mirror neurons were first discovered in area F5 of macaque monkeys. In humans, noninvasive studies have demonstrated an increased blood oxygen level-dependent (BOLD) signal in homologous motor areas during action observation. One approach to demonstrating that this indicates the existence of mirror neurons in humans has been to employ functional (f)MRI adaptation to test whether the same population of neurons is active during both observation and execution conditions. Although a number of human studies have reported fMRI adaptation in these areas, a recent study has shown that macaque mirror neurons do not attenuate their firing rate with two repetitions. Here we investigated whether mirror neurons modulate their firing rate when monkeys observed the same repeated natural action multiple times. We recorded from 67 mirror neurons in area F5 of two macaque monkeys while they observed an experimenter perform a reach-to-grasp action on a small food reward using a precision grip. Although no changes were detectable for the first two repetitions, we show that both the firing rate and the latency at which mirror neurons discharged during observation were subtly modulated by the repetition of the observed action over 7-10 trials. Significant adaption was mostly found in the period immediately before the grasp was performed. We also found that the local field potential activity in F5 (beta-frequency range, 16-23 Hz), which is attenuated during action observation, also showed systematic changes with repeated observation. These LFP changes occurred well in advance of the mirror neuron adaptation. We conclude that macaque mirror neurons can show intra-modal adaptation, but whether this is related to fMRI adaptation of the BOLD signal requires further investigation.

  19. Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons.

    PubMed Central

    Migliore, M

    1996-01-01

    We modeled two different mechanisms, a shunting conductance and a slow sodium inactivation, to test whether they could modulate the active propagation of a train of action potentials in a dendritic tree. Computer simulations, using a compartmental model of a pyramidal neuron, suggest that each of these two mechanisms could account for the activity-dependent attenuation and failure of the action potentials in the dendrites during the train. Each mechanism is shown to be in good qualitative agreement with experimental findings on somatic or dendritic stimulation and on the effects of hyperpolarization. The conditions under which branch point failures can be observed, and a few experimentally testable predictions, are presented and discussed. PMID:8913580

  20. Actions of endomorphins on synaptic transmission of Adelta-fibers in spinal cord dorsal horn neurons.

    PubMed

    Yajiri, Y; Huang, L Y

    2000-01-01

    The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.

  1. Corticospinal Neurons in Macaque Ventral Premotor Cortex with Mirror Properties: A Potential Mechanism for Action Suppression?

    PubMed Central

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M.; Shepherd, Samantha; Lemon, Roger N.

    2009-01-01

    Summary The discovery of “mirror neurons” in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited “mirror-like” activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. PMID:20064397

  2. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons.

    PubMed

    Ozcan, Mete; Ayar, Ahmet

    2012-06-01

    Levetiracetam (LEV), a new anticonvulsant agent primarily used to treat epilepsy, has been used in pain treatment but the cellular mechanism of this action remains unclear. This study aimed to investigate effects of LEV on the excitability and membrane depolarization-induced calcium signaling in isolated rat sensory neurons using the whole-cell patch clamp and fura 2-based ratiometric Ca(2+)-imaging techniques. Dorsal root ganglia (DRG) were excised from neonatal rats, and cultured following enzymatic and mechanical dissociation. Under current clamp conditions, acute application of LEV (30 µM, 100 µM and 300 µM) significantly increased input resistance and caused the membrane to hyperpolarize from resting membrane potential in a dose-dependent manner. Reversal potentials of action potential (AP) after hyperpolarising amplitudes were shifted to more negative, toward to potassium equilibrium potentials, after application of LEV. It also caused a decrease in number of APs in neurons fired multiple APs in response to prolonged depolarization. Fura-2 fluorescence Ca(2+) imaging protocols revealed that HiK(+) (30 mM)-induced intracellular free Ca(2+) ([Ca(2+)](i)) was inhibited to 97.8 ± 4.6% (n = 17), 92.6 ± 4.8% (n = 17, p < 0.01) and 89.1 ± 5.1% (n = 18, p < 0.01) after application of 30 µM, 100 µM and 300 µM LEV (respectively), without any significant effect on basal levels of [Ca(2+)](i). This is the first evidence for the effect of LEV on the excitability of rat sensory neurons through an effect which might involve activation of potassium channels and inhibition of entry of Ca(2+), providing new insights for cellular mechanism(s) of LEV in pain treatment modalities.

  3. Theta-Gamma Coding Meets Communication-through-Coherence: Neuronal Oscillatory Multiplexing Theories Reconciled

    PubMed Central

    VanRullen, Rufin

    2016-01-01

    Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention. PMID:27741229

  4. Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles.

    PubMed

    Mendelsohn, Alana I; Dasen, Jeremy S; Jessell, Thomas M

    2017-02-22

    The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.

  5. Neuronal Competition for Action Potential Initiation Sites in a Circuit Controlling Simple Learning

    PubMed Central

    Cruz, Georgina E.; Sahley, Christie L.; Muller, Kenneth J.

    2007-01-01

    The spatial and temporal patterns of action potential initiations were studied in a behaving leech preparation to determine the basis of increased firing that accompanies sensitization, a form of non-associative learning requiring the S-interneurons. Little is known at the network level about mechanisms of behavioral sensitization. The S-interneurons, one in each ganglion and linked by electrical synapses with both neighbors to form a chain, are interposed between sensory and motor neurons. In sensitized preparations the strength of shortening is related to S-cell firing, which itself is the result of impulses initiating in several S-cells. Because the S-cells, as independent initiation sites, all contribute to activity in the chain, it was hypothesized that during sensitization, increased multi-site activity increased the chain's firing rate. However, it was found that during sensitization, the single site with the largest initiation rate, the S-cell in the stimulated segment, suppressed initiations in adjacent ganglia. Experiments showed this was both because (1) it received the earliest, greatest input and (2) the delayed synaptic input to the adjacent S-cells coincided with the action potential refractory period. A compartmental model of the S-cell and its inputs showed that a simple, intrinsic mechanism of inexcitability after each action potential may account for suppression of impulse initiations. Thus, a non-synaptic competition between neurons alters synaptic integration in the chain. In one mode, inputs to different sites sum independently, whereas in another, synaptic input to a single site precisely specifies the overall pattern of activity. PMID:17644266

  6. Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons

    PubMed Central

    Huang, Wendy C.; Xiao, Shaohua; Huang, Fen; Harfe, Brian D.; Jan, Yuh Nung; Jan, Lily Yeh

    2012-01-01

    SUMMARY Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here we report a novel mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present the first evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. PMID:22500639

  7. ETHANOL ACTION ON DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTAL AREA: INTERACTION WITH INTRINSIC ION CHANNELS AND NEUROTRANSMITTER INPUTS

    PubMed Central

    Morikawa, Hitoshi; Morrisett, Richard A.

    2010-01-01

    The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience. PMID:20813245

  8. Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey.

    PubMed Central

    Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y; Tsutsui, K

    1998-01-01

    In our previous studies of hand manipulation task-related neurons, we found many neurons of the parietal association cortex which responded to the sight of three-dimensional (3D) objects. Most of the task-related neurons in the AIP area (the lateral bank of the anterior intraparietal sulcus) were visually responsive and half of them responded to objects for manipulation. Most of these neurons were selective for the 3D features of the objects. More recently, we have found binocular visual neurons in the lateral bank of the caudal intraparietal sulcus (c-IPS area) that preferentially respond to a luminous bar or place at a particular orientation in space. We studied the responses of axis-orientation selective (AOS) neurons and surface-orientation selective (SOS) neurons in this area with stimuli presented on a 3D computer graphics display. The AOS neurons showed a stronger response to elongated stimuli and showed tuning to the orientation of the longitudinal axis. Many of them preferred a tilted stimulus in depth and appeared to be sensitive to orientation disparity and/or width disparity. The SOS neurons showed a stronger response to a flat than to an elongated stimulus and showed tuning to the 3D orientation of the surface. Their responses increased with the width or length of the stimulus. A considerable number of SOS neurons responded to a square in a random dot stereogram and were tuned to orientation in depth, suggesting their sensitivity to the gradient of disparity. We also found several SOS neurons that responded to a square with tilted or slanted contours, suggesting their sensitivity to orientation disparity and/or width disparity. Area c-IPS is likely to send visual signals of the 3D features of an object to area AIP for the visual guidance of hand actions. PMID:9770229

  9. Recording Single Neurons' Action Potentials from Freely Moving Pigeons Across Three Stages of Learning

    PubMed Central

    Güntürkün, Onur

    2014-01-01

    While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.1 for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning. PMID:24961391

  10. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-03

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations.

  11. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine.

    PubMed

    Dobbs, Lauren K; Kaplan, Alanna R; Lemos, Julia C; Matsui, Aya; Rubinstein, Marcelo; Alvarez, Veronica A

    2016-06-01

    Striatal medium spiny neurons (MSNs) form inhibitory synapses on neighboring striatal neurons through axon collaterals. The functional relevance of this lateral inhibition and its regulation by dopamine remains elusive. We show that synchronized stimulation of collateral transmission from multiple indirect-pathway MSNs (iMSNs) potently inhibits action potentials in direct-pathway MSNs (dMSNs) in the nucleus accumbens. Dopamine D2 receptors (D2Rs) suppress lateral inhibition from iMSNs to disinhibit dMSNs, which are known to facilitate locomotion. Surprisingly, D2R inhibition of synaptic transmission was larger at axon collaterals from iMSNs than their projections to the ventral pallidum. Targeted deletion of D2Rs from iMSNs impaired cocaine's ability to suppress lateral inhibition and increase locomotion. These impairments were rescued by chemogenetic activation of Gi-signaling in iMSNs. These findings shed light on the functional significance of lateral inhibition between MSNs and offer a novel synaptic mechanism by which dopamine gates locomotion and cocaine exerts its canonical stimulant response. VIDEO ABSTRACT.

  12. Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials

    PubMed Central

    Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.

    2015-01-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  13. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  14. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones.

    PubMed

    Dutia, M B; Johnston, A R

    1998-01-01

    The postnatal maturation of medial vestibular nucleus (MVN) neurones was examined in slices of the dorsal brainstem prepared from balb/c mice at specific stages during the first postnatal month. Using spike-shape averaging to analyse the intracellularly recorded action potentials and after-hyperpolarizations (AHPs) in each cell, all the MVN neurones recorded in the young adult (postnatal day 30; P30) mouse were shown to have either a single deep AHP (type A cells), or an early fast and a delayed slow AHP (type B cells). The relative proportions of the two subtypes were similar to those in the young adult rat. At P5, all the MVN cells recorded showed immature forms of either the type A or the type B action potential shape. Immature type A cells had broad spontaneous spikes, and the characteristic single AHP was small in amplitude. Immature type B cells had somewhat narrower spontaneous spikes that were followed by a delayed, apamin-sensitive AHP. The delayed AHP was separated from the repolarisation phase of the spike by a period of isopotentiality. Over the period P10-P15, the mean resting potentials of the MVN cells became more negative, their action potential fall-times became shorter, the single AHP in type A cells became deeper, and the early fast AHP appeared in type B cells. Until P15 cells of varying degrees of electrophysiological maturity were found in the MVN but by P30 all MVN cells recorded were typical adult type A or type B cells. Exposure to the selective blocker of SK-type Ca-activated K channels, apamin (0.3 microM), induced depolarising plateaux and burst firing in immature type B cells at rest. The duration of the apamin-induced bursts and the spike frequency during the bursts were reduced but not abolished after blockade of Ca channels in Ca-free artificial cerebrospinal fluid containing Cd2+. By contrast, in mature type B cells at rest apamin selectively abolished the delayed slow AHP but did not induce bursting activity. Apamin had no effect

  15. Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior.

    PubMed

    Narahashi, T; Fenster, C P; Quick, M W; Lester, R A; Marszalec, W; Aistrup, G L; Sattelle, D B; Martin, B R; Levin, E D

    2000-10-01

    Nicotine has long been known to interact with nicotinic acetylcholine (ACh) receptors since Langley used it extensively to chart sympathetic ganglia a century ago. It has also been used as an effective insecticide. However, it was not until the 1990s that the significance of nicotine was increasingly recognized from the toxicological, pharmacological, and environmental points of view. This is partly because studies of neuronal nicotinic ACh receptors are rapidly emerging from orphan status, fueled by several lines of research. Since Alzheimer's disease is known to be associated with down-regulation of cholinergic activity in the brain, a variety of nicotine derivatives are being tested and developed for treatment of the disease. Public awareness of the adverse effects of nicotine has reached the highest level recently. Since insect resistance to insecticides is one of the most serious issues in the pest-control arena, it is an urgent requirement to develop new insecticides that act on target sites not shared by the existing insecticides. The neuronal nicotinic ACh receptor is one of them, and new nicotinoids are being developed. Thus, the time is ripe to discuss the mechanism of action of nicotine from a variety of angles, including the molecular, physiological, and behavioral points of view. This Symposium covered a wide area of nicotine studies: genetic, genomic, and functional aspects of nicotinic ACh receptors were studied, as related to anthelmintics and insecticides; interactions between ethanol and nicotine out the ACh receptor were analyzed, in an attempt to explain the well-known heavy drinker-heavy smoker correlation; the mechanisms that underlie the desensitization of ACh receptors were studied as related to nicotine action; selective pharmacological profiles of nicotine, and descriptions of some derivatives were described; and chronic nicotine infusion effects on memory were examined using animal models.

  16. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  17. From perception to action: temporal integrative functions of prefrontal and parietal neurons.

    PubMed

    Quintana, J; Fuster, J M

    1999-01-01

    The dorsolateral prefrontal cortex (DPFC) and the posterior parietal cortex (PPC) are anatomically and functionally interconnected, and have been implicated in working memory and the preparation for behavioral action. To substantiate those functions at the neuronal level, we designed a visuomotor task that dissociated the perceptual and executive aspects of the perception-action cycle in both space and time. In that task, the trial-initiating cue (a color) indicated with different degrees of certainty the direction of the correct manual response 12 s later. We recorded extracellular activity from 258 prefrontal and 223 parietal units in two monkeys performing the task. In the DPFC, some units (memory cells) were attuned to the color of the cue, independent of the response-direction it connoted. Their discharge tended to diminish in the course of the delay between cue and response. In contrast, few color-related units were found in PPC, and these did not show decreasing patterns of delay activity. Other units in both cortices (set cells) were attuned to response-direction and tended to accelerate their firing in anticipation of the response and in proportion to the predictability of its direction. A third group of units was related to the determinacy of the act; their firing was attuned to the certainty with which the animal could predict the correct response, whatever its direction. Cells of the three types were found closely intermingled histologically. These findings further support and define the role of DPFC in executive functions and in the temporal closure of the perception-action cycle. The findings also agree with the involvement of PPC in spatial aspects of visuomotor behavior, and add a temporal integrative dimension to that involvement. Together, the results provide physiological evidence for the role of a prefrontal-parietal network in the integration of perception with action across time.

  18. The growth cones of Aplysia sensory neurons: Modulation by serotonin of action potential duration and single potassium channel currents.

    PubMed

    Belardetti, F; Schacher, S; Kandel, E R; Siegelbaum, S A

    1986-09-01

    Serotonin (5-HT) closes a specific K channel ("S") in the cell body of Aplysia sensory neurons, resulting in a slow excitatory postsynaptic potential and spike broadening. To determine whether the S channel is present and can be modulated in processes of the neuron other than the cell body, we studied the effects of 5-HT on growth cones of sensory neurons in culture by using the patch-clamp technique. Simultaneous application of 5-HT to the cell body and to the growth cones of sensory neurons produced, in both, a slow depolarization of approximately 5 mV. Also, 5-HT produced a lengthening of the duration of action potential in the growth cone and cell body by 20-30%. Similar effects were observed in isolated growth cones that had been severed from the rest of the neuron, implying that the growth cones contain all the molecular components (i.e., receptors, channels, cAMP cascade) necessary for 5-HT action. Cell-attached patch-clamp recordings demonstrated the presence of S channels in sensory neuron growth cones. Application of serotonin to the bath produced long-lasting all-or-none closures of these channels in a manner identical to the previously characterized action of 5-HT in the cell body. Thus, channel modulation is not restricted to the cell body and probably occurs throughout the sensory neuron. This strengthens the view that S-channel modulation may also occur at the sensory neuron presynaptic terminal, where it could play a role in the presynaptic facilitation produced by 5-HT.

  19. Design of time-pulse coded optoelectronic neuronal elements for nonlinear transformation and integration

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2008-03-01

    In the paper the actuality of neurophysiologically motivated neuron arrays with flexibly programmable functions and operations with possibility to select required accuracy and type of nonlinear transformation and learning are shown. We consider neurons design and simulation results of multichannel spatio-time algebraic accumulation - integration of optical signals. Advantages for nonlinear transformation and summation - integration are shown. The offered circuits are simple and can have intellectual properties such as learning and adaptation. The integrator-neuron is based on CMOS current mirrors and comparators. The performance: consumable power - 100...500 μW, signal period- 0.1...1ms, input optical signals power - 0.2...20 μW time delays - less 1μs, the number of optical signals - 2...10, integration time - 10...100 of signal periods, accuracy or integration error - about 1%. Various modifications of the neuron-integrators with improved performance and for different applications are considered in the paper.

  20. [Pain assessment using the Facial Action Coding System. A systematic review].

    PubMed

    Rojo, Rosa; Prados-Frutos, Juan Carlos; López-Valverde, Antonio

    2015-10-21

    Self-reporting is the most widely used pain measurement tool, although it may not be useful in patients with loss or deficit in communication skills. The aim of this paper was to undertake a systematic review of the literature of pain assessment through the Facial Action Coding System (FACS). The initial search found 4,335 references and, within the restriction «FACS», these were reduced to 40 (after exclusion of duplicates). Finally, only 26 articles meeting the inclusion criteria were included. Methodological quality was assessed using the GRADE system. Most patients were adults and elderly health conditions, or cognitive deficits and/or chronic pain. Our conclusion is that FACS is a reliable and objective tool in the detection and quantification of pain in all patients.

  1. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity.

    PubMed

    Dietrich, Marcelo O; Antunes, Catiele; Geliang, Gan; Liu, Zhong-Wu; Borok, Erzsebet; Nie, Yongzhan; Xu, Allison W; Souza, Diogo O; Gao, Qian; Diano, Sabrina; Gao, Xiao-Bing; Horvath, Tamas L

    2010-09-01

    Sirt1 has been associated with various effects of calorie restriction, including an increase in lifespan. Here we show in mice that a central regulatory component in energy metabolism, the hypothalamic melanocortin system, is affected by Sirt1, which promotes the activity and connectivity of this system resulting in negative energy balance. In adult mice, the pharmacological inhibition of brain Sirt1 activity decreased Agrp neuronal activity and the inhibitory tone on the anorexigenic POMC neurons, as measured by the number of synaptic inputs to these neurons. When a Sirt1 inhibitor (EX-527) was injected either peripherally (i.p., 10 mg/kg) or directly into the brain (i.c.v., 1.5 nmol/mouse), it decreased both food intake during the dark cycle and ghrelin-induced food intake. This effect on feeding is mediated by upstream melanocortin receptors, because the MC4R antagonist, SHU9119, reversed Sirt1's effect on food intake. This action of Sirt1 required an appropriate shift in the mitochondrial redox state: in the absence of such an adaptation enabled by the mitochondrial protein, UCP2, Sirt1-induced cellular and behavioral responses were impaired. In accordance with the pharmacological results, the selective knock-out of Sirt1 in hypothalamic Agrp neurons through the use of Cre-Lox technology decreased electric responses of Agrp neurons to ghrelin and decreased food intake, leading to decreased lean mass, fat mass, and body weight. The present data indicate that Sirt1 has a central mode of action by acting on the NPY/Agrp neurons to affect body metabolism.

  2. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism.

    PubMed

    Marcelin, Geneviève; Jo, Young-Hwan; Li, Xiaosong; Schwartz, Gary J; Zhang, Ying; Dun, Nae J; Lyu, Rong-Ming; Blouet, Clémence; Chang, Jaw K; Chua, Streamson

    2014-02-01

    Tight control of glucose excursions has been a long-standing goal of treatment for patients with type 2 diabetes mellitus in order to ameliorate the morbidity and mortality associated with hyperglycemia. Fibroblast growth factor (FGF) 19 is a hormone-like enterokine released postprandially that emerged as a potential therapeutic agent for metabolic disorders, including diabetes and obesity. Remarkably, FGF19 treatment has hypoglycemic actions that remain potent in models of genetic and acquired insulin resistance. Here, we provided evidence that the central nervous system responds to FGF19 administered in the periphery. Then, in two mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding, third intra-cerebro-ventricular infusions of FGF19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, our study highlights a new mechanism of central FGF19 action, involving the suppression of AGRP/NPY neuronal activity. Overall, our work unveils novel regulatory pathways induced by FGF19 that will be useful in the design of novel strategies to control diabetes in obesity.

  3. Ventral tegmental area neurons are either excited or inhibited by cocaine’s actions in the peripheral nervous system

    PubMed Central

    Mejías-Aponte, Carlos A.; Kiyatkin, Eugene A.

    2012-01-01

    Cocaine’s multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via peripheral actions, and whether this precedes its central actions. In urethane-anesthetized rats, we recorded VTA neurons responses to intravenous injections of two cocaine analogs: cocaine-hydrochloride (HCl, 0.25 mg/kg) that readily cross the blood-brain barrier (BBB) and cocaine-methiodide (MI, 0.33 mg/kg) that does not cross the BBB. Both cocaine analogs produced sustained changes in discharge rates that began 5s after the initiation of a 10s drug infusion. Within the first 90s post-injection the magnitudes of neuronal responsive of both cocaine analogs were comparable, but later in time the effects of cocaine-HCl were stronger and persisted longer than those of cocaine-MI. The proportion of neurons responsive to cocaine-HCl was twice to that of cocaine-MI (74% and 35% respectively). Both analogs also differed in the response onsets. Cocaine-MI rarely evoked responses after 1 min whereas cocaine-HCl continued to evoke responses within 3 min post-injection. VTA neurons were either excited or inhibited by both cocaine analogs. Most units responsive to cocaine-MI, regardless of excitation or inhibition, had electrophysiological characteristics of putative DA neurons. Units inhibited by cocaine-HCl also had characteristic of DA neurons whereas excited neurons had widely varying action potential durations and discharge rates. Cocaine-MI and cocaine-HCl each produced changes in VTA neuron activity under full DA receptor blockade. However, the duration of inhibition was shortened, the number of excitations increased, and they occurred with an earlier onset during DA receptor blockade. These findings indicate that cocaine acts peripherally with a short latency and

  4. Differential effects of cortical neurotrophic factors on development of lateral geniculate nucleus and superior colliculus neurons: anterograde and retrograde actions.

    PubMed

    Wahle, Petra; Di Cristo, Graziella; Schwerdtfeger, Gudrun; Engelhardt, Maren; Berardi, Nicoletta; Maffei, Lamberto

    2003-02-01

    Neurotrophins strongly affect visual system development and plasticity. However, the mode of delivery and targets of neurotrophin action are still under debate. For instance, cortical NT-4/5 (neurotrophin 4/5; Ntf4/5) was shown to rescue lateral geniculate nucleus (LGN) neurons from monocular deprivation-induced atrophy suggesting a retrograde action on thalamic afferents. It is still unclear whether LGN neurons respond to NT-4/5 and other neurotrophins during development in animals with normal vision. We now show that infusions of NT-4/5 and NGF (nerve growth factor) into visual cortex at the onset and the peak of the critical period accelerated LGN neuron growth. BDNF (brain-derived neurotrophic factor) was ineffective. The effects of neurotrophin on LGN development were clearly dissociated from the effects at cortical level because soma growth of cortical layer IV and VI neurons was strongly promoted by BDNF. NT-4/5 was only effective at the onset, but no longer at the peak of the critical period suggesting a switch in neurotrophin dependency for these cortical cell classes. To dissociate retrograde and anterograde effects of the TrkB ligands, we analyzed the stratum griseum superficiale (SGS) of the superior colliculus, a target of visual cortical efferents. Indeed, TrkB-expressing inhibitory SGS neurons responded to cortical NT-4/5 infusion with somatic growth. Strikingly, the TrkB-expressing excitatory tectothalamic calbindin neurons in the SGS did not respond. This demonstrated for the first time a selective cell type-specific anterograde action of NT-4/5 and suggested for the LGN that anterograde as well as retrograde effects contribute to soma size regulation. Strikingly, cortical infusion of the cytokine LIF, which affects development of visual cortex neurochemical architecture, transiently inhibited growth of neurons in LGN, cortical layer IV and VI and SGS. In summary, the study presents three important results. First, central neurons regulate soma size

  5. Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma

    PubMed Central

    Michalikova, Martina; Kempter, Richard

    2017-01-01

    Spikelets are small spike-like depolarizations that can be measured in somatic intracellular recordings. Their origin in pyramidal neurons remains controversial. To explain spikelet generation, we propose a novel single-cell mechanism: somato-dendritic input generates action potentials at the axon initial segment that may fail to activate the soma and manifest as somatic spikelets. Using mathematical analysis and numerical simulations of compartmental neuron models, we identified four key factors controlling spikelet generation: (1) difference in firing threshold, (2) impedance mismatch, and (3) electrotonic separation between the soma and the axon initial segment, as well as (4) input amplitude. Because spikelets involve forward propagation of action potentials along the axon while they avoid full depolarization of the somato-dendritic compartments, we conjecture that this mode of operation saves energy and regulates dendritic plasticity while still allowing for a read-out of results of neuronal computations. PMID:28068338

  6. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglia neurons

    PubMed Central

    Schink, Martin; Leipolcf, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H.

    2016-01-01

    Dorsal root ganglia (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 µM) or low-intensity blue-light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8−/−), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and at higher concentrations progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure. PMID:26383867

  7. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses

  8. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons

    PubMed Central

    Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas

    2009-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744

  9. [Double action potentials in the command neurons of Helix pomatia in response to the action of cobalt ions].

    PubMed

    Palikhova, T A; Khludova, L K; Sokolov, E N

    1987-01-01

    Cobalt chloride (20 mmol/l) in physiological solution results in generation of doublets of spikes in Helix pomatia command neurons in response to intracellularly injected depolarizing current. The extraspikes arise in arborizations of neuron and are determined by influx sodium ions. It is supposed that facilitation of extraspikes in apparently due to long-lasting blockade of calcium-dependent potassium current by Co2+ ions.

  10. Pattern Separation, Pattern Completion, and New Neuronal Codes within a Continuous CA3 Map

    ERIC Educational Resources Information Center

    Leutgeb, Stefan; Leutgeb, Jill K.

    2007-01-01

    The hippocampal CA3 subregion is critical for rapidly encoding new memories, which suggests that neuronal computations are implemented in its circuitry that cannot be performed elsewhere in the hippocampus or in the neocortex. Recording studies show that CA3 cells are bound to a large degree to a spatial coordinate system, while CA1 cells can…

  11. Conopressin affects excitability, firing, and action potential shape through stimulation of transient and persistent inward currents in mulluscan neurons.

    PubMed

    van Soest, P F; Kits, K S

    1998-04-01

    The molluscan vasopressin/oxytocin-related neuropeptide conopressin activates two persistent inward currents in neurons from the anterior lobe of the right cerebral ganglion of Lymnaea stagnalis that are involved in the control of male copulatory behavior. The low-voltage-activated (LVA) current is activated at a wide range of membrane potentials, its amplitude being only weakly voltage dependent. The high-voltage-activated (HVA) current is activated at potentials positive to -40 mV only and shows a steep voltage dependence. Occurrence of both currents varies from cell to cell, some expressing both and others only the HVA current. In most neurons that have the LVA current, a conopressin-independent persistent inward current (INSR) is found that resembles the HVA current in its voltage dependence. The functional importance of the LVA and HVA currents was studied under current-clamp conditions in isolated anterior lobe neurons. In cells exhibiting both current types, the effect of activation of the LVA current alone was investigated as follows: previously recorded LVA current profiles were injected into the neurons, and the effects were compared with responses induced by conopressin. Both treatments resulted in a strong depolarization and firing activity. No differences in firing frequency and burst duration were observed, indicating that activation of the LVA current is sufficient to evoke bursts. In cells exhibiting only the HVA current, the effect of conopressin on the response to a depolarizing stimulus was tested. Conopressin reversibly increased the number of action potentials generated by the stimulus, suggesting that the HVA current enhances excitability and counteracts accommodation. Conopressin enhanced action potential broadening during depolarizing stimuli in many neurons. Voltage-clamp experiments performed under ion-selective conditions revealed the presence of transient sodium and calcium currents. Using the action potential clamp technique, it was

  12. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate.

    PubMed

    Tyzio, Roman; Allene, Camille; Nardou, Romain; Picardo, Michel A; Yamamoto, Sumii; Sivakumaran, Sudhir; Caiati, Maddalena D; Rheims, Sylvain; Minlebaev, Marat; Milh, Mathieu; Ferré, Pascal; Khazipov, Rustem; Romette, Jean-Louis; Lorquin, Jean; Cossart, Rosa; Khalilov, Ilgam; Nehlig, Astrid; Cherubini, Enrico; Ben-Ari, Yehezkel

    2011-01-05

    GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.

  13. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

    PubMed Central

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-01-01

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794

  14. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    PubMed

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic

  15. Pre- and postnatal differences in membrane, action potential, and ion channel properties of rostral nucleus of the solitary tract neurons

    PubMed Central

    Suwabe, Takeshi; Mistretta, Charlotte M.; Krull, Catherine

    2011-01-01

    There is little known about the prenatal development of the rostral nucleus of the solitary tract (rNST) neurons in rodents or the factors that influence circuit formation. With morphological and electrophysiological techniques in vitro, we investigated differences in the biophysical properties of rNST neurons in pre- and postnatal rats from embryonic day 14 (E14) through postnatal day 20. Developmental changes in passive membrane and action potential (AP) properties and the emergence and maturation of ion channels important in neuron function were characterized. Morphological maturation of rNST neurons parallels changes in passive membrane properties. Mean soma size, dendritic branch points, neurite endings, and neurite length all increase prenatally. whereas neuron resting membrane potential, input resistance, and time constant decrease. Dendritic spines, on the other hand, develop after birth. AP discharge patterns alter in pre- and postnatal stages. At E14, neurons generated a single TTX-sensitive, voltage-gated Na+ AP when depolarized; a higher discharge rate appeared at older stages. AP amplitude, half-width, and rise and fall times all change during development. Responses to current injection revealed a number of voltage-gated conductances in embryonic rNST, including a hyperpolarization-activated inward current and a low-threshold Ca2+ current that initiated Ca2+ spikes. A hyperpolarization-activated, transient outward potassium current was also present in the developing neurons. Although the properties of these channels change during development, they are present before synapses form and therefore, can contribute to initial establishment of neural circuits, as well as to the changing electrophysiological properties in developing rNST neurons. PMID:21865434

  16. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    PubMed

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  17. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons.

    PubMed

    Tan, Jianguo; Galligan, James J; Hollingworth, Robert M

    2007-07-01

    The agonist actions of seven commercial neonicotinoid insecticides and nicotine were studied on nicotinic acetylcholine receptors (nAChRs) expressed by neurons isolated from the three thoracic ganglia of the American cockroach, Periplaneta americana. Single electrode voltage clamp recording was used to measure agonist-induced inward currents. Acetylcholine, nicotine and all neonicotinoids tested, except thiamethoxam, caused inward currents which were blocked reversibly by methyllycaconitine, a nAChR antagonist. Based on maximum inward currents, neonicotinoids could be divided into two subgroups: (1) those with a heterocyclic ring in their electronegative pharmacophore moiety (i.e. nicotine, imidacloprid and thiacloprid) were relatively weak partial agonists causing only 20-25% of the maximum ACh current and (2) open chain compounds (i.e. acetamiprid, dinotefuran, nitenpyram, and clothiandin) which were much more effective agonists producing 60-100% of the maximum ACh current. These compounds also elicited different symptoms of poisoning in American cockroaches with excitatory responses evident for the low efficacy agonists but depressive and paralytic responses predominating for the most efficacious agonists. No correlation was observed between agonist affinity and efficacy on these nAChRs. Thiamethoxam, even at 100 microM, failed to cause an inward current and showed no competitive interaction with other neonicotinoids on nAChRs, indicating that it is not a direct-acting agonist or antagonist. Despite the probable presence of multiple subtypes of nAChRs on cockroach neurons, competition studies between neonicotinoids did not reveal evidence that separate binding sites exist for the tested compounds. The size of inward currents induced by co-application of neonicotinoid pairs at equal concentration (100 microM) were predominantly determined by the one with higher binding affinity as indicated by EC(50) values, rather than by the one with higher binding efficacy as

  18. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    PubMed

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M

    2011-12-15

    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  19. Involvement of G Protein-Coupled Receptor 30 (GPR30) in Rapid Action of Estrogen in Primate LHRH Neurons

    PubMed Central

    Noel, Sekoni D.; Keen, Kim L.; Baumann, David I.; Filardo, Edward J.; Terasawa, Ei

    2009-01-01

    Previously, we have reported that 17β-estradiol (E2) induces an increase in firing activity of primate LH-releasing hormone (LHRH) neurons. The present study investigates whether E2 alters LHRH release as well as the pattern of intracellular calcium ([Ca2+]i) oscillations and whether G protein-coupled receptor 30 (GPR30) plays a role in mediating the rapid E2 action in primate LHRH neurons. Results are summarized: 1) E2, the nuclear membrane-impermeable estrogen, estrogen-dendrimer conjugate, and the plasma membrane-impermeable estrogen, E2-BSA conjugate, all stimulated LHRH release within 10 min of exposure; 2) whereas the estrogen receptor antagonist, ICI 182,780, did not block the E2-induced LHRH release, E2 application to cells treated with pertussis toxin failed to induce LHRH release; 3) GPR30 mRNA was expressed in olfactory placode cultures, and GPR30 protein was expressed in a subset of LHRH neurons; 4) pertussis toxin treatment blocked the E2-induced increase in [Ca2+]i oscillations; 5) knockdown of GPR30 in primate LHRH neurons by transfection with small interfering RNA (siRNA) for GPR30 completely abrogated the E2-induced changes in [Ca2+]i oscillations, whereas transfection with control siRNA did not; 6) the estrogen-dendrimer conjugate-induced increase in [Ca2+]i oscillations also did not occur in LHRH neurons transfected with GPR30 siRNA; and 7) G1, a GPR30 agonist, resulted in changes in [Ca2+]i oscillations, similar to those observed with E2. Collectively, E2 induces a rapid excitatory effect on primate LHRH neurons, and this rapid action of E2 appears to be mediated, in part, through GPR30. PMID:19131510

  20. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  1. The isolation, from electromotor neurone perikarya, of messenger RNAs coding for synaptic proteins.

    PubMed

    Schmid, D; Stadler, H; Whittaker, V P

    1982-03-01

    Poly(A)-containing mRNA was isolated from the electric lobe, cerebellum and forebrain of Torpedo marmorata and from cholinergic electromotor perikarya isolated from the electric lobe. All the mRNA preparations were translated by a cell-free protein-synthesizing system from rabbit reticulocytes; no brain-specific factors were required. The highest stimulation rate was found with the perikaryal mRNA suggesting that this purely neuronal mRNA is a preferred template in the protein-synthesis system; the molecular basis of this phenomenon remains to be elucidated. The translation products of the perikaryal mRNA were analysed by two-dimensional gel electrophoresis and compared with the proteins of synaptosomes derived from the electromotor nerve terminals. The majority of the synaptosomal proteins comigrated with synthesized products. More than 100 synthesized proteins were detected as individual spots in the gel pattern, among them actin, subunits of neurofilamentous proteins and a protein considered to be a specific component of electromotor synaptic vesicles. Identities were confirmed in some cases by immunochemical methods. The results suggest that protein synthesis in the perikaryon of the electromotor neurone is largely directed to the production of proteins needed to maintain synaptic integrity. A comparison of the translation products of mRNA derived from the highly cholinergic electric lobe and a brain region, the cerebellum, which is non-cholinergic, revealed, as expected, some common translation products and others which appeared to be specific for the brain regions concerned. This approach may lead to the identification of protein specific for neurones of different transmitter types.

  2. Frequency and topography in monkey electroencephalogram during action observation: possible neural correlates of the mirror neuron system

    PubMed Central

    Coudé, G.; Vanderwert, R. E.; Thorpe, S.; Festante, F.; Bimbi, M.; Fox, N. A.; Ferrari, P. F.

    2014-01-01

    The observation of actions executed by others results in desynchronization of electroencephalogram (EEG) in the alpha and beta frequency bands recorded from the central regions in humans. On the other hand, mirror neurons, which are thought to be responsible for this effect, have been studied only in macaque monkeys, using single-cell recordings. Here, as a first step in a research programme aimed at understanding the parallels between human and monkey mirror neuron systems (MNS), we recorded EEG from the scalp of two monkeys during action observation. The monkeys were trained to fixate on the face of a human agent and subsequently to fixate on a target upon which the agent performed a grasping action. We found that action observation produced desynchronization in the 19–25 Hz band that was strongest over anterior and central electrodes. These results are in line with human data showing that specific frequency bands within the power spectrum of the ongoing EEG may be modulated by observation of actions and therefore might be a specific marker of MNS activity. PMID:24778383

  3. Back-propagating action potentials in pyramidal neurons: a putative signaling mechanism for the induction of Hebbian synaptic plasticity.

    PubMed

    Colbert, C M

    2001-01-01

    A hallmark of synaptic plasticity is the associative, or Hebbian, nature of its induction. By associative, we mean that the timing relationships between activity of the pre- and postsynaptic elements of a synapse determine whether synaptic strengths are modified. lt is well-established that associativity results, in large part, from the dual requirements for activation of the N-methyl-D-aspartate receptor-ionophore, namely presynaptic neurotransmitter release and postsynaptic depolarization. However, the specific dendritic events that provide the postsynaptic depolarization have been relatively unexplored. Increasing evidence suggests that back-propagating (i.e., antidromic) Na(+) action potentials provide the necessary postsynaptic depolarization to allow induction of associative synaptic plasticities. In hippocampal CAI and neocortical layer V pyramidal neurons, these action potentials provide much greater levels of dendritic depolarization than would be expected from synaptic currents alone. Moreover, they provide a relatively brief and synchronous depolarization throughout the dendritic arbor, allowing timing relationships to more directly reflect pre- and postsynaptic cell firing. Interestingly, certain properties of the back-propagating actions potentials differ from axonal or somatic action potentials in ways that seem to reflect their function. For example, the all-or-none property of action potential amplitude does not hold in the dendrites. In this review we discuss the back-propagating action potential as a dendritic signal that provides information to synapses about the firing state of the postsynaptic neuron. First, we consider the evidence that action potentials propagate back from the axon. Second, we describe the characteristics of the back-propagating action potential in terms of interactions of its underlying ionic currents. Third, we describe how these properties contribute to the timing aspects of the induction of long-term potentiation. Finally

  4. Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y.

    PubMed

    Louzao, M Carmen; Fernández, Diego A; Abal, Paula; Fraga, Maria; Vilariño, Natalia; Vieytes, Mercedes R; Botana, Luis M

    2015-09-02

    Okadaic acid (OA) and dinophysistoxins (DTXs) are a group of marine toxins that cause diarrheic shellfish poisoning (DSP) in humans and animals. These compounds are produced by dinoflagellates of the Prorocentrum and Dinophysis genera and can accumulate in filter-feeding bivalves, posing a serious health risk for shellfish consumers. The enteric nervous system (ENS) plays a crucial role in the regulation of the gastrointestinal tract. In addition, neuropeptides produced by ENS affects the epithelial barrier functions. In the present work we used a two-compartment human coculture model containing the SH-SY5Y neuroblastoma cell line and polarized colonic epithelial monolayers (Caco-2) to study the OA intestinal permeability. First, we have determined OA cytotoxicity and we have found that OA reduces the viability of SH-SY5Y in a dose-dependent way, even though DTX1 is 4 to 5 times more potent than OA. Besides DTX1 is 15 to 18 orders of magnitude more potent than OA in decreasing transepithelial electrical resistance (TEER) of caco-2 cells without inducing cytotoxicity. Permeability assays indicate that OA cross the monolayer and modulates the neuropeptide Y (NPY) secretion by neuroblastoma cells. This NPY also affects the permeability of OA. This offers a novel approach to establish the influence of OA neuronal action on their diarrheic effects through a cross talk between ENS and intestine via OA induced NPY secretion. Therefore, the OA mechanisms of toxicity that were long attributed only to the inhibition of protein phosphatases, would require a reevaluation.

  5. Action of thyroxine on the survival and neurite maintenance of cerebellar granule neurons in culture.

    PubMed

    Oyanagi, Koshi; Negishi, Takayuki; Tashiro, Tomoko

    2015-04-01

    Developmental hypothyroidism causes severe impairments in the cerebellum. To understand the role of thyroid hormones (THs) in cerebellar development, we examined the effect of three different THs, thyroxine (T4), 3,5,3'-triidothyronine (T3), and 3,3',5'-triiodothyronine (reverse T3; rT3), on the survival and morphology of cerebellar granule neurons (CGNs) in culture and found novel actions specific to T4. Rat CGNs obtained at postnatal day 6 were first cultured for 2 days in serum-containing medium with 25 mM K(+) (K25), then switched to serum-free medium with physiological 5 mM K(+) (K5) or with K25 and cultured for an additional 2 or 4 days. CGNs underwent apoptosis in K5 but survived in K25. Addition of T4 at concentrations of 100-200 nM but not T3 or rT3 rescued CGNs from cell death in K5 in a dose-dependent manner. Furthermore, 200 nM T4 was also effective in maintaining the neurites of CGNs in K5. In K5, T4 suppressed tau phosphorylation at two developmentally regulated sites as well as phosphorylation of c-jun N-terminal kinase (JNK) necessary for its activation and localization to axons. These results suggest that, during cerebellar development, T4 exerts its activity in cell survival and neurite maintenance in a manner distinct from the other two thyroid hormones through regulating the activity and localization of JNK.

  6. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  7. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed Central

    Greene, R W; Haas, H L

    1985-01-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation. PMID:3932644

  8. Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca(2+) spike.

    PubMed

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-04-03

    Dendritic Ca(2+) spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca(2+) activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca(2+) spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca(2+) spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca(2+) spike and output APs, which could contribute to mechanically interpreting how dendritic Ca(2+) activity participates in the simple computations of pyramidal neuron.

  9. Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca2+ spike

    PubMed Central

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Dendritic Ca2+ spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca2+ activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca2+ spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca2+ spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca2+ spike and output APs, which could contribute to mechanically interpreting how dendritic Ca2+ activity participates in the simple computations of pyramidal neuron. PMID:28367964

  10. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning.

    PubMed

    Chersi, Fabian; Mirolli, Marco; Pezzulo, Giovanni; Baldassarre, Gianluca

    2013-05-01

    Dual-system theories postulate that actions are supported either by a goal-directed or by a habit-driven response system. Neuroimaging and anatomo-functional studies have provided evidence that the prefrontal cortex plays a fundamental role in the first type of action control, while internal brain areas such as the basal ganglia are more active during habitual and overtrained responses. Additionally, it has been shown that areas of the cortex and the basal ganglia are connected through multiple parallel "channels", which are thought to function as an action selection mechanism resolving competitions between alternative options available in a given context. In this paper we propose a multi-layer network of spiking neurons that implements in detail the thalamo-cortical circuits that are believed to be involved in action learning and execution. A key feature of this model is that neurons are organized in small pools in the motor cortex and form independent loops with specific pools of the basal ganglia where inhibitory circuits implement a multistep selection mechanism. The described model has been validated utilizing it to control the actions of a virtual monkey that has to learn to turn on briefly flashing lights by pressing corresponding buttons on a board. When the animal is able to fluently execute the task the button-light associations are remapped so that it has to suppress its habitual behavior in order to execute goal-directed actions. The model nicely shows how sensory-motor associations for action sequences are formed at the cortico-basal ganglia level and how goal-directed decisions may override automatic motor responses.

  11. Orexin action on oxytocin neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Maejima, Yuko; Takahashi, Shinichi; Takasu, Katsuya; Takenoshita, Seiichi; Ueta, Yoichi; Shimomura, Kenju

    2017-04-12

    Oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus play an important role in food intake regulation. It has been shown that the secretion of oxytocin from the hypothalamus shows a diurnal circadian rhythmic pattern and disturbance of this pattern leads to the development of obesity. However, whether oxytocin secretion from the PVN has a diurnal pattern remains unknown. Here, we show that oxytocin secretion from the PVN does have a diurnal pattern and that the terminals of orexin neurons, the neuropeptide responsible for regulating the sleep-wake rhythm, are synapsed with PVN oxytocin neurons. Using transgenic rats selectively expressing monomeric red fluorescent protein 1 in oxytocin neurons, we found that orexin-A inhibits the activities of PVN oxytocin neurons by inhibiting glutamatergic excitatory synaptic input. These data suggest that orexin is a possible candidate to regulate the circadian rhythm of PVN oxytocin neurons. The circadian rhythmic secretion of oxytocin is considered to play an important role in maintaining homeostasis, including body weight regulation. Our present data indicate a possible contribution of orexin toward the development of circadian rhythm in PVN oxytocin neurons.

  12. Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus

    PubMed Central

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits. PMID:25409299

  13. Firing Dynamics and Modulatory Actions of Supraspinal Dopaminergic Neurons during Zebrafish Locomotor Behavior

    PubMed Central

    Jay, Michael; De Faveri, Francesca; McDearmid, Jonathan Robert

    2015-01-01

    Summary Background Dopamine (DA) has long been known to have modulatory effects on vertebrate motor circuits. However, the types of information encoded by supraspinal DAergic neurons and their relationship to motor behavior remain unknown. Results By conducting electrophysiological recordings from awake, paralyzed zebrafish larvae that can produce behaviorally relevant activity patterns, we show that supraspinal DAergic neurons generate two forms of output: tonic spiking and phasic bursting. Using paired supraspinal DA neuron and motoneuron recordings, we further show that these firing modes are associated with specific behavioral states. Tonic spiking is prevalent during periods of inactivity while bursting strongly correlates with locomotor output. Targeted laser ablation of supraspinal DA neurons reduces motor episode frequency without affecting basic parameters of motor output, strongly suggesting that these cells regulate spinal network excitability. Conclusions Our findings reveal how vertebrate motor circuit flexibility is temporally controlled by supraspinal DAergic pathways and provide important insights into the functional significance of this evolutionarily conserved cell population. PMID:25639243

  14. Branch specific and spike-order specific action potential invasion in basal, oblique, and apical dendrites of cortical pyramidal neurons

    PubMed Central

    Zhou, Wen-Liang; Short, Shaina M.; Rich, Matthew T.; Oikonomou, Katerina D.; Singh, Mandakini B.; Sterjanaj, Enas V.; Antic, Srdjan D.

    2014-01-01

    Abstract. In neocortical pyramidal neurons, action potentials (APs) propagate from the axon into the dendritic tree to influence distal synapses. Traditionally, AP backpropagation was studied in the thick apical trunk. Here, we used the principles of optical imaging developed by Cohen to investigate AP invasion into thin dendritic branches (basal, oblique, and tuft) of prefrontal cortical L5 pyramidal neurons. Multisite optical recordings from neighboring dendrites revealed a clear dichotomy between two seemingly equal dendritic branches belonging to the same cell (“sister branches”). We documented the variable efficacy of AP invasion in basal and oblique branches by revealing their AP voltage waveforms. Using fast multisite calcium imaging, we found that trains of APs are filtered differently between two apical tuft branches. Although one dendritic branch passes all spikes in an AP train, another branch belonging to the same neuron, same cortical layer, and same path distance from the cell body, experiences only one spike. Our data indicate that the vast differences in dendritic voltage and calcium transients, detected in dendrites of pyramidal neurons, arise from a nonuniform distribution of A-type K+ conductance, an aggregate number of branch points in the path of the AP propagation and minute differences in dendritic diameter. PMID:26157997

  15. fMRI Adaptation between Action Observation and Action Execution Reveals Cortical Areas with Mirror Neuron Properties in Human BA 44/45

    PubMed Central

    de la Rosa, Stephan; Schillinger, Frieder L.; Bülthoff, Heinrich H.; Schultz, Johannes; Uludag, Kamil

    2016-01-01

    Mirror neurons (MNs) are considered to be the supporting neural mechanism for action understanding. MNs have been identified in monkey’s area F5. The identification of MNs in the human homolog of monkeys’ area F5 Broadmann Area 44/45 (BA 44/45) has been proven methodologically difficult. Cross-modal functional MRI (fMRI) adaptation studies supporting the existence of MNs restricted their analysis to a priori candidate regions, whereas studies that failed to find evidence used non-object-directed (NDA) actions. We tackled these limitations by using object-directed actions (ODAs) differing only in terms of their object directedness in combination with a cross-modal adaptation paradigm and a whole-brain analysis. Additionally, we tested voxels’ blood oxygenation level-dependent (BOLD) response patterns for several properties previously reported as typical MN response properties. Our results revealed 52 voxels in left inferior frontal gyrus (IFG; particularly BA 44/45), which respond to both motor and visual stimulation and exhibit cross-modal adaptation between the execution and observation of the same action. These results demonstrate that part of human IFG, specifically BA 44/45, has BOLD response characteristics very similar to monkey’s area F5. PMID:26973496

  16. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    PubMed

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  17. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease

    PubMed Central

    Pissadaki, Eleftheria K.; Bolam, J. Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD. PMID:23515615

  18. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease.

    PubMed

    Pissadaki, Eleftheria K; Bolam, J Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD.

  19. Action potential initiation in the peripheral terminals of cold-sensitive neurones innervating the guinea-pig cornea.

    PubMed

    Carr, Richard W; Pianova, Svetlana; McKemy, David D; Brock, James A

    2009-03-15

    The site at which action potentials initiate within the terminal region of unmyelinated sensory axons has not been resolved. Combining recordings of nerve terminal impulses (NTIs) and collision analysis, the site of action potential initiation in guinea-pig corneal cold receptors was determined. For most receptors (77%), initiation mapped to a point in the time domain that was closer to the nerve terminal than to the site of electrical stimulation at the back of the eye. Guinea-pig corneal cold receptors are Adelta-neurones that lose their myelin sheath at the point where they enter the cornea, and therefore their axons conduct more slowly within the cornea. Allowing for this inhomogeneity in conduction speed, the resulting spatial estimates of action potential initiation sites correlated with changes in NTI shape predicted by simulation of action potentials initiating within a nerve terminal. In some receptors, more than one NTI shape was observed. Simulations of NTI shape suggest that the origin of differing NTI shapes result from action potentials initiating at different, spatially discrete, locations within the nerve terminal. Importantly, the relative incidence of NTI shapes resulting from action potential initiation close to the nerve termination increased during warming when nerve activity decreased, indicating that the favoured site of action potential initiation shifts toward the nerve terminal when it hyperpolarizes. This finding can be explained by a hyperpolarization-induced relief of Na(+) channel inactivation in the nerve terminal. The results provide direct evidence that the molecular entities responsible for stimulus transduction and action potential initiation reside in parallel with one another in the unmyelinated nerve terminals of cold receptors.

  20. Action Processing and Mirror Neuron Function in Patients with Amyotrophic Lateral Sclerosis: An fMRI Study

    PubMed Central

    Jelsone-Swain, Laura; Persad, Carol; Burkard, David; Welsh, Robert C.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a highly debilitating and rapidly fatal neurodegenerative disease. It has been suggested that social cognition may be affected, such as impairment in theory of mind (ToM) ability. Despite these findings, research in this area is scarce and the investigation of neural mechanisms behind such impairment is absent. Nineteen patients with ALS and eighteen healthy controls participated in this study. Because the mirror neuron system (MNS) is thought to be involved in theory of mind, we first implemented a straightforward action-execution and observation task to assess basic MNS function. Second, we examined the social-cognitive ability to understand actions of others, which is a component of ToM. We used fMRI to assess BOLD activity differences between groups during both experiments. Theory of mind was also measured behaviorally using the Reading the Mind in the Eyes test (RME). ALS patients displayed greater BOLD activity during the action-execution and observation task, especially throughout right anterior cortical regions. These areas included the right inferior operculum, premotor and primary motor regions, and left inferior parietal lobe. A conjunction analysis showed significantly more co-activated voxels during both the observation and action-execution conditions in the patient group throughout MNS regions. These results support a compensatory response in the MNS during action processing. In the action understanding experiment, healthy controls performed better behaviorally and subsequently recruited greater regions of activity throughout the prefrontal cortex and middle temporal gyrus. Lastly, action understanding performance was able to cluster patients with ALS into high and lower performing groups, which then differentiated RME performance. Collectively, these data suggest that social cognition, particularly theory of mind, may be affected in a subset of patients with ALS. This impairment may be related to functioning of

  1. Cannabinoid receptor-independent actions of the aminoalkylindole WIN 55,212-2 on trigeminal sensory neurons

    PubMed Central

    Price, Theodore J; Patwardhan, Amol; Akopian, Armen N; Hargreaves, Kenneth M; Flores, Christopher M

    2004-01-01

    The prototypical aminoalkylindole cannabinoid WIN 55,212-2 (WIN-2) has been shown to produce antihyperalgesia through a peripheral mechanism of action. However, it is not known whether WIN-2 exerts this action directly via cannabinoid receptors located on primary afferents or if other, perhaps indirect or noncannabinoid, mechanisms are involved. To address this question, we have examined the specific actions of WIN-2 on trigeminal ganglion (TG) neurons in vitro by quantifying its ability to modulate the evoked secretion of the proinflammatory neuropeptide CGRP as well as the inflammatory mediator-induced generation of cAMP. WIN-2 evoked CGRP release from TG neurons in vitro (EC50=26 μM) in a concentration- and calcium-dependent manner, which was mimicked by the cannabinoid receptor-inactive enantiomer WIN 55,212-3 (WIN-3). Moreover, WIN-2-evoked CGRP release was attenuated by the nonselective cation channel blocker ruthenium red but not by the vanilloid receptor type 1 (TRPV1) antagonist capsazepine, suggesting that, unlike certain endogenous and synthetic cannabinoids, WIN-2 is not a TRPV1 agonist but rather acts at an as yet unidentified cation channel. The inhibitory effects of WIN-2 on TG neurons were also examined. WIN-2 neither inhibited capsaicin-evoked CGRP release nor did it inhibit forskolin-, isoproteranol- or prostaglandin E2-stimulated cAMP accumulation. On the other hand, WIN-2 significantly inhibited (EC50=1.7 μM) 50 mM K+-evoked CGRP release by approximately 70%. WIN-2 inhibition of 50 mM K+-evoked CGRP release was not reversed by antagonists of cannabinoid type 1 (CB1) receptor, but was mimicked in magnitude and potency (EC50=2.7 μM) by its cannabinoid-inactive enantiomer WIN-3. These findings indicate that WIN-2 exerts both excitatory and inhibitory effects on TG neurons, neither of which appear to be mediated by CB1, CB2 or TRPV1 receptors, but by a novel calcium-dependent mechanism. The ramifications of these results are discussed in relation

  2. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes.

    PubMed

    Nagel, Manuel; Kleineidam, Christoph J

    2015-01-01

    Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant's ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature.

  3. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes

    PubMed Central

    Nagel, Manuel; Kleineidam, Christoph J.

    2015-01-01

    Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant’s ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature. PMID:26388753

  4. A survey of the effective factors in students' adherence to university dress code policy, using the theory of reasoned action

    PubMed Central

    KAVEH, MOHAMMAD HOSSEIN; MORADI, LEILA; HESAMPOUR, MARYAM; HASAN ZADEH, JAFAR

    2015-01-01

    Introduction Recognizing the determinants of behavior plays a major role in identification and application of effective strategies for encouraging individuals to follow the intended pattern of behavior. The present study aimed to analyze the university students’ behaviors regarding the amenability to dress code, using the theory of reasoned action (TRA). Methods In this cross sectional study, 472 students were selected through multi-stage random sampling. The data were collected using a researcher-made questionnaire whose validity was confirmed by specialists. Besides, its reliability was confirmed by conducting a pilot study revealing Cronbach’s alpha coefficients of 0.93 for attitude, 0.83 for subjective norms, 0.94 for behavioral intention and 0.77 for behavior. The data were entered into the SPSS statistical software and analyzed using descriptive and inferential statistics (Mann-Whitney, correlation and regression analysis). Results Based on the students’ self-reports, conformity of clothes to the university’s dress code was below the expected level in 28.87% of the female students and 28.55% of the male ones. The mean scores of attitude, subjective norms, and behavioral intention to comply with dress code policy were 28.78±10.08, 28.51±8.25 and 11.12±3.84, respectively. The students of different colleges were different from each other concerning TRA constructs. Yet, subjective norms played a more critical role in explaining the variance of dress code behavior among the students. Conclusion Theory of reasoned action explained the students’ dress code behaviors relatively well. The study results suggest paying attention to appropriate approaches in educational, cultural activities, including promotion of student-teacher communication. PMID:26269790

  5. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation.

    PubMed

    Thioux, Marc; Keysers, Christian

    2015-01-15

    We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modeling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject's capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others' actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy.

  6. [Blocking action of Nephila clavata spider toxin on ionic currents activated by glutamate and its agonists in isolated hippocampal neurons].

    PubMed

    Kiskin, N I; Kliuchko, E M; Kryshtal', O A; Tsyndrenko, A Ia; Akaike, N

    1989-01-01

    The blocking action of the Nephila clavata spider neurotoxin was studied using the concentration clamp method in isolated neurons of the rat hippocampus. Crude venom JSTX blocked L-glutamate-, quisqualate- and kainate-activated ionic currents mediated by activation of the non-N-methyl-D-aspartate (non-NMDA) membrane receptors. Ionic currents elicited by all agonists were depressed by crude JSTX venom to 34-35% of its initial amplitude with no recovery during prolonged washing. An active fraction of JSTX venom blocked ionic currents almost completely, but its action was partially reversible. The concentration dependences of blocking kinetics allowed determining the rate constants of JSTX interaction with glutamate receptors. It is supposed that JSTX blocks the non-NMDA ionic channels in some of their open states and may be one of useful tools in further biochemical and electrophysiological characterization of the glutamate-mediated synaptic transmission.

  7. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons.

    PubMed

    Schreiner, Benjamin S P; Lehmann, Ramona; Thiel, Ulrike; Ziemba, Paul M; Beltrán, Leopoldo R; Sherkheli, Muhammad A; Jeanbourquin, Philippe; Hugi, Alain; Werner, Markus; Gisselmann, Günter; Hatt, Hanns

    2014-04-05

    Nicotine sensory perception is generally thought to be mediated by nicotinic acetylcholine (nACh) receptors. However, recent data strongly support the idea that other receptors (e.g., transient receptor potential A1 channel, TRPA1) and other pathways contribute to the detection mechanisms underlying the olfactory and trigeminal cell response to nicotine flavor. This is in accordance with the reported ability of humans to discriminate between (+)- and (-)- nicotine enantiomers. To get a more detailed understanding of the molecular and cellular basis underlying the sensory perception of nicotine, we studied the activity of (+)- and (-)-nicotine on cultured murine trigeminal sensory neurons and on a range of heterologously expressed receptors. The human TRPA1 channel is activated by (-)-nicotine. In this work, we show that (+)-nicotine is also an activator of this channel. Pharmacological experiments using nicotinic acetylcholine receptors and transient receptor potential blockers revealed that trigeminal neurons express one or more unidentified receptors that are sensitive to (+)- and/or (-)-nicotine. Results also indicate that the presence of extracellular calcium ions is required to elicit trigeminal neuron responses to (+)- and (-)-nicotine. Results also show that both (+)-nicotine and (-)-nicotine can block 5-hydroxytryptamine type 3 (5-HT3) receptor-mediated responses in recombinant expression systems and in cultured trigeminal neurons expressing 5-HT3 receptors. Our investigations broaden the spectra of receptors that are targets for nicotine enantiomers and give new insights into the physiological role of nicotine.

  8. Behavioral and TMS Markers of Action Observation Might Reflect Distinct Neuronal Processes

    PubMed Central

    Hétu, Sébastien; Taschereau-Dumouchel, Vincent; Meziane, Hadj Boumediene; Jackson, Philip L.; Mercier, Catherine

    2016-01-01

    Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces muscle-specific changes in corticospinal excitability. From a signal detection theory standpoint, this pattern can be related to sensitivity, which here would measure the capacity to distinguish between two action observation conditions. In parallel to these TMS studies, action observation has also been linked to behavioral effects such as motor priming and interference. It has been hypothesized that behavioral markers of action observation could be related to TMS markers and thus represent a potentially cost-effective mean of assessing the functioning of the action-perception system. However, very few studies have looked at possible relationships between these two measures. The aim of this study was to investigate if individual differences in sensitivity to action observation could be related to the behavioral motor priming and interference effects produced by action observation. To this end, 14 healthy participants observed index and little finger movements during a TMS task and a stimulus–response compatibility task. Index muscle displayed sensitivity to action observation, and action observation resulted in significant motor priming+interference, while no significant effect was observed for the little finger in both task. Nevertheless, our results indicate that the sensitivity measured in TMS was not related to the behavioral changes measured in the stimulus–response compatibility task. Contrary to a widespread assumption, the current results indicate that individual differences in physiological and behavioral markers of action observation may be unrelated. This could have important impacts on the potential use of behavioral markers in place of more costly physiological markers of action observation in clinical settings. PMID:27683548

  9. Action-perception coupling in pianists: learned mappings or spatial musical association of response codes (SMARC) effect?

    PubMed

    Stewart, Lauren; Verdonschot, Rinus G; Nasralla, Patrick; Lanipekun, Jennifer

    2013-01-01

    The principle of common coding suggests that a joint representation is formed when actions are repeatedly paired with a specific perceptual event. Musicians are occupationally specialized with regard to the coupling between actions and their auditory effects. In the present study, we employed a novel paradigm to demonstrate automatic action-effect associations in pianists. Pianists and nonmusicians pressed keys according to aurally presented number sequences. Numbers were presented at pitches that were neutral, congruent, or incongruent with respect to pitches that would normally be produced by such actions. Response time differences were seen between congruent and incongruent sequences in pianists alone. A second experiment was conducted to determine whether these effects could be attributed to the existence of previously documented spatial/pitch compatibility effects. In a "stretched" version of the task, the pitch distance over which the numbers were presented was enlarged to a range that could not be produced by the hand span used in Experiment 1. The finding of a larger response time difference between congruent and incongruent trials in the original, standard, version compared with the stretched version, in pianists, but not in nonmusicians, indicates that the effects obtained are, at least partially, attributable to learned action effects.

  10. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected].

    PubMed

    Ossola, Bernardino; Schendzielorz, Nadia; Chen, Shih-Heng; Bird, Gary S; Tuominen, Raimo K; Männistö, Pekka T; Hong, Jau-Shyong

    2011-09-01

    Amantadine is commonly given to alleviate L-DOPA-induced dyskinesia of Parkinson's disease (PD) patients. Animal and human evidence showed that amantadine may also exert neuroprotection in several neurological disorders. Additionally, it is generally believed that this neuroprotection results from the ability of amantadine to inhibit glutamatergic NMDA receptor. However, several lines of evidence questioned the neuroprotective capacity of NMDA receptor antagonists in animal models of PD. Thus the cellular and molecular mechanism of neuroprotection of amantadine remains unclear. Using primary cultures with different composition of neurons, microglia, and astroglia we investigated the direct role of these glial cell types in the neuroprotective effect of amantadine. First, amantadine protected rat midbrain cultures from either MPP(+) or lipopolysaccharide (LPS), two toxins commonly used as PD models. Second, our studies revealed that amantadine reduced both LPS- and MPP(+)-induced toxicity of dopamine neurons through 1) the inhibition of the release of microglial pro-inflammatory factors, 2) an increase in expression of neurotrophic factors such as GDNF from astroglia. Lastly, differently from the general view on amantadine's action, we provided evidence suggesting that NMDA receptor inhibition was not crucial for the neuroprotective effect of amantadine. In conclusion, we report that amantadine protected dopamine neurons in two PD models through a novel dual mechanism, namely reducing the release of pro-inflammatory factors from activated microglia and increasing the expression of GNDF in astroglia.

  11. The distribution and chemical coding of intramural neurons supplying the porcine stomach - the study on normal pigs and on animals suffering from swine dysentery.

    PubMed

    Kaleczyc, J; Klimczuk, M; Franke-Radowiecka, A; Sienkiewicz, W; Majewski, M; Łakomy, M

    2007-06-01

    The present study was designed to investigate the expression of biologically active substances by intramural neurons supplying the stomach in normal (control) pigs and in pigs suffering from dysentery. Eight juvenile female pigs were used. Both dysenteric (n = 4; inoculated with Brachyspira hyodysenteriae) and control (n = 4) animals were deeply anaesthetized, transcardially perfused with buffered paraformalehyde, and tissue samples comprising all layers of the wall of the ventricular fundus were collected. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against vesicular acetylcholine (ACh) transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), Leu(5)-enkephalin (LENK), substance P (SP) and calcitonin gene-related peptide (CGRP). In both inner and outer submucosal plexuses of the control pigs, the majority of neurons were SP (55% and 58%, respectively)- or VAChT (54%)-positive. Many neurons stained also for CGRP (43 and 45%) or GAL (20% and 18%) and solitary perikarya were NOS-, SOM- or VIP-positive. The myenteric plexus neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (7%), SP (6%) or CGRP (solitary neurons), but they were SOM-negative. No intramural neurons immunoreactive to LENK were found. The most remarkable difference in the chemical coding of enteric neurons between the control and dysenteric pigs was a very increased number of GAL- and VAChT-positive nerve cells (up to 61% and 85%, respectively) in submucosal plexuses of the infected animals. The present results suggest that GAL and ACh have a specific role in local neural circuits of the inflamed porcine stomach in the course of swine dysentery.

  12. MaqFACS (Macaque Facial Action Coding System) can be used to document facial movements in Barbary macaques (Macaca sylvanus)

    PubMed Central

    Julle-Danière, Églantine; Whitehouse, Jamie; Joly, Marine; Gass, Carolin; Burrows, Anne M.; Waller, Bridget M.

    2015-01-01

    Human and non-human primates exhibit facial movements or displays to communicate with one another. The evolution of form and function of those displays could be better understood through multispecies comparisons. Anatomically based coding systems (Facial Action Coding Systems: FACS) are developed to enable such comparisons because they are standardized and systematic and aid identification of homologous expressions underpinned by similar muscle contractions. To date, FACS has been developed for humans, and subsequently modified for chimpanzees, rhesus macaques, orangutans, hylobatids, dogs, and cats. Here, we wanted to test whether the MaqFACS system developed in rhesus macaques (Macaca mulatta) could be used to code facial movements in Barbary macaques (M. sylvanus), a species phylogenetically close to the rhesus macaques. The findings show that the facial movement capacity of Barbary macaques can be reliably coded using the MaqFACS. We found differences in use and form of some movements, most likely due to specializations in the communicative repertoire of each species, rather than morphological differences. PMID:26401458

  13. Biological basis of miRNA action when their targets are located in human protein coding region.

    PubMed

    Gu, Wanjun; Wang, Xiaofei; Zhai, Chuanying; Zhou, Tong; Xie, Xueying

    2013-01-01

    Recent analyses have revealed many functional microRNA (miRNA) targets in mammalian protein coding regions. But, the mechanisms that ensure miRNA function when their target sites are located in protein coding regions of mammalian mRNA transcripts are largely unknown. In this paper, we investigate some potential biological factors, such as target site accessibility and local translation efficiency. We computationally analyze these two factors using experimentally identified miRNA targets in human protein coding region. We find site accessibility is significantly increased in miRNA target region to facilitate miRNA binding. At the mean time, local translation efficiency is also selectively decreased near miRNA target region. GC-poor codons are preferred in the flank region of miRNA target sites to ease the access of miRNA targets. Within-genome analysis shows substantial variations of site accessibility and local translation efficiency among different miRNA targets in the genome. Further analyses suggest target gene's GC content and conservation level could explain some of the differences in site accessibility. On the other hand, target gene's functional importance and conservation level can affect local translation efficiency near miRNA target region. We hence propose both site accessibility and local translation efficiency are important in miRNA action when miRNA target sites are located in mammalian protein coding regions.

  14. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study

    PubMed Central

    Popovic, Marko A; Foust, Amanda J; McCormick, David A; Zecevic, Dejan

    2011-01-01

    Abstract The spatial pattern of Na+ channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na+ channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (Vm imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination. PMID:21669974

  15. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    PubMed

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  16. Signed language and human action processing: evidence for functional constraints on the human mirror-neuron system.

    PubMed

    Corina, David P; Knapp, Heather Patterson

    2008-12-01

    In the quest to further understand the neural underpinning of human communication, researchers have turned to studies of naturally occurring signed languages used in Deaf communities. The comparison of the commonalities and differences between spoken and signed languages provides an opportunity to determine core neural systems responsible for linguistic communication independent of the modality in which a language is expressed. The present article examines such studies, and in addition asks what we can learn about human languages by contrasting formal visual-gestural linguistic systems (signed languages) with more general human action perception. To understand visual language perception, it is important to distinguish the demands of general human motion processing from the highly task-dependent demands associated with extracting linguistic meaning from arbitrary, conventionalized gestures. This endeavor is particularly important because theorists have suggested close homologies between perception and production of actions and functions of human language and social communication. We review recent behavioral, functional imaging, and neuropsychological studies that explore dissociations between the processing of human actions and signed languages. These data suggest incomplete overlap between the mirror-neuron systems proposed to mediate human action and language.

  17. Granularity within the mirror system is not informative on action perception. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Cattaneo, Luigi

    2015-03-01

    The present work [1] reviews a part of the now vast literature on visuomotor stimulus-response associations in the domain of action observation, commonly referred to as mirror mechanism or mirror system. The aim of the study is to propose a solution to a currently debated problem, namely in what frame of reference are mirror neurons coding movement. The solution proposed here is that, if the mirror system is part of the motor system, then the motor responses to action observation must be in the same frames of reference as that generally observed in the production of voluntary actions. This idea is part of the very first conceptualizations of the mirror system ("Each time an individual sees an action done by another individual, neurons that represent that action are activated in the observer's premotor cortex. This automatically induced, motor representation of the observed action corresponds to that which is spontaneously generated during active action and whose outcome is known to the acting individual" [2]) and has been explicitly proposed earlier [3] in the attempt of reconciling the very different findings in the literature on the mirror system's frames of reference. The novelty of the present approach is the explicit reference to the 'motor synergy' theory of voluntary hand movements. This theory states that the high number of degrees of freedom intrinsic to hand anatomy is reduced by the motor system to few principal components named motor synergies that are the building blocks of voluntary behavior [4]. I am enthusiastic about two points proposed by D'Ausilio in the present review and I am skeptical about some other points.

  18. A code to compute the action-angle transformation for a particle in an abritrary potential well

    SciTech Connect

    Berg, J.S.; Warnock, R.L.

    1995-06-01

    For a Vlasov treatment of longitudinal stability under an arbitrary wake field, with the solution of the Haiessinski equation as the unperturbed distribution, it is important to have the action-angle transformation for the distorted potential well in a convenient form. The authors have written a code that gives the transformation q,p {yields} J, {phi}, with q(J,{phi}) as a Fourier series in {phi}, the Fourier coefficients and the Hamiltonian H(J) being spline functions of J in C{sup 2} (having continuous second derivatives).

  19. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels

    PubMed Central

    Kasten, Michael R; Rudy, Bernardo; Anderson, Matthew P

    2007-01-01

    Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K+ and Ca2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K+ channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire (Vth). Inhibiting SK Ca2+-activated K+ channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders. PMID:17761775

  20. Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1

    PubMed Central

    Yamada, Junko; Okabe, Akihito; Toyoda, Hiroki; Kilb, Werner; Luhmann, Heiko J; Fukuda, Atsuo

    2004-01-01

    GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl−]i in immature neocortical neurones causes GABAA receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl− accumulation remain controversial. Therefore, the GABA reversal potential (EGABA) or [Cl−]i in early postnatal rat neocortical neurones was measured by the gramicidin-perforated patch-clamp method, and the relative expression levels of the cation−Cl− cotransporter mRNAs (in the same cells) were examined by semiquantitative single-cell multiplex RT-PCR to look for statistical correlations with [Cl−]i. The mRNA expression levels were positively (the Cl− accumulating Na+,K+−2Cl− cotransporter NKCC1) or negatively (the Cl− extruding K+−Cl− cotransporter KCC2) correlated with [Cl−]i. NKCC1 mRNA expression was high in early postnatal days, but decreased during postnatal development, whereas KCC2 mRNA expression displayed the opposite pattern. [Cl−]i and NKCC1 mRNA expression were each higher in cortical plate (CP) neurones than in the presumably older layer V/VI pyramidal neurones in a given slice. The pharmacological effects of bumetanide on EGABA were consistent with the different expression levels of NKCC1 mRNA. These data suggest that NKCC1 may play a pivotal role in the generation of GABA-mediated depolarization in immature CP cells, while KCC2 promotes the later maturation of GABAergic inhibition in the rat neocortex. PMID:15090604

  1. Protective action of erythropoietin on neuronal damage induced by activated microglia.

    PubMed

    Wenker, Shirley D; Chamorro, María E; Vittori, Daniela C; Nesse, Alcira B

    2013-04-01

    Inflammation is a physiological defense response, but may also represent a potential pathological process in neurological diseases. In this regard, microglia have a crucial role in either progression or amelioration of degenerative neuronal damage. Because of the role of hypoxia in pro-inflammatory mechanisms in the nervous system, and the potential anti-inflammatory protective effect of erythropoietin (Epo), we focused our investigation on the role of this factor on activation of microglia and neuroprotection. Activation of microglial cells (EOC-2) was achieved by chemical hypoxia induced by cobalt chloride (CoCl2 ) and characterized by increased levels of nitrite, tumor necrosis factor-α and reactive oxygen species production, as well as up-regulation of inducible nitric oxide synthase expression. Under these conditions, cell proliferation data and proliferating cell nuclear antigen (PCNA) staining demonstrated a mitogenic effect of chemical hypoxia. Even though pre-treatment with Epo did not prevent nitrite production, inducible nitric oxide synthase protein expression or tumor necrosis factor-α secretion, it prevented the oxidative stress induced by CoCl2 as well as cell proliferation. Neuronal cells (SH-SY5Y) cultured in the presence of conditioned medium from activated EOC-2 cells or macrophages (RAW 264.7) developed significant apoptosis, an effect that was abolished by Epo via Epo/Epo receptor activation. The results show that even though Epo did not exert a direct anti-inflammatory effect on microglia activation, it did increase the resistance of neurons to subsequent damage from pro-inflammatory agents. In addition to its anti-apoptotic ability, the Epo antioxidant effect may have an indirect influence on neuronal survival by modulation of the pro-inflammatory environment.

  2. Scenario-Based Projections of Wounded-in-Action Patient Condition Code Distributions

    DTIC Science & Technology

    2005-09-13

    quantitative process has been developed to estimate these patient streams. Objective The objective of this research was to develop a methodology that...developed that allows the user to select one of these methods to easily calculate the patient distributions. Approach Two approaches to estimate PC code...describes a methodology that uses International Classification of Diseases, 9th Revision (ICD- 9) diagnostic data to estimate the composition of the

  3. Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury.

    PubMed

    Gu, Shixin; Xie, Rong; Liu, Xiaodong; Shou, Jiajun; Gu, Wentao; Che, Xiaoming

    2017-04-01

    Recent evidence has suggested that long non-coding RNAs (lncRNAs) may play a significant role in the pathogenesis of several neurological diseases, including spinal cord injury (SCI). However, little is known about the role of lncRNAs in SCI. The aim of the present study was to evaluate the potential functions of lncRNAs in SCI and to identify the underlying mechanisms of action. We firstly analyzed Gene Expression Omnibus (GEO) datasets to investigate aberrantly-expressed lncRNAs which might be involved in the pathogenesis of SCI. The long non-coding RNA X-inactive specific transcript (XIST) was found to be one of the most significantly upregulated lncRNAs in the GEO dataset analysis, and is associated with apoptosis. We, therefore, selected this as a candidate lncRNA and investigated its function. We found that knockdown of lncRNA-XIST by Lv-shRNA had a prominent protective effect on SCI recovery by suppressing apoptosis through reactivation of the PI3K/AKT signaling pathway in rat spinal cord tissue. In particular, our results suggested that lncRNA-XIST may act as a competitive endogenous RNA, effectively becoming a sink for miR-494, leading to derepression of its target gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN). In addition, an inverse relationship between lncRNA-XIST and miR-494 was observed in spinal cord tissues of SCI rats. Further study demonstrated that antagomiR-494 could reverse the protective effects of lncRNA-XIST knockdown on SCI rats through blocking the PTEN/PI3K/AKT signaling pathway. These results suggested that lncRNA-XIST knockdown may play an important role in limiting neuronal apoptosis in rats following SCI, and that the observed protective effects of lncRNA-XIST knockdown might have been mediated by its regulation on the phosphorylation of AKT by competitively binding miR-494. These findings have revealed, for the first time, the importance of the XIST/miR-494/PTEN/AKT signaling axis in the pathogenesis of SCI

  4. Action-potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea.

    PubMed

    Gillette, R; Gillette, M U; Davis, W J

    1980-03-01

    1. The ventral white cells (VWC's) of the buccal ganglion of Pleurobranchaea, so named for their position and color, are a bilateral pair of neuron somata. Each sends a single axon out its contralateral stomatogastric nerve and has a dendritic field originating close to the soma. 2. The vwcs exhibit spontaneous episodes of prolonged depolarization (duration 1--4 min) accompanied by repetitive action-potential activity and separated by regular intervals of 3--30 min. Such prolonged burst episodes can be triggered by short pulses of depolarizing current. During the repetitive activity of the spontaneous bursts or that driven by imposed depolarization, the action potentials progressively broaden to 5--16 times their initial duration. 3. During spontaneous bursting or activity driven by imposed depolarization, the cyclic motor output of the feeding network is initiated or accelerated with a latency corresponding with the development of appreciable VWC spike broadening. When broadening of antidromic VWC spikes is suppressed by imposed hyperpolarization of the soma, the frequency of feeding cycles is significantly lower than when broadened spikes are allowed to develop. When trains of spikes are driven by depolarizing current, the motor output of the feeding network is not initiated until the VWC spikes have broadened to a repeatable "threshold" duration, regardless of the intensity of the depolarizing current. 4. The endogenous production of prolonged burst episodes, triggered by depolarizing current pulses, and progressive spike broadening can be demonstrated in the surgically isolated VWC soma. 5. The paired VWCs are strongly electrically coupled and display highly synchronous activity. They receive synaptic inputs from many previously identified interneurons of the feeding network and are thus reciprocally coupled within the network. 6. These results demonstrate that the capacity of this neuron to generate broadened action potentials during repetitive activity

  5. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.

    PubMed Central

    Sánchez, D; Ribas, J

    1991-01-01

    1. Action potentials of neurones of the ventral part of the guinea-pig periaqueductal grey (PAG) were studied by intracellular recording in a mesencephalic slice preparation maintained in vitro. 2. Fast spikes spontaneously fired last 2.8 +/- 0.6 ms (mean +/- S.D.) and have an amplitude of 72.3 +/- 5.3 mV (n = 28). The neurones could be antidromically activated from the neighbouring white matter and these spikes show an initial segment component that triggers the soma-dendritic spike. These two components were dissociated by hyperpolarization. Action potentials are Na+ dependent and a Ca2+ conductance is responsible for the hump on the falling phase. Hyperpolarization makes the hump disappear and a faster rate of rise and fall are seen. Accommodation of the firing threshold is observed in response to depolarizing ramps, which is eliminated with hyperpolarization. 3. High-threshold Ca2+ spikes are evoked in either Na(+)-free solution or in the presence of tetrodotoxin (TTX). These presumed dendritic action potentials display a fast repolarization and a large after-hyperpolarization (AHP) that prevent repetitive firing. This AHP is mainly generated by Ca(2+)-dependent K+ conductances. 4. The repolarization of fast action potentials depends on the activation of K+ conductances as well as a Na+ inactivation process. A fast-activated tetraethyl-ammonium (TEA)-sensitive K+ conductance, that could be Ca2+ dependent, and a K+ conductance blocked by apamin seem to be involved in the repolarization. 5. Each fast action potential is followed by a pronounced AHP with two components, an initial fast and a slow decaying phase. Membrane hyperpolarization around -60 mV eliminated the first component and the AHP acquired a plateau-like shape. At -90 mV the AHP was nullified. The slow phase was Ca2+ dependent and an apamin-sensitive K+ conductance is involved in its generation. This conductance may be active during the early part of the AHP, but a fast-activated TEA-sensitive K

  6. Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice.

    PubMed

    Pielecka-Fortuna, Justyna; DeFazio, R Anthony; Moenter, Suzanne M

    2011-11-01

    Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, I(A), and a sustained current, I(K). Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX+E). There were no diurnal changes in either I(A) or I(K) in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX+E mice, I(A) and I(K) were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased I(A) in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced I(A) regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized I(A) activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.

  7. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  8. Prevention of Ca(2+)-mediated action potentials in GABAergic local circuit neurones of rat thalamus by a transient K+ current.

    PubMed Central

    Pape, H C; Budde, T; Mager, R; Kisvárday, Z F

    1994-01-01

    1. Neurones enzymatically dissociated from the rat dorsal lateral geniculate nucleus (LGN) were identified as GABAergic local circuit interneurones and geniculocortical relay cells, based upon quantitative analysis of soma profiles, immunohistochemical detection of GABA or glutamic acid decarboxylase, and basic electrogenic behaviour. 2. During whole-cell current-clamp recording, isolated LGN neurones generated firing patterns resembling those in intact tissue, with the most striking difference relating to the presence in relay cells of a Ca2+ action potential with a low threshold of activation, capable of triggering fast spikes, and the absence of a regenerative Ca2+ response with a low threshold of activation in local circuit cells. 3. Whole-cell voltage-clamp experiments demonstrated that both classes of LGN neurones possess at least two voltage-dependent membrane currents which operate in a range of membrane potentials negative to the threshold for generation of Na(+)-K(+)-mediated spikes: the T-type Ca2+ current (IT) and an A-type K+ current (IA). Taking into account the differences in membrane surface area, the average size of IT was similar in the two types of neurones, and interneurones possessed a slightly larger A-conductance. 4. In local circuit neurones, the ranges of steady-state inactivation and activation of IT and IA were largely overlapping (VH = 81.1 vs. -82.8 mV), both currents activated at around -70 mV, and they rapidly increased in amplitude with further depolarization. In relay cells, the inactivation curve of IT was negatively shifted along the voltage axis by about 20 mV compared with that of IA (Vh = -86.1 vs. -69.2 mV), and the activation threshold for IT (at -80 mV) was 20 mV more negative than that for IA. In interneurones, the activation range of IT was shifted to values more positive than that in relay cells (Vh = -54.9 vs. -64.5 mV), whereas the activation range of IA was more negative (Vh = -25.2 vs. -14.5 mV). 5. Under whole

  9. Protective action of green tea catechins in neuronal mitochondria during aging.

    PubMed

    Assuncao, Marco; Andrade, Jose Paulo

    2015-01-01

    Mitochondria are central players in the regulation of cell homeostasis. They are essential for energy production but at the same time, reactive oxygen species accumulate as byproducts of the electron transport chain causing mitochondrial damage. In the central nervous system, senescence and neurodegeneration occur as a consequence of mitochondrial oxidative insults and impaired electron transfer. The accumulation of several oxidation products in neurons during aging prompts the idea that consumption of antioxidant compounds may delay neurodegenerative processes. Tea, one of the most consumed beverages in the world, presents benefits to human health that have been associated to its abundance in polyphenols, mainly catechins, that possess powerful antioxidant properties in vivo and in vitro. In this review, the focus will be placed on the effects of green tea catechins in neuronal mitochondria. Although these compounds reach the brain in small quantities, there are several possible targets, signaling pathways and molecular machinery impinging in the mitochondria that will be highlighted. Accumulated evidence thus far seems to indicate that catechins help prevent neurodegeneration and delay brain function decline.

  10. The influence of intravesical administration of resiniferatoxin (RTX) on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder.

    PubMed

    Lepiarczyk, Ewa; Majewski, Mariusz; Bossowska, Agnieszka

    2015-11-01

    Resiniferatoxin (RTX) is used as an experimental drug in therapy of neurogenic urinary bladder disorders. The present study investigated the chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after intravesical RTX instillation. The SChG neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against dopamine β-hydroxylase (DβH; marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin, Leu(5)-enkephalin and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 5) and RTX-treated pigs (n = 5), the vast majority (90.4 ± 2.8 and 89.7 ± 2.3%, respectively) of FB-positive (FB+) nerve cells were DβH+. RTX instillation caused a decrease in the number of FB+/DβH+ neurons immunopositive to NPY (71.1 ± 12.1 vs 43.2 ± 6.7%), VIP (21.3 ± 10.7 vs 5.3 ± 4.3%) or SOM (16.5 ± 4.6 vs 2.3 ± 2.6%) and a distinct increase in the number of FB+/DβH+ neurons immunoreactive to nNOS (0.8 ± 1 vs 5.3 ± 1.9 %). The present study for the first time has provided some information that therapeutic effects of RTX on the mammalian urinary bladder can be partly mediated by SChG neurons.

  11. Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range

    SciTech Connect

    McLean, M.J.; Holcomb, R.R.; Wamil, A.W.; Pickett, J.D.; Cavopol, A.V.

    1995-05-01

    To characterize the inhibitory effect of a static magnetic field, action potentials (AP) were elicited by intracellular application of 1 ms depolarizing current pulses of constant amplitude to the somata of adult mouse dorsal root ganglion neurons in monolayer dissociated cell culture. During the control period, < 5% of stimuli failed to elicit AP. During exposure to an {approximately}11 mT static magnetic field at the cell position produced by an array of four permanent center-charged neodymium magnets of alternating polarity (MAG-4A), 66% of stimuli failed to elicit AP. The number of failures was maximal after about 200--250 s in the field and returned gradually to baseline over 400--600 s. A direct or indirect effect on the conformation of AP generating sodium channels could account for these results because (1) failure was preceded often by reduction of maximal rate of rise, an indirect measure of sodium current; (2) recovery was significantly prolonged in more than one-half of neurons that were not stimulated during exposure to the MAG-4A field; and (3) resting membrane potential, input resistance, and chronaxie were unaffected by the field. The effect was diminished or prevented by moving the MAG-4A array along the X or Z axis away from the neuron under study and by increasing the distance between magnets in the XY plane. Reduction of AP firing during exposure to the {approximately}0.1 mT field produced by a MAG-4A array of micromagnets was about the same as that produced by a MAG-4A array of the large magnets above. The {approximately}28 mT field produced at cell position by two magnets of alternating polarity and the {approximately}88 mT field produced by a single magnet had no significant effect on AP firing. These findings suggest that field strength alone cannot account for AP blockade.

  12. Striatal and Tegmental Neurons Code Critical Signals for Temporal-Difference Learning of State Value in Domestic Chicks

    PubMed Central

    Wen, Chentao; Ogura, Yukiko; Matsushima, Toshiya

    2016-01-01

    To ensure survival, animals must update the internal representations of their environment in a trial-and-error fashion. Psychological studies of associative learning and neurophysiological analyses of dopaminergic neurons have suggested that this updating process involves the temporal-difference (TD) method in the basal ganglia network. However, the way in which the component variables of the TD method are implemented at the neuronal level is unclear. To investigate the underlying neural mechanisms, we trained domestic chicks to associate color cues with food rewards. We recorded neuronal activities from the medial striatum or tegmentum in a freely behaving condition and examined how reward omission changed neuronal firing. To compare neuronal activities with the signals assumed in the TD method, we simulated the behavioral task in the form of a finite sequence composed of discrete steps of time. The three signals assumed in the simulated task were the prediction signal, the target signal for updating, and the TD-error signal. In both the medial striatum and tegmentum, the majority of recorded neurons were categorized into three types according to their fitness for three models, though these neurons tended to form a continuum spectrum without distinct differences in the firing rate. Specifically, two types of striatal neurons successfully mimicked the target signal and the prediction signal. A linear summation of these two types of striatum neurons was a good fit for the activity of one type of tegmental neurons mimicking the TD-error signal. The present study thus demonstrates that the striatum and tegmentum can convey the signals critically required for the TD method. Based on the theoretical and neurophysiological studies, together with tract-tracing data, we propose a novel model to explain how the convergence of signals represented in the striatum could lead to the computation of TD error in tegmental dopaminergic neurons. PMID:27877100

  13. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control.

    PubMed

    de Kloet, Annette D; Liu, Meng; Rodríguez, Vermalí; Krause, Eric G; Sumners, Colin

    2015-09-01

    Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.

  14. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons

    PubMed Central

    Martinez-Espinosa, Pedro L; Wu, Jianping; Yang, Chengtao; Gonzalez-Perez, Vivian; Zhou, Huifang; Liang, Hongwu; Xia, Xiao-Ming; Lingle, Christopher J

    2015-01-01

    Two mammalian genes, Kcnt1 and Kcnt2, encode pore-forming subunits of Na+-dependent K+ (KNa) channels. Progress in understanding KNa channels has been hampered by the absence of specific tools and methods for rigorous KNa identification in native cells. Here, we report the genetic disruption of both Kcnt1 and Kcnt2, confirm the loss of Slo2.2 and Slo2.1 protein, respectively, in KO animals, and define tissues enriched in Slo2 expression. Noting the prevalence of Slo2.2 in dorsal root ganglion, we find that KO of Slo2.2, but not Slo2.1, results in enhanced itch and pain responses. In dissociated small diameter DRG neurons, KO of Slo2.2, but not Slo2.1, abolishes KNa current. Utilizing isolectin B4+ neurons, the absence of KNa current results in an increase in action potential (AP) firing and a decrease in AP threshold. Activation of KNa acts as a brake to initiation of the first depolarization-elicited AP with no discernible effect on afterhyperpolarizations. DOI: http://dx.doi.org/10.7554/eLife.10013.001 PMID:26559620

  15. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons.

    PubMed

    Martinez-Espinosa, Pedro L; Wu, Jianping; Yang, Chengtao; Gonzalez-Perez, Vivian; Zhou, Huifang; Liang, Hongwu; Xia, Xiao-Ming; Lingle, Christopher J

    2015-11-11

    Two mammalian genes, Kcnt1 and Kcnt2, encode pore-forming subunits of Na(+)-dependent K(+) (KNa) channels. Progress in understanding KNa channels has been hampered by the absence of specific tools and methods for rigorous KNa identification in native cells. Here, we report the genetic disruption of both Kcnt1 and Kcnt2, confirm the loss of Slo2.2 and Slo2.1 protein, respectively, in KO animals, and define tissues enriched in Slo2 expression. Noting the prevalence of Slo2.2 in dorsal root ganglion, we find that KO of Slo2.2, but not Slo2.1, results in enhanced itch and pain responses. In dissociated small diameter DRG neurons, KO of Slo2.2, but not Slo2.1, abolishes KNa current. Utilizing isolectin B4+ neurons, the absence of KNa current results in an increase in action potential (AP) firing and a decrease in AP threshold. Activation of KNa acts as a brake to initiation of the first depolarization-elicited AP with no discernible effect on afterhyperpolarizations.

  16. Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive.

    PubMed

    Scott, Luisa L; Hage, Travis A; Golding, Nace L

    2007-09-01

    Principal neurons of the medial superior olive (MSO) convey azimuthal sound localization cues through modulation of their rate of action potential firing. Previous intracellular studies in vitro have shown that action potentials appear highly attenuated at the soma of MSO neurons, potentially reflecting specialized action potential initiation and/or a physically distant site of generation. To examine this more directly, we made dual patch-clamp recordings from MSO principal neurons in gerbil brainstem slices. Using somatic and dendritic whole-cell recordings, we show that graded action potentials at the soma are highly sensitive to the rate of rise of excitation and undergo strong attenuation in their backpropagation into the dendrites (length constant, 76 microm), particularly during strong dendritic excitation. Using paired somatic whole-cell and axonal loose-patch recordings, we show that action potentials recorded in the axon at distances > 25 microm are all-or-none, and uniform in amplitude even when action potentials appear graded at the soma. This proximal zone corresponded to the start of myelination in the axon, as assessed with immunocytochemical staining for myelin basic protein in single-labelled neurons. Finally, the axon was capable of sustaining remarkably high firing rates, with perfect entrainment occurring at frequencies of up to 1 kHz. Together, our findings show that action potential signalling in MSO principal neurons is highly secure, but shows a restricted invasion of the somatodendritic compartment of the cell. This restriction may be important for minimizing distortions in synaptic integration during the high frequencies of synaptic input encountered in the MSO.

  17. Measuring the quality of neuronal identification in ensemble recordings

    PubMed Central

    Neymotin, Samuel A.; Lytton, William W.; Olypher, Andrey V.; Fenton, André A.

    2011-01-01

    Technological advances in electrode construction and digital signal processing now allow recording simultaneous extracellular action potential discharges from many single neurons, with the potential to revolutionize understanding of the neural codes for sensory, motor and cognitive variables. Such studies have revealed the importance of ensemble neural codes, encoding information in the dynamic relationships amongst the action potential spike trains of multiple single neurons. Although the success of this research depends on the accurate classification of extracellular action potentials to individual neurons, there are no widely used quantitative methods for assessing the quality of the classifications. Here we describe information theoretic measures of action potential waveform isolation applicable to any dataset, that have an intuitive, universal interpretation, and that are not dependent on the methods or choice of parameters for single unit isolation, and that have been validated using a dataset of simultaneous intra- and extracellular neuronal recordings from Sprague-Dawley rats. PMID:22072690

  18. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs

    PubMed Central

    Koka, Kanthaiah; Tollin, Daniel J.

    2014-01-01

    The interaural level difference (ILD) cue to sound location is first encoded in the lateral superior olive (LSO). ILD sensitivity results because the LSO receives excitatory input from the ipsilateral cochlear nucleus and inhibitory input indirectly from the contralateral cochlear nucleus via glycinergic neurons of the ipsilateral medial nucleus of the trapezoid body (MNTB). It is hypothesized that in order for LSO neurons to encode ILDs, the sound spectra at both ears must be accurately encoded via spike rate by their afferents. This spectral-coding hypothesis has not been directly tested in MNTB, likely because MNTB neurons have been mostly described and studied recently in regards to their abilities to encode temporal aspects of sounds, not spectral. Here, we test the hypothesis that MNTB neurons and their inputs from the cochlear nucleus and auditory nerve code sound spectra via discharge rate. The Random Spectral Shape (RSS) method was used to estimate how the levels of 100-ms duration spectrally stationary stimuli were weighted, both linearly and non-linearly, across a wide band of frequencies. In general, MNTB neurons, and their globular bushy cell inputs, were found to be well-modeled by a linear weighting of spectra demonstrating that the pathways through the MNTB can accurately encode sound spectra including those resulting from the acoustical cues to sound location provided by head-related directional transfer functions (DTFs). Together with the anatomical and biophysical specializations for timing in the MNTB-LSO complex, these mechanisms may allow ILDs to be computed for complex stimuli with rapid spectrotemporally-modulated envelopes such as speech and animal vocalizations and moving sound sources. PMID:25565971

  19. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  20. Prefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task

    PubMed Central

    Wormwood, Benjamin A.; Miller, Rikki L. A.; Gibson, Brett M.; Mair, Robert G.

    2016-01-01

    To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found neurons with responses related to preparation, movement, lever press responses, reinforcement, and memory delays. Combined event-related and video tracking analyses revealed variability in spatial tuning of neurons with similar event-related activity. While all correlated neurons exhibited spatial tuning broadly consistent with relevant task events, for instance reinforcement-related activity concentrated in locations where reinforcement was delivered, some had elevated activity in more specific locations, for instance reinforcement-related activity in one of several locations where reinforcement was delivered. Timing analyses revealed a limited set of distinct response types with activity time-locked to critical behavioral events that represent the temporal organization of dDNMTP trials. Our results suggest that reinforcement-guided decision-making emerges from discrete populations of medial prefrontal neurons that encode information related to planned or ongoing movements and actions and anticipated or actual action-outcomes in conjunction with information about spatial context. PMID:26848579

  1. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    PubMed

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  2. Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization.

    PubMed

    Hochner, B; Klein, M; Schacher, S; Kandel, E R

    1986-11-01

    Presynaptic facilitation of transmitter release from Aplysia sensory neurons is an important contributor to behavioral sensitization of the gill and siphon withdrawal reflex. The enhanced release is accompanied by reduction of the serotonin-sensitive S current in the sensory neurons and a consequent increase in duration of the presynaptic action potential (ranging from 10% to 30%). We find that changes of similar magnitude in the duration of depolarizing voltage-clamp steps in sensory neurons in intact abdominal ganglia yield increases in synaptic potentials of 45-120%. In dissociated cell culture, these changes lead to increases of 25-60% in the synaptic potential. Prolongation of presynaptic depolarization using voltage clamp or prolongation of the duration of the action potential by K(+)-channel blockers leads to prolongation of the time-to-peak of the synaptic potentials; similar changes in time-to-peak occur during presynaptic facilitation. The time-to-peak is not changed by homosynaptic depression or by changing the Ca(2+) concentration, procedures that alter release without changing the duration of the action potential. Preventing the spike from broadening by voltage clamping the presynaptic neuron substantially reduces or blocks the facilitation. These results suggest that broadening of the action potential during facilitation is a causal factor in the enhancement of transmitter release.

  3. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study

    PubMed Central

    Zant, Janneke C.; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T.; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V.; McCarley, Robert W.; Brown, Ritchie E.

    2016-01-01

    Understanding the control of sleep–wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep–wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of “selective” optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT Optogenetics is a revolutionary tool to assess the roles of

  4. Actions of cromakalim on outward currents of CA1 neurones in hippocampal slices.

    PubMed Central

    Erdemli, G; Krnjević, K

    1994-01-01

    1. Membrane effects of cromakalim (Crom; 50-300 microM) were examined in CA1 neurones recorded mainly by intracellular, single-electrode voltage-clamping in slices (from Sprague-Dawley rats) kept in an interface chamber at 33 degrees C. 2. In 14 cells held at -63 +/- 3.5 mV, in the presence of tetrodotoxin, kynurenic acid and (in most cases) bicuculline, bath applied Crom produced no consistent change in holding current (-59 +/- 66 pA) or input conductance (GN) (-3.9 +/- 5.2%). 3. Overall there were no significant changes in instantaneous inward rectification or in Q-current inward relaxations. 4. In 18 out of 22 cells, outward currents, evoked by 0.5 s pulses to voltages > -50 and < -20 mV, were depressed by Crom (by 42 +/- 11%, for n = 22). Because this effect was consistently seen in Ca current-blocking media, containing either Mn and low Ca, or Cd (and also carbachol), the K channels depressed by Crom were probably of the delayed rectifier (IDR) type. 5. The Crom-control difference current (ICrom), obtained with slow depolarizing ramps, had a biphasic character, inward in the voltage (V) range > -50 < -20 mV (where outward currents are depressed by Crom) and tending outward for V > or = -20 mV. 6. In 10 out of 11 cells, Crom potentiated a D-like, slowly-inactivating outward current (by 88 +/- 31%, for n = 11).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7530570

  5. Sharing a task or sharing space? On the effect of the confederate in action coding in a detection task.

    PubMed

    Guagnano, Delia; Rusconi, Elena; Umiltà, Carlo Arrigo

    2010-03-01

    Several studies showed a Simon effect when two participants sit close to each other and perform one of the two halves of a two-choice RT task. That is, each participant perform a go-nogo task. A Simon effect emerges, which instead is absent when the same go-nogo tasks are performed individually. Hence the terms were introduced of "social Simon task" and 'social Simon effect". As of now, the social Simon effect was observed with social Simon tasks that overtly gave the participants the impression of being performing in collaboration with another person. In the present study we show that the social Simon effect was present also when, in the social Simon task, the two participants did not actually collaborate. It is, however, absent when participants perform the social task outside of each other's peripersonal space (i.e., outside arm-reach). We argue that the social Simon effect does not necessarily imply a representation of the other's action, as previously suggested. The presence of an active confederate in peripersonal space might simply provide a reference for coding one's own action in space.

  6. Neuronal adaptation involves rapid expansion of the action potential initiation site

    PubMed Central

    Scott, Ricardo S.; Henneberger, Christian; Padmashri, Ragunathan; Anders, Stefanie; Jensen, Thomas P.; Rusakov, Dmitri A.

    2014-01-01

    Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma–axon recordings combined with axonal Na+ and Ca2+ imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na+ channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale. PMID:24851940

  7. Neuronal and immunological basis of action of antidepressants in chronic pain - clinical and experimental studies.

    PubMed

    Mika, Joanna; Zychowska, Magdalena; Makuch, Wioletta; Rojewska, Ewelina; Przewlocka, Barbara

    2013-01-01

    The current knowledge of the pharmacological actions of the tricyclic antidepressants (TCAs) has slowly evolved through their over 40-year history. Chronic pain represents one of the most important public health problems, and antidepressants are an essential part of the therapeutic strategy in addition to classical analgesics. This article reviews the available evidence on the efficacy and safety of antidepressants in chronic pain conditions; namely, headaches, low back pain, fibromyalgia, cancer pain and especially neuropathic pain. TCAs are traditionally the main type of depression medication used to treat chronic pain. Recently, new antidepressants were introduced into clinical use, with a significant reduction in side effects and equivalent efficacy on mood disorders. These new drugs that are effective for chronic pain belong to the tetracyclic antidepressants (TeCAs) group (amoxapine, maprotiline), the serotonin and noradrenaline reuptake inhibitors (SNRIs) group (duloxetine, venlafaxine, milnacipran) and the atypical antidepressants group (bupropion, trazodone, mirtazapine, nefazodone). In this review, we present the available publications on TCAs (amitriptyline, doxepin, imipramine, desipramine, nortriptyline), TeCAs (amoxapine, maprotiline), selective serotonin reuptake inhibitors (SSRIs) (citalopram, fluoxetine, paroxetine), SNRIs (duloxetine, venlafaxine, milnacipran) and atypical antidepressants (bupropion) for the treatment of neuropathic pain. We also review analgesics acting as both opioid receptor agonists and also acting as aminergic reuptake inhibitors. Existing data are insufficient to conclude which of these new classes of antidepressants has the best clinical profile and will be the most effective in the treatment of neuropathic pain; in addition, a lower incidence of side effects should be considered. Increased experimental and translational research is a key for further improvement of the treatment of chronic pain with antidepressants. However

  8. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons.

    PubMed

    Wakita, Masahito; Kotani, Naoki; Yamaga, Toshitaka; Akaike, Norio

    2015-09-01

    We evaluated the effects of N2O on synaptic transmission using a preparation of mechanically dissociated rat hippocampal CA3 neurons that allowed assays of single bouton responses evoked from native functional nerve endings. We studied the effects of N2O on GABAA, glutamate, AMPA and NMDA receptor-mediated currents (IGABA, IGlu, IAMPA and INMDA) elicited by exogenous application of GABA, glutamate, (S)-AMPA, and NMDA and spontaneous, miniature, and evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic current (sIPSC, mIPSC, eIPSC, sEPSC, mEPSC and eEPSC) in mechanically dissociated CA3 neurons. eIPSC and eEPSC were evoked by focal electrical stimulation of a single bouton. Administration of 70% N2O altered neither IGABA nor the frequency and amplitude of both sIPSCs and mIPSCs. In contrast, N2O decreased the amplitude of eIPSCs, while increasing failure rates (Rf) and paired-pulse ratios (PPR) in a concentration-dependent manner. On the other hand, N2O decreased IGlu, IAMPA and INMDA. Again N2O did not change the frequency and amplitude of either sEPSCs of mEPSCs. N2O also decreased amplitudes of eEPSCs with increased Rf and PPR. The decay phases of all synaptic responses were unchanged. The present results indicated that N2O inhibits the activation of AMPA/KA and NMDA receptors and also that N2O preferentially depress the action potential-dependent GABA and glutamate releases but had little effects on spontaneous and miniature releases.

  9. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system.

    PubMed

    Liu, Sumei; Gao, Na; Hu, Hong-Zhen; Wang, Xiyu; Wang, Guo-Du; Fang, Xiucai; Gao, Xiang; Xia, Yun; Wood, Jackie D

    2006-01-01

    Immunofluorescence was used to study immunoreactivity (IR) for corticotropin-releasing factor (CRF) in the guinea pig enteric nervous system. CRF-IR was expressed in both the myenteric and the submucosal plexuses of all regions of the large and small intestine and the myenteric plexus of the stomach. CRF-IR nerve fibers were present in the myenteric and submucosal plexuses, in the circular muscle coat, and surrounding submucosal arterioles. Most of the CRF-IR fibers persisted in the myenteric and submucosal plexuses after 7 days in organotypic culture. CRF-IR was not coexpressed with tyrosine hydroxylase-IR or calcitonin gene-related peptide-IR fibers. The proportions of CRF-IR cell bodies in the myenteric plexus increased progressively from the stomach (0.6%) to the distal colon (2.8%). Most of the CRF-IR myenteric neurons (95%) had uniaxonal morphology; the remainder had Dogiel type II multipolar morphology. CRF-IR cell bodies in the myenteric plexus of the ileum expressed IR for choline acetyltransferase (56.9%), substance P (55.0%), and nitric oxide synthase (37.9%). CRF-IR never colocalized with IR for calbindin, calretinin, neuropeptide Y, serotonin, or somatostatin in the myenteric plexus. CRF-IR cell bodies were more abundant in the submucosal plexus (29.9-38.0%) than in the myenteric plexus. All CRF-IR neurons in submucosal ganglia expressed vasoactive intestinal peptide-IR and were likely to be secretomotor/vasodilator neurons. CRF-IR neurons did not express IR for the CRF(1) receptor. CRF(1)-IR was expressed in neuronal neighbors of those with CRF-IR. Collective evidence suggests that VIPergic secretomotor neurons might provide synaptic input to neighboring cholinergic neurons.

  10. Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons

    PubMed Central

    Gasparini, Sonia; Losonczy, Attila; Chen, Xixi; Johnston, Daniel; Magee, Jeffrey C

    2007-01-01

    Back-propagating action potentials (bAPs) are involved in associative synaptic plasticity and the modulation of dendritic excitability. We have used high-speed confocal and two-photon imaging to measure calcium and voltage signals associated with action potential propagation into oblique branches of CA1 pyramidal neurons in adult hippocampal slices. The spatial profile of the bAP-associated Ca2+ influx was biphasic, with an initial increase in the proximity of the branch point followed by a progressive decrease. Voltage imaging in the branches showed that bAP amplitude was initially constant and then steadily declined with distance from the soma. To determine the role of transient K+ channels in this profile, we used external Ba2+ (150 μm) as a channel blocker, after characterizing its effect on A-type K+ channels in the apical trunk. Bath application of Ba2+ significantly reduced the A-type K+ current in outside-out patches and nearly eliminated the distance-dependent decrease in bAP amplitude and its associated Ca2+ signal. Finally, small amplitude bAPs at more distal oblique branch locations could be boosted by simultaneous branch depolarization, such that the paired Ca2+ signal became nearly the same for proximal and distal oblique dendrites. These data suggest that dendritic K+ channels regulate the amplitude of bAPs to create a dendritic Ca2+ signal whose magnitude is inversely related to the electrotonic distance from the soma when bAPs are not associated with a significant amount of localized synaptic input. This distance-dependent Ca2+ signal from bAPs, however, can be amplified and a strong associative signal is produced once the proper correlation between synaptic activation and AP output is achieved. We hypothesize that these two signals may be involved in the regulation of the expression and activity of dendritic voltage- and ligand-gated ion channels. PMID:17272353

  11. Excitability and Burst Generation of AVPV Kisspeptin Neurons Are Regulated by the Estrous Cycle Via Multiple Conductances Modulated by Estradiol Action123

    PubMed Central

    Wang, Luhong

    2016-01-01

    Abstract The preovulatory secretory surge of gonadotropin-releasing hormone (GnRH) is crucial for fertility and is regulated by a switch of estradiol feedback action from negative to positive. GnRH neurons likely receive estradiol feedback signals via ERα-expressing afferents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV) are thought to be critical for estradiol-positive feedback induction of the GnRH surge. We examined the electrophysiological properties of GFP-identified AVPV kisspeptin neurons in brain slices from mice on the afternoon of diestrus (negative feedback) and proestrus (positive feedback, time of surge). Extracellular recordings revealed increased firing frequency and action potential bursts on proestrus versus diestrus. Whole-cell recordings were used to study the intrinsic mechanisms of bursting. Upon depolarization, AVPV kisspeptin neurons exhibited tonic firing or depolarization-induced bursts (DIB). Both tonic and DIB cells exhibited bursts induced by rebound from hyperpolarization. DIB occurred similarly on both cycle stages, but rebound bursts were observed more often on proestrus. DIB and rebound bursts were both sensitive to Ni2+, suggesting that T-type Ca2+ currents (ITs) are involved. IT current density was greater on proestrus versus diestrus. In addition to IT, persistent sodium current (INaP) facilitated rebound bursting. On diestrus, 4-aminopyridine-sensitive potassium currents contributed to reduced rebound bursts in both tonic and DIB cells. Manipulation of specific sex steroids suggests that estradiol induces the changes that enhance AVPV kisspeptin neuron excitability on proestrus. These observations indicate cycle-driven changes in circulating estradiol increased overall action potential generation and burst firing in AVPV kisspeptin neurons on proestrus versus diestrus by regulating multiple intrinsic currents. PMID:27280155

  12. From muscles synergies and individual goals to interpersonal synergies and shared goals: Mirror neurons and interpersonal action hierarchies. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio et al.

    NASA Astrophysics Data System (ADS)

    Candidi, Matteo; Sacheli, Lucia Maria; Aglioti, Salvatore Maria

    2015-03-01

    D'Ausilio et al. [28] must be praised for bringing attention to the important question of how human Mirror Neurons (MNs) may contribute to action perception, prediction and understanding [1] and for linking their role with the granularity of the motor system as conceptualized in the domain of action control theories. Although we think that the Authors are right in saying that the granularity of the motor system constrains the granularity of the MN system, we speculate that the contribution of MNs to action perception, prediction and understanding is also constrained by the connections between MNs and other cortical and subcortical regions, and by the identity of MNs, i.e. whether they are interneurons or pyramidal cells [2]. In other words, the functional contribution of MS depends on whether they are connected to sensory, emotional and cognitive networks for the service of action perception, prediction and understanding.

  13. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    PubMed

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  14. Action Research of a Color-Coded, Onset-Rime Decoding Intervention: Examining the Effects with First Grade Students Identified as at Risk

    ERIC Educational Resources Information Center

    Wall, Candace A.; Rafferty, Lisa A.; Camizzi, Mariya A.; Max, Caroline A.; Van Blargan, David M.

    2016-01-01

    Many students who struggle to obtain the alphabetic principle are at risk for being identified as having a reading disability and would benefit from additional explicit phonics instruction as a remedial measure. In this action research case study, the research team conducted two experiments to investigate the effects of a color-coded, onset-rime,…

  15. THE TWO-LEVEL THEORY OF VERB MEANING: AN APPROACH TO INTEGRATING THE SEMANTICS OF ACTION WITH THE MIRROR NEURON SYSTEM

    PubMed Central

    Kemmerer, David; Castillo, Javier Gonzalez

    2010-01-01

    Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the “root.” The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the “event structure template.” We explore the following hypotheses about how, with specific reference to the motor features of action verbs, these two distinct levels of semantic representation might correspond to two distinct levels of the mirror neuron system. Hypothesis 1: Root-level motor features of verb meaning are partially subserved by somatotopically mapped mirror neurons in the left primary motor and/or premotor cortices. Hypothesis 2: Template-level motor features of verb meaning are partially subserved by representationally more schematic mirror neurons in Brodmann area 44 of the left inferior frontal gyrus. Evidence has been accumulating in support of the general neuroanatomical claims made by these two hypotheses—namely, that each level of verb meaning is associated with the designated cortical areas. However, as yet no studies have satisfied all the criteria necessary to support the more specific neurobiological claims made by the two hypotheses—namely, that each level of verb meaning is associated with mirror neurons in the pertinent brain regions. This would require demonstrating that within those regions the same neuronal populations are engaged during (a) the linguistic processing of particular motor features of verb meaning, (b) the execution of actions with the corresponding motor features, and (c) the observation of actions with the corresponding motor features. PMID:18996582

  16. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    PubMed Central

    Kohlmeier, Kristi A.; Tyler, Christopher J.; Kalogiannis, Mike; Ishibashi, Masaru; Kristensen, Morten P.; Gumenchuk, Iryna; Chemelli, Richard M.; Kisanuki, Yaz Y.; Yanagisawa, Masashi; Leonard, Christopher S.

    2013-01-01

    Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where orexins promote arousal and suppress REM sleep. In slices from OX−/−2 mice, orexin-A (300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX−/−1 mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX−/−1 mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2+ transients produced by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  17. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  18. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    PubMed

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  19. Primary cortical representation of sounds by the coordination of action-potential timing.

    PubMed

    deCharms, R C; Merzenich, M M

    1996-06-13

    Cortical population coding could in principle rely on either the mean rate of neuronal action potentials, or the relative timing of action potentials, or both. When a single sensory stimulus drives many neurons to fire at elevated rates, the spikes of these neurons become tightly synchronized, which could be involved in 'binding' together individual firing-rate feature representations into a unified object percept. Here we demonstrate that the relative timing of cortical action potentials can signal stimulus features themselves, a function even more basic than feature grouping. Populations of neurons in the primary auditory cortex can coordinate the relative timing of their action potentials such that spikes occur closer together in time during continuous stimuli. In this way cortical neurons can signal stimuli even when their firing rates do not change. Population coding based on relative spike timing can systemically signal stimulus features, it is topographically mapped, and it follows the stimulus time course even where mean firing rate does not.

  20. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl− regulation

    PubMed Central

    Ehrlich, Ingrid; Löhrke, Stefan; Friauf, Eckhard

    1999-01-01

    The inhibitory neurotransmitter glycine can elicit depolarizing responses in immature neurones. We investigated the changes in glycine responses and their ionic mechanism in developing neurones of the rat lateral superior olive (LSO), an auditory brainstem nucleus involved in sound localization. Whole-cell and gramicidin perforated-patch recordings were performed from visually identified LSO neurones in brain slices and glycine was pressure applied for 3–100 ms to the soma. Glycine-evoked currents were reversibly blocked by strychnine. They were mostly monophasic, but biphasic responses occurred in ∼30% of P8-11 neurones in perforated-patch recordings. In whole-cell recordings from P2-11 neurones, the reversal potential of glycine-evoked currents (EGly) was determined by the transmembranous Cl− gradient and corresponded closely to the Nernst potential for Cl−, regardless of age. This indicates that Cl− is the principle ion permeating glycine receptors, but is also consistent with a low relative (10–20%) permeability for HCO3−. The Cl− gradient also determined the polarity and amplitude of glycine-evoked membrane potential changes. Leaving the native intracellular [Cl−] undisturbed with gramicidin perforated-patch recordings, we found a highly significant, age-dependent change of EGly from −46.8 ± 1.8 mV (P1-4, n = 28) to −67.6 ± 3.3 mV (P5-8, n = 10) to −82.2 ± 4.1 mV (P9–11, n = 18). The majority of P1–4 neurones were depolarized by glycine (∼80%) and spikes were evoked in ∼30%. In contrast, P9–11 neurones were hyperpolarized. In perforated-patch recordings, EGly was influenced by the voltage protocol and the glycine application interval; it could be shifted in the positive and negative direction. For a given application interval, these shifts were always larger in P1–4 than in P8–11 neurones, pointing to less effective Cl− regulation mechanisms in younger neurones. Furosemide (frusemide), a blocker of cation

  1. BDNF enhances dendritic Ca2+ signals evoked by coincident EPSPs and back-propagating action potentials in CA1 pyramidal neurons

    PubMed Central

    Pozzo-Miller, Lucas

    2009-01-01

    BDNF, a member of the neurotrophin family, is emerging as a key modulator of synaptic structure and function in the CNS. Due to the critical role of postsynaptic Ca2+ signals in dendritic development and synaptic plasticity, we tested whether long-term exposure to BDNF affects Ca2+ elevations evoked by coincident excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (bAPs) in spiny dendrites of CA1 pyramidal neurons within hippocampal slice cultures. In control neurons, a train of 5 coincident EPSPs and bAPs evoked Ca2+ elevations in oblique radial branches of the main apical dendrite that were of similar amplitude than those evoked by a train of 5 bAPs alone. On the other hand, dendritic Ca2+ signals evoked by coincident EPSPs and bAPs were always larger than those triggered by bAPs in CA1 neurons exposed to BDNF for 48 h. This difference was not observed after blockade of NMDA receptors (NMDARs) with D,L-APV, but only in BDNF-treated neurons, suggesting that Ca2+ signals in oblique radial dendrites include a synaptic NMDAR-dependent component. Co-treatment with the receptor tyrosine kinase inhibitor k-252a prevented the effect of BDNF on coincident dendritic Ca2+ signals, suggesting the involvement of neurotrophin Trk receptors. These results indicate that long-term exposure to BDNF enhances Ca2+ signaling during coincident pre- and postsynaptic activity in small spiny dendrites of CA1 pyramidal neurons, representing a potential functional consequence of neurotrophin-mediated dendritic remodeling in developing neurons. PMID:16797499

  2. The place of 'codes' in nonlinear neurodynamics.

    PubMed

    Freeman, Walter J

    2007-01-01

    A key problem in cognitive science is to explain the neural mechanisms of the rapid transposition between stimulus energy and abstract concept--between the specific and the generic--in both material and conceptual aspects, not between neural and psychic aspects. Three approaches by researchers to a solution in terms of neural codes are considered. Materialists seek rate and frequency codes in the interspike intervals of trains of action potentials induced by stimuli and carried by topologically organized axonal lines. Cognitivists refer to the symbol grounding problem and search for symbolic codes in firings of hierarchically organized feature-detector neurons of phonemes, lines, odorants, pressures, etc., that object-detector neurons bind into representations of probabilities of stimulus occurrence. Dynamicists seek neural correlates of stimuli and associated behaviors in spatial patterns of oscillatory fields of dendritic activity that self-organize and evolve as trajectories through high-dimensional brain state space; the codes are landscapes of chaotic attractors. Unlike codes in DNA and the periodic table, these codes have neither alphabet nor syntax. They are epistemological metaphors required by experimentalists to measure neural activity and by engineers to model brain functions. Here I review the central neural mechanisms of olfaction as a paradigm for use of codes to explain how brains create cortical activities that mediate sensation, perception, comprehension, prediction, decision, and action or inaction.

  3. Soy Isoflavones Genistein and Daidzein Exert Anti-Apoptotic Actions via a Selective ER-mediated Mechanism in Neurons following HIV-1 Tat1–86 Exposure

    PubMed Central

    Adams, Sheila M.; Aksenova, Marina V.; Aksenov, Michael Y.; Mactutus, Charles F.; Booze, Rosemarie M.

    2012-01-01

    Background HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity. Methodology/Principal Findings We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat1–86-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling. Conclusions/Significance Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons. PMID:22629415

  4. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra

  5. Temporal Uncertainty and Temporal Estimation Errors Affect Insular Activity and the Frontostriatal Indirect Pathway during Action Update: A Predictive Coding Study

    PubMed Central

    Limongi, Roberto; Pérez, Francisco J.; Modroño, Cristián; González-Mora, José L.

    2016-01-01

    Action update, substituting a prepotent behavior with a new action, allows the organism to counteract surprising environmental demands. However, action update fails when the organism is uncertain about when to release the substituting behavior, when it faces temporal uncertainty. Predictive coding states that accurate perception demands minimization of precise prediction errors. Activity of the right anterior insula (rAI) is associated with temporal uncertainty. Therefore, we hypothesize that temporal uncertainty during action update would cause the AI to decrease the sensitivity to ascending prediction errors. Moreover, action update requires response inhibition which recruits the frontostriatal indirect pathway associated with motor control. Therefore, we also hypothesize that temporal estimation errors modulate frontostriatal connections. To test these hypotheses, we collected fMRI data when participants performed an action-update paradigm within the context of temporal estimation. We fit dynamic causal models to the imaging data. Competing models comprised the inferior occipital gyrus (IOG), right supramarginal gyrus (rSMG), rAI, right presupplementary motor area (rPreSMA), and the right striatum (rSTR). The winning model showed that temporal uncertainty drove activity into the rAI and decreased insular sensitivity to ascending prediction errors, as shown by weak connectivity strength of rSMG→rAI connections. Moreover, temporal estimation errors weakened rPreSMA→rSTR connections and also modulated rAI→rSTR connections, causing the disruption of action update. Results provide information about the neurophysiological implementation of the so-called horse-race model of action control. We suggest that, contrary to what might be believed, unsuccessful action update could be a homeostatic process that represents a Bayes optimal encoding of uncertainty. PMID:27445737

  6. Temporal Uncertainty and Temporal Estimation Errors Affect Insular Activity and the Frontostriatal Indirect Pathway during Action Update: A Predictive Coding Study.

    PubMed

    Limongi, Roberto; Pérez, Francisco J; Modroño, Cristián; González-Mora, José L

    2016-01-01

    Action update, substituting a prepotent behavior with a new action, allows the organism to counteract surprising environmental demands. However, action update fails when the organism is uncertain about when to release the substituting behavior, when it faces temporal uncertainty. Predictive coding states that accurate perception demands minimization of precise prediction errors. Activity of the right anterior insula (rAI) is associated with temporal uncertainty. Therefore, we hypothesize that temporal uncertainty during action update would cause the AI to decrease the sensitivity to ascending prediction errors. Moreover, action update requires response inhibition which recruits the frontostriatal indirect pathway associated with motor control. Therefore, we also hypothesize that temporal estimation errors modulate frontostriatal connections. To test these hypotheses, we collected fMRI data when participants performed an action-update paradigm within the context of temporal estimation. We fit dynamic causal models to the imaging data. Competing models comprised the inferior occipital gyrus (IOG), right supramarginal gyrus (rSMG), rAI, right presupplementary motor area (rPreSMA), and the right striatum (rSTR). The winning model showed that temporal uncertainty drove activity into the rAI and decreased insular sensitivity to ascending prediction errors, as shown by weak connectivity strength of rSMG→rAI connections. Moreover, temporal estimation errors weakened rPreSMA→rSTR connections and also modulated rAI→rSTR connections, causing the disruption of action update. Results provide information about the neurophysiological implementation of the so-called horse-race model of action control. We suggest that, contrary to what might be believed, unsuccessful action update could be a homeostatic process that represents a Bayes optimal encoding of uncertainty.

  7. Blocking actions of alkylene-tethered bis-neonicotinoids on nicotinic acetylcholine receptors expressed by terminal abdominal ganglion neurons of Periplaneta americana.

    PubMed

    Ihara, Makoto; Hirata, Koichi; Ishida, Chiharu; Kagabu, Shinzo; Matsuda, Kazuhiko

    2007-10-02

    Neonicotinoid insecticides target nicotinic acetylcholine receptors (nAChRs), which, in both vertebrates and invertebrates, mediate fast-acting synaptic neurotransmission in the nervous system. Recently, Kagabu et al. synthesized bis-neonicotinoids. The neural activities of bis-neonicotinoids have been evaluated on the central nerve cord of American cockroaches. However, the action of bis-neonicotinoids on nAChRs expressed by dissociated insect neurons has not yet been studied. Thus, the actions of several alkylene-tethered bis-neonicotinoids on the terminal abdominal ganglion neurons of the American cockroach, Periplaneta americana, were investigated using whole-cell patch-clamp electrophysiology. All of the ligands tested did not induce membrane currents, but reduced the responses to ACh when bath applied prior to co-application with ACh. Of the compounds tested, HK-13, which possesses two imidacloprid units linked with a hexamethylene bridge, had the highest antagonist potency. The antagonist action was reduced, not only by elongating, but also by shortening the linker.

  8. Lithium Blocks the c-Jun Stress Response and Protects Neurons via Its Action on Glycogen Synthase Kinase 3

    PubMed Central

    Hongisto, Vesa; Smeds, Nina; Brecht, Stephan; Herdegen, Thomas; Courtney, Michael J.; Coffey, Eleanor T.

    2003-01-01

    Lithium has been used as an effective mood-stabilizing drug for the treatment of manic episodes and depression for 50 years. More recently, lithium has been found to protect neurons from death induced by a wide array of neurotoxic insults. However, the molecular basis for the prophylactic effects of lithium have remained obscure. A target of lithium, glycogen synthase kinase 3 (GSK-3), is implicated in neuronal death after trophic deprivation. The mechanism whereby GSK-3 exerts its neurotoxic effects is also unknown. Here we show that lithium blocks the canonical c-Jun apoptotic pathway in cerebellar granule neurons deprived of trophic support. This effect is mimicked by the structurally independent inhibitors of GSK-3, FRAT1, and indirubin. Like lithium, these prevent the stress induced c-Jun protein increase and subsequent apoptosis. These events are downstream of c-Jun transactivation, since GSK-3 inhibitors block neuronal death induced by constitutively active c-Jun (Ser/Thr→Asp) and FRAT1 expression inhibits AP1 reporter activity. Consistent with this, AP1-dependent expression of proapoptotic Bim requires GSK-3-like activity. These data suggest that a GSK-3-like kinase acts in tandem with c-Jun N-terminal kinase to coordinate the full execution of the c-Jun stress response and neuronal death in response to trophic deprivation. PMID:12917327

  9. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  10. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones.

    PubMed

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D

    1999-02-01

    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  11. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk

    PubMed Central

    Moutinho, Miguel; Nunes, Maria João; Correia, Jorge C.; Gama, Maria João; Castro-Caldas, Margarida; Cedazo-Minguez, Angel; Rodrigues, Cecília M. P.; Björkhem, Ingemar; Ruas, Jorge L; Rodrigues, Elsa

    2016-01-01

    Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers. PMID:27491694

  12. The Smoke around Mirror Neurons: Goals as Sociocultural and Emotional Organizers of Perception and Action in Learning

    ERIC Educational Resources Information Center

    Immordino-Yang, Mary Helen

    2008-01-01

    From the pragmatists to the neo-Piagetians, development has been understood to involve cycles of perception and action--the internalization of interactions with the world and the construction of skills for acting in the world. From a neurobiological standpoint, new evidence suggests that neural activities related to action and perception converge…

  13. Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light.

    PubMed

    Malyshev, A Y; Roshchin, M V; Smirnova, G R; Dolgikh, D A; Balaban, P M; Ostrovsky, M A

    2017-02-15

    Optogenetics is a powerful technique in neuroscience that provided a great success in studying the brain functions during the last decade. Progress of optogenetics crucially depends on development of new molecular tools. Light-activated cation-conducting channelrhodopsin2 was widely used for excitation of cells since the emergence of optogenetics. In 2015 a family of natural light activated chloride channels GtACR was identified which appeared to be a very promising tool for using in optogenetics experiments as a cell silencer. Here we examined properties of GtACR2 channel expressed in the rat layer 2/3 pyramidal neurons by means of in utero electroporation. We have found that despite strong inhibition the light stimulation of GtACR2-positive neurons can surprisingly lead to generation of action potentials, presumably initiated in the axonal terminals. Thus, when using the GtACR2 in optogenetics experiments, its ability to induce action potentials should be taken into account. Our results also open an interesting possibility of using the GtACR2 both as cell silencer and cell activator in the same experiment varying the pattern of light stimulation.

  14. Direct Actions of Kisspeptins on GnRH Neurons Permit Attainment of Fertility but are Insufficient to Fully Preserve Gonadotropic Axis Activity

    PubMed Central

    León, Silvia; Barroso, Alexia; Vázquez, María J.; García-Galiano, David; Manfredi-Lozano, María; Ruiz-Pino, Francisco; Heras, Violeta; Romero-Ruiz, Antonio; Roa, Juan; Schutz, Günther; Kirilov, Milen; Gaytan, Francisco; Pinilla, Leonor; Tena-Sempere, Manuel

    2016-01-01

    Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54−/−Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54−/−Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells. PMID:26755241

  15. Direct Actions of Kisspeptins on GnRH Neurons Permit Attainment of Fertility but are Insufficient to Fully Preserve Gonadotropic Axis Activity.

    PubMed

    León, Silvia; Barroso, Alexia; Vázquez, María J; García-Galiano, David; Manfredi-Lozano, María; Ruiz-Pino, Francisco; Heras, Violeta; Romero-Ruiz, Antonio; Roa, Juan; Schutz, Günther; Kirilov, Milen; Gaytan, Francisco; Pinilla, Leonor; Tena-Sempere, Manuel

    2016-01-12

    Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54(-/-)Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54(-/-)Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells.

  16. Feedback Codes and Action Plans: Building the Capacity of First-Year Students to Apply Feedback to a Scientific Report

    ERIC Educational Resources Information Center

    Bird, Fiona L.; Yucel, Robyn

    2015-01-01

    Effective feedback can build self-assessment skills in students so that they become more competent and confident to identify and self-correct weaknesses in their work. In this study, we trialled a feedback code as part of an integrated programme of formative and summative assessment tasks, which provided feedback to first-year students on their…

  17. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ.

    PubMed

    Kuksis, Markus; Ferguson, Alastair V

    2015-09-01

    Hydrogen sulfide (H2S) is an endogenously found gasotransmitter that has been implicated in a variety of beneficial physiological functions. This study was performed to investigate the cellular mechanisms underlying actions of H2S previously observed in subfornical organ (SFO), where H2S acts to regulate blood pressure through a depolarization of the membrane and an overall increase in the excitability of SFO neurons. We used whole cell patch-clamp electrophysiology in the voltage-clamp configuration to analyze the effect of 1 mM NaHS, an H2S donor, on voltage-gated potassium, sodium, and calcium currents. We observed no effect of NaHS on potassium currents; however, both voltage-gated sodium currents (persistent and transient) and the N-type calcium current had a depolarized activation curve and an enhanced peak-induced current in response to a series of voltage-step and ramp protocols run in the control and NaHS conditions. These effects were not responsible for the previously observed depolarization of the membrane potential, as depolarizing effects of H2S were still observed following block of these conductances with tetrodotoxin (5 μM) and ω-conotoxin-GVIA (100 nM). Our studies are the first to investigate the effect of H2S on a variety of voltage-gated conductances in a single brain area, and although they do not explain mechanisms underlying the depolarizing actions of H2S on SFO neurons, they provide evidence of potential mechanisms through which this gasotransmitter influences the excitability of neurons in this important brain area as a consequence of the modulation of multiple ion channels.

  18. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  19. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  20. WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine

    PubMed Central

    Ceglia, Ilaria; Lee, Ko-Woon; Cahill, Michael E.; Graves, Steven M.; Dietz, David; Surmeier, Dalton J.; Nestler, Eric J.; Nairn, Angus C.; Kim, Yong

    2017-01-01

    Wiskott-Aldrich syndrome protein (WASP) family verprolin homologous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. Our previous studies have found WAVE1 to be inhibited by Cdk5-mediated phosphorylation in brain and to play a role in the regulation of dendritic spine morphology. Here we report that mice in which WAVE1 was knocked out (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but not mice where WAVE1 was knocked out in neurons expressing the D2 dopamine receptor (D2-KO), exhibited a significant decrease in place preference associated with cocaine. In contrast to wild-type (WT) and WAVE1 D2-KO mice, cocaine-induced sensitized locomotor behavior was not maintained in WAVE1 D1-KO mice. After chronic cocaine administration and following withdrawal, an acute cocaine challenge induced WAVE1 activation in striatum, which was assessed by dephosphorylation. The cocaine-induced WAVE1 dephosphorylation was attenuated by coadministration of either a D1 dopamine receptor or NMDA glutamate receptor antagonist. Upon an acute challenge of cocaine following chronic cocaine exposure and withdrawal, we also observed in WT, but not in WAVE1 D1-KO mice, a decrease in dendritic spine density and a decrease in the frequency of excitatory postsynaptic AMPA receptor currents in medium spiny projection neurons expressing the D1 dopamine receptor (D1-MSNs) in the nucleus accumbens. These results suggest that WAVE1 is involved selectively in D1-MSNs in cocaine-evoked neuronal activity-mediated feedback regulation of glutamatergic synapses. PMID:28115704

  1. Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites.

    PubMed

    Fukumitsu, Kansai; Fujishima, Kazuto; Yoshimura, Azumi; Wu, You Kure; Heuser, John; Kengaku, Mineko

    2015-04-08

    The distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth. Additionally, we find that the growth of atrophic dendrites lacking mitochondria can be rescued by activating ATP-phosphocreatine exchange mediated by creatine kinase (CK). Conversely, inhibiting cytosolic CKs decreases dendritic ATP levels and also disrupts dendrite development. Mechanistically, this energy depletion appears to perturb normal actin dynamics and enhance the aggregation of cofilin within growing dendrites, reminiscent of what occurs in neurons overexpressing the dephosphorylated form of cofilin. These results suggest that local ATP synthesis by dendritic mitochondria and ATP-phosphocreatine exchange act synergistically to sustain the cytoskeletal dynamics necessary for dendritic development.

  2. Contribution of non-inactivating Na+ current induced by oxidizing agents to the firing behavior of neuronal action potentials: experimental and theoretical studies from NG108-15 neuronal cells.

    PubMed

    Wu, Sheng-Nan; Lo, Yi-Ching; Shen, Ai-Yu; Chen, Bing-Shuo

    2011-02-28

    The effects of chemical injury with oxidizing agents on voltage-gated Na+ current (I(Na)) in differentiated NG108-15 neuronal cells were investigated in this study. In whole-cell patch-clamp recordings, the challenge of these cells with t-butyl hydroperoxide (t-BHP; 1 mM) decreased the peak amplitude of I(Na) with no modification in the current-voltage relationship. It caused a slowing of current inactivation, although there was no alteration in the activation time course of I(Na). Cell exposure to t-BHP also increased a non-inactivating I(Na) (I(Na(NI)) elicited by long-lasting ramp pulses. The t-BHP-induced increase of I(Na(NI)) was reversed by a further application of riluzole (10 microM) or oxcarbazepine (10 microM). When I(Na) was elicited by simulated waveforms of action potentials (APs), during exposure to t-BHP, the amplitude of this inward current was diminished, accompanied by a reduction in inactivation/deactivation rate and an increase in current fluctuations. Under current-clamp recordings, addition of t-BHP (0.3 mM) enhanced AP firing in combination with clustering-like activity and sub-threshold membrane oscillations. In the simulation study, when the fraction of non-inactivating Na(v) channels was elevated, the simulated window component of I(Na) in response to a long-lasting ramp pulse was reduced; however, the persistent I(Na) was markedly enhanced. Moreover, when simulated firing of APs was generated from a modeled neuron, changes of AP firing caused by the increased fraction of non-inactivating Na(v) channels used to mimic the t-BHP actions were similar to the experimental observations. Taken together, it is anticipated that the effects of oxidizing agents on I(Na(NI)) could be an important mechanism underlying their neurotoxic actions in neurons or neuroendocrine cells occurring in vivo.

  3. A brain site for the antigonadal action of melatonin in the white-footed mouse (Peromyscus leucopus): involvement of the immunoreactive GnRH neuronal system.

    PubMed

    Glass, J D; Knotts, L K

    1987-06-01

    Quantitative assessment of immunocytochemical staining for gonadotropin-releasing hormone (GnRH) was undertaken to determine the effects of an intracranial implant of melatonin on the GnRH neuronal system in the male white-footed mouse (Peromyscus leucopus). Melatonin-containing pellets stereotaxically placed in the anterior hypothalamic area (AH) caused a 60% reduction in testes weight relative to control mice with melatonin-free pellets in the AH (p less than 0.01). Subcutaneous melatonin-containing implants had little effect on reproductive state (p less than 0.8). Melatonin pellets in the AH increased significantly both the optical density (OD) for immunostaining of cell bodies in the medial preoptic area and AH (p less than 0.04), and the percentage of area covered by GnRH fibers and beads in the median eminence (p less than 0.01). The melatonin-induced increase in OD of the GnRH cell bodies was independent of the distance of the cells from the melatonin implant, and there was little apparent effect of melatonin on the size and morphology of the GnRH cell bodies, or the trajectories of their fiber pathways. These results support the hypothesis that the antigonadal action of melatonin in the brain involves suppression of the release, rather than the synthesis of GnRH. Also, this effect may not be mediated via a direct action of melatonin on GnRH neurons. The finding that the brain site and time course for melatonin's antigonadal action in male. P. leucopus is similar to that found previously in the female is evidence that melatonin may induce gonadal regression, in part, by helping to suppress the tonic secretion of gonadotropins.

  4. Coding Controlled and Triggered Cursor Movements as Action Effects: Influences on the Auditory Simon Effect for Wheel-Rotation Responses

    ERIC Educational Resources Information Center

    Wang, Dong-Yuan Debbie; Procter, Robert W.; Pick, David F.

    2007-01-01

    Four experiments investigated influences of irrelevant action effects on response selection in Simon tasks for which tone pitch was relevant and location irrelevant, and responses were clockwise-counterclockwise wheel rotations. When the wheel controlled left-right movement of a cursor in a direction opposite an instructed left-right hand-movement…

  5. Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABAA Receptors Modulates the Actions of Psychostimulants

    PubMed Central

    Maguire, Edward P.; Macpherson, Tom; Swinny, Jerome D.; Dixon, Claire I.; Herd, Murray B.; Belelli, Delia; Stephens, David N.

    2014-01-01

    Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors. PMID:24431441

  6. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons

    PubMed Central

    Shum, Carole; Macedo, Sara C.; Warre-Cornish, Katherine; Cocks, Graham; Price, Jack; Srivastava, Deepak P.

    2015-01-01

    This article is part of a Special Issue “Estradiol and Cognition”. Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic “makeup” of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics. PMID:26143621

  7. Opposing actions of androgen and estrogen on in vitro firing frequency of neuronal oscillators in the electromotor system.

    PubMed

    Schaefer, J e; Zakon, H H

    1996-04-15

    The South American knifefish (Apteronotus leptorhynchus), or brown ghost, produces a high-frequency (600-1000 Hz) sinusoidal electric organ discharge (EOD) with males discharging at higher frequencies than females. In addition, each fish has a unique EOD frequency within the frequency range of its gender. The electromotor circuit responsible for EOD production consists of a medullary pacemaker nucleus (PMN) and spinal electromotor neurons (EMNs). In vitro spinal slice recording showed that, similar to the PMN, EMNs fire spontaneously at rates near the EOD frequency of each fish. The persistence of firing 2 weeks after high spinal transaction demonstrated that spontaneous firing rate was intrinsic to the EMNs and was not dependent on presynaptic input. We confirmed that 11-ketotestosterone (11 kT) raised and 17-beta-estradiol (E2) lowered the EOD frequency of intact fish. Because electromotor cells fire spontaneously near EOD, frequency, we investigated whether these steroids affect endogenous firing rates. Steroid implants were made in normal or spinally transected fish. Two weeks later, PMNs of normal fish and EMNs of transected fish were recorded in vitro. 11 kT increased and E2 decreased the intrinsic firing rate of neurons in the PMN and the EMNS. Hormones shifted the intrinsic firing rates of EMNS, although they were synaptically isolated during the hormone exposure.

  8. Modulation of Kv3.4 channel N-type inactivation by protein kinase C shapes the action potential in dorsal root ganglion neurons.

    PubMed

    Ritter, David M; Ho, Cojen; O'Leary, Michael E; Covarrubias, Manuel

    2012-01-01

    Fast inactivation of heterologously expressed Kv3.4 channels is dramatically slowed upon phosphorylation of the channel's N-terminal (N-type) inactivation gate by protein kinase C (PKC). However, the presence and physiological importance of this exquisite modulation in excitable tissues were unknown. Here, we employed minimally invasive cell-attached patch-clamping, single-cell qPCR and specific siRNAs to unambiguously demonstrate that fast-inactivating Kv3.4 channels underlie a robust high voltage-activated A-type K(+) current (I(AHV)) in nociceptive dorsal root ganglion neurons from 7-day-old rats. We also show that PKC activation with phorbol 12,13-dibutyrate (PDBu) causes a 4-fold slowing of Kv3.4 channel inactivation and, consequently, accelerates the repolarization of the action potential (AP) by 22%, which shortens the AP duration by 14%. G-protein coupled receptor (GPCR) agonists eliminate I(AHV) fast inactivation in a membrane-delimited manner, suggesting a Kv3.4 channel signalling complex. Preincubation of the neurons with the PKC inhibitor bisindolylmaleimide II inhibits the effect of GPCR agonists and PDBu. Furthermore, activation of PKC via GPCR agonists recapitulates the effects of PDBu on the AP. Finally, transfection of the neurons with Kv3.4 siRNA prolongs the AP by 25% and abolishes the GPCR agonist-induced acceleration of the AP repolarization. These results show that Kv3.4 channels help shape the repolarization of the nociceptor AP, and that modulation of Kv3.4 channel N-type inactivation by PKC regulates AP repolarization and duration. We propose that the dramatic modulation of I(AHV) fast inactivation by PKC represents a novel mechanism of neural plasticity with potentially significant implications in the transition from acute to chronic pain.

  9. Low concentrations of the organophosphate VX affect spontaneous and evoked transmitter release from hippocampal neurons: toxicological relevance of cholinesterase-independent actions.

    PubMed

    Rocha, E S; Santos, M D; Chebabo, S R; Aracava, Y; Albuquerque, E X

    1999-08-15

    In the present study, the patch-clamp technique was applied to cultured hippocampal neurons to evaluate the effects of the nerve agent VX on evoked and spontaneous postsynaptic currents mediated by gamma-aminobutyric acid (GABA) and glutamate. At 0.01 nM, VX reduced the amplitude of evoked GABAergic currents, and only at concentrations >1 nM did it decrease the amplitude of evoked glutamatergic currents. The effect of VX on GABAergic currents, which was partially reversible upon washing of the neurons with VX-free external solution, could be prevented by the muscarinic antagonist atropine. In contrast, the effect of VX on glutamatergic currents, which was not reversible upon washing, appears to be related to the VX-induced reduction of the amplitude and frequency of repetitively firing by action potentials. In the presence of the Na(+)-channel blocker tetrodotoxin (TTX), VX (>/=10 nM) increased the frequency of GABA- and glutamate-mediated miniature postsynaptic currents (MPSCs). This effect of VX was unrelated to cholinesterase inhibition and was Ca(2+) dependent. The lack of effect of VX on MPSC kinetics indicates that VX-induced alterations of evoked and spontaneous currents are exclusively due to alterations of the transmitter release processes. The ability of VX to affect transmitter release in the brain may underlie some of its neurotoxic effects and may provide the basis for the development of therapeutic countermeasures to treat and/or prevent VX-induced neurotoxicity.

  10. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  11. Inhibition of a cAMP-dependent Ca-activated K conductance by forskolin prolongs Ca action potential duration in lamprey sensory neurons.

    PubMed

    Womble, M D; Wickelgren, W O

    1990-06-04

    Intracellular recordings from primary mechanosensory neurons (dorsal cells) of the lamprey spinal cord were made to test the membrane effects of forskolin, an activator of adenylate cyclase in these cells. At a concentration of 50 microM, forskolin was found to have a pronounced broadening effect on calcium action potentials (Ca APs) produced in the presence of voltage-activated K channel blockers (TEA, 3,4-DAP). Forskolin had no effect on passive membrane properties of the cells, such as resting potential or input resistance. Nor did it affect delayed rectification or Na APs and thus appeared not to block voltage-activated K channels. Forskolin's effect was evident only when a significant Ca component to the AP was present. It appeared not to increase the conductance of the Ca channel since its action was accompanied by a decrease in membrane conductance during the Ca AP, indicating instead an inhibition of a repolarizing Ca-activated conductance, other than a Ca-activated Cl conductance. The prolongation of Ca APs by forskolin, barium or the neurotransmitter GABA were all correlated in voltage-clamp with a decrease in outward current. Under the conductions used here, the major outward conductance in dorsal cells is a Ca-activated K conductance (gK(Ca]28, and it is concluded that the most probable mode of action for forskolin is via a cyclic AMP-mediated inhibition of this conductance. GABA has also been shown to prolong Ca APs in lamprey dorsal cells by inhibiting a repolarizing gK(Ca)28. Thus, the action of this transmitter may be mediated by an increase in intracellular cyclic AMP.

  12. Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor.

    PubMed

    Arsenijevic, Y; Weiss, S

    1998-03-15

    Insulin-like growth factor-I (IGF-I) has been reported previously to promote the proliferation, survival, and maturation of sympathetic neuroblasts, the genesis of retinal neurons, and the survival of CNS projection and motor neurons. Here we asked whether IGF-I could promote the in vitro differentiation of postmitotic mammalian CNS neuronal precursors derived from multipotent epidermal growth factor (EGF)-responsive stem cells. In the absence of IGF-I, virtually no neurons were present in cultured stem cell progeny, whereas IGF-I increased neuron number by eight- to 40-fold. Brief exposures (2 hr) to IGF-I were sufficient to allow for neuronal differentiation without affecting proliferation or survival. IGF-I actions could be mimicked by insulin and IGF-II at concentrations that correspond to the pharmacology of the IGF-I receptor, the latter for which the mRNA was detected in undifferentiated stem cell progeny. Although ineffectual alone at low concentrations (10 nM) that would activate its own receptor, insulin was able to potentiate the actions of IGF-I by acting on mitotically active neural precursors. When neuronal precursor differentiation by IGF-I was examined in relation to brain-derived neurotrophic factor (BDNF), two important observations were made: (1) BDNF could potentiate the differentiating actions of IGF-I plus insulin, and (2) BDNF could act on a separate population of precursors that did not require IGF-I plus insulin for differentiation. Taken together, these results suggest that IGF-I and BDNF may act together or sequentially to promote neuronal precursor differentiation.

  13. Designer Self-Assemble Peptides Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Alzheimer's Disease via Enhancing Neuron Differentiation and Paracrine Action.

    PubMed

    Cui, Guo-hong; Shao, Shui-jin; Yang, Jia-jun; Liu, Jian-ren; Guo, Hai-dong

    2016-03-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-β peptide (Aβ) in the form of amyloid plaques and neuronal loss. Neural stem cell (NSC) is being scrutinized as a promising cell replacement therapy for various neurodegenerative diseases. However, the unfavorable niche at the site of degenerative disease is hostile to the survival and differentiation of transplanted cells. Here, we undertook in vitro and in vivo works to examine whether a designer self-assemble peptide (DSP), which contains one functional domain Tyr-Ile-Gly-Ser-Arg (YIGSR) derived from laminin, promotes the survival and neuronal differentiation of NSC and behavioral improvement. We found that DSP could undergo spontaneous assembly into well-ordered nanofibers, and it not only facilitated the cell viability in normal culture condition, but also decreased the number of apoptotic cells induced by Aβ in vitro. NSC seeded in DSP showed much more neuronal differentiation than that seeded in self-assemble peptide (SP) or alone. In the AD model, NSC transplantation in DSP-treated AD rats demonstrated much more obvious cognitive rescue with restoration of learning/memory function compared with NSC transplantation in SP, NSC alone, or DSP alone treated ones. Interestingly, DSP enhanced the survival and neuronal differentiation of transplanted NSC. Apoptosis levels in the CA1 region and Aβ level in the hippocampus were significantly decreased in the group of NSC transplantation in DSP. Moreover, synaptic function, indicated by the expression of pre-synaptic protein synapsin-1, was restored and the secretion of anti-inflammatory and neurotrophic factors were increased, such as IL-10, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and insulin-like growth factor 1 (IGF-1), while the expression of pro-inflammatory factors were decreased, such as TNF-α and IL-1β. These data firstly unveiled that the biomaterial DSP can

  14. The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions.

    PubMed

    Saygin, Ayse Pinar; Chaminade, Thierry; Ishiguro, Hiroshi; Driver, Jon; Frith, Chris

    2012-04-01

    Using functional magnetic resonance imaging (fMRI) repetition suppression, we explored the selectivity of the human action perception system (APS), which consists of temporal, parietal and frontal areas, for the appearance and/or motion of the perceived agent. Participants watched body movements of a human (biological appearance and movement), a robot (mechanical appearance and movement) or an android (biological appearance, mechanical movement). With the exception of extrastriate body area, which showed more suppression for human like appearance, the APS was not selective for appearance or motion per se. Instead, distinctive responses were found to the mismatch between appearance and motion: whereas suppression effects for the human and robot were similar to each other, they were stronger for the android, notably in bilateral anterior intraparietal sulcus, a key node in the APS. These results could reflect increased prediction error as the brain negotiates an agent that appears human, but does not move biologically, and help explain the 'uncanny valley' phenomenon.

  15. Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses

    NASA Astrophysics Data System (ADS)

    Guerrier, Claire; Holcman, David

    2016-10-01

    Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.

  16. Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses

    PubMed Central

    Guerrier, Claire; Holcman, David

    2016-01-01

    Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales. PMID:27752087

  17. Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses.

    PubMed

    Guerrier, Claire; Holcman, David

    2016-10-18

    Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.

  18. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells.

    PubMed

    Sen, C K; Khanna, S; Roy, S; Packer, L

    2000-04-28

    HT4 hippocampal neuronal cells were studied to compare the efficacy of tocopherols and tocotrienol to protect against glutamate-induced death. Tocotrienols were more effective than alpha-tocopherol in preventing glutamate-induced death. Uptake of tocotrienols from the culture medium was more efficient compared with that of alpha-tocopherol. Vitamin E molecules have potent antioxidant properties. Results show that at low concentrations, tocotrienols may have protected cells by an antioxidant-independent mechanism. Examination of signal transduction pathways revealed that protein tyrosine phosphorylation processes played a central role in the execution of death. Activation of pp60(c-Src) kinase and phosphorylation of ERK were observed in response to glutamate treatment. Nanomolar amounts of alpha-tocotrienol, but not alpha-tocopherol, blocked glutamate-induced death by suppressing glutamate-induced early activation of c-Src kinase. Overexpression of kinase-active c-Src sensitized cells to glutamate-induced death. Tocotrienol treatment prevented death of Src-overexpressing cells treated with glutamate. alpha-Tocotrienol did not influence activity of recombinant c-Src kinase suggesting that its mechanism of action may include regulation of SH domains. This study provides first evidence describing the molecular basis of tocotrienol action. At a concentration 4-10-fold lower than levels detected in plasma of supplemented humans, tocotrienol regulated unique signal transduction processes that were not sensitive to comparable concentrations of tocopherol.

  19. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons.

    PubMed

    Le, Hoa H; Carlson, Emily M; Chua, Jason P; Belcher, Scott M

    2008-01-30

    The impact of endocrine disrupting chemical (EDC) exposure on human health is receiving increasingly focused attention. The prototypical EDC bisphenol A (BPA) is an estrogenic high-production chemical used primarily as a monomer for the production of polycarbonate and epoxy resins. It is now well established that there is ubiquitous human exposure to BPA. In the general population, exposure to BPA occurs mainly by consumption of contaminated foods and beverages that have contacted epoxy resins or polycarbonate plastics. To test the hypothesis that bioactive BPA was released from polycarbonate bottles used for consumption of water and other beverages, we evaluated whether BPA migrated into water stored in new or used high-quality polycarbonate bottles used by consumers. Using a sensitive and quantitative competitive enzyme-linked immunosorbent assay, BPA was found to migrate from polycarbonate water bottles at rates ranging from 0.20 ng/h to 0.79 ng/h. At room temperature the migration of BPA was independent of whether or not the bottle had been previously used. Exposure to boiling water (100 degrees C) increased the rate of BPA migration by up to 55-fold. The estrogenic bioactivity of the BPA-like immunoreactivity released into the water samples was confirmed using an in vitro assay of rapid estrogen signaling and neurotoxicity in developing cerebellar neurons. The amounts of BPA found to migrate from polycarbonate drinking bottles should be considered as a contributing source to the total "EDC-burden" to which some individuals are exposed.

  20. Information Encoding and Reconstruction from the Phase of Action Potentials

    PubMed Central

    Nadasdy, Zoltan

    2009-01-01

    Fundamental questions in neural coding are how neurons encode, transfer, and reconstruct information from the pattern of action potentials (APs) exchanged between different brain structures. We propose a general model of neural coding where neurons encode information by the phase of their APs relative to their subthreshold membrane oscillations. We demonstrate by means of simulations that AP phase retains the spatial and temporal content of the input under the assumption that the membrane potential oscillations are coherent across neurons and between structures and have a constant spatial phase gradient. The model explains many unresolved physiological observations and makes a number of concrete, testable predictions about the relationship between APs, local field potentials, and subthreshold membrane oscillations, and provides an estimate of the spatio-temporal precision of neuronal information processing. PMID:19668700

  1. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons.

    PubMed

    Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D

    2008-07-15

    The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K(+) current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of approximately 37 nS; it is half-activated at -9.2 +/- 2.1 mV and half-inactivated at -35.9 +/- 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 microm) and high concentrations of extracellular tetraethylammonium (TEA; IC(50) = 11.8 mM), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein approximately 110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin-Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing.

  2. Neuronal Reward and Decision Signals: From Theories to Data.

    PubMed

    Schultz, Wolfram

    2015-07-01

    Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act.

  3. Neuronal Reward and Decision Signals: From Theories to Data

    PubMed Central

    Schultz, Wolfram

    2015-01-01

    Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341

  4. Inhibition of recombinant N-type and native high voltage-gated neuronal Ca{sup 2+} channels by AdGABA: Mechanism of action studies

    SciTech Connect

    Martinez-Hernandez, Elizabeth; Sandoval, Alejandro; Gonzalez-Ramirez, Ricardo; Zoidis, Grigoris; Felix, Ricardo

    2011-02-01

    High-voltage activated Ca{sup 2+} (Ca{sub V}) channels play a key role in the regulation of numerous physiological events by causing transient changes in the intracellular Ca{sup 2+} concentration. These channels consist of a pore-forming Ca{sub V}{alpha}{sub 1} protein and three auxiliary subunits (Ca{sub V}{beta}, Ca{sub V}{alpha}{sub 2}{delta} and Ca{sub V}{gamma}). Ca{sub V}{alpha}{sub 2}{delta} is an important component of Ca{sub V} channels in many tissues and of great interest as a drug target. It is well known that anticonvulsant agent gabapentin (GBP) binds to Ca{sub V}{alpha}{sub 2}{delta} and reduces Ca{sup 2+} currents by modulating the expression and/or function of the Ca{sub V}{alpha}{sub 1} subunit. Recently, we showed that an adamantane derivative of GABA, AdGABA, has also inhibitory effects on Ca{sub V} channels. However, the importance of the interaction of AdGABA with the Ca{sub V}{alpha}{sub 2}{delta} subunit has not been conclusively demonstrated and the mechanism of action of the drug has yet to be elucidated. Here, we describe studies on the mechanism of action of AdGABA. Using a combined approach of patch-clamp recordings and molecular biology we show that AdGABA inhibits Ca{sup 2+} currents acting on Ca{sub V}{alpha}{sub 2}{delta} only when applied chronically, both in a heterologous expression system and in dorsal root-ganglion neurons. AdGABA seems to require uptake and be acting intracellularly given that its effects are prevented by an inhibitor of the L-amino acid transport system. Interestingly, a mutation in the Ca{sub V}{alpha}{sub 2}{delta} that abolishes GBP binding did not affect AdGABA actions, revealing that its mechanism of action is similar but not identical to that of GBP. These results indicate that AdGABA is an important Ca{sub V}{alpha}{sub 2}{delta} ligand that regulates Ca{sub V} channels.

  5. Characterization of an early afterhyperpolarization after a brief train of action potentials in rat hippocampal neurons in vitro.

    PubMed

    Williamson, A; Alger, B E

    1990-01-01

    1. In rat hippocampal pyramidal cells in vitro, a brief train of action potentials elicited by direct depolarizing current pulses injected through an intracellular recording electrode is followed by a medium-duration afterhyperpolarization (mAHP) and a longer, slow AHP. We studied the mAHP with the use of current-clamp techniques in the presence of dibutyryl cyclic adenosine 3',5'-monophosphate (cAMP) to block the slow AHP and isolate the mAHP. 2. The mAHP evoked at hyperpolarized membrane potentials was complicated by a potential generated by the anomalous rectifier current, IQ. The mAHP is insensitive to chloride ions (Cl-), whereas it is sensitive to the extracellular potassium concentration ([K+]o). 3. At slightly depolarized levels, the mAHP is partially Ca2+ dependent, being enhanced by increased [Ca2+]o and BAY K 8644 and depressed by decreased [Ca2+]o, nifedipine, and Cd2+. The Ca2(+)-dependent component of the mAHP was also reduced by 100 microM tetraethylammonium (TEA) and charybdotoxin (CTX), suggesting it is mediated by the voltage- and Ca2(+)-dependent K+ current, IC. 4. Most of the Ca2(+)-independent mAHP was blocked by carbachol, implying that IM plays a major role. In a few cells, a small Ca2(+)- and carbachol-insensitive mAHP component was detectable, and this component was blocked by 10 mM TEA, suggesting it was mediated by the delayed rectifier current, IK. The K+ channel antagonist 4-aminopyridine (4-AP, 500 microM) did not reduce the mAHP. 5. We infer that the mAHP is a complex potential due either to IQ or to the combined effects of IM and IC. The contributions of each current depend on the recording conditions, with IC playing a role when the cells are activated from depolarized potentials and IM dominating at the usual resting potential. IQ is principally responsible for the mAHP recorded at hyperpolarized membrane potentials.

  6. Botulinum Toxin Type A Induces Changes in the Chemical Coding of Substance P-Immunoreactive Dorsal Root Ganglia Sensory Neurons Supplying the Porcine Urinary Bladder

    PubMed Central

    Bossowska, Agnieszka; Lepiarczyk, Ewa; Mazur, Urszula; Janikiewicz, Paweł; Markiewicz, Włodzimierz

    2015-01-01

    Botulinum toxin (BTX) is a potent neurotoxin which blocks acetylcholine release from nerve terminals, and therefore leads to cessation of somatic motor and/or parasympathetic transmission. Recently it has been found that BTX also interferes with sensory transmission, thus, the present study was aimed at investigating the neurochemical characterization of substance P-immunoreactive (SP-IR) bladder-projecting sensory neurons (BPSN) after the toxin treatment. Investigated neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against SP, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), neuronal nitric oxide synthase (nNOS), galanin (GAL), calbindin (CB), and somatostatin (SOM). In the control group (n = 6), 45% of the total population of BPSN were SP-IR. Nearly half of these neurons co-expressed PACAP or CGRP (45% and 35%, respectively), while co-localization of SP with GAL, nNOS, SOM or CB was found less frequently (3.7%, 1.8%, 1.2%, and 0.7%, respectively). In BTX-treated pigs (n = 6), toxin-injections caused a decrease in the number of SP-IR cells containing CGRP, SOM or CB (16.2%, 0.5%, and 0%, respectively) and a distinct increase in these nerve cells immunopositive to GAL (27.2%). The present study demonstrates that BTX significantly modifies the chemical phenotypes of SP-IR BPSN. PMID:26580655

  7. Neurons in monkey dorsal raphe nucleus code beginning and progress of step-by-step schedule, reward expectation, and amount of reward outcome in the reward schedule task.

    PubMed

    Inaba, Kiyonori; Mizuhiki, Takashi; Setogawa, Tsuyoshi; Toda, Koji; Richmond, Barry J; Shidara, Munetaka

    2013-02-20

    The dorsal raphe nucleus is the major source of serotonin in the brain. It is connected to brain regions related to reward processing, and the neurons show activity related to predicted reward outcome. Clinical observations also suggest that it is important in maintaining alertness and its apparent role in addiction seems to be related to reward processing. Here, we examined whether the neurons in dorsal raphe carry signals about reward outcome and task progress during multitrial schedules. We recorded from 98 single neurons in dorsal raphe of two monkeys. The monkeys perform one, two, or three visual discrimination trials (schedule), obtaining one, two, or three drops of liquid. In the valid cue condition, the length and brightness of a visual cue indicated schedule progress and reward amount, respectively. In the random cue condition, the visual cue was randomly presented with respect to schedule length and reward amount. We found information encoded about (1) schedule onset, (2) reward expectation, (3) reward outcome, and (4) reward amount in the mean firing rates. Information theoretic analysis showed that the temporal variation of the neuronal responses contained additional information related to the progress of the schedule toward the reward rather than only discriminating schedule onset or reward/no reward. When considered in light of all that is known about the raphe in anatomy, physiology, and behavior, the rich encoding about both task progress and predicted reward outcome makes the raphe a strong candidate for providing signals throughout the brain to coordinate persistent goal-seeking behavior.

  8. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation.

    PubMed

    Arce, Carmen; Diaz-Castroverde, Sabela; Canales, María J; Marco-Contelles, José; Samadi, Abdelouahid; Oset-Gasque, María J; González, María P

    2012-09-01

    The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy.

  9. Neuronal plasticity and antidepressant actions.

    PubMed

    Castrén, Eero; Hen, René

    2013-05-01

    Antidepressant treatments enhance plasticity and increase neurogenesis in the adult brain, but it has been unclear how these effects influence mood. We propose that, like environmental enrichment and exercise, antidepressant treatments enhance adaptability by increasing structural variability within the nervous system at many levels, from proliferating precursors to immature synaptic contacts. Conversely, sensory deprivation and chronic stress reduce this structural variability. Activity-dependent competition within the mood-related circuits, guided by rehabilitation, then selects for the survival and stabilization of those structures that best represent the internal or external milieu. Increased variability together with competition-mediated selection facilitates normal function, such as pattern separation within the dentate gyrus and other mood-related circuits, thereby enhancing adaptability toward novel experiences.

  10. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    ERIC Educational Resources Information Center

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  11. 75 FR 19944 - International Code Council: The Update Process for the International Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... National Institute of Standards and Technology International Code Council: The Update Process for the International Codes and Standards AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice. SUMMARY: The International Code Council (ICC), promulgator of the International Codes...

  12. 78 FR 18321 - International Code Council: The Update Process for the International Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... National Institute of Standards and Technology International Code Council: The Update Process for the International Codes and Standards AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice. SUMMARY: The International Code Council (ICC), promulgator of the International Codes...

  13. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding

    PubMed Central

    Malmierca, Manuel S.; Anderson, Lucy A.; Antunes, Flora M.

    2015-01-01

    To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex. PMID:25805974

  14. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  15. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.

    PubMed

    Avermann, Michael; Tomm, Christian; Mateo, Celine; Gerstner, Wulfram; Petersen, Carl C H

    2012-06-01

    Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory layer 2/3 neurons expressing channelrhodopsin-2 evoked a rapid sequence of excitation followed by inhibition. Fast-spiking (FS) GABAergic neurons received large-amplitude, fast-rising depolarizing postsynaptic potentials, often driving action potentials. In contrast, the same optogenetic stimulus evoked small-amplitude, subthreshold postsynaptic potentials in excitatory and non-fast-spiking (NFS) GABAergic neurons. To understand the synaptic mechanisms underlying this network activity, we investigated unitary synaptic connectivity through multiple simultaneous whole cell recordings. FS GABAergic neurons received unitary excitatory postsynaptic potentials with higher probability, larger amplitudes, and faster kinetics compared with NFS GABAergic neurons and other excitatory neurons. Both FS and NFS GABAergic neurons evoked robust inhibition on postsynaptic layer 2/3 neurons. A simple computational model based on the experimentally determined electrophysiological properties of the different classes of layer 2/3 neurons and their unitary synaptic connectivity accounted for key aspects of the network activity evoked by optogenetic stimulation, including the strong recruitment of FS GABAergic neurons acting to suppress firing of excitatory neurons. We conclude that FS GABAergic neurons play an important role in neocortical microcircuit function through their strong local synaptic connectivity, which might contribute to driving sparse coding in excitatory layer 2/3 neurons of mouse barrel cortex in vivo.

  16. Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons.

    PubMed

    Ghosh, Biswarup; Li, Yan; Thayer, Stanley A

    2011-02-16

    The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.

  17. Interactive Exploration for Continuously Expanding Neuron Databases.

    PubMed

    Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting

    2017-02-15

    This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons.

  18. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.

    PubMed

    Santoso, Putra; Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2015-09-30

    ELABELA (ELA) is a novel hormone consisting of 32 amino acid peptides found in humans as well as other vertebrates and is considered to play an important role in the circulatory system through the apelin receptor (APJ). However, whether ELA also acts in the central nervous system remains unknown. Here, we show that ELA functions as an anorexigenic hormone in adult mouse brain. An intracerebroventricular injection of ELA reduces food intake and activates arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN), a hypothalamic region that regulates food intake. Cytosolic calcium ([Ca]i) measurement shows that ELA dose dependently increases [Ca]i in single AVP and CRH-immunoreactive neurons isolated from the PVN. Our data suggest that ELA functions as an anorexigenic hormone through activation of AVP and CRH neurons in the PVN.

  19. A physiologically-inspired model of numerical classification based on graded stimulus coding.

    PubMed

    Pearson, John; Roitman, J D; Brannon, E M; Platt, M L; Raghavachari, Sridhar

    2010-01-01

    In most natural decision contexts, the process of selecting among competing actions takes place in the presence of informative, but potentially ambiguous, stimuli. Decisions about magnitudes - quantities like time, length, and brightness that are linearly ordered - constitute an important subclass of such decisions. It has long been known that perceptual judgments about such quantities obey Weber's Law, wherein the just-noticeable difference in a magnitude is proportional to the magnitude itself. Current physiologically inspired models of numerical classification assume discriminations are made via a labeled line code of neurons selectively tuned for numerosity, a pattern observed in the firing rates of neurons in the ventral intraparietal area (VIP) of the macaque. By contrast, neurons in the contiguous lateral intraparietal area (LIP) signal numerosity in a graded fashion, suggesting the possibility that numerical classification could be achieved in the absence of neurons tuned for number. Here, we consider the performance of a decision model based on this analog coding scheme in a paradigmatic discrimination task - numerosity bisection. We demonstrate that a basic two-neuron classifier model, derived from experimentally measured monotonic responses of LIP neurons, is sufficient to reproduce the numerosity bisection behavior of monkeys, and that the threshold of the classifier can be set by reward maximization via a simple learning rule. In addition, our model predicts deviations from Weber Law scaling of choice behavior at high numerosity. Together, these results suggest both a generic neuronal framework for magnitude-based decisions and a role for reward contingency in the classification of such stimuli.

  20. Polar Codes

    DTIC Science & Technology

    2014-12-01

    density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes. iii CONTENTS EXECUTIVE SUMMARY...the most common. Many civilian systems use low density parity check (LDPC) FEC codes, and the Navy is planning to use LDPC for some future systems...other forward error correction methods: a turbo code, a low density parity check (LDPC) code, a Reed–Solomon code, and three convolutional codes

  1. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task.

    PubMed

    Itskov, Pavel M; Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E

    2012-04-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions.

  2. Population coding in somatosensory cortex.

    PubMed

    Petersen, Rasmus S; Panzeri, Stefano; Diamond, Mathew E

    2002-08-01

    Computational analyses have begun to elucidate which components of somatosensory cortical population activity may encode basic stimulus features. Recent results from rat barrel cortex suggest that the essence of this code is not synergistic spike patterns, but rather the precise timing of single neuron's first post-stimulus spikes. This may form the basis for a fast, robust population code.

  3. Oxytocin-induced yawning: sites of action in the brain and interaction with mesolimbic/mesocortical and incertohypothalamic dopaminergic neurons in male rats.

    PubMed

    Sanna, Fabrizio; Argiolas, Antonio; Melis, Maria Rosaria

    2012-09-01

    Oxytocin (80 ng) induces yawning when injected into the caudal part of the ventral tegmental area, the hippocampal ventral subiculum and the posteromedial nucleus of the amygdala of male rats. The behavioural response occurred concomitantly with an increase in the concentration of extracellular dopamine and its main metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysate obtained from the shell of the nucleus accumbens and of the prelimbic medial prefrontal cortex by means of intracerebral microdialysis. Both oxytocin responses were significantly reduced by d(CH₂)₅Tyr(Me)²-Orn⁸-vasotocin, a selective oxytocin receptor antagonist, injected in the above brain areas 15 min before oxytocin. Similar results were obtained by activating central oxytocinergic neurons originating in the paraventricular nucleus of the hypothalamus and projecting to the ventral tegmental area, the hippocampus and the amygdala, with the dopamine agonist apomorphine given at a dose that induces yawning when injected into the paraventricular nucleus. Since oxytocin is considered a key regulator of emotional and social reward that enhances amygdala-dependent, socially reinforced learning and emotional empathy, mesolimbic and mesocortical dopamine neurons play a key role in motivation and reward, and yawning in mammals is considered a primitive, unconscious form of empathy, the present results support the hypothesis that oxytocinergic neurons originating in the paraventricular nucleus of the hypothalamus and projecting to the above brain areas and mesolimbic and mesocortical dopaminergic neurons participate in the complex neural circuits that play a role in the above mentioned functions.

  4. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.

  5. The Mechanism of Long Non-coding RNA MEG3 for Neurons Apoptosis Caused by Hypoxia: Mediated by miR-181b-12/15-LOX Signaling Pathway

    PubMed Central

    Liu, Xiaomin; Hou, Lijing; Huang, Weiwei; Gao, Yuan; Lv, Xin; Tang, Jiyou

    2016-01-01

    Objective: lncRNAs are recently thought to play a significant role in cellular homeostasis during pathological process of diseases by competing inhibiting miRNA function. The aim of present study was to assess the function of long non-coding RNA (lncRNA) MEG3 and its functional interaction with microRNA-181b in cerebral ischemic infarct of mice and hypoxia-induced neurons apoptosis. Methods: To address this question, we performed the experiments with in vivo middle cerebral artery occlusion (MCAO) mice model and in vitro oxygen-glucose deprivation (OGD)-cultured neuronal HT22 cell line. Relative expression of MEG3, miR-181b, and 12/15-LOX (lipoxygenase) mRNA was determined using quantitative RT-PCR. Western blot was used to evaluate 12/15-LOX protein expression. TUNEL assay was performed to assess cell apoptosis. Results: In both MCAO mice and OGD-cultured HT22 cell, ischemia, or hypoxia treatment results in a time-dependent increase in MEG3 and 12/15-LOX expression and decrease in miR-181b expression. Knockdown of MEG3 contributes to attenuation of hypoxia-induced apoptosis of HT22 cell. Also, expression level of MEG3 negatively correlated with miR-181b expression and positively correlated with 12/15-LOX expression. In contrary to MEG3, miR-181b overexpression attenuated hypoxia-induced HT22 cell apoptosis, as well as suppressed hypoxia-induced increase in 12/15-LOX expression. By luciferase reporter assay, we concluded that miR-181b directly binds to 12/15-LOX 3′-UTR, thereby negatively regulates 12/15-LOX expression. Conclusion: Our data suggested that long non-coding RNA MEG3 functions as a competing endogenous RNA for miR-181b to regulate 12/15-LOX expression in middle cerebral artery occlusion-induced ischemic infarct of brain nerve cells. PMID:27642276

  6. Differences in the emergent coding properties of cortical and striatal ensembles

    PubMed Central

    Ma, L.; Hyman, J.M.; Lindsay, A.J.; Phillips, A.G.; Seamans, J.K.

    2016-01-01

    The function of a given brain region is often defined by the coding properties of its individual neurons, yet how this information is combined at the ensemble level is an equally important consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis in the two regions. At the ensemble level, sequence-specific representations in the DS appeared synchronously but transiently along with the representation of lever location, while these two streams of information appeared independently and asynchronously in the ACC. As a result the ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which information was combined across neurons in an ensemble determined the functional separation of the ACC and DS on this task. PMID:24974796

  7. Information theory of adaptation in neurons, behavior, and mood

    PubMed Central

    Sharpee, Tatyana O.; Calhoun, Adam J.; Chalasani, Sreekanth H.

    2014-01-01

    The ability to make accurate predictions of future stimuli and consequences of one’s actions are crucial for the survival and appropriate decision-making. These predictions are constantly being made at different levels of the nervous system. This is evidenced by adaptation to stimulus parameters in sensory coding, and in learning of an up-to-date model of the environment at the behavioral level. This review will discuss recent findings that actions of neurons and animals are selected based on detailed stimulus history in such a way as to maximize information for achieving the task at hand. Information maximization dictates not only how sensory coding should adapt to various statistical aspects of stimuli, but also that reward function should adapt to match the predictive information from past to future. PMID:24709600

  8. Pacemaking Kisspeptin Neurons

    PubMed Central

    Kelly, Martin J.; Zhang, Chunguang; Qiu, Jian; Rønnekleiv, Oline K.

    2013-01-01

    Kisspeptin (Kiss1) neurons are vital for reproduction. GnRH neurons express the kisspeptin receptor, GPR 54, and kisspeptins potently stimulate the release of GnRH by depolarising and inducing sustained action potential firing in GnRH neurons. As such Kiss1 neurons may be the pre-synaptic pacemaker neurons in the hypothalamic circuitry that controls reproduction. There are at least two different populations of Kiss1 neurons: one in the rostral periventricular area (RP3V) that is stimulated by oestrogens and the other in the arcuate nucleus that is inhibited by oestrogens. How each of these Kiss1 neuronal populations participate in the regulation of the reproductive cycle is currently under intense investigation. Based on electrophysiological studies in the guinea pig and mouse, Kiss1 neurons in general are capable of generating burst firing behavior. Essentially all Kiss1 neurons, which have been studied thus far in the arcuate nucleus, express the ion channels necessary for burst firing, which include hyperpolarization-activated, cyclic nucleotide gated cation (HCN) channels and the T-type calcium (Cav3.1) channels. Under voltage clamp conditions, these channels produce distinct currents that under current clamp conditions can generate burst firing behavior. The future challenge is to identify other key channels and synaptic inputs involved in the regulation of the firing properties of Kiss1 neurons and the physiological regulation of the expression of these channels and receptors by oestrogens and other hormones. The ultimate goal is to understand how Kiss1 neurons control the different phases of GnRH neurosecretion and hence reproduction. PMID:23884368

  9. Temporal integration by a slowly inactivating K+ current in hippocampal neurons.

    PubMed

    Storm, J F

    1988-11-24

    A central aspect of neuronal function is how each nerve cell translated synaptic input into a sequence of action potentials that carry information along the axon, coded as spike frequency. When transduction from a graded depolarizing input to spikes is studied by injecting a depolarizing current, there is often a remarkably long delay to the first action potential, both in mammalian and molluscan neurons. Here, I report that the delayed excitation in rat hippocampal neurons is due to a slowly inactivating potassium current, ID. ID co-exists with other voltage-gated K+ currents, including a fast A current and a slow delayed rectifier current. As ID activates in the subthreshold range, and takes tens of seconds to recover from inactivation, it enables the cell to integrate separate depolarizing inputs over long times. ID also makes the encoding properties of the cell exceedingly sensitive to the prevailing membrane potential.

  10. Capacity of a single spiking neuron

    NASA Astrophysics Data System (ADS)

    Ikeda, Shiro; Manton, Jonathan H.

    2009-12-01

    It is widely believed the neurons transmit information in the form of spikes. Since the spike patterns are known to be noisy, the neuron information channel is noisy. We have investigated the channel capacity of this "Spiking neuron channel" for both of the "temporal coding" and the "rate coding," which are two main coding considered in the neuroscience [1, 2]. As the result, we've proved that the distribution of inputs, which achieves the channel capacity, is a discrete distribution with finite mass points for temporal and rate coding under a reasonable assumption. In this draft, we show the details of the proof.

  11. Coding and adaptation during mechanical stimulation in the leech nervous system.

    PubMed

    Pinato, G; Torre, V

    2000-12-15

    The experiments described here were designed to characterise sensory coding and adaptation during mechanical stimulation in the leech (Hirudo medicinalis). A chain of three ganglia and a segment of the body wall connected to the central ganglion were used. Eight extracellular suction pipettes and one or two intracellular electrodes were used to record action potentials from all mechanosensory neurones of the three ganglia. When the skin of the body wall was briefly touched with a filament exerting a force of about 2 mN, touch (T) cells in the central ganglion, but also those in adjacent ganglia (i.e. anterior and posterior), fired one or two action potentials. However, the threshold for action potential initiation was lower for T cells in the central ganglion than for those in adjacent ganglia. The timing of the first evoked action potential in a T cell was very reproducible with a jitter often lower than 100 us. Action potentials in T cells were not significantly correlated. When the force exerted by the filament was increased above 20 mN, pressure (P) cells in the central and neighbouring ganglia fired action potentials. Action potentials in P cells usually followed those evoked in T cells with a delay of about 20 ms and had a larger jitter of 0.5-10 ms. With stronger stimulations exceeding 50 mN, noxious (N) cells also fired action potentials. With such stimulations the majority of mechanosensory neurones in the three ganglia fired action potentials. The spatial properties of the whole receptive field of the mechanosensory neurones were explored by touching different parts of the skin. When the mechanical stimulation was applied for a longer time, i.e. 1 s, only P cells in the central ganglion continued to fire action potentials. P cells in neighbouring ganglia fully adapted after firing two or three action potentials.P cells in adjacent ganglia, having fully adapted to a steady mechanical stimulation of one part of the skin, fired action potentials following

  12. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells.

    PubMed

    Yoo, Jae-Myung; Lee, Bo Dam; Sok, Dai-Eun; Ma, Jin Yuel; Kim, Mee Ree

    2017-04-01

    N-acetyl serotonin (NAS) as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB) and cAMP response element-binding protein (CREB) as well as expression of brain-derived neurotrophic factor (BDNF), whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(P)H quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.

  13. The Effects of Hydrazines of Neuronal Excitability

    DTIC Science & Technology

    1992-01-10

    resulting in a broadening of the action potential from 3-4 msec duration to about 10 msec (Figure 5A). HZ also affected responses of spinal neurons to...these experiments. These neurons were usually spontaneously active, firing action potentials on a underlying background synaptic barrage. These action ... action potentials , often followed by prolonged, 10-20 mV depolarizing plateau potentials . Some bursts were followed by extremely prolonged large (30

  14. The Effects of Hydrazines of Neuronal Excitability.

    DTIC Science & Technology

    1991-12-31

    these experiments. These neurons were usually spontaneously active, firing action potentials on a underlying background synaptic barrage. These action ...of action potentials , often followed by prolonged, 10-20 mV depolarizing plateau potentials . Some bursts were followed by extremely prolonged large (30... action potential from 3-4 msec duration to about 10 msec (Figure 5A). HZ also affected responses of spinal neurons to sustained stimuli. Under control

  15. Temporal Coding at the Immature Depolarizing GABAergic Synapse

    PubMed Central

    Valeeva, Guzel; Abdullin, Azat; Tyzio, Roman; Skorinkin, Andrei; Nikolski, Evgeny; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2010-01-01

    In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven giant depolarizing potentials (GDPs). Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2–6) rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs) evoked by synaptic activation of GABA(A) receptors are long (mean, 65 ms) and variable (within a time window of 10–200 ms). During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (EGABA) with low concentrations of bumetanide, or potentiation of GABA(A) receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A) receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus. PMID:20725525

  16. Temporal coding at the immature depolarizing GABAergic synapse.

    PubMed

    Valeeva, Guzel; Abdullin, Azat; Tyzio, Roman; Skorinkin, Andrei; Nikolski, Evgeny; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2010-01-01

    In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven giant depolarizing potentials (GDPs). Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6) rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs) evoked by synaptic activation of GABA(A) receptors are long (mean, 65 ms) and variable (within a time window of 10-200 ms). During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (E(GABA)) with low concentrations of bumetanide, or potentiation of GABA(A) receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A) receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

  17. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis.

    PubMed

    Ikeda, Maaya Z; Jeon, Sung David; Cowell, Rosemary A; Remage-Healey, Luke

    2015-06-24

    The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous "noise" activity and that these actions are independent of local neuroestrogen synthesis.

  18. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.

  19. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  20. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  1. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons.

    PubMed

    Giret, Nicolas; Edeline, Jean-Marc; Del Negro, Catherine

    2017-03-10

    Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level.

  2. Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: identification of the substances responsible for the pharmacological action.

    PubMed

    Kawahata, Ichiro; Yoshida, Masaaki; Sun, Wen; Nakajima, Akira; Lai, Yanxin; Osaka, Naoya; Matsuzaki, Kentaro; Yokosuka, Akihito; Mimaki, Yoshihiro; Naganuma, Akira; Tomioka, Yoshihisa; Yamakuni, Tohru

    2013-10-01

    cAMP/PKA/ERK/CREB signaling linked to CRE-mediated transcription is crucial for learning and memory. We originally found nobiletin as a natural compound that stimulates this intracellular signaling and exhibits anti-dementia action in animals. Citrus reticulata or C. unshiu peels are employed as "chinpi" and include a small amount of nobiletin. We here provide the first evidence for beneficial pharmacological actions on the cAMP/PKA/ERK/CREB cascade of extracts from nobiletin-rich C.reticulata peels designated as Nchinpi, the nobiletin content of which was 0.83 ± 0.13% of the dry weight or 16-fold higher than that of standard chinpi extracts. Nchinpi extracts potently facilitated CRE-mediated transcription in cultured hippocampal neurons, whereas the standard chinpi extracts showed no such activity. Also, the Nchinpi extract, but not the standard chinpi extract, stimulated PKA/ERK/CREB signaling. Interestingly, treatment with the Nchinpi extract at the concentration corresponding to approximately 5 μM nobiletin more potently facilitated CRE-mediated transcriptional activity than did 30 μM nobiletin alone. Consistently, sinensetin, tangeretin, 6-demethoxynobiletin, and 6-demethoxytangeretin were also identified as bioactive substances in Nchinpi that facilitated the CRE-mediated transcription. Purified sinensetin enhanced the transcription to a greater degree than nobiletin. Furthermore, samples reconstituted with the four purified compounds and nobiletin in the ratio of each constituent's content in the extract showed activity almost equal to that of the Nchinpi extract to stimulate CRE-mediated transcription. These findings suggest that above four compounds and nobiletin in the Nchinpi extract mainly cooperated to facilitate potently CRE-mediated transcription linked to the upstream cAMP/PKA/ERK/CREB pathway in hippocampal neurons.

  3. Habit learning by naïve macaques is marked by response sharpening of striatal neurons representing the cost and outcome of acquired action sequences

    PubMed Central

    Desrochers, Theresa M.; Amemori, Ken-ichi; Graybiel, Ann M.

    2015-01-01

    SUMMARY Over a century of scientific work has focused on defining the factors motivating behavioral learning. Observations in animals and humans trained on a wide range of tasks support reinforcement learning (RL) algorithms as accounting for the learning. Still unknown, however, are the signals that drive learning in naïve, untrained subjects. Here, we capitalized on a sequential saccade task in which macaque monkeys acquired repetitive scanning sequences without instruction. We found that spike activity in the caudate nucleus after each trial corresponded to an integrated cost-benefit signal that was highly correlated with the degree of naturalistic untutored learning by the monkeys. Across learning, neurons encoding both cost and outcome gradually acquired increasingly sharp phasic trial-end responses that paralleled the development of the habit-like, repetitive saccade sequences. Our findings demonstrate a novel integrated cost-benefit signal by which RL and its neural correlates could drive naturalistic behaviors in freely behaving primates. PMID:26291166

  4. Habit Learning by Naive Macaques Is Marked by Response Sharpening of Striatal Neurons Representing the Cost and Outcome of Acquired Action Sequences.

    PubMed

    Desrochers, Theresa M; Amemori, Ken-ichi; Graybiel, Ann M

    2015-08-19

    Over a century of scientific work has focused on defining the factors motivating behavioral learning. Observations in animals and humans trained on a wide range of tasks support reinforcement learning (RL) algorithms as accounting for the learning. Still unknown, however, are the signals that drive learning in naive, untrained subjects. Here, we capitalized on a sequential saccade task in which macaque monkeys acquired repetitive scanning sequences without instruction. We found that spike activity in the caudate nucleus after each trial corresponded to an integrated cost-benefit signal that was highly correlated with the degree of naturalistic untutored learning by the monkeys. Across learning, neurons encoding both cost and outcome gradually acquired increasingly sharp phasic trial-end responses that paralleled the development of the habit-like, repetitive saccade sequences. Our findings demonstrate an integrated cost-benefit signal by which RL and its neural correlates could drive naturalistic behaviors in freely behaving primates.

  5. Synaptic Plasticity as a Cortical Coding Scheme

    PubMed Central

    Froemke, Robert C.; Schreiner, Christoph E.

    2015-01-01

    Processing of auditory information requires constant adjustment due to alterations of the environment and changing conditions in the nervous system with age, health, and experience. Consequently, patterns of activity in cortical networks have complex dynamics over a wide range of timescales, from milliseconds to days and longer. In the primary auditory cortex (AI), multiple forms of adaptation and plasticity shape synaptic input and action potential output. However, the variance of neuronal responses has made it difficult to characterize AI receptive fields and to determine the function of AI in processing auditory information such as vocalizations. Here we describe recent studies on the temporal modulation of cortical responses and consider the relation of synaptic plasticity to neural coding. PMID:26497430

  6. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity.

    PubMed

    Pedroarena, Christine M

    2011-12-01

    Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood. BK and Kv3.1 potassium channels subserve similar functions in spike repolarization and fast firing in many neurons and are both highly expressed in DCNs. Here, their role in the abovementioned spiking characteristics was addressed using whole-cell recordings of large and small putative-glutamatergic DCNs. Selective BK channel block depolarized DCNs of both groups and increased spontaneous firing rate but scarcely affected evoked activity. After adjusting the membrane potential to control levels, the spike waveforms under BK channel block were indistinguishable from control ones, indicating no significant BK channel involvement in spike repolarization. The increased firing rate suggests that lack of DCN-BK channels may have contributed to the ataxic phenotype previously found in BK channel-deficient mice. On the other hand, block of Kv3.1 channels with low doses of 4-aminopyridine (20 μM) hindered spike repolarization and severely depressed evoked fast firing. Therefore, I propose that despite similar characteristics of BK and Kv3.1 channels, they play different roles in DCNs: BK channels control almost exclusively spontaneous firing rate, whereas DCN-Kv3.1 channels dominate the spike repolarization and enable fast firing. Interestingly, after Kv3.1 channel block, BK channels gained a role in spike repolarization, demonstrating how the different function of each of the two channels is determined in part by their co-expression and interplay.

  7. Cholecystokinin B-type receptors mediate a G-protein-dependent depolarizing action of sulphated cholecystokinin ocatapeptide (CCK-8s) on rodent neonatal spinal ventral horn neurons.

    PubMed

    Oz, Murat; Yang, Keun-Hang; Shippenberg, Toni S; Renaud, Leo P; O'Donovan, Michael J

    2007-09-01

    Reports of cholecystokinin (CCK) binding and expression of CCK receptors in neonatal rodent spinal cord suggest that CCK may influence neuronal excitability. In patch-clamp recordings from 19/21 ventral horn motoneurons in neonatal (PN 5-12 days) rat spinal cord slices, we noted a slowly rising and prolonged membrane depolarization induced by bath-applied sulfated CCK octapeptide (CCK-8s; 1 microM), blockable by the CCK B receptor antagonist L-365,260 (1 microM). Responses to nonsulfated CCK-8 or CCK-4 were significantly weaker. Under voltage clamp (V H -65 mV), 22/24 motoneurons displayed a CCK-8s-induced tetrodotoxin-resistant inward current [peak: -136 +/- 28 pA] with a similar time course, mediated via reduction in a potassium conductance. In 29/31 unidentified neurons, CCK-8s induced a significantly smaller inward current (peak: -42.8 +/- 5.6 pA), and I-V plots revealed either membrane conductance decrease with net inward current reversal at 101.3 +/- 4.4 mV (n = 16), membrane conductance increase with net current reversing at 36.1 +/- 3.8 mV (n = 4), or parallel shift (n = 9). Intracellular GTP-gamma-S significantly prolonged the effect of CCK-8s (n = 6), whereas GDP-beta-S significantly reduced the CCK-8s response (n = 6). Peak inward currents were significantly reduced after 5-min perfusion with N-ethylmaleimide. In isolated neonatal mouse spinal cord preparations, CCK-8s (30-300 nM) increased the amplitude and discharge of spontaneous depolarizations recorded from lumbosacral ventral roots. These observations imply functional postsynaptic G-protein-coupled CCK B receptors are prevalent in neonatal rodent spinal cord.

  8. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  9. Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia

    PubMed Central

    Xu, Q; Deng, F; Xing, Z; Wu, Z; Cen, B; Xu, S; Zhao, Z; Nepomuceno, R; Bhuiyan, M I H; Sun, D; Wang, Q J; Ji, A

    2016-01-01

    Increasing evidence has demonstrated a significant role of long non-coding RNAs (lncRNAs) in diverse biological processes. However, their functions in cerebral ischemia remain largely unknown. Through an lncRNA array analysis in a rat model of focal cerebral ischemia/reperfusion (I/R), we have identified CAMK2D-associated transcript 1 (C2dat1) as a novel I/R-induced lncRNA that regulated the expression of CaMKIIδ in murine models of focal cerebral ischemia. C2dat1 mRNA was upregulated in a time-dependent manner in mouse cortical penumbra after focal ischemic brain injury, which was accompanied by increased expression of CaMKIIδ at transcript and protein levels. The expression patterns of C2dat1 and CAMK2D were confirmed in mouse Neuro-2a cells in response to in vitro ischemia (oxygen-glucose deprivation/reoxygenation, OGD/R). Knockdown of C2dat1 resulted in a significant blockade of CaMKIIδ expression, and potentiated OGD/R-induced cell death. Mechanistically, reduced CaMKIIδ expression upon silencing C2dat1 inhibited OGD/R-induced activation of the NF-κB signaling pathway. Further analysis showed that the downregulation of IKKα and IKKβ expression and phosphorylation, and subsequent inhibition of IκBα degradation accounted for the inhibition of the NF-κB signaling activity caused by silencing C2dat1. In summary, we discovered a novel I/R-induced lncRNA C2dat1 that modulates the expression of CaMKIIδ to impact neuronal survival, and may be a potential target for therapeutic intervention of ischemic brain injury. PMID:27031970

  10. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

    PubMed Central

    Church, J; Fletcher, E J; Baxter, K; MacDonald, J F

    1994-01-01

    1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834201

  11. Imaging action potentials with calcium indicators.

    PubMed

    MacLean, Jason N; Yuste, Rafael

    2009-11-01

    The understanding of neuronal circuits has been, and will continue to be, greatly advanced by the simultaneous imaging of action potentials in neuronal ensembles. This protocol describes "bulk" loading of brain slices with acetoxymethyl (AM) ester calcium indicators in order to monitor action potential activity in large populations of neurons simultaneously. The imaging of calcium influx into neurons provides an indirect, but accurate, measure of action potential generation in individual neurons. Single-cell resolution, and thus the easy identification of every active cell, is the key advantage of the technique.

  12. Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex.

    PubMed

    Hawkins, Jeff; Ahmad, Subutai

    2016-01-01

    Pyramidal neurons represent the majority of excitatory neurons in the neocortex. Each pyramidal neuron receives input from thousands of excitatory synapses that are segregated onto dendritic branches. The dendrites themselves are segregated into apical, basal, and proximal integration zones, which have different properties. It is a mystery how pyramidal neurons integrate the input from thousands of synapses, what role the different dendrites play in this integration, and what kind of network behavior this enables in cortical tissue. It has been previously proposed that non-linear properties of dendrites enable cortical neurons to recognize multiple independent patterns. In this paper we extend this idea in multiple ways. First we show that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where patterns detected on proximal dendrites lead to action potentials, defining the classic receptive field of the neuron, and patterns detected on basal and apical dendrites act as predictions by slightly depolarizing the neuron without generating an action potential. By this mechanism, a neuron can predict its activation in hundreds of independent contexts. We then present a network model based on neurons with these properties that learns time-based sequences. The network relies on fast local inhibition to preferentially activate neurons that are slightly depolarized. Through simulation we show that the network scales well and operates robustly over a wide range of parameters as long as the network uses a sparse distributed code of cellular activations. We contrast the properties of the new network model with several other neural network models to illustrate the relative capabilities of each. We conclude that pyramidal neurons with thousands of synapses, active dendrites, and multiple

  13. Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex

    PubMed Central

    Hawkins, Jeff; Ahmad, Subutai

    2016-01-01

    Pyramidal neurons represent the majority of excitatory neurons in the neocortex. Each pyramidal neuron receives input from thousands of excitatory synapses that are segregated onto dendritic branches. The dendrites themselves are segregated into apical, basal, and proximal integration zones, which have different properties. It is a mystery how pyramidal neurons integrate the input from thousands of synapses, what role the different dendrites play in this integration, and what kind of network behavior this enables in cortical tissue. It has been previously proposed that non-linear properties of dendrites enable cortical neurons to recognize multiple independent patterns. In this paper we extend this idea in multiple ways. First we show that a neuron with several thousand synapses segregated on active dendrites can recognize hundreds of independent patterns of cellular activity even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where patterns detected on proximal dendrites lead to action potentials, defining the classic receptive field of the neuron, and patterns detected on basal and apical dendrites act as predictions by slightly depolarizing the neuron without generating an action potential. By this mechanism, a neuron can predict its activation in hundreds of independent contexts. We then present a network model based on neurons with these properties that learns time-based sequences. The network relies on fast local inhibition to preferentially activate neurons that are slightly depolarized. Through simulation we show that the network scales well and operates robustly over a wide range of parameters as long as the network uses a sparse distributed code of cellular activations. We contrast the properties of the new network model with several other neural network models to illustrate the relative capabilities of each. We conclude that pyramidal neurons with thousands of synapses, active dendrites, and multiple

  14. Isomer-nonspecific action of dichlorodiphenyltrichloroethane on aryl hydrocarbon receptor and G-protein-coupled receptor 30 intracellular signaling in apoptotic neuronal cells.

    PubMed

    Kajta, M; Litwa, E; Rzemieniec, J; Wnuk, A; Lason, W; Zelek-Molik, A; Nalepa, I; Grzegorzewska-Hiczwa, M; Tokarski, K; Golas, A; Guzik, E; Grochowalski, A; Szychowski, K A; Wojtowicz, A K

    2014-07-05

    Extended residual persistence of the pesticide dichlorodiphenyltrichloroethane (DDT) raises concerns about its long-term neurotoxic effects. Little is known, however, about DDT toxicity during the early stages of neural development. This study demonstrated that DDT-induced apoptosis of mouse embryonic neuronal cells is a caspase-9-, caspase-3-, and GSK-3β-dependent process, which involves p,p'-DDT-specific impairment of classical ERs. It also provided evidence for DDT-isomer-nonspecific alterations of AhR- and GPR30-mediated intracellular signaling, including changes in the levels of the receptor and receptor-regulated mRNAs, and also changes in the protein levels of the receptors. DDT-induced stimulation of AhR-signaling and reduction of GPR30-signaling were verified using selective ligands and specific siRNAs. Co-localization of the receptors was demonstrated with confocal microscopy, and the presence of functional GPR30 was detected by electrophysiology. This study demonstrates that stimulation of AhR-signaling and impairment of GPR30-signaling play important roles in the propagation of DDT-induced apoptosis during the early stages of neural development.

  15. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  16. Ethical coding.

    PubMed

    Resnik, Barry I

    2009-01-01

    It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.

  17. Coding and transmission of information by neural ensembles.

    PubMed

    Averbeck, Bruno B; Lee, Daeyeol

    2004-04-01

    The brain processes information about sensory stimuli and motor intentions using a massive ensemble of neurons arrayed in parallel. Individual neurons receive convergent inputs from thousands of other neurons, leading to the possibility that patterns of spikes across the input neurons might be crucial components of the neural code. Recently, advances in multielectrode recording techniques have allowed several laboratories to investigate the nature of the interactions between neurons, and their potential role in information coding. Several recent studies have found that the amount of information coded by correlated activity about sensory and motor variables is small, casting doubt on the hypothesis that correlations between pairs of neurons are important for information coding. However, other studies have documented the appearance of coherent oscillations, during particular task epochs and conditions that require selective processing of sensory information, supporting the hypothesis that coherent oscillations between neurons might reflect the dynamic flow of information in the brain.

  18. [What mirror neurons have revealed: revisited].

    PubMed

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  19. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron

    NASA Astrophysics Data System (ADS)

    Maisel, Brenton; Lindenberg, Katja

    2017-02-01

    While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.

  20. Chaotic neuron dynamics, synchronization and feature binding

    NASA Astrophysics Data System (ADS)

    Arecchi, F. T.

    2004-07-01

    Neuroscience studies how a large collection of coupled neurons combines external data with internal memories into coherent patterns of meaning. Such a process is called “feature binding”, insofar as the coherent patterns combine together features which are extracted separately by specialized cells, but which do not make sense as isolated items. A powerful conjecture, with experimental confirmation, is that feature binding implies the mutual synchronization of axonal spike trains in neurons which can be far away and yet contribute to a well defined perception by sharing the same time code. Based on recent investigations of homoclinic chaotic systems, and how they mutually synchronize, a novel conjecture on the dynamics of the single neuron is formulated. Homoclinic chaos implies the recurrent return of the dynamical trajectory to a saddle focus, in whose neighbourhood the system susceptibility (response to an external perturbation) is very high and hence it is very easy to lock to an external stimulus. Thus homoclinic chaos appears as the easiest way to encode information by a train of equal spikes occurring at erratic times. In conventional measurements we read the number indicated by a meter's pointer and assign to the measured object a set position corresponding to that number. On the contrary, a time code requires a decision time T¯ sufficiently longer than the minimal interspike separation t1, so that the total number of different set elements is related in some way to the size T¯/t 1. In neuroscience it has been shown that T¯≃200 ms while t 1≃3 ms. In a sensory layer of the brain neocortex an external stimulus spreads over a large assembly of neurons building up a collective state, thus synchronization of trains of different individual neurons is the basis of a coherent perception. The percept space can be given a metric structure by introducing a distance measure. This distance is conjugate of the duration time in the sense that an uncertainty

  1. The pre-states, the time precision and the response pattern of oscillatory neurons

    NASA Astrophysics Data System (ADS)

    Pei, Xing

    1998-03-01

    Rate and temporal codes are two main strategies for encoding neural information. The temporal code contains more information but requires substantial timing precision of the spike discharges. Cortical neurons can respond to stimulation with good time precision. However, action potential responses depend not only upon the stimulus but also upon the history of a neuron. We have studied this problem with an oscillatory system: the primary afferent cells that innervate the ampullary electroreceptors in the paddlefish. The endogenous discharges represent a noisy oscillator. We demonstrate how the pre-state of a neuron affects the response timing precision to an applied stimulus, by re-ordering the data according to the time between the last endogenous spike and the delivery of the stimulus. Raster plots of discharges show clear striped patterns for the re-ordered data. In contrast, plots of the original data show random distributions or broadened stripes. We confirm this phenomenon by numerical simulation using a noisy Hodgkin-Huxley model with and without an endogenous oscillator. This technique can also be applied to other systems, e.g. cortical neurons, where oscillations are thought to be important. Oscillatory neurons demonstrate that the pre-state of the system is crucial in determining the post stimulus spike timing and precision.

  2. Advances in applications of spiking neuron networks

    NASA Astrophysics Data System (ADS)

    Cios, Krzysztof J.; Sala, Dorel M.

    2000-03-01

    In this paper, we present new findings in constructing and applications of artificial neural networks that use a biologically inspired spiking neuron model. The used model is a point neuron with the interaction between neurons described by postsynaptic potentials. The synaptic plasticity is achieved by using a temporal correlation learning rule, specified as a function of time difference between the firings of pre- and post-synaptic neurons. Using this rule we show how certain associations between neurons in a network of spiking neurons can be implemented. As an example we analyze the dynamic properties of networks of laterally connected spiking neurons and we show their capability to self-organize into topological maps in response to external stimulation. In another application we explore the capability networks of spiking neurons to solve graph algorithms by using temporal coding of distances in a given spatial configuration. The paper underlines the importance of temporal dimension in artificial neural network information processing.

  3. A fish on the hunt, observed neuron by neuron

    SciTech Connect

    2010-01-01

    This three-dimensional microscopy image reveals an output neuron of the optic tectum lighting up in response to visual information from the retina. The scientists used this state-of-the-art imaging technology to learn how neurons in the optic tectum take visual information and convert it into an output that drives action. More information: http://newscenter.lbl.gov/feature-stories/2010/10/29/zebrafish-vision/

  4. Tonic and Phasic Receptor Neurons in the Vertebrate Olfactory Epithelium

    PubMed Central

    Madrid, Rodolfo; Sanhueza, Magdalena; Alvarez, Osvaldo; Bacigalupo, Juan

    2003-01-01

    Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (∼4 pF), but they differed in resting potential (−82 versus −64 mV), input resistance (4.2 versus 2.9 GΩ) and unspecific current, Iu (TNs: 0 < Iu ≤ 1 pA/pF; and PNs: Iu > 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (∼4 mm2) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs. PMID:12770919

  5. [Neuronal ageing].

    PubMed

    Piechota, Małgorzata; Sunderland, Piotr

    2014-01-01

    Ageing leads to irreversible alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. In old neurons and brain, similarly to what may take place in other cells, there is increased oxidative stress, disturbed energetic homeostasis and metabolism, accumulation of damage in proteins and nucleic acids. Characteristic of old neurons are alterations in plasticity, synaptic transmission, sensitivity to neurotrophic factors and cytoskeletal changes. Some markers of senescence, whose one of them is SA-beta-galactosidase were used to show the process of neuronal ageing both in vitro, and in vivo. Some research suggest that, despite the fact that neurons are postmitotic cells, it is cell cycle proteins which play a certain role in their biology, e.g. differentiation. However, their role in neuronal ageing is not known or explained. Ageing is the serious factor of development of neurodegenerative diseases among others Alzheimer disease.

  6. [Neurotransmitters, calcium signalling and neuronal communication].

    PubMed

    Eguiagaray, J G; Egea, J; Bravo-Cordero, J J; García, A G

    2004-04-01

    In this article we show some recent findings that constitute a great progress in the molecular knowledge of synaptic dynamics. To communicate, neurons use a code that includes electrical (action potentials) and chemical signals (neurotransmitters, neuromodulators). At the moment a great variety of molecules are known, whose neurotransmitter function in brain and the peripheral nervous system are out of question. Monoamines like acetylcholine, dopamine, noradrenaline, adrenaline, histamine, serotonin, glutamate, aspartate, glycine, ATP and GABA are good examples. Opioid neuropeptides, vasoactive intestinal peptide (VIP), neurokinines (substance P), somatostatin, neurotensin, neuropeptide Y, cholecystokinine, vasopressin or oxitocin have been related to the control of the stress response, sexual behaviour, food intake, pain, learning and memory, qualities that are also related to nitric oxide (NO). A great part of the molecular structure of the secretory machinery is known to be responsible for fast neurotransmitter release at the synapse, in response to action potentials. Proteins like sinaptobrevin (located in the membrane of the synaptic vesicle), sintaxin and SNAP-25 (both located at the presynaptic plasma membrane) constitute a trimeric complex which is responsible of the vesicular docking at the active sites for exocytosis. From this strategic location, vesicles release their neurotransmitter within few milliseconds, when the action potential invades the nerve terminal and activates the opening of the different subtypes of voltage-dependent Ca2+ channels. The asymmetric geographical distribution of each type of channel, in different neurons, rose the hypothesis that Ca2+ that enters through each subtype of channel is compartmentalised, thus favouring the generation of Ca2+ microdomains, in the cytosol and the nucleus, involved in different cellular functions. This great biochemical synaptic heterogeneity is facilitating the selection of many biological targets

  7. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  8. Single-neuron and genetic correlates of autistic behavior in macaque

    PubMed Central

    Yoshida, Kyoko; Go, Yasuhiro; Kushima, Itaru; Toyoda, Atsushi; Fujiyama, Asao; Imai, Hiroo; Saito, Nobuhito; Iriki, Atsushi; Ozaki, Norio; Isoda, Masaki

    2016-01-01

    Atypical neurodevelopment in autism spectrum disorder is a mystery, defying explanation despite increasing attention. We report on a Japanese macaque that spontaneously exhibited autistic traits, namely, impaired social ability as well as restricted and repetitive behaviors, along with our single-neuron and genomic analyses. Its social ability was measured in a turn-taking task, where two monkeys monitor each other’s actions for adaptive behavioral planning. In its brain, the medial frontal neurons responding to others’ actions, abundant in the controls, were almost nonexistent. In its genes, whole-exome sequencing and copy number variation analyses identified rare coding variants linked to human neuropsychiatric disorders in 5-hydroxytryptamine (serotonin) receptor 2C (HTR2C) and adenosine triphosphate (ATP)–binding cassette subfamily A13 (ABCA13). This combination of systems neuroscience and cognitive genomics in macaques suggests a new, phenotype-to-genotype approach to studying mental disorders. PMID:27679817

  9. Phenotypic checkpoints regulate neuronal development.

    PubMed

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  10. Canonical microcircuits for predictive coding

    PubMed Central

    Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J.

    2013-01-01

    Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate. PMID:23177956

  11. Mirror neurons: Enigma of the metaphysical modular brain.

    PubMed

    Acharya, Sourya; Shukla, Samarth

    2012-07-01

    Mirror neurons are one of the most important discoveries in the last decade of neuroscience. These are a variety of visuospatial neurons which indicate fundamentally about human social interaction. Essentially, mirror neurons respond to actions that we observe in others. The interesting part is that mirror neurons fire in the same way when we actually recreate that action ourselves. Apart from imitation, they are responsible for myriad of other sophisticated human behavior and thought processes. Defects in the mirror neuron system are being linked to disorders like autism. This review is a brief introduction to the neurons that shaped our civilization.

  12. Optimization Methods for Spiking Neurons and Networks

    PubMed Central

    Russell, Alexander; Orchard, Garrick; Dong, Yi; Mihalaş, Ştefan; Niebur, Ernst; Tapson, Jonathan; Etienne-Cummings, Ralph

    2011-01-01

    Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron’s output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip. PMID:20959265

  13. Reading and writing the neural code.

    PubMed

    Stanley, Garrett B

    2013-03-01

    It has been more than 20 years since Bialek and colleagues published a landmark paper asking a seemingly innocuous question: what can we extract about the outside world from the spiking activity of sensory neurons? Can we read the neural code? Although this seemingly simple question has helped us shed light on the neural code, we still do not understand the anatomical and neurophysiological constraints that enable these codes to propagate across synapses and form the basis for computations that we need to interact with our environment. The sensitivity of neuronal activity to the timing of synaptic inputs naturally suggests that synchrony determines the form of the neural code, and, in turn, regulation of synchrony is a critical element in 'writing' the neural code through the artificial control of microcircuits to activate downstream structures. In this way, reading and writing the neural code are inextricably linked.

  14. Sharing code

    PubMed Central

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519

  15. Role of miR-211 in Neuronal Differentiation and Viability: Implications to Pathogenesis of Alzheimer’s Disease

    PubMed Central

    Fan, Chunying; Wu, Qi; Ye, Xiaoyang; Luo, Hongxue; Yan, Dongdong; Xiong, Yi; Zhu, Haili; Diao, Yarui; Zhang, Wei; Wan, Jun

    2016-01-01

    Alzheimer’s disease (AD) is an age-related irreversible neurodegenerative disorder characterized by extracellular β Amyloid(Aβ) deposition, intracellular neurofibrillary tangles and neuronal loss. The dysfunction of neurogenesis and increased degeneration of neurons contribute to the pathogenesis of AD. We now report that miR-211-5p, a small non-coding RNA, can impair neurite differentiation by directly targeting NUAK1, decrease neuronal viability and accelerate the progression of Aβ-induced pathologies. In this study, we observed that during embryonic development, the expression levels of miR-211-5p were down-regulated in the normal cerebral cortexes of mice. However, in APPswe/PS1ΔE9 double transgenic adult mice, it was up-regulated from 9 months of age compared to that of the age-matched wild type mice. Studies in primary cortical neuron cultures demonstrated that miR-211-5p can inhibit neurite growth and branching via NUAK1 repression and decrease mature neuron viability. The impairments were more obvious under the action of Aβ. Our data showed that miR-211-5p could inhibit cortical neuron differentiation and survival, which may contribute to the synaptic failure, neuronal loss and cognitive dysfunction in AD. PMID:27458373

  16. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.

    PubMed

    Gurney, Kevin N; Humphries, Mark D; Redgrave, Peter

    2015-01-01

    Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our

  17. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    PubMed

    Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua

    2015-01-01

    Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  18. 1 CFR 22.6 - Code designation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Code designation. 22.6 Section 22.6 General... DOCUMENTS PREPARATION OF NOTICES AND PROPOSED RULES Proposed Rules § 22.6 Code designation. The area of the Code of Federal Regulations directly affected by a proposed regulatory action shall be identified...

  19. Graded Synaptic Transmission between Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Graubard, Katherine; Raper, Jonathan A.; Hartline, Daniel K.

    1980-06-01

    Graded synaptic transmission occurs between spiking neurons of the lobster stomatogastric ganglion. In addition to eliciting spike-evoked inhibitory potentials in postsynaptic cells, these neurons also release functionally significant amounts of transmitter below the threshold for action potentials. The spikeless postsynaptic potentials grade in amplitude with presynaptic voltage and can be maintained for long periods. Graded synaptic transmission can be modulated by synaptic input to the presynaptic neuron.

  20. Transient neuronal correlations underlying goal selection and maintenance in prefrontal cortex.

    PubMed

    Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P

    2008-12-01

    We reported previously that as monkeys used abstract response strategies to choose spatial goals, 1 population of prefrontal cortex neurons encoded future goals (F cells), whereas a largely separate population encoded previous goals (P cells). Here, to better understand the mechanisms of goal selection and maintenance, we studied correlated activity among pairs of these neurons. Among the 3 possible types of pairs, F-F and F-P pairs often exhibited significant correlations when and after monkeys selected future goals but P-P pairs rarely did. These correlations were stronger when monkeys shifted from a previous goal than when they stayed with that goal. In addition, members of F-F pairs usually preferred the same goal and thus shared both prospective coding and spatial tuning properties. In contrast, cells composing F-P pairs usually had different spatial preferences and thus shared neither coding nor spatial tuning properties. On the assumption that the neurons composing a pair send convergent outputs to target neurons, their correlated activity could enhance their efficacy in context-dependent goal selection, goal maintenance, and the transformation of goal choices into action.

  1. Neuronal pathway finding: from neurons to initial neural networks.

    PubMed

    Roscigno, Cecelia I

    2004-10-01

    Neuronal pathway finding is crucial for structured cellular organization and development of neural circuits within the nervous system. Neuronal pathway finding within the visual system has been extensively studied and therefore is used as a model to review existing knowledge regarding concepts of this developmental process. General principles of neuron pathway finding throughout the nervous system exist. Comprehension of these concepts guides neuroscience nurses in gaining an understanding of the developmental course of action, the implications of different anomalies, as well as the theoretical basis and nursing implications of some provocative new therapies being proposed to treat neurodegenerative diseases and neurologic injuries. These therapies have limitations in light of current ethical, developmental, and delivery modes and what is known about the development of neuronal pathways.

  2. Action Experience, More than Observation, Influences Mu Rhythm Desynchronization

    PubMed Central

    Cannon, Erin N.; Yoo, Kathryn H.; Vanderwert, Ross E.; Ferrari, Pier F.; Woodward, Amanda L.; Fox, Nathan A.

    2014-01-01

    Since the discovery of mirror neurons in premotor and parietal areas of the macaque monkey, the idea that action and perception may share the same neural code has been of central interest in social, developmental, and cognitive neurosciences. A fundamental question concerns how a putative human mirror neuron system may be tuned to the motor experiences of the individual. The current study tested the hypothesis that prior motor experience modulated the sensorimotor mu and beta rhythms. Specifically, we hypothesized that these sensorimotor rhythms would be more desynchronized after active motor experience compared to passive observation experience. To test our hypothesis, we collected EEG from adult participants during the observation of a relatively novel action: an experimenter used a claw-like tool to pick up a toy. Prior to EEG collection, we trained one group of adults to perform this action with the tool (performers). A second group comprised trained video coders, who only had experience observing the action (observers). Both the performers and the observers had no prior motor and visual experience with the action. A third group of novices was also tested. Performers exhibited the greatest mu rhythm desynchronization in the 8–13 Hz band, particularly in the right hemisphere compared to observers and novices. This study is the first to contrast active tool-use experience and observation experience in the mu rhythm and to show modulation with relatively shorter amounts of experience than prior mirror neuron expertise studies. These findings are discussed with respect to its broader implication as a neural signature for a mechanism of early social learning. PMID:24663967

  3. Multiplexed coding in the human basal ganglia

    NASA Astrophysics Data System (ADS)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  4. Delta 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.

    PubMed

    Sano, K; Mishima, K; Koushi, E; Orito, K; Egashira, N; Irie, K; Takasaki, K; Katsurabayashi, S; Iwasaki, K; Uchida, N; Egawa, T; Kitamura, Y; Nishimura, R; Fujiwara, M

    2008-01-24

    Delta(9)-tetrahydrocannabinol (THC) has been reported to induce catalepsy-like immobilization, but the mechanism underlying this effect remains unclear. In the present study, in order to fully understand the neural circuits involved, we determined the brain sites involved in the immobilization effect in rats. THC dose-dependently induced catalepsy-like immobilization. THC-induced catalepsy-like immobilization is mechanistically different from that induced by haloperidol (HPD), because unlike HPD-induced catalepsy, animals with THC-induced catalepsy became normal again following sound and air-puff stimuli. THC-induced catalepsy was reversed by SR141716, a selective cannabinoid CB(1) receptor antagonist. Moreover, THC-induced catalepsy was abolished by lesions in the nucleus accumbens (NAc) and central amygdala (ACE) regions. On the other hand, HPD-induced catalepsy was suppressed by lesions in the caudate putamen (CP), substantia nigra (SN), globus pallidus (GP), ACE and lateral hypothalamus (LH) regions. Bilateral microinjection of THC into the NAc region induced catalepsy-like immobilization. This THC-induced catalepsy was inhibited by serotonergic drugs such as 5-hydroxy-L-tryptophan (5-HTP), a 5-HT precursor, and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a 5-HT receptor agonist, as well as by anti-glutamatergic drugs such as MK-801 and amantadine, an N-methyl-d-aspartate (NMDA) receptor antagonist. THC significantly decreased 5-HT and glutamate release in the NAc, as shown by in vivo microdialysis. SR141716 reversed and MK-801 inhibited this decrease in 5-HT and glutamate release. These findings suggest that the THC-induced catalepsy is mechanistically different from HPD-induced catalepsy and that the catalepsy-like immobilization induced by THC is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.

  5. Long-Term Temporal Imprecision of Information Coding in the Anterior Cingulate Cortex of Mice with Peripheral Inflammation or Nerve Injury

    PubMed Central

    Li, Xiang-Yao; Wang, Ning; Wang, Yong-Jie; Zuo, Zhen-Xing; Koga, Kohei; Luo, Fei

    2014-01-01

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment. PMID:25100600

  6. Reliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study

    PubMed Central

    Lim, Hyungkwang; Kornijcuk, Vladimir; Seok, Jun Yeong; Kim, Seong Keun; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2015-01-01

    We conducted simulations on the neuronal behavior of neuristor-based leaky integrate-and-fire (NLIF) neurons. The phase-plane analysis on the NLIF neuron highlights its spiking dynamics – determined by two nullclines conditional on the variables on the plane. Particular emphasis was placed on the operational noise arising from the variability of the threshold switching behavior in the neuron on each switching event. As a consequence, we found that the NLIF neuron exhibits a Poisson-like noise in spiking, delimiting the reliability of the information conveyed by individual NLIF neurons. To highlight neuronal information coding at a higher level, a population of noisy NLIF neurons was analyzed in regard to probability of successful information decoding given the Poisson-like noise of each neuron. The result demonstrates highly probable success in decoding in spite of large variability – due to the variability of the threshold switching behavior – of individual neurons. PMID:25966658

  7. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  8. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  9. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.

    PubMed

    Tropp Sneider, J; Chrobak, J J; Quirk, M C; Oler, J A; Markus, E J

    2006-09-15

    Brief bursts of fast high-frequency action potentials are a signature characteristic of CA3 and CA1 pyramidal neurons. Understanding the factors determining burst and single spiking is potentially significant for sensory representation, synaptic plasticity and epileptogenesis. A variety of models suggest distinct functional roles for burst discharge, and for specific characteristics of the burst in neural coding. However, little in vivo data demonstrate how often and under what conditions CA3 and CA1 actually exhibit burst and single spike discharges. The present study examined burst discharge and single spiking of CA3 and CA1 neurons across distinct behavioral states (awake-immobility and maze-running) in rats. In both CA3 and CA1 spike bursts accounted for less than 20% of all spike events. CA3 neurons exhibited more spikes per burst, greater spike frequency, larger amplitude spikes and more spike amplitude attenuation than CA1 neurons. A major finding of the present study is that the propensity of CA1 neurons to burst was affected by behavioral state, while the propensity of CA3 to burst was not. CA1 neurons exhibited fewer bursts during maze running compared with awake-immobility. In contrast, there were no differences in burst discharge of CA3 neurons. Neurons in both subregions exhibited smaller spike amplitude, fewer spikes per burst, longer inter-spike intervals and greater spike amplitude attenuation within a burst during awake-immobility compared with maze running. These findings demonstrate that the CA1 network is under greater behavioral state-dependent regulation than CA3. The present findings should inform both theoretic and computational models of CA3 and CA1 function.

  10. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis

    PubMed Central

    Ikeda, Maaya Z.; Jeon, Sung David; Cowell, Rosemary A.

    2015-01-01

    The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous “noise” activity and that these actions are independent of local neuroestrogen synthesis. PMID:26109659

  11. [Transformation of neuronal activity in the cat lateral geniculate body].

    PubMed

    Silakov, V L

    1976-05-01

    The neuronal activity transformations were studied in the cat LGB under the action of nembutal, light stimulation, and micropolarization of geniculate cells. The transformation of single spike activity into bursts was found to reflect the inhibitory state of the neurons. Their excitation entailed a reverse transformation. Short feed-back connections functioning within the microsystems of LGB neurons are supposed to underlie the transformations.

  12. Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential

    PubMed Central

    Hamada, Mustafa S.; Goethals, Sarah; de Vries, Sharon I.; Brette, Romain

    2016-01-01

    In mammalian neurons, the axon initial segment (AIS) electrically connects the somatodendritic compartment with the axon and converts the incoming synaptic voltage changes into a temporally precise action potential (AP) output code. Although axons often emanate directly from the soma, they may also originate more distally from a dendrite, the implications of which are not well-understood. Here, we show that one-third of the thick-tufted layer 5 pyramidal neurons have an axon originating from a dendrite and are characterized by a reduced dendritic complexity and thinner main apical dendrite. Unexpectedly, the rising phase of somatic APs is electrically indistinguishable between neurons with a somatic or a dendritic axon origin. Cable analysis of the neurons indicated that the axonal axial current is inversely proportional to the AIS distance, denoting the path length between the soma and the start of the AIS, and to produce invariant somatic APs, it must scale with the local somatodendritic capacitance. In agreement, AIS distance inversely correlates with the apical dendrite diameter, and model simulations confirmed that the covariation suffices to normalize the somatic AP waveform. Therefore, in pyramidal neurons, the AIS location is finely tuned with the somatodendritic capacitive load, serving as a homeostatic regulation of the somatic AP in the face of diverse neuronal morphologies. PMID:27930291

  13. Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo

    PubMed Central

    Pawlak, Verena; Greenberg, David S; Sprekeler, Henning; Gerstner, Wulfram; Kerr, Jason ND

    2013-01-01

    Action Potential (APs) patterns of sensory cortex neurons encode a variety of stimulus features, but how can a neuron change the feature to which it responds? Here, we show that in vivo a spike-timing-dependent plasticity (STDP) protocol—consisting of pairing a postsynaptic AP with visually driven presynaptic inputs—modifies a neurons' AP-response in a bidirectional way that depends on the relative AP-timing during pairing. Whereas postsynaptic APs repeatedly following presynaptic activation can convert subthreshold into suprathreshold responses, APs repeatedly preceding presynaptic activation reduce AP responses to visual stimulation. These changes were paralleled by restructuring of the neurons response to surround stimulus locations and membrane-potential time-course. Computational simulations could reproduce the observed subthreshold voltage changes only when presynaptic temporal jitter was included. Together this shows that STDP rules can modify output patterns of sensory neurons and the timing of single-APs plays a crucial role in sensory coding and plasticity. DOI: http://dx.doi.org/10.7554/eLife.00012.001 PMID:23359858

  14. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  15. Imitation learning based on an intrinsic motivation mechanism for efficient coding.

    PubMed

    Triesch, Jochen

    2013-01-01

    A hypothesis regarding the development of imitation learning is presented that is rooted in intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated learning (IML) for efficient coding in active perception, wherein an agent learns to perform actions with its sense organs to facilitate efficient encoding of the sensory data. To this end, actions of the sense organs that improve the encoding of the sensory data trigger an internally generated reinforcement signal. Here it is argued that the same IML mechanism might also support the development of imitation when general actions beyond those of the sense organs are considered: The learner first observes a tutor performing a behavior and learns a model of the the behavior's sensory consequences. The learner then acts itself and receives an internally generated reinforcement signal reflecting how well the sensory consequences of its own behavior are encoded by the sensory model. Actions that are more similar to those of the tutor will lead to sensory signals that are easier to encode and produce a higher reinforcement signal. Through this, the learner's behavior is progressively tuned to make the sensory consequences of its actions match the learned sensory model. I discuss this mechanism in the context of human language acquisition and bird song learning where similar ideas have been proposed. The suggested mechanism also offers an account for the development of mirror neurons and makes a number of predictions. Overall, it establishes a connection between principles of efficient coding, intrinsic motivations and imitation.

  16. Mirror neurons: functions, mechanisms and models.

    PubMed

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system.

  17. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  18. Kisspeptin Excitation of GnRH Neurons

    PubMed Central

    Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K + (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons. PMID:23550004

  19. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  20. Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Guberman, Shoshana; Kalmanovich, Alexander; Marmari, Hagar; Kanter, Ido

    2013-01-01

    A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons, however, the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of synchrony, hence forming short epochs of synchrony. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro and are corroborated by simulations of neuronal populations. The underlying biological mechanisms are the unavoidable increase of the neuronal response latency to ongoing stimulations and temporal or spatial summation required to generate evoked spikes. These sudden leaps in and out of synchrony may be accompanied by multiplications of the neuronal firing frequency, hence offering reliable information-bearing indicators which may bridge between the two principal neuronal coding paradigms. PMID:24198764

  1. PYRETHROID MODULATION OF SPONTANEOUS NEURONAL EXCITABILITY AND NEUROTRANSMISSION IN HIPPOCAMPAL NEURONS IN CULTURE

    EPA Science Inventory

    Pyrethroid insecticides have potent actions on voltage-gated sodium channels, inhibiting inactivation and increasing channel open times. These are thought to underlie, at least in part, the clinical symptoms of pyrethroid intoxication. However, disruption of neuronal activity at ...

  2. Characteristics of sodium currents in rat geniculate ganglion neurons.

    PubMed

    Nakamura, Shiro; Bradley, Robert M

    2011-12-01

    Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. GG neurons expressed two classes of Na(+) channels, TTX sensitive (TTX-S) and TTX resistant (TTX-R). The majority of GG neurons expressed TTX-R currents of different amplitudes. TTX-R currents were relatively small in 60% of the neurons but were large in 12% of the sampled population. In a further 28% of the neurons, TTX completely abolished all Na(+) currents. Application of TTX completely inhibited action potential generation in all CT and PA neurons but had little effect on the generation of action potentials in 40% of GSP neurons. Most CT, GSP, and PA neurons stained positively with IB(4), and 27% of the GSP neurons were capsaicin sensitive. The majority of IB(4)-positive GSP neurons with large TTX-R Na(+) currents responded to capsaicin, whereas IB(4)-positive GSP neurons with small TTX-R Na(+) currents were capsaicin insensitive. These data demonstrate the heterogeneity of GG neurons and indicate the existence of a subset of GSP neurons sensitive to capsaicin, usually associated with nociceptors. Since there are no reports of nociceptors in the GSP receptive field, the role of these capsaicin-sensitive neurons is not clear.

  3. 77 FR 43535 - Grantee Codes for Certified Radiofrequency Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... COMMISSION 47 CFR Part 2 Grantee Codes for Certified Radiofrequency Equipment AGENCY: Federal Communications... grantee codes must consist of only three characters. This action will permit the Commission to issue longer grantee codes, thus greatly increasing the supply of available codes and ensuring that it...

  4. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    PubMed

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na(+) and K(+) currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism.

  5. [Electrophysiological properties of inhibitory neurones in cultured dissociated hippocampal cells].

    PubMed

    Moskaliuk, A O; Kolodin, Iu O; Kravchenko, M O; Fedulova, S A; Veselovs'kyĭ, M S

    2004-01-01

    Electrophysiological properties of inhibitory (GABAergic) neurones were studied in dissociated hippocampal culture using simultaneous whole cell recordings from pairs of monosynaptically coupled neurons. Reliable identification of GABAergic neuron was performed by presence of monosynaptic inhibitory currents at postsynaptic cell in response to action potentials at stimulated cell. It was shown that GABAergic neurons in hippocampal culture are divided in two groups by their firing characteristics: first type generates action potentials at high frequency in response to injection of current (duration 0.5 s)--fast-spiking neurons (FS), cells from second type has no ability for high-frequency action potential generation--regular spiking neurons (RS). These two groups were distinguished by kinetic characteristics of action potentials, adaptation characteristics during continuous generation of action potentials and inhibitory effect making on postsynaptic cell. Application of potassium channel blocker 4-AP to somas of FS neurons in concentration, which selectively inhibits Kv3 potassium channels evoked reversible changes in kinetic of action potentials, frequency and adaptation characteristics during continuous generation of action potentials. It was concluded that there is hight level of expression of Kv3 potassium channels in the first group of neurons.

  6. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals

    PubMed Central

    Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.

    2016-01-01

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important

  7. Dynamic coding of goal-directed paths by orbital prefrontal cortex.

    PubMed

    Young, James J; Shapiro, Matthew L

    2011-04-20

    Adapting successfully to new situations relies on integrating memory of similar circumstances with the outcomes of past actions. Here, we tested how reward history and recent memory influenced coding by orbital prefrontal cortex (OFC) neurons. Rats were trained to find food in plus maze tasks that required both the OFC and the hippocampus, and unit activity was recorded during stable performance, reversal learning, and strategy switching. OFC firing distinguished different rewarded paths, journeys from a start arm to a goal arm. Activity of individual cells and the population correlated with performance as rats learned newly rewarded outcomes. Activity was similar during reversal, an OFC-dependent task, and strategy switching, an OFC-independent task, suggesting that OFC associates information about paths and outcomes both when it is required for performance and when it is not. Path-selective OFC cells fired differently during overlapping journeys that led to different goals or from different starts, resembling journey-dependent coding by hippocampal neurons. Local field potentials (LFPs) recorded simultaneously in the OFC and the hippocampus oscillated coherently in the theta band (5-12 Hz) during stable performance. LFP coherence diminished when rats adapted to altered reward contingencies and followed different paths. Thus, OFC neurons appear to participate in a distributed network including the hippocampus that associates spatial paths, recent memory, and integrated reward history.

  8. Objects tell us what action we can expect: dissociating brain areas for retrieval and exploitation of action knowledge during action observation in fMRI

    PubMed Central

    Schubotz, Ricarda I.; Wurm, Moritz F.; Wittmann, Marco K.; von Cramon, D. Yves

    2014-01-01

    Objects are reminiscent of actions often performed with them: knife and apple remind us on peeling the apple or cutting it. Mnemonic representations of object-related actions (action codes) evoked by the sight of an object may constrain and hence facilitate recognition of unrolling actions. The present fMRI study investigated if and how action codes influence brain activation during action observation. The average number of action codes (NAC) of 51 sets of objects was rated by a group of n = 24 participants. In an fMRI study, different volunteers were asked to recognize actions performed with the same objects presented in short videos. To disentangle areas reflecting the storage of action codes from those exploiting them, we showed object-compatible and object-incompatible (pantomime) actions. Areas storing action codes were considered to positively co-vary with NAC in both object-compatible and object-incompatible action; due to its role in tool-related tasks, we here hypothesized left anterior inferior parietal cortex (aIPL). In contrast, areas exploiting action codes were expected to show this correlation only in object-compatible but not incompatible action, as only object-compatible actions match one of the active action codes. For this interaction, we hypothesized ventrolateral premotor cortex (PMv) to join aIPL due to its role in biasing competition in IPL. We found left anterior intraparietal sulcus (IPS) and left posterior middle temporal gyrus (pMTG) to co-vary with NAC. In addition to these areas, action codes increased activity in object-compatible action in bilateral PMv, right IPS, and lateral occipital cortex (LO). Findings suggest that during action observation, the brain derives possible actions from perceived objects, and uses this information to shape action recognition. In particular, the number of expectable actions quantifies the activity level at PMv, IPL, and pMTG, but only PMv reflects their biased competition while observed action unfolds

  9. Archetypes as action patterns.

    PubMed

    Hogenson, George B

    2009-06-01

    The discovery of mirror neurons by researchers at the University of Parma promises to radically alter our understanding of fundamental cognitive and affective states. This paper explores the relationship of mirror neurons to Jung's theory of archetypes and proposes that archetypes may be viewed as elementary action patterns. The paper begins with a review of a proposed interpretation of the fainting spells of S. Freud in his relationship with Jung as an example of an action pattern that also defines an archetypal image. The challenge that mirror neurons present to traditional views in analytical psychology and psychoanalysis, however, is that they operate without recourse to a cognitive processing element. This is a position that is gaining increasing acceptance in other fields as well. The paper therefore reviews the most recent claims made by the Boston Process of Change Study Group as well as conclusions drawn from dynamic systems views of development and theoretical robotics to underline the conclusion that unconscious agency is not a requirement for coherent action. It concludes with the suggestion that this entire body of research may lead to the conclusion that the dynamic unconscious is an unnecessary hypothesis in psychoanalysis and analytical psychology.

  10. Complementary processing of haptic information by slowly and rapidly adapting neurons in the trigeminothalamic pathway. Electrophysiology, mathematical modeling and simulations of vibrissae-related neurons.

    PubMed

    Sanchez-Jimenez, Abel; Torets, Carlos; Panetsos, Fivos

    2013-01-01

    TONIC (SLOWLY ADAPTING) AND PHASIC (RAPIDLY ADAPTING) PRIMARY AFFERENTS CONVEY COMPLEMENTARY ASPECTS OF HAPTIC INFORMATION TO THE CENTRAL NERVOUS SYSTEM: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don't know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus). We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1-40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses.

  11. Complementary processing of haptic information by slowly and rapidly adapting neurons in the trigeminothalamic pathway. Electrophysiology, mathematical modeling and simulations of vibrissae-related neurons

    PubMed Central

    Sanchez-Jimenez, Abel; Torets, Carlos; Panetsos, Fivos

    2013-01-01

    Tonic (slowly adapting) and phasic (rapidly adapting) primary afferents convey complementary aspects of haptic information to the central nervous system: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don't know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus). We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1–40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses. PMID:23761732

  12. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.

    PubMed

    Le Ray, Didier; Combes, Denis; Déjean, Cyril; Cattaert, Daniel

    2005-08-01

    Although sensory nerves in vitro are known to convey both orthodromic (sensory) and antidromic (putatively modulating) action potentials, in most cases very little is known about their bidirectional characteristics in intact animals. Here, we have investigated both the sensory coding properties and antidromic discharges that occur during real walking in the freely behaving crayfish. The activity of the sensory nerve innervating the proprioceptor CBCO, a chordotonal organ that monitors both angular movement and position of the coxo-basipodite (CB) joint, which is implicated in vertical leg movements, was recorded chronically along with the electromyographic activity of the muscles that control CB joint movements. Two wire electrodes placed on the sensory nerve were used to discriminate orthodromic from antidromic action potentials and thus allowed for analysis of both sensory coding and antidromic discharges. A distinction is proposed between 3 main classes of sensory neuron, according to their firing in relation to levator muscle activity during free walking. In parallel, we describe 2 types of antidromic activity: one produced exclusively during motor activity and a second produced both during and in the absence of motor activity. A negative correlation was found between the activity of sensory neurons in each of the 3 classes and identified antidromic discharges during walking. Finally, a state-dependent plasticity of CBCO nerve activity has been found by which the distribution of sensory orthodromic and antidromic activity changes with the physiological state of the biomechanical apparatus.

  13. Mechanism on brain information processing: Energy coding

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa

    2006-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.

  14. Energy coding in biological neural networks.

    PubMed

    Wang, Rubin; Zhang, Zhikang

    2007-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.

  15. Independent component analysis in spiking neurons.

    PubMed

    Savin, Cristina; Joshi, Prashant; Triesch, Jochen

    2010-04-22

    Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.

  16. Towards a Neuronal Gauge Theory

    PubMed Central

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K.; Douglas, Pamela K.; Friston, Karl J.

    2016-01-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics—based on approximate Bayesian inference—has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636

  17. Imaging and Optically Manipulating Neuronal Ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Kang Miller, Jae-Eun; Peterka, Darcy S; Yuste, Rafael

    2017-03-15

    The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of neurological and mental diseases and design novel therapies. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. Simulation during observation of human actions--theories, empirical studies, applications.

    PubMed

    Zentgraf, Karen; Munzert, Jörn; Bischoff, Matthias; Newman-Norlund, Roger D

    2011-04-22

    Historically, data from brain imaging and brain stimulation studies have supported the idea that the processing of observed actions recruits - among other areas - a distinct sub-set of brain sites in the sensory and motor cortices. These empirical findings have initially been linked with the thesis of direct matching as a mechanism of action understanding, i.e., the idea of motor resonance implemented by mirror neurons. In more recent approaches, it has been proposed that the mirror neuron system plays a role in minimizing prediction error when inferring the most likely cause of an observed action. According to these theories, motor resonance is thought to function as predictive coding. Other theoretical accounts suggest that action understanding might result from a hypothesis testing mechanism in which potential goals are continually fed into the system until the correct one is identified. In this review, we will explore the relationship of these theories to specific empirical findings. Finally, we will discuss the implications of these theoretical structures on action observation-based approaches to the optimization of skilled performance in athletes and patients.

  19. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  20. Interval coding. II. Dendrite-dependent mechanisms.

    PubMed

    Doiron, Brent; Oswald, Anne-Marie M; Maler, Leonard

    2007-04-01

    The rich temporal structure of neural spike trains provides multiple dimensions to code dynamic stimuli. Popular examples are spike trains from sensory cells where bursts and isolated spikes can serve distinct coding roles. In contrast to analyses of neural coding, the cellular mechanics of burst mechanisms are typically elucidated from the neural response to static input. Bridging the mechanics of bursting with coding of dynamic stimuli is an important step in establishing theories of neural coding. Electrosensory lateral line lobe (ELL) pyramidal neurons respond to static inputs with a complex dendrite-dependent burst mechanism. Here we show that in response to dynamic broadband stimuli, these bursts lack some of the electrophysiological characteristics observed in response to static inputs. A simple leaky integrate-and-fire (LIF)-style model with a dendrite-dependent depolarizing afterpotential (DAP) is sufficient to match both the output statistics and coding performance of experimental spike trains. We use this model to investigate a simplification of interval coding where the burst interspike interval (ISI) codes for the scale of a canonical upstroke rather than a multidimensional stimulus feature. Using this stimulus reduction, we compute a quantization of the burst ISIs and the upstroke scale to show that the mutual information rate of the interval code is maximized at a moderate DAP amplitude. The combination of a reduced description of ELL pyramidal cell bursting and a simplification of the interval code increases the generality of ELL burst codes to other sensory modalities.

  1. Neuron Morphology Influences Axon Initial Segment Plasticity.

    PubMed

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  2. Role of neuronal activity in regulating the structure and function of auditory neurons

    SciTech Connect

    Born, D.E.

    1986-01-01

    The role of afferent activity in maintaining neuronal structure and function was investigated in second order auditory neurons in nucleus magnocellularis (NM) of the chicken. The cochlea provides the major excitatory input to NM neurons via the eighth nerve. Removal of the cochlea causes dramatic changes in NM neurons. To determine if the elimination of neuronal activity is responsible for the changes in NM seen after cochlea removal, tetrodotoxin was used block action potentials in the cochlear ganglion cells. Tetrodotoxin injections into the perilymph reliably blocked neuronal activity in the cochlear nerve and NM. Far field recordings of sound-evoked potentials revealed that responses returned within 6 hours. Changes in amino acid incorporation in NM neurons were measured by giving intracardiac injections of /sup 3/H-leucine and preparing tissue for autoradiographic demonstration of incorporated amino acid. Grain counts over individual neurons revealed that a single injection of tetrodotoxin produced a 40% decrease in grain density in ipsilateral NM neurons. It is concluded that neuronal activity plays an important contribution to the maintenance of the normal properties of NM neurons.

  3. On the continuous differentiability of inter-spike intervals of synaptically connected cortical spiking neurons in a neuronal network.

    PubMed

    Kumar, Gautam; Kothare, Mayuresh V

    2013-12-01

    We derive conditions for continuous differentiability of inter-spike intervals (ISIs) of spiking neurons with respect to parameters (decision variables) of an external stimulating input current that drives a recurrent network of synaptically connected neurons. The dynamical behavior of individual neurons is represented by a class of discontinuous single-neuron models. We report here that ISIs of neurons in the network are continuously differentiable with respect to decision variables if (1) a continuously differentiable trajectory of the membrane potential exists between consecutive action potentials with respect to time and decision variables and (2) the partial derivative of the membrane potential of spiking neurons with respect to time is not equal to the partial derivative of their firing threshold with respect to time at the time of action potentials. Our theoretical results are supported by showing fulfillment of these conditions for a class of known bidimensional spiking neuron models.

  4. 78 FR 33838 - DOE Participation in Development of the International Energy Conservation Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Code AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice and... by the International Code Council (ICC) to develop the International Energy Conservation Code (IECC... on actions taken on DOE's code change proposals and technical analysis at the ICC Committee...

  5. A scalable population code for time in the striatum.

    PubMed

    Mello, Gustavo B M; Soares, Sofia; Paton, Joseph J

    2015-05-04

    To guide behavior and learn from its consequences, the brain must represent time over many scales. Yet, the neural signals used to encode time in the seconds-to-minute range are not known. The striatum is a major input area of the basal ganglia associated with learning and motor function. Previous studies have also shown that the striatum is necessary for normal timing behavior. To address how striatal signals might be involved in timing, we recorded from striatal neurons in rats performing an interval timing task. We found that neurons fired at delays spanning tens of seconds and that this pattern of responding reflected the interaction between time and the animals' ongoing sensorimotor state. Surprisingly, cells rescaled responses in time when intervals changed, indicating that striatal populations encoded relative time. Moreover, time estimates decoded from activity predicted timing behavior as animals adjusted to new intervals, and disrupting striatal function led to a decrease in timing performance. These results suggest that striatal activity forms a scalable population code for time, providing timing signals that animals use to guide their actions.

  6. Using Mu Rhythm Desynchronization to Measure Mirror Neuron Activity in Infants

    ERIC Educational Resources Information Center

    Nystrom, Par; Ljunghammar, Therese; Rosander, Kerstin; von Hofsten, Claes

    2011-01-01

    The Mirror Neuron System hypothesis stating that observed actions are projected onto the observer's own action system assigns an important role to development, because only actions mastered by the observer can be mirrored. The purpose of the present study was to investigate whether there is evidence of a functioning mirror neuron system (MNS) in…

  7. Choosing Actions

    PubMed Central

    Rosenbaum, David A.; Chapman, Kate M.; Coelho, Chase J.; Gong, Lanyun; Studenka, Breanna E.

    2013-01-01

    Actions that are chosen have properties that distinguish them from actions that are not. Of the nearly infinite possible actions that can achieve any given task, many of the unchosen actions are irrelevant, incorrect, or inappropriate. Others are relevant, correct, or appropriate but are disfavored for other reasons. Our research focuses on the question of what distinguishes actions that are chosen from actions that are possible but are not. We review studies that use simple preference methods to identify factors that contribute to action choices, especially for object-manipulation tasks. We can determine which factors are especially important through simple behavioral experiments. PMID:23761769

  8. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  9. Action semantics modulate action prediction.

    PubMed

    Springer, Anne; Prinz, Wolfgang

    2010-11-01

    Previous studies have demonstrated that action prediction involves an internal action simulation that runs time-locked to the real action. The present study replicates and extends these findings by indicating a real-time simulation process (Graf et al., 2007), which can be differentiated from a similarity-based evaluation of internal action representations. Moreover, results showed that action semantics modulate action prediction accuracy. The semantic effect was specified by the processing of action verbs and concrete nouns (Experiment 1) and, more specifically, by the dynamics described by action verbs (Experiment 2) and the speed described by the verbs (e.g., "to catch" vs. "to grasp" vs. "to stretch"; Experiment 3). These results propose a linkage between action simulation and action semantics as two yet unrelated domains, a view that coincides with a recent notion of a close link between motor processes and the understanding of action language.

  10. Neuron's function revealed

    SciTech Connect

    2009-01-01

    There's a new way to explore biologys secrets. With a flash of light, scientists from the U.S. Department of Energys Lawrence Berkeley National Laboratory and the University of California, Berkeley zeroed in on the type of neural cell that controls swimming in larval zebrafish. Using innovative light-activated proteins and gene expression techniques, the scientists zapped several zebrafish with a pulse of light, and initiated a swimming action in a subset of fish that was traced back to the type of neuron that drives the side-to-side motion of their tail fins. The technique behind this needle-in-haystack search for the neural roots of a specific behavior could become a powerful way to learn how any biological system works. http://newscenter.lbl.gov/press-releases/2009/09/16/light-activated-protein/

  11. To amend title 10, United States Code, to require an Inspector General investigation of allegations of retaliatory personnel actions taken in response to making protected communications regarding sexual assault.

    THOMAS, 113th Congress

    Rep. Walorski, Jackie [R-IN-2

    2013-05-07

    07/08/2013 Received in the Senate and Read twice and referred to the Committee on Armed Services. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  12. Selective IT neurons are selective along many dimensions.

    PubMed

    Zhivago, Kalathupiriyan A; Arun, S P

    2016-03-01

    Our visual abilities are unsurpassed because of a sophisticated code for objects located in the inferior temporal (IT) cortex. This code has remained a mystery because IT neurons show extremely diverse shape selectivity with no apparent organizing principle. Here, we show that there is an intrinsic component to selectivity in IT neurons. We tested IT neurons on distinct shapes and their parametric variations and asked whether neurons selective along one dimension were also selective along others. Selective neurons responded to fewer shapes and were narrowly tuned to local variations of these shapes, both along arbitrary morph lines and along variations in size, position, or orientation. For a subset of neurons, selective neurons were selective for both shape and texture. Finally, selective neurons were also more invariant in that they preserved their shape preferences across changes in size, position, and orientation. These observations indicate that there is an intrinsic constraint on the sharpness of tuning for the features coded by each IT neuron, making it always sharply tuned or always broadly tuned along all dimensions. We speculate that this may be an organizing principle throughout visual cortex.

  13. Classifying Facial Actions

    PubMed Central

    Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.

    2010-01-01

    The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284

  14. Dorsal–Ventral Gradient for Neuronal Plasticity in the Embryonic Spinal Cord

    PubMed Central

    Pineda, Ricardo H.; Ribera, Angeles B.

    2008-01-01

    Within the developing Xenopus spinal cord, voltage-gated potassium (Kv) channel genes display different expression patterns, many of which occur in opposing dorsal–ventral gradients. Regional differences in Kv gene expression would predict different patterns of potassium current (IKv) regulation. However, during the first 24 h of postmitotic differentiation, all primary spinal neurons undergo a temporally coordinated upregulation of IKv density that shortens the duration of the action potential. Here, we tested whether spinal neurons demonstrate regional differences in IKv regulation subsequent to action potential maturation. We show that two types of neurons, I and II, can be identified in culture on the basis of biophysical and pharmacological properties of IKv and different firing patterns. Chronic increases in extracellular potassium, a signature of high neuronal activity, do not alter excitability properties of either neuron type. However, elevating extracellular potassium acutely after the period of action potential maturation leads to different changes in membrane properties of the two types of neurons. IKv of type I neurons gains sensitivity to the blocker XE991, whereas type II neurons increase IKv density and fire fewer action potentials. Moreover, by recording from neurons in vivo, we found that primary spinal neurons can be identified as either type I or type II. Type I neurons predominate in dorsal regions, whereas type II neurons localize to ventral regions. The findings reveal a dorsal–ventral gradient for IKv regulation and a novel form of neuronal plasticity in spinal cord neurons. PMID:18385340

  15. Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: relevance for their role in depression and in the actions of CB(1) receptor antagonists.

    PubMed

    Kirilly, E; Hunyady, L; Bagdy, G

    2013-01-01

    There is strong evidence that endocannabinoids modulate signaling of serotonin and noradrenaline, which play key roles in the pathophysiology and treatment of anxiety and depression. Most pharmacological and genetic, human and rodent studies suggest that the presence of under-functioning endocannabinoid type-1 (CB(1)) receptors is associated with increased anxiety and elevated extracellular serotonin concentration. In contrast, noradrenaline is presumably implicated in the mediation of depression-type symptoms of CB(1) receptor antagonists. Evidence shows that most CB(1) receptors located on axons and terminals of GABA-ergic, serotonergic or glutamatergic neurons stimulate the activity of noradrenergic neurons. In contrast, those located on noradrenergic axons and terminals inhibit noradrenaline release efficiently. In this latter process, excitatory ionotropic or G protein-coupled receptors, such as the NMDA, alpha1 and beta1 adrenergic receptors, activate local endocannabinoid synthesis at postsynaptic sites and stimulate retrograde endocannabinoid neurotransmission acting on CB(1) receptors of noradrenergic terminals. The underlying mechanisms include calcium signal generation, which activates enzymes that increase the synthesis of both anandamide and 2-arachidonoylglycerol, while G(q/11) protein activation also increases the formation of 2-arachidonoylglycerol from diacylglycerol during the signaling process. In addition, other non-CB(1) receptor endocannabinoid targets such as CB(2), transient receptor potential vanilloid subtype, peroxisome proliferator-activated receptor-alpha and possibly GPR55 can also mediate some of the endocannabinoid effects. In conclusion, both neuronal activation and neurotransmitter release depend on the in situ synthesized endocannabinoids and thus, local endocannabinoid concentrations in different brain areas may be crucial in the net effect, namely in the regulation of neurons located postsynaptically to the noradrenergic synapse.

  16. Neural Codes: Firing Rates and beyond

    NASA Astrophysics Data System (ADS)

    Gerstner, Wulfram; Kreiter, Andreas K.; Markram, Henry; Herz, Andreas V. M.

    1997-11-01

    Computational neuroscience has contributed significantly to our understanding of higher brain function by combining experimental neurobiology, psychophysics, modeling, and mathematical analysis. This article reviews recent advances in a key area: neural coding and information processing. It is shown that synapses are capable of supporting computations based on highly structured temporal codes. Such codes could provide a substrate for unambiguous representations of complex stimuli and be used to solve difficult cognitive tasks, such as the binding problem. Unsupervised learning rules could generate the circuitry required for precise temporal codes. Together, these results indicate that neural systems perform a rich repertoire of computations based on action potential timing.

  17. Spontaneous Fluctuations in Visual Cortical Responses Influence Population Coding Accuracy.

    PubMed

    Gutnisky, Diego A; Beaman, Charles B; Lew, Sergio E; Dragoi, Valentin

    2017-02-01

    Information processing in the cerebral cortex depends not only on the nature of incoming stimuli, but also on the state of neuronal networks at the time of stimulation. That is, the same stimulus will be processed differently depending on the neuronal context in which it is received. A major factor that could influence neuronal context is the background, or ongoing neuronal activity before stimulation. In visual cortex, ongoing activity is known to play a critical role in the development of local circuits, yet whether it influences the coding of visual features in adult cortex is unclear. Here, we investigate whether and how the information encoded by individual neurons and populations in primary visual cortex (V1) depends on the ongoing activity before stimulus presentation. We report that when individual neurons are in a "low" prestimulus state, they have a higher capacity to discriminate stimulus features, such as orientation, despite their reduction in evoked responses. By measuring the distribution of prestimulus activity across a population of neurons, we found that network discrimination accuracy is improved in the low prestimulus state. Thus, the distribution of ongoing activity states across the network creates an "internal context" that dynamically filters incoming stimuli to modulate the accuracy of sensory coding. The modulation of stimulus coding by ongoing activity state is consistent with recurrent network models in which ongoing activity dynamically controls the balanced background excitation and inhibition to individual neurons.

  18. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.

  19. Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia.

    PubMed

    Kostović, Ivica; Judaš, Miloš; Sedmak, Goran

    2011-05-01

    The subplate zone is a transient cytoarchitectonic compartment of the fetal telencephalic wall and contains a population of subplate neurons which are the main neurons of the fetal neocortex and play a key role in normal development of cerebral cortical structure and connectivity. While the subplate zone disappears during the perinatal and early postnatal period, numerous subplate neurons survive and remain embedded in the superficial (gyral) white matter of adolescent and adult brain as so-called interstitial neurons. In both fetal and adult brain, subplate/interstitial neurons belong to two major classes of cortical cells: (a) projection (glutamatergic) neurons and (b) local circuit (GABAergic) interneurons. As interstitial neurons remain strategically positioned at the cortical/white matter interface through which various cortical afferent systems enter the deep cortical layers, they probably serve as auxiliary interneurons involved in differential "gating" of cortical input systems. It is widely accepted that prenatal lesions which alter the number of surviving subplate neurons (i.e., the number of interstitial neurons) and/or the nature of their involvement in cortical circuitry represent an important causal factor in pathogenesis of at least some types of schizophrenia--e.g., in the subgroup of patients with cognitive impairment and deficits of frontal lobe functions. The abnormal functioning of cortical circuitry in schizophrenia becomes manifest during the adolescence, when there is an increased demand for proper functioning of the prefrontal cortex. In this review, we describe developmental history of subplate zone, subplate neurons and surviving interstitial neurons, as well as presumed consequences of the increased number of GABAergic interstitial neurons in the prefrontal cortex. We propose that the increased number of GABAergic interstitial neurons leads to the increased inhibition of prefrontal cortical neurons. This inhibitory action of GABAergic

  20. Beyond Molecular Codes: Simple Rules to Wire Complex Brains

    PubMed Central

    Hassan, Bassem A.; Hiesinger, P. Robin

    2015-01-01

    Summary Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring. PMID:26451480

  1. Predictive coding of multisensory timing

    PubMed Central

    Shi, Zhuanghua; Burr, David

    2016-01-01

    The sense of time is foundational for perception and action, yet it frequently departs significantly from physical time. In the paper we review recent progress on temporal contextual effects, multisensory temporal integration, temporal recalibration, and related computational models. We suggest that subjective time arises from minimizing prediction errors and adaptive recalibration, which can be unified in the framework of predictive coding, a framework rooted in Helmholtz’s ‘perception as inference’. PMID:27695705

  2. Diagnostic Coding for Epilepsy.

    PubMed

    Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R

    2016-02-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  3. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  4. 78 FR 37848 - ASME Code Cases Not Approved for Use

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... COMMISSION ASME Code Cases Not Approved for Use AGENCY: Nuclear Regulatory Commission. ACTION: Draft... public comment draft regulatory guide (DG), DG-1233, ``ASME Code Cases not Approved for Use.'' This regulatory guide lists the American Society of Mechanical Engineers (ASME) Code Cases that the NRC...

  5. Phylogeny of genetic codes and punctuation codes within genetic codes.

    PubMed

    Seligmann, Hervé

    2015-03-01

    Punctuation codons (starts, stops) delimit genes, reflect translation apparatus properties. Most codon reassignments involve punctuation. Here two complementary approaches classify natural genetic codes: (A) properties of amino acids assigned to codons (classical phylogeny), coding stops as X (A1, antitermination/suppressor tRNAs insert unknown residues), or as gaps (A2, no translation, classical stop); and (B) considering only punctuation status (start, stop and other codons coded as -1, 0 and 1 (B1); 0, -1 and 1 (B2, reflects ribosomal translational dynamics); and 1, -1, and 0 (B3, starts/stops as opposites)). All methods separate most mitochondrial codes from most nuclear codes; Gracilibacteria consistently cluster with metazoan mitochondria; mitochondria co-hosted with chloroplasts cluster with nuclear codes. Method A1 clusters the euplotid nuclear code with metazoan mitochondria; A2 separates euplotids from mitochondria. Firmicute bacteria Mycoplasma/Spiroplasma and Protozoan (and lower metazoan) mitochondria share codon-amino acid assignments. A1 clusters them with mitochondria, they cluster with the standard genetic code under A2: constraints on amino acid ambiguity versus punctuation-signaling produced the mitochondrial versus bacterial versions of this genetic code. Punctuation analysis B2 converges best with classical phylogenetic analyses, stressing the need for a unified theory of genetic code punctuation accounting for ribosomal constraints.

  6. Action physics

    NASA Astrophysics Data System (ADS)

    McGinness, Lachlan P.; Savage, C. M.

    2016-09-01

    More than a decade ago, Edwin Taylor issued a "call to action" that presented the case for basing introductory university mechanics teaching around the principle of stationary action [E. F. Taylor, Am. J. Phys. 71, 423-425 (2003)]. We report on our response to that call in the form of an investigation of the teaching and learning of the stationary action formulation of physics in a first-year university course. Our action physics instruction proceeded from the many-paths approach to quantum physics to ray optics, classical mechanics, and relativity. Despite the challenges presented by action physics, students reported it to be accessible, interesting, motivational, and valuable.

  7. Decoding the LIM development code.

    PubMed

    Gill, Gordon N

    2003-01-01

    During development a vast number of distinct cell types arise from dividing progenitor cells. Concentration gradients of ligands that act via cell surface receptors signal transcriptional regulators that repress and activate particular genes. LIM homeodomain proteins are an important class of transcriptional regulators that direct cell fate. Although in C. elegans only a single LIM homeodomain protein is expressed in a particular cell type, in vertebrates combinations of LIM homeodomain proteins are expressed in cells that determine cell fates. We have investigated the molecular basis of the LIM domain "code" that determines cell fates such as wing formation in Drosophilia and motor neuron formation in chicks. The basic code is a homotetramer of 2 LIM homeodomain proteins bridged by the adaptor protein, nuclear LIM interactor (NLI). A more complex molecular language consisting of a hexamer complex involving NLI and 2 LIM homeodomain proteins, Lhx3 and Isl1 determines ventral motor neuron formation. The same molecular "words" adopt different meanings depending on the context of expression of other molecular "words."

  8. Complementary actions.

    PubMed

    Sartori, Luisa; Betti, Sonia

    2015-01-01

    Complementary colors are color pairs which, when combined in the right proportions, produce white or black. Complementary actions refer here to forms of social interaction wherein individuals adapt their joint actions according to a common aim. Notably, complementary actions are incongruent actions. But being incongruent is not sufficient to be complementary (i.e., to complete the action of another person). Successful complementary interactions are founded on the abilities: (i) to simulate another person's movements, (ii) to predict another person's future action/s, (iii) to produce an appropriate incongruent response which differ, while interacting, with observed ones, and (iv) to complete the social interaction by integrating the predicted effects of one's own action with those of another person. This definition clearly alludes to the functional importance of complementary actions in the perception-action cycle and prompts us to scrutinize what is taking place behind the scenes. Preliminary data on this topic have been provided by recent cutting-edge studies utilizing different research methods. This mini-review aims to provide an up-to-date overview of the processes and the specific activations underlying complementary actions.

  9. Complementary actions

    PubMed Central

    Sartori, Luisa; Betti, Sonia

    2015-01-01

    Complementary colors are color pairs which, when combined in the right proportions, produce white or black. Complementary actions refer here to forms of social interaction wherein individuals adapt their joint actions according to a common aim. Notably, complementary actions are incongruent actions. But being incongruent is not sufficient to be complementary (i.e., to complete the action of another person). Successful complementary interactions are founded on the abilities: (i) to simulate another person’s movements, (ii) to predict another person’s future action/s, (iii) to produce an appropriate incongruent response which differ, while interacting, with observed ones, and (iv) to complete the social interaction by integrating the predicted effects of one’s own action with those of another person. This definition clearly alludes to the functional importance of complementary actions in the perception–action cycle and prompts us to scrutinize what is taking place behind the scenes. Preliminary data on this topic have been provided by recent cutting-edge studies utilizing different research methods. This mini-review aims to provide an up-to-date overview of the processes and the specific activations underlying complementary actions. PMID:25983717

  10. Mucosal projections of enteric neurons in the porcine small intestine.

    PubMed

    Hens, J; Schrödl, F; Brehmer, A; Adriaensen, D; Neuhuber, W; Scheuermann, D W; Schemann, M; Timmermans, J P

    2000-06-05

    In the present study, a combination of immunohistochemistry and retrograde 1,1;-didodecyl-3,3,3;,3;-tetramethylindocarbocyanine perchlorate (DiI) tracing was used to unravel the morphology, distribution, and neurochemical coding of submucous and myenteric neurons with axonal projections to the mucosa of the porcine small intestine. The majority of traced neurons was located in the inner submucous plexus (ISP; 78%), whereas the remaining part was distributed between the outer submucous plexus (OSP; 10%) and myenteric plexus (MP; 12%). Among these traced neurons, some distinct neuronal populations could be distinguished according to their morphologic and neurochemical properties. In the ISP, several types of traced neurons were detected: 1) morphologic type II neurons expressing choline acetyltransferase (ChAT) immunoreactivity, calcitonin gene-related peptide (CGRP) immunoreactivity, and substance P (SP) immunoreactivity; 2) ChAT/SP-immunoreactive (-IR) small neurons; 3) vasoactive intestinal polypeptide (VIP) -IR small neurons; and 4) multidendritic ChAT/somatostatin (SOM) -IR neurons. The traced neuronal populations of the OSP and MP were similar to each other. In both plexuses, the following DiI-labelled neurons were found: 1) ChAT/CGRP/(SP)-IR type II neurons; 2) multidendritic ChAT/SP-IR neurons; and 3) multidendritic ChAT/SOM-IR neurons. Comparison of the present findings with previously obtained data concerning the mucosal innervation pattern of the intestine of small mammals, revealed significant species differences with respect to the morphologic and neurochemical features of the involved enteric neuronal classes. Although not identical, a closer resemblance between pig and human enteric nervous system seems to be at hand, as far as the anatomic organization and the presence of neurochemically identified neuronal subtypes within the enteric nervous system are concerned.

  11. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release.

    PubMed

    Stahl, Stephen M

    2015-08-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits.

  12. Calcium dynamics and compartmentalization in leech neurons.

    PubMed

    Andjelic, Sofija; Torre, Vincent

    2005-12-01

    Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (DeltaF/F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. DeltaF/F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, DeltaF/F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.

  13. Properties of persistent postnatal cortical subplate neurons.

    PubMed

    Torres-Reveron, Juan; Friedlander, Michael J

    2007-09-12

    Subplate (SP) neurons are important for the proper development of thalamocortical innervation. They are necessary for formation of ocular dominance and orientation columns in visual cortex. During the perinatal period, many SP neurons die. The surviving cohort forms interstitial cells in the white matter (WM) and a band of horizontally oriented cells below layer VI (layer VIb, layer VII, or subplate cells). Although the function of embryonic SP neurons has been well established, the functional roles of WM and postnatal SP cells are not known. We used a combination of anatomical, immunohistochemical, and electrophysiological techniques to explore the dendritic morphology, neurotransmitter phenotype, intrinsic electrophysiological, and synaptic input properties of these surviving cells in the rat visual cortex. The density of SP and WM cells significantly decreases during the first month of life. Both populations express neuronal markers and have extensive dendritic arborizations within the SP, WM, and to the overlying visual cortex. Some intrinsic electrophysiological properties of SP and WM cells are similar: each generates high-frequency slowly adapting trains of action potentials in response to a sustained depolarization. However, SP cells exhibit greater frequency-dependent action potential broadening than WM neurons. Both cell types receive predominantly AMPA/kainate receptor-mediated excitatory synaptic input that undergoes paired-pulse facilitation as well as NMDA receptor and GABAergic input. Synaptic inputs to these cells can also undergo long-term synaptic plasticity. Thus, surviving SP and WM cells are functional electrogenic neurons integrated within the postnatal visual cortical circuit.

  14. Electrophysiology of globus pallidus neurons in vitro.

    PubMed

    Nambu, A; Llinaś, R

    1994-09-01

    1. We investigated the electrical properties of globus pallidus neurons intracellularly using brain slices from adult guinea pigs. Three types of neurons were identified according to their intrinsic electrophysiological properties. 2. Type I neurons (59%) were silent at the resting membrane level (-65 +/- 10 mV, mean +/- SD) and generated a burst of spikes, with strong accommodation, to depolarizing current injection. Calcium-dependent low-frequency (1-8 Hz) membrane oscillations were often elicited by membrane depolarization (-53 +/- 8 mV). A low-threshold calcium conductance and an A-current were also identified. The mean input resistance of this neuronal type was 70 +/- 22 M omega. 3. Type II neurons (37%) fired spontaneously at the resting membrane level (-59 +/- 9 mV). Their repetitive firing (< or = 200 Hz) was very sensitive to the amplitude of injected current and showed weak accommodation. Sodium-dependent high-frequency (20-100 Hz) subthreshold membrane oscillations were often elicited by membrane depolarization. This neuronal type demonstrated a low-threshold calcium spike and had the highest input resistance (134 +/- 62 M omega) of the three neuron types. 4. Type III neurons (4%) did not fire spontaneously at the resting membrane level (-73 +/- 5 mV). Their action potentials were characterized by a long duration (2.3 +/- 0.6 ms). Repetitive firing elicited by depolarizing current injection showed weak or no accommodation. This neuronal type had an A-current and showed the lowest input resistance (52 +/- 35 M omega) of the three neuron types. 5. Stimulation of the caudoputamen evoked inhibitory postsynaptic potentials (IPSPs) in Type I and II neurons. In Type II neurons the IPSPs were usually followed by rebound firing. Excitatory postsynaptic potentials and antidromic responses were also elicited in some Type I and II neurons. The estimated conduction velocity of the striopallidal projection was < 1 m/s (Type I neurons, 0.49 +/- 0.37 m/s; Type II

  15. The 5'-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis.

    PubMed

    Ohtaka-Maruyama, C; Hirai, S; Miwa, A; Takahashi, A; Okado, H

    2012-01-10

    Pyramidal neurons of the neocortex are produced from progenitor cells located in the neocortical ventricular zone (VZ) and subventricular zone (SVZ) during embryogenesis. RP58 is a transcriptional repressor that is strongly expressed in the developing brain and plays an essential role in corticogenesis. The expression of RP58 is strictly regulated in a time-dependent and spatially restricted manner. It is maximally expressed in E15-16 embryonic cerebral cortex, localized specifically to the cortical plate and SVZ of the neocortex, hippocampus, and parts of amygdala during brain development, and found in glutamatergic but not GABAergic neurons. Identification of the promoter activity underlying specific expression patterns provides important clues to their mechanisms of action. Here, we show that the RP58 gene promoter is activated prominently in multipolar migrating cells, the first in vivo analysis of RP58 promoter activity in the brain. The 5.3 kb 5'-flanking genomic DNA of the RP58 coding region demonstrates promoter activity in neurons both in vitro and in vivo. This promoter is highly responsive to the transcription factor neurogenin2 (Ngn2), which is a direct upstream activator of RP58 expression. Using in utero electroporation, we demonstrate that RP58 gene promoter activity is first detected in a subpopulation of pin-like VZ cells, then prominently activated in migrating multipolar cells in the multipolar cell accumulation zone (MAZ) located just above the VZ. In dissociated primary cultured cortical neurons, RP58 promoter activity mimics in vivo expression patterns from a molecular standpoint that RP58 is expressed in a fraction of Sox2-positive progenitor cells, Ngn2-positive neuronal committed cells, and Tuj1-positive young neurons, but not in Dlx2-positive GABAergic neurons. Finally, we show that Cre recombinase expression under the control of the RP58 gene promoter is a feasible tool for conditional gene switching in post-mitotic multipolar migrating

  16. Oxidative stress induced by cumene hydroperoxide evokes changes in neuronal excitability of rat motor cortex neurons.

    PubMed

    Pardillo-Díaz, R; Carrascal, L; Ayala, A; Nunez-Abades, P

    2015-03-19

    Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. Oxygen-derived free radical formation was induced by bath application of 10μM cumene hydroperoxide (CH) for 30min. CH produced marked changes in the electrophysiological properties of neurons (n=30). Resting membrane potential became progressively depolarized, as well as depolarization voltage, with no variations in voltage threshold. Membrane resistance showed a biphasic behavior, increasing after 5min of drug exposure and then it started to decrease, even under control values, after 15 and 30min. At the same time, changes in membrane resistance produced compensatory variations in the rheobase. The amplitude of the action potentials diminished and the duration increased progressively over time. Some of the neurons under study also lost their ability to discharge action potentials in a repetitive way. Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrowe