Science.gov

Sample records for neuropeptides modulate compound

  1. Orphan neuropeptides. Novel neuropeptides modulating sleep or feeding.

    PubMed

    Chung, Shinjae; Civelli, Olivier

    2006-08-01

    Neuropeptides form the largest family of modulators of synaptic transmission. Until 1995 some 60 different neuropeptides had been found. With the recognition that all neuropeptides act by binding to G protein coupled receptors (GPCRs), a new approach relying on the use of orphan GPCRs as targets was designed to identify novel neuropeptides. Thirteen new neuropeptide families have since been discovered. In this review we will describe the orphan GPCR-based approach that led to these discoveries and present its impact on two specific physiological responses, feeding and sleep. In particular, we will discuss the modulatory roles of the hypocretins/orexins and of neuropeptide S in sleep and awakening and those of ghrelin and melanin concentrating hormone in food intake.

  2. The role of neuropeptides in sleep modulation.

    PubMed

    Prospéro-García, Oscar; Méndez-Díaz, Mónica

    2004-10-01

    Several neuropeptides affect the sleep-wake cycle, for example, vasoactive intestinal polypeptide, cholecystokinin octapeptide, orexin, somatostatin, insulin, leptin, ghrelin, neuropeptide Y and cortistatin, which regulate food ingestion. There are also proteins from the immunological system: tumor necrosis factor-alpha, interleukin (IL)-1beta IL-4, IL-10, IL-13, as well as trophic molecules, such as growth hormone-releasing hormone, growth hormone, prolactin, brain-derived neurotrophic factor and nerve growth factor, neurotrophin-3 and neurotrophin-4. Based on this information, we believe that some functions of sleep can be suggested. One of these functions could be the regulation of energy, since many, if not all, of the neuropeptides that regulate feeding affect the level of alertness. Likewise, the immunological system and the trophic molecules establish a dialog with the brain during sleep in order to reestablish neuronal structure. These proteins are the expression of genes that accomplish the function of regulating our waking and our sleep, suggesting the important control the genome is exerting on this activity.

  3. The neuropeptide oxytocin modulates consumer brand relationships.

    PubMed

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-01-01

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers' attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one's favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands. PMID:26449882

  4. The neuropeptide oxytocin modulates consumer brand relationships

    PubMed Central

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-01-01

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers’ attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one’s favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands. PMID:26449882

  5. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila

    PubMed Central

    Zhang, Mo; Loschek, Laura F.; Grunwald Kadow, Ilona C.

    2016-01-01

    A female’s reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female’s preference for important nutrients, thereby ensuring optimal conditions for her growing progeny. PMID:27145127

  6. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila.

    PubMed

    Hussain, Ashiq; Üçpunar, Habibe K; Zhang, Mo; Loschek, Laura F; Grunwald Kadow, Ilona C

    2016-05-01

    A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny. PMID:27145127

  7. Sensory neurobiological analysis of neuropeptide modulation of meal size.

    PubMed

    Schwartz, Gary J; Azzara, Anthony V

    2004-08-01

    Gerry Smith's emphasis on the meal as the functional unit of ingestion spurred experiments designed to (1) identify oral and postoral stimuli that affect meal size, and (2) identify peripheral and central neural mechanisms involved in the processing of sensory signals generated by these stimuli. His observations that gut-brain peptides can limit meal size were important in formulating the idea that neuropeptides involved in the control of food intake modulate the peripheral and central neural processing of meal-stimulated sensory signals. This focus on meal size continues to foster the development of hypotheses and the design of experiments that characterize the sites and modes of action of feeding modulatory neuropeptides. These investigations have focused attention on the gut-brain neuraxis as a critical sensory pathway in the control of ingestive behavior, and have revealed important integrative properties of peripheral and central neurons along this axis. The neuromodulatory function of peptides that alter food intake is supported by their ability to recruit the activation of neurons at multiple central nodes of the gut-brain axis and to affect the neural processing and behavioral potency of meal-related gastrointestinal signals important in the negative feedback control of meal size. This sensory neurobiological perspective may also be applied to determine whether feeding modulatory neuropeptides affect the neural and behavioral potency of oral positive feedback signals that promote ingestion.

  8. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    PubMed

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.

  9. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    PubMed

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction. PMID:26406995

  10. Short neuropeptide F is a sleep-promoting inhibitory modulator

    PubMed Central

    Shang, Yuhua; Donelson, Nathan C.; Vecsey, Christopher G.; Guo, Fang; Rosbash, Michael; Griffith, Leslie C.

    2013-01-01

    SUMMARY To advance the understanding of sleep regulation, we screened for sleep-promoting cells and identified neurons expressing neuropeptide Y-like short neuropeptide F (sNPF). Sleep-induction by sNPF meets all relevant criteria. Rebound sleep following sleep deprivation is reduced by activation of sNPF neurons and flies even experience negative sleep rebound upon cessation of sNPF neuronal stimulation, indicating that sNPF provides an important signal to the sleep homeostat. Only a subset of sNPF-expressing neurons, which includes the small ventrolateral clock neurons, is sleep-promoting. Their release of sNPF increases sleep consolidation in part by suppressing the activity of wake-promoting large ventrolateral clock neurons, and suppression of neuronal firing may be the general response to sNPF receptor activation. sNPF acutely increases sleep without altering feeding behavior, which it affects only on a much longer time scale. The profound effect of sNPF on sleep indicates that it is an important sleep-promoting molecule. PMID:24094110

  11. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    PubMed

    Stawicki, Tamara M; Takayanagi-Kiya, Seika; Zhou, Keming; Jin, Yishi

    2013-05-01

    Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  12. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.

    PubMed

    Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S

    2015-12-15

    All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae.

  13. Crustacean neuropeptides.

    PubMed

    Christie, Andrew E; Stemmler, Elizabeth A; Dickinson, Patsy S

    2010-12-01

    Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.

  14. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    PubMed Central

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R.; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P. D.; Picaud, Serge; Santiago, Ana R.

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases. PMID:26311075

  15. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro.

    PubMed

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P D; Picaud, Serge; Santiago, Ana R; Ambrósio, António F

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)-NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.

  16. Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans.

    PubMed

    Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Iino, Yuichi; Iwasaki, Yuishi; Kimura, Koutarou D

    2015-10-01

    An animal's behavior is modulated by learning; however, the behavioral component modulated by learning and the mechanisms of this modulation have not been fully understood. We show here that two types of neural signalings are required for the modulation of different behavioral components in non-associative odor learning in the nematode Caenorhabditis elegans. We have previously found that C. elegans avoid the repulsive odor 2-nonanone, and preexposure to the odor for 1h enhances the avoidance behavior as a type of non-associative learning. Systematic quantitative analyses of behavioral components revealed that the odor preexposure caused increases in average duration of straight migration ("runs") only when the animals were migrating away from the odor source within a certain range of bearing, which likely corresponds to odor decrement. Further, genetic analyses revealed that the genes for neuropeptide or dopamine signalings are both required for the enhanced odor avoidance. Neuropeptide signaling genes were required for the preexposure-dependent increase in run duration. In contrast, dopamine signaling genes were required not for the increase in run duration but likely for maintenance of run direction. Our results suggests that multiple behavioral components are regulated by different neuromodulators even in non-associative learning in C. elegans.

  17. Modulation of leptin resistance by food compounds.

    PubMed

    Aragonès, Gerard; Ardid-Ruiz, Andrea; Ibars, Maria; Suárez, Manuel; Bladé, Cinta

    2016-08-01

    Leptin is mainly secreted by white adipose tissue and regulates energy homeostasis by inhibiting food intake and stimulating energy expenditure through its action in neuronal circuits in the brain, particularly in the hypothalamus. However, hyperleptinemia coexists with the loss of responsiveness to leptin in common obese conditions. This phenomenon has been defined as leptin resistance and the restoration of leptin sensitivity is considered to be a useful strategy to treat obesity. This review summarizes the existing literature on potentially valuable nutrients and food components to reverse leptin resistance. Notably, several food compounds, such as teasaponins, resveratrol, celastrol, caffeine, and taurine among others, are able to restore the leptin signaling in neurons by overexpressing anorexigenic peptides (proopiomelanocortin) and/or repressing orexigenic peptides (neuropeptide Y/agouti-related peptide), thus decreasing food intake. Additionally, some nutrients, such as vitamins A and D, can improve leptin transport through the blood-brain barrier. Therefore, food components can improve leptin resistance by acting at different levels of the leptin pathway; moreover, some compounds are able to target more than one feature of leptin resistance. However, systematic studies are necessary to define the actual effectiveness of each compound. PMID:26842874

  18. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo

    PubMed Central

    Morara, Stefano; Colangelo, Anna Maria; Provini, Luciano

    2015-01-01

    Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies. PMID:26273481

  19. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    PubMed

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice. PMID:26610903

  20. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    PubMed

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.

  1. Neuropeptides in epilepsy.

    PubMed

    Kovac, Stjepana; Walker, Matthew C

    2013-12-01

    Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.

  2. Herbal Compounds and Toxins Modulating TRP Channels

    PubMed Central

    Vriens, Joris; Nilius, Bernd; Vennekens, Rudi

    2008-01-01

    Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels. PMID:19305789

  3. Neuropeptides and hippocampal neurogenesis.

    PubMed

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  4. Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus.

    PubMed

    Dickinson, Patsy S; Calkins, Andrew; Stevens, Jake S

    2015-02-01

    To produce flexible outputs, neural networks controlling rhythmic motor behaviors can be modulated at multiple levels, including the pattern generator itself, sensory feedback, and the response of the muscle to a given pattern of motor output. We examined the role of two related neuropeptides, GYSDRNYLRFamide (GYS) and SGRNFLRFamide (SGRN), in modulating the neurogenic lobster heartbeat, which is controlled by the cardiac ganglion (CG). When perfused though an isolated whole heart at low concentrations, both peptides elicited increases in contraction amplitude and frequency. At higher concentrations, both peptides continued to elicit increases in contraction amplitude, but GYS caused a decrease in contraction frequency, while SGRN did not alter frequency. To determine the sites at which these peptides induce their effects, we examined the effects of the peptides on the periphery and on the isolated CG. When we removed the CG and stimulated the motor nerve with constant bursts of stimuli, both GYS and SGRN increased contraction amplitude, indicating that each peptide modulates the muscle or the neuromuscular junction. When applied to the isolated CG, neither peptide altered burst frequency at low peptide concentrations; at higher concentrations, SGRN decreased burst frequency, whereas GYS continued to have no effect on frequency. Together, these data suggest that the two peptides elicit some of their effects using different mechanisms; in particular, given the known feedback pathways within this system, the importance of the negative (nitric oxide) relative to the positive (stretch) feedback pathways may differ in the presence of the two peptides.

  5. Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus.

    PubMed

    Dickinson, Patsy S; Calkins, Andrew; Stevens, Jake S

    2015-02-01

    To produce flexible outputs, neural networks controlling rhythmic motor behaviors can be modulated at multiple levels, including the pattern generator itself, sensory feedback, and the response of the muscle to a given pattern of motor output. We examined the role of two related neuropeptides, GYSDRNYLRFamide (GYS) and SGRNFLRFamide (SGRN), in modulating the neurogenic lobster heartbeat, which is controlled by the cardiac ganglion (CG). When perfused though an isolated whole heart at low concentrations, both peptides elicited increases in contraction amplitude and frequency. At higher concentrations, both peptides continued to elicit increases in contraction amplitude, but GYS caused a decrease in contraction frequency, while SGRN did not alter frequency. To determine the sites at which these peptides induce their effects, we examined the effects of the peptides on the periphery and on the isolated CG. When we removed the CG and stimulated the motor nerve with constant bursts of stimuli, both GYS and SGRN increased contraction amplitude, indicating that each peptide modulates the muscle or the neuromuscular junction. When applied to the isolated CG, neither peptide altered burst frequency at low peptide concentrations; at higher concentrations, SGRN decreased burst frequency, whereas GYS continued to have no effect on frequency. Together, these data suggest that the two peptides elicit some of their effects using different mechanisms; in particular, given the known feedback pathways within this system, the importance of the negative (nitric oxide) relative to the positive (stretch) feedback pathways may differ in the presence of the two peptides. PMID:25392168

  6. Neuropeptide FF receptor modulates potassium currents in a dorsal root ganglion cell line.

    PubMed

    Mollereau, Catherine; Roumy, Michel; Zajac, Jean-Marie

    2011-01-01

    This study investigated the presence of neuropeptide FF (NPFF) receptors on F-11 cells, a hybridoma derived from rat dorsal root ganglia (DRG) and mouse neuroblastoma. Binding experiments revealed a low density (4 fmol/mg) of high affinity (0.5 nM) [(3)H]-EYF binding sites in these cells. The whole-cell planar patch-clamp technique showed that dNPA, a selective NPFF(2) agonist, increased the voltage-dependent potassium outward currents (about 30 pA/pF) by 21%; this reversible effect on sustained delayed potassium currents is blocked by tetraethylammonium. The similar effects of NPFF and opioid agonists on K(+) currents in this cell line may explain their similar antinociceptive actions at the spinal level.

  7. Neuropeptides as therapeutic targets in anxiety disorders.

    PubMed

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  8. Modulation of Vasomotive Activity in Rabbit External Ophthalmic Artery by Neuropeptides

    PubMed Central

    Delgado, Esmeralda Sofia Costa; Marques-Neves, Carlos; Rocha, Maria Isabel Sousa; Sales-Luís, José Paulo Pacheco; Silva-Carvalho, Luís Filipe

    2012-01-01

    Purpose. To investigate the vasomotive activity upon the external ophthalmic artery of vasointestinal peptide (VIP) and neuropeptide Y (NPY) using a previously developed model. Methods. Isolated rabbit eyes (n = 12) were perfused in situ with tyrode through the external ophthalmic artery. Effects of intra-arterial injections of NPY 200 μg/ml (Group A; n = 6) and VIP 200 μg/ml (Group B; n = 6) on the recorded pressure were obtained. For statistical analysis, Student's paired t-test and Fast Fourier Transform were used. Results. Spontaneous oscillations were observed before any drug administration in the 12 rabbit models. NPY produced an increase in total vascular resistance and a higher frequency and amplitude of oscillations, while VIP evoked the opposite effects. Conclusions. This study provides evidence of vasomotion in basal conditions in rabbit external ophthalmic artery. Concerning drug effects, NPY increased arterial resistance and enhanced vasomotion while VIP produced opposite effects which demonstrates their profound influence in arterial vasomotion. PMID:22496962

  9. Neuropeptide Y is released from human mammary and radial vascular biopsies and is a functional modulator of sympathetic cotransmission.

    PubMed

    Donoso, M V; Miranda, R; Irarrázaval, M J; Huidobro-Toro, J Pablo

    2004-01-01

    The role of neuropeptide Y (NPY) as a modulator of the vasomotor responses mediated by sympathetic cotransmitters was examined by electrically evoking its release from the perivascular nerve terminals of second- to third-order human blood vessel biopsies and by studying the peptide-induced potentiation of the vasomotor responses evoked by exogenous adenosine 5' triphosphate (ATP) and noradrenaline (NA). Electrical depolarization of nerve terminals in mammary vessels and radial artery biopsies elicited a rise in superfusate immunoreactive NPY (ir-NPY), which was chromatographically identical to a standard of human NPY (hNPY); a second peak was identified as oxidized hNPY. The amount released corresponds to 4-6% of the total NPY content in these vessels. Tissue extracts also revealed two peaks; hNPY accounted for 68-85% of the ir-NPY, while oxidized hNPY corresponded to 7-15%. The release process depended on extracellular calcium and on the frequency and duration of the electrical stimuli; guanethidine blocked the release, confirming the peptide's sympathetic origin. Assessment of the functional activity of the oxidized product demonstrated that while it did not change basal tension, the NA-evoked contractions were potentiated to the same extent as with native hNPY. Moreover, NPY potentiated both the vasomotor action of ATP or NA alone and the vasoconstriction elicited by the simultaneous application of both cotransmitters. RT-PCR detected the mRNA coding for the NPY Y(1) receptor. In summary, the release of hNPY or its oxidized species, elicited by nerve terminal depolarization, coupled to the potentiation of the sympathetic cotransmitter vasomotor responses, highlights the modulator role of NPY in both arteries and veins, strongly suggesting its involvement in human vascular sympathetic reflexes.

  10. The neuropeptide Y Y1 receptor knockdown modulates activator protein 1-involved feeding behavior in amphetamine-treated rats

    PubMed Central

    2013-01-01

    Background Hypothalamic neuropeptide Y (NPY) and two immediate early genes, c-fos and c-jun, have been found to be involved in regulating the appetite-suppressing effect of amphetamine (AMPH). The present study investigated whether cerebral catecholamine (CA) might regulate NPY and POMC expression and whether NPY Y1 receptor (Y1R) participated in activator protein-1 (AP-1)–mediated feeding. Methods Rats were given AMPH daily for 4 days. Changes in the expression of NPY, Y1R, c-Fos, c-Jun, and AP-1 were assessed and compared. Results Decreased CA could modulate NPY and melanocortin receptor 4 (MC4R) expressions. NPY and food intake decreased the most on Day 2, but Y1R, c-Fos, and c-Jun increased by approximately 350%, 280%, and 300%, respectively, on Day 2. Similarly, AP-1/DNA binding activity was increased by about 180% on Day 2. The expression patterns in Y1R, c-Fos, c-Jun, and AP-1/DNA binding were opposite to those in NPY during AMPH treatment. Y1R knockdown was found to modulate the opposite regulation between NPY and AP-1, revealing an involvement of Y1R in regulating NPY/AP-1–mediated feeding. Conclusions These results point to a molecular mechanism of CA/NPY/Y1R/AP-1 signaling in the control of AMPH-mediated anorexia and may advance the medical research of anorectic and anti-obesity drugs. PMID:24225225

  11. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair

    PubMed Central

    Waschek, JA

    2013-01-01

    Inflammatory processes play both regenerative and destructive roles in multiple sclerosis, stroke, CNS trauma, amyotrophic lateral sclerosis and aging-related neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Endogenous defence mechanisms against these pathologies include those that are directly neuroprotective, and those that modulate the expression of inflammatory mediators in microglia, astrocytes, and invading inflammatory cells. While a number of mechanisms and molecules have been identified that can directly promote neuronal survival, less is known about how the brain protects itself from harmful inflammation, and further, how it co-opts the healing function of the immune system to promote CNS repair. The two closely related neuroprotective peptides, vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP), which are up-regulated in neurons and immune cells after injury and/or inflammation, are known to protect neurons, but also exert powerful in vivo immunomodulatory actions, which are primarily anti-inflammatory. These peptide actions are mediated by high-affinity receptors expressed not only on neurons, but also astrocytes, microglia and peripheral inflammatory cells. Well-established immunomodulatory actions of these peptides are to inhibit macrophage and microglia production and release of inflammatory mediators such as TNF-α and IFN-γ, and polarization of T-cell responses away from Th1 and Th17, and towards a Th2 phenotype. More recent studies have revealed that these peptides can also promote the production of both natural and inducible subsets of regulatory T-cells. The neuroprotective and immunomodulatory actions of VIP and PACAP suggest that receptors for these peptides may be therapeutic targets for neurodegenerative and neuroinflammatory diseases and other forms of CNS injury. PMID:23517078

  12. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    SciTech Connect

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-05-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, (/sup 35/S)methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of (/sup 35/S)methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded (/sup 35/S)methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic.

  13. Singing modulates mood, stress, cortisol, cytokine and neuropeptide activity in cancer patients and carers

    PubMed Central

    Fancourt, Daisy; Williamon, Aaron; Carvalho, Livia A; Steptoe, Andrew; Dow, Rosie; Lewis, Ian

    2016-01-01

    There is growing evidence that psychosocial interventions can have psychological benefits for people affected by cancer, including improved symptoms of mental health and wellbeing and optimised immune responses. However, despite growing numbers of music interventions, particularly singing, in cancer care, there is less research into their impact. We carried out a multicentre single-arm preliminary study to assess the impact of singing on mood, stress and immune response in three populations affected by cancer: carers (n = 72), bereaved carers (n = 66) and patients (n = 55). Participants were excluded if pregnant or if they were currently being treated with chemotherapy, radiotherapy or oral immunosuppressive drugs. Participants were regular participants in five choirs across South Wales and took part in one hour of group singing. Before and after singing, visual analogue mood scales, stress scales and saliva samples testing for cortisol, beta-endorphin, oxytocin and ten cytokines were taken. Across all five centres and in all four participant groups, singing was associated with significant reductions in negative affect and increases in positive affect (p < .01) alongside significant increases in cytokines including GM-CSF, IL17, IL2, IL4 and sIL-2rα (all p < .01). In addition, singing was associated with reductions in cortisol, beta-endorphin and oxytocin levels. This study provides preliminary evidence that singing improves mood state and modulates components of the immune system. Further work is needed to ascertain how this differs for more specific patient groups and whether repeat exposure could lead to meaningful, longitudinal effects. PMID:27170831

  14. Singing modulates mood, stress, cortisol, cytokine and neuropeptide activity in cancer patients and carers.

    PubMed

    Fancourt, Daisy; Williamon, Aaron; Carvalho, Livia A; Steptoe, Andrew; Dow, Rosie; Lewis, Ian

    2016-01-01

    There is growing evidence that psychosocial interventions can have psychological benefits for people affected by cancer, including improved symptoms of mental health and wellbeing and optimised immune responses. However, despite growing numbers of music interventions, particularly singing, in cancer care, there is less research into their impact. We carried out a multicentre single-arm preliminary study to assess the impact of singing on mood, stress and immune response in three populations affected by cancer: carers (n = 72), bereaved carers (n = 66) and patients (n = 55). Participants were excluded if pregnant or if they were currently being treated with chemotherapy, radiotherapy or oral immunosuppressive drugs. Participants were regular participants in five choirs across South Wales and took part in one hour of group singing. Before and after singing, visual analogue mood scales, stress scales and saliva samples testing for cortisol, beta-endorphin, oxytocin and ten cytokines were taken. Across all five centres and in all four participant groups, singing was associated with significant reductions in negative affect and increases in positive affect (p < .01) alongside significant increases in cytokines including GM-CSF, IL17, IL2, IL4 and sIL-2rα (all p < .01). In addition, singing was associated with reductions in cortisol, beta-endorphin and oxytocin levels. This study provides preliminary evidence that singing improves mood state and modulates components of the immune system. Further work is needed to ascertain how this differs for more specific patient groups and whether repeat exposure could lead to meaningful, longitudinal effects. PMID:27170831

  15. The Thioredoxin TRX-1 Modulates the Function of the Insulin-Like Neuropeptide DAF-28 during Dauer Formation in Caenorhabditis elegans

    PubMed Central

    Fierro-González, Juan Carlos; Cornils, Astrid; Alcedo, Joy

    2011-01-01

    Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions. PMID:21304598

  16. Spatial light modulation in compound semiconductor materials

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Gheen, Gregory O. (Inventor); Partovi, Afshin (Inventor)

    1990-01-01

    Spatial light modulation (22) in a III-V single crystal (12), e.g., gallium arsenide, is achieved using the photorefractive effect. Polarization rotation created by beam coupling is utilized in one embodiment. In particular, information (16)on a control beam (14) incident on the crystal is transferred to an input beam (10), also incident on the crystal. An output beam (18) modulated in intensity is obtained by passing the polarization-modulated input beam through a polarizer (20).

  17. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  18. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  19. Introduction: Invertebrate Neuropeptides XV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  20. Introduction: Invertebrate Neuropeptides XIV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  1. Modulation of Tyrosine Hydroxylase, Neuropeptide Y, Glutamate, and Substance P in Ganglia and Brain Areas Involved in Cardiovascular Control after Chronic Exposure to Nicotine

    PubMed Central

    Ferrari, Merari F. R.; Coelho, Emerson F.; Farizatto, Karen L. G.; Chadi, Gerson; Fior-Chadi, Debora R.

    2011-01-01

    Considering that nicotine instantly interacts with central and peripheral nervous systems promoting cardiovascular effects after tobacco smoking, we evaluated the modulation of glutamate, tyrosine hydroxylase (TH), neuropeptide Y (NPY), and substance P (SP) in nodose/petrosal and superior cervical ganglia, as well as TH and NPY in nucleus tractus solitarii (NTS) and hypothalamic paraventricular nucleus (PVN) of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) after 8 weeks of nicotine exposure. Immunohistochemical and in situ hybridization data demonstrated increased expression of TH in brain and ganglia related to blood pressure control, preferentially in SHR, after nicotine exposure. The alkaloid also increased NPY immunoreactivity in ganglia, NTS, and PVN of SHR, in spite of decreasing its receptor (NPY1R) binding in NTS of both strains. Nicotine increased SP and glutamate in ganglia. In summary, nicotine positively modulated the studied variables in ganglia while its central effects were mainly constrained to SHR. PMID:21822476

  2. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions.

    PubMed

    Pablo Huidobro-Toro, J; Verónica Donoso, M

    2004-10-01

    The historical role of noradrenaline as the predominant sympathetic neurotransmitter in vascular neuroeffector junctions has matured to include ATP and the modulator action of neuropeptide Y (NPY). Numerous studies with isolated blood vessels rings demonstrate the presence of key enzymes responsible for the synthesis of ATP, noradrenaline and NPY, their co-storage, and their electrically evoked release from sympathetic perivascular nerve terminals. Functional assays coincide to demonstrate the integral role of these neurochemicals in sympathetic reflexes. In addition, the detection of the diverse receptor populations for ATP, noradrenaline and NPY in blood vessels, either in the smooth muscle, endothelial cells or nerve endings, further contribute to the notion that sympathetic vascular reflexes encompass the orchestrated action of the noradrenaline and ATP, and their modulation by NPY. The future clinical opportunities of sympathetic co-transmission in the control of human cardiovascular diseases will be highlighted.

  3. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    PubMed

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.

  4. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    PubMed

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday. PMID:23161624

  5. Determination of specific neuropeptides modulation time course in a rat model of osteoarthritis pain by liquid chromatography ion trap mass spectrometry.

    PubMed

    Ferland, Catherine E; Pailleux, Floriane; Vachon, Pascal; Beaudry, Francis

    2011-12-01

    Animal models are useful to evaluate pharmacological therapies to alleviate joint pain. The present study characterized central neuropeptides modulation in the monoiodoacetate (MIA) rat model. Animals receiving a single 3mg MIA injection were euthanized at 3, 7, 14, 21 and 28 days post injection. Spinal cords were analyzed by liquid chromatography ion trap mass spectrometry. Up-regulations of the calcitonin gene-related peptide and substance P were observed starting on days 7 and 28 respectively, whereas big dynorphin(₁₋₃₂) content decreased significantly on day 14 in comparison to control animals (P<0.05). Preclinical drug evaluations using this model should be conducted between 7 and 21 days post injection when the lesions resemble most to human osteoarthritis.

  6. Compound hydraulic shear-modulated vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Goldschmied, F. R.

    1977-01-01

    A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.

  7. The role of adenosine A2A and A3 receptors on the differential modulation of norepinephrine and neuropeptide Y release from peripheral sympathetic nerve terminals.

    PubMed

    Donoso, M Verónica; Aedo, Felipe; Huidobro-Toro, J Pablo

    2006-03-01

    The pre-synaptic sympathetic modulator role of adenosine was assessed by studying transmitter release following electrical depolarization of nerve endings from the rat mesenteric artery. Mesentery perfusion with exogenous adenosine exclusively inhibited the release of norepinephrine (NA) but did not affect the overflow of neuropeptide Y (NPY), establishing the basis for a differential pre-synaptic modulator mechanism. Several adenosine structural analogs mimicked adenosine's effect on NA release and their relative order of potency was: 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride = 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-d-ribofuranuronamide = 5'-(N-ethylcarboxamido)adenosine > adenosine > N(6)-cyclopentyladenosine. The use of selective receptor subtype antagonists confirmed the involvement of A(2A) and A(3) adenosine receptors. The modulator role of adenosine is probably due to the activation of both receptors; co-application of 1 nM 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride plus 1 nM 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide caused additive reductions in NA released. Furthermore, while 1 nM of an A(2A) or A(3) receptor antagonist only partially reduced the inhibitory action of adenosine, the combined co-application of the two antagonists fully blocked the adenosine-induced inhibition. Only the simultaneous blockade of the adenosine A(2A) plus A(3) receptors with selective antagonists elicited a significant increase in NA overflow. H 89 reduced the release of both NA and NPY. We conclude that pre-synaptic A(2A) and A(3) adenosine receptor activation modulates sympathetic co-transmission by exclusively inhibiting the release of NA without affecting immunoreactive (ir)-NPY and we suggest separate mechanisms for vesicular release modulation.

  8. Knocking down the transcript of protein kinase C-lambda modulates hypothalamic glutathione peroxidase, melanocortin receptor and neuropeptide Y gene expression in amphetamine-treated rats.

    PubMed

    Hsieh, Yih-Shou; Yang, Shun-Fa; Chen, Pei-Ni; Chu, Shu-Chen; Chen, Chin-Hsiu; Kuo, Dong-Yih

    2011-07-01

    It has been reported that neuropeptide Y (NPY) contributes to the behavioral response of amphetamine (AMPH), a psychostimulant. The present study examined whether protein kinase C (PKC)-λ signaling was involved in this action. Moreover, possible roles of glutathione peroxidase (GP) and melanocortin receptor 4 (MC4R) were also examined. Rats were given AMPH daily for 4 days. Hypothalamic NPY, PKCλ, GP and MC4R were determined and compared. Pretreatment with α-methyl-para-tyrosine could block AMPH-induced anorexia, revealing that endogenous catecholamine was involved in regulating AMPH anorexia. PKCλ, GP and MC4R were increased with maximal response on Day 2 during AMPH treatment, which were concomitant with the decreases in NPY. cAMP response element binding protein (CREB) DNA binding activity was increased during AMPH treatment, revealing the involvement of CREB-dependent gene transcription. An interruption of cerebral PKCλ transcript could partly block AMPH-induced anorexia and partly reverse NPY, MC4R and GP mRNA levels to normal. These results suggest that PKCλ participates in regulating AMPH-induced anorexia via a modulation of hypothalamic NPY gene expression and that increases of GP and MC4R may contribute to this modulation. Our results provided molecular evidence for the regulation of AMPH-induced behavioral response.

  9. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  10. [Physiology of the neuropeptides].

    PubMed

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  11. Modulation of neuropeptide FF (NPFF) receptors influences the expression of amphetamine-induced conditioned place preference and amphetamine withdrawal anxiety-like behavior in rats.

    PubMed

    Kotlinska, J H; Gibula-Bruzda, E; Koltunowska, D; Raoof, H; Suder, P; Silberring, J

    2012-01-01

    Many data indicate that endogenous opioid system is involved in amphetamine-induced behavior. Neuropeptide FF (NPFF) possesses opioid-modulating properties. The aim of the present study was to determine whether pharmacological modulation of NPFF receptors modify the expression of amphetamine-induced conditioned place preference (CPP) and amphetamine withdrawal anxiety-like behavior, both processes relevant to drug addiction/abuse. Intracerebroventricular (i.c.v.) injection of NPFF (5, 10, and 20 nmol) inhibited the expression of amphetamine CPP at the doses of 10 and 20 nmol. RF9, the NPFF receptors antagonist, reversed inhibitory effect of NPFF (20 nmol, i.c.v.) at the doses of 10 and 20 nmol and did not show any effect in amphetamine- and saline conditioned rats. Anxiety-like effect of amphetamine withdrawal was measured 24h after the last (14 days) amphetamine (2.5mg/kg, i.p.) treatment in the elevated plus-maze test. Amphetamine withdrawal decreased the percent of time spent by rats in the open arms and the percent of open arms entries. RF9 (5, 10, and 20 nmol, i.c.v.) significantly reversed these anxiety-like effects of amphetamine withdrawal and elevated the percent of time spent by rats in open arms at doses of 5 and 10 nmol, and the percent of open arms entries in all doses used. NPFF (20 nmol) pretreatment inhibited the effect of RF9 (10 nmol). Our results indicated that stimulation or inhibition of NPFF receptors decrease the expression of amphetamine CPP and amphetamine withdrawal anxiety, respectively. These findings may have implications for a better understanding of the processes involved in amphetamine dependence.

  12. Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide

    SciTech Connect

    Lino dos Santos Franco, Adriana; Damazo, Amilcar Sabino; Beraldo de Souza, Hyula Regines; Domingos, Helory Vanni; Oliveira-Filho, Ricardo Martins; Oliani, Sonia Maria; Costa, Soraia Katia Pereira; Tavares de Lima, Wothan . E-mail: wtdelima@icb.usp.br

    2006-07-01

    We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also, FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. On the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects.

  13. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception.

    PubMed

    Su, Jie; Sandor, Katalin; Sköld, Karl; Hökfelt, Tomas; Svensson, Camilla I; Kultima, Kim

    2014-07-01

    Neuropeptide transmitters involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of the spinal cord. This study was designed to examine the relative distribution of neuropeptides between the dorsal and ventral spinal cord in naïve mice using liquid chromatography, high-resolution mass spectrometry. We identified and relatively quantified 36 well-characterized full-length neuropeptides and an additional 168 not previously characterized peptides. By extraction with organic solvents we identified seven additional full-length neuropeptides. The peptide [des-Ser1]-cerebellin (desCER), originating from cerebellin precursor protein 1 (CBLN1), was predominantly expressed in the dorsal horn. Immunohistochemistry showed the presence of CBLN1 immunoreactivity with a punctate cytoplasmic pattern in neuronal cell bodies throughout the spinal gray matter. The signal was stronger in the dorsal compared to the ventral horn, with most CBLN1 positive cells present in outer laminae II/III, colocalizing with calbindin, a marker for excitatory interneurons. Intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity but not heat or cold hypersensitivity. This study provides evidence for involvement of desCER in nociception and provides a platform for continued exploration of involvement of novel neuropeptides in the regulation of nociceptive transmission. Neuropeptides involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of spinal cord. Well-characterized full-length neuropeptides as well as uncharacterized neuropeptides were quantified by mass spectrometry. The CBLN1-derived peptide [des-Ser1]-cerebellin (desCER) is predominantly expressed in the dorsal horn, and intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity.

  14. Chemistry and biology of the compounds that modulate cell migration.

    PubMed

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  15. Therapeutic Neuroendocrine Agonist and Antagonist Analogs of Hypothalamic Neuropeptides as Modulators of the Hypothalamic-Pituitary-Gonadal Axis.

    PubMed

    Newton, Claire L; Anderson, Ross C; Millar, Robert P

    2016-01-01

    Reproductive hormones play a role at all stages of life and affect most tissues of the body. Gonadotropin-releasing hormone (GnRH) synthesized in the hypothalamus stimulates the secretion of gonadotropins which in turn stimulate gonadal sex hormone production and gamete formation. This hypothalamic-pituitary-gonadal (HPG) axis has, therefore, been the target for the development of numerous drugs which regulate it at various points. These include sex steroid agonists and antagonists, inhibitors of sex steroid biosynthesis, and GnRH agonists and antagonists, which have found extensive applications in treating numerous conditions such as precocious puberty, delayed puberty, prostate cancer, benign prostatic hyperplasia, endometriosis, uterine fibroids and also in in vitro fertilization protocols. The novel neuroendocrine peptides, kisspeptin (KP) and neurokinin B (NKB), were recently discovered as upstream regulators of GnRH, and inactivating mutations of KP and NKB ligands or receptors result in a failure to progress through puberty. Agonists and antagonists of KP and NKB are being developed as more subtle modulators of the HPG axis. These new drugs offer additional and alternative therapeutic options in pediatric and adult hormone-dependent diseases.

  16. Neuropeptides: conductors of the immune orchestra.

    PubMed

    Morley, J E; Kay, N E; Solomon, G F; Plotnikoff, N P

    1987-08-01

    There is increasing evidence for a bidirectional communications system between the immune system and the brain. Many of the substances involved in this communication appear to be neuropeptides. These findings have given biochemical validity to the clinical and epidemiological studies that have suggested that psychosocial factors can modulate the response to infections and neoplasms. PMID:3298913

  17. Neuropeptide physiology in helminths.

    PubMed

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  18. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  19. Migraine and neuropeptides.

    PubMed

    Tajti, János; Szok, Délia; Majláth, Zsófia; Tuka, Bernadett; Csáti, Anett; Vécsei, László

    2015-08-01

    Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.

  20. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y.

    PubMed

    Bowers, Mallory E; Choi, Dennis C; Ressler, Kerry J

    2012-12-01

    The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.

  1. Neuropeptides in cardiovascular control.

    PubMed

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Neuropeptides as targets for the development of anticonvulsant drugs.

    PubMed

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  3. Modulation of Thermoreceptor TRPM8 by Cooling Compounds

    PubMed Central

    2012-01-01

    ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed. PMID:22860192

  4. Role of neuropeptides in cardiomyopathies.

    PubMed

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  5. Neuropeptides and diabetic retinopathy

    PubMed Central

    Gábriel, Robert

    2013-01-01

    Diabetic retinopathy, a common complication of diabetes, develops in 75% of patients with type 1 and 50% of patients with type 2 diabetes, progressing to legal blindness in about 5%. In the recent years, considerable efforts have been put into finding treatments for this condition. It has been discovered that peptidergic mechanisms (neuropeptides and their analogues, activating a diverse array of signal transduction pathways through their multiple receptors) are potentially important for consideration in drug development strategies. A considerable amount of knowledge has been accumulated over the last three decades on human retinal neuropeptides and those elements in the pathomechanisms of diabetic retinopathy which might be related to peptidergic signal transduction. Here, human retinal neuropeptides and their receptors are reviewed, along with the theories relevant to the pathogenesis of diabetic retinopathy both in humans and in experimental models. By collating this information, the curative potential of certain neupeptides and their analogues/antagonists can also be discussed, along with the existing clinical treatments of diabetic retinopathy. The most promising peptidergic pathways for which treatment strategies may be developed at present are stimulation of the somatostatin-related pathway and the pituitary adenylyl cyclase-activating polypeptide-related pathway or inhibition of angiotensinergic mechanisms. These approaches may result in the inhibition of vascular endothelial growth factor production and neuronal apoptosis; therefore, both the optical quality of the image and the processing capability of the neural circuit in the retina may be saved. PMID:23043302

  6. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    SciTech Connect

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y. . E-mail: dykuo@csmu.edu.tw

    2006-04-15

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.

  7. Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin

    PubMed Central

    Jiang, Yu; Yu, Bo; Fang, Fang; Cao, Huanhuan; Ma, Tonghui; Yang, Hong

    2015-01-01

    Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function. PMID:26635857

  8. Neuropeptides and steroid hormones in arthritis.

    PubMed

    Cerinic, M M; Konttinen, Y; Generini, S; Cutolo, M

    1998-05-01

    Primary afferent nociceptive and peptidergic efferent nerves are sensitized in arthritis and thus easily stimulated by mechanical and chemical stimuli. This leads to increased or disturbed release of neuropeptides from nerve terminals. This local (at the site of stimulation), expanded (expanded and additional receptive fields), and remote (cross-spinal reflexes) neuropeptide release leads to disturbed tissue homeostasis and neurogenic inflammation. In arthritis, raised levels of neuropeptides were detected in the synovial fluid, whereas nerve fibers were lacking in the synovial tissue. It has been hypothesized that cycles of nerve fiber destruction and degeneration follow the cycles of joint inflammation. This evidence suggests that the peripheral nervous system, through its neuropeptides, may contribute to the generation of inflammation, i.e., "neurogenic inflammation." Altered hypothalamic-pituitary-adrenocortical axis function and sex hormone status have been suggested to contribute to the development and persistence of arthritis. In particular, current evidence indicates that glucocorticoid secretion is closely and reciprocally interrelated with inflammation, and that an adrenal insufficiency is present in many forms of immune-mediated arthritis. Conversely, gonadal steroids seem to play a central role as predisposing factors in many forms of arthritis, with estrogens involved as immuno-enhancing hormones and androgens as natural immunosuppressors. Functional receptors for sex hormones have been described in cells involved in the immune response and, after activation, the hormone-receptor complex might modulate the expression of selected cytokines. The possibility of targeting the efferent nerves with specific peptides and replacement therapies with selected steroid hormones may represent a new and potentially efficient and natural system of modulation of the arthritis.

  9. Neuropeptide feedback modifies odor-evoked dynamics in C. elegans olfactory neurons

    PubMed Central

    Chalasani, Sreekanth H.; Kato, Saul; Albrecht, Dirk R.; Nakagawa, Takao; Abbott, L. F.; Bargmann, Cornelia I.

    2010-01-01

    Many neurons release classical transmitters together with neuropeptide cotransmitters whose functions are incompletely understood. Here we define the relationship between two transmitters in the olfactory system of Caenorhabditis elegans, showing that a neuropeptide-to-neuropeptide feedback loop alters sensory dynamics in primary olfactory neurons. The AWC olfactory neuron is glutamatergic and also expresses the peptide NLP-1. nlp-1 mutants have increased AWC-dependent behaviors, suggesting that NLP-1 limits the normal response. The receptor for NLP-1 is the G protein-coupled receptor NPR-11, which acts in postsynaptic AIA interneurons. Feedback from AIA interneurons modulates odor-evoked calcium dynamics in AWC olfactory neurons and requires INS-1, a neuropeptide released from AIA. The neuropeptide feedback loop dampens behavioral responses to odors on short and long timescales. Our results point to neuronal dynamics as a site of behavioral regulation and reveal the ability of neuropeptide feedback to remodel sensory networks on multiple timescales. PMID:20364145

  10. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity.

    PubMed

    Lagisetti, Chandraiah; Pourpak, Alan; Goronga, Tinopiwa; Jiang, Qin; Cui, Xiaoli; Hyle, Judith; Lahti, Jill M; Morris, Stephan W; Webb, Thomas R

    2009-11-26

    We report our progress on the development of new synthetic anticancer lead compounds that modulate the splicing of mRNA. We also report the synthesis and evaluation of new biologically active ester and carbamate analogues. Further, we describe initial animal studies demonstrating the antitumor efficacy of compound 5 in vivo. Additionally, we report the enantioselective and diastereospecific synthesis of a new 1,3-dioxane series of active analogues. We confirm that compound 5 inhibits the splicing of mRNA in cell-free nuclear extracts and in a cell-based dual-reporter mRNA splicing assay. In summary, we have developed totally synthetic novel spliceosome modulators as therapeutic lead compounds for a number of highly aggressive cancers. Future efforts will be directed toward the more complete optimization of these compounds as potential human therapeutics.

  11. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    PubMed

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  12. Segregation of the classical transmitters norepinephrine and acetylcholine and the neuropeptide Y in sympathetic neurons: modulation by ciliary neurotrophic factor or prolonged growth in culture.

    PubMed

    Vega, A; Luther, J A; Birren, S J; Morales, M A

    2010-12-01

    Recent evidence has demonstrated that cotransmission from mammalian neurons is not uniquely achieved by costorage and corelease of transmitters and cotransmitters from single varicosities, but also by the concurrent release of mediators segregated in separate synapses of individual neurons. An important question to be addressed is whether neurons show defined patterns of segregation or whether this is a plastic feature. We addressed this question by exploring the segregation pattern of the classical sympathetic transmitters norepinephrine (NE) and acetylcholine (ACh) and the cotransmitter neuropeptide Y (NPY) in sympathetic ganglionic neurons cocultured with cardiac myocytes. Using antibodies against NPY and the vesicular NE and ACh transporters VMAT2 and vesicular acetylcholine transporter (VAChT), we investigated the effect of ciliary neurotrophic factor (CNTF) or long (three weeks) culture periods on the segregation of VMAT2, VAChT, and NPY to separate varicosities. We found that although ganglionic neurons showed cell body coexpression of all the markers examined after three days, VMAT2 was segregated from VAChT in 43% of the VAChT-positive varicosities. In contrast, VMAT2 was only segregated from NPY in 16.3% of the NPY-positive varicosities. Cotransmitter segregation and VAChT expression was potentiated by both CNTF and longer times in culture. We also found two types of varicosities: one was smaller and located further from neuronal somata, and the other was larger, proximal to neuronal somata and had a higher level of segregation. These data demonstrate segregation of classical transmitters in sympathetic neurons and plasticity of neurotransmitter segregation. Finally, we discuss a possible functional correlate of segregation in sympathetic neurons.

  13. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    PubMed

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era. PMID:19361512

  14. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    PubMed

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.

  15. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation.

    PubMed

    Hassler, Carla; Zhang, Yanan; Gilmour, Brian; Graf, Tyler; Fennell, Timothy; Snyder, Rodney; Deschamps, Jeffrey R; Reinscheid, Rainer K; Garau, Celia; Runyon, Scott P

    2014-08-20

    Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.

  16. Identification of Neuropeptide S Antagonists: Structure–Activity Relationship Studies, X-ray Crystallography, and in Vivo Evaluation

    PubMed Central

    2014-01-01

    Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system. PMID:24964000

  17. A proteomic approach to neuropeptide function elucidation.

    PubMed

    Temmerman, L; Bogaerts, A; Meelkop, E; Cardoen, D; Boerjan, B; Janssen, T; Schoofs, L

    2012-03-01

    Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.

  18. Neuropeptides and nasal secretion.

    PubMed

    Baraniuk, J N; Kaliner, M

    1991-10-01

    The nasal mucosa is innervated by the sensory, parasympathetic, and sympathetic nervous systems. Nociceptive sensory nerves are stimulated by mucosal injury, inhalation of irritants, or mast cell degranulation and release of the calcitonin gene-related peptide, the tachykinins substance P and neurokinin A, and other peptides by the axon response mechanism. Sensory nerve stimulation initiates systemic reflexes, such as the sneeze, and central parasympathetic reflexes which release acetylcholine, vasoactive intestinal peptide, and other peptides and lead to glandular secretion. In concert, these proinflammatory neural responses lead to vasodilation, vascular permeability, and glandular secretion. Sympathetic nerves release neuropeptide Y and norepinephrine, potent vasoconstrictors which act to decompress the nasal mucosa and produce nasal patency. The balance between the effects of parasympathetic and sympathetic neurotransmitters may regulate nasal homeostasis, whereas the nociceptive sensory system may be held in reserve as a defense mechanism. Dysfunction of these systems may lead to pathological nasal syndromes. In the future, specific neuropeptide agonists and antagonists may be useful for the treatment of human rhinitic diseases. PMID:1928355

  19. Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks

    PubMed Central

    Nguyen, Phuong; Greene, Elizabeth; Ishola, Peter; Huff, Geraldine; Donoghue, Annie; Bottje, Walter; Dridi, Sami

    2015-01-01

    Background Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC) on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control), liver (main site for lipogenesis) and muscle (main site for thermogenesis). Methods 80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room). The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day) to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds) and blood samples and tissues were collected (n = 10). The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured. Results Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR). Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05). CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY) and anorexigenic cocaine and amphetamine regulated transcript (CART) in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05), the master energy and nutrient sensors, respectively. It also significantly decreased the

  20. High Content Screening of Diverse Compound Libraries Identifies Potent Modulators of Tubulin Dynamics

    PubMed Central

    2014-01-01

    Tubulin modulating agents such as the taxanes are among the most effective antimitotic cancer drugs, although resistance and toxicity present significant problems in their clinical use. However, most tubulin modulators are derived from complex natural products, which can make modification of their structure to address these problems difficult. Here, we report the discovery of new antimitotic compounds with simple structures that can be rapidly synthesized, through the phenotypic screening of a diverse compound library for the induction of mitotic arrest. We first identified a compound, which induced mitotic arrest in human cells at submicromolar concentrations. Its simple structure enabled rapid exploration of activity, defining a biphenylacetamide moiety required for activity, A family of analogues was synthesized, yielding optimized compounds that caused mitotic arrest and cell death in the low nanomolar range, comparable to clinically used antimitotic agents. These compounds can be synthesized in 1–3 steps and good yields. We show that one such compound targets tubulin, partially inhibiting colchicine but not vinblastine binding, suggesting that it acts allosterically to the known colchicine-binding site. Thus, our results exemplify the use of phenotypic screening to identify novel antimitotic compounds from diverse chemical libraries and characterize a family of biphenylacetamides (biphenabulins) that show promise for further development. PMID:24900887

  1. Neuropeptide Y stimulates autophagy in hypothalamic neurons.

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Carmo-Silva, Sara; Pascoal, Jorge F; Ferreira-Marques, Marisa; Nóbrega, Clévio; Cortes, Luísa; Valero, Jorge; Sousa-Ferreira, Lígia; Álvaro, Ana R; Santana, Magda; Kügler, Sebastian; Pereira de Almeida, Luís; Cavadas, Cláudia

    2015-03-31

    Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging. PMID:25775546

  2. Effect of structural modulation of polyphenolic compounds on the inhibition of Escherichia coli ATP synthase

    PubMed Central

    Ahmad, Zulfiqar; Ahmad, Mubeen; Okafor, Florence; Jones, Jeanette; Abunameh, Abdel M; Cheniya, Rakesh K; Kady, Ismail O

    2012-01-01

    In this paper we present the inhibitory effect of a variety of structurally modulated/modified polyphenolic compounds on purified F1 or membrane bound F1Fo E. coli ATP synthase. Structural modulation of polyphenols with two phenolic rings inhibited ATP synthase essentially completely; one or three ringed polyphenols individually or fused together inhibited partially. We found that the position of hydroxyl and nitro groups play critical role in the degree of binding and inhibition of ATPase activity. The extended positioning of hydroxyl groups on imino diphenolic compounds diminished the inhibition and abridged position enhanced the inhibition potency. This was contrary to the effect by simple single ringed phenolic compounds where extended positioning of hydroxyl group was found to be effective for inhibition. Also, introduction of nitro group augmented the inhibition on molar scale in comparison to the inhibition by resveratrol but addition of phosphate group did not. Similarly, aromatic diol or triol with rigid or planar ring structure and no free rotation poorly inhibited the ATPase activity. The inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1 and was reversible in all cases. Growth assays suggested that modulated compounds used in this study inhibited F1-ATPase as well as ATP synthesis nearly equally. PMID:22285988

  3. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.

    PubMed

    Hapiak, Vera; Summers, Philip; Ortega, Amanda; Law, Wen Jing; Stein, Andrew; Komuniecki, Richard

    2013-08-28

    Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.

  4. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  5. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products.

  6. Monitoring the apple polyphenol oxidase-modulated adduct formation of phenolic and amino compounds.

    PubMed

    Reinkensmeier, Annika; Steinbrenner, Katrin; Homann, Thomas; Bußler, Sara; Rohn, Sascha; Rawel, Hashadrai M

    2016-03-01

    Minimally processed fruit products such as smoothies are increasingly coming into demand. However, they are often combined with dairy ingredients. In this combination, phenolic compounds, polyphenoloxidases, and amino compounds could interact. In this work, a model approach is presented where apple serves as a source for a high polyphenoloxidase activity for modulating the reactions. The polyphenoloxidase activity ranged from 128 to 333nakt/mL in different apple varieties. From these, 'Braeburn' was found to provide the highest enzymatic activity. The formation and stability of resulting chromogenic conjugates was investigated. The results show that such adducts are not stable and possible degradation mechanisms leading to follow-up products formed are proposed. Finally, apple extracts were used to modify proteins and their functional properties characterized. There were retaining antioxidant properties inherent to phenolic compounds after adduct formation. Consequently, such interactions may also be utilized to improve the textural quality of food products. PMID:26471529

  7. Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris.

    PubMed

    Liu, Wei-Hui; Chen, Yan; Bai, Xue-Wei; Yao, Hui-Min; Zhang, Xu-Guang; Yan, Xiu-Wen; Lai, Ren

    2016-09-01

    The present study was designed to identify immunomodulatory components from the leech salivary gland of Haemadipsa sylvestris. The Sephadex G-50, Resource(TM) S column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify the salivary gland extracts (SGE). Structural analysis of isolated compounds was based on Edman degradation and matrix assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cDNA encoding the precursor of the compound was cloned from the cDNA library of the salivary gland of H. sylvestris. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were assayed using an enzyme-linked immunosorbent assay (ELISA). The effects on cell proliferation and cell viability were observed using MTT assay. A novel neuropeptide Y (Neuropeptide Y-HS) from the leech salivary gland of H. sylvestris was purified and characterized. It was composed of 36 amino acid residues and the amino acid sequence was determined to be FLEPPERPAVFTSVEQMKSYIKALNDYYLLLGRPRF-NH2, containing an amidated C-terminus. It showed significant inhibitory effects on the production of inflammatory cytokines including TNF-α, IFN-γ, IL-6, and MCP-1. Neuropeptide Y was identified from leeches for the first time. The presence of neuropeptide Y-HS in leech salivary gland may help get blood meal from hosts and inhibit inflammation.

  8. Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris.

    PubMed

    Liu, Wei-Hui; Chen, Yan; Bai, Xue-Wei; Yao, Hui-Min; Zhang, Xu-Guang; Yan, Xiu-Wen; Lai, Ren

    2016-09-01

    The present study was designed to identify immunomodulatory components from the leech salivary gland of Haemadipsa sylvestris. The Sephadex G-50, Resource(TM) S column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify the salivary gland extracts (SGE). Structural analysis of isolated compounds was based on Edman degradation and matrix assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cDNA encoding the precursor of the compound was cloned from the cDNA library of the salivary gland of H. sylvestris. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were assayed using an enzyme-linked immunosorbent assay (ELISA). The effects on cell proliferation and cell viability were observed using MTT assay. A novel neuropeptide Y (Neuropeptide Y-HS) from the leech salivary gland of H. sylvestris was purified and characterized. It was composed of 36 amino acid residues and the amino acid sequence was determined to be FLEPPERPAVFTSVEQMKSYIKALNDYYLLLGRPRF-NH2, containing an amidated C-terminus. It showed significant inhibitory effects on the production of inflammatory cytokines including TNF-α, IFN-γ, IL-6, and MCP-1. Neuropeptide Y was identified from leeches for the first time. The presence of neuropeptide Y-HS in leech salivary gland may help get blood meal from hosts and inhibit inflammation. PMID:27667513

  9. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  10. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    PubMed

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides.

  11. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    PubMed

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides. PMID:27546573

  12. Performance Evaluation of the New Compound-Carrier-Modulated Signal for Future Navigation Signals

    PubMed Central

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2016-01-01

    Navigation Signal based on Compound Carrier (NSCC), is proposed as the potential future global navigation satellite system (GNSS) signal modulation scheme. NSCC, a kind of multi-carrier (MC) signal, is generated by superposition and multi-parameter adjustment of sub-carriers. Therefore, a judious choice of parameter configation is needed. The main objective of this paper is to investigate the performance of the NSCC which is influenced by these parameters and to demonstrate its structure characteristics and superiority, employing a comprehensive evaluation system. The results show that the proposed NSCC signal processes full spectral efficiency and limited out of band (OOB) emissions, satisfying the demands of crowed frequency resources. It also presents better performance in terms of spectral separation coefficients (SSCs), tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with the legacy navigation signals. NSCC modulation represents a serious candidate for navigation satellite augmentation systems, especially for signals applied in challenging environments. PMID:26828494

  13. Performance Evaluation of the New Compound-Carrier-Modulated Signal for Future Navigation Signals.

    PubMed

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2016-01-01

    Navigation Signal based on Compound Carrier (NSCC), is proposed as the potential future global navigation satellite system (GNSS) signal modulation scheme. NSCC, a kind of multi-carrier (MC) signal, is generated by superposition and multi-parameter adjustment of sub-carriers. Therefore, a judious choice of parameter configation is needed. The main objective of this paper is to investigate the performance of the NSCC which is influenced by these parameters and to demonstrate its structure characteristics and superiority, employing a comprehensive evaluation system. The results show that the proposed NSCC signal processes full spectral efficiency and limited out of band (OOB) emissions, satisfying the demands of crowed frequency resources. It also presents better performance in terms of spectral separation coefficients (SSCs), tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with the legacy navigation signals. NSCC modulation represents a serious candidate for navigation satellite augmentation systems, especially for signals applied in challenging environments. PMID:26828494

  14. Chiral separation of pharmaceutical compounds using electrochemically modulated liquid chromatography (EMLC)

    SciTech Connect

    Wang, S.

    1999-02-12

    This research explores the application of a new technique, termed electrochemically modulated liquid chromatography (EMLC), to the chiral separations of pharmaceutical compounds. The introduction section provides a literature review of the technique and its applications, as well as brief overview of the research described in each of the next two chapters. Chapter 2 investigates the EMLC-based enantiomeric separation of a group of chiral benzodiazepines with {beta}-cyclodextrin as a chiral mobile phase additive. Chapter 3 demonstrates the effects of several experimental parameters on the separation efficiency of drug enantiomers. The author concludes with a general summary and possible directions for future studies. Chapters 2 and 3 are processed separately.

  15. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures.

    PubMed

    Herrmann, Andreas

    2014-03-21

    Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.

  16. The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds

    DOE PAGESBeta

    Mariette, Céline; Guérin, Laurent; Rabiller, Philippe; Chen, Yu-Sheng; Bosak, Alexei; Popov, Alexander; Hollingsworth, Mark D.; Toudic, Bertrand

    2014-09-12

    n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below Tc=248 K there appears a phase with rank four superspace group P6122(00γ), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio γ=ch/cg (chost/cguest), is found to be 0.632±0.005. Below Tc1=123 K, a monoclinic modulated phase is created with a constantmore » shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P1211(α0γ). We discuss analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase.« less

  17. The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds

    SciTech Connect

    Mariette, Céline; Guérin, Laurent; Rabiller, Philippe; Chen, Yu-Sheng; Bosak, Alexei; Popov, Alexander; Hollingsworth, Mark D.; Toudic, Bertrand

    2014-09-12

    n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below Tc=248 K there appears a phase with rank four superspace group P6122(00γ), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio γ=ch/cg (chost/cguest), is found to be 0.632±0.005. Below Tc1=123 K, a monoclinic modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P1211(α0γ). We discuss analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase.

  18. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  19. Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry.

    PubMed

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2012-08-30

    Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.

  20. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G.; Chalasani, Sreekanth H.

    2013-01-01

    Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic; however, the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a novel, sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, use BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large but not small changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switch the AWC olfactory sensory neuron into an interneuron in the salt circuit. Animals with disrupted insulin signaling have deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results show that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition. PMID:24013594

  1. Biological profile and bioavailability of imidazoline compounds on morphine tolerance modulation.

    PubMed

    Caprioli, Giovanni; Mammoli, Valerio; Ricciutelli, Massimo; Sagratini, Gianni; Ubaldi, Massimo; Domi, Esi; Mennuni, Laura; Sabatini, Chiara; Galimberti, Chiara; Ferrari, Flora; Milia, Chiara; Comi, Eleonora; Lanza, Marco; Giannella, Mario; Pigini, Maria; Del Bello, Fabio

    2015-12-15

    Tolerance to opioid administration represents a serious medical alert in different chronic conditions. This study compares the effects of the imidazoline compounds 1, 2, and 3 on morphine tolerance in an animal model of inflammatory pain in the rat. 1, 2, and 3 have been selected in that, although bearing a common scaffold, preferentially bind to α2-adrenoceptors, imidazoline I2 receptors, or both systems, respectively. Such compounds have been tested in vivo by measuring the paw withdrawal threshold to mechanical pressure after complete Freund's adjuvant injection. To determine the ligand levels in rat plasma, an HPLC-mass spectrometry method has been developed. All the compounds significantly reduced the induction of morphine tolerance, showing different potency and duration of action. Indeed, the selective imidazoline I2 receptor interaction (2) restored the analgesic response by maintaining the same time-dependent profile observed after a single morphine administration. Differently, the selective α2C-adrenoceptor activation (1) or the combination between α2C-adrenoceptor activation and imidazoline I2 receptor engagement (3) promoted a change in the temporal profile of morphine analgesia by maintaining a mild but long lasting analgesic effect. Interestingly, the kinetics of compounds in rat plasma supported the pharmacodynamic data. Therefore, this study highlights that both peculiar biological profile and bioavailability of such ligands complement each other to modulate the reduction of morphine tolerance. Based on these observations, 1-3 can be considered useful leads in the design of new drugs able to turn off the undesired tolerance induced by opioids.

  2. Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4.

    PubMed

    Ul-Hassan, Syed Riyaz; Strobel, Gary A; Booth, Eric; Knighton, Berk; Floerchinger, Cody; Sears, Joe

    2012-02-01

    An endophytic Hypoxylon sp. (strain CI-4) producing a wide spectrum of volatile organic compounds (VOCs), including 1,8-cineole, 1-methyl-1,4-cyclohexadiene and cyclohexane, 1,2,4-tris(methylene), was selected as a candidate for the modulation of VOC production. This was done in order to learn if the production of these and other VOCs can be affected by using agents that may modulate the epigenetics of the fungus. Many of the VOCs made by this organism are of interest because of their high energy densities and thus the potential they might have as Mycodiesel fuels. Strain CI-4 was exposed to the epigenetic modulators suberoylanilide hydroxamic acid (SAHA, a histone deacetylase) and 5-azacytidine (AZA, a DNA methyltransferase inhibitor). After these treatments the organism displayed striking cultural changes, including variations in pigmentation, growth rates and odour, in addition to significant differences in the bioactivities of the VOCs. The resulting variants were designated CI4-B, CI4-AZA and CI4-SAHA. GC/MS analyses of the VOCs produced by the variants showed considerable variation, with the emergence of several compounds not previously observed in the wild-type, particularly an array of tentatively identified terpenes such as α-thujene, sabinene, γ-terpinene, α-terpinolene and β-selinene, in addition to several primary and secondary alkanes, alkenes, organic acids and derivatives of benzene. Proton transfer reaction mass spectroscopic analyses showed a marked increase in the ratio of ethanol (mass 47) to the total mass of all other ionizable VOCs, from ~0.6 in the untreated strain CI-4 to ~0.8 in CI-4 grown in the presence of AZA. Strain CI4-B was created by exposure of the fungus to 100 µM SAHA; upon removal of the epigenetic modulator from the culture medium, it did not revert to the wild-type phenotype. Results of this study have implications for understanding why there may be a wide range of VOCs found in various isolates of this fungus in nature.

  3. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    PubMed

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  4. Distribution of neuropeptides in the antennal lobes of male Spodoptera littoralis.

    PubMed

    Kromann, Sophie H; Hansson, Bill S; Ignell, Rickard

    2013-11-01

    Olfaction is an important sensory modality that regulates a plethora of behavioural expressions in insects. Processing of olfactory information takes place in the primary olfactory centres of the brain, namely the antennal lobes (ALs). Neuropeptides have been shown to be present in the olfactory system of various insect species. In the present study, we analyse the distribution of tachykinin, FMRFamide-related peptides, allatotropin, allatostatin, myoinhibitory peptides and SIFamide in the AL of the male Egyptian cotton leafworm, Spodoptera littoralis. Immunocytochemical analyses revealed that most neuropeptides were expressed in different subpopulations of AL neurons. Their arborisation patterns within the AL suggest a significant role of neuropeptide signalling in the modulation of AL processing. In addition to local interneurons, our analysis also revealed a diversity of extrinsic peptidergic neurons that connected the antennal lobe with other brain centres. Their distributions suggest that extrinsic neurons perform various types of context-related modulation. PMID:23955643

  5. The intriguing mission of neuropeptide Y in the immune system.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava

    2013-07-01

    For many years, the central nervous system and the immune system were considered two autonomous entities. However, extensive research in the field of neuroimmunomodulation during the past decades has demonstrated the presence of different neuropeptides and their respective receptors in the immune cells. More importantly, it has provided evidence for the direct effects of neuropeptides on the immune cell functions. Neuropeptide Y (NPY) is generally considered the most abundant peptide in the central and peripheral nervous system. However, it is also distinguished by exhibiting pleiotropic functions in many other physiological systems, including the immune system. NPY affects the functions of the cells of the adaptive and innate immunity. In this respect, NPY is known to modulate immune cell trafficking, T helper cell differentiation, cytokine secretion, natural killer cell activity, phagocytosis and the production of reactive oxygen species. The specific Y receptors have been found in immune cells, and their expression is amplified upon immune stimulation. Different Y receptor subtypes may mediate an opposite effect of NPY on the particular function, thus underlining its regulatory role. Since the immune cells are capable of producing NPY upon appropriate stimulation, this peptide can regulate immune cell functions in an autocrine/paracrine manner. NPY also has important implications in several immune-mediated disorders, which affirms the clear need for further investigation of its role in either the mechanisms of the disease development or its possible therapeutic capacity. This review summarises the key points of NPY's mission throughout the immune system.

  6. Glucocorticoids and the non-steroidal selective glucocorticoid receptor modulator, compound A, differentially affect colon cancer-derived myofibroblasts.

    PubMed

    Drebert, Zuzanna; Bracke, Marc; Beck, Ilse M

    2015-05-01

    The glucocorticoid receptor functions as a ligand-dependent transcription factor that positively or negatively regulates the transcription of various specific target genes. Not only steroidal glucocorticoids can bind and activate the glucocorticoid receptor, but also the intensively examined non-steroidal selective glucocorticoid receptor modulators can do so, albeit with a select effector profile skewed to glucocorticoid receptor transrepression. Glucocorticoids are widely used to treat inflammatory afflictions, but also as anti-cancer therapies or adjuvants thereof. As the impact of glucocorticoids and selective glucocorticoid receptor modulators has scarcely been researched in this setting, we focused on colon cancer and its stromal environment, in particular the stromal myofibroblasts, which are known to influence cancer cells via paracrine signaling. In these myofibroblasts, the glucocorticoid dexamethasone is able to drive the glucocorticoid receptor into the nucleus and thus negatively regulates the expression of particular pro-inflammatory genes in TNFα-stimulated cells. The selective glucocorticoid receptor modulator compound A has an impaired ability to translocate GR, presumably underpinning its modest anti-inflammatory properties in these cells. Only dexamethasone, and not compound A, can upregulate the glucocorticoid receptor transactivation-dependent GILZ expression. Neither dexamethasone, nor compound A affects myofibroblast cell viability. However, compound A retards the growth of this myofibroblast cell line. Additionally, dexamethasone can inhibit the expression of Tenascin C, hepatocyte growth factor, and TGFβ, which are all factors known for their impact on colon cancer cell invasion, in a glucocorticoid receptor-dependent manner. In contrast, compound A can only slightly diminish the expression of just hepatocyte growth factor, and not tenascin C or TGFβ. Combined, our results expose new tumor microenvironment-modulating effects of

  7. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  8. Intron-Specific Neuropeptide Probes

    PubMed Central

    Gainer, Harold; Ponzio, Todd A.; Yue, Chunmei; Kawasaki, Makoto

    2016-01-01

    Measurements of changes in pre-mRNA levels by intron-specific probes are generally accepted as more closely reflecting changes in gene transcription rates than are measurements of mRNA levels by exonic probes. This is, in part, because the pre-mRNAs, which include the primary transcript and various splicing intermediates located in the nucleus (also referred to as heteronuclear RNAs, or hnRNAs), are processed rapidly (with half-lives <60 min) as compared to neuropeptide mRNAs, which are then transferred to the cytoplasm and which have much longer half-lives (often over days). In this chapter, we describe the use of exon-and intron-specific probes to evaluate oxytocin (OT) and vasopressin (VP) neuropeptide gene expression by analyses of their mRNAs and hnRNAs by quantitative in situ hybridization (qISH) and also by using specific PCR primers in quantitative, real-time PCR (qPCR) procedures. PMID:21922402

  9. Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells.

    PubMed

    Zhao, Pan; Yang, Xiaoda

    2013-06-01

    Vanadium compounds are promising agents in the therapeutic treatment of diabetes; however, their mechanism of action has not been clearly elucidated. The current study investigated the effects of vanadium compounds, vanadyl acetylacetonate [V(IV)O(acac)2] and sodium metavanadate (NaV(V)O3), on peroxisome proliferator-activated receptors (PPARs), especially PPARγ, which are important targets of anti-diabetic drugs. Our experimental results revealed that treatment of NIT-1 β-pancreas cells with vanadium compounds resulted in PPARγ activation and elevation of PPARγ protein levels. Vanadium compounds did not increase PPARγ transcription but ameliorated PPARγ degradation induced by inflammatory stimulators TNF-α/IL-6. Vanadium compounds induced binding of PPARγ to heat shock protein (Hsp60). This PPARγ-Hsp60 interaction might cause inhibition of PPARγ degradation, thus elevating the PPARγ level. In addition, modulation of PPARγ phosphorylation was also observed upon vanadium treatment. The present work demonstrated for the first time that vanadium compounds are novel PPARγ modulators. The results may provide new insights for the mechanism of anti-diabetic action of vanadium compounds.

  10. Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y.

    PubMed

    Louzao, M Carmen; Fernández, Diego A; Abal, Paula; Fraga, Maria; Vilariño, Natalia; Vieytes, Mercedes R; Botana, Luis M

    2015-09-01

    Okadaic acid (OA) and dinophysistoxins (DTXs) are a group of marine toxins that cause diarrheic shellfish poisoning (DSP) in humans and animals. These compounds are produced by dinoflagellates of the Prorocentrum and Dinophysis genera and can accumulate in filter-feeding bivalves, posing a serious health risk for shellfish consumers. The enteric nervous system (ENS) plays a crucial role in the regulation of the gastrointestinal tract. In addition, neuropeptides produced by ENS affects the epithelial barrier functions. In the present work we used a two-compartment human coculture model containing the SH-SY5Y neuroblastoma cell line and polarized colonic epithelial monolayers (Caco-2) to study the OA intestinal permeability. First, we have determined OA cytotoxicity and we have found that OA reduces the viability of SH-SY5Y in a dose-dependent way, even though DTX1 is 4 to 5 times more potent than OA. Besides DTX1 is 15 to 18 orders of magnitude more potent than OA in decreasing transepithelial electrical resistance (TEER) of caco-2 cells without inducing cytotoxicity. Permeability assays indicate that OA cross the monolayer and modulates the neuropeptide Y (NPY) secretion by neuroblastoma cells. This NPY also affects the permeability of OA. This offers a novel approach to establish the influence of OA neuronal action on their diarrheic effects through a cross talk between ENS and intestine via OA induced NPY secretion. Therefore, the OA mechanisms of toxicity that were long attributed only to the inhibition of protein phosphatases, would require a reevaluation.

  11. A Low-Cost, Hands-on Module to Characterize Antimicrobial Compounds Using an Interdisciplinary, Biophysical Approach

    PubMed Central

    Kaushik, Karishma S.; Kessel, Ashley; Ratnayeke, Nalin; Gordon, Vernita D.

    2015-01-01

    We have developed a hands-on experimental module that combines biology experiments with a physics-based analytical model in order to characterize antimicrobial compounds. To understand antibiotic resistance, participants perform a disc diffusion assay to test the antimicrobial activity of different compounds and then apply a diffusion-based analytical model to gain insights into the behavior of the active antimicrobial component. In our experience, this module was robust, reproducible, and cost-effective, suggesting that it could be implemented in diverse settings such as undergraduate research, STEM (science, technology, engineering, and math) camps, school programs, and laboratory training workshops. By providing valuable interdisciplinary research experience in science outreach and education initiatives, this module addresses the paucity of structured training or education programs that integrate diverse scientific fields. Its low-cost requirements make it especially suitable for use in resource-limited settings. PMID:25602254

  12. A Low-Cost, Hands-on Module to Characterize Antimicrobial Compounds Using an Interdisciplinary, Biophysical Approach

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Kaushik, Karishma; Kessel, Ashley; Ratnayeke, Nalin

    2015-03-01

    We have developed a hands-on, experimental module that combines biology experiments with a physics-based analytical model to characterize antimicrobial compounds. To understand antibiotic resistance, participants perform a disc diffusion assay to test the antimicrobial activity of different compounds, then apply a diffusion-based analytical model to gain insights into the behavior of the active antimicrobial component. In our experience, this module was robust, reproducible, and cost-effective, suggesting that it could be implemented in diverse settings such as undergraduate research, STEM camps, school programs, and laboratory training workshops. This module addresses the paucity of structured training or education programs that integrate diverse scientific fields by providing valuable, interdisciplinary research experience in science outreach and education initiatives. Its low cost requirements make it especially suitable for use in resource-limited settings.

  13. Hypothalamic neuropeptides and the regulation of appetite.

    PubMed

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  14. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution.

    PubMed

    Jeong, Suyeong; Kim, Jun-Young; Choi, Hyunmo; Kim, Hyunmin; Lee, Ilhwan; Soh, Moon-Soo; Nam, Hong Gil; Chang, Young-Tae; Lim, Pyung Ok; Woo, Hye Ryun

    2015-04-01

    Plant roots anchor the plant to the soil and absorb water and nutrients for growth. Understanding the molecular mechanisms regulating root development is essential for improving plant survival and agricultural productivity. Extensive molecular genetic studies have provided important information on crucial components for the root development control over the last few decades. However, it is becoming difficult to identify new regulatory components in root development due to the functional redundancy and lethality of genes involved in root development. In this study, we performed a chemical genetic screen to identify novel synthetic compounds that regulate root development in Arabidopsis seedlings. The screen yielded a root growth inhibitor designated as 'rootin', which inhibited Arabidopsis root development by modulating cell division and elongation, but did not significantly affect shoot development. Transcript analysis of phytohormone marker genes revealed that rootin preferentially altered the expression of auxin-regulated genes. Furthermore, rootin reduced the accumulation of PIN1, PIN3, and PIN7 proteins, and affected the auxin distribution in roots, which consequently may lead to the observed defects in root development. Our results suggest that rootin could be utilized to unravel the mechanisms underlying root development and to investigate dynamic changes in PIN-mediated auxin distribution. PMID:25711819

  15. Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting.

    PubMed

    Duan, Jingjing; Chen, Sheng; Vasileff, Anthony; Qiao, Shi Zhang

    2016-09-27

    As substitutes for precious cathodic Pt/C and anodic IrO2 in electrolytic water splitting cells, a bifunctional catalyst electrode (Fe- and O-doped Co2P grown on nickel foam) has been fabricated by manipulating the cations and anions of metal compounds. The modified catalyst electrode exhibits both superior HER and OER performances with high activity, favorable kinetics, and outstanding durability. The overall ability toward water splitting is especially extraordinary, requiring a small overpotential of 333.5 mV to gain a 10 mA cm(-2) current density. A study on the electrocatalytic mechanism reveals that the atomic modulation between cation and anion plays an important role in optimizing the electrocatalytic activity, which greatly expands the active sites in the electrocatalyst. Further, the three-dimensional conductive porous network is highly advantageous for the exposure of active species, the transport of bubble products, and the transfer of electrons and charges, which substantially boosts reaction kinetics and structure stability. PMID:27622580

  16. Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting.

    PubMed

    Duan, Jingjing; Chen, Sheng; Vasileff, Anthony; Qiao, Shi Zhang

    2016-09-27

    As substitutes for precious cathodic Pt/C and anodic IrO2 in electrolytic water splitting cells, a bifunctional catalyst electrode (Fe- and O-doped Co2P grown on nickel foam) has been fabricated by manipulating the cations and anions of metal compounds. The modified catalyst electrode exhibits both superior HER and OER performances with high activity, favorable kinetics, and outstanding durability. The overall ability toward water splitting is especially extraordinary, requiring a small overpotential of 333.5 mV to gain a 10 mA cm(-2) current density. A study on the electrocatalytic mechanism reveals that the atomic modulation between cation and anion plays an important role in optimizing the electrocatalytic activity, which greatly expands the active sites in the electrocatalyst. Further, the three-dimensional conductive porous network is highly advantageous for the exposure of active species, the transport of bubble products, and the transfer of electrons and charges, which substantially boosts reaction kinetics and structure stability.

  17. Naphthoquinones and Bioactive Compounds from Tobacco as Modulators of Neuronal Nitric Oxide Synthase Activity

    PubMed Central

    Venkatakrishnan, Priya; Gairola, C. Gary; Castagnoli, Neal; Miller, R. Timothy

    2009-01-01

    Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2, 3, 6-trimethyl-1, 4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1, 4-naphthoquinone (menadione) as a control. Up to 31μM, both TMN and menadione stimulated nNOS-catalyzed L-citrulline production. However, at higher concentrations of TMN (62.5-500 μM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5-500 μM), the loss of stimulation surpassed that of the control (78 ± 0.01%), indicating a complete inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified. PMID:19367663

  18. Brain neuropeptides in gastric mucosal protection.

    PubMed

    Gyires, Klára; Zádori, Zoltán S

    2014-12-01

    The centrally induced gastroprotective effect of neuropeptides has been intensively studied. Besides many similarities, however, differences can also be observed in their gastroprotective actions. The gastroprotective dose-response curve proved to be either sigmoid, or bell-shaped. Additional gastrointestinal effects of neuropeptides can contribute to their mucosal protective effect. Part of the neuropeptides induces gastroprotection by peripheral administration as well. Besides vagal nerve the sympathetic nervous system may also be involved in conveying the central effect to the periphery. Better understanding of the complex mechanism of the maintenance of gastric mucosal integrity may result in the development of new strategy to enhance gastric mucosal resistance against injury.

  19. Neuropeptides in learning and memory.

    PubMed

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to

  20. Tick salivary compounds: their role in modulation of host defences and pathogen transmission

    PubMed Central

    Kazimírová, Mária; Štibrániová, Iveta

    2013-01-01

    Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases. PMID

  1. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    PubMed Central

    Dunn, Elyse A.; Cook, Gregory M.; Heikal, Adam

    2015-01-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, “Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins” [2]. PMID:26862571

  2. Identification of a platyhelminth neuropeptide receptor.

    PubMed

    Omar, Hanan H; Humphries, Judith E; Larsen, Martha J; Kubiak, Teresa M; Geary, Timothy G; Maule, Aaron G; Kimber, Michael J; Day, Tim A

    2007-06-01

    We report the characterisation of the first neuropeptide receptor from the phylum Platyhelminthes, an early-diverging phylum which includes a number of important human and veterinary parasites. The G protein-coupled receptor (GPCR) was identified from the model flatworm Girardia tigrina (Tricladida: Dugesiidae) based on the presence of motifs widely conserved amongst GPCRs. In two different assays utilising heterologous expression in Chinese hamster ovary cells, the Girardia GPCR was most potently activated by neuropeptides from the FMRFamide-like peptide class. The most potent platyhelminth neuropeptide in both assays was GYIRFamide, a FMRFamide-like peptide known to be present in G. tigrina. There was no activation by neuropeptide Fs, another class of flatworm neuropeptides. Also active were FMRFamide-like peptides derived from other phyla but not known to be present in any platyhelminth. Most potent among these were nematode neuropeptides encoded by the Caenorhabditis elegans flp-1 gene which share a PNFLRFamide carboxy terminal motif. The ability of nematode peptides to stimulate a platyhelminth receptor demonstrates a degree of structural conservation between FMRFamide-like peptide receptors from these two distinct, distant phyla which contain parasitic worms.

  3. Frequency Effects in the Processing of Italian Nominal Compounds: Modulation of Headedness and Semantic Transparency

    ERIC Educational Resources Information Center

    Marelli, Marco; Luzzatti, Claudio

    2012-01-01

    There is a general debate as to whether constituent representations are accessed in compound processing. The present study addresses this issue, exploiting the properties of Italian compounds to test the role of headedness and semantic transparency in constituent access. In a first experiment, a lexical decision task was run on nominal compounds.…

  4. Neuropeptide Y Y1 receptor effects on pulpal nociceptors.

    PubMed

    Gibbs, J L; Hargreaves, K M

    2008-10-01

    Neuropeptide Y (NPY) is an important modulatory neuropeptide that regulates several physiological systems, including the activity of sensory neurons. We evaluated whether activation of the NPY Y1 receptor could modulate the activity of capsaicin-sensitive nociceptors in trigeminal ganglia and dental pulp. We tested this hypothesis by measuring capsaicin-stimulated calcitonin gene-related peptide release (CGRP) as a measure of nociceptor activity. Capsaicin-evoked CGRP release was inhibited by 50% (p < 0.05) in trigeminal ganglia and by 26% (p < 0.05) in dental pulp when tissues were pre-treated with [Leu(31),Pro(34)]NPY. The Y1 receptor was found to co-localize with the capsaicin receptor TRPV1 in trigeminal ganglia. These results demonstrate that activation of the Y1 receptor results in the inhibition of the activity of capsaicin-sensitive nociceptors in the trigeminal ganglia and dental pulp. These findings are relevant to the physiological modulation of dental nociceptors by endogenous NPY and demonstrate an important novel analgesic target for the treatment of dental pain.

  5. NeuroPID: a classifier of neuropeptide precursors.

    PubMed

    Karsenty, Solange; Rappoport, Nadav; Ofer, Dan; Zair, Adva; Linial, Michal

    2014-07-01

    Neuropeptides (NPs) are short secreted peptides produced in neurons. NPs act by activating signaling cascades governing broad functions such as metabolism, sensation and behavior throughout the animal kingdom. NPs are the products of multistep processing of longer proteins, the NP precursors (NPPs). We present NeuroPID (Neuropeptide Precursor Identifier), an online machine-learning tool that identifies metazoan NPPs. NeuroPID was trained on 1418 NPPs annotated as such by UniProtKB. A large number of sequence-based features were extracted for each sequence with the goal of capturing the biophysical and informational-statistical properties that distinguish NPPs from other proteins. Training several machine-learning models, including support vector machines and ensemble decision trees, led to high accuracy (89-94%) and precision (90-93%) in cross-validation tests. For inputs of thousands of unseen sequences, the tool provides a ranked list of high quality predictions based on the results of four machine-learning classifiers. The output reveals many uncharacterized NPPs and secreted cell modulators that are rich in potential cleavage sites. NeuroPID is a discovery and a prediction tool that can be used to identify NPPs from unannotated transcriptomes and mass spectrometry experiments. NeuroPID predicted sequences are attractive targets for investigating behavior, physiology and cell modulation. The NeuroPID web tool is available at http:// neuropid.cs.huji.ac.il.

  6. Modulation of tight junctions does not predict oral absorption of hydrophilic compounds: use of Caco-2 and Calu-3 cells.

    PubMed

    Kamath, Amrita V; Morrison, Richard A; Mathias, Neil R; Dando, Sandra A; Marino, Anthony M; Chong, Saeho

    2007-08-01

    Permeability estimates using Caco-2 cells do not accurately predict the absorption of hydrophilic drugs that are primarily absorbed via the paracellular pathway. The objective of this study was to investigate whether modulation of tight junctions would help differentiation of paracellularly absorbed compounds. Tight junctions in Caco-2 cell monolayers were manipulated using calcium depletion approaches to decrease the transepithelial electrical resistance (TEER) of the monolayers, and permeability of hydrophilic compounds were measured under these conditions. Permeability of these compounds were also measured in Calu-3 cells, which have tighter junctions than Caco-2 cells. Calcium depletion loosened the tight junctions of Caco-2 cells to varying levels as measured by the decrease in TEER values of the monolayers. While the absolute permeability of all the model compounds increased as the tight junctions were loosened, the ratios of their permeability relative to mannitol permeability were similar. The permeability of these compounds in the tighter Calu-3 cells were also found to be similar to each other. Altering the tight junctions of Caco-2 cells to obtain leakier cell monolayers, or using a cell line with tighter junctions like Calu-3 cells, did not improve differentiation between well absorbed and poorly absorbed hydrophilic drugs. Mere manipulation of the tight junctions to increase or decrease transepithelial electrical resistance does not appear to be a viable approach to predict human absorption for hydrophilic compounds that are primarily absorbed via the paracellular pathway.

  7. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  8. Modulation of neuropeptide Y and Y1 receptor expression in the amygdala by fluctuations in the brain content of neuroactive steroids during ethanol drinking discontinuation in Y1R/LacZ transgenic mice.

    PubMed

    Eva, Carola; Mele, Paolo; Collura, Devis; Nai, Antonella; Pisu, Maria Giuseppina; Serra, Mariangela; Biggio, Giovanni

    2008-02-01

    Previous studies have shown that GABAergic neuroactive steroids increase Y1 receptor (Y1R) gene expression in the amygdala of Y1R/LacZ transgenic mice, harbouring the murine Y1R gene promoter linked to a LacZ reporter gene. As ethanol is known to increase GABAergic neuroactive steroids, we investigated the relationship between fluctuations in the brain content of neuroactive steroids induced by chronic voluntary ethanol consumption or ethanol discontinuation and both the level of neuropeptide Y (NPY) immunoreactivity and Y1R gene expression in the amygdala of Y1R/LacZ transgenic mice. Ethanol discontinuation (48 h) after voluntary consumption of consecutive solutions of 3%, 6%, 10% and 20% (v/v) ethanol over 4 weeks produced an anxiety-like behaviour as measured by elevated plus maze. Voluntary ethanol intake increased the cerebrocortical concentration of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) that returned to control level 48 h after discontinuation of ethanol intake. Ethanol discontinuation significantly decreased NPY immunoreactivity and concomitantly increased Y1R/LacZ transgene expression in the amygdala, whereas chronic ethanol intake failed to affect these parameters. The 5alpha-reductase inhibitor finasteride prevented both the increase in the cerebrocortical concentration of 3alpha,5alpha-TH PROG apparent after 4 weeks of ethanol intake and the changes in NPY immunoreactivity and transgene expression induced by ethanol discontinuation. Data suggest that 3alpha,5alpha-TH PROG plays an important role in the changes in NPY-Y1R signalling in the amygdala during ethanol discontinuation.

  9. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying.

    PubMed

    Zatylny-Gaudin, Céline; Cornet, Valérie; Leduc, Alexandre; Zanuttini, Bruno; Corre, Erwan; Le Corguillé, Gildas; Bernay, Benoît; Garderes, Johan; Kraut, Alexandra; Couté, Yohan; Henry, Joël

    2016-01-01

    Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.

  10. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

    PubMed Central

    2016-01-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  11. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    PubMed

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  12. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  13. Novel Platinum(II) compounds modulate insulin-degrading enzyme activity and induce cell death in neuroblastoma cells.

    PubMed

    Tundo, Grazia R; Sbardella, Diego; De Pascali, Sandra A; Ciaccio, Chiara; Coletta, Massimo; Fanizzi, Francesco P; Marini, Stefano

    2015-01-01

    The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i  = 0.95 ± 0.21 μM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 μM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 μM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.

  14. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  15. Vitamin D modulation of the activity of estrogenic compounds in bone cells in vitro and in vivo.

    PubMed

    Somjen, Dalia

    2007-01-01

    Vitamin D analogs modulate different organs, including modulation of energy metabolism, through the induction of creatine kinase (CK) activity. Skeletal organs from vitamin D-depleted rats showed lower constituent CK than those from vitamin D-replete rats. Moreover, estradiol-17beta (E2) or dihydrotestosterone (DHT), which increased CK in organs from intact female or male rats, respectively, stimulated much less CK in vitamin D-depleted rats. Treatment of intact female rats with noncalcemic vitamin D analogs significantly upregulated E2- and DHT-induced CKresponse. These analogs upregulated the CK response to selective estrogen receptor modulators (SERMs) in organs from intact or ovariectomized (Ovx) female rats but abolished SERMs' inhibitory effect on E2-induced CK. These analogs significantly increased estradiol receptor alpha (ERalpha) protein in skeletal organs as well as histomorphological and biochemical changes due to this treatment followed by E2 or DHT. The analogs alone markedly altered the growth plate and the trabeculae and increased trabecular bone volume (%TB V) and trabecular width. The addition of E2 or DHT to this treatment restored all parameters as well as increased %TBV and cell proliferation. Treatment of Ovx female rats with JK 1624 F2-2 (JKF) decreased growth-plate width and increased %TB V, whereas QW1624 F2-2 (QW) restored growth-plate width and %TB V. Treatment of E2 with JKF restored %TBV and growth-plate width, whereas E2 with QW restored all parameters, including cortical width. There was also upregulation of the response of CK to E2 in both combined treatments. Our human-derived osteoblast (hObs)-like cell cultures respond to estrogenic compounds, and pretreating them with JKF upregulated the CK response to E2, raloxifene (Ral), and some phytoestrogens. ERalpha and ERbeta proteins, as well as mRNA, were modulated by CB 1093 (CB) and JKF. JKF increased specific nuclear E2 binding in female hObs but inhibited specific membranal E2

  16. Neuropeptide Y: A stressful review

    PubMed Central

    Reichmann, Florian; Holzer, Peter

    2016-01-01

    Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptor, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target. PMID:26441327

  17. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  18. Character Decomposition and Transposition Processes in Chinese Compound Words Modulates Attentional Blink

    PubMed Central

    Cao, Hongwen; Gao, Min; Yan, Hongmei

    2016-01-01

    The attentional blink (AB) is the phenomenon in which the identification of the second of two targets (T2) is attenuated if it is presented less than 500 ms after the first target (T1). Although the AB is eliminated in canonical word conditions, it remains unclear whether the character order in compound words affects the magnitude of the AB. Morpheme decomposition and transposition of Chinese two-character compound words can provide an effective means to examine AB priming and to assess combinations of the component representations inherent to visual word identification. In the present study, we examined the processing of consecutive targets in a rapid serial visual presentation (RSVP) paradigm using Chinese two-character compound words in which the two characters were transposed to form meaningful words or meaningless combinations (reversible, transposed, or canonical words). We found that when two Chinese characters that form a compound word, regardless of their order, are presented in an RSVP sequence, the likelihood of an AB for the second character is greatly reduced or eliminated compared to when the two characters constitute separate words rather than a compound word. Moreover, the order of the report for the two characters is more likely to be reversed when the normal order of the two characters in a compound word is reversed, especially when the interval between the presentation of the two characters is extremely short. These findings are more consistent with the cognitive strategy hypothesis than the resource-limited hypothesis during character decomposition and transposition of Chinese two-character compound words. These results suggest that compound characters are perceived as a unit, rather than two separate words. The data further suggest that readers could easily understand the text with character transpositions in compound words during Chinese reading. PMID:27379003

  19. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures. PMID:25963417

  20. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures.

  1. ACTP: A webserver for predicting potential targets and relevant pathways of autophagy-modulating compounds

    PubMed Central

    Ouyang, Liang; Cai, Haoyang; Liu, Bo

    2016-01-01

    Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420

  2. The immune effects of neuropeptides.

    PubMed

    Berczi, I; Chalmers, I M; Nagy, E; Warrington, R J

    1996-05-01

    Current evidence indicates that the neuroendocrine system is the highest regulator of immune/inflammatory reactions. Prolactin and growth hormone stimulate the production of leukocytes, including lymphocytes, and maintain immunocompetence. The hypothalamus-pituitary-adrenal axis constitutes the most powerful circuit regulating the immune system. The neuropeptides constituting this axis, namely corticotrophin releasing factor, adrenocorticotrophic hormone, alpha-melanocyte stimulating hormone, and beta-endorphin are powerful immunoregulators, which have a direct regulatory effect on lymphoid cells, regulating immune reactions by the stimulation of immunoregulatory hormones (glucocorticoids) and also by acting on the central nervous system which in turn generates immunoregulatory nerve impulses. Peptidergic nerves are major regulators of the inflammatory response. Substance P and calcitonin gene-related peptide are pro-inflammatory mediators and somatostatin is anti-inflammatory. The neuroendocrine regulation of the inflammatory response is of major significance from the point of view of immune homeostasis. Malfunction of this circuit leads to disease and often is life-threatening. The immune system emits signals towards the neuroendocrine system by cytokine mediators which reach significant blood levels (cytokine-hormones) during systemic immune/inflammatory reactions. Interleukin-1, -6, and TNF-alpha are the major cytokine hormones mediating the acute phase response. These cytokines induce profound neuroendocrine and metabolic changes by interacting with the central nervous system and with many other organs and tissues in the body. Corticotrophin releasing factor functions under these conditions as a major co-ordinator of the response and is responsible for activating the ACTH-adrenal axis for regulating fever and for other CNS effects leading to a sympathetic outflow. Increased ACTH secretion leads to glucocorticoid production. alpha-melanocyte stimulating hormone

  3. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases.

    PubMed

    Ohe, Kenji; Hagiwara, Masatoshi

    2015-04-17

    Alternative splicing is a critical step where a limited number of human genes generate a complex and diverse proteome. Various diseases, including inherited diseases with abnormalities in the "genome code," have been found to result in an aberrant mis-spliced "transcript code" with correlation to the resulting phenotype. Chemical compound-based and nucleic acid-based strategies are trying to target this mis-spliced "transcript code". We will briefly mention about how to obtain splicing-modifying-compounds by high-throughput screening and overview of what is known about compounds that modify splicing pathways. The main focus will be on RNA-binding protein kinase inhibitors. In the main text, we will refer to diseases where splicing-modifying-compounds have been intensively investigated, with comparison to nucleic acid-based strategies. The information on their involvement in mis-splicing as well as nonsplicing events will be helpful in finding better compounds with less off-target effects for future implications in mis-splicing therapy.

  4. Neuropeptides: Keeping The Balance Between Pathogen Immunity and Immune Tolerance

    PubMed Central

    Gonzalez-Rey, Elena; Ganea, Doina; Delgado, Mario

    2010-01-01

    Various neuropeptides have emerged recently as potent immunomodulatory factors with potential for their therapeutic use on immune disorders. Here we highlight the most recent data relevant in the field and we offer our opinion how neuropeptide therapy might impact clinical immune diseases, and the challenges in this field that must be overcome before achieving medical progress. We also review recent reports describing the antimicrobial effects showed by some neuropeptides and the therapeutic, physiological and evolutionary consequences of this new finding. Finally, we discuss how a physiologically functional neuropeptide system contributes to general health and how neuropeptides educate our immune system to be tolerant. PMID:20399708

  5. The neuropeptide bursicon acts in cuticle metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bursicon is a heterodimeric neuropeptide formed of bursicon a (burs a) and bursicon B (burs B) that controls cuticle tanning and wing expansion in insects. Burs a-a and burs B-B homodimers are also formed; they act via an unknown receptor to induce expression of prophylactic immune and stress genes ...

  6. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  7. Compound cavity theory of resonant phase modulation in laser self-mixing ultrasonic vibration measurement

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei

    2016-07-01

    The theoretical basis of self-mixing interference (SMI) employing a resonant phase modulator is explored to prove its tempting advantages. The adopted method induces a pure phase carrier without increasing system complexity. A simple time-domain signal process is used to estimate modulation depth and precisely track vibrating trail, which promises the flexibility of measuring ultrasonic vibration regardless of the constraint of the Bessel functions. The broad bandwidth, low speckle noise, compact, safe, and easy operating SMI system obtains the best resolution of a poor reflection environment. Numerical simulation discusses the spectrum broadening and errors due to multiple reflections. Experimental results agree with theory coherently and are compared with laser Doppler vibration meter showing a dynamical error better than 20 nm in ultrasonic vibration measurement.

  8. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  9. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough. PMID:1611233

  10. The evolution and diversity of SALMFamide neuropeptides.

    PubMed

    Elphick, Maurice R; Achhala, Sufyan; Martynyuk, Natalia

    2013-01-01

    The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide "cocktails" derived from the same precursor protein.

  11. The dual function of nitrite under stomach conditions is modulated by reducing compounds.

    PubMed

    Volk, J; Gorelik, S; Granit, R; Kohen, R; Kanner, J

    2009-09-01

    Salivary nitrite plays a role in the lipid peroxidation process of muscle tissue in simulated gastric fluid. The objectives of our study were to elucidate the fate of nitrite in the presence of reducing compounds and to evaluate its effect on lipid peroxidation during digestion. Nitrite at pH 3 (possibly NO(2.), not NO.) can oxidize beta-carotene, but the addition of reducing compounds, ascorbic acid or polyphenols, alters its effect. Ascorbic acid alone promoted the formation of NO. from nitrite only up to pH 3, but the addition of iron ions facilitated the formation of NO. up to pH 5.5. NO prevented membranal lipid peroxidation under stomach conditions. Nitrite, only in the presence of reducing compounds, achieved the same goal but at much higher concentrations. Addition of polyphenols to nitrite synergistically improved its antioxidant effect. Therefore, to promote NO. production and to achieve better control of the lipid peroxidation process in the stomach, a nitrite-rich meal should be consumed simultaneously with food rich in polyphenols. PMID:19375499

  12. The dual function of nitrite under stomach conditions is modulated by reducing compounds.

    PubMed

    Volk, J; Gorelik, S; Granit, R; Kohen, R; Kanner, J

    2009-09-01

    Salivary nitrite plays a role in the lipid peroxidation process of muscle tissue in simulated gastric fluid. The objectives of our study were to elucidate the fate of nitrite in the presence of reducing compounds and to evaluate its effect on lipid peroxidation during digestion. Nitrite at pH 3 (possibly NO(2.), not NO.) can oxidize beta-carotene, but the addition of reducing compounds, ascorbic acid or polyphenols, alters its effect. Ascorbic acid alone promoted the formation of NO. from nitrite only up to pH 3, but the addition of iron ions facilitated the formation of NO. up to pH 5.5. NO prevented membranal lipid peroxidation under stomach conditions. Nitrite, only in the presence of reducing compounds, achieved the same goal but at much higher concentrations. Addition of polyphenols to nitrite synergistically improved its antioxidant effect. Therefore, to promote NO. production and to achieve better control of the lipid peroxidation process in the stomach, a nitrite-rich meal should be consumed simultaneously with food rich in polyphenols.

  13. A selective CAP2b neuropeptide antagonist for an expressed receptor from the red flour beetle, Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diapause hormone (DH) is an insect neuropeptide that is highly effective in terminating the overwintering pupal diapause in members of the Helicoverpa/Heliothis complex of agricultural pests, thus DH and related compounds have promise as tools for pest management. To augment our development of effec...

  14. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.

    PubMed

    Domínguez-Avila, J Abraham; González-Aguilar, Gustavo A; Alvarez-Parrilla, Emilio; de la Rosa, Laura A

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  15. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update

    PubMed Central

    Peri, Francesco; Calabrese, Valentina

    2014-01-01

    Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E-MD-2-TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on non-classical TLR4 ligands with a chemical structure different from lipid A. PMID:24188011

  16. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    PubMed Central

    Domínguez-Avila, J. Abraham; González-Aguilar, Gustavo A.; Alvarez-Parrilla, Emilio; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  17. A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice.

    PubMed

    Marchand, Stéphane; Betourne, Alexandre; Marty, Virginie; Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel; Zajac, Jean-Marie; Frances, Bernard

    2006-05-01

    Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of i.c.v. injections of 1DMe (D-Tyr1(NMe)Phe3]NPFF), a stable agonist of the neuropeptide FF system, on the acquisition of place conditioning by morphine or alcohol (ethanol). Morphine (10 mg/kg, i.p.) or ethanol (2 g/kg, i.p.) induced a significant place preference. Injection of 1DMe (1-20 nmol), given 10 min before the i.p. injection of the reinforcing drug during conditioning, inhibited the rewarding effect of morphine but had no effect on the rewarding effect of ethanol. However, a single injection of 1DMe given just before place preference testing was unable to inhibit the rewarding effects of morphine. By itself, 1DMe was inactive but an aversive effect of this agonist could be evidenced if the experimental procedure was biased. These results suggest that neuropeptide FF, injected during conditioning, should influence the development of rewarding effects of morphine and reinforce the hypothesis of strong inhibitory interactions between neuropeptide FF and opioids.

  18. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents.

    PubMed

    Gilchrist, John; Dutton, Stacey; Diaz-Bustamante, Marcelo; McPherson, Annie; Olivares, Nicolas; Kalia, Jeet; Escayg, Andrew; Bosmans, Frank

    2014-05-16

    Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure-activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects. PMID:24635129

  19. Nav1.1 Modulation by a Novel Triazole Compound Attenuates Epileptic Seizures in Rodents

    PubMed Central

    2015-01-01

    Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure–activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects. PMID:24635129

  20. South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy

    PubMed Central

    Prasad, N. Rajendra; Muthusamy, Ganesan; Shanmugam, Mohana; Ambudkar, Suresh V.

    2016-01-01

    Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells. PMID:26959063

  1. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    PubMed

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. PMID:27451159

  2. Pituitary adenylate cyclase-activating polypeptide-like compounds could modulate the activity of coelomocytes in the earthworm.

    PubMed

    Somogyi, Ildiko; Boros, Akos; Engelmann, Peter; Varhalmi, Eszter; Nemeth, Jozsef; Lubics, Andrea; Tamas, Andrea; Kiss, Peter; Reglodi, Dora; Pollak, Edit; Molnar, Laszlo

    2009-04-01

    By means of radioimmunoassay, we studied the concentration of pituitary adenylate cyclase-activating polypeptide (PACAP)-like proteins in intact and regenerating earthworms. Transection of animals increased the concentration of PACAP-like compounds in coelomocytes, and a decreasing rostrocaudal gradient was detected in the regenerating animals. Western blot analysis revealed a range of PAC1-receptor proteins with molecular weights from 40 to 80 kDa. Electron microscopic immunocytochemistry showed that PAC1 receptors were located on distinct sets of coelomocytes (mainly on amebocytes and on some granulocytes). Based on our results we hypothesize a link between PACAP and coelomocytes, suggesting that PACAP modulates the function of amebocytes and certain granulocytes that play a role in tissue remodeling of regenerating earthworms. PMID:19456404

  3. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions. PMID:27017356

  4. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  5. Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Wheeler, R.

    Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or

  6. The Role of Neuropeptides in Suicidal Behavior: A Systematic Review

    PubMed Central

    Pompili, Maurizio; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper. PMID:23986909

  7. The role of neuropeptides in suicidal behavior: a systematic review.

    PubMed

    Serafini, Gianluca; Pompili, Maurizio; Lindqvist, Daniel; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  8. Antidigoxin antiserum prevents endogenous digitalis-like compound-mediated reperfusion injury via modulating sodium pump isoform gene expression.

    PubMed

    Wang, He-Gui; Chu, Yue-Feng; Zou, Jian-Gang; Ke, Yong-Sheng

    2010-01-01

    Endogenous digitalis-like compound (EDLC) is an endogenous ligand of the digitalis receptor and can remarkably inhibit Na+/K+-ATPase activity. Antidigoxin antiserum (ADA), a selective EDLC antagonist, may lessen myocardial reperfusion injury; however, the molecular mechanisms underlying the effect remain unclear. Therefore, this study investigated whether ADA may prevent myocardial reperfusion injury and modulate gene expression of sodium pump alpha isoforms. Cardiac function was examined in isolated rat hearts subjected to ischemia and reperfusion (I/R). The infarct size, EDLC level, Na+/K+-ATPase activity, and the levels of mRNA for sodium pump alpha isoforms were measured in vivo I/R rat hearts in the presence or absence of ADA. It was found that ADA significantly improved the recovery of cardiac function, decreased infarct size, decreased EDLC level, and recovered Na+/K+-ATPase activity in I/R hearts. Further studies showed that sodium pump alpha1, alpha2, and alpha3 isoform mRNA levels were significantly reduced in I/R hearts, and pretreatment with ADA induced a large increase in the mRNA levels. These results indicate that EDLC may participate in depressing Na+/K+-ATPase activity and sodium pump alpha isoform gene expression in I/R heart. It is suggested that treatment with ADA may prevent EDLC-mediated reperfusion injury via modulating sodium pump isoform gene expression. PMID:20130737

  9. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    PubMed

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  10. Identification of a new member of PBAN family of neuropeptides from the fire ant, Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. Pyrokinin/Pheromone Biosynthesis Activating Neuropeptide (PBAN) is a major neuropeptide family, chara...

  11. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities.

  12. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    PubMed

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  13. Neuropeptides in the Gonads: From Evolution to Pharmacology

    PubMed Central

    McGuire, Nicolette L.; Bentley, George E.

    2010-01-01

    Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meager. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH). Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology. PMID:21607065

  14. Effects of neuropeptide FF and related peptides on the antinociceptive activities of VD-hemopressin(α) in naive and cannabinoid-tolerant mice.

    PubMed

    Pan, Jia-Xin; Wang, Zi-Long; Li, Ning; Zhang, Nan; Wang, Pei; Tang, Hong-Hai; Zhang, Ting; Yu, Hong-Ping; Zhang, Run; Zheng, Ting; Fang, Quan; Wang, Rui

    2015-11-15

    Neuropeptide FF (NPFF) system has recently been reported to modulate cannabinoid-induced antinociception. The aim of the present study was to further investigate the roles of NPFF system in the antinociceptive effects induced by intracerebroventricular (i.c.v.) administration of mouse VD-hemopressin(α), a novel endogenous agonist of cannabinoid CB1 receptor, in naive and VD-hemopressin(α)-tolerant mice. The effects of NPFF system on the antinociception induced by VD-hemopressin(α) were investigated in the radiant heat tail-flick test in naive mice and VD-hemopressin(α)-tolerant mice. The cannabinoid-tolerant mice were produced by given daily injections of VD-hemopressin(α) (20 nmol, i.c.v.) for 5 days and the antinociception was measured on day 6. In naive mice, intracerebroventricular injection of NPFF dose-dependently attenuated central analgesia of VD-hemopressin(α). In contrast, neuropeptide VF (NPVF) and D.NP(N-Me)AFLFQPQRF-NH2 (dNPA), two highly selective agonists for Neuropeptide FF1 and Neuropeptide FF2 receptors, enhanced VD-hemopressin(α)-induced antinociception in a dose-dependent manner. In addition, the VD-hemopressin(α)-modulating activities of NPFF and related peptides were antagonized by the Neuropeptide FF receptors selective antagonist 1-adamantanecarbonyl-RF-NH2 (RF9). In VD-hemopressin(α)-tolerant mice, NPFF failed to modify VD-hemopressin(α)-induced antinociception. However, both neuropeptide VF and dNPA dose-dependently potentiated the antinociception of VD-hemopressin(α) and these cannabinoid-potentiating effects were reduced by RF9. The present works support the cannabinoid-modulating character of NPFF system in naive and cannabinoid-tolerant mice. In addition, the data suggest that a chronic cannabinoid treatment modifies the pharmacological profiles of NPFF, but not the cannabinoid-potentiating effects of neuropeptide VF and dNPA.

  15. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been

  16. Modulation of microRNA expression by volatile organic compounds in mouse lung.

    PubMed

    Wang, Fan; Li, Chonglei; Liu, Wei; Jin, Yihe

    2014-06-01

    Volatile organic compounds (VOCs) are one of main pollutants indoors. Exposure to VOCs is associated with cancer, asthma disease, and multiple chemical allergies. Despite the adverse health effects of VOCs, the molecular mechanisms underlying VOCs-induced disease remain largely unknown. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, may influence cellular disease state. To investigate whether lung miRNA expression profiles in mice are modified by VOCs mixture exposure, 44 male Kunming mice were exposed in 4 similar static chambers, 0 (control) and 3 different doses of VOCs mixture (groups 1-3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 3.0 + 3.3 + 6.0 + 6.0 mg/m(3) , 5.0 + 5.5 + 10.0 + 10.0 mg/m(3) , 10.0 + 11.0 + 20.0 + 20.0 mg/m(3) , respectively, which corresponded to 30, 50, and 100 times of indoor air quality standard in China, after exposure to 2 weeks (2 h/day, 5 days/week). Small RNAs in lung and protein isolated from bronchoalveolar lavage fluid (BALF) were collected and analyzed for miRNA expression using microarray analysis and for interleukin-8 (IL-8) protein levels by enzyme-linked immunosorbent assay, respectively. VOCs exposure altered the miRNA expression profiles in lung in mice. Specifically, 69 miRNAs were significantly differentially expressed in VOCs-exposed samples versus controls. Functional annotation analysis of the predicted miRNA transcript targets revealed that VOCs exposure potentially alters signaling pathways associated with cancer, chemokine signaling, Wnt signaling, neuroactive ligand-receptor interaction, and cell adhesion molecules. IL-8 isolated from BALF and nitric oxide synthase of lung increased significantly, whereas GSH of lung decreased significantly in mice exposed to VOCs. These results indicate that inhalation of VOCs alters miRNA patterns that regulate gene expression, potentially leading to the initiation of cancer and inflammatory

  17. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhi...

  18. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling.

    PubMed

    Mace, Thomas A; King, Samantha A; Ameen, Zeenath; Elnaggar, Omar; Young, Gregory; Riedl, Kenneth M; Schwartz, Steven J; Clinton, Steven K; Knobloch, Thomas J; Weghorst, Christopher M; Lesinski, Gregory B

    2014-09-01

    Bioactive phytochemicals from natural products, such as black raspberries (BRB; Rubus occidentalis), have direct anticancer properties on malignant cells in culture and in xenograft models. BRB components inhibit cancer progression in more complex rodent carcinogenesis models. Although mechanistic targets for BRB phytochemicals in cancer cells are beginning to emerge, the potential role in modulating host immune processes impacting cancer have not been systematically examined. We hypothesized that BRB contain compounds capable of eliciting potent immunomodulatory properties that impact cellular mediators relevant to chronic inflammation and tumor progression. We studied both an ethanol extract from black raspberries (BRB-E) containing a diverse mixture of phytochemicals and two abundant phytochemical metabolites of BRB produced upon ingestion (Cyanidin-3-Rutinoside, C3R; Quercitin-3-Rutinoside, Q3R). BRB-E inhibited proliferation, and viability of CD3/CD28 activated human CD4(+) and CD8(+) T lymphocytes. BRB-E also limited in vitro expansion of myeloid-derived suppressor cells (MDSC) and their suppressive capacity. Pre-treatment of immune cells with BRB-E attenuated IL-6-mediated phosphorylation of signal transducer and activator of transcription-3 (STAT3) and IL-2-induced STAT5 phosphorylation. In contrast, pre-treatment of immune cells with the C3R and Q3R metabolites inhibited MDSC expansion, IL-6-mediated STAT3 signaling, but not IL-2-induced STAT5 phosphorylation and were less potent inhibitors of T cell viability. Together these data indicate that BRB extracts and their physiologically relevant metabolites contain phytochemicals that affect immune processes relevant to carcinogenesis and immunotherapy. Furthermore, specific BRB components and their metabolites may be a source of lead compounds for drug development that exhibits targeted immunological outcomes or inhibition of specific STAT-regulated signaling pathways. PMID:24893859

  19. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling.

    PubMed

    Mace, Thomas A; King, Samantha A; Ameen, Zeenath; Elnaggar, Omar; Young, Gregory; Riedl, Kenneth M; Schwartz, Steven J; Clinton, Steven K; Knobloch, Thomas J; Weghorst, Christopher M; Lesinski, Gregory B

    2014-09-01

    Bioactive phytochemicals from natural products, such as black raspberries (BRB; Rubus occidentalis), have direct anticancer properties on malignant cells in culture and in xenograft models. BRB components inhibit cancer progression in more complex rodent carcinogenesis models. Although mechanistic targets for BRB phytochemicals in cancer cells are beginning to emerge, the potential role in modulating host immune processes impacting cancer have not been systematically examined. We hypothesized that BRB contain compounds capable of eliciting potent immunomodulatory properties that impact cellular mediators relevant to chronic inflammation and tumor progression. We studied both an ethanol extract from black raspberries (BRB-E) containing a diverse mixture of phytochemicals and two abundant phytochemical metabolites of BRB produced upon ingestion (Cyanidin-3-Rutinoside, C3R; Quercitin-3-Rutinoside, Q3R). BRB-E inhibited proliferation, and viability of CD3/CD28 activated human CD4(+) and CD8(+) T lymphocytes. BRB-E also limited in vitro expansion of myeloid-derived suppressor cells (MDSC) and their suppressive capacity. Pre-treatment of immune cells with BRB-E attenuated IL-6-mediated phosphorylation of signal transducer and activator of transcription-3 (STAT3) and IL-2-induced STAT5 phosphorylation. In contrast, pre-treatment of immune cells with the C3R and Q3R metabolites inhibited MDSC expansion, IL-6-mediated STAT3 signaling, but not IL-2-induced STAT5 phosphorylation and were less potent inhibitors of T cell viability. Together these data indicate that BRB extracts and their physiologically relevant metabolites contain phytochemicals that affect immune processes relevant to carcinogenesis and immunotherapy. Furthermore, specific BRB components and their metabolites may be a source of lead compounds for drug development that exhibits targeted immunological outcomes or inhibition of specific STAT-regulated signaling pathways.

  20. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    PubMed

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  1. Mimetic analogs of three insect neuropeptide classes for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs w...

  2. Mimetic analogs of pyrokinin neuropeptides for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs ...

  3. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution

    PubMed Central

    Semmens, Dean C.; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R.; Wurm, Yannick; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan. PMID:26865025

  4. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.

    PubMed

    Semmens, Dean C; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R; Wurm, Yannick; Elphick, Maurice R

    2016-02-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.

  5. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.

    PubMed

    Semmens, Dean C; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R; Wurm, Yannick; Elphick, Maurice R

    2016-02-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan. PMID:26865025

  6. Mini-review: the evolution of neuropeptide signaling.

    PubMed

    Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2012-08-10

    Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling.

  7. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities.

    PubMed

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    2013-06-01

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition and behavior are observed, the study of neuropeptides is particularly interesting since altered neuropeptides can function as biomarkers or as targets for new medication. In this article neuropeptides with relevance to AD are listed and their influence on cognitive and behavioral disturbances is discussed. Findings from human cerebrospinal fluid and brain tissue, and AD mouse models are described and related to the pathophysiology and symptomatology of the disease. In the past, clinical trials with neuropeptides have often failed due to insufficient delivery to the brain. Therefore, new strategies to target the brain with peptide drugs are also covered.

  8. Mini-review: the evolution of neuropeptide signaling.

    PubMed

    Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2012-08-10

    Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling. PMID:22726357

  9. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus.

    PubMed

    Howell, Owain W; Silva, Sharmalene; Scharfman, Helen E; Sosunov, Alexander A; Zaben, Malik; Shtaya, Anan; Shatya, Anan; McKhann, Guy; Herzog, Herbert; Laskowski, Alexandra; Gray, William P

    2007-04-01

    We have shown that neuropeptide Y (NPY) regulates neurogenesis in the normal dentate gyrus (DG) via Y(1) receptors (Howell, O.W., Scharfman, H.E., Herzog, H., Sundstrom, L.E., Beck-Sickinger, A. and Gray, W.P. (2003) Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86, 646-659; Howell, O.W., Doyle, K., Goodman, J.H., Scharfman, H.E., Herzog, H., Pringle, A., Beck-Sickinger, A.G. and Gray, W.P. (2005) Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 93, 560-570). This regulation may be relevant to epilepsy, because seizures increase both NPY expression and precursor cell proliferation in the DG. Therefore, the effects of NPY on DG precursors were evaluated in normal conditions and after status epilepticus. In addition, potentially distinct NPY-responsive precursors were identified, and an analysis performed not only of the DG, but also the caudal subventricular zone (cSVZ) and subcallosal zone (SCZ) where seizures modulate glial precursors. We show a proliferative effect of NPY on multipotent nestin cells expressing the stem cell marker Lewis-X from both the DG and the cSVZ/SCZ in vitro. We confirm an effect on proliferation in the cSVZ/SCZ of Y(1) receptor(-/-) mice and demonstrate a significant reduction in basal and seizure-induced proliferation in the DG of NPY(-/-) mice.

  10. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity.

  11. Neuropeptide Y effects on murine natural killer activity: changes with ageing and cAMP involvement.

    PubMed

    De la Fuente, M; Del Río, M; Víctor, V M; Medina, S

    2001-09-15

    Changes in the bidirectional interaction between the nervous and the immune systems have been proposed as a cause of ageing. Neuropeptides, such as neuropeptide Y (NPY), could show different effects on immune function with age. In the present work, we have studied the in vitro action of a wide range of NPY concentrations, i.e. from 10(-13) to 10(-7) M, on natural killer (NK) activity, a function which decreases with age. Spleen, axillary nodes, thymus and peritoneum leukocytes from mice of different ages: young (12+/-2 weeks), adult (24+/-2 weeks), mature (50+/-2 weeks) and old (72+/-2 weeks) were used. Stimulation by NPY of NK activity was observed in adult and mature animals in axillary nodes and thymus, and an inhibition in the spleen from young mice. The specificity of the NPY effect on cytotoxic activity was confirmed using a C-terminal fragment of NPY. Furthermore, cAMP levels in leukocytes were found to be decreased by NPY in adult mice, suggesting an involvement of this messenger system in the NK modulation by this neuropeptide.

  12. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity. PMID:26086271

  13. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission

    PubMed Central

    Mosqueiro, Thiago; de Lecea, Luis; Huerta, Ramon

    2014-01-01

    The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABAA inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABAA inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABAA can in principle work, there is not much plausibility due to the low probability of the presence of slow GABAA and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. PMID:25598695

  14. Neuropeptide Y and posttraumatic stress disorder

    PubMed Central

    Sah, R; Geracioti, TD

    2016-01-01

    Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential ‘resilience-to-stress’ factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target. PMID:22801411

  15. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  16. Aberrant changes of somatostatin and neuropeptide Y in brain of a genetic rat model for epilepsy: tremor rat.

    PubMed

    Xu, Xiaoxue; Guo, Feng; Cai, Xinze; Yang, Jun; Zhao, Jiuhan; Min, Dongyu; Wang, Qianhui; Hao, Liying; Cai, Jiqun

    2016-01-01

    Excessive excitation or loss of inhibitory neurotransmission has been closely related to epileptic activity. Somatostatin (SST) and Neuropeptide Y (NPY) are members of endogenous neuropeptides which are recognized as important modulator of classical neurotransmitter, distributed abundantly in mammalian central nervous system. Abnormal expression of these two neuropeptides evidenced in some epileptic models highlights the relevance of SST or NPY in the pathogenesis of epilepsy. The tremor rat (TRM) is a genetic epileptic animal model which can manifest tonic convulsions without any external stimuli. The present study aimed to investigate the distribution and expression of SST and NPY in TRM brains, including hippocampus, temporal lobe cortex and cerebellum. Our RT‑PCR data showed that up-regulated mRNA expression of SST and NPY was discovered in TRM hippocampus and temporal lobe cortex compared with control (Wistar) rats. The peptide levels of these neuropeptides in brain areas mentioned above were both apparently higher than that in normal Wistar rats as well. However, in cerebellums, neither SST nor NPY was significantly changed compared with control group. The immunohistochemical data showed that SST and NPY were widely present throughout CA1, CA3 and the hilus of hippocampus, the entorhinal cortex of temporal lobe cortex, as well as cerebellar Purkinje layer. In conclusion, our results discovered the aberrant changes of SST and NPY in several TRM brain regions, suggesting that the peptidergic system might be involved in TRM epileptiform activity. PMID:27685769

  17. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  18. Neuromodulatory function of neuropeptides in the normal CNS.

    PubMed

    Merighi, Adalberto; Salio, Chiara; Ferrini, Francesco; Lossi, Laura

    2011-12-01

    Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.

  19. NeuroPep: a comprehensive resource of neuropeptides.

    PubMed

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep

  20. NeuroPep: a comprehensive resource of neuropeptides

    PubMed Central

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep PMID:25931458

  1. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    NASA Astrophysics Data System (ADS)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  2. The adipokinetic neuropeptide of Mantodea. Sequence elucidation and evolutionary relationships.

    PubMed

    Gäde, G

    1991-03-01

    A neuropeptide with adipokinetic activity in Locusta migratoria and the mantid Empusa pennata, and hypertrehalosaemic activity in Periplaneta americana, was isolated by reversed-phase high performance liquid chromatography from corpora cardiaca of the mantids E. pennata and Sphodromantis sp. After brief enzymatic digestion by 5-oxoprolylpeptidase the primary structure of the peptide of each species was determined by pulsed-liquid phase sequencing employing Edman degradation. The C-terminus of both peptides was blocked, as indicated by the lack of digestion with carboxypeptidase A. The peptides of both species were identical: a blocked, uncharged octapeptide with the sequence L-Glu-Val-Asn-Phe-Thr-Pro-Asn-Trp-NH2. The peptide is now called mantid adipokinetic hormone (Emp-AKH). The synthetic peptide was chromatographically indistinguishable from the natural compound and increased blood lipids in locusts and blood carbohydrates in cockroaches when administered in low doses. The structural features clearly define the peptide as a novel member of the large AKH/RPCH-family of peptides. Seven amino-acid residues are at identical positions in Emp-AKH when compared with the adipokinetic hormone of a dragonfly (Lia-AKH) and the hypertrehalosaemic hormone I from the American cockroach (Pea-CAH-I). Evolutionary relationships to other insect orders are discussed.

  3. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens.

    PubMed

    Tanaka, Yoshiaki; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Noda, Hiroaki; Shinoda, Tetsuro

    2014-03-01

    The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information.

  4. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion.

  5. Neuropeptide Y functions as a neuroproliferative factor.

    PubMed

    Hansel, D E; Eipper, B A; Ronnett, G V

    2001-04-19

    Neuropeptide Y (NPY) has a number of functions in mammalian physiology. Here we identify a role for NPY in promoting proliferation of postnatal neuronal precursor cells. NPY is synthesized in the postnatal olfactory epithelium by sustentacular cells, previously proposed to function only in structural support. Mice with a targeted deletion of NPY contain half as many dividing olfactory neuronal precursor cells as do controls. Furthermore, NPY-deficient mice develop significantly fewer olfactory neurons by adulthood. NPY acts on multipotent neuronal precursor or basal cells to activate rapidly and transiently the extracellular signal-regulated kinase (ERK)1/2 subgroup of mitogen-activated protein kinases. The NPY Y1 receptor subtype appears to mediate this effect. The ability of NPY to induce neuronal precursor proliferation is mediated by protein kinase C (PKC), indicating an upstream PKC-dependent activation of ERK1/2. These results indicate that NPY may regulate neuronal precursor proliferation in the adult mammal.

  6. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  7. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion. PMID:1693024

  8. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    PubMed

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes.

  9. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    PubMed

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes. PMID:27388856

  10. Advances in Mass Spectrometric Tools for Probing Neuropeptides

    NASA Astrophysics Data System (ADS)

    Buchberger, Amanda; Yu, Qing; Li, Lingjun

    2015-07-01

    Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.

  11. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    PubMed Central

    Bakos, Jan; Zatkova, Martina; Bacova, Zuzana; Ostatnikova, Daniela

    2016-01-01

    The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits. PMID:26881105

  12. [Effects of neuropeptides on interferon production in vitro].

    PubMed

    Kul'chikov, A E; Makarenko, A N

    2008-01-01

    The study of an interferon-inducing action of neuropeptides (a cerebrolysin model) on production of interferons by human blood leukocytes has shown that neuropeptides induce gamma-interferon production in the titer 267 IU/ml that determines one of the mechanisms of a neuroimmunocorrecting effect of cerebrolysin (Ebewe, Austria) in many neurological diseases (acute stroke, brain traumas and different neuroinfectious diseases). PMID:18720720

  13. Neuropeptides of the cotton fleahopper, Pseudatomoscelis seriatus (Reuter).

    PubMed

    Predel, Reinhard; Russell, William K; Russell, David H; Suh, Charles P-C; Nachman, Ronald J

    2012-03-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an economically important pest of cotton, and increasing concerns over resistance, detrimental effects on beneficial insects and safety issues associated with traditional insecticide applications have led to an interest in research on novel, alternative strategies for control. One such approach requires a more basic understanding of the neurohormonal system that regulates important physiological properties of the fleahopper; e.g. the expression of specific messenger molecules such as neuropeptides. Therefore we performed a peptidomic study of neural tissues from the fleahopper which led to the first identification of the sequences of native peptide hormones. These peptide hormones include the following neuropeptides: corazonin, short neuropeptide F (sNPF), myosuppressin, CAPA-pyrokinin and CAPA-PVK peptides. The CAPA-pyrokinin, sNPF, and CAPA-PVK peptides represent novel sequences. A comparison of fleahopper neuropeptides with those of related heteropteran species indicates that they are quite different. The sNPF of P. seriatus shows, among others, a novel substitution of Leu with Phe within the C-terminal region; a modification that sets it apart from the known sNPFs of not only other Heteroptera but of other arthropod species as well. The identity of the neuropeptides native to the fleahopper can aid in the potential development of biostable, bioavailable mimetic agonists and antagonists capable of disrupting the physiological functions that these neuropeptides regulate.

  14. Amygdalar neuropeptide Y Y1 receptors mediate the anxiolytic-like actions of neuropeptide Y in the social interaction test.

    PubMed

    Sajdyk, T J; Vandergriff, M G; Gehlert, D R

    1999-03-01

    The effects of intra-amygdalar neuropeptide Y infusions were assessed in rats using the social interaction test. Neuropeptide Y administered into the central nucleus of the amygdala did not alter behavior, while injections into the basolateral nucleus of the amygdala produced an increased social interaction time. Furthermore, the anxiolytic-like effect was antagonized by co-administration of the potent neuropeptide Y Y1 receptor antagonist ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3304, but not with the inactive enantiomer ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3457. Therefore, neuropeptide Y produces an anxiolytic-like effect in the social interaction test through neuropetide Y Y1 receptors located in the basolateral amygdala.

  15. Sensory neuropeptide effects in human skin.

    PubMed

    Fuller, R W; Conradson, T B; Dixon, C M; Crossman, D C; Barnes, P J

    1987-12-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neurokinin B (NKB) and calcitonin gene-related peptide (CGRP) the least. The distant flare response to SP, NKA and NKB was maximal at 5 min and disappeared within 2 h. 3 CGRP caused a local erythema over the site of injection at doses above 0.5 pmol which at higher doses lasted for up to 12 h. 4 SP, NKA and NKB caused wheals at doses above 5 pmol with SP and NKB being the most potent. CGRP (up to 250 pmol) did not consistently cause wheal formation. There was no significant effect of coinjection of CGRP upon the response to SP although there was a tendency for an enhancement of the wheal response. 5 The H1-histamine antagonist terfenadine (60 mg orally) significantly inhibited the wheal and distant flare response to histamine (5 nmol) and NKA, but not that caused by NKB. The distant flare of CGRP was also reduced but the local erythema was unaltered. 6. Aspirin (600 mg orally) significantly inhibited the distant flare response to SP, NKA and CGRP, but not that caused by NKB or histamine; the local erythema induced by CGRP was unaffected by aspirin. Aspirin also inhibited the wheal formed by NKA but not the wheal induced by the other substances. 7. These results suggest that tachykinins cause a distant flare response partially via the release of histamine and cyclo-oxygenase products, but cause a wheal by a direct effect on the skin microvasculature. The order of potency SP > NKB > NKA suggests that an SPp or NK, receptor is involved in the wheal response. CGRP by contrast has a

  16. Three novel Cu6S6 cluster-based coordination compounds: synthesis, framework modulation and the sensing of small molecules and Fe(3+) ions.

    PubMed

    Song, Jiang-Feng; Li, Si-Zhe; Zhou, Rui-Sha; Shao, Jia; Qiu, Xiao-Min; Jia, Ying-Ying; Wang, Jun; Zhang, Xiao

    2016-08-01

    Three novel Cu6S6 cluster-based coordination compounds formulated as [Cu(mpymt)3]2 (1), {(CuBr4)[Cu(mpymt)6]}n (2), and {(CuI6)[Cu(mpymt)6]}n (3) (Hmpymt = 4-methylpyrimidine-2-thione), have been synthesized under solvothermal conditions and characterized by elemental analysis, infrared (IR) spectroscopy, thermal gravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. Structural analysis reveals that compound 1 shows a distorted octahedral core of six copper atoms (Cu6S6) constructed from four α and two β type N[double bond, length as m-dash]C-SH parts from six mpymt(-) anions. Compound 2 displays an interesting 3D framework constructed from Cu6S6 and Cu4Br4 Cu(i) clusters simultaneously, interestingly, six mpymt(-) with α type N[double bond, length as m-dash]C-SH parts are involved in the formation of Cu6S6. Compound 3 displays an infinite 1D framework constructed from Cu6S6 and Cu6I6 Cu(i) clusters, notably, four α and two β type N[double bond, length as m-dash]C-SH parts are involved in the formation of the Cu6S6 cluster, however, only mpymt(-) ligands containing α type N[double bond, length as m-dash]C-SH parts form the bridged Cu6I6 cluster. The experimental results reveal that halogen ions finely modulate the structural features of compounds 1-3. The fluorescent properties of compounds 1-3 in the solid state and in various solvent emulsions were investigated in detail, the results of which indicate that compounds 1-3 are all highly sensitive naked eye colorimetric sensors for NB, 2-NT and Fe(3+) (NB = nitrobenzene and 2-NT = 2-nitrotoluene). PMID:27377475

  17. Three novel Cu6S6 cluster-based coordination compounds: synthesis, framework modulation and the sensing of small molecules and Fe(3+) ions.

    PubMed

    Song, Jiang-Feng; Li, Si-Zhe; Zhou, Rui-Sha; Shao, Jia; Qiu, Xiao-Min; Jia, Ying-Ying; Wang, Jun; Zhang, Xiao

    2016-08-01

    Three novel Cu6S6 cluster-based coordination compounds formulated as [Cu(mpymt)3]2 (1), {(CuBr4)[Cu(mpymt)6]}n (2), and {(CuI6)[Cu(mpymt)6]}n (3) (Hmpymt = 4-methylpyrimidine-2-thione), have been synthesized under solvothermal conditions and characterized by elemental analysis, infrared (IR) spectroscopy, thermal gravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. Structural analysis reveals that compound 1 shows a distorted octahedral core of six copper atoms (Cu6S6) constructed from four α and two β type N[double bond, length as m-dash]C-SH parts from six mpymt(-) anions. Compound 2 displays an interesting 3D framework constructed from Cu6S6 and Cu4Br4 Cu(i) clusters simultaneously, interestingly, six mpymt(-) with α type N[double bond, length as m-dash]C-SH parts are involved in the formation of Cu6S6. Compound 3 displays an infinite 1D framework constructed from Cu6S6 and Cu6I6 Cu(i) clusters, notably, four α and two β type N[double bond, length as m-dash]C-SH parts are involved in the formation of the Cu6S6 cluster, however, only mpymt(-) ligands containing α type N[double bond, length as m-dash]C-SH parts form the bridged Cu6I6 cluster. The experimental results reveal that halogen ions finely modulate the structural features of compounds 1-3. The fluorescent properties of compounds 1-3 in the solid state and in various solvent emulsions were investigated in detail, the results of which indicate that compounds 1-3 are all highly sensitive naked eye colorimetric sensors for NB, 2-NT and Fe(3+) (NB = nitrobenzene and 2-NT = 2-nitrotoluene).

  18. Neuropeptides: anticonvulsant and convulsant mechanisms in epileptic model systems and in humans.

    PubMed

    Bajorek, J G; Lee, R J; Lomax, P

    1986-01-01

    Neuropeptides represent a new class of compounds with important implications for the understanding of the mechanisms and treatment of epileptic disorders. Several systems of peptide modulators--in particular the opioid-like peptides, vasopressin, somatostatin, thyrotropin-releasing hormone (TRH) and ACTH--have partially demonstrated endogenous roles in some forms of epilepsy. Seizures and stressful situations may release endogenous opioid peptides and mediate postictal depression and postictal seizure refractoriness. Vasopressin is believed to increase susceptibility to convulsions and may be involved in the pathogenesis of febrile convulsions. Derangements in TRH regulation may lower thresholds for seizure expression by regulating arousal systems; however, some TRH analogs have proven to be effective anticonvulsants. Long-term alterations in somatostatin regulation could be components of focal epilepsies. ACTH is particularly useful in the treatment of infantile spasms. Pharmacological effects of these and other peptides have potentials for defining new classes of anticonvulsants. Cholecystokinin (CCK) and its analogs, the opioid peptides beta-endorphin and FK33824, TRH analogs, and several dipeptides exhibit potent anticonvulsant properties in chemical, electroshock, and genetic model screens. Convulsant actions of CRF, somatostatin, TRH, vasopressin, and high doses of endorphin or enkephalins may provide new tools to study regulatory mechanisms of cerebral excitability. The enkephalin epileptogenic effect is being developed as a predictive tool for new anti-petit mal anticonvulsants. Advances in molecular biology have identified the genes of particular peptide families. A concept has developed that the large propeptide precursors, coded by these genes, whose processing leads to functional peptide formation and release, regulate peptidergic humoral responses to external stimuli. This idea may have particular application in the understanding of the genetic basis

  19. Age-related changes in the neuropeptide Y effects on murine lymphoproliferation and interleukin-2 production.

    PubMed

    Medina, S; Del Río, M; Hernanz, A; De la Fuente, M

    2000-09-01

    Neuropeptide Y (NPY) modulates several aspects of the immune response but it is not known whether NPY responsiveness is altered with aging. In this work, the in vitro effect of NPY at concentrations ranging from 10(-)(14) M to 10(-)(7) M on lymphoproliferation has been studied in spleen, axillary node and thymus leukocytes from young, adult, mature and old BALB/c mice. The spontaneous proliferation of spleen lymphocytes from young mice was significantly stimulated by NPY. In response to the mitogen Con A, lymphoproliferation and IL-2 release by lymphocytes were inhibited significantly by NPY, these effects disappearing with aging. The results show that NPY is a modulator of lymphoproliferation and that this effect disappears progressively with age. Moreover, this regulatory role of NPY may be carried out through a decrease in IL-2 production.

  20. Neuropeptides and neurotransmitters in human placental villi.

    PubMed

    Zhang, C L; Cheng, L R; Wang, H; Zhuang, L Z; Huang, W Q

    1991-01-01

    The human placenta contains many kinds of bioactive substances which are more or less similar to those from the hypothalamic-pituitary-gonadal axis. Most of the studies were carried out mainly with term placenta. The present study, therefore, was attempted to identify, quantify and characterize these substances in the human placenta at the early pregnancy. Using the RIA, immunohistochemistry, HPLC, tissue culture and intrauterine injection methods, we have found that: (1) many kinds of neuropeptides and neurotransmitters are present in the placental villi; (2) LH-RH, NT and SRIF positive immunoreactive granules are localized in the cytotrophoblast and those of beta-EP, 5-HT positive granules in the syncytiotrophoblast; (3) synthetic LH-RH and dynorphin (Dyn) stimulate the hCG secretion of the early placental villi in vitro, and (4) the antisera of LH-RH, NT, Dyn and NE antagonist-alpha-MPT significantly reduced the number of blastocyst implantations in the early pregnant rat. These results indicate that in the human placenta there possibly exists a self-regulation mechanism for the synthesis and secretion of placental hormones and neurotransmitters. Therefore, the human placenta can be regarded as a neuroendocrine organ.

  1. Limited neuropeptide Y precursor processing in unfavourable metastatic neuroblastoma tumours.

    PubMed

    Bjellerup, P; Theodorsson, E; Jörnvall, H; Kogner, P

    2000-07-01

    Neuropeptide Y (NPY) is found at high concentrations in neural crest-derived tumours and has been implicated as a regulatory peptide in tumour growth and differentiation. Neuroblastomas, ganglioneuromas and phaeochromocytomas with significant concentrations of NPY-like immunoreactivity were investigated for different molecular forms of NPY and for significance of proNPY processing. Gel-permeation chromatography identified intact NPY (1-36) in all tumours, whereas proNPY (69 amino acids) was detected only in control adrenal tissue and malignant neuroblastomas. Purification of NPY-like immunoreactivity in tumour extracts and structural characterization revealed that both NPY (1-36) and the truncated form NPY (3-36) was present. The degree of processing of proNPY to NPY in tumour tissue was lower in advanced neuroblastomas with regional or metastatic spread (stage 3 and 4) (n = 6), (41%, 12-100%, median, range), compared to the less aggressive stage 1, 2 and 4S tumours (n = 12), (93%; 69-100%), (P= 0.012). ProNPY processing of less than 50% was correlated with poor clinical outcome (P = 0.004). MYCN oncogene amplification was also correlated to a low degree of proNPY processing (P = 0.025). In summary, a low degree of proNPY processing was correlated to clinical advanced stage and poor outcome in neuroblastomas. ProNPY/NPY processing generated molecular forms of NPY with known differences in NPY-receptor selectivity, implicating a potential for in vivo modulation of NPY-like effects in tumour tissue.

  2. Development of a peptidomimetic antagonist of neuropeptide FF receptors for the prevention of opioid-induced hyperalgesia.

    PubMed

    Bihel, Frédéric; Humbert, Jean-Paul; Schneider, Séverine; Bertin, Isabelle; Wagner, Patrick; Schmitt, Martine; Laboureyras, Emilie; Petit-Demoulière, Benoît; Schneider, Elodie; Mollereau, Catherine; Simonnet, Guy; Simonin, Frédéric; Bourguignon, Jean-Jacques

    2015-03-18

    Through the development of a new class of unnatural ornithine derivatives as bioisosteres of arginine, we have designed an orally active peptidomimetic antagonist of neuropeptide FF receptors (NPFFR). Systemic low-dose administration of this compound to rats blocked opioid-induced hyperalgesia, without any apparent side-effects. Interestingly, we also observed that this compound potentiated opioid-induced analgesia. This unnatural ornithine derivative provides a novel therapeutic approach for both improving analgesia and reducing hyperalgesia induced by opioids in patients being treated for chronic pain.

  3. Neuropeptide-Driven Cross-Modal Plasticity following Sensory Loss in Caenorhabditis elegans

    PubMed Central

    Rabinowitch, Ithai; Laurent, Patrick; Zhao, Buyun; Walker, Denise; Beets, Isabel; Schoofs, Liliane; Bai, Jihong; Schafer, William R.; Treinin, Millet

    2016-01-01

    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross

  4. Expression of neuropeptides and their receptors in the developing retina of mammals.

    PubMed

    Bagnoli, P; Dal Monte, M; Casini, G

    2003-10-01

    The present review examines various aspects of the developmental expression of neuropeptides and of their receptors in mammalian retinas, emphasizing their possible roles in retinal maturation. Different peptidergic systems have been investigated with some detail during retinal development, including substance P (SP), somatostatin (SRIF), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), opioid peptides and corticotrophin-releasing factor (CRF). Overall, the developmental expression of most peptides is characterized by early appearance, transient features and achievement of the mature pattern at the time of eye opening. Concerning possible developmental actions of neuropeptides, recent studies imply a role of SP in the modulation of cholinergic neurotransmission in early postnatal rabbit retinas, when cholinergic cells participate in the retinal spontaneous waves of activity. In addition, the presence of transient SRIF expressing ganglion cells and recent observations in SRIF receptor knock-out mice indicate variegated roles of this peptide in the development of the retina and of retinofugal projections. Furthermore, VIP and PACAP exert protective and growth-promoting actions that may sustain retinal neurons during their development, and opioid peptides may control cell proliferation in the developing retina. Finally, a peak in the expression of certain peptides, including VIP, NPY and CRF, is present around the time of eye opening, when the retina begins the analysis of structured visual information, suggesting important roles of these peptides during this delicate phase of retinal development. In summary, although the physiological actions of peptides during retinal development are far from being clarified, the data reviewed herein indicate promising perspectives in this field of study.

  5. Neuropeptides, amines and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion.

    PubMed

    Nässel, D R

    1996-01-01

    The insect ventral nerve cord consists of metamerically repeated ganglia subserving the thoracic and abdominal segments. The abdominal ganglia control basic functions such as respiration, circulation, heartbeat, diuresis, hindgut motility, functions of the genitalia and ovipositor and abdominal posture. Some of this control is by efferent innervation of target tissues but hormonal control also is exerted by abdominal neurosecretory cells via release from neurohemal organs or other release sites. The present review summarizes what is known about the distribution of neurotransmitters, monoamines and neuropeptides in the abdominal ganglia of different insect species. Special emphasis is on the unfused abdominal ganglion, since this is the least complex of all central ganglia and therefore may reveal the minimum number of neuroactive compounds utilized in neurotransmission, neuromodulation and neurohormonal control. Both GABA and glutamate are present in both interneurons and motoneurons, whereas biogenic amines such as serotonin, dopamine and histamine are found primarily in interneurons (although some cases of sensory cells and efferent neurons are known). Octopamine can be seen both in interneurons, efferent neurons and neurosecretory cells. A large number (about 20 different main types) of neuropeptides has been indicated in abdominal ganglia. Each peptide has a very specific distribution pattern. Depending on the peptide type, the localization is known to be in interneurons, neurosecretory cells or motoneurons, or combinations of these. The structure and known functions of the different neuropeptides in different insect species are summarized in some detail. Both GABA and glutamate appear to have roles as fast neurotransmitters, whereas amines and neuropeptides seem to have modulatory roles both within the CNS and at peripheral targets. After a comprehensive overview of different substances in studied insect species, the unfused abdominal ganglia from the moth

  6. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system.

  7. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    PubMed

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation. PMID:9551939

  8. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system. PMID:27268986

  9. Peptidomics for the discovery and characterization of neuropeptides and hormones.

    PubMed

    Romanova, Elena V; Sweedler, Jonathan V

    2015-09-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.

  10. Peptidomics for the discovery and characterization of neuropeptides and hormones

    PubMed Central

    Romanova, Elena V.; Sweedler, Jonathan V.

    2015-01-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G-protein coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that likely are neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry-based technologies and experimental strategies that have been successful in achieving high throughput characterization of endogenous peptides in nervous and endocrine systems. PMID:26143240

  11. Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis

    NASA Astrophysics Data System (ADS)

    Davis, Shaun M.; Thomas, Amanda L.; Nomie, Krystle J.; Huang, Longwen; Dierick, Herman A.

    2014-02-01

    Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.

  12. Expression of diverse neuropeptide cotransmitters by identified motor neurons in Aplysia

    SciTech Connect

    Church, P.J.; Lloyd, P.E. )

    1991-03-01

    Neuropeptide synthesis was determined for individual identified ventral-cluster neurons in the buccal ganglia of Aplysia. Each of these cells was shown to be a motor neuron that innervates buccal muscles that generate biting and swallowing movements during feeding. Individual neurons were identified by a battery of physiological criteria and stained with intracellular injection of a vital dye, and the ganglia were incubated in 35S-methionine. Peptide synthesis was determined by measuring labeled peptides in extracts from individually dissected neuronal cell bodies analyzed by HPLC. Previously characterized peptides found to be synthesized included buccalin, FMRFamide, myomodulin, and the 2 small cardioactive peptides (SCPs). Each of these neuropeptides has been shown to modulate buccal muscle responses to motor neuron stimulation. Two other peptides were found to be synthesized in individual motor neurons. One peptide, which was consistently observed in neurons that also synthesized myomodulin, is likely to be the recently sequenced myomodulin B. The other peptide was observed in a subset of the neurons that synthesize FMRFamide. While identified motor neurons consistently synthesized the same peptide(s), neurons that innervate the same muscle often express different peptides. Neurons that synthesized the SCPs also contained SCP-like activity, as determined by snail heart bioassay. Our results indicate that every identified motor neuron synthesizes a subset of these methionine-containing peptides, and that several neurons consistently synthesize peptides that are likely to be processed from multiple precursors.

  13. MicroRNA's impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety.

    PubMed

    Martinetz, Stefanie

    2016-06-01

    Psychiatric disorders rank among the most common severe diseases worldwide, with millions of people affected worldwide every year. The symptoms are manifold, and the outcome for the patients is often unclear. As a high and yearly rising cost burden for society, anxiety disorders, depression and their related mental disorders are currently a well-researched topic in order to develop new functional pharmacological therapies as alternatives to those that are in use and bear many unpleasant side effects. Brain circuitries, such as those underlying anxiety formations, are mainly driven by the interplay of various neurotransmitter systems and the interaction of different brain loci, as well as the modulating impact of neuropeptides. Targeting those networks is a complex but promising way to regulate mood. Alterations on molecular level of the neuronal cell in response to respective receptor activation, especially at post-transcriptional level via the highly regulatory function of non-coding RNAs such as microRNAs (miRNAs) seem to hold a promising future in the development of novel therapeutic strategies and are therefore under intensified investigation. This review focusses on the impact of miRNAs on the neurotransmitter and neuropeptide systems of the central nervous system relevant for the formation of anxiety disorders and discusses the potential of miRNAs for the development of new therapeutic strategies for anxiety and mood disorders. PMID:27138168

  14. Neuropeptides and the microbiota-gut-brain axis.

    PubMed

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  15. A role for amontillado, the Drosophila homolog of the neuropeptide precursor processing protease PC2, in triggering hatching behavior.

    PubMed

    Siekhaus, D E; Fuller, R S

    1999-08-15

    Accurate proteolytic processing of neuropeptide and peptide hormone precursors by members of the kexin/furin family of proteases is key to determining both the identities and activities of signaling peptides. Here we identify amontillado (amon), the Drosophila melanogaster homolog of the mammalian neuropeptide processing protease PC2, and show that in contrast to vertebrate PC2, amontillado expression undergoes extensive regulation in the nervous system during development. In situ hybridization reveals that expression of amontillado is restricted to the final stages of embryogenesis when it is found in anterior sensory structures and in only 168 cells in the brain and ventral nerve cord. After larvae hatch from their egg shells, the sensory structures and most cells in the CNS turn off or substantially reduce amontillado expression, suggesting that amontillado plays a specific role late in embryogenesis. Larvae lacking the chromosomal region containing amontillado show no gross anatomical defects and respond to touch. However, such larvae show a greatly reduced frequency of a hatching behavior of wild-type Drosophila in which larvae swing their heads, scraping through the eggshell with their mouth hooks. Ubiquitous expression of amontillado can restore near wild-type levels of this behavior, whereas expression of amontillado with an alanine substitution for the catalytic histidine cannot. These results suggest that amontillado expression is regulated as part of a programmed modulation of neural signaling that controls hatching behavior by producing specific neuropeptides in particular neurons at an appropriate developmental time. PMID:10436051

  16. Pathogenic involvement of neuropeptides in anxiety and depression.

    PubMed

    Alldredge, Brett

    2010-06-01

    Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.

  17. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.

    PubMed

    Elphick, Maurice R

    2014-09-01

    The SALMFamides are a family of neuropeptides that occur in species belonging to the phylum Echinodermata. The prototypes for this neuropeptide family (S1 and S2) were discovered in starfish but subsequently SALMFamides were identified in other echinoderms. There are two types of SALMFamides: L-type, which have the C-terminal motif SxLxFamide, and F-type, which have the C-terminal motif SxFxFamide. They are derived from two types of precursor proteins: an L-type SALMFamide precursor, which comprises only L-type or L-type-like SALMFamides and an F-type SALMFamide precursor, which contains several F-type or F-type-like SALMFamides and, typically, one or more L-type SALMFamides. Thus, SALMFamides occur as heterogeneous mixtures of neuropeptides - a SALMFamide salmagundi. SALMFamides are produced by distinct populations of neurons in echinoderm larval and adult nervous systems and are present in the innervation of neuromuscular organs. Both L-type and F-type SALMFamides cause muscle relaxation in echinoderms and, for example, in starfish this effect of SALMFamides may mediate neural control of cardiac stomach eversion in species that feed extra-orally (e.g., Asterias rubens). The SALMFamide S1 also causes inhibition of neural release of a relaxin-like gonadotropin in the starfish Asterina pectinifera. An important issue that remains to be resolved are the relationships of SALMFamides with neuropeptides that have been identified in other phyla. However, it has been noted that the C-terminal SxLxFamide motif of L-type SALMFamides is a feature of some members of a bilaterian neuropeptide family that includes gonadotropin-inhibitory hormone (GnIH) in vertebrates and SIFamide-type neuropeptides in protostomes. Similarly, the C-terminal FxFamide motif of F-type SALMFamides is a feature of vertebrate QRFP (26RFa)-type neuropeptides. These sequence similarities may provide a basis for molecular identification of receptors that mediate effects of SALMFamides. Furthermore

  18. Discovery of defense- and neuropeptides in social ants by genome-mining.

    PubMed

    Gruber, Christian W; Muttenthaler, Markus

    2012-01-01

    Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.

  19. Discovery of defense- and neuropeptides in social ants by genome-mining.

    PubMed

    Gruber, Christian W; Muttenthaler, Markus

    2012-01-01

    Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant), Camponotus floridanus (carpenter ant) and Harpegnathos saltator (basal genus). Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins) and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae) and supports recent findings in Tribolium castaneum (red flour beetle) and Nasonia vitripennis (parasitoid wasp), and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee), another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family) and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value. PMID:22448224

  20. Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest

    PubMed Central

    Menon, Vijay R.; Peterson, Erica J.; Valerie, Kristoffer; Farrell, Nicholas P.; Povirk, Lawrence F.

    2013-01-01

    Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin. PMID:24161784

  1. Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf

    PubMed Central

    Ogawa, Takahiro; Kodera, Yukihiro; Hirata, Dai; Blackwell, T. Keith; Mizunuma, Masaki

    2016-01-01

    Identification of biologically active natural compounds that promote health and longevity, and understanding how they act, will provide insights into aging and metabolism, and strategies for developing agents that prevent chronic disease. The garlic-derived thioallyl compounds S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have been shown to have multiple biological activities. Here we show that SAC and SAMC increase lifespan and stress resistance in Caenorhabditis elegans and reduce accumulation of reactive oxygen species (ROS). These compounds do not appear to activate DAF-16 (FOXO orthologue) or mimic dietary restriction (DR) effects, but selectively induce SKN-1 (Nrf1/2/3 orthologue) targets involved in oxidative stress defense. Interestingly, their treatments do not facilitate SKN-1 nuclear accumulation, but slightly increased intracellular SKN-1 levels. Our data also indicate that thioallyl structure and the number of sulfur atoms are important for SKN-1 target induction. Our results indicate that SAC and SAMC may serve as potential agents that slow aging. PMID:26899496

  2. Hybrid preconcentrator/focuser module for determinations of explosive marker compounds with a micro-scale gas chromatograph.

    PubMed

    Serrano, Gustavo; Sukaew, Thitiporn; Zellers, Edward T

    2013-03-01

    This article describes the development and characterization of a partially selective preconcentrator/focuser (PCF) module for a field-portable micro-scale gas chromatograph (μGC) designed to rapidly determine trace levels of two vapor-phase markers of the explosive trinitrotoluene (TNT): 2,3-dimethyl-2,3-dinitrobutane (DMNB) and 2,4-dinitrotoluene (2,4-DNT). The PCF module has three primary components. The first is a high-volume sampler, comprising a resistively-heated 6-cm long stainless steel tube packed with tandem beds of the graphitized carbons Carbopack B (C-B, 30 mg) and Carbopack Y (C-Y, 15 mg), which traps the markers but permits more volatile interferences to pass through largely unretained. The second component is a microfocuser (μF), comprising a 4.2×9.8 mm Si chip containing a deep-reactive-ion-etched (DRIE) cavity packed with 2mg of C-B, a Pyrex cap, integrated heaters, and etched fluidic channels. The third component is a commercial polymer-membrane filter used as a pre-trap to remove particles and adsorbed low volatility interferences. Markers captured in the sampler are thermally desorbed and transferred to the μF, and then thermally desorbed/injected from the μF into a downstream separation (micro)column and detected. Scrubbed ambient air is used as carrier gas. The adsorbent capacities, baseline temperatures, sampling and desorption flow rates, and heating profiles were optimized for each PCF module component while minimizing the analysis time. An overall transfer efficiency of 86% was achieved at marker concentrations of ~0.2-2.6 ppb. In the final configuration the PCF module requires just 60s to collect a 1-L sample (3 L/min), focus (40 mL/min), and inject the markers (3 mL/min), producing half-maximum injection peak widths of ~2 and 5 s, and preconcentration factors of 4500 and 1800, for DMNB and 2,4-DNT, respectively. PMID:23357747

  3. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    PubMed

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  4. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  5. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    PubMed

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-01

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. PMID:25625515

  6. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    PubMed

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-23

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes.

  7. The insect capa neuropeptides impact desiccation and cold stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  8. Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides

    PubMed Central

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-01

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. PMID:25625515

  9. Neuropeptide alterations in the tree shrew hypothalamus during volatile anesthesia.

    PubMed

    Fouillen, Laetitia; Petruzziello, Filomena; Veit, Julia; Bhattacharyya, Anwesha; Kretz, Robert; Rainer, Gregor; Zhang, Xiaozhe

    2013-03-27

    Neuropeptides are critical signaling molecules, involved in the regulation of diverse physiological processes including energy metabolism, pain perception and brain cognitive state. Prolonged general anesthesia has an impact on many of these processes, but the regulation of peptides by general anesthetics is poorly understood. In this study, we present an in-depth characterization of the hypothalamic neuropeptides of the tree shrew during volatile isoflurane/nitrous oxide anesthesia administered accompanying a neurosurgical procedure. Using a predicted-peptide database and hybrid spectral analysis, we first identified 85 peptides from the tree shrew hypothalamus. Differential analysis was then performed between control and experimental group animals. The levels of 12 hypothalamic peptides were up-regulated following prolonged general anesthesia. Our study revealed for the first time that several neuropeptides, including alpha-neoendorphin and somatostatin-14, were altered during general anesthesia. Our study broadens the scope for the involvement of neuropeptides in volatile anesthesia regulation, opening the possibility for investigating the associated regulatory mechanisms. PMID:23228960

  10. The regulation of sleep and wakefulness by the hypothalamic neuropeptide orexin/hypocretin.

    PubMed

    Inutsuka, Ayumu; Yamanaka, Akihiro

    2013-02-01

    Orexins, also known as hypocretins, are neuropeptides that are exclusively expressed by neurons in the lateral hypothalamic area. Although originally recognized as regulators of feeding behavior, orexins are now mainly regarded as key modulators of the sleep/wakefulness cycle. In addition, anatomical studies of neural networks and analyses of transgenic mice have revealed integrated roles for orexin neurons in the coordination of emotion, energy homeostasis, and the reward system. A functional link between the limbic system and orexin neurons may be important for increasing vigilance in response to emotional stimuli. These findings suggest that orexin neurons relay information about an organism's environment to maintain the proper amount of sleep and wakefulness in animals.

  11. Identification of a Neuropeptide S Responsive Circuitry Shaping Amygdala Activity via the Endopiriform Nucleus

    PubMed Central

    Meis, Susanne; Bergado-Acosta, Jorge Ricardo; Yanagawa, Yuchio; Obata, Kunihiko; Stork, Oliver; Munsch, Thomas

    2008-01-01

    Neuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus. Excitation of the EPN is responsible for a modulation of BLA activity through NPS, characterized by a general increase of GABAergic inhibition and enhancement of spike activity in a subset of BLA projection neurons. Finally, local injection of NPS to the EPN interferes with the expression of contextual, but not auditory cued fear memory. Together, these data suggest the existence of a specific NPS-responsive circuitry between EPN and BLA, likely involved in contextual aspects of fear memory. PMID:18628994

  12. Mass Spectrometric Analysis of Spatio-Temporal Dynamics of Crustacean Neuropeptides

    PubMed Central

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2014-01-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in spatial domain and monitoring their dynamic changes in temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. PMID:25448012

  13. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response.

    PubMed

    Jakobsen, Henrik; Bojer, Martin S; Marinus, Martin G; Xu, Tao; Struve, Carsten; Krogfelt, Karen A; Løbner-Olesen, Anders

    2013-01-01

    The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown to be unrelated to the weak antibiotic effect of Harmane. Using GFP-expressing E. coli EDL933, we showed that Harmane does not lower the colonization burden in the nematodes. We also found that the expression of the putative immune effector gene F35E12.5 was up-regulated in response to Harmane treatment. This indicates that Harmane stimulates the innate immune response of the nematode; thereby increasing its lifespan during bacterial infection. Expression of F35E12.5 is predominantly regulated through the p38 MAPK pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity. Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.

  14. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    NASA Astrophysics Data System (ADS)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and

  15. Media effects in modulating the conformational equilibrium of a model compound for tumor necrosis factor converting enzyme inhibition

    NASA Astrophysics Data System (ADS)

    Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella

    2015-07-01

    Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.

  16. Selection of hybrids and edible citrus species with a high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents.

    PubMed

    Marín, F R; Del Río, J A

    2001-07-01

    The purpose of this study is to identify species, hybrids, and cultivars of edible Citrus species with high contents of diosmin as a functional compound and also to identify the developmental progress of the fruit in which it reaches maximum levels; these findings would be useful for extraction purposes and for the modulating effect of plant growth regulators on diosmin content to increase the level of this flavone. The results obtained reveal that the highest contents of diosmin are present in immature fruits of certain varieties of citron (Buda's finger) and lemon (Meyer), whereas the contents in the edible parts of the fruits are irrelevant from a pharmacological point of view. Similarly, it is shown that it is possible to increase the content of this flavone using hormonal treatments (6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) during the early stages of fruit growth.

  17. Development of sub-nanomolar dipeptidic ligands of neuropeptide FF receptors.

    PubMed

    Gealageas, Ronan; Schneider, Séverine; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Laboureyras, Emilie; Dugave, Christophe; Mollereau, Catherine; Simonnet, Guy; Bourguignon, Jean-Jacques; Simonin, Frédéric; Bihel, Frédéric

    2012-12-15

    Based on our earlier reported neuropeptide FF receptors antagonist (RF9), we carried out an extensive structural exploration of the N-terminus part of the amidated dipeptide Arg-Phe-NH(2) in order to establish a structure-activity relationships (SAR) study towards both NPFF receptor subtypes. This SAR led to the discovery of dipeptides (12, 35) with subnanomolar affinities towards NPFF1 receptor subtype, similar to endogenous ligand NPVF. More particularly, compound 12 exhibited a potent in vivo preventive effect on opioid-induced hyperalgesia at low dose. The significant selectivity of 12 toward NPFF1-R indicates that this receptor subtype may play a critical role in the anti-opioid activity of NPFF-like peptides.

  18. Modulation of Kv7 potassium channels by a novel opener pyrazolo[1,5-a]pyrimidin-7(4H)-one compound QO-58

    PubMed Central

    Zhang, F; Mi, Y; Qi, JL; Li, JW; Si, M; Guan, BC; Du, XN; An, HL; Zhang, HL

    2013-01-01

    Background and Purpose Modulation of Kv7/M channel function represents a relatively new strategy to treat neuronal excitability disorders such as epilepsy and neuropathic pain. We designed and synthesized a novel series of pyrazolo[1,5-a] pyrimidin-7(4H)-one compounds, which activate Kv7 channels. Here, we characterized the effects of the lead compound, QO-58, on Kv7 channels and investigated its mechanism of action. Experimental Approach A perforated whole-cell patch technique was used to record Kv7 currents expressed in mammalian cell lines and M-type currents from rat dorsal root ganglion neurons. The effects of QO-58 in a rat model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve, were also examined. Key Results QO-58 increased the current amplitudes, shifted the voltage-dependent activation curve in a more negative direction and slowed the deactivation of Kv7.2/Kv7.3 currents. QO-58 activated Kv7.1, Kv7.2, Kv7.4 and Kv7.3/Kv7.5 channels with a more selective effect on Kv7.2 and Kv7.4, but little effect on Kv7.3. The mechanism of QO-58's activation of Kv7 channels was clearly distinct from that used by retigabine. A chain of amino acids, Val224Val225Tyr226, in Kv7.2 was important for QO-58 activation of this channel. QO-58 enhanced native neuronal M currents, resulting in depression of evoked action potentials. QO-58 also elevated the pain threshold of neuropathic pain in the sciatic nerve CCI model. Conclusions and Implications The results indicate that QO-58 is a potent modulator of Kv7 channels with a mechanism of action different from those of known Kv7 openers. Hence, QO-58 shows potential as a treatment for diseases associated with neuronal hyperexcitability. PMID:23013484

  19. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  20. The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation Components

    PubMed Central

    Raj, Shriya; Krishnan, Karthik; Askew, David S.; Helynck, Olivier; Suzanne, Peggy; Lesnard, Aurélien; Rault, Sylvain; Zeidler, Ute; d'Enfert, Christophe

    2015-01-01

    In a search for new antifungal compounds, we screened a library of 4,454 chemicals for toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 4,885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 barcoded haploid DAmP (decreased abundance by mRNA perturbation) strains in which the function of essential genes was perturbed by the introduction of a drug resistance cassette downstream of the coding sequence region. Comparisons with previously published chemogenomic screens revealed that the set of mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the endoplasmic reticulum-associated protein degradation (ERAD) stress response and the ER membrane protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed no enhanced sensitivity to the compound. The data from this chemogenomic analysis demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER protein quality control is thus a specific vulnerability of fungal organisms that might be exploited for antifungal drug development. PMID:26666917

  1. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    PubMed

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors. PMID:25853419

  2. Modulation of diazepam-insensitive GABA(A) receptors by micromolar concentrations of thyroxine and related compounds in vitro.

    PubMed

    Ishibashi, Hitoshi; Witt, Michael-Robin; Nabekura, Junichi; Nielsen, Mogens

    2013-01-15

    The effects of thyroxine and its related compounds on the benzodiazepine-insensitive γ-aminobutyric acid type A (GABA(A)) receptors were studied. Thyroxine at micromolar concentrations potentiated the (3)H-Ro15-4513 binding to rat brain membranes in-vitro in the thalamus, striatum, cortex and hippocampus, but not in cerebellum. In the thalamus, the rank order of potency was the following: 3,3',5,5'-tetraiodothyroacetic acid (TETRAC)>L-thyroxine>3,5-diiodo-l-thyronine (3,5-T2). TETRAC induced a slight potentiation of flumazenil binding to diazepam-sensitive GABA(A) receptors in the thalamus and striatum while no effect was found in cortex and hippocampus. Consequently, we examined whether these compounds could exert their modulatory effect on the currents mediated by benzodiazepine-insensitive GABA(A) receptors. The diazepam-insensitive GABA(A) receptor-mediated currents were recorded from acutely isolated rat ventrobasal thalamic neurons by applying low concentrations of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). TETRAC and thyroxine at low μM concentrations potentiated the THIP-evoked currents, although 3,5-T2 had no effect on the THIP-induced currents. Ethanol had no effect on the enhancing effects of TETRAC. TETRAC itself evoked GABA(A) receptor-mediated currents at high concentrations beyond 30 μM. Although the effects of TETRAC and thyroxine were observed at non-physiological concentrations of hormones, the present results might lead to new lead structures with specificity to diazepam-insensitive GABA(A) receptor subtypes.

  3. Modulation of Sweet Taste by Umami Compounds via Sweet Taste Receptor Subunit hT1R2

    PubMed Central

    Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors. PMID:25853419

  4. A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3.

    PubMed

    Saroja, Sivaprakasam R; Aher, Yogesh D; Kalaba, Predrag; Aher, Nilima Y; Zehl, Martin; Korz, Volker; Subramaniyan, Saraswathi; Miklosi, Andras G; Zanon, Lisa; Neuhaus, Winfried; Höger, Harald; Langer, Thierry; Urban, Ernst; Leban, Johann; Lubec, Gert

    2016-10-01

    A series of compounds targeting the dopamine transporter (DAT) haS been shown to improve memory performance most probably by re-uptake inhibition. Although specific DAT inhibitors are available, there is limited information about specificity, mechanism and in particular the effect on dopamine receptors. It was therefore the aim of the study to test the DAT inhibitor 4-(diphenyl-methanesulfinylmethyl)-2-methyl-thiazole (code: CE-111), synthetized in our laboratory for the specificity to target DAT, for the effects upon spatial memory and for induced dopamine receptor modulation. Re-uptake inhibition was tested for DAT (IC50=3.2μM), serotonin transporter, SERT (IC50=272291μM) and noradrenaline transporter, NET (IC50=174μM). Spatial memory was studied in the radial arm maze (RAM) in male Sprague-Dawley rats that were intraperitoneally injected with CE-111 (1 or 10mg/kg body weight). Performance in the RAM was improved using 1 and 10mg/kg body weight of CE-111. Training and treatment effects on presynaptic, postsynaptic and extrasynaptic D1 and D2- receptors and dopamine receptor containing complexes as well as on activated DAT were observed. CE-111 was crossing the blood-brain barrier comparable to modafinil and was identified as effective to improve memory performance in the RAM. Dopamine re-uptake inhibition along with modulations in dopamine receptors are proposed as potential underlying mechanisms. PMID:27288589

  5. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.

    PubMed

    Heli, B; Morales-Narváez, E; Golmohammadi, H; Ajji, A; Merkoçi, A

    2016-04-21

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.

  6. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper.

    PubMed

    Heli, B; Morales-Narváez, E; Golmohammadi, H; Ajji, A; Merkoçi, A

    2016-04-21

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. PMID:27009781

  7. Determination of aromatic sulphur compounds in heavy gas oil by using (low-)flow modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Franchina, Flavio Antonio; Machado, Maria Elisabete; Tranchida, Peter Quinto; Zini, Cláudia Alcaraz; Caramão, Elina Bastos; Mondello, Luigi

    2015-03-27

    The present research is focused on the development of a flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry (FM GC × GC-MS/MS) method for the determination of classes of aromatic organic sulphur compounds (benzothiophenes, dibenzothiophenes, and benzonaphthothiophene) in heavy gas oil (HGO). The MS/MS instrument was used to provide both full-scan and multiple-reaction-monitoring (MRM) data. Linear retention index (LRI) ranges were used to define the MRM windows for each chemical class. Calibration solutions (internal standard: 1-fluoronaphthalene) were prepared by using an HGO sample, depleted of S compounds. Calibration information was also derived for the thiophene class (along with MRM and LRI data), even though such constituents were not present in the HGO. Linearity was satisfactory over the analyzed concentration range (1-100 mg/L); intra-day precision for the lowest calibration point was always below 17%. Accuracy was also satisfactory, with a maximum percentage error of 3.5% (absolute value) found among the S classes subjected to (semi-)quantification. The highest limit of quantification was calculated to be 299 μg/L (for the C1-benzothiophene class), while the lowest was 21 μg/L (for the C4-benzothiophene class).

  8. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells.

    PubMed

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  9. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  10. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates.

    PubMed

    Stresser, D M; Blanchard, A P; Turner, S D; Erve, J C; Dandeneau, A A; Miller, V P; Crespi, C L

    2000-12-01

    Inhibition of cytochrome P450 catalytic activity is a principal mechanism for pharmacokinetic drug-drug interactions. Rapid, in vitro testing for cytochrome P450 inhibition potential is part of the current paradigm for identifying drug candidates likely to give such interactions. We have explored the extent that qualitative and quantitative inhibition parameters are dependent on the cytochrome P450 (CYP) 3A4 probe substrate. Inhibition potential (e.g., IC(50) values from 8-point inhibition curves) or activation potential for most compounds varied dramatically depending on the fluorometric probe substrates for CYP3A4 [benzyloxyresorufin (BzRes), 7-benzyloxy-4-trifluoromethylcoumarin (BFC), 7-benzyloxyquinoline (BQ), and dibenzylfluorescein (DBF)]. For 21 compounds that were primarily inhibitors, the range of IC(50) values for the four substrates varied from 2.1- to 195-fold with an average of 29-fold. While the rank order of sensitivity among the fluorometric substrates varied among the individual inhibitors, on average, BFC dealkylation was the most sensitive to inhibition, while BQ dealkylation was least sensitive. Partial inhibition was observed with BzRes and BQ but not for BFC and DBF. BzRes was more prone to activation, whereas dramatic changes in IC(50) values were observed when the BQ concentration was below the S(50). Three different correlation analyses indicated that IC(50) values with BFC, BQ, and DBF correlated well with each other, whereas the response with BzRes correlated more weakly with the other substrates. One of these correlation analyses was extended to the percent inhibition of 10 microM inhibitor with the standard CYP3A4 probe substrates testosterone, midazolam, and nifedipine. In this analysis the responses with BQ, BFC and DBF correlated well with testosterone and midazolam but more poorly with nifedipine. In the aggregate, BFC and DBF appear more suitable as an initial screen for CYP3A4 inhibition. However, the substrate-dependent effects

  11. A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes.

    PubMed

    Sase, Ajinkya; Aher, Yogesh D; Saroja, Sivaprakasam R; Ganesan, Minu Karthika; Sase, Sunetra; Holy, Marion; Höger, Harald; Bakulev, Vasiliy; Ecker, Gerhard F; Langer, Thierry; Sitte, Harald H; Leban, Johann; Lubec, Gert

    2016-03-01

    A series of compounds have been reported to enhance memory via the DA system and herein a heterocyclic compound was tested for working memory (WM) enhancement. 2-((benzhydrylsulfinyl)methyl)thiazole (CE-103) was synthesized in a six-step synthesis. Binding of CE-103 to the dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters and dopamine reuptake inhibition was tested as well as blood brain permeation and a screen for GPCR targets. 60 male Sprague Dawley rats were divided into six groups: CE-103 treated 1-10 mg/kg body weight, trained (TDI) and yoked (YDI) and vehicle treated, trained (TVI) and yoked (YVI) rats. Daily single intraperitoneal injections for a period of 10 days were administered and rats were tested in a radial arm maze (RAM). Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT) and complexes containing the D1-3 dopamine receptor subunits were determined. CE-103 was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 14.73 μM). From day eight the compound was decreasing WM errors in the RAM significantly at both doses tested as compared to the vehicle controls. In the trained CE-103-treated group levels of the complex containing the phosphorylated dopamine transporter (pDAT) as well as D1R were decreased while levels of complexes containing D2R and D3R were significantly increased. CE-103 was shown to enhance spatial WM and DA reuptake inhibition with subsequent modulation of D1-3 receptors is proposed as a possible mechanism of action. PMID:26407764

  12. Discovery of Small-Molecule Modulators of the Human Y4 Receptor

    PubMed Central

    Weaver, David; Beck-Sickinger, Annette G.; Meiler, Jens

    2016-01-01

    The human neuropeptide Y4 receptor (Y4R) and its native ligand, pancreatic polypeptide, are critically involved in the regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, small molecule allosteric modulators have been in the focus of research in the last years. However, no positive allosteric modulators or agonists of the Y4R have been described so far. In this study, small molecule compounds derived from the Niclosamide scaffold were identified by high-throughput screening to increase Y4R activity. Compounds were characterized for their potency and their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These compounds provide a structure-activity relationship profile around this common scaffold and lay the groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the Y4R. PMID:27294784

  13. Discovery of Small-Molecule Modulators of the Human Y4 Receptor.

    PubMed

    Sliwoski, Gregory; Schubert, Mario; Stichel, Jan; Weaver, David; Beck-Sickinger, Annette G; Meiler, Jens

    2016-01-01

    The human neuropeptide Y4 receptor (Y4R) and its native ligand, pancreatic polypeptide, are critically involved in the regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, small molecule allosteric modulators have been in the focus of research in the last years. However, no positive allosteric modulators or agonists of the Y4R have been described so far. In this study, small molecule compounds derived from the Niclosamide scaffold were identified by high-throughput screening to increase Y4R activity. Compounds were characterized for their potency and their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These compounds provide a structure-activity relationship profile around this common scaffold and lay the groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the Y4R. PMID:27294784

  14. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family

    PubMed Central

    Semmens, Dean C.; Beets, Isabel; Rowe, Matthew L.; Blowes, Liisa M.; Oliveri, Paola; Elphick, Maurice R.

    2015-01-01

    Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin–neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario—the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are ‘missing links’ in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS). PMID:25904544

  15. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust.

    PubMed

    Hou, Li; Jiang, Feng; Yang, Pengcheng; Wang, Xianhui; Kang, Le

    2015-08-01

    Neuropeptides serve as the most important regulatory signals in insects. Many neuropeptides and their precursors have been identified in terms of the contig sequences of whole genome information of the migratory locust (Locusta migratoria), which exhibits a typical phenotypic plasticity in morphology, behavior and physiology. However, functions of these locust neuropeptides are largely unknown. In this study, we first revised the 23 reported neuropeptide precursor genes and identified almost all the neuropeptide precursors and corresponding products in L. migratoria. We further revealed the significant expansion profiles (such as AKH) and alternative splicing of neuropeptide genes (Lom-ITP, Lom-OK and Lom-NPF1). Transcriptomic analysis indicated that several neuropeptides, such as Lom-ACP and Lom-OK, displayed development-specific expression patterns. qRT-PCR data confirmed that most neuropeptide precursors were strongly expressed in the central nervous system. Fifteen neuropeptide genes displayed different expression levels between solitarious and gregarious locusts. These findings provide valuable clues to understand neuropeptide evolution and their functional roles in basic biology and phase transition in locusts.

  16. Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats.

    PubMed

    Sucajtys-Szulc, Elzbieta; Turyn, Jacek; Goyke, Elzbieta; Korczynska, Justyna; Stelmanska, Ewa; Slominska, Ewa; Smolenski, Ryszard T; Rutkowski, Boleslaw; Swierczynski, Julian

    2010-02-01

    Several lines of evidence suggest that malonyl-CoA in the hypothalamus plays an important role in monitoring and modulating body energy balance. In fasted state the level of malonyl-CoA concentration significantly decreases. Simultaneously, orexigenic neuropeptides (NPY - neuropeptide Y, AgRP - agouti-related peptide) genes are expressed at high level, whereas anorexigenic neuropeptides (CART - cocaine-and amphetamine-regulated transcript, POMC - proopiomelanocortin) genes are expressed at low level. When food intake resumes, opposite effect is observed. This study examined the effect of prolonged food restriction, common in humans trying to lose body weight on expression of orexigenic and anorexigenic neuropeptides genes and on malonyl-CoA content in rat whole hypothalamus. We observed an increase of NPY and AgRP mRNA levels in hypothalamus of rats kept on 30 days-long food restriction (50% of the amount of food consumed by controls). Simultaneously, a decrease of CART and POMC mRNA levels occurred. Refeeding caused a decrease in NPY and POMC mRNA levels without effect on AgRP and CART mRNA. Surprisingly, both prolonged food restriction and food restriction/refeeding caused the increase of malonyl-CoA level in whole hypothalamus. In contrast, fasting for 24h caused the decrease of malonyl-CoA level, which was associated with the up-regulation of NPY and AgRP genes expression and down-regulation of CART and POMC genes expression. After refeeding opposite effect was observed. These results indicate that prolonged food restriction and acute fasting, conditions in which energy expenditure exceeds intake, differentially affect malonyl-CoA concentration and similarly affect orexigenic and anorexigenic neuropeptide genes expression in whole rat hypothalamus.

  17. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides.

    PubMed

    Funkelstein, Lydiane; Beinfeld, Margery; Minokadeh, Ardalan; Zadina, James; Hook, Vivian

    2010-12-01

    Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.

  18. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    SciTech Connect

    Gracia, Tannia Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-12-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.

  19. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-01

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  20. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    PubMed Central

    Yang, Ting; Arslanova, Dilyara; Gu, Yongli; Augelli-Szafran, Corinne; Xia, Weiming

    2008-01-01

    Background Deposition of amyloid-β protein (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP). In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E) and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H) binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ*) peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in zebrafish provides a novel

  1. Brain clock driven by neuropeptides and second messengers

    NASA Astrophysics Data System (ADS)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  2. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  3. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles. PMID:25314471

  4. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    PubMed

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  5. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea).

    PubMed

    Christie, Andrew E

    2014-09-15

    Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon β, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.

  6. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  7. Mechanisms involved in the regulation of neuropeptide-mediated neurite outgrowth: a minireview.

    PubMed

    Lestanova, Z; Bacova, Z; Bakos, Jan

    2016-04-01

    The present knowledge, regarding the neuronal growth and neurite extension, includes neuropeptide action in the central nervous system. Research reports have brought much information about the multiple intracellular signaling pathways of neuropeptides. However, regardless of the differences in the local responses elicited by neuropeptides, there exist certain functional similarities in the effects of neuropeptides, mediated by their receptors. In the present review, data of the relevant studies, focused on G protein-coupled receptors activated by neuropeptides, are summarized. Particularly, receptors that activate phosphatidylinositol-calcium system and protein kinase C pathways, resulting in the reorganization of the neuronal cytoskeleton and changes in the neuronal morphology, are discussed. Based on our data received, we are showing that oxytocin increases the gene expression of GTPase cell division cycle protein 42 (Cdc42), implicated in many aspects of the neuronal growth and morphology. We are also paying a special attention to neurite extension and retraction in the context of neuropeptide regulation. PMID:27560639

  8. Neuropeptide Receptor Transcript Expression Levels and Magnitude of Ionic Current Responses Show Cell Type-Specific Differences in a Small Motor Circuit

    PubMed Central

    Garcia, Veronica J.; Daur, Nelly; Temporal, Simone; Schulz, David J.

    2015-01-01

    We studied the relationship between neuropeptide receptor transcript expression and current responses in the stomatogastric ganglion (STG) of the crab, Cancer borealis. We identified a transcript with high sequence similarity to crustacean cardioactive peptide (CCAP) receptors in insects and mammalian neuropeptide S receptors. This transcript was expressed throughout the nervous system, consistent with the role of CCAP in a range of different behaviors. In the STG, single-cell qPCR showed expression in only a subset of neurons. This subset had previously been shown to respond to CCAP with the activation of a modulator-activated inward current (IMI), with one exception. In the one cell type that showed expression but no IMI responses, we found CCAP modulation of synaptic currents. Expression levels within STG neuron types were fairly variable, but significantly different between some neuron types. We tested the magnitude and concentration dependence of IMI responses to CCAP application in two identified neurons, the lateral pyloric (LP) and the inferior cardiac (IC) neurons. LP had several-fold higher expression and showed larger current responses. It also was more sensitive to low CCAP concentrations and showed saturation at lower concentrations, as sigmoid fits showed smaller EC50 values and steeper slopes. In addition, occlusion experiments with proctolin, a different neuropeptide converging onto IMI, showed that saturating concentrations of CCAP activated all available IMI in LP, but only approximately two-thirds in IC, the neuron with lower receptor transcript expression. The implications of these findings for comodulation are discussed. PMID:25926455

  9. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons

    PubMed Central

    Adori, Csaba; Barde, Swapnali; Bogdanovic, Nenad; Uhlén, Mathias; Reinscheid, Rainer R.; Kovacs, Gabor G.; Hökfelt, Tomas

    2015-01-01

    Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS make the NPS–NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions. PMID:26441556

  10. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  11. Insect capa neuropeptides impact desiccation and cold tolerance.

    PubMed

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  12. "Neuropeptides in the brain defense against distant organ damage".

    PubMed

    Hamasaki, Mike Yoshio; Barbeiro, Hermes Vieira; Barbeiro, Denise Frediani; Cunha, Débora Maria Gomes; Koike, Marcia Kiyomi; Machado, Marcel Cerqueira César; Pinheiro da Silva, Fabiano

    2016-01-15

    Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.

  13. Toward a consensus nomenclature for insect neuropeptides and peptide hormones.

    PubMed

    Coast, Geoffrey M; Schooley, David A

    2011-03-01

    The nomenclature currently in use for insect neuropeptide and peptide hormone families is reviewed and suggestions are made as to how it can be rationalized. Based upon this review, a number of conventions are advanced as a guide to a more rationale nomenclature. The scheme that is put forward builds upon the binomial nomenclature scheme proposed by Raina and Gäde in 1988, when just over 20 insect neuropeptides had been identified. Known neuropeptides and peptide hormones are assigned to 32 structurally distinct families, frequently with overlapping functions. The names given to these families are those that are currently in use, and describe a biological function, homology to known invertebrate/vertebrate peptides, or a conserved structural motif. Interspecific isoforms are identified using a five-letter code to indicate genus and species names, and intraspecific isoforms are identified by Roman or Arabic numerals, with the latter used to signify the order in which sequences are encoded on a prepropeptide. The proposed scheme is sufficiently flexible to allow the incorporation of novel peptides, and could be extended to other arthropods and non-arthropod invertebrates. PMID:21093513

  14. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  15. [Modification of the FF neuropeptide enhances its hypertensive effect].

    PubMed

    Kapel'ko, V I; Bespalova, Zh D; Efremov, E E; Lakomkin, V L; Orlova, Ts R; Lakomkin, S V; Sidorova, M V; Az'muko, A A; Molokoedov, A S; Sharf, T V

    2009-05-01

    Neuropeptide FF (H-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) injected intravenously temporarily enhanced the arterial pressure (AP) and the heart rate (HR). However, its role in the regulation of blood circulation is obscure. To study the properties of the molecule, its analogue was synthesized, in which proline in position 7 was substituted with glycine, and leucine in the position 2 with norleucine. Modified neuropeptide FF (FFm) also temporarily and in a dose-dependent manner increased the AP and HR; however, the equal degree of increase was reached at doses of FFm being 5-7 times lesser as compared with the natural peptide. The application of the FFm at hemorrhagic shock excluded mortality of animals during the experiment, considerably increased the degree of AP and HR restoration in the remaining experiments, and improved the survival of animals in 24 hours. It has been found that the level of antibodies to the fragment of hFF1 receptor in the serum is lower in spontaneously hypertensive rats SHR as compared with Wistar rats, but it is increased in patients of cardiological profile as compared with donors. The findings suggest involvement of neuropeptide FF in the regulation of blood circulation; however, the precise mechanisms remain to be determined.

  16. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates

    PubMed Central

    Elphick, Maurice R.; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom. PMID:24994999

  17. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity

    PubMed Central

    Boughton, C K; Murphy, K G

    2013-01-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23121386

  18. A Novel CaM Kinase II Pathway Controls the Location of Neuropeptide Release from Caenorhabditis elegans Motor Neurons

    PubMed Central

    Hoover, Christopher M.; Edwards, Stacey L.; Yu, Szi-chieh; Kittelmann, Maike; Richmond, Janet E.; Eimer, Stefan; Yorks, Rosalina M.; Miller, Kenneth G.

    2014-01-01

    Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II. PMID:24653209

  19. Reproductive neuropeptides: prevalence of GnRH and KNDy neural signalling components in a model avian, gallus gallus.

    PubMed

    Joseph, Nerine T; Tello, Javier A; Bedecarrats, Gregoy Y; Millar, Robert P

    2013-09-01

    Diverse external and internal environmental factors are integrated in the hypothalamus to regulate the reproductive system. This is mediated through the pulsatile secretion of GnRH into the portal system to stimulate pituitary gonadotrophin secretion, which in turn regulates gonadal function. A single subpopulation of neurones termed 'KNDy neurones' located in the hypothalamic arcuate nucleus co-localise kisspeptin (Kiss), neurokinin B (NKB) and dynorphin (Dyn) and are responsive to negative feedback effects of sex steroids. The co-ordinated secretion from KNDy neurones appears to modulate the pulsatile release of GnRH, acting as a proximate pacemaker. This review briefly describes the neuropeptidergic control of reproduction in the avian class, highlighting the status of reproductive neuropeptide signalling systems homologous to those found in mammalian genomes. Genes encoding the GnRH system are complete in the chicken with similar roles to the mammalian counterparts, whereas genes encoding Kiss signalling components appear missing in the avian lineage, indicating a differing set of hypothalamic signals controlling avian reproduction. Gene sequences encoding both NKB and Dyn signalling components are present in the chicken genome, but expression analysis and functional studies remain to be completed. The focus of this article is to describe the avian complement of neuropeptidergic reproductive hormones and provide insights into the putative mechanisms that regulate reproduction in birds. These postulations highlight differences in reproductive strategies of birds in terms of gonadal steroid feedback systems, integration of metabolic signals and seasonality. Also included are propositions of KNDy neuropeptide gene silencing and plasticity in utilisation of these neuropeptides during avian evolution.

  20. Increased prepubertal body weight enhances leptin sensitivity in proopiomelanocortin and neuropeptide y neurons before puberty onset in female rats.

    PubMed

    Castro-González, David; Fuente-Martín, Esther; Sánchez-Garrido, Miguel A; Argente-Arizón, Pilar; Tena-Sempere, Manuel; Barrios, Vicente; Chowen, Julie A; Argente, Jesús

    2015-04-01

    Pubertal onset may be advanced by obesity, with leptin potentially acting as a permissive factor. We hypothesized that having increased body weight (BW) prepubertally affects the ability of leptin to activate intracellular signaling pathways and modulate the expression of hypothalamic neuropeptides involved in reproduction and metabolism. Because being raised in small litters (SLs) tends to increase BW at weaning, female rats were raised in litters of 4 or large litters (LLs) of 12 pups. Leptin (3 μg/g BW) or vehicle (saline) was injected sc at postnatal day (PND) 21 and 30. Rats raised in SLs weighed more at both ages, but relative visceral and subcutaneous fat was increased only on PND21. Serum leptin levels were not different at PND21 or PND30. At PND21, key elements of intracellular leptin signaling (phosphorylated signal transducer and activator of transcription 3 and phosphorylated Akt [p-Akt]) were lower in SL than in LL rats. Leptin injection stimulated phosphorylated signal transducer and activator of transcription 3 in both groups, with a greater increase in LL, whereas p-Akt rose only in SL rats. At PND30, basal leptin signaling did not differ between LL and SL rats. Leptin activation of Akt was similar at 45 minutes, but at 2 hours p-AKT levels were higher in SL than in LL rats, as was the decrease in neuropeptide Y mRNA and increase in pro-opiomelanocortin mRNA levels. No change in the reproductive axis was found. Thus, being raised in SLs increases BW and visceral body fat content, fails to increase plasma leptin concentrations, and increases the leptin responsiveness of both neuropeptide Y and pro-opiomelanocortin cells in the prepubertal hypothalamus.

  1. Intranasally Administered Neuropeptide S (NPS) Exerts Anxiolytic Effects Following Internalization Into NPS Receptor-Expressing Neurons

    PubMed Central

    Ionescu, Irina A; Dine, Julien; Yen, Yi-Chun; Buell, Dominik R; Herrmann, Leonie; Holsboer, Florian; Eder, Matthias; Landgraf, Rainer; Schmidt, Ulrike

    2012-01-01

    Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor–ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans. PMID:22278093

  2. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process

    PubMed Central

    Zink, Anastasia N.; Perez-Leighton, Claudio Esteban; Kotz, Catherine M.

    2014-01-01

    There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1) How do orexin peptides modulate physical activity? (2) What are the effects of aging and lifestyle choices on physical activity? (3) What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes. PMID:25408639

  3. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence.

    PubMed

    Gilpin, Nicholas W

    2012-12-01

    Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.

  4. The stress response neuropeptide CRF increases amyloid-β production by regulating γ-secretase activity

    PubMed Central

    Park, Hyo-Jin; Ran, Yong; Jung, Joo In; Holmes, Oliver; Price, Ashleigh R; Smithson, Lisa; Ceballos-Diaz, Carolina; Han, Chul; Wolfe, Michael S; Daaka, Yehia; Ryabinin, Andrey E; Kim, Seong-Hun; Hauger, Richard L; Golde, Todd E; Felsenstein, Kevin M

    2015-01-01

    The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by β-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activityin vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ-secretase. PMID:25964433

  5. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  6. Role of the neuropeptide, bombesin, in bile secretion.

    PubMed Central

    Cho, W. K.

    1997-01-01

    Since ancient times, bile secretion has been considered vital for maintaining health. One of the main functions of bile secretion is gastric acid neutralization with biliary bicarbonate during a meal or Pavlovian response. Although the liver has many extrinsic and intrinsic nerve innervations, the functional role of these nerves in biliary physiology is poorly understood. To understand the role of neural regulation in bile secretion, our recent studies on the effect of bombesin, a neuropeptide, on bile secretion and its underlying mechanisms will be reviewed. Using isolated perfused rat livers (IPRL) from both normal and 2 week bile duct ligated rats, as well as hepatocyte couplets and isolated bile duct units (IBDU) from normal rat livers, bombesin was shown to stimulate biliary bicarbonate and fluid secretion from bile ducts. Detailed pH studies indicated that bombesin stimulated the activity of Cl-/HCO3- exchanger, which was counterbalanced by a secondary activation of electrogenic Na+/HCO3- symport. Quantitative videomicroscopic studies showed that bombesin-stimulated fluid secretion in IBDU was dependent on Cl- and HCO3- in the media, anion exchanger(s), Cl- and K+ channels, and carbonic anhydrase, but not on the microtubular system. Furthermore, this bombesin response is inhibited by somatostatin but not substance P. Finally, studies of secondary messengers in isolated cholangiocytes and IBDU indicated that bombesin had no effect on intracellular cAMP, cGMP, or Ca++ levels in cholangiocytes. These results provide evidence that neuropeptides such as bombesin can directly stimulate fluid and bicarbonate secretion from cholangiocytes by activating luminal Cl-/HCO3- exchange, but by different mechanisms from those established for secretin. These findings, in turn, suggest that neuropeptides may play an important regulatory role in biliary transport and secretion. Thus, this neuropeptidergic regulation of bile secretion may provide a plausible mechanism for the

  7. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).

    PubMed

    In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail

    2016-08-01

    The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation. PMID:27328253

  8. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication.

    PubMed

    Ma, Wenhui; Zhang, Xuemin; Shi, Shushan; Zhang, Yingze

    2013-06-01

    Neuropeptides released from the skeletal nerve fibers have neurotransmitter and immunoregulatory roles; they exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), Neuropeptide Y (NPY) and tyrosine hydroxylase (TH) on the cell viability and function of the human osteoblasts, and comparing their difference in the role of regulating bone formation. Cultures of normal human osteoblasts were treated with SP, CGRP, VIP, NPY or TH at three concentrations. We found that each of the five neuropeptides induced increases in cell viability of human osteoblasts. The stimulatory action of NPY was the highest, followed by VIP, SP and TH, while CGRP had the lowest stimulatory effect. The viability index of osteoblasts was inversely associated with the concentration of neuropeptides, and positively with the time of exposure. Moreover, the five neuropeptides increased the ALP activity and osteocalcin to different extents in a dose-dependent manner. The GJIC of osteoblasts was significantly promoted by neuropeptides. The results demonstrated that neuropeptides released from skeletal nerve endings after a stimulus appeared to be able to induce the proliferation and activity of osteoblasts via enhancing GJIC between cells, and further influence the bone formation. These findings may contribute toward a better understanding of the neural influence on bone remodeling and improving treatments related to bone diseases.

  9. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).

    PubMed

    In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail

    2016-08-01

    The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.

  10. CGRP as a neuropeptide in migraine: lessons from mice

    PubMed Central

    Russo, Andrew F

    2015-01-01

    Migraine is a neurological disorder that is far more than just a bad headache. A hallmark of migraine is altered sensory perception. A likely contributor to this altered perception is the neuropeptide calcitonin gene-related peptide (CGRP). Over the past decade, CGRP has become firmly established as a key player in migraine. Although the mechanisms and sites of action by which CGRP might trigger migraine remain speculative, recent advances with mouse models provide some hints. This brief review focuses on how CGRP might act as both a central and peripheral neuromodulator to contribute to the migraine-like symptom of light aversive behaviour in mice. PMID:26032833

  11. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer's disease.

    PubMed

    Angelucci, Francesco; Gelfo, Francesca; Fiore, Marco; Croce, Nicoletta; Mathé, Aleksander A; Bernardini, Sergio; Caltagirone, Carlo

    2014-08-01

    Alzheimer's disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ's pathogenic fragment 25-35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca(2+) influx in pre- and post-synaptic neurons.

  12. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  13. Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides.

    PubMed

    Hori, I

    1997-01-01

    The regeneration blastema consists of three cell types, undifferentiated cells, regenerative cells, and differentiated cells all of which can be identified by their ultrastructural characteristics. Quantitative changes in the numbers of these cells within the blastema offer important clues about the detailed process of regeneration. When decapitated worms were allowed to regenerate in neuropeptide-containing tap water, the undifferentiated cells accumulated rapidly and initiated blastema formation. These cells were then replaced with regenerative cells, and subsequently with differentiated cells. In the non-treated regenerating worms, the proportion of undifferentiated cells was much lower than in the neuropeptide-treated ones. The results of this study indicate that neuropeptides have a remarkable effect on the early stage of regeneration in planarians. Immunoelectron microscopy using a gold-conjugated anti-neuropeptide antiserum revealed the presence of neuropeptides in some kinds of parenchymal cells in the post-blastemal area.

  14. A Novel Heterocyclic Compound CE-104 Enhances Spatial Working Memory in the Radial Arm Maze in Rats and Modulates the Dopaminergic System.

    PubMed

    Aher, Yogesh D; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H; Leban, Johann J; Lubec, Gert

    2016-01-01

    Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug's ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626

  15. A Novel Heterocyclic Compound CE-104 Enhances Spatial Working Memory in the Radial Arm Maze in Rats and Modulates the Dopaminergic System

    PubMed Central

    Aher, Yogesh D.; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R.; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H.; Leban, Johann J.; Lubec, Gert

    2016-01-01

    Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626

  16. Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis.

    PubMed

    Rauner, Martina; Thiele, Sylvia; Sinningen, Kathrin; Winzer, Maria; Salbach-Hirsch, Juliane; Gloe, Ina; Peschke, Katrin; Haegeman, Guy; Tuckermann, Jan P; Hofbauer, Lorenz C

    2013-10-01

    Glucocorticoids (GCs) are potent drugs to treat rheumatoid arthritis but exert adverse skeletal effects. Compound A (CpdA) is a selective GC receptor modulator with an improved risk/benefit profile in mouse models of inflammation and bone loss. Here we tested whether CpdA also exerts bone-sparing effects under proinflammatory circumstances using the collagen-induced arthritis model, a murine model of rheumatoid arthritis. CpdA decreased disease activity, paw swelling, and the paw temperature by 43%, 12%, and 7%, respectively, but was less potent than dexamethasone (DEX), which reduced these parameters by 72%, 22%, and 10%, respectively. Moreover, T cells isolated from CpdA- and DEX-treated animals were less active based on proliferation rates after challenge with type II collagen and produced smaller amounts of interferon-γ and TNF as compared with T cells from PBS-treated mice. Histological assessment of the joints confirmed the weaker potency of CpdA as compared with DEX in preventing infiltration of inflammatory cells, induction of osteoclastogenesis, and destruction of articular cartilage. Due to the lack of GC-susceptible arthritis models, we were not able to fully address the bone-sparing potential of CpdA in inflammatory conditions. Nevertheless, the bone formation marker procollagen type 1 N-terminal peptide, a surrogate marker for GC-mediated suppression of bone formation, was significantly decreased by DEX in arthritic mice but not by CpdA. Our data indicate that CpdA moderately suppresses inflammation, whereas the concurrent effects on bone remain unknown. In light of its narrow therapeutic range, CpdA may be more useful as a molecular tool for dissecting GC actions rather than a therapeutic agent.

  17. Effects of the selective glucocorticoid receptor modulator compound A on bone metabolism and inflammation in male mice with collagen-induced arthritis.

    PubMed

    Rauner, Martina; Thiele, Sylvia; Sinningen, Kathrin; Winzer, Maria; Salbach-Hirsch, Juliane; Gloe, Ina; Peschke, Katrin; Haegeman, Guy; Tuckermann, Jan P; Hofbauer, Lorenz C

    2013-10-01

    Glucocorticoids (GCs) are potent drugs to treat rheumatoid arthritis but exert adverse skeletal effects. Compound A (CpdA) is a selective GC receptor modulator with an improved risk/benefit profile in mouse models of inflammation and bone loss. Here we tested whether CpdA also exerts bone-sparing effects under proinflammatory circumstances using the collagen-induced arthritis model, a murine model of rheumatoid arthritis. CpdA decreased disease activity, paw swelling, and the paw temperature by 43%, 12%, and 7%, respectively, but was less potent than dexamethasone (DEX), which reduced these parameters by 72%, 22%, and 10%, respectively. Moreover, T cells isolated from CpdA- and DEX-treated animals were less active based on proliferation rates after challenge with type II collagen and produced smaller amounts of interferon-γ and TNF as compared with T cells from PBS-treated mice. Histological assessment of the joints confirmed the weaker potency of CpdA as compared with DEX in preventing infiltration of inflammatory cells, induction of osteoclastogenesis, and destruction of articular cartilage. Due to the lack of GC-susceptible arthritis models, we were not able to fully address the bone-sparing potential of CpdA in inflammatory conditions. Nevertheless, the bone formation marker procollagen type 1 N-terminal peptide, a surrogate marker for GC-mediated suppression of bone formation, was significantly decreased by DEX in arthritic mice but not by CpdA. Our data indicate that CpdA moderately suppresses inflammation, whereas the concurrent effects on bone remain unknown. In light of its narrow therapeutic range, CpdA may be more useful as a molecular tool for dissecting GC actions rather than a therapeutic agent. PMID:23885015

  18. ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake.

    PubMed

    Wardman, Jonathan H; Berezniuk, Iryna; Di, Shi; Tasker, Jeffrey G; Fricker, Lloyd D

    2011-01-01

    ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat) mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat) mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.

  19. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    PubMed Central

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  20. Regional distribution of neuropeptide processing endopeptidases in adult rat brain.

    PubMed

    Berman, Y L; Rattan, A K; Carr, K; Devi, L

    1994-01-01

    Many peptide hormone and neuropeptide precursors undergo post-translational processing at mono- and/or dibasic residues. An enzymatic activity capable of processing prodynorphin at a monobasic processing site designated 'dynorphin converting enzyme' has been previously reported in rat rain and bovine pituitary. In this study the distribution of dynorphin converting enzyme activity in ten regions of rat brain has been compared with the distribution of subtilisin-like processing enzymes and with the immuno-reactive dynorphin peptides. The distribution of dynorphin converting enzyme activity generally matches the distribution of immuno-reactive dynorphin B-13 in most but not all brain regions. The regions that are known to have a relatively large number of immuno-reactive dynorphin-neurons also contain high levels of dynorphin converting enzyme activity. The distribution of dynorphin converting enzyme activity does not match the distribution of subtilisin-like processing enzyme or carboxypeptidase E activities. Taken together the data support the possibility that the dynorphin converting enzyme is involved in the maturation of dynorphin, as well as other neuropeptides, and peptide hormones.

  1. Immunopathological study of neuropeptide expression in human salivary gland neoplasms.

    PubMed

    Hayashi, Y; Deguchi, H; Nakahata, A; Kurashima, C; Hirokawa, K

    1990-01-01

    The immunoreactivity of anti-neuron-specific enolase (NSE) and anti-Leu-7 on formalin-fixed sections of human salivary gland neoplasms was determined by the avidin-biotin-peroxidase complex method. In addition, neuropeptides, such as vasoactive intestinal polypeptide, somatostatin, and substance P, in human salivary gland neoplasms were expressed, whereas other polypeptides, including glucagon, cholecystokinin, leu-enkephalin and calcitonin, were absent. When 182 paraffin-embedded examples of human salivary gland tumors, including 112 benign and 70 malignant neoplasms, were examined immunohistochemically, positive immunoreactivity was observed in: 51 cases with NSE (59%) and 46 cases with Leu-7 (54%) of 86 pleomorphic adenomas; 11 cases with Leu-7 (61%) of 18 Warthin's tumors; 7 cases with Leu-7 (58%) of 12 acinic cell carcinomas; 5 cases with NSE (31%) of 16 adenoid cystic carcinomas; 5 cases with NSE (42%) and 4 cases with Leu-7 (33%) of 12 adenocarcinomas; 4 cases with NSE (25%) and 6 cases with Leu-7 (38%) of 16 undifferentiated carcinomas. The other tumors, such as oxyphilic adenomas, basal cell adenomas, epidermoid carcinomas, and mucoepidermoid carcinomas, were nonreactive. Neuropeptides were observed in the neoplastic epithelial cells of certain tumors such as Warthin's tumors, acinic cell carcinomas, adenocarcinomas and undifferentiated carcinomas. These findings suggest the possibility that cells of neuroendocrine origin, present in certain neoplastic salivary gland epithelia may play a significant role in the histogenesis of human salivary gland neoplasms.

  2. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    PubMed

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  3. From a marine neuropeptide to antimicrobial pseudopeptides containing aza-β(3)-amino acids: structure and activity

    PubMed Central

    Laurencin, Mathieu; Legrand, Baptiste; Duval, Emilie; Henry, Joël; Baudy-Floc'H, Michèle; Zatylny-Gaudin, Céline; Bondon, Arnaud

    2012-01-01

    Incorporation of aza-β3-amino acids into endogenous neuropeptide from mollusks (ALSGDAFLRF-NH2) with weak antimicrobial activities allows us to design new AMPs sequences. We find that, depending on the nature of the substitution, these could result either in inactive pseudopeptides or in a drastic enhancement of the antimicrobial activity without high cytotoxicity resulted. Structural studies perform by NMR and circular dichroism on the pseudopeptides show the impact of aza-β3-amino acids on the peptide structures. We obtain the first three-dimensional structures of pseudopeptides containing aza-β3-amino acids in aqueous micellar SDS and demonstrate that hydrazino turn can be formed in aqueous solution. Overall, these results demonstrate the ability to modulate AMPs activities through structural modifications induced by the nature and the position of these amino acid analogs in the peptide sequences. PMID:22320306

  4. The relationship between reinforcement and memory: parallels in the rewarding and mnemonic effects of the neuropeptide substance P.

    PubMed

    Huston, J P; Oitzl, M S

    1989-01-01

    A theory of reinforcement is presented which accounts for the backward action of a reinforcer on operant behavior in terms of its effect on memory traces left by the operant. Several possible ways in which a reinforcer could strengthen the probability of recurrence of an operant are discussed. Predictions from the model regarding general memory-promoting effects of reinforcers presented posttrial in various learning paradigms are outlined. The theory also predicts a parallelism in reinforcing and memory-promoting effects of stimuli, including drugs. The second part of the chapter outlines experiments investigating memory modulating and reinforcing effects of the neuropeptide substance P. In general, injection of SP is positively reinforcing when injected into parts of the brain where it has been shown to facilitate learning. Peripheral injection of SP is also reinforcing at the dose known to promote passive avoidance learning when presented posttrial.

  5. Neuronal Expression of the Human Neuropeptide S Receptor NPSR1 Identifies NPS-Induced Calcium Signaling Pathways

    PubMed Central

    Erdmann, Frank; Kügler, Sebastian; Blaesse, Peter; Lange, Maren D.; Skryabin, Boris V.; Pape, Hans-Christian; Jüngling, Kay

    2015-01-01

    The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons. PMID:25714705

  6. The roles of neuropeptides in Caenorhabditis elegans including their importance in the regulation of feeding and metabolism.

    PubMed

    Holden-Dye, Lindy; Walker, Robert J

    2013-06-01

    C. elegans has 302 neurons (in the adult hermaphrodite) and this simple nervous system harbours over 250 neuropeptides. Neuropeptides are a class of signalling molecule implicated in key physiological roles and thus confer a surprising level of complexity to signalling in this nematode. Indeed, it is probable that most, if not all, sensory, motor and interneurons, in C. elegans synthesise and release at least one neuropeptide but that many neurons synthesise an array of neuropeptides. In this review neuropeptides and their receptors with specific roles in feeding, metabolism, reproduction and locomotion are discussed. It is noted that the majority of C. elegans neuropeptides do not yet have defined roles and their cognate receptors have not yet been identified. Future studies will serve to provide further fundamental insight into how neuropeptide signalling can underpin animal behaviour.

  7. Modulation of the behavioral and electrical responses to the repellent DEET elicited by the pre-exposure to the same compound in Blattella germanica.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; González-Audino, Paola A

    2016-01-01

    Insects under different stimuli from the environment modify behavioural responses due to changes in the sensitivity of neurons at the peripheral and/or at the central level of the nervous system. This phenomenon is called neuronal plasticity, and sensory adaptation is an example of it. An insect repellent is a chemical that produces oriented movements of the insects away from its source. In this work we studied the modulation of the behavioural and electrical response to the repellent N, N-diethyl-3-methylbenzamide (DEET) in males of the German cockroach B. germanica produced by previous exposure to the same repellent. Methods. We determined repellency using a circular arena, one half of which was treated with DEET. The time spent by insects in each half of the arena was measured, and a repellency coefficient (RC) was calculated. The RCs of pre-exposed and non-pre-exposed insects were compared. To determine a possible role of nitric oxide in the modulation of the response to DEET after pre-exposure, the nitric oxide donor S-nitroso-acetyl-cysteine (SNAC) was applied on cockroaches' antennae. The electrical activity of the cockroaches' antennae in response to DEET was recorded using electroantennogram (EAG) technique. The response to DEET was recorded also after a long stimulation with the same repellent, and after topical application of SNAC and dbcGMP (a cGMP analogue) on the antennae. Results. We found that previous exposure of B. germanica males to the repellent DEET produced an increase of the repellency at the behavioural level, measured as RC. A possible role of nitric oxide (NO) in the transduction pathway of this phenomenon is suggested, since treatment of the cockroaches with the NO donor SNAC also produced an increase of the repellency elicited by DEET. On the other hand, the response of the cockroaches' antennae exposed to DEET was determined electrophysiologically. The electrical activity in response to DEET decreased when the insects' antennae were

  8. Modulation of the behavioral and electrical responses to the repellent DEET elicited by the pre-exposure to the same compound in Blattella germanica.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; González-Audino, Paola A

    2016-01-01

    Insects under different stimuli from the environment modify behavioural responses due to changes in the sensitivity of neurons at the peripheral and/or at the central level of the nervous system. This phenomenon is called neuronal plasticity, and sensory adaptation is an example of it. An insect repellent is a chemical that produces oriented movements of the insects away from its source. In this work we studied the modulation of the behavioural and electrical response to the repellent N, N-diethyl-3-methylbenzamide (DEET) in males of the German cockroach B. germanica produced by previous exposure to the same repellent. Methods. We determined repellency using a circular arena, one half of which was treated with DEET. The time spent by insects in each half of the arena was measured, and a repellency coefficient (RC) was calculated. The RCs of pre-exposed and non-pre-exposed insects were compared. To determine a possible role of nitric oxide in the modulation of the response to DEET after pre-exposure, the nitric oxide donor S-nitroso-acetyl-cysteine (SNAC) was applied on cockroaches' antennae. The electrical activity of the cockroaches' antennae in response to DEET was recorded using electroantennogram (EAG) technique. The response to DEET was recorded also after a long stimulation with the same repellent, and after topical application of SNAC and dbcGMP (a cGMP analogue) on the antennae. Results. We found that previous exposure of B. germanica males to the repellent DEET produced an increase of the repellency at the behavioural level, measured as RC. A possible role of nitric oxide (NO) in the transduction pathway of this phenomenon is suggested, since treatment of the cockroaches with the NO donor SNAC also produced an increase of the repellency elicited by DEET. On the other hand, the response of the cockroaches' antennae exposed to DEET was determined electrophysiologically. The electrical activity in response to DEET decreased when the insects' antennae were

  9. Modulation of the behavioral and electrical responses to the repellent DEET elicited by the pre-exposure to the same compound in Blattella germanica

    PubMed Central

    Mougabure-Cueto, Gastón A.; González-Audino, Paola A.

    2016-01-01

    Insects under different stimuli from the environment modify behavioural responses due to changes in the sensitivity of neurons at the peripheral and/or at the central level of the nervous system. This phenomenon is called neuronal plasticity, and sensory adaptation is an example of it. An insect repellent is a chemical that produces oriented movements of the insects away from its source. In this work we studied the modulation of the behavioural and electrical response to the repellent N, N-diethyl-3-methylbenzamide (DEET) in males of the German cockroach B. germanica produced by previous exposure to the same repellent. Methods. We determined repellency using a circular arena, one half of which was treated with DEET. The time spent by insects in each half of the arena was measured, and a repellency coefficient (RC) was calculated. The RCs of pre-exposed and non-pre-exposed insects were compared. To determine a possible role of nitric oxide in the modulation of the response to DEET after pre-exposure, the nitric oxide donor S-nitroso-acetyl-cysteine (SNAC) was applied on cockroaches’ antennae. The electrical activity of the cockroaches’ antennae in response to DEET was recorded using electroantennogram (EAG) technique. The response to DEET was recorded also after a long stimulation with the same repellent, and after topical application of SNAC and dbcGMP (a cGMP analogue) on the antennae. Results. We found that previous exposure of B. germanica males to the repellent DEET produced an increase of the repellency at the behavioural level, measured as RC. A possible role of nitric oxide (NO) in the transduction pathway of this phenomenon is suggested, since treatment of the cockroaches with the NO donor SNAC also produced an increase of the repellency elicited by DEET. On the other hand, the response of the cockroaches’ antennae exposed to DEET was determined electrophysiologically. The electrical activity in response to DEET decreased when the insects’ antennae

  10. Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus.

    PubMed

    Howell, Owain W; Doyle, Kharen; Goodman, Jeffrey H; Scharfman, Helen E; Herzog, Herbert; Pringle, Ashley; Beck-Sickinger, Annette G; Gray, William P

    2005-05-01

    Adult dentate neurogenesis is important for certain types of hippocampal-dependent learning and also appears to be important for the maintenance of normal mood and the behavioural effects of antidepressants. Neuropeptide Y (NPY), a peptide neurotransmitter released by interneurons in the dentate gyrus, has important effects on mood, anxiety-related behaviour and learning and memory. We report that adult NPY receptor knock-out mice have significantly reduced cell proliferation and significantly fewer immature doublecortin-positive neurons in the dentate gyrus. We also show that the neuroproliferative effect of NPY is dentate specific, is Y1-receptor mediated and involves extracellular signal-regulated kinase (ERK)1/2 activation. NPY did not exhibit any effect on cell survival in vitro but constitutive loss of the Y1 receptor in vivo resulted in greater survival of newly generated neurons and an unchanged total number of dentate granule cells. These results show that NPY stimulates neuronal precursor proliferation in the dentate gyrus and suggest that NPY-releasing interneurons may modulate dentate neurogenesis.

  11. An immunohistochemical localization of neuropeptide Y (NPY) in its amidated form in human frontal cortex.

    PubMed

    Blinkenberg, M; Kruse-Larsen, C; Mikkelsen, J D

    1990-01-01

    The distribution of neuropeptide Y (NPY)-immunoreactive neurons was studied in human frontal cerebral cortex from surgical biopsy specimens by immunohistochemical techniques. NPY-containing neurons were identified in all cortical sublayers except sublayer I. The stained neurons were of the multipolar, bitufted, round or triangular form with dendritic and axonal processes. The immunoreactive neurons were considered to be cortical interneurons, due to their nonpyramidal form, and since their processes could be followed intracortically particularly in direction to superficial cortical layers. The NPY precursor molecule is processed to NPY by a dibasic cleavage, and NPY is further enzymatically amidated before release and receptor activation can be achieved. Antisera raised against Cys-NPY(32-36)amide recognize amidated NPY not cross-reacting with nonamidated NPY. These antisera and immunohistochemistry revealed the presence of a population of NPYamide-immunoreactive cells morphologically indistinguishable from the NPY-immunoreactive cells in the human frontal cortex. By comparing the number of immunoreactive cells in adjacent sections, it appears that the number of NPY-immunoreactive cells was higher than those immunoreactive to NPYamide. Also, the density of NPY fibers was much higher compared with the number stained with NPYamide antiserum. The present immunohistochemical study indicates that NPY in its amidated form is contained in a subpopulation of human cortical NPY-immunoreactive neurons and may participate as an active neurotransmitter/modulator within the human cerebral cortex.

  12. Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells.

    PubMed

    Cheung, Angela; Newland, Philip L; Zaben, Malik; Attard, George S; Gray, William P

    2012-06-01

    Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.

  13. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila

    PubMed Central

    Hentze, Julie L.; Carlsson, Mikael A.; Kondo, Shu; Nässel, Dick R.; Rewitz, Kim F.

    2015-01-01

    Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs. PMID:26123697

  14. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  15. Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor.

    PubMed Central

    Hu, R M; Levin, E R

    1994-01-01

    The important intracellular mechanisms of astrocyte growth are not well defined. Using an inhibitor of astrocyte proliferation, atrial natriuretic peptide (ANP), and the glial mitogen endothelin (ET-3), we sought a common pathway for growth regulation in these neural cells. In cultured fetal rat diencephalic astrocytes, ANP selectively and rapidly inhibited the Tis 8 immediate early gene and protein. After 4 h, ANP selectively inhibited the basic fibroblast growth factor (bFGF) gene and protein. ET-3 significantly stimulated both Tis 8 and bFGF mRNAs and protein, but also stimulated several other immediate early and growth factor/receptor genes. An antisense oligonucleotide to Tis 8 strongly prevented ET-stimulated thymidine incorporation, while the inhibitory action of ANP was enhanced. The Tis 8 antisense oligonucleotide also significantly reversed ET-stimulated bFGF transcription and enhanced the bFGF inhibition caused by ANP. In addition, an antisense oligonucleotide to bFGF significantly reversed the ET-stimulated thymidine incorporation and enhanced the ANP inhibition of DNA synthesis. The sequential modulation of Tis 8, followed by bFGF, provides a novel mechanism for both positive and negative regulation of astrocyte growth by endogenous neuropeptides. Images PMID:8163680

  16. Central administration of neuropeptide FF and related peptides attenuate systemic morphine analgesia in mice.

    PubMed

    Fang, Quan; Jiang, Tian-nan; Li, Ning; Han, Zheng-lan; Wang, Rui

    2011-04-01

    Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in the control of pain and analgesia through interactions with the opioid system. However, very few studies examined the effect of supraspinal NPFF system on analgesia induced by opiates administered at the peripheral level. In the present study, intracerebroventricular (i.c.v.) injection of NPFF (1, 3 and 10 nmol) dose-dependently inhibited systemic morphine (0.12 mg, i.p.) analgesia in the mouse tail flick test. Similarly, i.c.v. administration of dNPA and NPVF, two agonists highly selective for NPFF(2) and NPFF(1) receptors, respectively, decreased analgesia induced by i.p. morphine in mice. Furthermore, these anti-opioid activities of NPFF and related peptides were blocked by pretreatment with the NPFF receptors selective antagonist RF9 (10 nmol, i.c.v.). These results demonstrate that activation of central NPFF(1) and NPFF(2) receptors has the similar anti-opioid actions on the antinociceptive effect of systemic morphine.

  17. Neuropeptide FF inhibits LPS-mediated osteoclast differentiation of RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Li, Di-Jie; Zhao, Fan; Ma, Xiao-Li; Shang, Peng; Yang, Tuanming; Qian, Airong

    2014-01-01

    Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

  18. The anti-inflammatory potential of neuropeptide FF in vitro and in vivo.

    PubMed

    Sun, Yu-Long; Zhang, Xiao-Yuan; Sun, Tao; He, Ning; Li, Jing-Yi; Zhuang, Yan; Zeng, Qian; Yu, Jing; Fang, Quan; Wang, Rui

    2013-09-01

    Neuropeptide FF (NPFF) has many functions in regulating various biological processes. However, little attention has been focused on the anti-inflammatory effect of this peptide. In the present study, the in vitro anti-inflammatory activity of NPFF in both primary peritoneal macrophages and RAW 264.7 macrophages was investigated. Our data showed that NPFF suppressed the nitric oxide (NO) production of macrophages in the inflammation process. RF9, a reported antagonist of NPFF receptors, completely blocked the NPFF-induced NO suppression, suggesting a NPFF receptors-mediated pathway is mainly involved. Down-regulation of the nitric oxide synthases significantly inhibited the NPFF-induced NO reduction, indicating the involvement of nitric oxide synthases. However, the nitric oxide synthases were not the only route by which NPFF modulated the NO levels of macrophages. Pharmacological antagonists of the NF-κB signal pathway also completely suppressed the NPFF-induced NO decline. Moreover, we also observed that NPFF is capable of blocking the LPS-induced nuclear translocation of p65 in macrophages, implying the involvement of the NF-κB signal pathway. Finally, we observed that NPFF markedly attenuated the carrageenan-induced mouse paw edema, indicating that NPFF is capable of exerting anti-inflammatory potency in vivo. Collectively, our findings reveal the potential role of NPFF in the anti-inflammatory field both in vitro and in vivo, which will be helpful for the further exploitation of NPFF utility therapeutically.

  19. Effect of beta-adrenoceptors on the behaviour induced by the neuropeptide glutamic acid isoleucine amide.

    PubMed

    Sánchez-Borzone, Mariela E; Attademo, Andrés; Baiardi, Gustavo; Celis, María Ester

    2007-07-30

    Excessive grooming behaviour is induced by intracerebroventricular injections of the neuropeptide glutamic acid isoleucine amide (neuropeptide-EI), via the activation of A-10 dopaminergic neurons and the noradrenergic system. Our object was to study the latter system involved in these behaviours, using male Wistar rats weighing 250-300 g with i.c.v. implants. The results show that all the adrenoceptor antagonists "per se" do not affect excessive grooming behaviour or motor activity. Intracerebroventricular administration of propranolol, a general beta-adrenoceptor antagonist, before neuropeptide-EI, inhibited the induced excessive grooming behaviour in a dose dependent manner. Metoprolol, a beta(1)-adrenoceptor antagonist, also blocked this behaviour. However, intracerebroventricular injections of phentolamine, an alpha-adrenoceptor antagonist, and ((+/-)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol), a beta(2)-adrenoceptor antagonist, had no effect on the behaviour induced by neuropeptide-EI induced behaviour for any of the doses tested. On the other hand, isoproterenol, a general beta-adrenoceptor agonist and dobutamine, a beta(1)-adrenoceptor agonist, both elicited similar behaviours as those induced by neuropeptide-EI. These results support the hypothesis that a relationship exists between neuropeptide-EI and beta-adrenoceptors, more specifically the beta(1)-adrenoceptor, as found with other similar endogenous peptides such as neurotensin, cholecystin, substance P and alpha-melanocyte stimulating hormone. Hence, neuropeptide-EI could probably be exerting a neuromodulating effect on the central nervous system.

  20. Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides.

    PubMed

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2015-07-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  1. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    PubMed

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  2. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    PubMed

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects. PMID:24625277

  3. RFamide neuropeptide actions on the molluscan ventricle: Interactions with primary neurotransmitters.

    PubMed

    Moulis, A; Huddart, H

    2006-01-01

    Different RFamide neuropeptides, some of non-molluscan origin, were examined for their effect on the ventricles of Buccinum undatum and Busycon canaliculatum. None of the peptides tested were inhibitory on these ventricles. All the peptides were extremely active, causing excitation of the preparations at low concentrations. The neuropeptides were then tested with the primary neurotransmitters. In the case of serotonin, the excitatory primary neurotransmitter, the RFamide neuropeptides induced a response, which was greatly enhanced by serotonin. Acetylcholine, the inhibitory neurotransmitter, induced relaxation whenever added, following a neuropeptide. The neuropeptides seemed to be independent of external Ca(2+), since in Ca(2+)-free media tension was induced. On the contrary, serotonin was dependent on external Ca(2+). These findings indicate that the neuropeptides generated tension via a different receptor to that of the primary neurotransmitters, using a different 2nd messenger and activating different Ca(2+) sources. Finally, the parent neuropeptide Phe-Leu-Arg-Phe-NH(2), when added following a different RFamide peptide, excited the preparation further, thus indicating the presence of a receptor that has higher affinity for some structures than others. When Phe-Met-Arg-Phe-NH(2) followed Phe-Leu-Arg-Phe-NH(2), no such response was recorded since the latter is of higher potency than the former.

  4. More than two decades of research on insect neuropeptide GPCRs: an overview

    PubMed Central

    Caers, Jelle; Verlinden, Heleen; Zels, Sven; Vandersmissen, Hans Peter; Vuerinckx, Kristel; Schoofs, Liliane

    2012-01-01

    This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years. PMID

  5. A high-affinity, radioiodinatable neuropeptide FF analogue incorporating a photolabile p-(4-hydroxybenzoyl)phenylalanine.

    PubMed

    Bray, Lauriane; Moulédous, Lionel; Tafani, Jean A M; Germanier, Maryse; Zajac, Jean-Marie

    2014-05-15

    A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.

  6. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments.

    PubMed

    Elhabazi, K; Trigo, J M; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, J J; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence.

  7. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    PubMed

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  8. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    PubMed

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  9. NEUROENDOCRINE ACTIONS AND REGULATION OF HYPOTHALAMIC NEUROPEPTIDE Y DURING LACTATION

    PubMed Central

    Crowley, W,R.; Ramoz, G.; Torto, R.; Keefe, K.A.; Wang, J. J.; Kalra, S. P.

    2007-01-01

    The expression of neuropeptide Y (NPY) and its co-messenger, agouti-related peptide (AgRP), in arcuate neurons of the hypothalamus is increased during lactation in rats. Our research has been addressing the questions of the physiological actions of these peptides during lactation and the physiological signals associated with lactation that result in increased expression of their genes. Our studies indicate that NPY and AgRP exert pleiotropic actions during lactation that help integrate neuroendocrine regulation of energy balance with controls over anterior and posterior pituitary hormone secretion. Further, reciprocal signaling to the NPY/AgRP system by leptin and ghrelin is responsible for the changes in expression of these hypothalamic peptides in lactating animals, and thus, may contribute to regulation of food intake and the various neuroendocrine adaptations of lactation. PMID:17241697

  10. Neuropeptide Y Y2 receptor in health and disease.

    PubMed

    Parker, S L; Balasubramaniam, A

    2008-02-01

    We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed. PMID:17828288

  11. Microwave irradiation increases recovery of neuropeptides from brain tissues

    SciTech Connect

    Theodorsson, E.; Stenfors, C.; Mathe, A.A. )

    1990-11-01

    The effect of focused high energy microwave treatment (MW) on brain concentrations and molecular forms of substance P, neurokinin A, neuropeptide Y, neurotensin, galanin and calcitonin gene-related peptide was investigated. Groups of rats were treated as follows: (1) MW, storage for 60 min at 22 degrees C, (2) Decapitation, storage for 60 min at 22 degrees C, (3) Decapitation, storage for 60 min at 22 degrees C, MW treatment, (4) MW, decapitation, storage for 2 min at 22 degrees C and 5. Decapitation, storage for 2 min at 22 degrees C. Peptide concentrations were in all instances highest in the MW sacrificed groups. MW increased the concentration of intact peptides by rapid inhibition of peptidase activity and increase in peptide solubility/extractability.

  12. The effect of obesogenic diets on brain Neuropeptide Y.

    PubMed

    Gumbs, Myrtille C R; van den Heuvel, José K; la Fleur, Susanne E

    2016-08-01

    Obesity is a major health problem characterized by accumulated fat mass. The availability of an energy-dense, highly palatable diet plays an important role in obesity development. Neuropeptide Y (NPY), an orexigenic peptide, is affected by dietary composition and NPY can affect dietary preference. The hypothalamic NPY system is well characterized and has been studied in several models of obesity. However, findings from models of diet-induced obesity are not straightforward. In addition, NPY plays a role in (food-)motivated behaviors and interacts with the mesolimbic dopamine system, both of which are altered in obesity. We here review the effect of obesogenic diets on NPY levels in the hypothalamus and reward-related regions. PMID:27132202

  13. Salusin-β as a powerful endogenous antidipsogenic neuropeptide

    PubMed Central

    Suzuki-Kemuriyama, Noriko; Nakano-Tateno, Tae; Tani, Yuji; Hirata, Yukio; Shichiri, Masayoshi

    2016-01-01

    Salusin-β is an endogenous parasympathomimetic peptide, predominantly localized to the hypothalamus and posterior pituitary. Subcutaneously administered salusin-β (50 nmol/mouse) significantly increased water intake but did not affect locomotor activity or food intake. The salusin-β-induced increase in water intake was completely abrogated by pretreatment with muscarinic antagonist, atropine sulphate. In contrast, intracerebroventricular injection of salusin-β, at lower doses (10–100 fmol/mouse) caused a long-lasting decrease in water intake and locomotor activity throughout the entire dark phase of the diurnal cycle. Pre-injection of intracerebroventricular anti-salusin-β IgG completely abrogated the central salusin-β mediated suppression of water intake and locomotor activity. These results demonstrate contrasting actions of salusin-β in the control of water intake via the central and peripheral systems and highlight it as a potent endogenous antidipsogenic neuropeptide. PMID:26869388

  14. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation.

    PubMed

    Jhamandas, Jack H; Goncharuk, Valeri

    2013-01-01

    Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.

  15. Platelet neuropeptide Y is critical for ischemic revascularization in mice

    PubMed Central

    Tilan, Jason U.; Everhart, Lindsay M.; Abe, Ken; Kuo-Bonde, Lydia; Chalothorn, Dan; Kitlinska, Joanna; Burnett, Mary Susan; Epstein, Stephen E.; Faber, James E.; Zukowska, Zofia

    2013-01-01

    We previously reported that the sympathetic neurotransmitter neuropeptide Y (NPY) is potently angiogenic, primarily through its Y2 receptor, and that endogenous NPY is crucial for capillary angiogenesis in rodent hindlimb ischemia. Here we sought to identify the source of NPY responsible for revascularization and its mechanisms of action. At d 3, NPY−/− mice demonstrated delayed recovery of blood flow and limb function, consistent with impaired collateral conductance, while ischemic capillary angiogenesis was reduced (∼70%) at d 14. This biphasic temporal response was confirmed by 2 peaks of NPY activation in rats: a transient early increase in neuronally derived plasma NPY and increase in platelet NPY during late-phase recovery. Compared to NPY-null platelets, collagen-activated NPY-rich platelets were more mitogenic (∼2-fold vs. ∼1.6-fold increase) for human microvascular endothelial cells, and Y2/Y5 receptor antagonists ablated this difference in proliferation. In NPY+/+ mice, ischemic angiogenesis was prevented by platelet depletion and then restored by transfusion of platelets from NPY+/+ mice, but not NPY−/− mice. In thrombocytopenic NPY−/− mice, transfusion of wild-type platelets fully restored ischemia-induced angiogenesis. These findings suggest that neuronally derived NPY accelerates the early response to femoral artery ligation by promoting collateral conductance, while platelet-derived NPY is critical for sustained capillary angiogenesis.—Tilan, J. U., Everhart, L. M., Abe, K., Kuo-Bonde, L., Chalothorn, D., Kitlinska, J., Burnett, M. S., Epstein, S. E., Faber, J. E., Zukowska, Z. Platelet neuropeptide Y is critical for ischemic revascularization in mice. PMID:23457218

  16. GABA excitation in mouse hilar neuropeptide Y neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N

    2007-01-01

    Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 ± 1.0 mV afterhyperpolarization, a mean input resistance of 335 ± 26 mΩ, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca2+-free/high-Mg2+ bath solution using cell-attached recording. GABAA receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits. PMID:17204505

  17. Diversity and abundance: the basic properties of neuropeptide action in molluscs.

    PubMed

    Kiss, Tibor

    2011-05-15

    Neuropeptides, the most diverse group of signaling molecules, are responsible for regulating a variety of cellular and behavioral processes in all vertebrate and invertebrate animals. The role played by peptide signals in information processing is fundamentally different from that of conventional neurotransmitters. Neuropeptides may act as neurotransmitters or neuromodulators and are released at either synaptic or non-synaptic sites. Peptide signals control developmental processes, drive specific behaviors or contribute to the mechanisms of learning and memory storage. Co-transmission within or across peptide families, and between peptide and non-peptide signaling molecules, is common; this ensures the great versatility of their action. How these tasks are fulfilled when multiple neuropeptides are released has become an important topic for peptide research. Although our knowledge concerning the physiological and behavioral roles of most of the neuropeptides isolated from molluscs is incomplete, this article provides examples to address the complexity of peptide signaling.

  18. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain☆

    PubMed Central

    Dong, Changzheng; Zhao, Wenqing; Li, Wenling; Lv, Peiyuan; Dong, Xiufang

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors. PMID:25206425

  19. Localization and characterization of neuropeptide Y-like peptides in the brain and islet organ of the anglerfish (Lophius americanus).

    PubMed

    Noe, B D; Milgram, S L; Balasubramaniam, A; Andrews, P C; Calka, J; McDonald, J K

    1989-08-01

    Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2673525

  20. Naloxone-induced anorexia increases neuropeptide Y concentrations in the dorsomedial hypothalamus: evidence for neuropeptide Y-opioid interactions in the control of food intake.

    PubMed

    Lambert, P D; Wilding, J P; al-Dokhayel, A A; Gilbey, S G; Ghatei, M A; Bloom, S R

    1994-01-01

    We measured neuropeptide Y (NPY) concentration in microdissected hypothalamic nuclei, by radioimmunoassay, and NPY mRNA in the hypothalamus in rats treated systemically with the nonspecific opioid antagonist, naloxone, to produce mild anorexia. Twenty rats were treated with daily SC injections of naloxone (7.5 mg/kg); 20 were treated with vehicle alone. Naloxone produced a 7% reduction in food intake (p < 0.01) and a reduction in weight gain (p < 0.002). Neuropeptide Y concentrations were increased specifically in the dorsomedial nucleus of the hypothalamus (DMN) in rats treated with naloxone (6.8 +/- 0.7 fmol/micrograms protein vs. 3.1 +/- 1.0 fmol/micrograms protein, p < 0.05, n = 10 per group). Total hypothalamic NPY mRNA was unchanged. Neuropeptide Y-opioid interactions may be important in the control of food intake.

  1. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.

  2. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction. PMID:23851261

  3. The Endoparasitoid, Cotesia vestalis, Regulates Host Physiology by Reprogramming the Neuropeptide Transcriptional Network

    PubMed Central

    Shi, Min; Dong, Shuai; Li, Ming-tian; Yang, Yan-yan; Stanley, David; Chen, Xue-xin

    2015-01-01

    Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid. PMID:25640113

  4. Rapid Preconcentration for Liquid Chromatography-Mass Spectrometry Assay of Trace Level Neuropeptides

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Mabrouk, Omar S.; Kennedy, Robert T.

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ˜30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.

  5. Steroidal regulation of hypothalamic neuropeptide Y release and gene expression.

    PubMed

    Sahu, A; Phelps, C P; White, J D; Crowley, W R; Kalra, S P; Kalra, P S

    1992-06-01

    Neuropeptide Y (NPY) readily stimulates the release of hypothalamic LHRH and pituitary LH release in intact and gonadal steroid-primed gonadectomized rats. We have now tested the hypothesis that the release and synthesis of hypothalamic NPY may be regulated by gonadal steroids. To measure the effects of gonadal hormones on NPY release, a permanent push-pull cannula was implanted in the anterior pituitary (AP) of sham castrated (controls) or castrated (CAST) male rats, and 1 week later, the AP was perfused with artificial cerebrospinal fluid over a 3-4 h period. NPY concentrations in the perfusates collected at 10-min intervals were measured by RIAs. The NPY release pattern in the AP was episodic in both intact and CAST rats, and the frequency of NPY episodes was similar in two groups. However, the amount of NPY detected in the AP of CAST rats was significantly less than that of intact rats because the mean rate of release and the amplitude of NPY episodes in the perfusates of CAST rats were significantly reduced. This observation of attenuated hypothalamic NPY output in vivo and previous evidence of decreased hypothalamic NPY contents after CAST implied that the synthesis of hypothalamic NPY may be regulated by testicular secretions. Therefore, the effects of testosterone (T)-replacement on preproNPY messenger RNA (mRNA) in the medial basal hypothalamus (MBH) was evaluated. Rats were CAST and received either empty or T-filled Silastic capsules sc. Two weeks later, the level of perproNPY mRNA in the MBH was determined by solution hybridization/ribonuclease protection assay using a complementary RNA probe complementary to the rat NPY precursor mRNA. We observed that the levels of preproNPY mRNA were 2-fold higher in the MBH of T-replaced CAST as compared to control CAST rats. These findings are consistent with the hypothesis that gonadal steroids enhance the neurosecretory activity of hypothalamic NPYergic neurons, and for the first time reveal a coupling between the

  6. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis

    PubMed Central

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  7. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    PubMed

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  8. Nutrient-dependent control of short neuropeptide F transcript levels via components of the insulin/IGF signaling pathway in the desert locust, Schistocerca gregaria.

    PubMed

    Dillen, Senne; Chen, Ziwei; Vanden Broeck, Jozef

    2016-01-01

    Peptides of the short neuropeptide F (sNPF) family modulate feeding behavior in a wide variety of insect species, including the desert locust, Schistocerca gregaria. Likewise, the nutritional state of the animal can strongly affect sNPF expression. Although several studies have been published describing these nutrient-dependent effects, it remains largely unclear how they are achieved. In this study, we describe a series of in vivo experiments which indicate that it is not the act of feeding in se, but rather the consequent availability of nutrients in the insect's hemolymph that gives rise to the postprandial modulation of sNPF expression. Furthermore, by performing a series of RNAi-mediated knockdown experiments, we were able to show that components of the evolutionarily conserved insulin/insulin-related growth factor (IGF) signaling pathway form a functional link between nutrient levels and sNPF transcript levels. PMID:26631598

  9. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  10. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species. PMID:26783017

  11. Role of neuropeptides in learning versus performance: focus on vasopressin.

    PubMed

    Koob, G F; Lebrun, C; Bluthé, R M; Dantzer, R; Le Moal, M

    1989-01-01

    Neuropeptides that have classical hormonal functions via the pituitary have been implicated in cognitive function. Systemically and centrally administered arginine vasopressin (AVP) has been well documented to prolong extinction and improve consolidation in avoidance tasks. However, major questions have centered on the physiological mechanism of action for these effects and whether these cognitive enhancing actions reflect learning or performance. Work with vasopressin antagonists has led to the hypothesis that the effects of systemically administered AVP may be mediated peripherally and may be secondary to increases in blood pressure and activating effects. Centrally administered AVP, however, can also facilitate memory and recent work using an olfactory social memory task suggests that these effects may be mediated, at least in part, by AVP systems in the lateral septum. These results suggest that the cognitive enhancing actions of AVP may involve two parallel, but ultimately homologous, systems at the functional level. Pituitary-derived AVP may facilitate memory actions through more nonspecific (performance) effects, whereas centrally derived AVP may facilitate memory actions through more direct effects on the neural substrates of memory processing in the limbic system.

  12. Evolution of neuropeptide Y and its related peptides.

    PubMed

    Larhammar, D; Blomqvist, A G; Söderberg, C

    1993-11-01

    1. The neuropeptide Y (NPY) family of peptides includes also the gut endocrine peptide YY (PYY), tetrapod pancreatic polypeptide (PP), and fish pancreatic peptide-tyrosine (PY). All peptides are 36 amino acids long. 2. Sequences from many types of vertebrates show that NPY has remained extremely well conserved throughout vertebrate evolution with 92% identity between mammals and cartilaginous fishes. 3. PYY has 97-100% identity between cartilaginous fishes and bony fishes, but is less conserved in amphibians and mammals (83% identity between amphibians and sharks and 75% identity between mammals and sharks). 4. NPY and PYY share 70-80% identity in most species. 5. Both NPY and PYY were present in the early vertebrate ancestor because both peptides have been found in lampreys. 6. The tissue distribution appears to have been largely conserved between phyla, except that PYY has more widespread neuronal expression in lower vertebrates. 7. Pancreatic polypeptide has diverged considerably among tetrapods leaving only 50% identity between mammals, birds/reptiles and frogs. 8. Several lines of evidence suggest that the PP gene arose by duplication of the PYY gene, probably in the early evolution of the tetrapods. 9. The pancreatic peptide PY found in anglerfish and daddy sculpin may have resulted from an independent duplication of the PYY gene. 10. The relationships of the recently described mollusc and worm peptides NPF and PYF with the NPY family still appear unclear. PMID:7905810

  13. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters.

    PubMed

    Paul, Matthew J; Freeman, David A; Park, Jin Ho; Dark, John

    2005-09-01

    Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb < 32 degrees C for at least 30 min). Neither the incidence of torpor nor its depth or duration was related to NPY dose. Both likelihood and magnitude of response varied within animals on different test days. NPY decreased 24-h food intake and this was exaggerated in the animals reaching criterion for torpor; the decrease in food intake was positively correlated with the magnitude of the decrease in Tb. The mild hypothermia seen in homeothermic laboratory rats after NPY injected ICV is exaggerated, often greatly, in the heterothermic Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.

  14. Genetic comparison of seizure control by norepinephrine and neuropeptide Y.

    PubMed

    Weinshenker, D; Szot, P; Miller, N S; Rust, N C; Hohmann, J G; Pyati, U; White, S S; Palmiter, R D

    2001-10-01

    Epilepsy is a disease of neuronal hyperexcitability, and pharmacological and genetic studies have identified norepinephrine (NE) and neuropeptide Y (NPY) as important endogenous regulators of neuronal excitability. Both transmitters signal through G-protein-coupled receptors, are expressed either together or separately, and are abundant in brain regions implicated in seizure generation. NPY knock-out (NPY KO) and dopamine beta-hydroxylase knock-out (DBH KO) mice that lack NE are susceptible to seizures, and agonists of NE and NPY receptors protect against seizures. To examine the relative contributions of NE and NPY to neuronal excitability, we tested Dbh;Npy double knock-out (DKO) mice for seizure sensitivity. In general, DBH KO mice were much more seizure-sensitive than NPY KO mice and had normal NPY expression, demonstrating that an NPY deficiency did not contribute to the DBH KO seizure phenotype. DKO mice were only slightly more sensitive than DBH KO mice to seizures induced by kainic acid, pentylenetetrazole, or flurothyl, although DKO mice were uniquely prone to handling-induced seizures. NPY contributed to the seizure phenotype of DKO mice at high doses of convulsant agents and advanced stages of seizures. These data suggest that NE is a more potent endogenous anticonvulsant than NPY, and that NPY has the greatest contribution under conditions of extreme neuronal excitability.

  15. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    SciTech Connect

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ({sup 3}H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ({sup 3}H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake.

  16. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  17. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone.

    PubMed

    Choi, Man-Yeon; Vander Meer, Robert K

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  18. Neuropeptides degranulate serous cells of ferret tracheal glands

    SciTech Connect

    Gashi, A.A.; Borson, D.B.; Finkbeiner, W.E.; Nadel, J.A.; Basbaum, C.B.

    1986-08-01

    To determine whether serous or mucous cells in tracheal submucosal glands respond to the neuropeptides substance P (SP) and vasoactive intestinal peptide (VIP). The authors studied the peptide-induced changes in gland cell morphology accompanying release of TVSO4-labeled macromolecules from tracheal explants of ferrets. Explants were labeled for 1 h in medium containing TVSO4 and washed for 3.5 additional hours. Base-line secretion in the absence of drugs declined between 1.5 and 3.5 h after the pulse. Between 2.5 and 3.5 h, the average percent change in counts per minute recovered per sample period was not significantly different from zero. Substance P and VIP added 4 h after labeling each increased greatly the release of TVSO4-labeled macromolecules above base line. Bethanechol, a muscarinic-cholinergic agonist, increased secretion by an average of 142% above base line. Light and electron microscopy of the control tissues showed glands with narrow lumens and numerous secretory granules. Glands treated with SP or VIP had enlarged lumens and the serous cells were markedly degranulated. These phenomena were documented by morphometry and suggest that SP and VIP cause secretion from glands at least partially by stimulating exocytosis from serous cells.

  19. Phylogenetic appearance of Neuropeptide S precursor proteins in tetrapods

    PubMed Central

    Reinscheid, Rainer K.

    2007-01-01

    Sleep and emotional behavior are two hallmarks of vertebrate animal behavior, implying that specialized neuronal circuits and dedicated neurochemical messengers may have been developed during evolution to regulate such complex behaviors. Neuropeptide S (NPS) is a newly identified peptide transmitter that activates a typical G protein-coupled receptor. Central administration of NPS produces profound arousal, enhances wakefulness and suppresses all stages of sleep. In addition, NPS can alleviate behavioral responses to stress by producing anxiolytic-like effects. A bioinformatic analysis of current genome databases revealed that the NPS peptide precursor gene is present in all vertebrates with the exception of fish. A high level of sequence conservation, especially of aminoterminal structures was detected, indicating stringent requirements for agonist-induced receptor activation. Duplication of the NPS precursor gene was only found in one out of two marsupial species with sufficient genome coverage (Monodelphis domestica; opossum), indicating that the duplicated opossum NPS sequence might have arisen as an isolated event. Pharmacological analysis of both Monodelphis NPS peptides revealed that only the closely related NPS peptide retained agonistic activity at NPS receptors. The duplicated precursor might be either a pseudogene or could have evolved different receptor selectivity. Together, these data show that NPS is a relatively recent gene in vertebrate evolution whose appearance might coincide with its specialized physiological functions in terrestrial vertebrates. PMID:17293003

  20. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  1. Neuropeptide S promotes wakefulness through activation of the posterior hypothalamic histaminergic and orexinergic neurons.

    PubMed

    Zhao, P; Shao, Y F; Zhang, M; Fan, K; Kong, X P; Wang, R; Hou, Y P

    2012-04-01

    In spite of the initial and pivotal findings that the newly identified neuropeptide S (NPS) promotes arousal associated with locomotor and anxiolytic-like effects, the mechanisms through which NPS acts to modulate sleep-waking states remain unclear. The present study was undertaken to investigate in the rat the effects of i.c.v. injection of NPS on the EEG, sleep-wake cycle, and brain c-Fos expression. NPS at 0.1 and 1 nmol increased significantly wakefulness (W) during the first 2 h (54.7 ± 3.2 and 64.9 ± 2.1 min, respectively, vs. 41.4 ± 2.5 min seen with saline injections, P<0.01 and P<0.001), accompanied by an increase in EEG high frequency activities (14.5-60 Hz). In the meanwhile, slow wave sleep (SWS) and paradoxical sleep (PS) decreased significantly. Ex-vivo Fos immunohistochemistry in the posterior hypothalamus revealed that, as compared with saline-treated rats, NPS enhanced c-Fos expression in histaminergic neurons by 76.0% in the ventral tuberomammillary nucleus (TMN) and 57.8% in the dorsal TMN, and in orexinergic neurons by 28.2% in the perifornical nucleus (PeF), 24.3% in the dorsomedial hypothalamic nucleus (DMH), and 13.7% in the lateral hypothalamic area (LH) of the posterior hypothalamus. The NPS-induced c-Fos expression in histaminergic neurons and orexinergic neurons where NPS receptor (NPSR) mRNA is highly expressed, suggests that NPS activates histaminergic and orexinergic neurons to promote W.

  2. Relevance of the neuropeptide Y system in the biology of cancer progression.

    PubMed

    Ruscica, M; Dozio, E; Motta, M; Magni, P

    2007-01-01

    The peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure, known as PP-fold. Within this family of peptides, NPY, a highly conserved 36-aminoacid residue peptide, is involved in the regulation of a wide range of physiological functions, such as food intake and energy metabolism, as well as in the promotion of some remarkable aspects of tumor progression, including cell proliferation, matrix invasion, metastatization, and angiogenesis. NPY exerts its biological effects through five G-protein coupled receptors, named Y1-, Y2-, Y4-, Y5-, and y6-R, which appear associated with different aspects of oncogenesis. Y1-R seems involved in the modulation of cancer cell proliferation, whereas Y2-R activation appears to promote angiogenesis. The development of NPY receptor subtype selective analogs has helped to elucidate the physiological and pathophysiological role and localization of each receptor and may contribute to a better understanding of the receptor-ligand interaction. The NPY system appears to be variously associated with specific tumors, including neural crest-derived tumors, breast and prostate cancers. In addition to NPY, PYY is also able to affect cancer cell growth in a dose-dependent manner and through Y-Rs. In conclusion, peptides of the NPY family and the related receptors play an important role in the progression of different cancer types, with some molecular specificity according to each step of this process. On this basis, future studies may be directed to the implementation of novel diagnostic and therapeutic approaches targeting this system.

  3. Neuropeptide Y (NPY): a possible role in the initiation of puberty.

    PubMed

    Sutton, S W; Mitsugi, N; Plotsky, P M; Sarkar, D K

    1988-10-01

    NPY modulates the rat hypothalamic-pituitary-gonadal axis at both the adenohypophysial and central levels. Previously published studies have consistently shown elevations of GnRH content in the preoptic area (POA) and hypothalamus starting with the appearance of GnRH immunoreactivity around fetal day 12-14 until stabilization around the time of puberty. In the present studies, irNPY content of male and female rat hypothalami and POA was examined during days 0 to 36 of postnatal development. Hypothalamic irNPY content rose steadily from 4.54 +/- 0.19 ng/fragment (males) and 2.72 +/- 0.55 ng/fragment (females) at birth to 34.14 +/- 3.94 ng/fragment (males) and 46.79 +/- 6.16 ng/fragment (females) at day 36, corresponding approximately to the time of vaginal opening. A similar elevation of irNPY content was observed in the POA. At day 0, POA content was 1.91 +/- 0.18 ng/fragment (males) and 2.02 +/- 0.25 ng/fragment (females) and progressively increased to 42.26 +/- 3.94 ng/fragment and 41.33 +/- 3.72 ng/fragment by postnatal day 36. In subsequent investigations, hypophysial-portal and peripheral plasma irNPY was determined around the time of vaginal opening, revealing a surge in portal levels of irNPY which preceded the prepubertal LH surge. The progressive postnatal increase in hypothalamic and POA irNPY content culminating in a prepubertal surge of irNPY secretion into the hypophysial-portal circulation suggests involvement of this neuropeptide in reproductive development and the onset of puberty.

  4. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine.

    PubMed

    Oliveira, Margarida-Martins; Akerman, Simon; Tavares, Isaura; Goadsby, Peter J

    2016-08-01

    Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg), and investigated the receptors involved by studying NPY Y1 (30 µg·kg), Y2 (30 µg·kg), and Y5 receptor agonists (100·µg·kg), and NPY Y1 receptor antagonist (30 µg·kg). NPY (30 and 100 µg·kg) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs.

  5. Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the seasonal Siberian hamster (Phodopus sungorus).

    PubMed

    Helwig, Michael; Archer, Zoë A; Heldmaier, Gerhard; Tups, Alexander; Mercer, Julian G; Klingenspor, Martin

    2009-07-01

    Central regulation of energy balance in seasonal mammals such as the Siberian hamster is dependent on the precise integration of short-term satiety information arising from the gastrointestinal tract with long-term signals on the status of available energy reserves (e.g. leptin) and prevailing photoperiod. Within the central nervous system, the brainstem nucleus of the solitary tract (NTS) and the parabrachial nucleus (PBN) are major relay nuclei that transmit information from the gastrointestinal tract to higher forebrain centres. We extended studies on the seasonal programming of the hypothalamus to examine the effect of the photoperiod on neuropeptidergic circuitries of this gut-brain axis. In the NTS and PBN we performed gene expression and immunoreactivity (-ir) studies on selected satiety-related neuropeptides and receptors: alpha-melanocyte stimulating hormone, melanocortin-3 receptor, melanocortin-4 receptor (MC4-R), growth hormone secretagogue-receptor, cocaine- and amphetamine-regulated transcript, preproglucagon (PPG), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY, galanin, neurotensin, and corticotrophin releasing hormone (CRH). Gene expression of PPG and MC4-R, and -ir of CCK and GLP-1, in the NTS were up-regulated after 14 weeks in long-day photoperiod (16 h light:8 h dark) compared to short-days (8 h light:16 h dark), whereas CRH-ir and NT-ir were increased in short-days within the PBN. We suggest that brainstem neuroendocrine mechanisms contribute to the long-term regulation of body mass in the Siberian hamster by a photoperiod-related modulation of satiety signalling.

  6. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine.

    PubMed

    Oliveira, Margarida-Martins; Akerman, Simon; Tavares, Isaura; Goadsby, Peter J

    2016-08-01

    Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg), and investigated the receptors involved by studying NPY Y1 (30 µg·kg), Y2 (30 µg·kg), and Y5 receptor agonists (100·µg·kg), and NPY Y1 receptor antagonist (30 µg·kg). NPY (30 and 100 µg·kg) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs. PMID:27023421

  7. Involvement of the neuropeptide nociceptin/orphanin FQ in kainate seizures.

    PubMed

    Bregola, Gianni; Zucchini, Silvia; Rodi, Donata; Binaschi, Anna; D'Addario, Claudio; Landuzzi, Daniela; Reinscheid, Rainer; Candeletti, Sanzio; Romualdi, Patrizia; Simonato, Michele

    2002-11-15

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been shown to modulate neuronal excitability and neurotransmitter release. Previous studies indicate that the mRNA levels for the N/OFQ precursor (proN/OFQ) are increased after seizures. However, it is unclear whether N/OFQ plays a role in seizure expression. Therefore, (1) we analyzed proN/OFQ mRNA levels and NOP (the N/OFQ receptor) mRNA levels and receptor density in the kainate model of epilepsy, using Northern blot analysis, in situ hybridization, and receptor binding assay, and (2) we examined susceptibility to kainate seizure in mice treated with 1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-benzimidazol-2-one (J-113397), a selective NOP receptor antagonist, and in proN/OFQ knock-out mice. After kainate administration, increased proN/OFQ gene expression was observed in the reticular nucleus of the thalamus and in the medial nucleus of the amygdala. In contrast, NOP mRNA levels and receptor density decreased in the amygdala, hippocampus, thalamus, and cortex. Mice treated with the NOP receptor antagonist J-113397 displayed reduced susceptibility to kainate-induced seizures (i.e., significant reduction of behavioral seizure scores). N/OFQ knock-out mice were less susceptible to kainate seizures compared with their wild-type littermates, in that lethality was reduced, latency to generalized seizure onset was prolonged, and behavioral seizure scores decreased. Intracerebroventricular administration of N/OFQ prevented reduced susceptibility to kainate seizures in N/OFQ knock-out mice. These data indicate that acute limbic seizures are associated with increased N/OFQ release in selected areas, causing downregulation of NOP receptors and activation of N/OFQ biosynthesis, and support the notion that the N/OFQ-NOP system plays a facilitatory role in kainate seizure expression.

  8. Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study.

    PubMed

    Adori, Csaba; Barde, Swapnali; Vas, Szilvia; Ebner, Karl; Su, Jie; Svensson, Camilla; Mathé, Aleksander A; Singewald, Nicolas; Reinscheid, Rainer R; Uhlén, Mathias; Kultima, Kim; Bagdy, György; Hökfelt, Tomas

    2016-09-01

    Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep. PMID:26462664

  9. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine

    PubMed Central

    Oliveira, Margarida-Martins; Akerman, Simon; Tavares, Isaura; Goadsby, Peter J.

    2016-01-01

    Abstract Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg−1), and investigated the receptors involved by studying NPY Y1 (30 µg·kg−1), Y2 (30 µg·kg−1), and Y5 receptor agonists (100·µg·kg−1), and NPY Y1 receptor antagonist (30 µg·kg−1). NPY (30 and 100 µg·kg−1) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg−1) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg−1), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs. PMID:27023421

  10. Neuropeptide Y attenuates anxiety- and depression-like effects of cholecystokinin-4 in mice.

    PubMed

    Desai, S J; Borkar, C D; Nakhate, K T; Subhedar, N K; Kokare, D M

    2014-09-26

    We investigated the involvement of neuropeptide Y (NPY) in the modulation of cholecystokinin-4 (CCK-4)-evoked anxiety and depression. Adult male mice were injected with vehicle, CCK-4, NPY, NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY or antagonist BIBP3226, via intracerebroventricular route, and subjected to social interaction or forced swim test (FST) for the evaluation of anxiety- and depression-like phenotypes, respectively. To assess the interactions between the two systems, if any, NPYergic agents were administered prior to CCK-4 and the animals were subjected to these behavioral tests. Treatment with CCK-4 or BIBP3226 dose-dependently reduced social interaction time, while NPY or [Leu(31), Pro(34)]-NPY produced opposite effect. CCK-4 treatment increased immobility time in FST. This effect was reversed by NPY and [Leu(31), Pro(34)]-NPY, although BIBP3226 per se did not alter the immobility time. In a combination study, the anxiogenic or depressive effects of CCK-4 were attenuated by NPY or [Leu(31), Pro(34)]-NPY and potentiated by BIBP3226. The brains of CCK-4 treated rats were processed for NPY immunohistochemistry. Following CCK-4 treatment, the nucleus accumbens shell (AcbSh), ventral part of lateral division of the bed nucleus of stria terminalis (BSTLV), hypothalamic paraventricular nucleus and locus coeruleus showed a reduction in NPY-immunoreactive fibers. Population of NPY-immunopositive cells was also decreased in the AcbSh, BSTLV, prefrontal cortex and hypothalamic arcuate nucleus (ARC). However, NPY-immunoreaction in the fibers of the ARC and cells of the central nucleus of amygdala was unchanged. We conclude that, inhibition of NPY signaling in the brain by CCK-4 might be causal to anxiety- and depression-like behaviors.

  11. Mapping of Neuropeptides in the Crustacean Stomatogastric Nervous System by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve ( stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  12. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry.

    PubMed

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  13. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine.

    PubMed Central

    Minth, C D; Bloom, S R; Polak, J M; Dixon, J E

    1984-01-01

    In vitro translation of the RNA isolated from a human pheochromocytoma demonstrated that this tumor contained a mRNA encoding a 10.5-kDa protein, which was immunoprecipitated with antiserum raised against porcine neuropeptide Y. Double-stranded cDNA was synthesized from total RNA and inserted into the Pst I site of pUC8. Transformants containing the neuropeptide Y cDNA were identified using the mixed hybridization probe d[A-(A,G)-(A,G)-T-T-(A,G,T)-A-T-(A,G)-T-A-(A,G)-T-G]. The probe sequences were based on the known amino acid sequence, His-Tyr-Ile-Asn-Leu, found in porcine neuropeptide Y. The nucleotide sequence of the cDNA was determined and contained 86 and 174 bases in the 5'- and 3'-untranslated regions, respectively. The coding sequence consisted of 291 bases, suggesting a precursor to neuropeptide Y that was 97 amino acids long (10,839 Da). The deduced amino acid sequence of the precursor suggested that there were at least two sites of proteolytic processing, which would generate three peptides having 28 (signal peptide), 36 (human neuropeptide Y), and 30 (COOH-terminal peptide) amino acid residues. A partial NH2-terminal sequence obtained by Edman degradation of the immunoprecipitated in vitro translation product identified the positions of methionine and leucine in the first 30 residues of the prepropeptide. A highly sensitive single-stranded complementary mRNA hybridization probe specific for neuropeptide Y mRNA was prepared using the bacteriophage SP6 promoter. This probe was used to identify a mRNA corresponding to neuropeptide Y of approximately 800 bases. Images PMID:6589611

  14. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    PubMed

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process. PMID:25464890

  15. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds That Bind Selectively to the Alternative DNA Hairpin Structure

    PubMed Central

    2015-01-01

    It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression. PMID:24559410

  16. A functional variant in the neuropeptide S receptor 1 gene moderates the influence of urban upbringing on stress processing in the amygdala.

    PubMed

    Streit, Fabian; Haddad, Leila; Paul, Torsten; Frank, Josef; Schäfer, Axel; Nikitopoulos, Jörg; Akdeniz, Ceren; Lederbogen, Florian; Treutlein, Jens; Witt, Stephanie; Meyer-Lindenberg, Andreas; Rietschel, Marcella; Kirsch, Peter; Wüst, Stefan

    2014-07-01

    We have previously shown that urban upbringing and city living were associated with stress-induced activity in the amygdala and the perigenual anterior cingulate cortex (pACC). This finding might link the epidemiological risk factor "urbanicity" to neurobiological mechanisms of psychiatric disorders. However, given the heritability of stress-related phenotypes, it appears likely that genetic factors can modulate the effect of urbanicity on social stress processing. In the present exploratory study, we investigated if a functional sequence variation in the neuropeptide S receptor gene (NPSR1 rs324981) is associated with brain activation patterns under acute psychosocial stress and if it modulates the link between urbanicity and central stress processing. In animals, neuropeptide S has strong anxiolytic effects and it induces hypothalamus-pituitary-adrenal (HPA) axis activation. In humans, rs324981 was found to be associated with anxiety and stress-related phenotypes. Forty-two subjects were exposed to a psychosocial stress task for scanner environments (ScanSTRESS). While no main effect of rs324981 on amygdala and pACC activity was detected, we found a distinct interaction between rs324981 and urban upbringing modulating right amygdala responses. Moreover, right amygdala responses were significantly higher in subjects who also showed a salivary cortisol response to the stress exposure. The present finding of a gene × environment interaction further supports the view that the brain NPS system is involved in central stress regulation. This study provides first evidence for the assumption that a NPSR1 variant modulates brain activation under stress, interacting with the environmental risk factor urban upbringing.

  17. Comparative distribution of central neuropeptide Y (NPY) in the prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) vole.

    PubMed

    Hostetler, Caroline M; Hitchcock, Leah N; Anacker, Allison M J; Young, Larry J; Ryabinin, Andrey E

    2013-02-01

    Neuropeptide Y (NPY) has been implicated as a modulator of social behavior, often in a species-specific manner. Comparative studies of closely related vole species are particularly useful for identifying neural systems involved in social behaviors in both voles and humans. In the present study, immunohistochemistry was performed to compare NPY-like immunoreactivity (-ir) in brain tissue of the socially monogamous prairie vole and non-monogamous meadow vole. Species differences in NPY-ir were observed in a number of regions including the cortex, extended amygdala, septal area, suprachiasmatic nucleus, and intergeniculate leaf. Meadow voles had higher NPY-ir in all these regions as compared to prairie voles. No differences were observed in the striatum or hippocampus. The extended amygdala and lateral septum are regions that play a key role in regulation of monogamous behaviors such as pair bonding and paternal care. The present study suggests NPY in these regions may be an additional modulator of these species-specific social behaviors. Meadow voles had moderately higher NPY-ir in a number of hypothalamic regions, especially in the suprachiasmatic nucleus. Meadow voles also had much higher levels of NPY-ir in the intergeniculate leaflet, another key region in the regulation of circadian rhythms. Overall, species differences in NPY-ir were observed in a number of brain regions implicated in emotion, stress, circadian, and social behaviors. These findings provide additional support for a role for the NPY system in species-typical social behaviors.

  18. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation.

    PubMed

    Naveilhan, P; Canals, J M; Arenas, E; Ernfors, P

    2001-09-01

    Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.

  19. Effects of loratadine and cetirizine on serum levels of neuropeptides in patients with chronic urticaria.

    PubMed

    Başak, Pinar Y; Vural, Huseyin; Kazanoglu, Oya O; Erturan, Ijlal; Buyukbayram, Halil I

    2014-12-01

    H1-receptor inhibiting drugs, namely loratadine and cetirizine, were frequently used in treatment of chronic urticaria. Urticarial weal and flare reactions, a neurogenic reflex due to neuropeptides, were reported to be more effectively inhibited by cetirizine than loratadine. The aim of this study was to determine and compare the effects of systemic loratadine and cetirizine treatments on serum levels of selected neuropeptides in chronic urticaria. Treatment groups of either systemic loratadine or cetirizine (10 mg/d), consisting of 16 and 22 patients, respectively, were included. Serum levels of stem cell factor (SCF), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), and substance P (SP) were detected before and after one week of treatment with antihistamines. Serum NPY and VIP levels were significantly decreased when compared before and after treatment with antihistamines (P < 0.001 and P < 0.01, respectively). SCF and NGF values were also decreased after antihistamine treatment (P < 0.05). Post-treatment levels of CGRP were significantly higher compared with pretreatment values, while no significant difference was detected between pre and post treatment levels of SP. Cetirizine was significantly more effective than loratadine on lowering serum levels of SCF among the other neuropeptides. Systemic loratadine and cetirizine treatments in patients with chronic urticaria precisely caused variations in serum levels of neuropeptides. The predominant effect of cetirizine compared to loratadine on reducing serum SCF levels might be explained with anti-inflammatory properties of cetirizine.

  20. Antimicrobial activity of Substance P and Neuropeptide Y against laboratory strains of bacteria and oral microorganisms.

    PubMed

    Hansen, Christopher J; Burnell, Kindra K; Brogden, Kim A

    2006-08-01

    Infection and inflammation of mucosal tissue may induce the production of neuropeptides, specifically Substance P and Neuropeptide Y. Since these neuropeptides are similar to antimicrobial peptides in their amino acid composition, amphipathic design, cationic charge, and size, we wanted to determine if they had antimicrobial activity against a panel of common bacteria and oral microorganisms using the radial diffusion assay. Neuropeptide Y and Substance P had antimicrobial activity against E. coli (MIC 20.6+/-5.5 microg/ml SEM and 71.5+/-15 SEM microg/ml, respectively), but did not have activity against laboratory strains of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Serratia marcescens (MIC>500 microg/ml) nor oral strains of Streptococcus mutans, Candida albicans, and Actinobacillus actinomycetemcomitans (MIC>500 microg/ml). While Substance P and Neuropeptide Y did not have direct antimicrobial activity against the microorganisms tested, they still may stimulate local epithelial cells to produce other innate immune factors like defensins and cathelicidins. However, this remains to be determined.

  1. Release and functional role of neuropeptide Y as a sympathetic modulator in human saphenous vein biopsies.

    PubMed

    Donoso, M V; Miranda, R; Briones, R; Irarrázaval, M J; Huidobro-Toro, J Pablo

    2004-01-01

    Transmural electrical stimulation of the sympathetic nerve endings of human saphenous vein biopsies released two forms of NPY identified chromatographically as native and oxidized peptide. The release process is dependent on extracellular calcium, the frequency, and the duration of the stimuli. While guanethidine reduced the overflow of ir-NPY, phenoxybenzamine did not augment NPY release, but increased that of noradrenaline. Oxidized NPY, like native NPY, potentiated the noradrenaline and adenosine 5'-triphospahate-induced vasoconstriction, an effect blocked by BIBP 3226 and consonant with the RT-PCR detection of the mRNA encoding the NPY Y1 receptor. These results highlight the functional role of NPY in human vascular sympathetic reflexes.

  2. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats

    PubMed Central

    Quagliotto, E.; Casali, K.R.; Dal Lago, P.; Rasia-Filho, A.A.

    2014-01-01

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV. PMID:25424367

  3. Gene expression and pharmacology of nematode NLP-12 neuropeptides.

    PubMed

    McVeigh, Paul; Leech, Suzie; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2006-05-31

    This study examines the biology of NLP-12 neuropeptides in Caenorhabditis elegans, and in the parasitic nematodes Ascaris suum and Trichostrongylus colubriformis. DYRPLQFamide (1 nM-10 microM; n > or =6) produced contraction of innervated dorsal and ventral Ascaris body wall muscle preparations (10 microM, 6.8+/-1.9 g; 1 microM, 4.6+/-1.8 g; 0.1 microM, 4.1+/-2.0 g; 10 nM, 3.8+/-2.0 g; n > or =6), and also caused a qualitatively similar, but quantitatively lower contractile response (10 microM, 4.0+/-1.5 g, n=6) on denervated muscle strips. Ovijector muscle displayed no measurable response (10 microM, n=5). nlp-12 cDNAs were characterised from A. suum (As-nlp-12) and T. colubriformis (Tc-nlp-12), both of which show sequence similarity to C. elegans nlp-12, in that they encode multiple copies of -LQFamide peptides. In C. elegans, reverse transcriptase (RT)-PCR analysis showed that nlp-12 was transcribed throughout the life cycle, suggesting that DYRPLQFamide plays a constitutive role in the nervous system of this nematode. Transcription was also identified in both L3 and adult stages of T. colubriformis, in which Tc-nlp-12 is expressed in a single tail neurone. Conversely, As-nlp-12 is expressed in both head and tail tissue of adult female A. suum, suggesting species-specific differences in the transcription pattern of this gene.

  4. Gut Lymphocyte Phenotype Changes after Parenteral Nutrition and Neuropeptide Administration

    PubMed Central

    Jonker, Mark A; Heneghan, Aaron F; Fechner, John H; Pierre, Joseph F; Sano, Yoshifumi; Lan, Jinggang; Kudsk, Kenneth A

    2016-01-01

    STRUCTURED ABSTRACT Objective Define gut associated lymphocyte phenotype (GALT) changes with parenteral nutrition (PN) and PN with bombesin (BBS). Summary Background Data PN reduces respiratory tract (RT) & GALT Peyer’s patch and lamina propria (LP) lymphocytes, lowers gut and RT IgA levels and destroys established RT antiviral & antibacterial immunity. BBS, an enteric nervous system (ENS) neuropeptide, reverses PN-induced IgA and RT immune defects. Methods Exp 1: IV-cannulated ICR mice received Chow, PN or PN + BBS injections for 5 days. LSR-II flow cytometer analyzed PP and LP isolated lymphocytes for homing phenotypes (L-selectin+ & LPAM-1+) and state of activation (CD25+, CD44+) in T (CD3+) cell subsets (CD4+ & CD8+) along with homing phenotype (L-selectin+ & LPAM-1+) in naive B (IgD+) and antigen-activated (IgD− or IgM+) B (CD45R/B220+) cells. Exp 2: Following initial experiment 1 protocol, LP T regulatory (Treg) cell phenotype was evaluated by Foxp3 expression. Results Exp 1: PN significantly reduced LP 1) CD4+CD25+ (activated) and 2) CD4+CD25+LPAM-1+ (activated cells homed to LP) T cells while PN-BBS assimilated Chow levels. PN significantly reduced LP 1) IgD+ (naïve), 2) IgD-LPAM+ (antigen-activated homed to LP) and CD44+ memory B cells while PN-BBS assimilated Chow levels. Exp 2: PN significantly reduced LP CD4+CD25+Foxp3+ Treg cells compared to Chow mice while PN+BBS assimilated Chow levels. Conclusions PN reduces LP activated and regulatory T cells as well as naïve and memory B cells. BBS addition to PN maintains these cell phenotypes, demonstrating the intimate involvement of the ENS in mucosal immunity. PMID:25563877

  5. The hypothalamic neuropeptide FF network is impaired in hypertensive patients

    PubMed Central

    Goncharuk, Valeri D; Buijs, Ruud M; Jhamandas, Jack H; Swaab, Dick F

    2014-01-01

    Background The human hypothalamus contains the neuropeptide FF (NPFF) neurochemical network. Animal experiments demonstrated that NPFF is implicated in the central cardiovascular regulation. We therefore studied expression of this peptide in the hypothalamus of individuals who suffered from essential hypertension (n = 8) and died suddenly due to acute myocardial infarction (AMI), and compared to that of healthy individuals (controls) (n = 6) who died abruptly due to mechanical trauma of the chest. Methods The frozen right part of the hypothalamus was cut coronally into serial sections of 20 μm thickness, and each tenth section was stained immunohistochemically using antibody against NPFF. The central section through each hypothalamic nucleus was characterized by the highest intensity of NPFF immunostaining and thus was chosen for quantitative densitometry. Results In hypertensive patients, the area occupied by NPFF immunostained neuronal elements in the central sections through the suprachiasmatic nucleus (SCh), paraventricular hypothalamic nucleus (Pa), bed nucleus of the stria terminalis (BST), perinuclear zone (PNZ) of the supraoptic nucleus (SON), dorso- (DMH), ventromedial (VMH) nuclei, and perifornical nucleus (PeF) was dramatically decreased compared to controls, ranging about six times less in the VMH to 15 times less in the central part of the BST (BSTC). The NPFF innervation of both nonstained neuronal profiles and microvasculature was extremely poor in hypertensive patients compared to control. Conclusions The decreased NPFF expression in the hypothalamus of hypertensive patients might be a cause of impairment of its interaction with other neurochemical systems, and thereby might be involved in the pathogenesis of the disease. PMID:25161813

  6. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony

    PubMed Central

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A.; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J.; Petzold, Linda R.; Herzog, Erik D.

    2013-01-01

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light–dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag. PMID:24167276

  7. Effects of a Skin Neuropeptide (Substance P) on Cutaneous Microflora

    PubMed Central

    Mijouin, Lily; Hillion, Mélanie; Ramdani, Yasmina; Jaouen, Thomas; Duclairoir-Poc, Cécile; Follet-Gueye, Marie-Laure; Lati, Elian; Yvergnaux, Florent; Driouich, Azzedine; Lefeuvre, Luc; Farmer, Christine; Misery, Laurent; Feuilloley, Marc G. J.

    2013-01-01

    Background Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. Methodology/Principal Findings Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10−6 M) and this effect was rapid (<5 min). Infection of keratinocytes with SP treated B. cereus led to a rise in caspase1 and morphological alterations of the actin cytoskeleton. Secretome analysis revealed that SP stimulated the release of collagenase and superoxide dismutase. Moreover, we also noted a shift in the surface polarity of the bacteria linked to a peel-off of the S-layer and the release of S-layer proteins. Meanwhile, the biofilm formation activity of B. cereus was increased. The Thermo unstable ribosomal Elongation factor (Ef-Tu) was identified as the SP binding site in B. cereus. Other Gram positive skin bacteria, namely Staphylococcus aureus and Staphylococcus epidermidis also reacted to SP by an increase of virulence. Thermal water from Uriage-les-Bains and an artificial polysaccharide (Teflose®) were capable to antagonize the effect of SP on bacterial virulence. Conclusions/Significance SP is released in sweat during stress and is known to be involved in the pathogenesis of numerous skin diseases through neurogenic inflammation. Our study suggests that a direct effect of SP on the skin microbiote should be another mechanism. PMID:24250813

  8. Hypothalamic neuropeptide systems and anticipatory weight change in Siberian hamsters.

    PubMed

    Adam, C L; Mercer, J G

    2001-01-01

    Seasonal animals are able both to programme changes in body weight in response to annual changes in photoperiod (anticipatory regulation) and to correct changes in body weight caused by imposed energetic demand (compensatory regulation). Experimental evidence from the Siberian hamster suggests that seasonally appropriate body weight is continually reset according to photoperiodic history, even when actual body weight is driven away from this target weight by manipulation of energy intake. These characteristics constitute the "sliding set point" of seasonal body weight regulation. To define the mechanisms and molecules underlying anticipatory body weight regulation, we are investigating the involvement of hypothalamic systems with an established role in the compensatory defence of body weight. Weight loss or restricted growth induced by short days (SD) results in low circulating leptin compared with long day (LD) controls. However, this chronic low leptin signal is read differently from acute low leptin resulting from food deprivation; leptin receptor gene expression in the hypothalamic arcuate nucleus (ARC) is lower in SD, whereas food deprivation increases expression levels, suggesting changes in sensitivity to leptin feedback. SD alterations in mRNA levels for a number of hypothalamic neuropeptide and receptor genes appear counter-intuitive for a SD body weight trajectory. However, early increases in ARC cocaine-and amphetamine-regulated transcript (CART) gene expression in SDs could be involved in driving body weight loss or growth restriction. The sites of photoperiod interaction with energy balance neuronal circuitry and the neurochemical encoding of body weight set point require full characterisation. Study of anticipatory regulation in seasonal animals offers new insight into body weight regulation across mammalian species, including man.

  9. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  10. The action of RFamide neuropeptides on molluscs, with special reference to the gastropods Buccinum undatum and Busycon canaliculatum.

    PubMed

    Moulis, Alexander

    2006-05-01

    The ever-growing RFamide neuropeptide superfamily has members in all animal phyla. Their effects in molluscs, on both smooth and cardiac muscle as well as on neurons, has been studied in detail. These neuropeptides exert a variety of functions: excitatory, inhibitory or even biphasic. Firstly, the literature on the excitatory effect of the RFamide neuropeptides on molluscan muscle and neurons has been reviewed, with greater emphasis and examples from the gastropods Buccinum undatum and Busycon canaliculatum. The peptides seem to be potent activators of contraction, sometimes generating slow tonic force and other times twitch activity. Secondly, the literature on the inhibitory effect of the superfamily has been reviewed. These peptides can exert an inhibitory effect, hyperpolarizing the cells rather than depolarizing them. Thirdly, the neuropeptides may play a variety of other roles, such as contributing to the regulation or maturation process of the animals. There have been cases recorded of RFamide neuropeptides acting as potent venoms in members of the Conus sp. The pathway of action of these multiple roles, their interaction with the parent neurotransmitters acetylcholine and serotonin, as well as the calcium dependency of the RFamide neuropeptides has been discussed, again with special reference to the above mentioned gastropods. A better understanding of the mode of action, the effects, and the importance of the RFamide neuropeptides on molluscan physiology and pharmacology has been attempted by reviewing the existing literature, recognizing the importance of the RFamide neuropeptide actions on molluscs.

  11. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line.

    PubMed

    Ankö, Minna-Liisa; Panula, Pertti

    2006-01-01

    Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.

  12. Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling.

    PubMed

    Cohen, Merav; Reale, Vincenzina; Olofsson, Birgitta; Knights, Andrew; Evans, Peter; de Bono, Mario

    2009-04-01

    Animals modify food-seeking behavior and metabolism according to perceived food availability. Here we show that, in the roundworm C. elegans, release of neuropeptides from interneurons that are directly postsynaptic to olfactory, gustatory, and thermosensory neurons coordinately regulates behavior and metabolism. Animals lacking these neuropeptides, encoded by the flp-18 gene, are defective in chemosensation and foraging, accumulate excess fat, and exhibit reduced oxygen consumption. Two G protein-coupled receptors of the NPY/RFamide family, NPR-4 and NPR-5, are activated by FLP-18 peptides in vitro and exhibit mutant phenotypes that recapitulate those of flp-18 mutants. Our data suggest that sensory input can coordinately regulate behavior and metabolism via NPY/RFamide-like receptors. They suggest that peptidergic feedback from interneurons regulates sensory neuron activity, and that at least some of this communication occurs extrasynaptically. Extrasynaptic neuropeptide signaling may greatly increase the computational capacity of neural circuits. PMID:19356718

  13. Lipid-Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer.

    PubMed

    Gopalakrishnan, Gopakumar; Lepetre, Sinda; Maksimenko, Andrei; Mura, Simona; Desmaële, Didier; Couvreur, Patrick

    2015-05-01

    Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides-Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration. It is demonstrated, on an experimental model of human pancreatic adenocarcinoma, that lipid conjugation of Met-Enk enhances its tumor suppression efficacy compared to its nonlipidated counterparts, both in vitro and in vivo. More strikingly, the in vivo studies show that a combination therapy with a reduced concentration of Gemcitabine has suppressed the tumor growth considerably even three weeks after the last treatment.

  14. Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor

    PubMed Central

    2015-01-01

    Many common bacterial pathogens utilize quorum sensing to coordinate group behaviors and initiate virulence at high cell densities. The use of small molecules to block quorum sensing provides a means of abrogating pathogenic phenotypes, but many known quorum sensing modulators have limitations, including hydrolytic instability and displaying non-monotonic dose curves (indicative of additional targets and/or modes of action). To address these issues, we undertook a structure-based scaffold-hopping approach to develop new chemical modulators of the LasR quorum sensing receptor in Pseudomonas aeruginosa. We combined components from a triphenyl derivative known to strongly agonize LasR with chemical moieties known for LasR antagonism and generated potent LasR antagonists that are hydrolytically stable across a range of pH values. Additionally, many of these antagonists do not exhibit non-monotonic dose effects, delivering probes that inhibit LasR across a wider range of assay conditions relative to known lactone-based ligands. PMID:26807436

  15. Peripheral modulation of smell: fact or fiction?

    PubMed

    Lucero, Mary T

    2013-01-01

    Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.

  16. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging

    PubMed Central

    Shafer, Orie T.; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O.; Lohse, Martin J.; Taghert, Paul H.

    2008-01-01

    Summary The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of ~150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases, and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH 31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus the network of ~150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with sub-cellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network. PMID:18439407

  17. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes.

    PubMed

    Ku, Chi-Mei; Lin, Jin-Yuarn

    2013-11-15

    This study investigated 27 selected terpenoid compounds, including 8 monoterpenoids, 7 sesqui-terpenoids, 3 di-terpenoids, 8 tri-terpenoids, and 1 tetra-terpenoid, for their Th1/Th2 immunomodulatory potential using mouse primary splenocytes. Changes in Th1 cytokines, including interleukin (IL)-2 and interferon (IFN)-γ, and Th2 cytokines, including IL-4, IL-5 and IL-10, secreted by terpenoid-treated splenocytes were measured using the ELISA method. The results showed that triptolide, a diterpenoid, was most cytotoxic, reflecting an IC50 value of 46nM. Eucalyptol, limonene, linalool, thymol, parthenolide, andrographolide, 18β-glycyrrhetinic acid, lupeol, ursolic acid and β-sitosterol showed a strong Th2-inclination and anti-inflammation potential in vitro. In addition, (-)-trans-caryophyllene, oridonin, triptolide, diosgenin, betulinic acid, escin, and β-sitosterol treatments significantly inhibited both IL-2 (Th1) and IL-10 (Th2) cytokine production at the same time, suggesting that these terpenoid compounds have an anti-inflammation potential through the inhibition of T-cell immune responses. Diosgenin treatments significantly increased IFN-γ secretion levels using mouse splenocytes, suggesting that diosgenin may be useful in treating a viral infection through the stimulation of IFN-γ production. Menthone, farnesol and oridonin treatments did not markedly increase IL-10/IL-2 (Th2/Th1) cytokine secretion ratios, suggesting that menthone, farnesol and oridonin may have a relative Th1-inclination property, compared to the other selected terpenoid compounds. The relative Th1-inclination property of menthone, farnesol and oridonin may be applied to improve Th2-skewed allergic diseases.

  18. Rapid preconcentration for liquid chromatography-mass spectrometry assay of trace level neuropeptides.

    PubMed

    Zhou, Ying; Mabrouk, Omar S; Kennedy, Robert T

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MS(n)) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MS(n) based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ∼30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MS(n) measurement of neuropeptides in vivo more practical.

  19. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    PubMed

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  20. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide

    NASA Astrophysics Data System (ADS)

    Erwin, P. M.; Szmant, A. M.

    2010-12-01

    Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (<1 h) and resulted in >96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and

  1. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to post-fracture nociceptive sensitization

    PubMed Central

    Shi, Xiaoyou; Guo, Tian-zhi; Wei, Tzuping; Li, Wen-wu; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture induces exaggerated substance P (SP) and CGRP signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hindlimbs of rats similar to those seen in complex regional pain syndrome (CRPS). Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture induced exaggerated neuropeptide signaling up-regulates spinal inflammatory mediator expression, leading to post-fracture hindlimb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hindlimb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on post-fracture pain behavior and spinal inflammatory mediator expression. Hindlimb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, NGF) were observed at 4 weeks after fracture in rats. Fracture induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor and these mice had attenuated post-fracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or NGF each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling up-regulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of CRPS. PMID:25932690

  2. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  3. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization.

    PubMed

    Shi, Xiaoyou; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-Wu; Clark, David J; Kingery, Wade S

    2015-10-01

    Tibia fracture induces exaggerated substance P (SP) and calcitonin gene-related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome. PMID:25932690

  4. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization.

    PubMed

    Shi, Xiaoyou; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-Wu; Clark, David J; Kingery, Wade S

    2015-10-01

    Tibia fracture induces exaggerated substance P (SP) and calcitonin gene-related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome.

  5. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor.

    PubMed

    Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Trapella, Claudio; Gavioli, Elaine C

    2015-10-01

    Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.

  6. Lumbar cerebrospinal fluid concentrations of somatostatin and neuropeptide Y in multiple sclerosis

    SciTech Connect

    Vecsei, L.; Csala, B.; Widerloev, E.E.; Ekman, R.; Czopf, J.; Palffy, G. )

    1990-09-01

    The cerebrospinal fluid (CSF) concentrations of somatostatin and neuropeptide Y were investigated by use of radioimmunoassay in patients suffering from chronic progressive multiple sclerosis. The somatostatin level was significantly decreased in the CSF of patients with multiple sclerosis compared to the control group. The magnitude of this change was more pronounced in patients with severe clinical symptoms of the illness. The CSF neuropeptide Y concentration did not differ from the control values. These findings suggest a selective involvement of somatostatin neurotransmission in multiple sclerosis.

  7. Immunohistochemical study of the neuropeptides in the stellate ganglion of the water buffalo.

    PubMed

    Nasu, T; De Ocampo, G; Molina, H A; Tateyama, S; Morimoto, M

    2000-05-01

    The localization of some neuropeptides including neuropeptide Y (NPY), substance P (SP), calcitonin gene related peptide (CGRP), vasoactive intestinal peptide (VIP), galanin (Gal), methionine enkephalin (M-ENK), tyrosine hydroxylase (TH) immunoreactivity was studied in the stellate ganglion (SG) of water buffalo. NPY, SP, Gal and TH immunoreactivities were present in almost all of the ganglion cells. NPY, SP, Gal, SP, CGRP, VIP and M-ENK immunoreactive nerve fibers were also seen in the SG. The localization and pattern of distribution of these peptides in the water buffalo stellate ganglion were compared with those in stellate ganglia of other mammalian species.

  8. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    PubMed

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  9. Effects of intravenous neuropeptide Y on insulin secretion and insulin sensitivity in skeletal muscle in normal rats.

    PubMed

    Vettor, R; Pagano, C; Granzotto, M; Englaro, P; Angeli, P; Blum, W F; Federspil, G; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1998-11-01

    Intracerebroventricular administration of neuropeptide Y to normal rats induces a syndrome characterised by obesity, hyperinsulinaemia, insulin resistance and over expression of the adipose tissue ob gene. Little is known about the effect of circulating neuropeptide Y on glucose metabolism, insulin secretion and leptin. We therefore aimed to evaluate the effect of an intravenous infusion of neuropeptide Y on glucose disposal, endogenous glucose production, whole body glycolytic flux, and glucose storage as assessed during euglycaemic hyperinsulinaemic clamp. In addition, the insulin-stimulated glucose utilisation index in individual tissues was measured by the 2-deoxy-[1-3H]-glucose technique. The effect of neuropeptide Y on insulin secretion was evaluated by hyperglycaemic clamp. Infusion did not induce any change in endogenous glucose production during basal conditions or at the end of the clamp. Glucose disposal was significantly increased in the rats given neuropeptide Y compared with controls (27.8 +/- 1.3 vs 24.3 +/- 1.6 mg x min(-1) x kg(-1); p < 0.05) as was the glycolytic flux (18.9 +/- 1.6 vs 14.4 +/- 0.8 mg x min(-1) x kg(-1); p < 0.05), while glucose storage was comparable in the two groups. In skeletal muscle, the glucose utilisation index was increased significantly in rats given neuropeptide Y. The glucose utilisation index in subcutaneous and epididimal adipose tissue was not significantly different between the two groups. Plasma leptin was significantly increased by hyperinsulinaemia, but was not affected by neuropeptide Y infusion. Both the early and late phase of the insulin response to hyperglycaemia were significantly reduced by neuropeptide Y. In conclusion neuropeptide Y infusion may increase insulin-induced glucose disposal in normal rats, accelerating its utilisation through the glycolytic pathway. Neuropeptide Y reduces both phases of the insulin response to hyperglycaemia.

  10. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    PubMed

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  11. Microstructural and transport properties in substituted Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}-modulated compounds

    SciTech Connect

    Autret-Lambert, C. . E-mail: cecile.autret@univ-tours.fr; Pignon, B.; Gervais, M.; Monot-Laffez, I.; Ruyter, A.; Ammor, L.; Gervais, F.; Bassat, J.M.; Decourt, R.

    2006-06-15

    X-ray powder diffraction and resistivity measurements were performed on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} ceramics substituted by Y and Zn for Ca and Cu sites, respectively. X-ray diffraction patterns show an incommensurate modulated structure along the b-axis. The structural refinements were carried out using the four-dimensional space group Bbmb(0{beta}1)000. From the X-ray peak profiles analysis, an anisotropic line-shape broadening was observed. The use of the ''Williamson and Hall'' method allows distinguishing the origin of broadening as mainly due to microstrains. A large transition from a metallic to semiconductor behaviour is observed on the resistivity curves at x{approx}0.4 for Bi{sub 2}Sr{sub 2}Ca{sub 1-x}Y{sub x}Cu{sub 2}O{sub 8+{delta}} and at x{sup '}{approx}0.36 for Bi{sub 2}Sr{sub 2}Ca{sub 1-x}Y{sub x}Cu{sub 1.94}Zn{sub 0.06}O{sub 8+{delta}}, which can be also correlated to the defects. Oppositely to the metallic behaviour, which satisfies the Mathiessen's rule, the semiconducting one can be modelled by a variable range hopping process.

  12. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells.

    PubMed

    Rochford, Kevin; Chen, Feng; Waguespack, Yan; Figliozzi, Robert W; Kharel, Madan K; Zhang, Qiaojuan; Martin-Caraballo, Miguel; Hsia, S Victor

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency. PMID:27537375

  13. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells

    PubMed Central

    Waguespack, Yan; Figliozzi, Robert W.; Kharel, Madan K.; Zhang, Qiaojuan; Martin-Caraballo, Miguel

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency. PMID:27537375

  14. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids.

    PubMed

    Zafari, Somaieh; Sharifi, Mohsen; Ahmadian Chashmi, Najmeh; Mur, Luis A J

    2016-02-01

    Lead (Pb) is a hazardous heavy metal present in the environment which elicits oxidative stress in plants. To characterize the physiological and biochemical basis of Pb tolerance, Prosopis farcta seedlings were exposed to Hoagland's solutions at six different Pb concentrations (0, 80, 160, 320, 400 and 480 μM) for different periods of time. As expected, application of Pb significantly increased hydrogen peroxide (H2O2) content. In response, P. farcta deployed the antioxidative defence mechanisms with significantly higher activities of superoxide dismutase (SOD), enzymes related to H2O2 removal, and also the increases in proline as a solute marker of stress. Increases were observed in nitric oxide (NO) production which could also act in triggering defense functions to detoxify Pb. Enhanced phenylalanine ammonia-lyase (PAL) activity at early days of exposure to Pb was correlated with increases in phenolic compounds. Significant increases in phenolic acids and flavonoids; daidzein, vitexin, ferulic acid and salicylic acid were observed with Pb treatment. Furthermore, the stress effects were followed by changes in free amino acid content and composition. Aspartic acid and glycine content was increased but glutamic acid significantly decreased. It is likely that stress signal transduction by NO and H2O2 mediated defence responses to Pb by coordination of antioxidative system and metabolic pathways of phenylpropanoid and amino acids.

  15. Moderate modulation of disease in the G93A model of ALS by the compound 2-(2-hydroxyphenyl)-benzoxazole (HBX).

    PubMed

    Evans, Teresa M; Bhattacharya, Arunabh; Shi, Yun; Qi, Wenbo; Block, Travis J; Chaudhuri, Asish; Chaudhuri, Alakananda Ray; Hawker, Kara; Van Remmen, Holly

    2016-06-15

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease characterized by degeneration and death of motor neurons. Aberrant protein aggregation and oxidative stress are implicated in the etiology of ALS; thus preventing propagation of early aggregation events and oxidative damage could be an effective therapy. We tested the effect of dietary supplementation (initiated 40 days of age) with 2-(2-hydroxyphenyl)-benzoxazole (HBX), a compound with metal chelator and anti-aggregation properties, on disease onset, progression and lifespan in the G93A mouse model of ALS. Tests were not sufficiently powerful to detect any change to survival distribution of mice treated with HBX. However, the disease onset was delayed and max lifespan was increased in the treatment group. Additionally, disease progression was moderated as shown by reduced neuromuscular denervation measured by repetitive nerve stimulation. F2-isoprostanes, a marker of oxidative damage, are elevated in skeletal muscle from G93A mice at onset and this increase is prevented in HBX fed G93A mice. Furthermore, HBX treatment reduced mutant SOD1 protein aggregation in whole spinal cord of G93A mice at disease onset. Overall, our data suggests that HBX may be able to improve the degenerative symptoms of ALS through the prevention of oxidative damage and protein aggregation. Further studies are needed to uncover the mechanistic effects of HBX in ameliorating ALS pathology.

  16. Marine Compound Catunaregin Inhibits Angiogenesis through the Modulation of Phosphorylation of Akt and eNOS in vivo and in vitro

    PubMed Central

    Liu, Jun-Xiu; Luo, Min-Qi; Xia, Meng; Wu, Qi; Long, Si-Mei; Hu, Yaohua; Gao, Guang-Chun; Yao, Xiao-Li; He, Mian; Su, Huanxing; Luo, Xiong-Ming; Yao, Shu-Zhong

    2014-01-01

    Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways. PMID:24824025

  17. Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of akt and eNOS in vivo and in vitro.

    PubMed

    Liu, Jun-Xiu; Luo, Min-Qi; Xia, Meng; Wu, Qi; Long, Si-Mei; Hu, Yaohua; Gao, Guang-Chun; Yao, Xiao-Li; He, Mian; Su, Huanxing; Luo, Xiong-Ming; Yao, Shu-Zhong

    2014-05-01

    Angiogenesis is the formation of blood vessels from pre-existing vasculature. Excessive or uncontrolled angiogenesis is a major contributor to many pathological conditions whereas inhibition of aberrant angiogenesis is beneficial to patients with pathological angiogenesis. Catunaregin is a core of novel marine compound isolated from mangrove associate. The potential anti-angiogenesis of catunaregin was investigated in human umbilical vein endothelial cells (HUVECs) and zebrafish. HUVECs were treated with different concentrations of catunaregin in the presence or absence of VEGF. The angiogenic phenotypes including cell invasion cell migration and tube formation were evaluated following catunaregin treatment in HUVECs. The possible involvement of AKT, eNOS and ERK1/2 in catunaregin-induced anti-angiogenesis was explored using Western blotting. The anti-angiogenesis of catunaregin was further tested in the zebrafish embryo neovascularization and caudal fin regeneration assays. We found that catunaregin dose-dependently inhibited angiogenesis in both HUVECs and zebrafish embryo neovascularization and zebrafish caudal fin regeneration assays. In addition, catunaregin significantly decreased the phosphorylation of Akt and eNOS, but not the phosphorylation of ERK1/2. The present work demonstrates that catunaregin exerts the anti-angiogenic activity at least in part through the regulation of the Akt and eNOS signaling pathways.

  18. Neuropeptide Y protects against methamphetamine-induced neuronal apoptosis in the mouse striatum.

    PubMed

    Thiriet, Nathalie; Deng, Xiaolin; Solinas, Marcello; Ladenheim, Bruce; Curtis, Wendy; Goldberg, Steven R; Palmiter, Richard D; Cadet, Jean Lud

    2005-06-01

    Methamphetamine (METH) is an illicit drug that causes neuronal apoptosis in the mouse striatum, in a manner similar to the neuronal loss observed in neurodegenerative diseases. In the present study, injections of METH to mice were found to cause the death of enkephalin-positive projection neurons but not the death of neuropeptide Y (NPY)/nitric oxide synthase-positive striatal interneurons. In addition, these METH injections were associated with increased expression of neuropeptide Y mRNA and changes in the expression of the NPY receptors Y1 and Y2. Administration of NPY in the cerebral ventricles blocked METH-induced apoptosis, an effect that was mediated mainly by stimulation of NPY Y2 receptors and, to a lesser extent, of NPY Y1 receptors. Finally, we also found that neuropeptide Y knock-out mice were more sensitive than wild-type mice to METH-induced neuronal apoptosis of both enkephalin- and nitric oxide synthase-containing neurons, suggesting that NPY plays a general neuroprotective role within the striatum. Together, our results demonstrate that neuropeptide Y belongs to the class of factors that maintain neuronal integrity during cellular stresses. Given the similarity between the cell death patterns induced by METH and by disorders such as Huntington's disease, our results suggest that NPY analogs might be useful therapeutic agents against some neurodegenerative processes.

  19. The neuropeptide F (NPF) encoding gene from the cestode, Moniezia expansa.

    PubMed

    Mair, G R; Halton, D W; Shaw, C; Maule, A G

    2000-01-01

    Neuropeptide F (NPF) is an abundantly expressed neuropeptide in platyhelminth nervous systems, and exhibits a moderate, myogenic effect on muscle preparations of parasitic flatworms. NPF displays structural similarities to peptides from molluscs and vertebrate members of the neuropeptide Y (NPY)-superfamily of peptides. NPY is one of the most abundant and highly conserved neuropeptides within vertebrates and similarities between the gene organization of NPY, pancreatic polypeptide (PP) and peptide tyrosine tyrosine (PYY), suggest a common evolutionary origin of this peptide family. Dual localization analyses coupled with confocal scanning laser microscopy revealed a close spatial relationship between NPF-containing nerves and muscle fibres in M. expansa. Molecular cloning techniques identified the M. expansa NPF (mxNPF) precursor and characterized the isolated transcript which encodes an open reading frame of 57 amino acids. The transcript possesses a 17 amino acid signal peptide and the mature NPF sequence (39 amino acids) followed by a carboxyterminal glycyl extension. Sequence analysis of genomic DNA identified a product which possessed a 54 base pair intron with consensus sequences for 5' and 3' splice sites. The M. expansa npf gene possesses a phase 2 intron within the penultimate arginyl residue, a characteristic feature of NPY superfamily peptide-genes. The intron-exon organization of the npf gene, coupled with the abundant expression of NPF within the nervous systems of flatworms, suggests an early evolutionary origin for this peptide transmitter family within the nervous systems of basal bilaterian metazoans.

  20. Role of neuropeptides in anxiety, stress, and depression: from animals to humans.

    PubMed

    Kormos, Viktória; Gaszner, Balázs

    2013-12-01

    Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.

  1. Cerebrospinal fluid prohormone processing and neuropeptides stimulating feed intake of dairy cows during early lactation.

    PubMed

    Kuhla, Björn; Laeger, Thomas; Husi, Holger; Mullen, William

    2015-02-01

    After parturition, feed intake of dairy cows increases within the first weeks of lactation, but the molecular mechanisms stimulating or delaying the slope of increase are poorly understood. Some of the molecules controlling feed intake are neuropeptides that are synthesized as propeptides and subsequently processed before they bind to specific receptors in feeding centers of the brain. Cerebrospinal fluid surrounds most of the feed intake regulatory centers and contains numerous neuropeptides. In the present study, we used a proteomic approach to analyze the neuropeptide concentrations in cerebrospinal fluid taken from dairy cows between day -18 and -10, and between day +10 and +20 relative to parturition. We found 13 proteins which were only present in samples taken before parturition, 13 proteins which were only present in samples taken after parturition, and 25 proteins which were commonly present, before and after parturition. Among them, differences in pro-neuropeptide Y, proenkephalin-A, neuroendocrine convertase-2, neurosecretory protein VGF, chromogranin-A, and secretogranin-1 and -3 concentrations relative to parturition highlight propeptides and prohormone processings involved in the control of feed intake and energy homeostasis. Scaffold analysis further emphasized an increased tone of endogenous opioids associated with the postparturient increase of feed intake.

  2. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  3. Feed intake of gilts following intracerebroventicular injection of the novel hypothalamic RFamide (RFa) neuropeptide, 26RFa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RFamide (RFa) peptides have been implicated in a broad spectrum of biological processes including energy expenditure and feed intake. 26RFa is a recently discovered hypothalamic neuropeptide that altered the release of pituitary hormones and stimulated feed intake via a NPY-specific mechanism in rat...

  4. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  5. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  6. RFamide neuropeptide actions on molluscan proboscis smooth muscle: interactions with primary neurotransmitters.

    PubMed

    Moulis, A; Huddart, H

    2004-07-01

    The potency (muscle force-generated) of a number of long-chain RFamide neuropeptides was examined in mechanical experiments with the radular-retractor and radular-sac muscles of gastropods Buccinum undatum and Neptunea antiqua. Many of the heptapeptides, octapeptides and the decapeptide LMS were found to induce greater contraction than FMRFamide in both smooth muscles and in both species. RFamide neuropeptides interacted with the neurotransmitter acetylcholine in an additive way and RFamide-induced contractions were inhibited by the neuromodulator serotonin. Pre-treatment with a calcium-free saline completely abolished acetylcholine-induced responses but only partially inhibited RFamide responses in the muscles, suggesting that acetylcholine acts to cause influx of extracellular calcium for contraction. In contrast, RFamide neuropeptides may mobilise intracellular calcium to maintain sustained tonic force in calcium-free conditions. This suggests that an additional involvement of a fast calcium channel may be present in the RFamide responses, since loss of the usual superimposed twitch activity is observed. Force regulation in these muscles appears to result from a complex interaction of RFamide neuropeptides with the primary transmitter acetylcholine and the neuromodulator serotonin.

  7. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    PubMed

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  8. Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze.

    PubMed

    Bacchi, Fabrizio; Mathé, Aleksander A; Jiménez, Patricia; Stasi, Luigi; Arban, Roberto; Gerrard, Philip; Caberlotto, Laura

    2006-12-01

    The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.

  9. Neuropeptide Y and extracellular signal-regulated kinase mediate injury-induced neuroregeneration in mouse olfactory epithelium

    PubMed Central

    Jia, Cuihong; Hegg, Colleen Cosgrove

    2011-01-01

    In the olfactory epithelium (OE), injury induces ATP release, and subsequent activation of P2 purinergic receptors by ATP promotes neuroregeneration by increasing basal progenitor cell proliferation. The molecular mechanisms underlying ATP-induced increases in OE neuroregeneration have not been established. In the present study, the roles of neuroproliferative factors neuropeptide Y (NPY) and fibroblast growth factor2 (FGF2), and p44/42 extracellular signal-regulated kinase (ERK) on ATP-mediated increases of neuroregeneration in the OE were investigated. ATP increased basal progenitor cell proliferation in the OE via activation of P2 purinergic receptors in vitro and in vivo as monitored by incorporation of 5′-ethynyl-2′-deoxyuridine, a thymidine analog, into DNA, and proliferating cell nuclear antigen (PCNA) protein levels. ATP induced p44/42 ERK activation in globose basal cells (GBC) but not horizontal basal cells (HBC). ATP differentially regulated p44/42 ERK over time in the OE both in vitro and in vivo with transient inhibition (5–15 min) followed by activation (30 min – 1 hr) of p44/42 ERK. In addition, ATP indirectly activated p44/42 ERK in the OE via ATP-induced NPY release and subsequent activation of NPY Y1 receptors in the basal cells. There were no synergistic effects of ATP and NPY or FGF2 on OE neuroregeneration. These data clearly have implications for the pharmacological modulation of neuroregeneration in the olfactory epithelium. PMID:22154958

  10. Corticotropin-releasing factor and neuropeptide Y mRNA levels are modified by glucocorticoids in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Doyon, Christian; Leclair, Jason; Trudeau, Vance L; Moon, Thomas W

    2006-04-01

    The primary stress response involves neuronal activation that ultimately leads to the release of glucocorticoids. Circulating glucocorticoids are thought to influence their own synthesis and release through a negative feedback mechanism that inhibits the activity of the hypothalamic and pituitary components of the stress axis. This study was designed to address the hypothesis that glucocorticoids modify corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) mRNA levels in the rainbow trout (Oncorhynchus mykiss) brain. Cortisol implantation significantly reduced CRF1 and NPY mRNA levels in fish exposed to an isolation stress. In contrast, cortisol implantation did not prevent the stress-induced elevation of CRF1 and NPY mRNA levels during confinement. Treatment with the glucocorticoid receptor antagonist RU-486 reduced CRF1 mRNA levels in both isolated and confined fish, but had no effect on NPY mRNA. Although the cytochrome P450 inhibitor metyrapone reduced ACTH-induced cortisol secretion in vitro, plasma cortisol levels were elevated in isolated trout treated with metyrapone. Nevertheless, metyrapone implantation increased CRF1 and NPY mRNA levels in confined fish. Together, these results implicate cortisol as a modulator of CRF and NPY mRNA levels in the preoptic area of the trout brain, but that cortisol is only one such regulating mechanism.

  11. Regulation of feeding behavior and plasma testosterone in response to central neuropeptide Y administration in a songbird.

    PubMed

    Davies, Scott; Deviche, Pierre

    2015-08-01

    In mammalian and avian model species, neuropeptide Y (NPY) simultaneously promotes feeding behavior and suppresses the secretion of reproductive hormones, thereby modulating the resource allocation trade-off between investing in essential somatic processes or in the reproductive system. Investigations into this dual role of NPY in birds have focused on domesticated species and, to our knowledge, no study has examined this role in songbirds. We determined whether NPY treatment acutely regulates feeding behavior and activity of the reproductive system in a male songbird, the Abert's Towhee, Melozone aberti. Intracerebroventricular (ICV) administration of NPY promoted behaviors associated with feeding (decreased latency to initiate pecking in the food bowl, increased number of feeding bouts following treatment, and increased number of pecks into the food bowl during each feeding bout), and it stimulated hopping and drinking behavior. By contrast, we found no effect of NPY treatment on plasma testosterone secretion 60 min after treatment. These results suggest that in male Abert's Towhees NPY stimulates feeding behavior, but provide no evidence that this peptide concurrently influences testosterone secretion.

  12. Neuropeptide Y Opposes Alcohol Effects on GABA Release in Amygdala and Blocks the Transition to Alcohol Dependence

    PubMed Central

    Gilpin, Nicholas W.; Misra, Kaushik; Herman, Melissa A.; Cruz, Maureen T.; Koob, George F.; Roberto, Marisa

    2011-01-01

    Background During the transition to alcohol and drug addiction, neuromodulator systems in the extended amygdala are recruited to mediate aspects of withdrawal and relapse via convergence on inhibitory GABA neurons in central amygdala (CeA). Methods This study investigated the role of neuropeptide Y (NPY) in excessive alcohol drinking by making rats dependent on alcohol via alcohol vapor inhalation. This study also utilized intracellular and whole-cell recording techniques to determine the effects of NPY on GABAergic inhibitory transmission in CeA, synaptic mechanisms involved in these NPY effects, and NPY interactions with alcohol in the CeA of alcohol-naïve and alcohol-dependent rats. Results Chronic NPY treatment blocked excessive operant alcohol-reinforced responding associated with alcohol dependence, as well as gradual increases in alcohol responding by intermittently tested non-dependent controls. NPY decreased baseline GABAergic transmission and reversed alcohol-induced enhancement of inhibitory transmission in CeA by suppressing GABA release via actions at presynaptic Y2 receptors. Conclusions These results highlight NPY modulation of GABAergic signaling in central amygdala as a promising pharmacotheraputic target for the treatment of alcoholism. GABA neurons in the CeA likely constitute a major point of convergence for neuromodulator systems recruited during the transition to alcohol dependence. PMID:21459365

  13. Neuropeptide FF receptor antagonist, RF9, attenuates the fever induced by central injection of LPS in mice.

    PubMed

    Wang, Yi-qing; Wang, Sheng-bin; Ma, Jing-lin; Guo, Jia; Fang, Quan; Sun, Tao; Zhuang, Yan; Wang, Rui

    2011-04-01

    The endogenous opioid system has been found to be involved in the fever caused by lipopolysaccharide (LPS). Neuropeptide FF (NPFF, FLFQPQRF-NH(2)) is an endogenous peptide known to modulate opioid activity, mainly in the central nervous system. Therefore, those data suggested a link between LPS-induced fever and NPFF systems. Using a model of acute neuroinflammation, we sought to determine the effects of NPFF systems on the fever induced by i.c.v. injection of LPS. Coinjected with different doses of NPFF (10 and 30 nmol), the fever of LPS (125 ng) was not modified. Interestingly, the selective NPFF receptors antagonist RF9 (30 nmol) injected into the third ventricle failed to induce significant effect, but it decreased the fever of LPS (125 ng) after cerebral administration in mice. These results suggest that NPFF receptors activation is required for LPS to produce fever. This interaction is the first evidence that NPFF systems participate in the control of acute neuroinflammation in conscious animals.

  14. Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells.

    PubMed

    Mäkelä, Johanna; Koivuniemi, Raili; Korhonen, Laura; Lindholm, Dan

    2010-01-01

    Inflammation is part of many neurological disorders and immune reactions may influence neuronal progenitor cells (NPCs) contributing to the disease process. Our knowledge about the interplay between different cell types in brain inflammation are not fully understood. It is important to know the mechanisms and factors involved in order to enhance regeneration and brain repair. We show here that NPCs express receptors for interferon-gamma (IFNgamma), and IFNgamma activates the signal transducer and activator of transcription (STAT) protein-1. IFNgamma reduced cell proliferation in NPCs by upregulation of the cell cycle protein p21 as well as induced cell death of NPCs by activating caspase-3. Studies of putative factors for rescue showed that the neuropeptide, Pituitary adenylate cyclase-activating polypeptide (PACAP) increased cell viability, the levels of p-Bad and reduced caspase-3 activation in the NPCs. Medium from cultured microglia contained IFNgamma and decreased the viability of NPCs, whilst blocking with anti-IFNgamma antibodies counteracted this effect. The results show that NPCs are negatively influenced by IFNgamma whereas PACAP is able to modulate its action. The interplay between IFNgamma released from immune cells and PACAP is of importance in brain inflammation and may affect the regeneration and recruitment of NPCs in immune diseases. The observed effects of IFNgamma on NPCs deserve to be taken into account in human anti-viral therapies particularly in children with higher rates of brain stem cell proliferation.

  15. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity

    PubMed Central

    Beck, B

    2006-01-01

    Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka–Long–Evans–Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an

  16. Identification of a novel starfish neuropeptide that acts as a muscle relaxant.

    PubMed

    Kim, Chan-Hee; Kim, Eun Jung; Go, Hye-Jin; Oh, Hye Young; Lin, Ming; Elphick, Maurice R; Park, Nam Gyu

    2016-04-01

    Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant

  17. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: a hypothesis.

    PubMed

    Misra, Jitendra B

    2014-02-15

    Photorespiration is generally considered to be an essentially dissipative process, although it performs some protective and essential functions. A theoretical appraisal indicates that the loss of freshly assimilated CO2 due to photorespiration in well-watered plants may not be as high as generally believed. Even under moderately adverse conditions, these losses may not exceed 10%. The photorespiratory metabolism of the source leaves of well-watered and well-nourished crop plants ought to be different from that of other leaves because the fluxes of the export of both carbohydrates and organic N-transport compounds in source leaves is quite high. With a heuristic approach that involved the dovetailing of certain metabolic steps with the photorespiratory cycle (PR-cycle), a novel network is proposed to operate in the source-leaves of well-watered and well-nourished plants. This network allows for the diversion of metabolites from their cyclic-routes in sizeable quantities. With the removal of considerable quantities of glycine and serine from the cyclic route, the number of RuBP oxygenation events would be several times those of the formation of hydroxypyruvate. Thus, to an extreme extent, photorespiratory metabolism would become open-ended and involve much less futile recycling of glycine and serine. Conversion of glyoxylate to glycine has been proposed to be a crucial step in the determination of the relative rates of the futile (cyclic) and anabolic (open-ended) routes. Thus, in the source leaves of well-watered and well-nourished plants, the importance of the cyclic route is limited to the salvaging of photorespiratory intermediates for the regeneration of RuBP. The proposed network is resilient enough to coordinate the rates of the assimilation of carbon and nitrogen in accordance with the moisture and N-fertility statuses of the soil.

  18. Compound I formation in artichoke (Cynara scolymus L.) peroxidase is modulated by the equilibrium between pentacoordinated and 6-aquo hexacoordinated forms of the heme and by calcium ions.

    PubMed

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2003-07-29

    Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.

  19. Role of neuropeptides in appetite regulation and obesity--a review.

    PubMed

    Arora, Sarika; Anubhuti

    2006-12-01

    Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.

  20. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity.

    PubMed

    Setzu, M; Biolchini, M; Lilliu, A; Manca, M; Muroni, P; Poddighe, S; Bass, C; Angioy, A M; Nichols, R

    2012-02-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity.

  1. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity

    PubMed Central

    Setzu, M.; Biolchini, M.; Lilliu, A.; Manca, M.; Muroni, P.; Poddighe, S.; Bass, C.; Angioy, A.M.; Nichols, R.

    2012-01-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10 nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~ 50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity. PMID:22289500

  2. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats.

    PubMed

    de Rijke, C E; Hillebrand, J J G; Verhagen, L A W; Roeling, T A P; Adan, R A H

    2005-10-01

    When rats are given access to a running-wheel in combination with food restriction, they will become hyperactive and decrease their food intake, a paradoxical phenomenon known as activity-based anorexia (ABA). Little is known about the regulation of the hypothalamic neuropeptides that are involved in the regulation of food intake and energy balance during the development of ABA. Therefore, rats were killed during the development of ABA, before they entered a state of severe starvation. Neuropeptide mRNA expression levels were analysed using quantitative real-time PCR on punches of separate hypothalamic nuclei. As is expected in a state of negative energy balance, expression levels of agouti-related protein (AgRP) and neuropeptide Y (NPY) were increased 5-fold in the arcuate nucleus (ARC) of food-restricted running ABA rats vs 2-fold in sedentary food-restricted controls. The co-regulated expression of AgRP and NPY strongly correlated with relative body weight and white adipose tissue mass. Arcuate expression of pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) was reduced 2-fold in the ABA group. In second-order neurons of the lateral hypothalamic area (LHA), melanin-concentrating hormone (MCH) mRNA expression was upregulated 2-fold in food-restricted running rats, but not in food-restricted sedentary controls. Prepro-orexin, CART and corticotropin-releasing hormone expression levels in the LHA and the paraventricular nucleus (PVN) were unchanged in both food-restricted groups. From this study it was concluded that during the development of ABA, neuropeptides in first-order neurons in the ARC and MCH in the LHA are regulated in an adequate response to negative energy balance, whereas expression levels of the other studied neuropeptides in secondary neurons of the LHA and PVN are unchanged and are probably regulated by factors other than energy status alone.

  3. Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice.

    PubMed

    Wang, Zi-long; Fang, Quan; Han, Zheng-lan; Pan, Jia-xin; Li, Xu-hui; Li, Ning; Tang, Hong-hai; Wang, Pei; Zheng, Ting; Chang, Xue-mei; Wang, Rui

    2014-01-01

    Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems.

  4. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    NASA Astrophysics Data System (ADS)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  5. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.

    PubMed

    Werner, Felix-Martin; Coveñas, R

    2013-01-01

    We summarize the alterations of classical neurotransmitters and neuropeptides and the corresponding subreceptors involved in major depression. Neuronal circuits in the brainstem, hippocampus and hypothalamus are developed, since they can be used to derive a multimodal pharmacotherapy. In this sense, serotonin hypoactivity could occur through a strong presynaptic inhibition of glutaminergic neurons via the subtype 5 of metabotropic glutaminergic receptors, and noradrenaline hypoactivity could be due to an enhanced presynaptic inhibition of GABAergic neurons via GABAB receptors. In the hippocampus, dopamine hypoactivity leads to a decreased positive effect. In clinical trials, the antidepressant effect of drugs interfering with the mentioned subreceptors, for example the triple reuptake inhibitor amitifadine, is being investigated. Moreover, the alterations of neuropeptides, such as corticotropin-releasing hormone, neuropeptide Y and galanin are pointed out. The additional antidepressant effect of analogs, agonists and antagonists of the mentioned neuropeptides should be examined.

  6. Neuropeptides in Heteroptera: Identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the peptidomic analysis of neuropeptides from the retrocerebral complex and abdominal perisympathetic organs of polyphagous stinkbugs (Pentatomidae) revealed the group-specific sequences of pyrokinins, CAPA peptides (CAPA-periviscerokinins/PVKs and CAPA-pyrokinin), myosuppressin, corazonin...

  7. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing.

    PubMed

    Pradhan, Leena; Cai, Xuemei; Wu, Szuhuei; Andersen, Nicholas D; Martin, Michelle; Malek, Junaid; Guthrie, Patrick; Veves, Aristidis; Logerfo, Frank W

    2011-05-15

    The interaction between neuropeptides and cytokines and its role in cutaneous wound healing is becoming evident. The goal of the present study is to investigate the impact of diabetes on peripheral cytokine and neuropeptide expression and its role in diabetic wound healing. To achieve this goal, the effect of diabetes on wound healing, along with the role of inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) secreted in the wound microenvironment, and neuropeptides such as substance P (SP) and neuropeptide Y (NPY), secreted from peripheral nerves is monitored in non-diabetic and diabetic rabbits. Rabbits in the diabetic group received alloxan monohydrate (100mg/kg i.v.). Ten days after diabetic induction, four full thickness circular wounds were created in both ears using a 6mm punch biopsy. Wound healing was monitored over 10 d and gene expression of cytokines and neuropeptides was assessed in the wounds. Compared with the non-diabetic rabbits, wounds of diabetic rabbits heal significantly slower. Diabetic rabbits show significantly increased baseline gene expression of IL-6 and IL-8, their receptors, CXCR1, CXCR2, GP-130, and a decrease of prepro tachykinin-A (PP-TA), the precursor of SP, whereas the expression of prepro-NPY (PP-NPY), the precursor of NPY is not different. Similarly, baseline protein expression of CXCR1 is higher in diabetic rabbit skin. Post-injury, the increase over baseline gene expression of IL-6, IL-8, CXCR1, CXCR2, and GP-130 is significantly less in diabetic wounds compared with non-diabetic wounds. Although there is no difference in PP-TA gene expression between non-diabetic and diabetic rabbits post-injury, the gene expression of PP-NPY is reduced in diabetic rabbits. In conclusion, diabetes causes dysregulation in the neuropeptide expression in the skin along with a suppressed focused inflammatory response to injury. This suggests that the chronic inflammation in the skin of diabetic rabbits inhibits the acute

  8. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis.

    PubMed

    Bi, Sheng

    2013-09-10

    In addition to controlling food intake, the dorsomedial hypothalamus (DMH) plays an important role in thermoregulation. Within the DMH, a number of neuropeptides and receptors have been found and their roles in controlling energy balance are being investigated. We recently found that the orexigenic neuropeptide Y (NPY) in the DMH has specific actions on body adiposity and thermogenesis using a viral-mediated manipulation of NPY in the DMH. Knockdown of NPY in the DMH promotes the development of brown adipocytes in white adipose tissue and increases brown adipocyte activity. DMH NPY knockdown also causes increased thermogenesis and energy expenditure. Finally, DMH NPY knockdown prevents high-fat diet-induced obesity and improves glucose homeostasis. This review focuses on the role of DMH NPY in modulating body adiposity and thermogenesis.

  9. Influence of Neuropeptide Y and antidepressants upon cerebral monoamines involved in depression: an in vivo electrochemical study.

    PubMed

    Crespi, Francesco

    2011-08-17

    Neuropeptide Y (NPY) and its receptors are present in the peripheral as well as the central nervous system (CNS). In vitro data have indicated NPY as an important mediator in the regulation of different diseases e.g. related to obesity, anxiety, depression, pain, memory loss and sleep disorders. In particular, studies of NPY levels in the cerebral spinal fluid (CSF) of depressed patients have shown a significant reduction of NPY levels when compared to control subjects. In addition, decreased concentrations of NPY were measured in the brain of suicide victims. These studies suggest that a reduction in cerebral NPY function may be associated with depressive symptoms. In the present work, a putative interaction between NPY, the catecholaminergic and serotonergic systems has been analysed by means of in vivo Differential Pulse Voltammetry (DPV) with treated carbon fibre micro electrodes (mCFE). It appeared that DPV with mCFE is an efficacious tool to monitor in vivo basal levels of catechols (Peak 2) and indoles (Peak 3) in discrete brain regions of rodents. Furthermore, it is shown that the peptidergic signal (Peak 5) simultaneously recorded with Peaks 2 and 3 in the amygdala could correspond to the oxidation of basal endogenous NPY. In addition, pharmacological treatments performed in vivo with exogenous NPY and with Y1 receptor antagonist BIBP3226 have indicated that these compounds interact positively with endogenous catecholaminergic and serotoninergic systems, in a way similar to that of the antidepressants imipramine and fluoxetine. In addition, the observed decrease of endogenous Peak 5 after treatment with imipramine or fluoxetine could be related to the concomitant stimulation of the catecholaminergic system with consequent reduced need for endogenous NPY. This would imply that NPY could be one of the endogenous chemicals acting on the maintenance of the mood. Thus, an antidepressant therapeutic potential of NPY and related compounds (e.g. BIBP3226) could be

  10. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    PubMed

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  11. Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias

    PubMed Central

    Toullec, Jean-Yves; Corre, Erwan; Bernay, Benoît; Thorne, Michael A. S.; Cascella, Kévin; Ollivaux, Céline; Henry, Joël; Clark, Melody S.

    2013-01-01

    Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides

  12. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    PubMed Central

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment