Sample records for neuroprotective drug riluzole

  1. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2015-02-01

    diabetic drug that targets SUR1 receptors on endothelia. In an attempt to replicate primary research data showing that Glib has potent neuroprotective...high-field T1 and T2 weighted MRI imaging protocols in rat model of SCI. • Established that glibenclamide is neuroprotective across different types...glibenclamide efficacy within 24h post-SCI. • Compared the relative efficacy of glibenclamide with other neuroprotective drugs (Riluzole, systemic

  2. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2011-03-01

    600 mg load) DU exposure conditions, but also utilized a vehicle and three drug-treated groups ( memantine or riluzole or a combination) for each...exposure was initiated. The minipumps were filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day dose) and/or 10 mg/ml riluzole (1.2 mg/kg...day dose). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been reported to have neuroprotectant

  3. Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury.

    PubMed

    Vasconcelos, Natália L; Gomes, Eduardo D; Oliveira, Eduarda P; Silva, Carlos J; Lima, Rui; Sousa, Nuno; Salgado, António J; Silva, Nuno A

    2016-08-01

    Damage to the spinal cord can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective agents in animal models of spinal cord injury. As these drugs protect the injured spinal cord through different mechanisms, we aimed to investigate if their neuroprotective efficacy could be cumulative. This study aimed to investigate the neuroprotective efficacy of combined administration of riluzole and magnesium chloride in a contusive model of thoracic spinal cord injury. An in vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion (T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive (1) saline, (2) riluzole (2.50 mg/kg), (3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol formulation, or (4) a combined treatment (riluzole and magnesium). Subsequent treatments were given in four intraperitoneal injections (spaced 12 hours apart). The Basso, Beattie, and Bresnahan locomotor rating scale, an activity box test, and a swimming test were used to evaluate behavioral recovery over a 4-week period. Histologic analysis of the spinal cords was performed to measure the extent and volume of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, and inflammation. Our results show that only the riluzole treatment significantly improved behavioral recovery up to 4 weeks after injury when compared with saline controls (6.2±1.8), with animals achieving weight-supported stepping (9.1±1.2). Riluzole also promoted tissue sparing with significant differences achieved from 200 to 600 µm (caudally to the lesion epicenter), and reduced lesion volume, with animals presenting a significantly smaller lesion (3.23±0.26 mm(3)) when compared with the saline-treated group (4.74±0.80 mm(3)), representing a 32% decrease in lesion volume. Riluzole treatment induced significant axonal preservation, as well as serotonergic fiber sparing, caudally to the injury epicenter. Our results suggest that the combined treatment, although simultaneously targeting two excitotoxic-related mechanisms, did not further improve behavioral and histologic outcome when compared with riluzole given alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2014-12-01

    functional recovery improved in spinal injured rats using glibenclamide (Glib), an FDA approved anti-diabetic drug that targets SUR1 receptors on... protocols in rat model of SCI. • Established that glibenclamide is neuroprotective across different types of SCI but that efficacy is related to the location...the relative efficacy of glibenclamide with other neuroprotective drugs (Riluzole, systemic hypothermia). Data show that glibenclamide has superior

  5. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2009-09-01

    utilizes a vehicle and three drug-treated groups ( memantine or riluzole or a combination) for each exposure level. This design results in a 3 exposure... memantine (3.6 mg/kg/day) and/or 10 mg/ml riluzole (1.2 mg/kg/day). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist... memantine also has been reported to have neuroprotectant value via induction of brain-derived neurotrophic factor and its receptor (4-6), making the

  6. A study of the potential neuroprotective effect of riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by excitotoxicity.

    PubMed

    Sámano, C; Nasrabady, S E; Nistri, A

    2012-10-11

    Excitotoxicity triggered by over-stimulation of glutamatergic receptors is considered to be a major component of damage following acute spinal cord injury (SCI). Using an in vitro model of neonatal rat SCI caused by transient application (1h) of the glutamate agonist kainate (0.05-0.1 mM) to produce limited excitotoxicity, the present study investigated whether riluzole, a drug inhibiting glutamate release and neuronal excitability, could prevent neuronal loss and protect locomotor patterns 24 h later. Immunohistochemical analysis of neuronal and motoneuronal populations was associated with recording of fictive locomotion induced by neurochemicals or dorsal root stimuli. Riluzole (5 μM; 24 h application) per se exerted strong and persistent neurodepressant effects on network synaptic transmission from which recovery was very slow. When continuously applied after kainate, riluzole partially reduced the number of pyknotic cells in the gray matter, although motoneurons remained vulnerable and no fictive locomotion was present. In further experiments, riluzole per se was applied for 3 h (expected to coincide with kainate peak excitotoxicity) and washed out for 24 h with full return of fictive locomotion. When this protocol was implemented after kainate, no efficient histological or functional recovery was observed. No additional benefit was detected even when riluzole was co-applied with kainate and continued for the following 3 h. These results show that modest neuronal losses evoked by excitotoxicity have a severe impact on locomotor network function, and that they cannot be satisfactorily blocked by strong neurodepression with riluzole, suggesting the need for more effective pharmacological approaches. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Combined riluzole and sodium phenylbutyrate therapy in transgenic amyotrophic lateral sclerosis mice.

    PubMed

    Del Signore, Steven J; Amante, Daniel J; Kim, Jinho; Stack, Edward C; Goodrich, Sarah; Cormier, Kerry; Smith, Karen; Cudkowicz, Merit E; Ferrante, Robert J

    2009-04-01

    Recent evidence suggests that transcriptional dysregulation may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The histone deacetylase inhibitor, sodium phenylbutyrate (NaPB), is neuroprotective and corrects aberrant gene transcription in ALS mice and has recently been shown to be safe and tolerable in ALS patients while improving hypoacetylation. Since many patients are already on riluzole, it is important to ensure that any proposed therapy does not result in negative synergy with riluzole. The combined treatment of riluzole and NaPB significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice beyond either agent alone. Combination therapy increased survival by 21.5%, compared to the separate administration of riluzole (7.5%) and NaPB (12.8%), while improving both body weight loss and grip strength. The data show that the combined treatment was synergistic. In addition, riluzole/NaPB treatment ameliorated gross lumbar and ventral horn atrophy, attenuated lumbar ventral horn neuronal cell death, and decreased reactive astrogliosis. Riluzole/NaPB administration increased acetylation at H4 and increased NF-kappaB p50 translocation to the nucleus in G93A mice, consistent with a therapeutic effect. These data suggest that NaPB may not interfere with the pharmacologic action of riluzole in ALS patients.

  8. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    PubMed Central

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  9. Riluzole But Not Melatonin Ameliorates Acute Motor Neuron Degeneration and Moderately Inhibits SOD1-Mediated Excitotoxicity Induced Disrupted Mitochondrial Ca2+ Signaling in Amyotrophic Lateral Sclerosis

    PubMed Central

    Jaiswal, Manoj Kumar

    2017-01-01

    Selective motoneurons (MNs) degeneration in the brain stem, hypoglossal motoneurons (HMNs), and the spinal cord resulting in patients paralysis and eventual death are prominent features of amyotrophic lateral sclerosis (ALS). Previous studies have suggested that mitochondrial respiratory impairment, low Ca2+ buffering and homeostasis and excitotoxicity are the pathological phenotypes found in mice, and cell culture models of familial ALS (fALS) linked with Cu/Zn-superoxide dismutase 1 (SOD1) mutation. In our study, we aimed to understand the impact of riluzole and melatonin on excitotoxicity, neuronal protection and Ca2+ signaling in individual HMNs ex vivo in symptomatic adult ALS mouse brain stem slice preparations and in WT and SOD1-G93A transfected SH-SY5Y neuroblastoma cell line using fluorescence microscopy, calcium imaging with high speed charged coupled device camera, together with immunohistochemistry, cell survival assay and histology. In our experiments, riluzole but not melatonin ameliorates MNs degeneration and moderately inhibit excitotoxicity and cell death in SH-SY5YWT or SH-SY5YG93A cell lines induced by complex IV blocker sodium azide. In brain stem slice preparations, riluzole significantly inhibit HMNs cell death induced by inhibiting the mitochondrial electron transport chain by Na-azide. In the HMNs of brainstem slice prepared from adult (14–15 weeks) WT, and corresponding symptomatic SOD1G93A mice, we measured the effect of riluzole and melatonin on [Ca2+]i using fura-2 AM ratiometric calcium imaging in individual MNs. Riluzole caused a significant decrease in [Ca2+]i transients and reversibly inhibited [Ca2+]i transients in Fura-2 AM loaded HMNs exposed to Na-azide in adult symptomatic SOD1G93A mice. On the contrary, melatonin failed to show similar effects in the HMNs of WT and SOD1G93A mice. Intrinsic nicotinamide adenine dinucleotide (NADH) fluorescence, an indicator of mitochondrial metabolism and health in MNs, showed enhanced intrinsic NADH fluorescence in HMNs in presence of riluzole when respiratory chain activity was inhibited by Na-azide. Riluzole’s inhibition of excitability and Ca2+ signaling may be due to its multiple effects on cellular function of mitochondria. Therefore formulating a drug therapy to stabilize mitochondria-related signaling pathways using riluzole might be a valuable approach for cell death protection in ALS. Taken together, the pharmacological profiles of the riluzole and melatonin strengthen the case that riluzole indeed can be used as a therapeutic agent in ALS whereas claims of the efficacy of melatonin alone need further investigation as it fail to show significant neuroprotection efficacy. PMID:28111541

  10. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study.

    PubMed

    Bensimon, Gilbert; Ludolph, Albert; Agid, Yves; Vidailhet, Marie; Payan, Christine; Leigh, P Nigel

    2009-01-01

    Parkinson plus diseases, comprising mainly progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are rare neurodegenerative conditions. We designed a double-blind randomized placebo-controlled trial of riluzole as a potential disease-modifying agent in Parkinson plus disorders (NNIPPS: Neuroprotection and Natural History in Parkinson Plus Syndromes). We analysed the accuracy of our clinical diagnostic criteria, and studied prognostic factors for survival. Patients with an akinetic-rigid syndrome diagnosed as having PSP or MSA according to modified consensus diagnostic criteria were considered for inclusion. The psychometric validity (convergent and predictive) of the NNIPPS diagnostic criteria were tested prospectively by clinical and pathological assessments. The study was powered to detect a 40% decrease in relative risk of death within PSP or MSA strata. Patients were randomized to riluzole or matched placebo daily and followed up to 36 months. The primary endpoint was survival. Secondary efficacy outcomes were rates of disease progression assessed by functional measures. A total of 767 patients were randomized and 760 qualified for the Intent to Treat (ITT) analysis, stratified at entry as PSP (362 patients) or MSA (398 patients). Median follow-up was 1095 days (range 249-1095). During the study, 342 patients died and 112 brains were examined for pathology. NNIPPS diagnostic criteria showed for both PSP and MSA excellent convergent validity with the investigators' assessment of diagnostic probability (point-biserial correlation: MSA r(pb) = 0.93, P < 0.0001; PSP, r(pb) = 0.95, P < 0.0001), and excellent predictive validity against histopathology [sensitivity and specificity (95% CI) for PSP 0.95 (0.88-0.98) and 0.84 (0.77-0.87); and for MSA 0.96 (0.88-0.99) and 0.91 (0.86-0.93)]. There was no evidence of a drug effect on survival in the PSP or MSA strata (3 year Kaplan-Meier estimates PSP-riluzole: 0.51, PSP-placebo: 0.50; MSA-riluzole: 0.53, MSA-placebo: 0.58; P = 0.66 and P = 0.48 by the log-rank test, respectively), or in the population as a whole (P = 0.42, by the stratified-log-rank test). Likewise, rate of progression was similar in both treatment groups. There were no unexpected adverse effects of riluzole, and no significant safety concerns. Riluzole did not have a significant effect on survival or rate of functional deterioration in PSP or MSA, although the study reached over 80% power to detect the hypothesized drug effect within strata. The NNIPPS diagnostic criteria were consistent and valid. They can be used to distinguish between PSP and MSA with high accuracy, and should facilitate research into these conditions relatively early in their evolution.

  11. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: The NNIPPS Study

    PubMed Central

    Bensimon, Gilbert; Ludolph, Albert; Agid, Yves; Vidailhet, Marie; Payan, Christine; Leigh, P. Nigel

    2009-01-01

    Parkinson plus diseases, comprising mainly progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are rare neurodegenerative conditions. We designed a double-blind randomized placebo-controlled trial of riluzole as a potential disease-modifying agent in Parkinson plus disorders (NNIPPS: Neuroprotection and Natural History in Parkinson Plus Syndromes). We analysed the accuracy of our clinical diagnostic criteria, and studied prognostic factors for survival. Patients with an akinetic-rigid syndrome diagnosed as having PSP or MSA according to modified consensus diagnostic criteria were considered for inclusion. The psychometric validity (convergent and predictive) of the NNIPPS diagnostic criteria were tested prospectively by clinical and pathological assessments. The study was powered to detect a 40% decrease in relative risk of death within PSP or MSA strata. Patients were randomized to riluzole or matched placebo daily and followed up to 36 months. The primary endpoint was survival. Secondary efficacy outcomes were rates of disease progression assessed by functional measures. A total of 767 patients were randomized and 760 qualified for the Intent to Treat (ITT) analysis, stratified at entry as PSP (362 patients) or MSA (398 patients). Median follow-up was 1095 days (range 249–1095). During the study, 342 patients died and 112 brains were examined for pathology. NNIPPS diagnostic criteria showed for both PSP and MSA excellent convergent validity with the investigators’ assessment of diagnostic probability (point-biserial correlation: MSA rpb = 0.93, P < 0.0001; PSP, rpb = 0.95, P < 0.0001), and excellent predictive validity against histopathology [sensitivity and specificity (95% CI) for PSP 0.95 (0.88–0.98) and 0.84 (0.77–0.87); and for MSA 0.96 (0.88–0.99) and 0.91 (0.86–0.93)]. There was no evidence of a drug effect on survival in the PSP or MSA strata (3 year Kaplan–Meier estimates PSP-riluzole: 0.51, PSP-placebo: 0.50; MSA-riluzole: 0.53, MSA-placebo: 0.58; P = 0.66 and P = 0.48 by the log-rank test, respectively), or in the population as a whole (P = 0.42, by the stratified-log-rank test). Likewise, rate of progression was similar in both treatment groups. There were no unexpected adverse effects of riluzole, and no significant safety concerns. Riluzole did not have a significant effect on survival or rate of functional deterioration in PSP or MSA, although the study reached over 80% power to detect the hypothesized drug effect within strata. The NNIPPS diagnostic criteria were consistent and valid. They can be used to distinguish between PSP and MSA with high accuracy, and should facilitate research into these conditions relatively early in their evolution. PMID:19029129

  12. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  13. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation.

    PubMed

    Daniel, Bareket; Green, Omer; Viskind, Olga; Gruzman, Arie

    2013-09-01

    Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.

  14. Nanoemulsions for Intranasal Delivery of Riluzole to Improve Brain Bioavailability: Formulation Development and Pharmacokinetic Studies.

    PubMed

    Parikh, Rajesh H; Patel, Ravish J

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS), a motor neuron disease (MND), is a progressive neurodegenerative disorder characterized by the deterioration of both upper and lower motor neurons. Only one drug (riluzole) has been approved for the treatment of ALS. Riluzole is a BCS class II drug having 60% absolute bioavailability. It is a substrate of P-glycoprotein and BBB restricts its entry in brain. This investigation was aimed to develop O/W nanoemulsion system of riluzole to improve its brain bioavailability. Riluzole loaded nanoemulsion was prepared by phase titration method. It was consisting of 3% w/w Sefsol 218, 28.3% w/w Tween 80:Carbitol (1:1) and 68.7% w/w water. It was characterized for drop size, drop size distribution, transmittance, viscosity, pH, zeta potential, conductivity and nasal ciliotoxicity study. Thermodynamic stability and room temperature stability of prepared nanoemulsion formulation were evaluated. Pharmacokinetic and brain uptake study was carried out using albino rats (wistar) post intranasal and oral administration. Riluzole loaded nanoemulsion was having a drop size of 23.92±0.52 nm. It was free from nasal ciliotoxicity and stable for three months. Brain uptake of riluzole post intranasal administration of riluzole loaded nanoemulsion was significantly (P <4.10 × 10-6) higher when it was compared with oral administration of riluzole loaded nanoemulsion. This study indicates that nanoemulsion of riluzole for intranasal administration could be a promising approach for the treatment of ALS to minimize the dose of riluzole in order to avoid dose related adverse events.

  15. Chemical-Genetic Screen Identifies Riluzole as an Enhancer of Wnt/β-catenin signaling in Melanoma

    PubMed Central

    Biechele, Travis L.; Camp, Nathan D.; Fass, Daniel M.; Kulikauskas, Rima M.; Robin, Nick C.; White, Bryan D.; Taraska, Corinne M.; Moore, Erin C.; Muster, Jeanot; Karmacharya, Rakesh; Haggarty, Stephen J.; Chien, Andy J.; Moon, Randall T.

    2010-01-01

    SUMMARY To identify new protein and pharmacological regulators of Wnt/β-catenin signaling we used a cell-based reporter assay to screen a collection of 1857 human-experienced compounds for their ability to enhance activation of the β-catenin reporter by a low concentration of WNT3A. This identified 44 unique compounds, including the FDA-approved drug riluzole, which is presently in clinical trials for treating melanoma. We found that treating melanoma cells with riluzole in vitro enhances the ability of WNT3A to regulate gene expression, to promote pigmentation, and to decrease cell proliferation. Furthermore riluzole, like WNT3A, decreases metastases in a mouse melanoma model. Interestingly, siRNAs targeting the metabotropic glutamate receptor, GRM1, a reported indirect target of riluzole, enhance β-catenin signaling. The unexpected regulation of β-catenin signaling by both riluzole and GRM1 has implications for the future uses of this drug. PMID:21095567

  16. Riluzole in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice.

    PubMed

    Ohashi, Masanori; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2015-01-01

    We previously demonstrated in mice that the activation of prelimbic medial prefrontal cortex (PL) with the sodium channel activator veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission. Riluzole directly affects the glutamatergic system and has recently been suggested to have an anxiolytic-like effect in both experimental animals and patients with anxiety disorders. We investigated the effects of co-perfusion of riluzole on veratrine-induced anxiety-like behaviors in mice. Extracellular glutamate levels were measured in 7-week-old male C57BL6 mice by using an in vivo microdialysis-HPLC/ECD system, and behaviors were assessed simultaneously in an open field (OF) test. Basal levels of glutamate were measured by collecting samples every 10 min for 60 min. The medium containing drugs was perfused for 30 min, and the OF test was performed during the last 10 min of drug perfusion. After the drug treatments, the drug-containing medium was switched to perfusion of control medium lacking drugs, and then samples were collected for another 90 min. Riluzole co-perfusion attenuated veratrine-induced increase in extracellular glutamate levels in the PL and completely diminished veratrine-induced anxiety-like behaviors. Interestingly, riluzole perfusion alone in the PL did not affect the basal levels of glutamate and anxiety-like behaviors. Our results suggest that compounds like riluzole that inhibit glutamatergic function in the PL are possible candidates for novel anxiolytics.

  17. The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jeong A.

    Loss of pericytes, considered an early hallmark of diabetic retinopathy, is thought to involve abnormal activation of protein kinase C (PKC). We previously showed that the anti-amyotrophic lateral sclerosis (ALS) drug riluzole functions as a PKC inhibitor. Here, we examined the effects of riluzole on pathological changes in diabetic retinopathy. Pathological endpoints examined in vivo included the number of pericytes and integrity of retinal vessels in streptozotocin (STZ)-induced diabetic mice. In addition, PKC activation and the induction of monocyte chemotactic protein (MCP1) were assessed in diabetic mice and in human retinal pericytes exposed to advanced glycation end product (AGE) ormore » modified low-density lipoprotein (mLDL). The diameter of retinal vessels and the number of pericytes were severely reduced, and the levels of MCP1 and PKC were increased in STZ-induced diabetic mice. Administration of riluzole reversed all of these changes. Furthermore, the increased expression of MCP1 in AGE- or mLDL-treated cultured retinal pericytes was inhibited by treatment with riluzole or the PKC inhibitor GF109203X. In silico modeling showed that riluzole fits well within the catalytic pocket of PKC. Taken together, our results demonstrate that riluzole attenuates both MCP1 induction and pericyte loss in diabetic retinopathy, likely through its direct inhibitory effect on PKC. - Highlights: • The effects of riluzole were examined in streptozotocin-induced diabetic mice. • The diameter of retinal vessels and the number of pericytes were severely reduced. • The levels of MCP1 and PKC were increased, while riluzole reversed all changes. • Riluzole attenuated the level of MCP1 in AGE- or mLDL-treated retinal pericytes. • Riluzole attenuated both MCP1 induction and pericyte loss in diabetic retinopathy.« less

  18. Riluzole

    MedlinePlus

    Riluzole is used to slow the progress of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). The drug also may ... tube), but it is not a cure for ALS.This medication is sometimes prescribed for other uses; ...

  19. Clinical trials for neuroprotection in ALS.

    PubMed

    Siciliano, G; Carlesi, C; Pasquali, L; Piazza, S; Pietracupa, S; Fornai, F; Ruggieri, S; Murri, L

    2010-07-01

    Owing to uncertainty on the pathogenic mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) riluzole remains the only available therapy, with only marginal effects on disease survival. Here we review some of the recent advances in the search for disease-modifying drugs for ALS based on their putative neuroprotective effetcs. A number of more or less established agents have recently been investigated also in ALS for their potential role in neuroprotection and relying on antiglutamatergic, antioxidant or antiapoptotic strategies. Among them Talampanel, beta-lactam antibiotics, Coenzyme Q10, and minocycline have been investigated. Progress has also been made in exploiting growth factors for the treatment of ALS, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, such as heat-shock protein co-inducers, which upregulate cell stress responses, and agents promoting autophagy and mitochondriogenesis, such as lithium and rapamycin. More recently, alterations of mRNA processing were described as a pathogenic mechanism in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations. This knowledge is expected to improve our understanding of the pathogenetic mechanism in ALS and developing more effective therapies.

  20. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats.

    PubMed

    Sugiyama, Azusa; Yamada, Misa; Saitoh, Akiyoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2018-01-15

    A general understanding exists that inhibition of glutamatergic neurotransmission in the basolateral amygdala (BLA) impairs fear extinction in rodents. Surprisingly, we recently found that systemic administration of riluzole, which has been shown to inhibit the glutamatergic system, facilitates extinction learning in rats with a preconditioned contextual fear response. However, the mechanisms underlying this paradoxical effect of riluzole remain unclear. In this study, adult male Wistar rats were bilaterally cannulated in the BLA to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine-binding region of the N-methyl-d-aspartate (NMDA) receptor. In this study, intra-BLA administration of either riluzole or d-cycloserine facilitated extinction learning of contextual fear in conditioned rats. In addition, both riluzole and d-cycloserine enhanced the acquisition of recognition memory in the same model. However, intra-BLA injections of riluzole, but not d-cycloserine, had a potent anxiolytic-like effect when investigated using an elevated plus-maze test. Our findings suggest that riluzole-induced facilitation of extinction learning in rats with a preconditioned contextual fear reflects an indirect effect, resulting from the intra-BLA administration of the drug, and might not be directly related to inhibition of glutamatergic signaling. Further research is needed to clarify the mechanisms underlying the paradoxical effect of riluzole on fear extinction learning observed in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in children with autistic disorder: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Ghaleiha, Ali; Mohammadi, Effat; Mohammadi, Mohammad-Reza; Farokhnia, Mehdi; Modabbernia, Amirhossein; Yekehtaz, Habibeh; Ashrafi, Mandana; Hassanzadeh, Elmira; Akhondzadeh, Shahin

    2013-12-01

    A hyperglutamatergic state has been shown to play a possible role in the pathophysiology of autistic disorders. Riluzole is a glutamate-modulating agent with neuroprotective properties, which has been shown to have positive effects in many neuropsychiatric disorders. The aim of this study was to assess the efficacy and tolerability of riluzole as an adjunctive to risperidone in the treatment of irritability in autistic children who were not optimally responding to previous medications. This was a 10-week, randomized, double-blind, parallel-group, placebo-controlled trial. The study enrolled male and female outpatients aged 5-12 years with a diagnosis of autistic disorder based on the DSM-IV-TR criteria and a score of ≥12 on the Aberrant Behavior Checklist-Community (ABC-C) irritability subscale who had discontinued other medications because of a lack of efficacy. Subjects received riluzole (titrated to 50 or 100 mg/day based on bodyweight) or placebo in addition to risperidone (titrated up to 2 or 3 mg/day based on bodyweight) for 10 weeks. Patients were assessed at baseline, week 5, and week 10. The primary outcome measure was the difference in the change in the ABC-C irritability subscale score from baseline to week 10 between the two groups. We also compared changes in other ABC-C subscale scores and Clinical Global Impressions-Improvement (CGI-I) scale scores between the two groups. Forty-nine patients were enrolled in the study, and forty children completed the trial (dropouts: placebo = 4, riluzole = 5). A significantly greater improvement in the study primary outcome (the ABC-C irritability subscale score) was achieved by the riluzole-treated children compared with the placebo group (P = 0.03). Patients in the riluzole group also showed significantly greater improvement on the lethargy/social withdrawal (P = 0.02), stereotypic behavior (P = 0.03), and hyperactivity/non-compliance subscales (P = 0.005), but not on the inappropriate speech subscale (P = 0.20) than patients in the placebo group. Eleven patients in the riluzole group and five patients in the placebo group were classified as responders based on their CGI-I scores [χ(2)(1) = 3.750, P = 0.05]. Children in the riluzole group experienced significantly more increases in their appetite and bodyweight than children in the placebo group by the end of the study. Riluzole add-on therapy shows several therapeutic outcomes, particularly for improving irritability, in children with autism. However, its add-on to risperidone also results in significantly increased appetite and weight gain.

  2. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2008-09-01

    treated groups ( memantine or riluzole or a combination) for each exposure level. This design results in a 3 exposure level × 4 drug condition...concentration is greater during this period than prior to 6 months exposure. The minipumps are filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day...and/or 10 mg/ml riluzole (1.2 mg/kg/day). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been

  3. Outcome of sporadic amyotrophic lateral sclerosis treated with non-invasive ventilation and riluzole.

    PubMed

    Sívori, Martín; Rodríguez, Gabriel E; Pascansky, Daniel; Sáenz, César; Sica, Roberto E P

    2007-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is a progressive degenerative motor neuron disorder lacking specific treatment. Riluzole is the only drug able to modestly slow down the course of the disease. Respiratory insufficiency is the main cause of death; non invasive ventilation (NIV) has shown to improve survival. Our aim was to evaluate the effect of NIV and riluzole on survival. Ninety seven patients with a diagnosis of sALS were assessed and followed up for 60 months. Twenty nine patients received NIV and 68 did not (nNIV). Overall median survival In the NIV group was 15.41 +/- 7.78 months vs. 10.88 +/- 7.78 months in the nNIV group (p= 0.028). Median survival time was not different in patients receiving riluzole (n=44), as compared with those who did not (n=53), although at month 4th and 5th riluzole treated patients showed a modest benefit. In those who only received NIV (n=11) or only riluzole (n=26), survival time was 13.45 +/- 13.44 months and 11.19 +/- 7.79 months, respectively. Patients who received both NIV and riluzole (n=18) had a median survival time of 16.61 +/- 10.97 months vs. 10.69 +/- 7.86 months for those who received only supportive treatment (n=42) (p= 0.021). NIV improved survival in our series of patients. Riluzole did not show any significant impact on survival when employed as the only therapy. Patients receiving both treatments simultaneously had a significant longer survival.

  4. Riluzole activates TRPC5 channels independently of PLC activity

    PubMed Central

    Richter, Julia M; Schaefer, Michael; Hill, Kerstin

    2014-01-01

    BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252

  5. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder

    PubMed Central

    Ajram, L A; Horder, J; Mendez, M A; Galanopoulos, A; Brennan, L P; Wichers, R H; Robertson, D M; Murphy, C M; Zinkstok, J; Ivin, G; Heasman, M; Meek, D; Tricklebank, M D; Barker, G J; Lythgoe, D J; Edden, R A E; Williams, S C; Murphy, D G M; McAlonan, G M

    2017-01-01

    Currently, there are no effective pharmacologic treatments for the core symptoms of autism spectrum disorder (ASD). There is, nevertheless, potential for progress. For example, recent evidence suggests that the excitatory (E) glutamate and inhibitory (I) GABA systems may be altered in ASD. However, no prior studies of ASD have examined the ‘responsivity’ of the E–I system to pharmacologic challenge; or whether E–I modulation alters abnormalities in functional connectivity of brain regions implicated in the disorder. Therefore, we used magnetic resonance spectroscopy ([1H]MRS) to measure prefrontal E–I flux in response to the glutamate and GABA acting drug riluzole in adult men with and without ASD. We compared the change in prefrontal ‘Inhibitory Index’—the GABA fraction within the pool of glutamate plus GABA metabolites—post riluzole challenge; and the impact of riluzole on differences in resting-state functional connectivity. Despite no baseline differences in E–I balance, there was a significant group difference in response to pharmacologic challenge. Riluzole increased the prefrontal cortex inhibitory index in ASD but decreased it in controls. There was also a significant group difference in prefrontal functional connectivity at baseline, which was abolished by riluzole within the ASD group. Our results also show, for we believe the first time in ASD, that E–I flux can be ‘shifted’ with a pharmacologic challenge, but that responsivity is significantly different from controls. Further, our initial evidence suggests that abnormalities in functional connectivity can be ‘normalised’ by targeting E–I, even in adults. PMID:28534874

  6. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    PubMed

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2018-08-01

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  7. Recent advances in the treatment of amyotrophic lateral sclerosis. Emphasis on kynurenine pathway inhibitors.

    PubMed

    Chen, Yiquan; Meininger, Vincent; Guillemin, Gilles J

    2009-03-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset, progressive and fatal motor neuron degenerative disease [1]. The aetiology of ALS is currently unknown, though strongly suggested to be multifactorial. Recently, the kynurenine pathway (KP) has emerged as a potential contributing factor [2]. The KP is a major route for the metabolism of tryptophan, generating neuroactive intermediates in the process. These catabolites include the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist, quinolinic acid (QUIN) [3] and the neuroprotective NMDA receptor antagonist, kynurenic acid (KYNA) [4,5]. These catabolites appear to play a key role in the communication between the nervous and immune systems, and also in modulating cell proliferation and tissue function [6]. As the cause of ALS is still unknown, there is presently no efficient treatment for it. Currently, Riluzole is the drug of choice but its effect is relatively modest [7]. Targeting the KP, hence, could offer a new therapeutic option to improve ALS treatment [8]. Several drugs that block the KP are already under investigation by our laboratory and others, some of which are in or about to enter clinical trials for other diseases. For example, the KP inhibitors, Teriflunomide (Sanofi-Aventis) and Laquinimod (Teva Neuroscience). Recently, a KP inhibitor has also reached the Japan market as an immunomodulative drug [9]: Tranilast/Rizaben (Angiogen Ltd.) is an anthranilic acid derivative [8]. Finally, the 8-hydroxyquinolinine metal attenuating compounds, Clioquinol and PBT2, interestingly have close structural similarity with KYNA and QUIN. Such drugs would open a new and important therapeutic door for ALS.

  8. The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells.

    PubMed

    Fortunato, Angelo

    2017-08-01

    The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells. We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin. We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin. Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in combination with cisplatin to reduce chemo-resistance in colorectal cancer cells.

  9. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.

  10. Non-Canonical Smads Phosphorylation Induced by the Glutamate Release Inhibitor, Riluzole, through GSK3 Activation in Melanoma

    PubMed Central

    Jeong, Byeong-Seon; Boregowda, Rajeev K.; Wen, Yu; Liu, Fang; Goydos, James S.; Lasfar, Ahmed; Cohen-Solal, Karine A.

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. PMID:23077590

  11. Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters

    DTIC Science & Technology

    2014-12-01

    for ALS patients. One of the problems in finding highly efficacious treatments in ALS may derive from the so far underestimated issue of disease... efficacy the SOD1-G93A ALS mice. 15. SUBJECT TERMS Drug resistance, ALS, Therapy, Riluzole, Drug Efflux Transporters 16. SECURITY CLASSIFICATION OF...improves efficacy of ALS therapeutics Michael R. Jablonski1, Shashirekha S. Markandaiah1, Dena Jacob1, Ni J. Meng1, Ke Li2, Victoria Gennaro1, Angelo

  12. A pilot study of hippocampal volume and N-acetylaspartate (NAA) as response biomarkers in riluzole-treated patients with GAD.

    PubMed

    Abdallah, Chadi G; Coplan, Jeremy D; Jackowski, Andrea; Sato, João R; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2013-04-01

    Anxiolytic benefit following chronic treatment with the glutamate modulating agent riluzole in patients with generalized anxiety disorder (GAD) was previously associated with differential changes in hippocampal NAA concentrations. Here, we investigated the association between hippocampal volume and hippocampal NAA in the context of riluzole response in GAD. Eighteen medication-free adult patients with GAD received 8-week of open-label riluzole. Ten healthy subjects served as a comparison group. Participants underwent magnetic resonance imaging and spectroscopy at baseline and at the end of Week 8. GAD patients who completed all interventions were classified as remitters (n=7) or non-remitters (n=6), based on final Hamilton Anxiety Rating Scale (HAM-A) scores ≤7. At baseline, GAD patients had a significant reduction in total hippocampal volume compared to healthy subjects (F(1,21)=6.55, p=0.02). This reduction was most pronounced in the remitters, compared to non-remitters and healthy subjects. Delta (final-baseline) hippocampal volume was positively correlated with delta NAA in GAD. This positive association was highly significant in the right hippocampus in GAD [r=0.81, p=0.002], with no significant association in healthy subjects [Fisher r-to-z p=0.017]. Across all GAD patients, delta hippocampal volume was positively associated with improvement in HAM-A (rspearman=0.62, p=0.03). These preliminary findings support hippocampal NAA and volume as neural biomarkers substantially associated with therapeutic response to a glutamatergic drug. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  13. Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission.

    PubMed

    Boireau, A; Bordier, F; Dubédat, P; Doble, A

    1995-07-28

    The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.

  14. Ketamine's antidepressant efficacy is extended for at least four weeks in subjects with a family history of an alcohol use disorder.

    PubMed

    Niciu, Mark J; Luckenbaugh, David A; Ionescu, Dawn F; Richards, Erica M; Vande Voort, Jennifer L; Ballard, Elizabeth D; Brutsche, Nancy E; Furey, Maura L; Zarate, Carlos A

    2014-10-31

    A single subanesthetic infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has rapid and potent antidepressant properties in treatment-resistant major depressive disorder (TRD). As a family history of an alcohol use disorder is a positive predictor of ketamine's antidepressant response and the strength of the association increases over time, we hypothesized that depressed subjects with a family history of an alcohol use disorder would have greater antidepressant durability and that riluzole would augment and/or extend ketamine's antidepressant efficacy. Fifty-two TRD subjects received an open-label infusion of ketamine (0.5mg/kg over 40 minutes), and, four to six hours post-infusion, were randomized to either flexible-dose (100-200mg/day) riluzole or placebo in the following proportions: Family History Positive (FHP) riluzole (n = 10), FHP placebo (n = 9), Family History Negative (FHN) riluzole (n = 16), and FHN placebo (n = 17). FHP subjects randomized to placebo had a greater antidepressant response than FHN subjects; however, contrary to our initial hypothesis, there was no significant difference in antidepressant efficacy with riluzole. Although potentially underpowered, there was no difference in overall time-to-relapse based on randomization status (riluzole responders: n = 15, placebo responders: n = 17). Yet, time-to-relapse was longer in FHP placebo responders (n = 8) compared to FHN placebo responders (n = 9) with, again, no significant difference in time-to-relapse in FHP riluzole responders (n = 6) compared to FHN riluzole responders (n = 9). Ketamine's extended antidepressant durability in FHP TRD should be considered in the design and analysis of ketamine depression trials. Published by Oxford University Press on behalf of CINP 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Lithium for treatment of amyotrophic lateral sclerosis: much ado about nothing.

    PubMed

    Gamez, J; Salvado, M; Martínez de la Ossa, A; Badia, M

    2016-10-01

    Lithium was proposed in 2008 as an effective candidate in the treatment of ALS after a report claimed that it was able to delay functional deterioration by 40% and that none of the 16 patients treated with a combination of lithium plus riluzole had died during a 15-month follow-up period. The excellent results of this pilot study engendered considerable optimism among patients, their families, patients' associations, and the scientific community. This report sparked numerous phase ii clinical trials. Many patients who were not included in these studies used all resources at their disposal to access the drug as treatment under a compassionate use programme. To evaluate the effectiveness of lithium in ALS using a meta-analysis of the information reported in 12 studies which were examined for methodological quality. . Searches were performed using MEDLINE, EMBASE, the Cochrane Neuromuscular Disease Group Trials Register, ClinicalTrials.gov, and EudraCT (January 1996-August 2012). To date, we have information on more 1100 patients treated with lithium. Unfortunately, the results do not confirm the positive effect described in the pilot study, which suggests that this drug is not effective at slowing disease progression. Two trials had to be suspended before the scheduled completion date due to the ineffectiveness of the drug as well as numerous adverse effects. A recently published study also ruled out any possible modest effect. There is evidence to suggest that lithium has no short-term benefits in ALS. A comparison of the group of patients treated with lithium+riluzole and the control group treated with riluzole alone showed no statistically significant differences in rates of functional decline, deterioration of respiratory function, or survival time. Furthermore, there was no evidence that it was more effective than the placebo. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    DTIC Science & Technology

    2010-09-01

    control group and low (300 mg load) and high dose (600 mg load) DU exposure conditions, but utilized a vehicle and three drug-treated groups ( memantine ...applied long after exposure was initiated. The minipumps were filled with drug solutions of 30 mg/ml memantine (3.6 mg/kg/day dose) and/or 10 mg/ml...riluzole (1.2 mg/kg/day dose). Besides its potential usefulness as an uncompetitive NMDA receptor antagonist, memantine also has been reported to have

  17. ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment?

    PubMed Central

    Petrov, Dmitry; Mansfield, Colin; Moussy, Alain; Hermine, Olivier

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating condition with an estimated mortality of 30,000 patients a year worldwide. The median reported survival time since onset ranges from 24 to 48 months. Riluzole is the only currently approved mildly efficacious treatment. Riluzole received marketing authorization in 1995 in the USA and in 1996 in Europe. In the years that followed, over 60 molecules have been investigated as a possible treatment for ALS. Despite significant research efforts, the overwhelming majority of human clinical trials (CTs) have failed to demonstrate clinical efficacy. In the past year, oral masitinib and intravenous edaravone have emerged as promising new therapeutics with claimed efficacy in CTs in ALS patients. Given their advanced phase of clinical development one may consider these drugs as the most likely near-term additions to the therapeutic arsenal available for patients with ALS. In terms of patient inclusion, CT with masitinib recruited a wider, more representative, less restrictive patient population in comparison to the only successful edaravone CT (edaravone eligibility criteria represents only 18% of masitinib study patients). The present manuscript reviews >50 CTs conducted in the last 20 years since riluzole was first approved. A special emphasis is put on the analysis of existing evidence in support of the clinical efficacy of edaravone and masitinib and the possible implications of an eventual marketing authorisation in the treatment of ALS. PMID:28382000

  18. Neurotoxic injury pathways in differentiated mouse motor neuron–neuroblastoma hybrid (NSC-34D) cells in vitro—Limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemendinger, Richelle A., E-mail: richelle.hemendinger@carolinashealthcare.org; Carolinas Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC 28203; Armstrong, Edward J.

    2012-01-15

    The neuroblastoma–spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H{sub 2}O{sub 2}) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment withmore » riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC{sub 50} = 0.01 μM), followed by Thaps (TC{sub 50} = 0.9 μM) and H{sub 2}O{sub 2} (TC{sub 50} = 15 μM) with HCy requiring higher concentrations to kill at the same level (TC{sub 50} = 2200 μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p ≤ 0.05), but had no effect on STS-, H{sub 2}O{sub 2}- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms. -- Highlights: ► Calcium-dependent neurotoxins are potent cell death inducers in NSC-34D cells. ► Riluzole provides neurorescue against Thaps-induced NSC-34D cell death. ► Riluzole had no effect on neurotoxicity by STS, H{sub 2}O{sub 2} and Hcy. ► Riluzole reduces NSC-34D cell death independent of caspase-3/7 activation.« less

  19. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury

    PubMed Central

    Gao, Xiao-Ya; Huang, Jian-Ou; Hu, Ya-Fang; Gu, Yong; Zhu, Shu-Zhen; Huang, Kai-Bin; Chen, Jin-Yu; Pan, Su-Yue

    2014-01-01

    Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury. PMID:25404538

  20. Efficacy of Glutamate Modulators in Tic Suppression: A Double-Blind, Randomized Control Trial of D-serine and Riluzole in Tourette Syndrome.

    PubMed

    Lemmon, Monica E; Grados, Marco; Kline, Tina; Thompson, Carol B; Ali, Syed F; Singer, Harvey S

    2015-06-01

    It has been hypothesized that glutamatergic transmission may be altered in Tourette syndrome. In this study, we explored the efficacy of a glutamate agonist (D-serine) and antagonist (riluzole) as tic-suppressing agents in children with Tourette syndrome. We performed a parallel three-arm, 8-week, double-blind, randomized placebo-controlled treatment study in children with Tourette syndrome. Each child received 6 weeks of treatment with D-serine (maximum dose 30 mg/kg/day), riluzole (maximum dose 200 mg/day), or placebo, followed by a 2-week taper. The primary outcome measure was effective tic suppression as determined by the differences in the Yale Global Tic Severity Scale score; specifically, the total tic score and the combined score (total tic score + global impairment) between treatment arms after 6 weeks of treatment. Mann-Whitney U tests were performed to analyze differences between each group and the placebo group. Twenty-four patients (males = 21, ages 9-18) enrolled in the study; one patient dropped out before completion. Combined Yale Global Tic Severity Scale score and total tic scores improved in all groups. The 6-week mean percent improvement of the riluzole (n = 10), D-serine (n = 9), and placebo (n = 5) groups in the combined Yale Global Tic Severity Scale score were 43.7, 39.5, and 30.2 and for total tic scores were 38.0, 25.0, and 34.0, respectively. There were no significant differences in Yale Global Tic Severity Scale score or total tic score, respectively, between the riluzole and placebo (P = 0.35, 0.85) or D-serine and placebo (P = 0.50, 0.69) groups. Tics diminished by comparable percentages in the riluzole, D-serine, and placebo groups. These preliminary data suggest that D-serine and riluzole are not effective in tic suppression. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  2. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio.

    PubMed

    Vaccaro, Alexandra; Patten, Shunmoogum A; Ciura, Sorana; Maios, Claudia; Therrien, Martine; Drapeau, Pierre; Kabashi, Edor; Parker, J Alex

    2012-01-01

    The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.

  3. Methylene Blue Protects against TDP-43 and FUS Neuronal Toxicity in C. elegans and D. rerio

    PubMed Central

    Vaccaro, Alexandra; Patten, Shunmoogum A.; Ciura, Sorana; Maios, Claudia; Therrien, Martine; Drapeau, Pierre; Kabashi, Edor; Parker, J. Alex

    2012-01-01

    The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress. PMID:22848727

  4. Effectiveness of Riluzole as a pharmacotherapeutic treatment option for early cervical myelopathy: a double-blinded, placebo-controlled randomised controlled trial.

    PubMed

    Rajasekaran, S; Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi Mugesh; Maheswaran, Anupama; Shetty, Janardhan Yerram

    2016-06-01

    To evaluate the effectiveness of Riluzole as a pharmacotherapeutic treatment option for early cervical myelopathy using clinical parameters and DTI analysis. Early cervical myelopathy cases with MJOA scores ≥13, were recruited for the double-blinded, placebo-controlled randomised control trial. Thirty cases with fifteen cases each in the test and placebo group were studied. Analysis was done using diffusion tensor imaging (DTI) and clinical evaluation, pre- and post-institution of sodium channel blocker Riluzole for a period of 1 month (50 mg twice daily). Placebo group was treated with Vitamin B complex tablets. Diffusion co-efficient fractional anisotrophy (FA), apparent diffusion co-efficient (ADC), volume ratio (VR), relative anisotrophy (RA) and Eigen vectors were calculated. Outcomes analysis was based on clinical scores of MJOA, Nurick grading, SF-12, NDI, and statistical analysis of DTI datametrics. The mean MJOA score was 15.6 (13-17) with no significant change in the test and control groups. The mean ADC, FA values were 1533.36 (1238-1779) and 494.36 (364-628) and changed to 1531.57 (1312-2091) and 484.86 (294-597), respectively, in the Riluzole group. However, the changes in the values of ADC, FA, and other co-efficients including VR, RA and eigenvectors in the two groups were not statistically significant. The functional scores in the SF-12 and NDI questionnaires did not change significantly. Our study did not show a significant change in the clinical outcome and DTI Indices with the use of Riluzole as a standalone pharmacotherapeutic agent for early cervical myelopathy. More studies may be needed to confirm the usefulness of Riluzole as a treatment option for cervical myelopathy.

  5. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial

    PubMed Central

    Mathew, Sanjay J.; Murrough, James W.; Rot, Marije aan het; Collins, Katherine A.; Reich, David L.; Charney, Dennis S.

    2013-01-01

    The N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine may have rapid, albeit transient, antidepressant properties. This study in patients with treatment-resistant major depression (TRD) aimed to (1) replicate the acute efficacy of single-dose intravenous (i.v.) ketamine; (2) test the efficacy of the glutamate-modulating agent riluzole in preventing post-ketamine relapse ; and (3) examine whether pretreatment with lamotrigine would attenuate ketamine’s psychotomimetic effects and enhance its antidepressant activity. Twenty-six medication-free patients received open-label i.v. ketamine (0.5 mg/kg over 40 min). Two hours prior to infusion, patients were randomized to lamotrigine (300 mg) or placebo. Seventeen patients (65%) met response criterion (≥50% reduction from baseline on the Montgomery–Asberg Depression Rating Scale) 24 h following ketamine. Lamotrigine failed to attenuate the mild, transient side-effects associated with ketamine and did not enhance its antidepressant effects. Fourteen patients (54%) met response criterion 72 h following ketamine and proceeded to participate in a 32-d, randomized, double-blind, placebo-controlled, flexible-dose continuation trial of riluzole (100–200 mg/d). The main outcome measure was time-to-relapse. An interim analysis found no significant differences in time-to-relapse between riluzole and placebo groups [log-rank χ2 = 0.17, d.f. = 1, p = 0.68], with 80% of patients relapsing on riluzole vs. 50% on placebo. The trial was thus stopped for futility. This pilot study showed that a sub-anaesthetic dose of i.v. ketamine is well-tolerated in TRD, and may have rapid and sustained antidepressant properties. Riluzole did not prevent relapse in the first month following ketamine. Further investigation of relapse prevention strategies post-ketamine is necessary. PMID:19288975

  6. Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole.

    PubMed

    Erickson, Jeffrey D

    2017-07-01

    Glutamine (Gln) is considered the preferred precursor for the neurotransmitter pool of glutamate (Glu), the major excitatory transmitter in the mammalian CNS. Here, an activity-regulated, high-affinity Gln transport system is described in developing and mature neuron-enriched hippocampal cultures that is potently inhibited by riluzole (IC 50 1.3 ± 0.5 μM), an anti-glutamatergic drug, and is blocked by low concentrations of 2-(methylamino)isobutyrate (MeAIB), a system A transport inhibitor. K + -stimulated MeAIB transport displays an affinity (K m ) for MeAIB of 37 ± 1.2 μM, saturates at ~ 200 μM, is dependent on extracellular Ca 2+ , and is blocked by inhibition of voltage-gated Ca 2+ channels. Spontaneous MeAIB transport is also dependent on extracellullar Ca 2+ and voltage-gated calcium channels, but is also blocked by the Na + channel blocker tetrodotoxin, by Glu receptor antagonists, and by GABA indicating its dependence on intact neural circuits driven by endogenous glutamatergic activity. The transport of MeAIB itself does not rely on Ca 2+ , but on Na + ions, and is pH sensitive. Activity-regulated, riluzole-sensitive spontaneous and K + -stimulated transport is minimal at 7-8 days in vitro, coordinately induced during the next 2 weeks and is maximally expressed by days in vitro > 20; the known period for maturation of the Glu/Gln cycle and regulated pre-synaptic Glu release. Competition analyses with various amino acids indicate that Gln is the most likely physiological substrate. Activity-regulated Gln/MeAIB transport is not observed in astrocytes. The functional identification of activity-regulated, high-affinity, riluzole-sensitive Gln/MeAIB transport in hippocampal neurons may have important ramifications in the neurobiology of activity-stimulated pre-synaptic Glu release, the Glu/Gln cycle between astrocytes and neurons, and neuronal Glu-induced excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.13805. © 2017 International Society for Neurochemistry.

  7. Molsidomine potentiates the protective activity of GYKI 52466, a non-NMDA antagonist, MK-801, a non-competitive NMDA antagonist, and riluzole against electroconvulsions in mice.

    PubMed

    Tutka, Piotr; Olszewski, Krzysztof; Woźniak, Małgorzata; Kleinrok, Zdzisław; Czuczwar, Stanisław J; Wielosz, Marian

    2002-08-01

    The influence of molsidomine, a donor of nitric oxide (NO), L-arginine, a substrate for NO synthesis, and N(G)-nitro-L-arginine (NNA), an inhibitor of NO synthase, on the protective activity of CGP 40116, GYKI 52466, MK-801, and riluzole against electroconvulsions was studied in mice. Molsidomine (100 mg kg(-1); i.p.) potentiated the protective activity of GYKI 52466, MK-801, and riluzole but did not influence the protection offered by CGP 40116. In contrast to molsidomine, L-arginine (500 mg kg(-1); i.p.) did not impair the protective activity of any anticonvulsant. In a dose of 40 mg kg(-1), NNA administered i.p. did not affect the protection offered by any excitatory amino acid antagonists and riluzole. Combinations of molsidomine with either GYKI 52466 or MK-801 as well as riluzole did not cause a memory deficit in the passive avoidance task. However, the combined treatment of molsidomine with these anticonvulsants resulted in a motor impairment quantified by the chimney test. The lack of effect of L-arginine and NNA on the protective activity of excitatory amino acid antagonists suggests that molsidomine-evoked alterations in the protection provided by some excitatory amino acid antagonists against electroconvulsions are independent of the NO pathway.

  8. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Aggarwal, Swati P; Zinman, Lorne; Simpson, Elizabeth; McKinley, Jane; Jackson, Katherine E; Pinto, Hanika; Kaufman, Petra; Conwit, Robin A; Schoenfeld, David; Shefner, Jeremy; Cudkowicz, Merit

    2010-05-01

    In a pilot study, lithium treatment slowed progression of amyotrophic lateral sclerosis (ALS). We aimed to confirm or disprove these findings by assessing the safety and efficacy of lithium in combination with riluzole in patients with ALS. We did a double-blind, placebo-controlled trial with a time-to-event design. Between January and June, 2009, patients with ALS who were taking a stable dose of riluzole for at least 30 days were randomly assigned (1:1) by a centralised computer to receive either lithium or placebo. Patients, caregivers, investigators, and all site study staff with the exception of site pharmacists were masked to treatment assignment. The primary endpoint was the time to an event, defined as a decrease of at least six points on the revised ALS functional rating scale score or death. Interim analyses were planned for when 84 patients had been allocated treatment, 6 months later or after 55 events, and after 100 events. Analysis was by intention to treat. The stopping boundary for futility at the first interim analysis was a p value of at least 0.68. We used a log-rank test to compare the distributions of the time to an event between the lithium and placebo groups. This trial is registered with ClinicalTrials.gov, NCT00818389. At the first interim analysis, 22 of 40 patients in the lithium group had an event compared with 20 of 44 patients in the placebo group (log rank p=0.51). The hazard ratio of reaching the primary endpoint was 1.13 (95% CI 0.61-2.07). The study was stopped at the first interim analysis because criterion for futility was met (p=0.78). The difference in mean decline in the ALS functional rating scale score between the lithium group and the placebo group was 0.15 (95% CI -0.43 to 0.73, p=0.61). There were no major safety concerns. Falls (p=0.04) and back pain (p=0.05) were more common in the lithium group than in the placebo group. We found no evidence that lithium in combination with riluzole slows progression of ALS more than riluzole alone. The time-to-event endpoint and use of prespecified interim analyses enabled a clear result to be obtained rapidly. This design should be considered for future trials testing the therapeutic efficacy of drugs that are easily accessible to people with ALS. National Institute of Neurological Disorders and Stroke, ALS Association, and ALS Society of Canada. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    PubMed

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Closed gateways--can neuroprotectants shield the retina in glaucoma?

    PubMed

    Velpandian, Thirumurthy

    2010-01-01

    Neuroprotection for glaucoma is a therapeutic approach that aims to prevent optic nerve damage or cell death. An appropriate drug that reaches an adequate concentration across the blood retinal barrier is expected to shield the retina in glaucoma. Several in vitro and in vivo attempts in experimental models indicate the possibility of successful neuroprotection. However, clinical trials might not show the same level of neuroprotection as a result of subtherapeutic concentrations of the drug in the eye. The study by Zhong et al. in this issue of Drugs in R&D could not attribute the observed improvement in visual field indices to any one of the individual active constituents of Erigeron breviscapus (vant.) Hand. Mazz. (EBHM). One of the major constituents of EBHM is scutellarin, which is known to have poor oral bioavailability and an unclear ability to penetrate inside the eye. Therefore, before recognizing EBHM as a neuroprotectant in glaucoma for further clinical studies and practice, its active constituents and their pharmacokinetics (systemic as well as ocular) need to be explored.

  11. Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel

    2016-03-01

    We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.

  12. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    PubMed

    Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue

    2011-04-25

    In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  13. Multi-Targeting Andrographolide, a Novel NF-κB Inhibitor, as a Potential Therapeutic Agent for Stroke

    PubMed Central

    Yang, Chih-Hao; Yen, Ting-Lin; Hsu, Chia-Yuan; Thomas, Philip-Aloysius; Sheu, Joen-Rong; Jayakumar, Thanasekaran

    2017-01-01

    A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or natural products is a promising treatment for this disease. Natural compounds with the effects of anti-oxidation, anti-inflammation, anti-apoptosis, and neurofunctional regulation exhibit therapeutic effects on experimental ischemic brain injury. Conferring to the pharmacological mechanisms underlying neuroprotection, a study found that androgapholide, a diterpene lactone compound, exhibits varying degrees of neuroprotective activities in both in vitro and in vivo experimental models of stroke. The neuroprotective mechanisms of andrographolide are suggested as: (I) increasing nuclear factor E2-related factor 2-heme oxygenase (Nrf2-HO-1) expression through p38-mitogen activated protein kinase (MAPK) regulation, (II) inducing cerebral endothelial cells (CEC) apoptosis and caspase-3 activation, (III) down regulating Bax, inducible nitric oxide synthase (iNOS), and (IV) inhibiting hydroxyl radical (OH−) formation, and activating transcription factor NF-κB signaling pathways. Recently, several researchers have also been trying to unveil the principal mechanisms involved in the neuroprotective effects of andrographolide. Therefore, this review aims to summarize an overview on the neuroprotective effects of andrographolide and exemplifies the essential mechanisms involved. This paper can provide information that andrographolide drug discovery may be a promising strategy for the development of a novel class of neuroprotective drug. PMID:28749412

  14. Neuroprotective Effects of Drug-Induced Therapeutic Hypothermia in Central Nervous System Diseases.

    PubMed

    Ma, Junwei; Wang, Yibin; Wang, Zhong; Li, Haiying; Wang, Zhimin; Chen, Gang

    2017-01-01

    This review article focuses on the neuroprotective effect of drug-induced hypothermia in cerebrovascular diseases and discusses its related side effects. A systematic literature search was performed using Pubmed and Embase electronic databases for a retrospective analysis. Experimental studies have shown that drug-induced hypothermia alleviates brain damage and plays a neuroprotective role, thereby reducing mortality and ameliorating neurological deficits. Therefore, drug-induced hypothermia has an important research value and is worth further consideration in the clinical setting. However, drug-induced hypothermia is also associated with side effects, such as ventricular tachycardia, ventricular fibrillation, suppressed immune function, infection, electrolyte imbalance, glucose metabolism disorders, and skeletal muscle tremor. Existing drugs with cooling effects belong to the following categories: (1) dopamine receptor agonists; (2) cannabis; (3) opioid receptors; (4) vanilloid receptors; (5) vasopressins (potent neurotensin receptor agonists); (6) thyroid drugs; (7) adenosine drugs; and (8) purine drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Dextromethorphan Analogs: Receptor Binding and Pharmacological Profile of Novel Anticonvulsant/Neuroprotectant Drugs

    DTIC Science & Technology

    1993-05-13

    AD-POO8 801 Dextromethorphan Analogs: Receptor Binding and Pharmacological Profile of Novel Anticonvulsant/Neuroprotective Drugs F.C. Tortella, L...Baltimore, MD 21224 CD ABSTRACT A series of 3-substituted 17-methylmorphinan analogs of dextromethorphan (DM) have open developed which are...nTTrTTn) INTRODUCTION The antitussives dextromethorphan (DM), caramiphen and carbetapentane have distinguished themselves as anticonvulsant drugs (1

  16. Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial.

    PubMed

    Ludolph, Albert C; Schuster, Joachim; Dorst, Johannes; Dupuis, Luc; Dreyhaupt, Jens; Weishaupt, Jochen H; Kassubek, Jan; Weiland, Ulrike; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Schrank, Berthold; Boentert, Matthias; Emmer, Alexander; Hermann, Andreas; Zeller, Daniel; Prudlo, Johannes; Winkler, Andrea S; Grehl, Torsten; Heneka, Michael T; Wollebæk Johannesen, Siw; Göricke, Bettina

    2018-06-18

    Rasagiline, a monoamine oxidase B inhibitor with neuroprotective potential in Parkinson's disease, has shown a disease-modifying effect in the SOD1-Gly93Ala low-expressing mouse model of amyotrophic lateral sclerosis, both alone and in combination with riluzole. We sought to test whether or not rasagiline 1 mg/day can prolong survival in patients with amyotrophic lateral sclerosis also receiving riluzole. Patients with possible, probable, or definite amyotrophic lateral sclerosis were enrolled to our randomised, placebo-controlled, parallel-group, double-blind, phase 2 trial from 15 German network for motor neuron diseases (MND-NET) centres (university hospitals or clinics). Eligible patients were aged at least 18 years, had onset of progressive weakness within the 36 months before the study, had disease duration of more than 6 months and less than 3 years, and had a best-sitting slow vital capacity of at least 50%. After a 4-week screening period, eligible patients were randomly assigned (1:1) to receive either rasagiline (1 mg/day) or placebo in addition to riluzole (100 mg/day), after stratification for site of onset (bulbar or spinal) and study centre. Patients and all personnel assessing outcome parameters were masked to treatment allocation. Patients were followed up 2, 6, 12, and 18 months after randomisation. The primary endpoint was survival time, defined as the time to death or time to study cutoff date (ie, the last patient's last visit plus 14 days). Analyses of primary outcome and safety measures were done in all patients who received at least one dose of trial treatment (intention-to-treat population). The trial is registered with ClinicalTrials.gov, number NCT01879241. Between July 2, 2013, and Nov 11, 2014, 273 patients were screened for eligibility, and 252 patients were randomly assigned to receive rasagiline (n=127) or placebo (n=125). 126 patients taking rasagiline and 125 taking placebo were included in the intention-to-treat analysis. For the primary outcome, the survival probability at the end of the study was 0·43 (95% CI 0·25-0·59) in the rasagiline group (n=126) and 0·53 (0·43-0·62) in the placebo group (n=125). The estimated effect size (hazard ratio) was 0·91 (one-sided 97·5% CI -infinity to 1·34; p=0·31). Rasagiline was well tolerated, and most adverse events were due to amyotrophic lateral sclerosis disease progression rather than treatment; the most frequent of these were dysphagia (32 [25%] taking rasagiline vs 24 [19%] taking placebo) and respiratory failure (25 [20%] vs 31 [25%]). Frequency of adverse events were comparable between both groups. Rasagiline was safe in patients with amyotrophic lateral sclerosis. There was no difference between groups in the primary outcome of survival, although post-hoc analysis suggested that rasagiline might modify disease progression in patients with an initial slope of Amyotrophic Lateral Sclerosis Functional Rating Scale Revised greater than 0·5 points per month at baseline. This should be confirmed in another clinical trial. Teva Pharmaceutical Industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. UPLC-MS/MS assay of riluzole in human plasma and cerebrospinal fluid (CSF): Application in samples from spinal cord injured patients.

    PubMed

    Sarkar, Mahua; Grossman, Robert G; Toups, Elizabeth G; Chow, Diana S-L

    2017-11-30

    In the present study, a sensitive and robust LC-MS/MS method has been developed and validated for the quantification of riluzole in human plasma and cerebrospinal fluid (CSF) in clinical samples from patients with spinal cord injury (SCI). Riluzole and its labeled internal standard (IS) were isolated from plasma and CSF by liquid-liquid extraction using ethyl acetate. Riluzole (m/z 235→166) and IS (m/z 238→169) were detected by electrospray ionization (ESI) using multiple reaction monitoring (MRM) in a positive mode. The assay was linear in the concentration range of 0.5 (LLOQ, signal/noise ratio>10)-800ng/ml in plasma, and 1.0 (LLOQ)-800ng/ml in CSF samples. The intra- and inter-day accuracy in plasma were 94.2-110.0% and 97.8-102.0%, respectively, and those in CSF were 87.6-105.1% and 91.9-98.8%, respectively. The intra- and inter-day precision were 2.2-7.2% and 4.0-9.1%, respectively, in plasma, and 1.4-14.1% and 2.6-11.5%, respectively in CSF. Matrix effect was negligible from both matrices with signal percentages of 97.6-100.6% in plasma and 99.4-106.4% in CSF. The recoveries were >75% in plasma, >84% in CSF with low protein (53.9mg/dl), and >68% in CSF with high protein (348.2mg/dl). This method was successfully applied to quantify riluzole concentrations in plasma and CSF from patients with SCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Calcineurin inhibition enhances motor neuron survival following injury

    PubMed Central

    Hui, Kelvin KW; Liadis, Nicole; Robertson, Jennifer; Kanungo, Anish; Henderson, Jeffrey T

    2010-01-01

    Abstract The immunosuppressive agents cyclosporin A (CsA) and FK-506 have previously been shown to exhibit neurotrophic and neuroprotective properties in vivo. Given that significant clinical expertise exists for both drugs, they represent an attractive starting point for treatment of acute neural injuries. One putative mechanism for neuroprotection by these drugs relates to inhibition of calcineurin activity. However each drug–immunophilin complex can potentially influence additional signal transduction pathways. Furthermore, several non-immunosuppressive immunophilin ligands have been described as possessing neuroprotective properties, suggesting that neuroprotection may be separable from calcineurin inhibition. In the present study, we examined the mechanism of this neuroprotection in facial motor neurons following axotomy-induced injury. Similar to previous studies in rats, CsA and FK-506 enhanced motor neuron survival in mice following acute injury. To examine the mechanism responsible for neuroprotection by these agents, pharmacologic inhibitors of several potential alternate signalling pathways (17-(allylamino)-17-demethoxygeldanamycin, rapamycin, cypermethrin) were evaluated with respect to neuroprotection. Of these, only cypermethrin, a direct calcineurin inhibitor not previously associated with neuronal survival properties, was observed to significantly enhance motor neuron survival following injury. The results demonstrate for the first time that direct inhibition of calcineurin is neuroprotective in vivo. These data support a model in which calcineurin inhibition promotes neuronal survival, distinct from effects upon neurite outgrowth. PMID:19243469

  20. Multi Target Neuroprotective and Neurorestorative Anti-Parkinson and Anti-Alzheimer Drugs Ladostigil and M30 Derived from Rasagiline

    PubMed Central

    2013-01-01

    Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the properties of ladostigil and similar neuroprotective activity to ladostigil, but is not a ChE inhibitor. M30 has a neurorestorative activity in post-lesion of nigrostriatal dopamine neurons in MPTP, lacatcystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity is related to the ability of the drug to activate hypoxia inducing factor (HIF) which induces the production of such neurotrophins as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and erythropoietin as well as glia-derived neurotrophic factor (GDNF). The unique multiple actions of ladostigil and M30 make the potentially useful drugs for the treatment of dementia with Parkinsonian-like symptoms and depression. PMID:23585716

  1. Monitoring and Counteracting Functional Deterioration in Parkinson’s Disease: A Multilevel Integrative Approach in a Primate Model System

    DTIC Science & Technology

    2007-09-01

    1992; Fukuda, 2001). The effects of Riluzole (anti-excitotoxic) treatment, epigallocatechin -3- gallate ( EGCG ; anti-oxidative) treatment and (currently... gallate ( EGCG ) is a compound derived from green tea and is beneficial for a number of conditions like obesity and cardiovascular failure (Chantre and...O- gallate ( EGCG ; Teavigo®) was provided bij DSM, Switserland. The anti-excitotoxic compound Riluzole (Rilutek) was obtained at Wippolder Pharmacy

  2. The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages.

    PubMed

    Rampersaud, Sham; Fang, Justin; Wei, Zengyan; Fabijanic, Kristina; Silver, Stefan; Jaikaran, Trisha; Ruiz, Yuleisy; Houssou, Murielle; Yin, Zhiwei; Zheng, Shengping; Hashimoto, Ayako; Hoshino, Ayuko; Lyden, David; Mahajan, Shahana; Matsui, Hiroshi

    2016-12-14

    Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced 3-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.

  3. Development of Novel Combinatorial Treatment to Prevent Chemotherapeutic Resistance and Enhance Efficacy of Riluzole in a Rodent Model of SCI

    DTIC Science & Technology

    2016-10-01

    site as well as in the cervical and lumbar cords out to at least 10 months post-injury. While our rodent study was ongoing, a multi-center clinical...lead to a preservation of motor function and an attenuation in long-term pathologies like neuropathic pain in rats following an acute therapeutic...chemotherapeutic resistance, mass spectrometry, riluzole, licofelone, neuropathic pain , locomotor, bioavailability 11 University of Mississippi

  4. Riluzole reduces arrhythmias and myocardial damage induced by coronary occlusion in anaesthetized pigs.

    PubMed

    Weiss, Steven M; Dahlstrom, Jane E; Saint, David A

    2013-12-01

    The cardiac persistent sodium current (IN aP ) presents a novel target for cardiac ischaemic protection. Herein we investigated the effects of the IN aP blocker riluzole in a pig model of regional myocardial ischaemia. Landrace or Large White pigs were subjected to 3 h ligation of the left anterior descending coronary artery (LAD). Pigs received either saline (500 mL/h, i.v.) throughout the experiment (control; n = 7) or riluzole (2 mg/kg in 2 mL propylene glycol in 100 mL saline, i.v.; RIL; n = 7) between 15 and 5 min prior to ligation. The arrhythmia score was calculated in 5 min epochs. Myocardial damage was assessed using epicardial image analysis and histological sectioning. In the control group, all seven pigs developed premature ventricular contractions (PVC), seven developed non-sustained arrhythmias and six of seven developed sustained arrhythmias. Of the sustained arrhythmias, 23 of 28 instances were initiated by R-on-T extrasytoles (extrasystoles within the vulnerable period that can trigger re-entrant arrhythmias). In the RIL group, all seven pigs developed PVC, six of seven developed non-sustained arrhythmias and only three developed sustained arrhythmias, of which two of five instances were R-on-T initiated. The riluzole-treated pigs exhibited less myocardial damage than pigs in the control group (65% smaller surface area (P = 0.008) on gross epicardial inspection, 51% less oedema (P = 0.01), 53% less fibre waviness (P = 0.029) assessed by haematoxylin and eosin staining and 79% fewer fragmented nuclei (P = 0.009) assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling). In conclusion, riluzole significantly reduced Phase 2 (the period associated with irreversible damage) ischaemic R-on-T triggered and non-R-on-T arrhythmias and myocardial damage occurring during the 3 h period of regional ischaemia. © 2013 Wiley Publishing Asia Pty Ltd.

  5. Histopathologic Changes in the Brain, Heart, and Skeletal Muscle of Rhesus Macaques, Ten Days After Exposure to Soman (An Organophosphorus Nerve Agent)

    DTIC Science & Technology

    2000-04-01

    Center, Washington DC. 2. Koplovitz, I., S. Schulz, M. Shutz, et al. 1997. Memantine ef- fects on soman-induced seizures and seizure-related brain dam...neuronal culture as a model for soman-in- duced neurotoxicity and effectiveness of memantine as a neuroprotective drug. Arch. Toxicol. 69:384-390...for soman induced neurotoxicity and effectiveness of memantine as a neuroprotective drug. Drug Dev. Rev. 30:45-53. 27. Bredlow, J. D., G. F

  6. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons.

    PubMed

    Tárnok, K; Kiss, E; Luiten, P G M; Nyakas, C; Tihanyi, K; Schlett, K; Eisel, U L M

    2008-12-01

    Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.

  7. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2016-06-01

    antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling seizure model and the tetanus toxin (Tx) model of epilepsy...neuroprotective and antiepileptogenic agent in three experimental models of epilepsy. The pilocarpine-induced model of status epilepticus (PILO) was...neuroprotection, seizures, status epilepticus OVERALL PROJECT SUMMARY: SS-31 was created by Dr. Szeto but the rights to the drug are controlled by Stealth

  8. Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial).

    PubMed

    Bella, Eleonora Dalla; Tramacere, Irene; Antonini, Giovanni; Borghero, Giuseppe; Capasso, Margherita; Caponnetto, Claudia; Chiò, Adriano; Corbo, Massimo; Eleopra, Roberto; Filosto, Massimiliano; Giannini, Fabio; Granieri, Enrico; Bella, Vincenzo La; Lunetta, Christian; Mandrioli, Jessica; Mazzini, Letizia; Messina, Sonia; Monsurrò, Maria Rosaria; Mora, Gabriele; Riva, Nilo; Rizzi, Romana; Siciliano, Gabriele; Silani, Vincenzo; Simone, Isabella; Sorarù, Gianni; Volanti, Paolo; Lauria, Giuseppe

    2017-08-11

    Recent studies suggest that endoplasmic reticulum stress may play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of the proteostasis, the cellular pathway-balancing protein synthesis and degradation. A key mechanism is thought to be the dephosphorylation of eIF2α, a factor involved in the initiation of protein translation. Guanabenz is an alpha-2-adrenergic receptor agonist safely used in past to treat mild hypertension and is now an orphan drug. A pharmacological action recently discovered is its ability to modulate the synthesis of proteins by the activation of translational factors preventing misfolded protein accumulation and endoplasmic reticulum overload. Guanabenz proved to rescue motoneurons from misfolding protein stress both in in vitro and in vivo ALS models, making it a potential disease-modifying drug in patients. It is conceivable investigating whether its neuroprotective effects based on the inhibition of eIF2α dephosphorylation can change the progression of ALS. Protocolised Management In Sepsis is a multicentre, randomised, double-blind, placebo-controlled phase II clinical trial with futility design. We will investigate clinical outcomes, safety, tolerability and biomarkers of neurodegeneration in patients with ALS treated with guanabenz or riluzole alone for 6 months. The primary aim is to test if guanabenz can reduce the proportion of patients progressed to a higher stage of disease at 6 months compared with their baseline stage as measured by the ALS Milano-Torino Staging (ALS-MITOS) system and to the placebo group. Secondary aims are safety, tolerability and change in at least one biomarker of neurodegeneration in the guanabenz arm compared with the placebo group. Findings will provide reliable data on the likelihood that guanabenz can slow the course of ALS in a phase III trial. The study protocol was approved by the Ethics Committee of IRCCS 'Carlo Besta Foundation' of Milan (Eudract no. 2014-005367-32 Pre-results) based on the Helsinki declaration. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Prescription of "ineffective neuroprotective" drugs to stroke patients: a cross sectional study in North Indian population.

    PubMed

    Singhal, Kapil Kumar; Prasad, Kameshwar; Bhatia, Rohit; Kumar, Amit; Singh, Mamta Bhusan

    2016-08-01

    In a developing country, where patient access to tertiary care is limited and most patients have to pay out of pocket, it is imperative for the physicians to practice evidence-based medicine. Reports on prescription details and surveys are not available. The aim of this study is to describe the prescribing patterns for various medications used in the treatment of stroke among the first contact physicians in North India; to estimate the proportion of patients being prescribed the non-recommended drugs and to determine any relationship between the economic status of the patient and the prescription pattern. Details of economic status, education level, type of stroke, type of hospital, qualification of treating physician and the number and nature of medications were noted from the prescriptions and patients. Two hundred and sixteen patients with ischemic stroke (71.3% males, average age 51.5 years) were included. Among poor patients, N = (36.8%) received any of the neuroprotective drugs including citicoline 19 (27.5%), piracetam 11(15.9%) and edaravone 2(2.9%). Both specialist and private hospitals are associated with higher prescription of "ineffective neuroprotective" drugs in both poor and rich patients. Reasons for overprescribing neuroprotective medications need to be studied and remedial measures need to be taken to practice evidence-based medicine.

  10. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    NASA Astrophysics Data System (ADS)

    Piotrowski, Marek; Szczepanowicz, Krzysztof; Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław; Warszyński, Piotr

    2013-11-01

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from 80 to 100 nm. Zeta potential values ranged from less than approximately -30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H2O2 (0.5 mM/24 h)-induced damage in 20-40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes.

  11. Synergistic Action of Flavonoids, Baicalein, and Daidzein in Estrogenic and Neuroprotective Effects: A Development of Potential Health Products and Therapeutic Drugs against Alzheimer's Disease

    PubMed Central

    Choi, Roy C. Y.; Zhu, Judy T. T.; Yung, Amanda W. Y.; Lee, Pinky S. C.; Xu, Sherry L.; Guo, Ava J. Y.; Zhu, Kevin Y.; Dong, Tina T. X.; Tsim, Karl W. K.

    2013-01-01

    Despite the classical hormonal effect, estrogen has been reported to mediate neuroprotection in the brain, which leads to the searching of estrogen-like substances for treating neurodegenerative diseases. Flavonoids, a group of natural compounds, are well known to possess estrogenic effects and used to substitute estrogen, that is, phytoestrogen. Flavonoid serves as one of the potential targets for the development of natural supplements and therapeutic drugs against different diseases. The neuroprotection activity of flavonoids was chosen for a possible development of anti-Alzheimer's drugs or food supplements. The estrogenic activity of two flavonoids, baicalein and daidzein, were demonstrated by their strong abilities in stimulating estrogen receptor phosphorylation and transcriptional activation of estrogen responsive element in MCF-7 breast cells. The neuroprotection effects of flavonoids against β-amyloid (Aβ) were revealed by their inhibition effects on in vitro Aβ aggregation and Aβ-induced cytotoxicity in PC12 neuronal cells. More importantly, the estrogenic and neuroprotective activities of individual flavonoid could be further enhanced by the cotreatment in the cultures. Taken together, this synergistic effect of baicalein and daidzein might serve as a method to improve the therapeutic efficacy of different flavonoids against Aβ, which might be crucial in developing those flavonoidsin treating Alzheimer's disease in the future. PMID:24058373

  12. NEW STRATEGIES IN NEUROPROTECTION AND NEUROREPAIR

    PubMed Central

    Antonelli, Marta C.; Guillemin, Gilles J.; Raisman-Vozari, Rita; Del-Bel, Elaine A.; Aschner, Michael; Collins, Michael A.; Tizabi, Yousef; Moratalla, Rosario; West, Adrian K.

    2011-01-01

    There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop “Neuroprotection and Neurorepair: New Strategies” (Iguazu Falls, Misiones, Argentina, April 11–13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were i) metallothionein and other multipotent neuroprotective molecules; ii) oxidative stress and their signal mediated pathways in neuroregeneration; iii) neurotoxins in glial cells, and iv) drugs of abuse with neuroprotective effects. PMID:21861211

  13. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability

    PubMed Central

    Fritz, Elsa; Izaurieta, Pamela; Weiss, Alexandra; Mir, Franco R.; Rojas, Patricio; Gonzalez, David; Rojas, Fabiola; Brown, Robert H.; Madrid, Rodolfo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1G93A) increases persistent sodium inward currents (PCNa), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Nav) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1G93A. These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1G93A on motoneurons is increased excitability, an observation with direct implications for therapy of ALS. PMID:23486205

  14. Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic lateral sclerosis (LiCALS) [Eudract number: 2008-006891-31].

    PubMed

    Al-Chalabi, Ammar; Shaw, Pamela J; Young, Carolyn A; Morrison, Karen E; Murphy, Caroline; Thornhill, Marie; Kelly, Joanna; Steen, I Nicholas; Leigh, P Nigel

    2011-09-21

    Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, no patients had died (i.e., 100% survival) at the end of the study (15 months from entry), compared to 71% surviving in the riluzole-only group. Although the trial can be criticised on several grounds, there is a substantial rationale from other laboratory studies that lithium is worth investigating therapeutically in amyotrophic lateral sclerosis. LiCALS is a multi-centre double-blind randomised parallel group controlled trial of the efficacy, safety, and tolerability of lithium carbonate (LiCO3) at doses to achieve stable 'therapeutic' plasma levels (0.4-0.8 mmol/L), plus standard treatment, versus matched placebo plus standard treatment, in patients with amyotrophic lateral sclerosis. The study will be based in the UK, in partnership with the MND Association and DeNDRoN (the Dementias and Neurodegnerative Diseases Clinical Research Network). 220 patients will be recruited. All patients will be on the standard treatment for ALS of riluzole 100 mg daily. The primary outcome measure will be death from any cause at 18 months defined from the date of randomisation. Secondary outcome measures will be changes in three functional rating scales, the ALS Functional Rating Scale-Revised, The EuroQOL (EQ-5D), and the Hospital Anxiety and Depression Scale.Eligible patients will have El Escorial Possible, Laboratory-supported Probable, Probable or Definite amyotrophic lateral sclerosis with disease duration between 6 months and 36 months (inclusive), vital capacity ≥ 60% of predicted within 1 month prior to randomisation and age at least18 years. Patient recruitment began in June 2009 and the last patient is expected to complete the trial protocol in November 2011. Current controlled trials ISRCTN83178718.

  15. The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease

    PubMed Central

    Lauterbach, Edward C.; Fontenelle, Leonardo F.; Teixeira, Antonio L.

    2012-01-01

    Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF. PMID:22254151

  16. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease

    PubMed Central

    Chan, Hugh; Paur, Helen; Vernon, Anthony C.; Zabarsky, Virginia; Datla, Krishna P.; Croucher, Martin J.; Dexter, David T.

    2010-01-01

    Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug. PMID:20948891

  17. Neuroprotective Effect of a New Synthetic Aspirin-decursinol Adduct in Experimental Animal Models of Ischemic Stroke

    PubMed Central

    Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226

  18. Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke.

    PubMed

    Yan, Bing Chun; Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.

  19. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds.

    PubMed

    de Los Rios, Cristobal; Cano-Abad, Maria F; Villarroya, Mercedes; López, Manuela G

    2018-01-01

    In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.

  20. Glutamate-Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder

    PubMed Central

    Marinova, Zoya; Chuang, De-Maw; Fineberg, Naomi

    2017-01-01

    Objective: Abstract: Obsessive-compulsive disorder (OCD) is a mental disease commonly associated with severe distress and impairment of social functioning. Serotonin reuptake inhibitors and/or cognitive behavioural therapy are the therapy of choice, however up to 40% of patients do not respond to treatment. Glutamatergic signalling has also been implicated in OCD. The aim of the current study was to review the clinical evidence for therapeutic utility of glutamate-modulating drugs as an augmentation or monotherapy in OCD patients. Methods: We conducted a search of the MEDLINE database for clinical studies evaluating the effect of glutamate-modulating drugs in OCD. Results: Memantine is the compound most consistently showing a positive effect as an augmentation therapy in OCD. Anti-convulsant drugs (lamotrigine, topiramate) and riluzole may also provide therapeutic benefit to some OCD patients. Finally, ketamine may be of interest due to its potential for a rapid onset of action. Conclusion: Further randomized placebo-controlled trials in larger study populations are necessary in order to draw definitive conclusions on the utility of glutamate-modulating drugs in OCD. Furthermore, genetic and epigenetic factors, clinical symptoms and subtypes predicting treatment response to glutamate-modulating drugs need to be investigated systematically. PMID:28322166

  1. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  2. Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing

    PubMed Central

    O'Collins, Victoria E; Macleod, Malcolm R; Cox, Susan F; Van Raay, Leena; Aleksoska, Elena; Donnan, Geoffrey A; Howells, David W

    2011-01-01

    There is some evidence that in animal models of acute ischaemic stroke, combinations of neuroprotective agents might be more efficacious than the same agents administered alone. Hence, we developed pragmatic, empirical criteria based on therapeutic target, cost, availability, efficacy, administration, and safety to select drugs for testing in combination in animal models of acute stroke. Magnesium sulphate, melatonin, and minocycline were chosen from a library of neuroprotective agents, and were tested in a more ‘realistic' model favoured by the STAIR (Stroke Therapy Academic Industry Roundtable). Outcome was assessed with infarct volume, neurologic score, and two newly developed scales measuring general health and physiologic homeostasis. Owing to the failure to achieve neuroprotection in aged, hypertensive animals with drug delivery at 3 hours, the bar was lowered in successive experiments to determine whether neuroprotection could be achieved under conditions more conducive to recovery. Testing in younger animals showed more favourable homeostasis and general health scores than did testing in older animals, but infarct volume and neurologic scores did not differ with age, and treatment efficacy was again not shown. Testing with shorter occlusions resulted in smaller infarct volumes; nevertheless, treatment efficacy was still not observed. It was concluded that this combination, in these stroke models, was not effective. PMID:20978519

  3. Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic Lateral Sclerosis (LiCALS) [Eudract number: 2008-006891-31

    PubMed Central

    2011-01-01

    Background Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, no patients had died (i.e., 100% survival) at the end of the study (15 months from entry), compared to 71% surviving in the riluzole-only group. Although the trial can be criticised on several grounds, there is a substantial rationale from other laboratory studies that lithium is worth investigating therapeutically in amyotrophic lateral sclerosis. Methods/Design LiCALS is a multi-centre double-blind randomised parallel group controlled trial of the efficacy, safety, and tolerability of lithium carbonate (LiCO3) at doses to achieve stable 'therapeutic' plasma levels (0.4-0.8 mmol/L), plus standard treatment, versus matched placebo plus standard treatment, in patients with amyotrophic lateral sclerosis. The study will be based in the UK, in partnership with the MND Association and DeNDRoN (the Dementias and Neurodegnerative Diseases Clinical Research Network). 220 patients will be recruited. All patients will be on the standard treatment for ALS of riluzole 100 mg daily. The primary outcome measure will be death from any cause at 18 months defined from the date of randomisation. Secondary outcome measures will be changes in three functional rating scales, the ALS Functional Rating Scale-Revised, The EuroQOL (EQ-5D), and the Hospital Anxiety and Depression Scale. Eligible patients will have El Escorial Possible, Laboratory-supported Probable, Probable or Definite amyotrophic lateral sclerosis with disease duration between 6 months and 36 months (inclusive), vital capacity ≥ 60% of predicted within 1 month prior to randomisation and age at least18 years. Discussion Patient recruitment began in June 2009 and the last patient is expected to complete the trial protocol in November 2011. Trial registration Current controlled trials ISRCTN83178718 PMID:21936930

  4. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.

    PubMed

    Miller, R G; Jackson, C E; Kasarskis, E J; England, J D; Forshew, D; Johnston, W; Kalra, S; Katz, J S; Mitsumoto, H; Rosenfeld, J; Shoesmith, C; Strong, M J; Woolley, S C

    2009-10-13

    To systematically review evidence bearing on the management of patients with amyotrophic lateral sclerosis (ALS). The authors analyzed studies from 1998 to 2007 to update the 1999 practice parameter. Topics covered in this section include slowing disease progression, nutrition, and respiratory management for patients with ALS. The authors identified 8 Class I studies, 5 Class II studies, and 43 Class III studies in ALS. Important treatments are available for patients with ALS that are underutilized. Noninvasive ventilation (NIV), percutaneous endoscopic gastrostomy (PEG), and riluzole are particularly important and have the best evidence. More studies are needed to examine the best tests of respiratory function in ALS, as well as the optimal time for starting PEG, the impact of PEG on quality of life and survival, and the effect of vitamins and supplements on ALS. Riluzole should be offered to slow disease progression (Level A). PEG should be considered to stabilize weight and to prolong survival in patients with ALS (Level B). NIV should be considered to treat respiratory insufficiency in order to lengthen survival (Level B) and to slow the decline of forced vital capacity (Level B). NIV may be considered to improve quality of life (Level C) [corrected].Early initiation of NIV may increase compliance (Level C), and insufflation/exsufflation may be considered to help clear secretions (Level C).

  5. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    PubMed

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  6. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.

    PubMed

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  7. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  8. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    PubMed

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  9. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  10. Model for High-Throughput Screening of Multitarget Drugs in Chemical Neurosciences: Synthesis, Assay, and Theoretic Study of Rasagiline Carbamates

    PubMed Central

    2013-01-01

    The disappointing results obtained in recent clinical trials renew the interest in experimental/computational techniques for the discovery of neuroprotective drugs. In this context, multitarget or multiplexing QSAR models (mt-QSAR/mx-QSAR) may help to predict neurotoxicity/neuroprotective effects of drugs in multiple assays, on drug targets, and in model organisms. In this work, we study a data set downloaded from CHEMBL; each data point (>8000) contains the values of one out of 37 possible measures of activity, 493 assays, 169 molecular or cellular targets, and 11 different organisms (including human) for a given compound. In this work, we introduce the first mx-QSAR model for neurotoxicity/neuroprotective effects of drugs based on the MARCH-INSIDE (MI) method. First, we used MI to calculate the stochastic spectral moments (structural descriptors) of all compounds. Next, we found a model that classified correctly 2955 out of 3548 total cases in the training and validation series with Accuracy, Sensitivity, and Specificity values > 80%. The model also showed excellent results in Computational-Chemistry simulations of High-Throughput Screening (CCHTS) experiments, with accuracy = 90.6% for 4671 positive cases. Next, we reported the synthesis, characterization, and experimental assays of new rasagiline derivatives. We carried out three different experimental tests: assay (1) in the absence of neurotoxic agents, assay (2) in the presence of glutamate, and assay (3) in the presence of H2O2. Compounds 11 with 27.4%, 8 with 11.6%, and 9 with 15.4% showed the highest neuroprotective effects in assays (1), (2), and (3), respectively. After that, we used the mx-QSAR model to carry out a CCHTS of the new compounds in >400 unique pharmacological tests not carried out experimentally. Consequently, this model may become a promising auxiliary tool for the discovery of new drugs for the treatment of neurodegenerative diseases. PMID:23855599

  11. Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult.

    PubMed

    Zheng, Wenhua; Chong, Cheong-Meng; Wang, Haitao; Zhou, Xuanhe; Zhang, Lang; Wang, Rikang; Meng, Qian; Lazarovici, Philip; Fang, Jiankang

    2016-08-01

    The production of nitric oxide (NO) is one of the primary mediators of ischemic damage, glutamate neurotoxicity and neurodegeneration and therefore inhibition of NO-induced neurotoxicity may be considered a therapeutic target for reducing neuronal cell death (neuroprotection). In this study, artemisinin, a well-known anti-malaria drug was found to suppress sodium nitroprusside (SNP, a nitric oxide donor)-induced cell death in the PC12 cells and brain primary cortical neuronal cultures. Pretreatment of PC12 cells with artemisinin significantly suppressed SNP-induced cell death by decreasing the extent of oxidation, preventing the decline of mitochondrial membrane potential, restoring abnormal changes in nuclear morphology and reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities. Western blotting analysis revealed that artemisinin was able to activate extracellular regulated protein kinases (ERK) pathway. Furthermore, the ERK inhibitor PD98059 blocked the neuroprotective effect of artemisinin whereas the PI3K inhibitor LY294002 had no effect. Cumulatively these findings support the notion that artemisinin confers neuroprotection from SNP-induce neuronal cell death insult, a phenomenon coincidentally related to activation of ERK phosphorylation. This SNP-induced oxidative insult in PC12 cell culture model may be useful to investigate molecular mechanisms of NO-induced neurotoxicity and drug-induced neuroprotection, and to generate novel therapeutic concepts for ischemic disease treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  13. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Marco-Contelles, José; León, Rafael; de Los Ríos, Cristóbal; Guglietta, Antonio; Terencio, José; López, Manuela G; García, Antonio G; Villarroya, Mercedes

    2006-12-28

    In this work we describe the synthesis and biological evaluation of the tacrine-1,4-dihydropyridine (DHP) hybrids (3-11). These multipotent molecules are the result of the juxtaposition of an acetylcholinesterase inhibitor (AChEI) such as tacrine (1) and a 1,4-DHP such as nimodipine (2). Compounds 3-11 are very selective and potent AChEIs and show an excellent neuroprotective profile and a moderate Ca2+ channel blockade effect. Consequently, these molecules are new potential drugs for the treatment of Alzheimer's disease.

  14. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to deliver neuroprotective drugs to the CNS following injury and/or potential neuroprotectants in their own right.

  15. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  16. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  17. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Voltage-gated sodium channel as a target for metastatic risk reduction with re-purposed drugs

    PubMed Central

    Koltai, Tomas

    2015-01-01

    Objective: To determine the exact role of sodium channel proteins in migration, invasion and metastasis and understand the possible anti-invasion and anti-metastatic activity of repurposed drugs with voltage gated sodium channel blocking properties. Material and methods: A review of the published medical literature was performed searching for pharmaceuticals used in daily practice, with inhibitory activity on voltage gated sodium channels. For every drug found, the literature was reviewed in order to define if it may act against cancer cells as an anti-invasion and anti-metastatic agent and if it was tested with this purpose in the experimental and clinical settings. Results: The following pharmaceuticals that fulfill the above mentioned effects, were found: phenytoin, carbamazepine, valproate, lamotrigine, ranolazine, resveratrol, ropivacaine, lidocaine, mexiletine, flunarizine, and riluzole. Each of them are independently described and analyzed. Conclusions: The above mentioned pharmaceuticals have shown anti-metastatic and anti-invasion activity and many of them deserve to be tested in well-planned clinical trials as adjunct therapies for solid tumors and as anti-metastatic agents. Antiepileptic drugs like phenytoin, carbamazepine and valproate and the vasodilator flunarizine emerged as particularly useful for anti-metastatic purposes. PMID:27408684

  19. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy

    PubMed Central

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969

  20. Medical Management of Parkinson’s Disease: Focus on Neuroprotection

    PubMed Central

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-01-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson’s disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy. PMID:22131943

  1. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    PubMed

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  2. Medical management of Parkinson's disease: focus on neuroprotection.

    PubMed

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-06-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson's disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.

  3. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    PubMed Central

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M.

    2017-01-01

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus. PMID:28245590

  4. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Liu, W; Jalewa, J; Sharma, M; Li, G; Li, L; Hölscher, C

    2015-09-10

    Glucagon-like peptide 1 (GLP-1) is a growth factor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first results. Liraglutide and lixisenatide are two newer GLP-1 mimetics which have a longer biological half-life than exendin-4. We previously showed that these drugs have neuroprotective properties in an animal model of Alzheimer's disease. Here we demonstrate the neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7 days, and drugs were injected once-daily for 14 days i.p. When comparing exendin-4 (10 nmol/kg), liraglutide (25 nmol/kg) and lixisenatide (10 nmol/kg), it was found that exendin-4 showed no protective effects at the dose chosen. Both liraglutide and lixisenatide showed effects in preventing the MPTP-induced motor impairment (Rotarod, open-field locomotion, catalepsy test), reduction in tyrosine hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, a reduction of the pro-apoptotic signaling molecule BAX and an increase in the anti-apoptotic signaling molecule B-cell lymphoma-2. The results demonstrate that in this study, both liraglutide and lixisenatide are superior to exendin-4, and both drugs show promise as a novel treatment of PD. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis

    PubMed Central

    Dorst, Johannes; Ludolph, Albert C.; Huebers, Annemarie

    2017-01-01

    In this review, we summarize the most important recent developments in the treatment of amyotrophic lateral sclerosis (ALS). In terms of disease-modifying treatment options, several drugs such as dexpramipexole, pioglitazone, lithium, and many others have been tested in large multicenter trials, albeit with disappointing results. Therefore, riluzole remains the only directly disease-modifying drug. In addition, we discuss antisense oligonucleotides (ASOs) as a new and potentially causal treatment option. Progress in symptomatic treatments has been more important. Nutrition and ventilation are now an important focus of ALS therapy. Several studies have firmly established that noninvasive ventilation improves patients’ quality of life and prolongs survival. On the other hand, there is still no consensus regarding best nutritional management, but big multicenter trials addressing this issue are currently ongoing. Evidence regarding secondary symptoms like spasticity, muscle cramps or sialorrhea remains generally scarce, but some new insights will also be discussed. Growing evidence suggests that multidisciplinary care in specialized clinics improves survival. PMID:29399045

  6. Neuroprotective Treatment of Laser-Induced Retinal Injuries.

    DTIC Science & Technology

    1999-10-01

    evaluate the neuroprotective effect of dextromethorphan , which is FDA approved and clinically used drug, in our rat model of laser-induced retinal...lesions. Methods: Argon laser retinal lesions were inflicted in the eyes of 36 pigmented rats. The treated group received dextromethorphan 50 mg/kg...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Dextromethorphan treatment is not effective in ameliorating the

  7. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    PubMed

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  8. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease.

    PubMed

    Chen, Ziwei; Digiacomo, Maria; Tu, Yalin; Gu, Qiong; Wang, Shengnan; Yang, Xiaohong; Chu, Jiaqi; Chen, Qiuhe; Han, Yifan; Chen, Jingkao; Nesi, Giulia; Sestito, Simona; Macchia, Marco; Rapposelli, Simona; Pi, Rongbiao

    2017-01-05

    A series of rivastigmine-caffeic acid and rivastigmine-ferulic acid hybrids were designed, synthesized, and evaluated as multifunctional agents for Alzheimer's disease (AD) in vitro. The new compounds exerted antioxidant neuroprotective properties and good cholinesterases (ChE) inhibitory activities. Some of them also inhibited amyloid protein (Aβ) aggregation. In particular, compound 5 emerged as promising drug candidates endowed with neuroprotective potential, ChE inhibitory, Aβ self-aggregation inhibitory and copper chelation properties. These data suggest that compound 5 offers an attractive starting point for further lead optimization in the drug-discovery process against AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. The use of rasagiline in Parkinson's disease.

    PubMed

    Schapira, A H V

    2006-01-01

    Rasagiline is a novel, potent, irreversible inhibitor of monoamine oxidative B developed for the symptomatic treatment of Parkinson's disease. The drug has shown efficacy in improving motor features in both early and advanced Parkinson's disease patients. The drug appears to be well tolerated and its once daily fixed dose formulation should make for excellent compliance. Rasagiline has also demonstrated important neuroprotective properties in both in vitro and in vivo laboratory studies. A provisional study of neuroprotection in a delayed start clinical trial of early PD patients has also suggested that this benefit may be translated to the clinic. Additional clinical trials are underway to confirm this.

  10. Ineffectiveness of saxagliptin as a neuroprotective drug in 6-OHDA-lesioned rats.

    PubMed

    Turnes, Joelle de Melo; Bassani, Taysa Bervian; Souza, Leonardo C; Vital, Maria A B F

    2018-05-16

    To determine whether the drug saxagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor which is utilized for the treatment of Diabetes Mellitus, has neuroprotective effects in the animal model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA) in rats. Male Wistar rats (weighing 280-300 g) received a bilateral infusion of 6-OHDA in the substantia nigra. Twenty-four hours later, they were treated with saxagliptin (1 mg/kg, p.o) once daily, for 21 days. The motor function was evaluated using the open field and rotarod (RT) tests. In addition, cognition was assessed with the novel object recognition test (ORT). After the evaluation of the behavioural tests, the animals were transcardially perfused to perform immunohistochemistry staining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc). Saxagliptin impaired the memory of animals in the sham group. Saxagliptin treatment did not exhibit neuroprotection and it did not improve the cognitive and motor deficits in the 6-OHDA model of PD. Interestingly, when saxagliptin was administered to the sham animals, a cognitive decline was observed. Therefore, this drug should be investigated as a possible treatment for PTSD. © 2018 Royal Pharmaceutical Society.

  11. Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy

    PubMed Central

    Qin, Zhihui; Luo, Jia; VandeVrede, Lawren; Tavassoli, Ehsan; Fa’, Mauro; Teich, Andrew; Arancio, Ottavio; Thatcher, Gregory R. J.

    2012-01-01

    Learning and memory deficits in Alzheimer’s disease (AD) result from synaptic failure and neuronal loss, the latter caused in part by excitotoxicity and oxidative stress. A therapeutic approach is described, which uses NO-chimeras directed at restoration of both synaptic function and neuroprotection. 4-Methylthiazole (MZ) derivatives were synthesized, based upon a lead neuroprotective pharmacophore acting in part by GABAA receptor potentiation. MZ derivatives were assayed for protection of primary neurons against oxygen-glucose deprivation and excitotoxicity. Selected neuroprotective derivatives were incorporated into NO-chimera prodrugs, coined nomethiazoles. To provide proof of concept for the nomethiazole drug class, selected examples were assayed for: restoration of synaptic function in hippocampal slices from AD-transgenic mice; reversal of cognitive deficits; and, brain bioavailability of the prodrug and its neuroprotective MZ metabolite. Taken together the assay data suggest that these chimeric nomethiazoles may be of use in treatment of multiple components of neurodegenerative disorders, such as AD. PMID:22779770

  12. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  13. Therapeutic potential of natural products in Parkinson's disease.

    PubMed

    Mythri, Rajeswara B; Harish, Gangadharappa; Bharath, M M

    2012-09-01

    The central objective in treating patients with Parkinson's disease (PD) is two-fold (i) to increase the striatal dopamine content and (ii) to prevent further degeneration of the surviving dopaminergic neurons in the substantia nigra region of the ventral midbrain. Most of the current PD drugs contribute to the former and provide symptomatic relief. Although compounds such as Levodopa (L-DOPA) improve the striatal dopamine content, their long-term usage is associated with progressive decrease in drug response, motor fluctuations, dyskinesias and drug-induced toxicity. In addition, these drugs fail to prevent the progression of the degenerative process. This has shifted the focus onto alternative therapeutic approaches involving natural products that could provide independent therapy or offer neuroprotective support to the existing drugs. The current review describes the neuroprotective and therapeutic utility of such natural products including herbal extracts, phytochemicals and bioactive ingredients from other natural sources either in isolation or in combination, with potential application in PD, highlighting the relevant patents.

  14. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  15. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury

    PubMed Central

    Long, Justin Alexander; Boggs, Robert Cole; Manga, Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q.

    2016-01-01

    Abstract Traumatic brain injury (TBI) remains a primary cause of death and disability in both civilian and military populations worldwide. There is a critical need for the development of neuroprotective agents that can circumvent damage and provide functional recovery. We previously showed that methylene blue (MB), a U.S. Food and Drug Administration–grandfathered drug with energy-enhancing and antioxidant properties, given 1 and 3 h post-TBI, had neuroprotective effects in rats. This study aimed to further investigate the neuroprotection of delayed MB treatment (24 h postinjury) post-TBI as measured by lesion volume and functional outcomes. Comparisons were made with vehicle and acute MB treatment. Multi-modal magnetic resonance imaging and behavioral studies were performed at 1 and 3 h and 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. We found that delaying MB treatment 24 h postinjury still minimized lesion volume and functional deficits, compared to vehicle-treated animals. The data further support the potential for MB as a neuroprotective treatment, especially when medical teatment is not readily available. MB has an excellent safety profile and is clinically approved for other indications. MB clinical trials on TBI can thus be readily explored. PMID:25961471

  16. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference.

    PubMed

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-03-06

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference

    PubMed Central

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-01-01

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029

  18. Neuroprotection and Anti-Epileptogenesis with a Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2013-12-01

    antiepiletogenic properties of a mitochondrial-targeted antioxidant, SS-31 using the pilocarpine (Pilo) model of status epilepticus (SE), the kindling seizure...project. Aim #1 – Test the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the rat. In this...quantity of drug. KEY RESEARCH ACCOMPLISHMENTS:  Treatment with SS-31 did not delay the onset of status epilepticus in the pilocarpine model  SS

  19. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    PubMed

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  20. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A post hoc analysis of subgroup outcomes and creatinine in the phase III clinical trial (EMPOWER) of dexpramipexole in ALS.

    PubMed

    Bozik, Michael E; Mitsumoto, Hiroshi; Brooks, Benjamin R; Rudnicki, Stacy A; Moore, Dan H; Zhang, Bing; Ludolph, Albert; Cudkowicz, Merit E; van den Berg, Leonard H; Mather, James; Petzinger, Thomas; Archibald, Donald

    2014-09-01

    Our objective was to compare the phase II and phase III (EMPOWER) studies of dexpramipexole in ALS and evaluate potential EMPOWER responder subgroups and biomarkers based on significant inter-study population differences. In a post hoc analysis, we compared the baseline population characteristics of both dexpramipexole studies and analyzed EMPOWER efficacy outcomes and laboratory measures in subgroups defined by significant inter-study differences. Results showed that, compared with phase II, the proportion of El Escorial criteria (EEC) definite participants decreased (p = 0.005), riluzole use increased (p = 0.002), and mean symptom duration increased (p = 0.037) significantly in EMPOWER. Baseline creatinine (p < 0.001) and on-study creatinine change (p < 0.001) correlated significantly with ALSFRS-R in EMPOWER. In the EMPOWER subgroup defined by EEC-definite ALS, riluzole use, and < median symptom duration (15.3 months), dexpramipexole-treated participants had reduced ALSFRS-R slope decline (p = 0.015), decreased mortality (p = 0.011), and reduced creatinine loss (p = 0.003). In conclusion, significant differences existed between the phase II and EMPOWER study populations in ALS clinical trials of dexpramipexole. In a post hoc analysis of EMPOWER subgroups defined by these differences, potential clinical benefits of dexpramipexole were identified in the subgroup of riluzole-treated, short-symptom duration, EEC-definite ALS participants. Creatinine loss correlated with disease progression and was reduced in dexpramipexole-treated participants, suggesting it as a candidate biomarker.

  2. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research.

    PubMed

    Litim, Nadhir; Morissette, Marc; Di Paolo, Thérèse

    2017-03-15

    Disturbance of glutamate neurotransmission in Parkinson's disease (PD) and l-DOPA induced dyskinesia (LID) is well documented. This review focuses on advances during the past five years on pharmacological modulation of metabotropic glutamate (mGlu) receptors in relation to anti-parkinsonian activity, LID attenuation, and neuroprotection. Drug design and characterization have led to the development of orthosteric agonists binding the same site as glutamate and Positive and Negative Allosteric modulators (PAMs and NAMs) binding sites different from the orthosteric site and offering subtype selectivity. Inhibition of group I (mGlu1 and mGlu5) receptors with NAMs and activation of group II (mGlu2 and 3 receptors) and group III (mGlu 4, 7 and 8 receptors) with PAMs and orthosteric agonists have shown their potential to inhibit glutamate release and attenuate excitotoxicity. Earlier and recent studies have led to the development of mGlu5 receptors NAMs to reduce LID and for neuroprotection, mGlu3 receptor agonists for neuroprotection while mGlu4 receptor PAMs and agonists for antiparkinsonian effects and neuroprotection. Furthermore, homo- and heterodimers of mGlu receptors are documented and highlight the complexity of the functioning of these receptors. Research on partial allosteric modulators and biased mGlu receptor allosteric modulators offer new glutamatergic drugs with better therapeutic effects and less off target adverse activity. Thus these various mGlu receptor targets will enable the development of novel drugs with improved clinical effects for normalization of glutamate transmission, treat PD and LID relief. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer's disease treatment.

    PubMed

    Weinreb, Orly; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H

    2012-04-01

    Ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] is a dual acetylcholine-butyrylcholineesterase and brain selective monoamine oxidase (MAO)-A and -B inhibitor in vivo (with little or no MAO inhibitory effect in the liver and small intestine), intended for the treatment of dementia co-morbid with extrapyramidal disorders and depression (presently in a Phase IIb clinical study). This suggests that the drug should not cause a significant potentiation of the cardiovascular response to tyramine, thereby making it a potentially safer antidepressant than other irreversible MAO-A inhibitors. Ladostigil was shown to antagonize scopolamine-induced impairment in spatial memory, indicating that it can cause significant increases in rat brain cholinergic activity. Furthermore, ladostigil prevented gliosis and oxidative-nitrative stress and reduced the deficits in episodic and spatial memory induced by intracerebroventricular injection of streptozotocin in rats. Ladostigil was demonstrated to possess potent anti-apoptotic and neuroprotective activities in vitro and in various neurodegenerative rat models, (e.g. hippocampal damage induced by global ischemia in gerbils and cerebral oedema induced in mice by closed head injury). These neuroprotective activities involve regulation of amyloid precursor protein processing; activation of protein kinase C and mitogen-activated protein kinase signaling pathways; inhibition of neuronal death markers; prevention of the fall in mitochondrial membrane potential and upregulation of neurotrophic factors and antioxidative activity. Recent findings demonstrated that the major metabolite of ladostigil, hydroxy-1-(R)-aminoindan has also a neuroprotective activity and thus, may contribute to the overt activity of its parent compound. This review will discuss the scientific evidence for the therapeutic potential use of ladostigil in Alzheimer's and Lewy Body diseases and the molecular signaling pathways that are considered to be involved in the biological activities of the drug.

  4. Calcium Channel Antagonists as Disease-Modifying Therapy for Parkinson's Disease: Therapeutic Rationale and Current Status.

    PubMed

    Swart, Tara; Hurley, Michael J

    2016-12-01

    Parkinson's disease is a disabling hypokinetic neurological movement disorder in which the aetiology is unknown in the majority of cases. Current pharmacological treatments, though effective at restoring movement, are only symptomatic and do nothing to slow disease progression. Electrophysiological, epidemiological and neuropathological studies have implicated Ca V 1.3 subtype calcium channels in the pathogenesis of the disorder, and drugs with some selectivity for this ion channel (brain-penetrant dihydropyridine calcium channel blockers) are neuroprotective in animal models of the disease. Dihydropyridines have been safely used for decades to treat hypertension and other cardiovascular disorders. A phase II clinical trial found that isradipine was safely tolerated by patients with Parkinson's disease, and a phase III trial is currently underway to determine whether treatment with isradipine is neuroprotective and therefore able to slow the progression of Parkinson's disease. This manuscript reviews the current information about the use of dihydropyridines as therapy for Parkinson's disease and discusses the possible mechanism of action of these drugs, highlighting Ca V 1.3 calcium channels as a potential therapeutic target for neuroprotection in Parkinson's disease.

  5. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke.

    PubMed

    Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Dae Hwan; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; Shin, Myoung Chul; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo

    2015-12-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region.

  6. Leveraging health social networking communities in translational research.

    PubMed

    Webster, Yue W; Dow, Ernst R; Koehler, Jacob; Gudivada, Ranga C; Palakal, Mathew J

    2011-08-01

    Health social networking communities are emerging resources for translational research. We have designed and implemented a framework called HyGen, which combines Semantic Web technologies, graph algorithms and user profiling to discover and prioritize novel associations across disciplines. This manuscript focuses on the key strategies developed to overcome the challenges in handling patient-generated content in Health social networking communities. Heuristic and quantitative evaluations were carried out in colorectal cancer. The results demonstrate the potential of our approach to bridge silos and to identify hidden links among clinical observations, drugs, genes and diseases. In Amyotrophic Lateral Sclerosis case studies, HyGen has identified 15 of the 20 published disease genes. Additionally, HyGen has highlighted new candidates for future investigations, as well as a scientifically meaningful connection between riluzole and alcohol abuse. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Chalcone-based carbamates for Alzheimer's disease treatment.

    PubMed

    Rampa, Angela; Montanari, Serena; Pruccoli, Letizia; Bartolini, Manuela; Falchi, Federico; Feoli, Alessandra; Cavalli, Andrea; Belluti, Federica; Gobbi, Silvia; Tarozzi, Andrea; Bisi, Alessandra

    2017-05-01

    Alzheimer's disease is a still untreatable multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this picture, the recent reformulation of the cholinergic hypothesis renewed the interest for acetylcholinesterase inhibitors. In this paper, a series of naturally inspired chalcone-based carbamates was designed to target cholinesterase enzymes and possibly generate fragments endowed with neuroprotective activity in situ. Results & methodology: All compounds presented in this study showed nanomolar potency for cholinesterase inhibition. Notably, fragment 11d also displayed an interesting neuroprotective profile. These new derivatives are able to simultaneously modulate different key targets involved in Alzheimer's disease, and could be regarded as promising starting points for the development of disease-modifying drug candidates. [Formula: see text].

  8. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.

    PubMed

    Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K

    2018-05-01

    Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.

  9. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-05-05

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease.

  10. Effect of montelukast in experimental model of Parkinson's disease.

    PubMed

    Nagarajan, Vetrivel Babu; Marathe, Padmaja Anil

    2018-06-06

    Despite the availability of many drugs offering symptomatic relief in Parkinson's disease, there are no drugs available offering neuroprotective effect. Hence, it was decided to evaluate the neuroprotective effect of montelukast, an anti-inflammatory drug, in rotenone induced model of Parkinson's disease in rats. Forty eight male wistar rats were randomly divided into three groups. Group 1: Vehicle control, Group 2: Montelukast 5 mg/kg, Group 3: Montelukast 10 mg/kg. All the groups received rotenone 2.5 mg/kg intraperitoneally for 10 days as a disease inducing agent. The study drug montelukast was administered to respective groups orally from day 11 to day 24. On day 25, 24 h after 14 days of study drug administration, the rats were subjected to open field test, rota rod test and catalepsy test. Brain samples of rats from each group were collected for Malondialdehyde(MDA), Glutathione(GSH) and TNFα analysis. In the open field test both the doses of montelukast showed significant increase in the locomotor activity and also decreased the immobility time compared to vehicle (p < 0.05). In rotarod test, montelukast 5 mg/kg and 10 mg/kg showed significant increase in the time to fall, compared to vehicle (p < 0.05). In catalepsy test, both doses of montelukast significantly decreased the retraction time compared to vehicle(p < 0.05). The brain MDA levels were decreased and GSH levels were found to be higher in the two montelukast groups compared to vehicle (p < 0.05). TNFα levels too were decreased significantly on montelukast administration. Montelukast showed potential neuroprotective effect by virtue of its anti-oxidant and anti-inflammatory actions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia.

    PubMed

    Alonso-Alconada, Daniel; Alvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-04-29

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.

  12. Neuroprotective Effect of Melatonin: A Novel Therapy against Perinatal Hypoxia-Ischemia

    PubMed Central

    Alonso-Alconada, Daniel; Álvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-01-01

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events. PMID:23629670

  13. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy.

    PubMed

    Hernández, Cristina; Dal Monte, Massimo; Simó, Rafael; Casini, Giovanni

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.

  14. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    PubMed Central

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  15. Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide.

    PubMed

    Mahan, Vicki L

    2012-12-27

    Studies in animal models show that the primary mechanism by which heme-oxygenases impart beneficial effects is due to the gaseous molecule carbon monoxide (CO). Produced in humans mainly by the catabolism of heme by heme-oxygenase, CO is a neurotransmitter important for multiple neurologic functions and affects several intracellular pathways as a regulatory molecule. Exogenous administration of inhaled CO or carbon monoxide releasing molecules (CORM's) impart similar neurophysiological responses as the endogenous gas. Its' involvement in important neuronal functions suggests that regulation of CO synthesis and biochemical properties may be clinically relevant to neuroprotection and the key may be a change in metabolic substrate from glucose to lactate. Currently, the drug is under development as a therapeutic agent and safety studies in humans evaluating the safety and tolerability of inhaled doses of CO show no clinically important abnormalities, effects, or changes over time in laboratory safety variables. As an important therapeutic option, inhaled CO has entered clinical trials and its clinical role as a neuroprotective and neurotherapeutic agent has been suggested. In this article, we review the neuroprotective effects of endogenous CO and discuss exogenous CO as a neuroprotective and neurotherapeutic agent.

  16. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease.

    PubMed

    Naoi, Makoto; Maruyama, Wakako

    2009-08-01

    Neuroprotective therapy has been proposed for age-related neurodegenerative disorders, including Parkinson's disease. Inhibitors of type B monoamine oxidase (MAOB-Is), rasagiline and (-)deprenyl, are the most promising candidate neuroprotective drugs. Clinical trials of rasagiline in patients with Parkinson's disease suggest that rasagiline may have some disease-modifying effects. Results using animal and cellular models have proved that the MAOB-Is protect neurons by the intervention of 'intrinsic' mitochondrial apoptotic cascade and the induction of prosurvival antiapoptotic Bcl-2 and neurotrophic factors. Rasagiline-related MAOB-Is prevent mitochondrial permeability transition induced by various insults and activation of subsequent apoptotic cascades: cytochrome c release, casapase activation, and condensation and fragmentation of nuclear DNA. MAOB-Is increase transcription of prosurvival genes through activating the nuclear transcription factor-(NF) system. Rasagiline increases the protein and mRNA levels of GDNF in dopaminergic SH-SY5Y cells, whereas (-)deprenyl increases those of BDNF. Systemic administration of (-)deprenyl and rasagiline increases these neurotrophic factors in the cerebrospinal fluid from patients with Parkinson's disease and nonhuman primates. This review presents recent advances in our understanding of the neuroprotection offered by MAOB-Is and possible evaluation of neuroprotective efficacy in clinical samples is discussed.

  17. A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat.

    PubMed

    Ross, Jerard; Brough, David; Gibson, Rosemary M; Loddick, Sarah A; Rothwell, Nancy J

    2007-10-01

    Numerous preclinical studies have reported neuroprotective effects of new agents in animal studies. None of these agents has yet translated into a successful clinical trial and therefore to a new therapy. There are many possible reasons for this failure, including poor design of clinical trials, mismatch between preclinical and clinical protocols, and insufficient preclinical data. The enzyme caspase-1 has been implicated in neuronal death. Deletion of the caspase-1 gene, or administration of partially selective inhibitors, reduces neuronal injury induced by cerebral ischemia in rodents. We report here, for the first time, that VRT-018858, the non-peptide, active metabolite of the selective caspase-1 inhibitor pro-drug, pralnacasan, markedly reduced ischemic injury in rats. VRT-018858 was neuroprotective when delivered at 1 and 3h (42% and 58% neuroprotection, respectively) but not 6h after injury, and protection was sustained 7 days after the induction of ischemia (66% neuroprotection). These data confirm caspase-1 as an important target for intervention in acute CNS injury, and propose a new class of caspase-1 inhibitors as highly effective neuroprotective agents.

  18. A Military-Centered Approach to Neuroprotection for Traumatic Brain Injury

    PubMed Central

    Shear, Deborah A.; Tortella, Frank C.

    2013-01-01

    Studies in animals show that many compounds and therapeutics have the potential to greatly reduce the morbidity and post-injury clinical sequela for soldiers experiencing TBI. However, to date there are no FDA approved drugs for the treatment of TBI. In fact, expert opinion suggests that combination therapies will be necessary to treat any stage of TBI recovery. Our approach to this research effort is to conduct comprehensive pre-clinical neuroprotection studies in military-relevant animal models of TBI using the most promising neuroprotective agents. In addition, emerging efforts incorporating novel treatment strategies such as stem cell based therapies and alternative therapeutic approaches will be discussed. The development of a non-surgical, non-invasive brain injury therapeutic clearly addresses a major, unresolved medical problem for the Combat Casualty Care Research Program. Since drug discovery is too expensive to be pursued by DOD in the TBI arena, this effort capitalizes on partnerships with the Private Sector (Pharmaceutical Companies) and academic collaborations (Operation Brain Trauma Therapy Consortium) to study therapies already under advanced development. Candidate therapies selected for research include drugs that are aimed at reducing the acute and delayed effects of the traumatic incident, stem cell therapies aimed at brain repair, and selective brain cooling to stabilize cerebral metabolism. Each of these efforts can also focus on combination therapies targeting multiple mechanisms of neuronal injury. PMID:23781213

  19. A clinical tool for predicting survival in ALS.

    PubMed

    Knibb, Jonathan A; Keren, Noa; Kulka, Anna; Leigh, P Nigel; Martin, Sarah; Shaw, Christopher E; Tsuda, Miho; Al-Chalabi, Ammar

    2016-12-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and usually fatal neurodegenerative disease. Survival from diagnosis varies considerably. Several prognostic factors are known, including site of onset (bulbar or limb), age at symptom onset, delay from onset to diagnosis and the use of riluzole and non-invasive ventilation (NIV). Clinicians and patients would benefit from a practical way of using these factors to provide an individualised prognosis. 575 consecutive patients with incident ALS from a population-based registry in South-East England register for ALS (SEALS) were studied. Their survival was modelled as a two-step process: the time from diagnosis to respiratory muscle involvement, followed by the time from respiratory involvement to death. The effects of predictor variables were assessed separately for each time interval. Younger age at symptom onset, longer delay from onset to diagnosis and riluzole use were associated with slower progression to respiratory involvement, and NIV use was associated with lower mortality after respiratory involvement, each with a clinically significant effect size. Riluzole may have a greater effect in younger patients and those with longer delay to diagnosis. A patient's survival time has a roughly 50% chance of falling between half and twice the predicted median. A simple and clinically applicable graphical method of predicting an individual patient's survival from diagnosis is presented. The model should be validated in an independent cohort, and extended to include other important prognostic factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Maternal side effects & fetal neuroprotection according to body mass index after magnesium sulfate in a multicenter randomized controlled trial.

    PubMed

    Vilchez, Gustavo; Dai, Jing; Lagos, Moraima; Sokol, Robert J

    2018-01-01

    Evidence supports the need of dose-adjustment of several drugs according to body mass index (BMI) to prevent toxicity in the underweight, and ensure efficacy in obese women. However, for MgSO 4 neuroprotection, the effect of BMI on maternal toxicity and fetal neuroprotection is understudied. We analyze the effect of BMI on maternal/infant outcomes after MgSO 4 . Secondary analysis of a clinical trial that studied MgSO 4 neuroprotection. Maternal side effects, magnesium cord levels, and offspring cerebral palsy/death were analyzed along BMI strata using ANOVA and chi-square test. Logistic regression was used to calculate adjusted odds ratios according to the treatment and BMI, using nonobese that received placebo as reference. Interaction analyses were performed to validate differential efficacy of BMI. From 2241 women, more side effects and higher magnesium cord levels were seen in underweight women (p = 0.05). MgSO 4 neuroprotection was effective in the non-obese (p = 0.02), but not in obese women (p = 1.00). In multivariate analyses, MgSO 4 significantly reduced cerebral palsy only in nonobese women. Interaction analyses showed the moderator effect of BMI (p = 0.169). Increasing MgSO 4 dose in obese mothers may ensure neuroprotective efficacy without representing increased maternal risks. Considering costs of studying this association, current analysis may form the basis for reasonable practice.

  1. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    PubMed Central

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  2. Effect of Noopept on Dynamics of Intracellular Calcium in Neurons of Cultured Rat Hippocampal Slices.

    PubMed

    Kolbaev, S N; Aleksandrova, O P; Sharonova, I N; Skrebitsky, V G

    2018-01-01

    A neuroprotective and nootropic drug Noopept increased the frequency of spontaneous calcium transients in neurons of CA1 radial layer in cultured rat hippocampal slices. In contrast, the drug exerted no significant effect on intracellular calcium concentration and its dynamics in neurons of hippocampal CA1 pyramidal layer.

  3. Synthesis and Characterization of a New Bivalent Ligand Combining Caffeine and Docosahexaenoic Acid.

    PubMed

    Fernández-Dueñas, Víctor; Azuaje, Jhonny; Morató, Xavier; Cordobilla, Begoña; Domingo, Joan Carles; Sotelo, Eddy; Ciruela, Francisco

    2017-02-27

    Caffeine is a promising drug for the management of neurodegenerative diseases such as Parkinson's disease (PD), demonstrating neuroprotective properties that have been attributed to its interaction with the basal ganglia adenosine A2A receptor (A2AR). However, the doses needed to exert these neuroprotective effects may be too high. Thus, it is important to design novel approaches that selectively deliver this natural compound to the desired target. Docosahexaenoic acid (DHA) is the major omega-3 fatty acid in the brain and can act as a specific carrier of caffeine. Furthermore, DHA displays properties that may lead to its use as a neuroprotective agent. In the present study, we constructed a novel bivalent ligand covalently linking caffeine and DHA and assessed its pharmacological activity and safety profile in a simple cellular model. Interestingly, the new bivalent ligand presented higher potency as an A2AR inverse agonist than caffeine alone. We also determined the range of concentrations inducing toxicity both in a heterologous system and in primary striatal cultures. The novel strategy presented here of attaching DHA to caffeine may enable increased effects of the drug at desired sites, which could be of interest for the treatment of PD.

  4. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke

    PubMed Central

    AHN, JI YUN; YAN, BING CHUN; PARK, JOON HA; AHN, JI HYEON; LEE, DAE HWAN; KIM, IN HYE; CHO, JEONG-HWI; CHEN, BAI HUI; LEE, JAE-CHUL; CHO, YOUNG SHIN; SHIN, MYOUNG CHUL; CHO, JUN HWI; HONG, SEONGKWEON; WON, MOO-HO; KIM, SUNG KOO

    2015-01-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region. PMID:26668588

  5. TCH346 as a neuroprotective drug in Parkinson's disease: a double-blind, randomised, controlled trial.

    PubMed

    Olanow, C Warren; Schapira, Anthony H V; LeWitt, Peter A; Kieburtz, Karl; Sauer, Dirk; Olivieri, Gianfranco; Pohlmann, Harald; Hubble, Jean

    2006-12-01

    There is an important unmet medical need in Parkinson's disease for a neuroprotective treatment that slows or stops disease progression. TCH346 is a potent anti-apoptotic drug that protects against loss of dopaminergic neurons in laboratory models. Our aim was to assess TCH346 as a neuroprotective drug in patients with Parkinson's disease. Patients presenting at 45 international movement disorder clinics with early untreated Parkinson's disease were assessed as part of this parallel-group, double-blind, randomised controlled trial. 301 eligible patients were randomly assigned 12-18 months' treatment with TCH346 at a daily dose of 0.5 mg (n=78), 2.5 mg (n=79), or 10 mg (n=73), or placebo (n=71), followed by a 4 week washout period. The primary outcome measure was time to development of a disability requiring dopaminergic treatment. Secondary outcome measures were the annual rate of change in the unified Parkinson's disease rating scale (UPDRS) and the PDQ-39, a measure of quality of life. Analyses were by intention-to-treat. This study is pending registration with . 255 patients completed the study. TCH346 did not differ from placebo for any of the study outcomes. Treatment was needed in 26 (34%) patients in the TCH346 0.5 mg group, 30 (38%) in the TCH346 2.5 mg group, 24 (33%) in the TCH346 10 mg group, and 23 (32%) in the placebo group. There were no significant differences between groups. There were no differences between groups in the annual change in the UPDRS or PDQ-39 either. Few patients withdrew because of adverse events and none was judged to be related to the study intervention. TCH346 did not show evidence of a neuroprotective effect. The discrepancy between the preclinical promise of TCH346 and the clinical outcome could have arisen because of the use of laboratory models that do not accurately reflect the pathogenesis of Parkinson's disease, the doses of study drug used, insensitive clinical endpoints, and the patient population selected for study.

  6. Safinamide: from molecular targets to a new anti-Parkinson drug.

    PubMed

    Caccia, C; Maj, R; Calabresi, M; Maestroni, S; Faravelli, L; Curatolo, L; Salvati, P; Fariello, R G

    2006-10-10

    Ideal treatment in Parkinson's disease (PD) aims at relieving symptoms and slowing disease progression. Of all remedies, levodopa remains the most effective for symptomatic relief, but the medical need for neuroprotectant drugs is still unfulfilled. Safinamide, currently in phase III clinical trials for the treatment of PD, is a unique molecule with multiple mechanisms of action and a very high therapeutic index. It combines potent, selective, and reversible inhibition of MAO-B with blockade of voltage-dependent Na+ and Ca2+ channels and inhibition of glutamate release. Safinamide has neuroprotective and neurorescuing effects in MPTP-treated mice, in the rat kainic acid, and in the gerbil ischemia model. Safinamide potentiates levodopa-mediated increase of DA levels in DA-depleted mice and reverses the waning motor response after prolonged levodopa treatment in 6-OHDA-lesioned rats. Safinamide has excellent bioavailability, linear kinetics, and is suitable for once-a-day administration. Therefore, safinamide may be used in PD to reduce l-dopa dosage and also represents a valuable therapeutic drug to test disease-modifying potential.

  7. Novel drug delivery systems for glaucoma

    PubMed Central

    Lavik, E; Kuehn, M H; Kwon, Y H

    2011-01-01

    Reduction of intraocular pressure (IOP) by pharmaceutical or surgical means has long been the standard treatment for glaucoma. A number of excellent drugs are available that are effective in reducing IOP. These drugs are typically applied as eye drops. However, patient adherence can be poor, thus reducing the clinical efficacy of the drugs. Several novel delivery systems designed to address the issue of adherence and to ensure consistent reduction of IOP are currently under development. These delivery systems include contact lenses-releasing glaucoma medications, injectables such as biodegradable micro- and nanoparticles, and surgically implanted systems. These new technologies are aimed at increasing clinical efficacy by offering multiple delivery options and are capable of managing IOP for several months. There is also a desire to have complementary neuroprotective approaches for those who continue to show progression, despite IOP reduction. Many potential neuroprotective agents are not suitable for traditional oral or drop formulations. Their potential is dependent on developing suitable delivery systems that can provide the drugs in a sustained, local manner to the retina and optic nerve. Drug delivery systems have the potential to improve patient adherence, reduce side effects, increase efficacy, and ultimately, preserve sight for glaucoma patients. In this review, we discuss benefits and limitations of the current systems of delivery and application, as well as those on the horizon. PMID:21475311

  8. Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia.

    PubMed

    Moyanova, Slavianka Georgieva; Kortenska, Lidia Vasileva; Mitreva, Rumiana Gesheva; Pashova, Vyara Dincova; Ngomba, Richard Teke; Nicoletti, Ferdinando

    2007-06-11

    Transient focal ischemia produced by local infusion of endothelin-1 (ET1) in the territory of the middle cerebral artery has been proposed as a potentially useful model for the screening of drugs developed for the treatment of thrombo-embolic stroke. However, most of the data rely exclusively on the assessment of the infarct volume, which is only a partial predictor of the neurological outcome of stroke. Here, we have validated the model using a multimodal approach for the assessment of neuroprotection, which includes (i) determination of the infarct volume by 2,3,5-triphenyltetrazolium chloride staining; (ii) an in-depth behavioral analysis of the neurological deficit; and (iii) an EEG analysis of electrophysiological abnormalities in the peri-infarct somatosensory forelimb cortical area, S1FL. The non-competitive NMDA receptor antagonist, MK-801 (3 mg/kg, injected i.p. 20 min after ET1 infusion in conscious rats) could reduce the infarct volume, reverse the EEG changes occurring at early times post-ET1, and markedly improve the neurological deficit in ischemic animals. The latter effect, however, was visible at day 3 post-ET1, because the drug itself produced substantial behavioral abnormalities at earlier times. We conclude that a multimodal approach can be applied to the ET1 model of focal ischemia, and that MK-801 can be used as a reference compound to which the activity of safer neuroprotective drugs should be compared.

  9. The use of propidium iodide to assess excitotoxic neuronal death in primary mixed cortical cultures.

    PubMed

    Lau, Anthony C; Cui, Hong; Tymianski, Michael

    2007-01-01

    Neurodegenerative disorders are subjects of intense scrutiny in biomedical research because of their often-debilitating effects. Currently, many laboratories are engaged in developing or testing drugs to prevent neuronal loss in a variety of these pathologies. A key to testing such drugs is the use of a fast, reliable, and easily reproducible model of neurodegeneration and neuroprotection. Our laboratory has previously used propidium iodide (PI) to assess the degree of neurodegeneration and neuroprotection under a variety of conditions. Ultimately, efforts are underway in the laboratory to prevent delayed neuronal loss following acute ischemic insults using drug therapies. It is now believed that a key mechanism of neurodegeneration following acute ischemia or anoxia is a result of excitotoxicity via N-methyl-D-aspartate receptors (NMDARs) and subsequent overproduction of nitric oxide via neuronal nitric oxide synthase (nNOS). Thus, for the purposes of this chapter, the insult used to induce cell death will be various concentrations of NMDA and the compound used to demonstrate neuroprotection will be the nonspecific NOS inhibitor No-nitro-L-arginine methyl ester (L-NAME). Assessment of neuronal death is accomplished by measuring changes in PI fluorescence using a fluorescent plate reader. This chapter will outline the necessary steps required to (1) produce primary mixed cortical cultures, (2) apply PT and NMDA to these cultures, (3) quantify the results obtained from these cultures, and (4) image these cultures in conjunction with Hoechst 33342 and immunocytochemistry using fluorescence microscopy.

  10. Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons

    PubMed Central

    Park, Yul Young; Johnston, Daniel

    2013-01-01

    The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005

  11. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  12. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  13. Paramedic Initiation of Neuroprotective Agent Infusions: Successful Achievement of Target Blood Levels and Attained Level Effect on Clinical Outcomes in the FAST-MAG Pivotal Trial (Field Administration of Stroke Therapy - Magnesium).

    PubMed

    Shkirkova, Kristina; Starkman, Sidney; Sanossian, Nerses; Eckstein, Marc; Stratton, Samuel; Pratt, Frank; Conwit, Robin; Hamilton, Scott; Sharma, Latisha; Liebeskind, David; Restrepo, Lucas; Valdes-Sueiras, Miguel; Saver, Jeffrey L

    2017-07-01

    Paramedic use of fixed-size lumen, gravity-controlled tubing to initiate intravenous infusions in the field may allow rapid start of neuroprotective therapy for acute stroke. In a large, multicenter trial, we evaluated its efficacy in attaining target serum levels of candidate neuroprotective agent magnesium sulfate and the relation of achieved magnesium levels to outcome. The FAST-MAG phase 3 trial (Field Administration of Stroke Therapy - Magnesium) randomized 1700 patients within 2 hours of onset to paramedic-initiated, a 15-minute loading intravenous infusion of magnesium or placebo followed by a 24-hour maintenance dose. The drug delivery strategy included fixed-size lumen, gravity-controlled tubing for field drug administration, and a shrink-wrapped ambulance kit containing both the randomized field loading and hospital maintenance doses for seamless continuation. Among patient randomized to active treatment, magnesium levels in the first 72 hours were assessed 987 times in 572 patients. Mean patient age was 70 years (SD±14 years), and 45% were women. During the 24-hour period of active infusion, mean achieved serum level was 3.91 (±0.8), consistent with trial target. Mg levels were increased by older age, female sex, lower weight, height, body mass index, and estimated glomerular filtration rate, and higher blood urea nitrogen, hemoglobin, and higher hematocrit. Adjusted odds for clinical outcomes did not differ by achieved Mg level, including disability at 90 days, symptomatic hemorrhage, or death. Paramedic infusion initiation using gravity-controlled tubing permits rapid achievement of target serum levels of potential neuroprotective agents. The absence of association of clinical outcomes with achieved magnesium levels provides further evidence that magnesium is not biologically neuroprotective in acute stroke. © 2017 American Heart Association, Inc.

  14. The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage

    PubMed Central

    Yoo, Seung-Jun; Cho, Bongki; Lee, Deokho; Son, Gowoon; Lee, Yeong-Bae; Soo Han, Hyung; Kim, Eunjoo; Moon, Chanil; Moon, Cheil

    2017-01-01

    Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain–blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have similar protective effects against excitotoxicity. PMID:28817120

  15. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  16. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  17. Selecting Patients for Intra-arterial Therapy in the Context of a Clinical Trial for Neuroprotection

    PubMed Central

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O’Brien, Sarah; Fisher, Marc; Haley, E. Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-01-01

    Background and Purpose The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. Methods The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Results Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, NIHSS, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%), OR [95%CL] of 4.9 [2.3,10.4], p<0.001). Gross recruitment was 0.11 patients/site/month vs. 0.43 patients/site/month, respectively, before and after the amendment. Conclusions It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. Clinical Trial Registration Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. PMID:27803392

  18. Selecting Patients for Intra-Arterial Therapy in the Context of a Clinical Trial for Neuroprotection.

    PubMed

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O'Brien, Sarah; Fisher, Marc; Haley, E Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-12-01

    The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis-associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, National Institutes of Health Stroke Scale, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%; odds ratio [95% confidence limit] of 4.9 [2.3-10.4]; P<0.001). Gross recruitment was 0.11 patients per site month versus 0.43 patients per site per month, respectively, before and after the amendment. It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. © 2016 American Heart Association, Inc.

  19. Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture

    PubMed Central

    Reboreda, Antonio; Sánchez, Estela; Romero, Marcos; Lamas, J Antonio

    2003-01-01

    The basis of rhythmic activity observed at the dorsal column nuclei (DCN) is still open to debate. This study has investigated the electrophysiological properties of isolated DCN neurones deprived of any synaptic influence, using the perforated-patch technique. About half of the DCN neurones (64/130) were spontaneously active. More than half of the spontaneous neurones (36/64) showed a low threshold membrane oscillation (LTO) with a mean frequency of 11.4 Hz (range: 4.3–22.1 Hz, n = 20; I = 0). Cells showing LTOs also invariably showed a rhythmic 1.2 Hz clustering activity (groups of 2–5 action potentials separated by silent LTO periods). Also, more than one-third of the silent neurones presented clustering activity, always accompanied by LTOs, when slightly depolarised. The frequency of LTOs was voltage dependent and could be abolished by TTX (0.5 μM) and riluzole (30 μM), suggesting the participation of a sodium current. LTOs were also abolished by TEA (15 mM), which transformed clustering into tonic activity. In voltage clamp, most DCN neurones (85 %) showed a TTX-/riluzole-sensitive persistent sodium current (INa,p), which activated at about -60 mV and had a half-maximum activation at −49.8 mV. An M-like, non-inactivating outward current was present in 95 % of DCN neurones, and TEA (15 mM) inhibited this current by 73.7 %. The non-inactivating outward current was also inhibited by barium (1 mM) and linopirdine (10 μM), which suggests its M-like nature; both drugs failed to block the LTOs, but induced a reduction in their frequency by 56 and 20 %, respectively. These results demonstrate for the first time that DCN neurones have a complex and intrinsically driven clustering discharge pattern, accompanied by subthreshold membrane oscillations. Subthreshold oscillations rely on the interplay of a persistent sodium current and a non-inactivating TEA-sensitive outward current. PMID:12844503

  20. Molecular Signatures of Chronic Pain Subtypes

    DTIC Science & Technology

    2014-01-01

    Objective: The omega-3 fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA) are precursors to a family of analgesic and neuroprotective...evidence suggests that the novel pro-resolving lipid mediator (PRLM) metabolites of the omega-3 fatty acids docosahexaenoic (DHA) and eicosapentaenoic ...of about 0.15. Drugs and Drug Administration Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were purchased from Cayman Chemical as

  1. An expert opinion on safinamide in Parkinson's disease.

    PubMed

    Onofrj, Marco; Bonanni, Laura; Thomas, Astrid

    2008-07-01

    Dopamine replacement therapies (levodopa, dopamine receptor agonists, anticholinergics, monoamine oxidase B inhibitors, and catechol-O-methyltransferase inhibitors) remain the cornerstones of therapeutic interventions for Parkinson's disease (PD). Despite the treatment options for PD symptoms, a cure remains elusive. An optimal treatment would be one that combined relief in both motor and nonmotor symptoms with neuroprotective properties. Safinamide is an investigational drug for PD currently in development as add-on therapy to both dopamine agonists and levodopa. Safinamide is a unique molecule with a novel mode of action, targeting both dopaminergic and glutaminergic systems, and potentially provides motor symptom control. Preliminary results from experimental models suggest potential neuroprotective effects. Studies on the potential effects on nonmotor symptoms are ongoing. To review the mechanism of action and pharmacokinetics, and to evaluate the available clinical safety and efficacy results of safinamide. A search of the electronic database MEDLINE (PubMed, no time limits) was performed on 14 December 2007. The full text of all citations was obtained for review. Furthermore, two abstracts on safinamide published as proceedings of a European conference were reviewed. Safinamide is a promising investigational drug for PD with a novel mode of action. Early reports confirm the potential efficacy of safinamide in PD. Further studies on potential effects on cognition and neuroprotection are needed.

  2. Thrombolysis and neuroprotection in cerebral ischemia.

    PubMed

    Gutiérrez, M; Díez Tejedor, E; Alonso de Leciñana, M; Fuentes, B; Carceller, F; Roda, J M

    2006-01-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage. Copyright 2006 S. Karger AG, Basel.

  3. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

    PubMed Central

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18,19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  4. A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action

    PubMed Central

    Chakravarty, Sumana; Maitra, Swati; Reddy, R Gajendra; Das, Tapatee; Jhelum, Priya; Kootar, Scherazad; Rajan, Wenson D.; Samanta, Anumita; Samineni, Ramesh; Pabbaraja, Srihari; Kernie, Steven G.; Mehta, Goverdhan; Kumar, Arvind

    2015-01-01

    In search for drugs to treat neuropsychiatric disorders wherein neurotrophic and neurogenic properties are affected, two neurotrophically active small molecules specially crafted following natural product leads based on 2-oxa-spiro[5.5]-undecane scaffold, have been thoroughly evaluated for their neurotrophic, neurogenic and neuroprotective potential in ex vivo primary culture and in vivo zebrafish and mouse models. The outcome of in vivo investigations suggest that one of these molecules is more neurotrophic than neurogenic while the other one is more neurogenic than neurotrophic and the former exhibits remarkable neuroprotection in a mouse acute ischemic stroke model. The molecular mechanisms of action of these compounds appear to be through the TrkB-MEK-ERK-CREB-BDNF pathway as pre-treatment with neurotrophin receptor TrkB inhibitor ANA-12 and MEK inhibitor PD98059 attenuates the neurotrophic action of compounds. PMID:26388493

  5. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy

    PubMed Central

    Dixon, Brandon J.; Reis, Cesar; Ho, Wing Mann; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future. PMID:26389893

  6. Synergistic neuroprotective therapies with hypothermia

    PubMed Central

    Cilio, Maria Roberta; Ferriero, Donna M.

    2010-01-01

    summary Neuroprotection is a major health care priority, given the enormous burden of human suffering and financial cost caused by perinatal brain damage. With the advent of hypothermia as therapy for term hypoxic–ischemic encephalopathy, there is hope for repair and protection of the brain after a profound neonatal insult. However, it is clear from the published clinical trials and animal studies that hypothermia alone will not provide complete protection or stimulate the repair that is necessary for normal neurodevelopmental outcome. This review critically discusses drugs used to treat seizures after hypoxia–ischemia in the neonate with attention to evidence of possible synergies for therapy. In addition, other agents such as xenon, N-acetylcysteine, erythropoietin, melatonin and cannabinoids are discussed as future potential therapeutic agents that might augment protection from hypothermia. Finally, compounds that might damage the developing brain or counteract the neuroprotective effects of hypothermia are discussed. PMID:20207600

  7. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).

    PubMed

    Singh, Neha Atulkumar; Mandal, Abul Kalam Azad; Khan, Zaved Ahmed

    2016-06-07

    Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.

  8. Safinamide: a new hope for Parkinson's disease?

    PubMed

    Teixeira, Fábio G; Gago, Miguel F; Marques, Paulo; Moreira, Pedro Silva; Magalhães, Ricardo; Sousa, Nuno; Salgado, António J

    2018-03-01

    The loss of dopaminergic neurons (DAn) and reduced dopamine (DA) production underlies the reasoning behind the gold standard treatment for Parkinson's disease (PD) using levodopa (L-DOPA). Recently licensed by the European Medicine Agency (EMA) and US Food and Drug Administration (FDA), safinamide [a monoamine oxidase B (MOA-B) inhibitor] is an alternative to L-DOPA; as we discuss here, it enhances dopaminergic transmission with decreased secondary effects compared with L-DOPA. In addition, nondopaminergic actions (neuroprotective effects) have been reported, with safinamide inhibiting glutamate release and sodium/calcium channels, reducing the excitotoxic input to dopaminergic neuronal death. Effects of safinamide have been correlated with the amelioration of non-motor symptoms (NMS), although these remain under discussion. Overall, safinamide can be considered to have potential antidyskinetic and neuroprotective effects and future trials and/or studies should be performed to provide further evidence for its potential as an anti-PD drug. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Identification of Licopyranocoumarin and Glycyrurol from Herbal Medicines as Neuroprotective Compounds for Parkinson's Disease

    PubMed Central

    Fujimaki, Takahiro; Saiki, Shinji; Tashiro, Etsu; Yamada, Daisuke; Kitagawa, Mitsuhiro; Hattori, Nobutaka; Imoto, Masaya

    2014-01-01

    In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future. PMID:24960051

  10. Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses.

    PubMed

    Kaminska, Bozena; Gaweda-Walerych, Katarzyna; Zawadzka, Malgorzata

    2004-01-01

    Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.

  11. Novel glutamatergic drugs for the treatment of mood disorders

    PubMed Central

    Lapidus, Kyle AB; Soleimani, Laili; Murrough, James W

    2013-01-01

    Mood disorders are common and debilitating, resulting in a significant public health burden. Current treatments are only partly effective and patients who have failed to respond to trials of existing antidepressant agents (eg, those who suffer from treatment-resistant depression [TRD]) require innovative therapeutics with novel mechanisms of action. Although neuroscience research has elucidated important aspects of the basic mechanisms of antidepressant action, most antidepressant drugs target monoaminergic mechanisms identified decades ago. Glutamate, the major excitatory neurotransmitter in the central nervous system, and glutamatergic dysfunction has been implicated in mood disorders. These data provide a rationale for the pursuit of glutamatergic agents as novel therapeutic agents. Here, we review preclinical and clinical investigations of glutamatergic agents in mood disorders with a focus on depression. We begin with discussion of evidence for the rapid antidepressant effects of ketamine, followed by studies of the antidepressant efficacy of the currently marketed drugs riluzole and lamotrigine. Promising novel agents currently in development, including N-methyl-D-aspartate (NMDA) receptor modulators, 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor modulators, and drugs with activity at the metabotropic glutamate (mGlu) receptors are then reviewed. Taken together, both preclinical and clinical evidence exists to support the pursuit of small molecule modulators of the glutamate system as novel therapeutic agents in mood disorders. It is hoped that by targeting neural systems outside of the monoamine system, more effective and perhaps faster acting therapeutics can be developed for patients suffering from these disabling disorders. PMID:23976856

  12. Insights into the molecular aspects of neuroprotective Bacoside A and Bacopaside I.

    PubMed

    Sekhar, Vini C; Viswanathan, Gayathri; Baby, Sabulal

    2018-04-19

    Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of the B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Memantine: targeting glutamate excitotoxicity in Alzheimer's disease and other dementias.

    PubMed

    Molinuevo, José L; Lladó, Albert; Rami, Lorena

    2005-01-01

    The management of dementia has changed since the development of new antidementia drugs. The benefits observed in Alzheimer's disease (AD) with selective cholinergic transmission treatments are mainly symptomatic, without clear evidence of neuroprotection. The hypothesis that glutamate-mediated neurotoxicity is involved in the pathogenesis of AD is finding increasingly more acceptance in the scientific community. Glutamate receptors are overactive, and N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential for the treatment of AD and other neurological disorders. Memantine is a noncompetitive NMDA antagonist that is considered a neuroprotective drug. Memantine's capacity has been demonstrated in preclinical studies, and it is considered a useful symptomatic treatment for AD. Memantine has been shown to benefit cognition, function, and global outcome in patients with moderate to severe AD, and it is currently approved by the US Food and Drug Administration (FDA) for the treatment of moderate to severe AD. Recently, memantine has also demonstrated efficacy in the initial stages of AD, although FDA authorization is pending. This review highlights the important pharmacological and clinical aspects of memantine, as well as some basic mechanisms mediating glutamatergic neurodegeneration.

  14. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  15. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease.

    PubMed

    Liu, Wei; Lang, Ming; Youdim, Moussa B H; Amit, Tamar; Sun, Yewei; Zhang, Zaijun; Wang, Yuqiang; Weinreb, Orly

    2016-10-01

    Current novel therapeutic approach suggests that multifunctional compounds with diverse biological properties and a single bioavailability and pharmacokinetic metabolism, will produce higher significant advantages in treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Based on this rational, a new class of cholinesterase (ChE)-monoamine oxidase (MAO) inhibitors were designed and synthesized by amalgamating the propargyl moiety of the irreversible selective MAO-B inhibitor, neuroprotective/neurorestorative anti-Parkinsonian drug, rasagiline, into the "N-methyl" position of the ChE inhibitor, anti-AD drug rivastigmine. Initially, we examined the MAO and ChE inhibitory effect of these novel compounds, MT series in vitro and in vivo. Among MT series, MT-031 exhibited higher potency as a dual MAO-A and ChE inhibitor compared to other compounds in acute-treated mice. Additionally, MT-031 was found to increase the striatal levels of dopamine (DA), serotonin (5-HT) and norepinephrine (NE), and prevent the metabolism of DA and 5-HT. Finally, we have demonstrated that MT-031 exerted neuroprotective effect against H2O2-induced neurotoxicity and reactive oxygen species generation in human neuroblastoma SH-SY5Y cells. These findings provide evidence that MT-031 is a potent brain permeable novel multifunctional, neuroprotective and MAO-A/ChE inhibitor, preserves in one molecule entity some of the beneficial properties of its parent drugs, rasagiline and rivastigmine, and thus may be indicated as novel therapeutic approach for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    PubMed

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  17. The PPARgamma agonist FMOC-L-leucine protects both mature and immature brain.

    PubMed

    Maurois, Pierre; Rocchi, Stéphane; Pages, Nicole; Bac, Pierre; Stables, James P; Gressens, Pierre; Vamecq, Joseph

    2008-01-01

    (N-[9-fluorenylmethoxycarbonyl]-)-L-leucine (FMOC-L-leucine) and rosiglitazone, two ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), were evaluated in mature (adult mice) and immature (pups) brain injury models. In adult magnesium-deficient mice, a model responsive to both neuroprotective and anti-seizure compounds, FMOC-L-leucine, but not rosiglitazone, protected against audiogenic seizures. The protection afforded by FMOC-L-leucine was alleviated by the PPARgamma antagonist GW9662 (1-2 mg/kg) and was induced in 50% animals by 4.8+/-1.2 mg/kg. At this dose, FMOC-L-leucine modified audiogenic seizure phase durations in convulsing mice differently than prototype antiepileptic drugs did. FMOC-L-leucine (up to 100 mg/kg) was inactive in the 6 Hz seizure test, an adult animal model largely responsive to anti-seizure drugs. In a model of neonatal brain injury, FMOC-L-leucine (4 microg/kg) was neuroprotective against cerebral ibotenate toxicity. It reduced significantly the size of lesions in grey but not in white matter, while rosiglitazone (10 microg/kg) was inactive. Taken as a whole, the present data support neuroprotective potentialities of FMOC-L-leucine towards both mature and immature brain. The PPAR-based protection of immature brain is more important as it is known that classic adult brain protectants (GABA(A) activators, N-methyl-D-aspartate and sodium channel blockers) may be toxic for immature brain. The PPARgamma agonist FMOC-L-leucine is likely to be devoid of these classic protective mechanisms because of its inactivity in the 6 Hz seizure test, its activity in the audiogenic test being explained by neuroprotective rather than intrinsic anti-seizure mechanisms. Targeting PPARs might be thus a promising way to protect immature brain.

  18. Effects of alcohol on histone deacetylase 2 (HDAC2) and the neuroprotective role of trichostatin A (TSA).

    PubMed

    Agudelo, Marisela; Gandhi, Nimisha; Saiyed, Zainulabedin; Pichili, Vijaya; Thangavel, Samikkannu; Khatavkar, Pradnya; Yndart-Arias, Adriana; Nair, Madhavan

    2011-08-01

    Previous studies have implicated histone deacetylases (HDACs) and HDAC inhibitors (HDIs) such as trichostatin A (TSA) in the regulation of gene expression during drug addiction. Furthermore, an increase in HDAC activity has been linked to neurodegeneration. Alcohol has also been shown to promote abundant generation of reactive oxygen species (ROS) resulting in oxidative stress. TSA inhibits HDACs and has been shown to be neuroprotective in other neurodegenerative disease models. Although HDACs and HDIs have been associated with drug addiction, there is no evidence of the neurodegenerative role of HDAC2 and neuroprotective role of TSA in alcohol addiction. Therefore, we hypothesize that alcohol modulates HDAC2 through mechanisms involving oxidative stress. To test our hypothesis, the human neuronal cell line, SK-N-MC, was treated with different concentrations of ethanol (EtOH); HDAC2 gene and protein expression were assessed at different time points. Pharmacological inhibition of HDAC2 with TSA was evaluated at the gene level using qRT-PCR and at the protein level using Western blot and flow cytometry. ROS production was measured with a fluorescence microplate reader and fluorescence microscopy. Our results showed a dose-dependent increase in HDAC2 expression with EtOH treatment. Additionally, alcohol significantly induced ROS, and pharmacological inhibition of HDAC2 with TSA was shown to be neuroprotective by significantly inhibiting HDAC2 and ROS. These results suggest that EtOH can upregulate HDAC2 through mechanisms involving oxidative stress and HDACs may play an important role in alcohol use disorders (AUDs). Moreover, the use of HDIs may be of therapeutic significance for the treatment of neurodegenerative disorders including AUDs. Copyright © 2011 by the Research Society on Alcoholism.

  19. GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke.

    PubMed

    Zhao, Tian-Zhi; Ding, Qian; Hu, Jun; He, Shi-Ming; Shi, Fei; Ma, Lian-Ting

    2016-04-01

    Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotective as well as anti-inflammatory in animal models of ischemic stroke with unclear mechanism. We hypothesize that the anti-inflammatory and neuroprotective effect of estradiol is mediated by the estradiol receptor G protein-coupled estrogen receptor 1 (GPER) expressed on microglia. We have generated the rat global cerebral ischemic model and the primary microglia culture to study the neuroprotective and anti-inflammatory effect of estradiol. We have further used pharmacological methods and siRNA knockdown approach to study the underlying mechanism. We found that estradiol reduced the level of proinflammatory cytokines including IL-1β and TNF-α, both in vivo and in vitro. We also found that the specific GPER agonist G1 could reduce the level of IL-1β (P = 0 P = 0.0017, one-way ANOVA and post hoc test) and TNF-α (P < 0.0001) in the primary microglia culture. Moreover, the specific GPER antagonist G15 was able to abolish the anti-inflammatory effect of estradiol. Estradiol failed to reduce the level of IL-1β (P = 0.4973, unpaired Student's t-test) and TNF-α (P = 0.1627) when GPER was knocked down. Our studies have suggested that GPER expressed on microglia mediated the anti-inflammatory effect of estradiol after ischemic stroke. Our studies could potentially help to develop more specific drugs to manage inflammation postischemic stroke.

  20. Emerging treatments for traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2009-01-01

    Background This review summarizes promising approaches for the treatment of traumatic brain injury (TBI), which are either in preclinical or clinical trials. Objective The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. Methods A literature review of pre-clinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. Results/conclusion Nearly all phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials which seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI. PMID:19249984

  1. Phosphodiesterase 7 Inhibition Induces Dopaminergic Neurogenesis in Hemiparkinsonian Rats

    PubMed Central

    Morales-Garcia, Jose A.; Alonso-Gil, Sandra; Gil, Carmen; Martinez, Ana; Santos, Angel

    2015-01-01

    Parkinson’s disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson’s disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson’s disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson’s disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SNpc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation. Significance Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the ventral midbrain. Currently, no cure and no effective disease-modifying therapy are available for Parkinson’s disease; therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs for the treatment of this disorder. The present study reports that an inhibitor of the enzyme phosphodiesterase 7 (S14) induces proliferation in vitro and in vivo of neural stem cells, promoting its differentiation toward a dopaminergic phenotype and therefore enhancing dopaminergic neuron generation. Because this drug is also able to confer neuroprotection of these cells in animal models of Parkinson’s disease, S14 holds great promise as a therapeutic new strategy for this disorder. PMID:25925836

  2. Early neuroprotection after cardiac arrest.

    PubMed

    Dell'anna, Antonio M; Scolletta, Sabino; Donadello, Katia; Taccone, Fabio S

    2014-06-01

    Many efforts have been made in the last decades to improve outcome in patients who are successfully resuscitated from sudden cardiac arrest. Despite some advances, postanoxic encephalopathy remains the most common cause of death among those patients and several investigations have focused on early neuroprotection in this setting. Therapeutic hypothermia is the only strategy able to provide effective neuroprotection in clinical practice. Experimental studies showed that therapeutic hypothermia was even more effective when it was started immediately after the ischemic event. In human studies, the use of prehospital hypothermia was able to reduce the time to target temperature but did not result in higher survival rate or neurological recovery in patients with out-of-hospital cardiac arrest, when compared with standard in-hospital therapeutic hypothermia. Thus, intra-arrest hypothermia (i.e., initiated during cardiopulmonary resuscitation) may be a valid alternative to improve the effectiveness of therapeutic hypothermia in this setting; however, more clinical data are needed to demonstrate any potential benefit of such intervention on neurological outcome. Together with cooling, early hemodynamic optimization should be considered to improve cerebral perfusion in cardiac arrest patients and minimize any secondary brain injury. Nevertheless, only scarce data are available on the impact of early hemodynamic optimization on the development of organ dysfunction and neurological recovery in such patients. Some new protective strategies, including inhaled gases (i.e., xenon, argon, nitric oxide) and intravenous drugs (i.e., erythropoietin) are emerging in experimental studies as promising tools to improve neuroprotection, especially when combined with therapeutic hypothermia. Early cooling may contribute to enhance neuroprotection after cardiac arrest. Hemodynamic optimization is mandatory to avoid cerebral hypoperfusion in this setting. The combination of such interventions with other promising neuroprotective strategies should be evaluated in future large clinical studies.

  3. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however, the results suggest that HDACIs could hold potential as disease-modifying agents in PD. PMID:26040297

  4. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways.

    PubMed

    Jantas, D; Krawczyk, S; Lason, W

    2014-02-01

    Tianeptine (Tian) possesses neuroprotective potential, however, little is known about the effect of this drug in models of neuronal apoptosis. In the present study, we aimed (1) to compare the neuroprotective capacities of some antidepressants (ADs) in the models of staurosporine (St)- and doxorubicin (Dox)-evoked cell death, activating the intracellular and the extracellular apoptotic pathway, respectively; (2) to identify the Tian-modulated steps underlying its neuroprotective action; (3) to test the effect of various ADs against Dox-evoked cell damage in glia cells. Primary neuronal and glia cell cultures and retinoic acid-differentiated human neuroblastoma SH-SY5Y (RA-SH-SY5Y) cells were co-treated with imipramine, fluoxetine, citalopram, reboxetine, mirtazapine or Tian and St or Dox. The data showed the predominant neuroprotective effect of Tian over other tested ADs against St- and Dox-induced cell damage in primary neurons and in RA-SH-SY5Y cells. This effect was shown to be caspase-3-independent but connected with attenuation of DNA fragmentation. Moreover, neuroprotection elicited by Tian was blocked by pharmacological inhibitors of MAPK/ERK1/2 and PI3-K/Akt signaling pathways as well by inhibitor of necroptosis, necrostatin-1. Interestingly, the protective effects of all tested ADs were demonstrated in primary glia cells against the Dox-evoked cell damage. The obtained data suggests the glial cells as a common target for protective action of various ADs whereas in relation to neuronal cells only Tian possesses such properties, at least against St- and Dox-induced cell damage. Moreover, this neuroprotective effect of Tian is caspase-3-independent and engages the regulation of survival pathways (MAPK/ERK1/2 and PI3-K/Akt).

  5. Riluzole and Sorafenib Tosylate in Treating Patients With Advanced Solid Tumors or Melanoma

    ClinicalTrials.gov

    2018-05-15

    Advanced Malignant Solid Neoplasm; Recurrent Melanoma; Refractory Malignant Solid Neoplasm; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  6. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor

    PubMed Central

    Olmos, Gabriel; DeGregorio-Rocasolano, Nuria; Regalado, M Paz; Gasull, Teresa; Boronat, M Assumpció; Trullas, Ramón; Villarroel, Alvaro; Lerma, Juan; García-Sevilla, Jesús A

    1999-01-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells.Exposure (30 min) of energy deprived cells to L-glutamate (1–100 μM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 μM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine).Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 μM (EC100) L-glutamate with the rank order (EC50 in μM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole] (101)>RX821002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors.Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding.In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10–12 μM at 0 mV.It is concluded that imidazol(ine) drugs and agmatine are neuroprotective against glutamate-induced necrotic neuronal cell death in vitro and that this effect is mediated through NMDA receptor blockade by interacting with a site located within the NMDA channel pore. PMID:10455281

  7. Early defect of transforming growth factor β1 formation in Huntington’s disease

    PubMed Central

    Battaglia, Giuseppe; Cannella, Milena; Riozzi, Barbara; Orobello, Sara; Maat-Schieman, Marion L; Aronica, Eleonora; Busceti, Carla Letizia; Ciarmiello, Andrea; Alberti, Silvia; Amico, Enrico; Sassone, Jenny; Sipione, Simonetta; Bruno, Valeria; Frati, Luigi; Nicoletti, Ferdinando; Squitieri, Ferdinando

    2011-01-01

    Abstract A defective expression or activity of neurotrophic factors, such as brain- and glial-derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor-β (TGF-β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF-β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post-mortem brain tissues showed that TGF-β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF-β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF-β1 formation in asymptomatic R6/2 mice, where blood TGF-β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF-β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF-β1 production is associated with HD. Accordingly, reduced TGF-β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock-in cell lines expressing full-length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF-β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF-β1 levels in the brain may influence the progression of HD. PMID:20082658

  8. An assessment of treatment guidelines, clinical practices, demographics, and progression of disease among patients with amyotrophic lateral sclerosis in Japan, the United States, and Europe.

    PubMed

    Takei, Koji; Tsuda, Kikumi; Takahashi, Fumihiro; Hirai, Manabu; Palumbo, Joseph

    2017-10-01

    There is an increasing clinical research focus on neuroprotective agents in amyotrophic lateral sclerosis (ALS). However, it is unclear how generalisable clinical study trial results are between different countries and regions. To assess similarities and differences in clinical practice and treatment guidelines for ALS, and also to compare the demographics and rate of progression of disease in patients with ALS enrolled in clinical trials in Japan, the US, and Europe. We performed a review of clinical studies published since 2000 to compare the demographics and characteristics of patients with ALS. Progression of ALS disease was assessed in patients receiving placebo. The changes per month in ALSFRS-R score were calculated and compared between the studies. Overall, diagnostic criteria, recognition of ALS symptoms, comorbidities, use of riluzole, and nutritional, and respiratory support were similar. Regarding demographics and characteristics, there were no clear differences in the incidence of sporadic ALS (range 91-98%), bulbar onset (range 11-41%), and median time from onset to diagnosis (range 9-14 months) among the populations despite the difference in race between regions. However, use of tracheostomy-based invasive respiratory support was higher in Japan (29-38%) than in the US (4%) and Europe (1-31%). Rate of progression of disease was similar between the US and Europe study populations (range -0.89 to -1.60 points/month), and the Japanese study populations (range -1.03 to -1.21 points/month). There is evidence to support the generalisability of data from the Japanese ALS trial experience to the US and Europe populations in early to mid-stage of ALS.

  9. Trends of quality of life changes in amyotrophic lateral sclerosis patients.

    PubMed

    Shamshiri, Hosein; Fatehi, Farzad; Abolfazli, Roya; Harirchian, Mohammad Hossein; Sedighi, Behnaz; Zamani, Babak; Roudbari, Ali; Razazian, Nazanin; Khamseh, Fatemeh; Nafissi, Shahriar

    2016-09-15

    Amyotrophic lateral sclerosis (ALS) is an incurable progressive neurodegenerative disease and thus the assessment of quality of life (QOL) changes and factors that may influence its course is valuable in the meantime. The present study aimed to assess the deterioration rate of QOL and influencing factors in different subgroups of Iranian ALS patients. 132 patients were evaluated in this prospective multicenter observational study. QOL was measured using ALS Assessment Questionnaire (ALSAQ-40) during 1year follow up and its progression rate was assessed in different subgroups of patients according to age, sex, stage of disease, riluzole consumption, onset type. Also physical disability and functional disability were measured using MMT and ALSFRS-R scores respectively and their progression rates were compared with ALSAQ-40 changes. Significant deterioration of the scores of ALSAQ-40 during study was consistent in all of its domains (p=0.000). There was a significant negative correlation between ALSFRS-R and MMT changes and ALSAQ-40 change (p=0.000) and this was consistently observed in all domains of ALSAQ-40 (p=0.00). ALSAQ-40 deterioration rate was shown to be significantly lower in severe/terminal stages compared to mild/moderate stages (p=0.00). Significantly higher deterioration rate was observed in bulbar onset versus limb onset patients [F (1,130)=4.52, p=0.04] but no significant difference was observed among other subgroups according to age, sex and riluzole consumption. All domains of QOL significantly deteriorate during ALS course and there is a significant correlation between their changes and progression of physical and functional disabilities. Rate of degradation of QOL may be different at different stages of the disease. QOL worsens independent of factors such as sex, age and consumption of riluzole; but onset type (bulbar versus limb) is an imperative factor in quality of life changes during the disease course. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pharmacology of Rasagiline, a New MAO-B Inhibitor Drug for the Treatment of Parkinson’s Disease with Neuroprotective Potential

    PubMed Central

    Finberg, John P.M.

    2010-01-01

    Rasagiline (Azilect) is a highly selective and potent propargylamine inhibitor of monoamine oxidase (MAO) type B. Like other similar propargylamine inhibitors, rasagiline binds covalently to the N5 nitrogen of the flavin residue of MAO, resulting in irreversible inactivation of the enzyme. Therapeutic doses of the drug which inhibit brain MAO-B by 95% or more cause minimal inhibition of MAO-A, and do not potentiate the pressor or other pharmacological effects of tyramine. Metabolic conversion of the compound in vivo is by hepatic cytochrome P450-1A2, with generation of 1-aminoindan as the major metabolite. Rasagiline possesses no amphetamine-like properties, by contrast with the related compound selegiline (Deprenyl, Jumex, Eldepryl). Although the exact distribution of MAO isoforms in different neurons and tissues is not known, dopamine behaves largely as a MAO-A substrate in vivo, but following loss of dopaminergic axonal varicosities from the striatum, metabolism by glial MAO-B becomes increasingly important. Following subchronic administration to normal rats, rasagiline increases levels of dopamine in striatal microdialysate, possibly by the build-up of β-phenylethylamine, which is an excellent substrate for MAO-B, and is an effective inhibitor of the plasma membrane dopamine transporter (DAT). Both of these mechanisms may participate in the anti-Parkinsonian effect of rasagiline in humans. Rasagiline possesses neuroprotective properties in a variety of primary neuronal preparations and neuron-like cell lines, which is not due to MAO inhibition. Recent clinical studies have also demonstrated possible neuroprotective properties of the drug in human Parkinsonian patients, as shown by a reduced rate of decline of symptoms over time. PMID:23908775

  11. The Antiepileptic Drug Levetiracetam Suppresses Non-Convulsive Seizure Activity and Reduces Ischemic Brain Damage in Rats Subjected to Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro

    2013-01-01

    The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205

  12. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  13. Pleiotropic Protective Effects of Phytochemicals in Alzheimer's Disease

    PubMed Central

    Davinelli, Sergio; Sapere, Nadia; Zella, Davide; Bracale, Renata; Intrieri, Mariano; Scapagnini, Giovanni

    2012-01-01

    Alzheimer's disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD. PMID:22690271

  14. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: A structure-activity study

    PubMed Central

    Ali, Sameh Saad; Hardt, Joshua I.; Dugan, Laura L.

    2008-01-01

    Superoxide radical anion is a biologically important oxidant that has been linked to tissue injury and inflammation in several diseases. Here we carried out a structure-activity study on 6 different carboxyfullerene superoxide dismutase (SOD) mimetics with distinct electronic and biophysical characteristics. Neurotoxicity via NMDA receptors, which involves intracellular superoxide, was used as a model to evaluate structure-activity relationships between reactivity towards superoxide and neuronal rescue by these drugs. A significant correlation between neuroprotection by carboxyfullerenes and their ki towards superoxide radical was observed. Computer-assistant molecular modeling demonstrated that the reactivity towards superoxide is sensitive to changes in dipole moment which are dictated not only by the number of carboxyl groups, but also by their distribution on the fullerene ball. These results indicate that the SOD activity of these cell-permeable compounds predicts neuroprotection, and establishes a structure-activity relationship to aid in future studies on the biology of superoxide across disciplines. PMID:18656425

  15. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    PubMed Central

    2009-01-01

    Background Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD models effective in vivo tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment. PMID:19723328

  16. Antiparkinson drug--Mucuna pruriens shows antioxidant and metal chelating activity.

    PubMed

    Dhanasekaran, Muralikrishnan; Tharakan, Binu; Manyam, Bala V

    2008-01-01

    Parkinson's disease is a neurodegenerative disorder for which no neurorestorative therapeutic treatment is currently available. Oxidative stress plays an important role in the pathophysiology of Parkinson's disease. The ancient Indian medical system, Ayurveda, traditionally uses Mucuna pruriens to treat Parkinson's disease. In our earlier studies, Mucuna pruriens has been shown to possess antiparkinson and neuroprotective effects in animal models of Parkinson's disease. The antioxidant activity of Mucuna pruriens was demonstrated by its ability to scavenge DPPH radicals, ABTS radicals and reactive oxygen species. Mucuna pruriens significantly inhibited the oxidation of lipids and deoxyribose sugar. Mucuna pruriens exhibited divalent iron chelating activity and did not show any genotoxic/mutagenic effect on the plasmid DNA. These results suggest that the neuroprotective and neurorestorative effect of Mucuna pruriens may be related to its antioxidant activity independent of the symptomatic effect. In addition, the drug appears to be therapeutically safe in the treatment of patients with Parkinson's disease. Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. Investigations on 16-Arylideno Steroids as a New Class of Neuroprotective Agents for the Treatment of Alzheimer's and Parkinson's Diseases.

    PubMed

    Singh, Ranjit; Bansal, Ranju

    2017-01-18

    Neuroinflammatory mechanisms mediated by activated glial and cytokines (TNF-α, IL-1β) might contribute to neuronal degeneration leading to Alzheimer's (AD) and Parkinson's disease (PD). Lipopolysaccharide (LPS) is an inflammogen derived from the cell wall of Gram-negative bacteria, which promotes neuroinflammation and subsequent neurodegeneration. Dehydroepiandrosterone (DHEA) and testosterone have been reported as neuroprotective steroids useful for the treatment of various neurodegenerative disorders. In the present study, several 16-arylidene steroidal derivatives have been evaluated as neuroprotective agents in LPS-treated animal models. It was observed that 16-arylidene steroidal derivatives 1a-d and 6a-h considerably improve LPS-induced learning, memory, and movement deficits in animal models. Biochemical estimations of brain serum of treated animals revealed suppression of oxidative and nitrosative stress, acetylcholinesterase activity, and reduction in TNF-α levels, which were induced through LPS mediated neuroinflammatory mechanisms leading to neurodegeneration of brain. Of all the steroidal derivatives, 16-(4-pyridylidene) steroid 1c and its 4-aza analogue 6c were found to be the most active neuroprotective agents and produced effects comparable to standard drug celecoxib at a much lower dose and better than dexamethasone at the same dose in terms of behavioral, biochemical, and molecular aspects.

  18. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro.

    PubMed

    Parada-Turska, Jolanta; Rzeski, Wojciech; Majdan, Maria; Kandefer-Szerszeń, Martyna; Turski, Waldemar A

    2006-03-27

    One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts. It is not known whether the massive synovial hyperplasia characteristic of rheumatoid arthritis is due to the proliferation of synovial fibroblasts or to defective apoptosis. It has been found that glutamate receptor antagonists inhibit proliferation of different human tumour cells and the anticancer potential of glutamate receptor antagonists was suggested. Here, we investigated the effect of glutamate receptor antagonists and selected antirheumatic drugs on proliferation of synoviocytes in vitro. Experiments were conducted on rabbit synoviocytes cell line HIG-82 obtained from American Type Culture Collection (Menassas, VA, USA). Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 value (the concentration of drug necessary to induce 50% inhibition) together with confidence limits was calculated. Glutamate receptor antagonists, 1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one (CFM-2), riluzole, memantine, 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), dizocilpine, ketamine and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.014, 0.017, 0.065, 0.102, 0.15, 0.435 and 1.16, respectively. Antirheumatic drugs, celecoxib, diclofenac, nimesulide, sulfasalazine, naproxen and methotrexate, inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.0043, 0.034, 0.044, 0.096, 0.385 and 1.123, respectively. Thus, the antiproliferative potential of glutamate receptor antagonists is comparable to that of antirheumatic drugs.

  19. Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication.

    PubMed

    Faria, Melissa; Prats, Eva; Padrós, Francesc; Soares, Amadeu M V M; Raldúa, Demetrio

    2017-04-01

    Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included "standard therapy" drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-D-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC 50 )] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.

  20. Clinical Research on Traditional Chinese Medicine compounds and their preparations for Amyotrophic Lateral Sclerosis.

    PubMed

    Zhu, Jiayi; Shen, Lan; Lin, Xiao; Hong, Yanlong; Feng, Yi

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is a chronic, fatal neurodegenerative disease which leads to progressive muscle atrophy and paralysis. In order to summarize the characteristics of Traditional Chinese Medicine compounds and their preparations in the prevention and treatment of ALS through analyzing the mechanism, action site, and symptoms according to effective clinical research. We searched ALS, motor neuron disease, chemical drugs, herbal medicine, Chinese medicine, Traditional Chinese Medicine (TCM), and various combinations of these terms in databases including the PudMed, Springer, Ovid, Google, China National Knowledge Infrastructure, and Wanfang databases. It was found that the chemical drugs almost had not sufficient evidence to show their effectiveness in the treatment of ALS, except RILUZOLE. According to the characteristics of clinical symptoms of ALS, Chinese medicine practitioners believe that this disease belongs to the category of "atrophic disease". In clinical research, many Chinese herbal formulas had good clinical efficacies in the treatment of ALS with multiple targets, multiple links, and few side effects. And four kinds of dialectical treatment had been developed based on Clinical data analysis and the use of dialectical therapy: Benefiting the kidney; Declaring the lungs; Enhancing the Qi; and Dredging the meridian. In this review, we provide an overview of chemical drugs and Traditional Chinese Medicine compound and its preparations in therapy of ALS as well as how they may contribute to the ALS pathogenesis, thereby offering some clues for further studies. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Synthesis and neuroprotective effects of the complex nanoparticles of iron and sapogenin isolated from the defatted seeds of Camellia oleifera.

    PubMed

    Yang, Qian; Zhao, Chuang; Zhao, Jun; Ye, Yong

    2017-12-01

    The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function. In order to improve the activities of sapogenin, the nanoparticles of iron-sapogenin have been synthesized, and the neuroprotective effects are evaluated. Structural characters of the nanoparticles were analyzed, and the antioxidant effect was assessed by DPPH method, and the neuroprotective effect was evaluated by rotenone-induced neurodegeneration in Kunming mice injected subcutaneously into the back of neck with rotenone (50 mg/kg/day) for 6 weeks and then treated by tail intravenous injection with the iron-sapogenin at the dose of 25, 50 and 100 mg/kg for 7 days. Mice behaviour and neurotransmitters were tested. The product had an average size of 162 nm with spherical shape, and scavenged more than 90% DPPH radicals at 0.8 mg/mL concentration. It decreased behavioural disorder and malondialdehyde content in mice brain, and increased superoxide dismutase activity, tyrosine hydroxylase expression, dopamine and acetylcholine levels in brain in dose dependence, and their maximum changes were respectively up to 60.83%, 25.17%, 22.13%, 105.26%, 42.17% and 22.89% as compared to vehicle group. Iron-sapogenin nanoparticle shows significantly better effects than the sapogenin. Iron-sapogenin alleviates neurodegeneration of mice injured by neurotoxicity of rotenone, it is a superior candidate of drugs for neuroprotection.

  2. Novel Treatment Strategies Using TiO2-Nanowired Delivery of Histaminergic Drugs and Antibodies to Tau With Cerebrolysin for Superior Neuroprotection in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Sharma, Aruna; Menon, Preeti K; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Tian, Z Ryan; Ozkizilcik, Asya; Castellani, Rudy J; Mössler, Herbert; Sharma, Hari S

    2017-01-01

    More than 5.5 million Americans of all ages are suffering from Alzheimer's disease (AD) till today for which no suitable therapy has been developed so far. Thus, there is an urgent need to explore novel therapeutic measures to contain brain pathology in AD. The hallmark of AD includes amyloid-beta peptide (AβP) deposition and phosphorylation of tau in AD brain. Recent evidences also suggest a marked decrease in neurotrophic factors in AD. Thus, exogenous supplement of neurotrophic factors could be one of the possible ways for AD therapy. Human postmortem brain in AD shows alterations in histamine receptors as well, indicating an involvement of the amine in AD-induced brain pathology. In this review, we focused on role of histamine 3 and 4 receptor-modulating drugs in the pathophysiology of AD. Moreover, antibodies to histamine and tau appear to be also beneficial in reducing brain pathology, blood-brain barrier breakdown, and edema formation in AD. Interestingly, TiO 2 -nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors attenuated AβP deposition and reduced tau phosphorylation in AD brain leading to neuroprotection. Coadministration of cerebrolysin with histamine antibodies or tau antibodies has further enhanced neuroprotection in AD. These novel observations strongly suggest a role of nanomedicine in AD that requires further investigation. © 2017 Elsevier Inc. All rights reserved.

  3. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    PubMed Central

    Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Introduction Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. Materials and methods The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Results Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Conclusion Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD. PMID:29391788

  4. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects.

    PubMed

    Yan, Xiuju; Xu, Lixiao; Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson's disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference ( P <0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD.

  5. High-Content Microfluidic Screening Platform Used To Identify σ2R/Tmem97 Binding Ligands that Reduce Age-Dependent Neurodegeneration in C. elegans SC_APP Model.

    PubMed

    Mondal, Sudip; Hegarty, Evan; Sahn, James J; Scott, Luisa L; Gökçe, Sertan Kutal; Martin, Chris; Ghorashian, Navid; Satarasinghe, Praveen Navoda; Iyer, Sangeetha; Sae-Lee, Wisath; Hodges, Timothy R; Pierce, Jonathan T; Martin, Stephen F; Ben-Yakar, Adela

    2018-05-16

    The nematode Caenorhabditis elegans, with tractable genetics and a well-defined nervous system, provides a unique whole-animal model system to identify novel drug targets and therapies for neurodegenerative diseases. Large-scale drug or target screens in models that recapitulate the subtle age- and cell-specific aspects of neurodegenerative diseases are limited by a technological requirement for high-throughput analysis of neuronal morphology. Recently, we developed a single-copy model of amyloid precursor protein (SC_APP) induced neurodegeneration that exhibits progressive degeneration of select cholinergic neurons. Our previous work with this model suggests that small molecule ligands of the sigma 2 receptor (σ2R), which was recently cloned and identified as transmembrane protein 97 (TMEM97), are neuroprotective. To determine structure-activity relationships for unexplored chemical space in our σ2R/Tmem97 ligand collection, we developed an in vivo high-content screening (HCS) assay to identify potential drug leads. The HCS assay uses our recently developed large-scale microfluidic immobilization chip and automated imaging platform. We discovered norbenzomorphans that reduced neurodegeneration in our C. elegans model, including two compounds that demonstrated significant neuroprotective activity at multiple doses. These findings provide further evidence that σ2R/Tmem97-binding norbenzomorphans may represent a new drug class for treating neurodegenerative diseases.

  6. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer

    PubMed Central

    Himmel, Lauren E.; Lustberg, Maryam B.; DeVries, A. Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K.

    2016-01-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without loss of chemotherapeutic efficacy. PMID:27555377

  7. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer.

    PubMed

    Himmel, Lauren E; Lustberg, Maryam B; DeVries, A Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K

    2016-10-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without loss of chemotherapeutic efficacy. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Neuroprotection as initial therapy in acute stroke. Third Report of an Ad Hoc Consensus Group Meeting. The European Ad Hoc Consensus Group.

    PubMed

    1998-01-01

    Although a considerable body of scientific data is now available on neuroprotection in acute ischaemic stroke, this field is not yet established in clinical practice. At its third meeting, the European Ad Hoc Consensus Group considered the potential for neuroprotection in acute stroke and the practical problems attendant on the existence of a very limited therapeutic window before irreversible brain damage occurs, and came to the following conclusions. NEUROPROTECTANTS IN CLINICAL DEVELOPMENT: Convincing clinical evidence for an efficacious neuroprotective treatment in acute stroke is still required. Caution should be exercised in interpreting and extrapolating experimental results to stroke patients, who are a very heterogeneous group. The limitations of the time windows and the outcome measures chosen in trials of acute stroke therapy have an important influence on the results. The overall distribution of functional outcomes provides more statistical information than the proportion above a threshold outcome value. Neurological outcome should also be assessed. Neuroprotectants should not be tested clinically in phase II or phase III trials in a time window that exceeds those determined in experimental studies. The harmful effects of a drug in humans may override its neuroprotective potential determined in animals. Agents that act at several different levels in the ischaemic cascade may be more effective than those with a single mechanism of action. CURRENT IN-HOSPITAL MANAGEMENT OF ACUTE STROKE: The four major physiological variables that must be monitored and managed are blood pressure, arterial blood gas levels, body temperature, and glycaemia. The effects of controlling these physiological variables have not been studied in prospective trials, though they may all contribute to the outcome of acute ischaemic stroke and affect the duration of the therapeutic window. Optimal physiological parameters are inherently neuroprotective. Trials of new agents for the treatment of acute stroke should aim to maintain these physiological variables as close to normal as possible, and certainly within strictly defined limits. THE PLACE OF NEUROPROTECTANTS IN ACUTE STROKE MANAGEMENT: Stroke patients are a very heterogeneous group with respect to stroke mechanisms and severity, general condition, age and co-morbidities. At the present time, the only firm guideline than can be proposed for patient selection is the need for early admission to enable neuroprotectant and/or thrombolytic treatment to be started as soon as possible within the therapeutic window. The severity of potential side-effects will largely determine who should assess a patient with suspected stroke and initiate treatment. There is little information on which to base the duration of neuroprotectant therapy, and more experimental data are needed. Even if prehospital treatment proves to be feasible, it should not replace comprehensive stroke management in a specialist hospital unit. Clinical trials of neuroprotectants should only be performed in stroke units. The combined approach of restoring blood flow and providing neuroprotection may be the most productive in human stroke, but current clinical trial design will have to change in order to test combination therapy. Important side-effects are those that interfere with any possible benefit or increase mortality. PHARMACO-ECONOMIC ASPECTS OF NEUROPROTECTANTS: The early increase in hospital cost associated with neuroprotectant therapy may be balanced by the shorter length of hospital stay and lesser degree of disability of the surviving patients. The overall direct financial cost is highly dependent on the number of patients eligible for neuroprotectant therapy, which is itself dependent on the length of the therapeutic window and the severity of potential side-effects. A treatment that achieves a good functional outcome is the most cost-effective approach.

  9. Neuroprotective Strategies after Repetitive Mild Traumatic Brain Injury

    DTIC Science & Technology

    2011-06-01

    applica- tions are beyond the scope of this review, it should be noted that certain drugs, fever and respiratory ailments limit clinical application of...observed no evidence of hemorrhage early after injury but did observe the presence of subtle petechial hemorrhages at 7 days post-injury (Fig. 7

  10. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here?

    PubMed Central

    Marklund, Niklas; Hillered, Lars

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, ‘silver bullet’ therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21175576

  11. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease

    PubMed Central

    Anastasio, Thomas J.

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action. PMID:26097457

  12. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis.

    PubMed

    Sawada, Hideyuki

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease. Although the pathogenesis remains unresolved, oxidative stress is known to play a pivotal role. Edaravone works in the central nervous system as a potent scavenger of oxygen radicals. In ALS mouse models, edaravone suppresses motor functional decline and nitration of tyrosine residues in the cerebrospinal fluid. Areas covered: Three clinical trials, one phase II open-label trial, and two phase III placebo-control randomized trials were reviewed. In all trials, the primary outcome measure was the changes in scores on the revised ALS functional rating scale (ALSFRS-R) to evaluate motor function of patients. Expert opinion: The phase II open label trial suggested that edaravone is safe and effective in ALS, markedly reducing 3-nitrotyrosine levels in the cerebrospinal fluid. One of the two randomized controlled trials showed beneficial effects in ALSFRS-R, although the differences were not significant. The last trial demonstrated that edaravone provided significant efficacy in ALSFRS-R scores over 24 weeks where concomitant use of riluzole was permitted. Eligibility was restricted to patients with a relatively short disease duration and preserved vital capacity. Therefore, combination therapy with edaravone and riluzole should be considered earlier.

  13. Intrinsic membrane plasticity via increased persistent sodium conductance of cholinergic neurons in the rat laterodorsal tegmental nucleus contributes to cocaine-induced addictive behavior.

    PubMed

    Kamii, Hironori; Kurosawa, Ryo; Taoka, Naofumi; Shinohara, Fumiya; Minami, Masabumi; Kaneda, Katsuyuki

    2015-05-01

    The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine-induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter-delivered cocaine exposure, ex vivo whole-cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular- but not burst-type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole-sensitive persistent sodium currents, but not changes in Ca(2+) -activated BK, SK or voltage-dependent A-type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine-induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine-induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine-induced addictive behaviors. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Open Randomized Clinical Trial on JWSJZ Decoction for the Treatment of ALS Patients

    PubMed Central

    Su, Xiaojing; Bao, Jie; Wang, Jun; Zhu, Jin; Cai, Dingfang; Yu, Li; Zhou, Hua

    2013-01-01

    Objective. To investigate the efficacy and safety of the traditional Chinese medicine Jiawei Sijunzi (JWSJZ) decoction for the treatment of patients with amyotrophic lateral sclerosis (ALS). Methods. Forty-eight patients with ALS were divided into a JWSJZ group (n = 24) and a control group (n = 24) using a randomized number method. Together with the basic treatment for ALS, JWSJZ decoction was added to the treatment regimen of patients in the JWSJZ group or Riluzole was administered to the control group for 6 months. Neurologists evaluated the treated and control patients using the ALS functional rating scale (ALSFRS) before, 3 and 6 months after starting the additional treatments. Results. The ALSFRS scores in both groups were lower 3 and 6 months after treatment than before. There was a significant difference at 6 months after treatment between the subgroups of patients with ALS whose limbs were the initial site of attack. No serious adverse effects were observed in the JWSJZ group. Conclusion. JWSJZ decoction may be a safe treatment for ALS, and may have delayed the development of ALS, especially in the subgroup of patients in whom the limbs were attacked first when compared with Riluzole treatment. PMID:24093046

  15. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258

  16. Tibolone protects T98G cells from glucose deprivation.

    PubMed

    Ávila Rodriguez, Marco; Garcia-Segura, Luis Miguel; Cabezas, Ricardo; Torrente, Daniel; Capani, Francisco; Gonzalez, Janneth; Barreto, George E

    2014-10-01

    The steroidal drug Tibolone is used for the treatment of climacteric symptoms and osteoporosis in post-menopausal women. Although Tibolone has been shown to exert neuroprotective actions after middle cerebral artery occlusion, its specific actions on glial cells have received very little attention. In the present study we have assessed whether Tibolone exerts protective actions in a human astrocyte cell model, the T98G cells, subjected to glucose deprivation. Our findings indicate that Tibolone decreases the effects of glucose deprivation on cell death, nuclear fragmentation, superoxide ion production, mitochondrial membrane potential, cytoplasmic calcium concentration and morphological parameters. These findings suggest that glial cells may participate in the neuroprotective actions of Tibolone in the brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A restricted population of CB1 cannabinoid receptors with neuroprotective activity.

    PubMed

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-06-03

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.

  18. In Silico Analysis of the Association Relationship between Neuroprotection and Flavors of Traditional Chinese Medicine Based on the mGluRs

    PubMed Central

    Qiao, Liansheng; Chen, Yankun; Zhao, Bowen; Gu, Yu; Huo, Xiaoqian; Zhang, Yanling; Li, Gongyu

    2018-01-01

    The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People’s Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs. PMID:29320397

  19. Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells.

    PubMed

    Querobino, Samyr Machado; Carrettiero, Daniel Carneiro; Costa, Maricilia Silva; Alberto-Silva, Carlos

    2017-04-01

    In central nervous system cells, low molecular weight fractions (LMWF) from snake venoms can inhibit changes in mitochondrial membrane permeability, preventing the diffusion of cytochrome c to the cytoplasm, inhibiting the activation of pro-apoptotic factors. Here, we evaluated the neuroprotective activity of LMWF from Bothrops jararaca (Bj) snake venom in H 2 O 2 -induced cytotoxicity in cultured hippocampal cells. SDS-PAGE, FT-IR and MALDI-TOF analysis of LMWF (<14 kDa) confirmed the absence of high-molecular-weight proteins in the fraction. LMWF did not present cytotoxicity in all concentrations and time tested by MTT assay. Neuroprotection was evaluated in cells pretreated with LMWF for 4 h prior to the addition of 50 μM H 2 O 2 for 20 h. We demonstrated that LMWF reduced the argininosuccinate synthase (AsS) and superoxide dismutase (SOD1) expressions, suggesting that this fraction as an effective neuroprotective compound that could increase the hippocampal cells viability by attenuation of oxidative stress. In addition, LMWF protects against apoptosis induced by H 2 O 2 , reducing the expression of caspase-3 and caspase-8. Overall, this study opens new perspectives for the identification of new molecules for the development of drugs applied to the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. C-Abl Inhibition; A Novel Therapeutic Target for Parkinson's Disease.

    PubMed

    Abushouk, Abdelrahman Ibrahim; Negida, Ahmed; Elshenawy, Rasha Abdelsalam; Zein, Hossam; Hammad, Ali M; Menshawy, Ahmed; Mohamed, Wael M Y

    2018-04-26

    Parkinson's disease (PD) is the most prevalent movement disorder in the world. The major pathological hallmarks of PD are death of dopaminergic neurons and the formation of Lewy bodies. At the moment, there is no cure for PD; current treatments are symptomatic. Investigators are searching for neuroprotective agents and disease modifying strategies to slow the progress of neurodegeneration. However, due to lack of data about the main pathological sequence of PD, many drug targets failed to provide neuroprotective effects in human trials. Recent evidence suggests the involvement of C-Abelson (c-Abl) tyrosine kinase enzyme in the pathogenesis of PD. Through parkin inactivation, alpha synuclein aggregation, and impaired autophagy of toxic elements. Experimental studies showed that (1) c-Abl activation is involved in neurodegeneration and (2) c-Abl inhibition shows neuroprotective effects and prevents dopaminergic neuronal' death. Current evidence from experimental studies and the first in-human trial shows that c-Abl inhibition holds the promise for neuroprotection against PD and therefore, justifies the movement towards larger clinical trials. In this review article, we discussed the role of c-Abl in PD pathogenesis and the findings of preclinical experiments and the first in-human trial. In addition, based on lessons from the last decade and current preclinical evidence, we provide recommendations for future research in this area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Licorice Pretreatment Protects Against Brain Damage Induced by Middle Cerebral Artery Occlusion in Mice.

    PubMed

    Lim, Chiyeon; Lim, Sehyun; Lee, Byoungho; Kim, Buyeo; Cho, Suin

    2018-05-01

    Licorice is extracted from the roots of plants in the Glycyrrhiza genus, especially Glycyrrhiza uralensis in China and Korea. It has several pharmacological activities, including neuro-protective, anti-fungal, and anti-cariogenic effects. Ischemia/reperfusion-induced brain injury is a leading cause of adult disability and death; thus, the identification of anti-apoptotic, neuro-protective therapeutic agents is viewed as an attractive drug development strategy. Infarct volumes and the expression of several apoptosis-related proteins, including Bcl-xL, Bcl-2, caspase-8, and caspase-9, were evaluated by western blotting in the brains of mice subjected to middle cerebral artery occlusion (MCAO). Three consecutive days of oral pretreatment with the methanol extract of licorice (GRex) significantly reduced infarct volumes 24 h after MCAO. In addition, GRex effectively inhibited the activation of caspase-9 by upregulating protein expression of Bcl-xL and Bcl-2. The neuro-protective effect of licorice was due to its regulation of apoptosis-related proteins. These data suggest that licorice could be a potential candidate for the treatment of ischemia-induced brain damage.

  2. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect.

    PubMed

    Ansari, Niloufar; Khodagholi, Fariba

    2013-07-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca2+ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.

  3. Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.

    PubMed

    Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A

    2011-12-16

    Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration.

    PubMed

    Sleiman, Sama F; Langley, Brett C; Basso, Manuela; Berlin, Jill; Xia, Li; Payappilly, Jimmy B; Kharel, Madan K; Guo, Hengchang; Marsh, J Lawrence; Thompson, Leslie Michels; Mahishi, Lata; Ahuja, Preeti; MacLellan, W Robb; Geschwind, Daniel H; Coppola, Giovanni; Rohr, Jürgen; Ratan, Rajiv R

    2011-05-04

    Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.

  5. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning.

    PubMed

    Masson, Patrick; Nachon, Florian

    2017-08-01

    Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  6. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    PubMed

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  7. BDNF levels are increased by aminoindan and rasagiline in a double lesion model of Parkinson׳s disease.

    PubMed

    Ledreux, Aurélie; Boger, Heather A; Hinson, Vanessa K; Cantwell, Kelsey; Granholm, Ann-Charlotte

    2016-01-15

    The anti-Parkinsonian drug rasagiline is a selective, irreversible inhibitor of monoamine oxidase and is used in the treatment of Parkinson׳s disease (PD). Its postulated neuroprotective effects may be attributed to MAO inhibition, or to its propargylamine moiety. The major metabolite of rasagiline, aminoindan, has shown promising neuroprotective properties in vitro but there is a paucity of studies investigating in vivo effects of this compound. Therefore, we examined neuroprotective effects of rasagiline and its metabolite aminoindan in a double lesion model of PD. Male Fisher 344 rats received i.p. injections of the noradrenergic neurotoxin DSP-4 and intra-striatal stereotaxic microinjections of the dopamine neurotoxin 6-OHDA. Saline, rasagiline or aminoindan (3mg/kg/day s.c.) were delivered via Alzet minipumps for 4 weeks. Rats were then tested for spontaneous locomotion and a novel object recognition task. Following behavioral testing, brain tissue was processed for ELISA measurements of growth factors and immunohistochemistry. Double-lesioned rats treated with rasagiline or aminoindan had reduced behavioral deficits, both in motor and cognitive tasks compared to saline-treated double-lesioned rats. BDNF levels were significantly increased in the hippocampus and striatum of the rasagiline- and aminoindan-lesioned groups compared to the saline-treated lesioned group. Double-lesioned rats treated with rasagiline or aminoindan exhibited a sparing in the mitochondrial marker Hsp60, suggesting mitochondrial involvement in neuroprotection. Tyrosine hydroxylase (TH) immunohistochemistry revealed a sparing of TH-immunoreactive terminals in double-lesioned rats treated with rasagiline or aminoindan in the striatum, hippocampus, and substantia nigra. These data provide evidence of neuroprotection by aminoindan and rasagiline via their ability to enhance BDNF levels. Published by Elsevier B.V.

  8. Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2014-08-01

    Cognitive impairment is a major problem, which eventually develops in schizophrenia. It contributes to the patients 'functional disability and cannot be attenuated by antipsychotic drugs. Bacopa monnieri (Brahmi), a neuroprotective herbal medicine in the elderly, might be a novel neuroprotective agent for prevention of cognitive deficit in schizophrenia. To study neuroprotective effects ofBrahmi on novel object recognition task and cerebral glutamate/N-methyl-D- aspartate receptor subtype 1 (NMDAR1) immunodensity in sub-chronic phencyclidine (PCP) rat model ofschizophrenia. Rats were assigned to three groups; Group-A: Control, Group-B: PCP administration and Group- C: Brahmi + PCP. Discrimination ratio (DR) representing cognitive ability was obtainedfrom novel object recognition task. NMDAR1 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields I (CA 1) and 2/3 (CA2/3) and dentate gyrus (DG) using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside NMDAR1 up-regulation in CA2/3 and DG but not in prefrontal cortex, striatum or CA1. Brahmi + PCP group showed an increased DR score up to normal which occurred alongside a significantly decreased NMDARI immunodensity in CA2/3 and DG compared with PCP group. Cognitive deficit observed in rats receiving PCP was mediated by NMDAR1 up-regulation in CA2/3 and DG Interestingly, receiving Brahmi before PCP administration can restore this cognitive deficit by decreasingNMDAR1 in these brain areas. Therefore, Brahmi could be a novel neuroprotective agentfor the prevention ofcognitive deficit in schizophrenia.

  9. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    PubMed

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This preparation presents a new approach to brain neuroprotection, and has potential for clinical application.

  10. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.

    PubMed

    McClean, Paula L; Hölscher, Christian

    2014-11-01

    Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs.

    PubMed

    Muguruma, Keiko

    2018-02-01

    Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.

  12. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    PubMed

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into the brain. © 2013 International Society for Neurochemistry.

  13. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.

    PubMed

    Zheng, Hailin; Gal, Shunit; Weiner, Lev M; Bar-Am, Orit; Warshawsky, Abraham; Fridkin, Mati; Youdim, Moussa B H

    2005-10-01

    Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.

  14. Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson's disease.

    PubMed

    Sadeghian, Mona; Mullali, Gizem; Pocock, Jennifer M; Piers, Thomas; Roach, Arthur; Smith, Kenneth J

    2016-08-01

    Current therapies in Parkinson's disease mainly treat symptoms rather than provide effective neuroprotection. We examined the effects of safinamide (monoamine oxidase B and sodium channel blocker) on microglial activation and the degeneration of dopaminergic neurons in a rat model of PD in vivo, and on microglia in vitro. Rats received unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle on day 0: The contralateral side served as control. Safinamide or vehicle was delivered from days 0 or 1, for 7 days, via sub-cutaneous mini-pumps. In vehicle-treated rats 6-hydroxydopamine caused a significant increase in the number of activated MHC-II(+) microglia compared with the contralateral side, and only 50% of the dopaminergic neurons survived in the ipsilateral SNc. In contrast, rats treated daily with safinamide 50 and 150 mg/ml (on day 0 or 1) exhibited a significantly reduced number of activated microglia (55% reduction at 150 mg/ml) and a significant protection of dopaminergic neurons (80% of neurons survived) (P < 0.001) compared with vehicle-treated controls. Rasagiline, a monoamine oxidase B inhibitor, and lamotrigine, a sodium channel blocking drug, also protected dopaminergic neurons, indicating that safinamide may act by either or both mechanisms. Safinamide also reduced the activation of microglial cells in response to lipopolysaccharide exposure in vitro. Safinamide therapy suppresses microglial activation and protects dopaminergic neurons from degeneration in the 6-hydroxydopamine model of PD, suggesting that the drug not only treats symptoms but also provides neuroprotection. © 2015 British Neuropathological Society.

  15. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity

    NASA Astrophysics Data System (ADS)

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-07-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain.

  16. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease.

    PubMed

    Weinreb, Orly; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H

    2016-07-01

    Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid β peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid β peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2015 The British Pharmacological Society.

  17. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease.

    PubMed

    Liu, WeiZhen; Li, Yanwei; Jalewa, Jaishree; Saunders-Wood, Taylor; Li, Lin; Hölscher, Christian

    2015-10-15

    Oxyntomodulin is a hormone and a growth factor. It activates two receptors, the Glucagon-like peptide 1 (GLP-1) and the glucagon receptor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first positive results. D-Ser2-oxyntomodulin (Oxy) is a protease resistant oxyntomodulin analogue that has been developed to treat diabetes. Here we demonstrate for the first time that such analogues have neuroprotective effects. The drug showed protective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected daily (20 mg/kg i.p.) for 7 days, and Oxy injected once-daily for 14 days i.p. Oxy treatment prevented or reversed the MPTP- induced motor impairment (Rotarod, spontaneous locomotion, swim activity, muscle strength test), the MPTP-induced reduction in Tyrosine Hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, the reduction of the synaptic marker synapstophysin, the inactivation of the growth factor kinase Akt/PKB and of the anti-apoptotic signaling molecule Bcl-2, and the increase of levels of the pro-inflammatory cytokine TNF-α. The results demonstrate that oxyntomodulin analogues show promise as a novel treatment of PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Binge ethanol exposure increases the Krüppel-like factor 11-monoamine oxidase (MAO) pathway in rats: Examining the use of MAO inhibitors to prevent ethanol-induced brain injury

    PubMed Central

    Duncan, Jeremy W.; Zhang, Xiao; Wang, Niping; Johnson, Shakevia; Harris, Sharonda; Udemgba, Chinelo; Ou, Xiao-Ming; Youdim, Moussa B.; Stockmeier, Craig A.; Wang, Jun Ming

    2016-01-01

    Binge drinking induces several neurotoxic consequences including oxidative stress and neurodegeneration. Because of these effects, drugs which prevent ethanol-induced damage to the brain may be clinically beneficial. In this study, we investigated the ethanol-mediated KLF11-MAO cell death cascade in the frontal cortex of Sprague–Dawley rats exposed to a modified Majchowicz 4-day binge ethanol model and control rats. Moreover, MAO inhibitors (MAOIs) were investigated for neuroprotective activity against binge ethanol. Binge ethanol-treated rats demonstrated a significant increase in KLF11, both MAO isoforms, protein oxidation and caspase-3, as well as a reduction in BDNF expression in the frontal cortex compared to control rats. MAOIs prevented these binge ethanol-induced changes, suggesting a neuroprotective benefit. Neither binge ethanol nor MAOI treatment significantly affected protein expression levels of the oxidative stress enzymes, SOD2 or catalase. Furthermore, ethanol-induced antinociception was enhanced following exposure to the 4-day ethanol binge. These results demonstrate that the KLF11-MAO pathway is activated by binge ethanol exposure and MAOIs are neuroprotective by preventing the binge ethanol-induced changes associated with this cell death cascade. This study supports KLF11-MAO as a mechanism of ethanol-induced neurotoxicity and cell death that could be targeted with MAOI drug therapy to alleviate alcohol-related brain injury. Further examination of MAOIs to reduce alcohol use disorder-related brain injury could provide pivotal insight to future pharmacotherapeutic opportunities. PMID:26805422

  19. [The original novel nootropic and neuroprotective agent noopept].

    PubMed

    Ostrovskaia, R U; Gudasheva, T A; Voronina, T A; Seredenin, S B

    2002-01-01

    The paper describes pharmacological properties of the new nootropic drug noopept created using an original approach based on the imitation of a nonpeptide nootrope structure by means of the short-peptide design. In particular, the structure of pyracetam was designed using dipeptide nootropes. Experimental investigations of noopept (N-phenylacetyl-L-polyglycine ethyl ester) showed that the new drug exceeds pyracetam both with respect to the effective dose level (1000 times lower for noopept than for pyracetam) and in the spectrum of mnemotropic activity. In contrast to pyracetam facilitating only the early stages of the memory process, noopept positively influences the memory consolidation and retrieval steps as well. The new drug produces an additional selective anxiolytic action. The pronounced neuroprotective effect of noopept was demonstrated both in vivo (in cases of various forms of brain ischemia) and in vitro (on various neuronal models). The drug action is based on the antioxidant effect, the antiinflammatory action, and the ability to inhibit the neurotoxicity of excess calcium and glutamate, and to improve the blood rheology. It was established for the first time that the activity of noopept is retained both upon parenteral introduction and upon peroral administration, which is a principal advantage of this proline-containing dipeptide over other, more complex peptides. This property provided a basis for the development of a medicinal form of noopept for peroral usage. At present, noopept tablets (noopept 5 and 10 mg) are under clinical assessment as a means of treating cognitive deficiency of cerebrovascular and post-traumatic origin.

  20. Drug distribution in man: a positron emission tomography study after oral administration of the labelled neuroprotective drug vinpocetine.

    PubMed

    Gulyás, Balázs; Halldin, Christer; Sóvágó, Judit; Sandell, Johan; Cselényi, Zsolt; Vas, Adám; Kiss, Béla; Kárpáti, Egon; Farde, Lars

    2002-08-01

    Direct information on the distribution of a drug requires measurements in various tissues. Such data have until now been obtained in animals, or have indirectly been calculated from plasma measurements in humans using mathematical models. Here we suggest the use of positron emission tomography (PET) as a method to obtain direct measurements of drug distribution in the human body. The distribution in body and brain of vinpocetine, a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases, was followed after oral administration. Vinpocetine was labelled with carbon-11 and radioactivity was measured by PET in stomach, liver, brain and kidney in six healthy volunteers. The radioactivity in blood and urine as well as the fractions of [(11)C]vinpocetine and labelled metabolites in plasma were also determined. After oral administration, [(11)C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the administration of the labelled drug. Brain distribution was heterogeneous, similar to the distribution previously reported after intravenous administration. These findings indicate that vinpocetine, administered orally in humans, readily enters the bloodstream from the stomach and gastrointestinal tract and, consequently, passes the blood-brain barrier and enters the brain. Radioactivity from [(11)C]vinpocetine was also demonstrated in the kidneys and in urine, indicating that at least a part of the radioactive drug and labelled metabolites is eliminated from the body through the kidneys. This study is the first to demonstrate that PET might be a useful, direct and non-invasive tool to study the distribution and pharmacokinetics of orally administered labelled CNS drugs in the living human body.

  1. [Neuroprotective properties of pyroglutamic acid in combination with pyrrolidone].

    PubMed

    Lun'shina, E V; Gan'shina, T S; Makarova, L M; Pogorelyĭ, V E; Mirzoian, R S

    2003-01-01

    A new drug composition containing pyroglutamic acid and pyrrolidone produces a significant effect on the cerebral circulation in rats with global recurrent brain ischemia and in a model ischemic state under high radial gravitational overload. In the former case, the new drug increases the blood circulation in rats with the global ischemic damage to a greater extent than in the intact control group. Pretreatment with the pyroglutamic acid--pyrrolidone composition produced a 2-2.5-fold increase in the survival of rats in the ischemic state caused by the radial gravitational overload. The data obtained show evidence of a substantial neuroprotector action of the new drug composition.

  2. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases.

    PubMed

    Tarozzi, Andrea; Angeloni, Cristina; Malaguti, Marco; Morroni, Fabiana; Hrelia, Silvana; Hrelia, Patrizia

    2013-01-01

    A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer's disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration.

  3. Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases

    PubMed Central

    Tarozzi, Andrea; Angeloni, Cristina; Malaguti, Marco; Morroni, Fabiana; Hrelia, Silvana; Hrelia, Patrizia

    2013-01-01

    A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer's disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration. PMID:23983898

  4. Multitarget-Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H3 R Antagonism for Neurodegenerative Diseases.

    PubMed

    Bautista-Aguilera, Óscar M; Hagenow, Stefanie; Palomino-Antolin, Alejandra; Farré-Alins, Víctor; Ismaili, Lhassane; Joffrin, Pierre-Louis; Jimeno, María L; Soukup, Ondřej; Janočková, Jana; Kalinowsky, Lena; Proschak, Ewgenij; Iriepa, Isabel; Moraleda, Ignacio; Schwed, Johannes S; Romero Martínez, Alejandro; López-Muñoz, Francisco; Chioua, Mourad; Egea, Javier; Ramsay, Rona R; Marco-Contelles, José; Stark, Holger

    2017-10-02

    The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H 3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg -1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Voltage-gated K+ channel modulators as neuroprotective agents.

    PubMed

    Leung, Yuk-Man

    2010-05-22

    A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.

  6. Targeted Riluzole Delivery by Antioxidant Nanovectors for Treating Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    8. Special Reporting Requirements…………………………………… 6 9. Appendices/Quadchart…………………………………………… n /a 1 1. Introduction: Amyotrophic lateral... acetyltransferase ) and quantified image analysis. These studies are ongoing, but should be complete by the middle of January, 2015. What opportunities

  7. Targeted Riluzole Delivery by Antioxidant Nanovectors for Treating Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2013-10-01

    treating amyotrophic lateral sclerosis . PRINCIPAL INVESTIGATOR: Raymond J. Grill CONTRACTING ORGANIZATION: University of Texas Health...treating Amyotrophic lateral sclerosis 5a. CONTRACT NUMBER W 5b. GRANT NUMBER W81XWH-12-1-0612 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...survival in a mouse model of amyotrophic lateral sclerosis . This project involves work performed at both UT-Health and Rice University; combining the

  8. Targeted Riluzole Delivery by Antioxidant Nanovectors for Treating Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-06-01

    neuronal marker ( choline acetyltransferase) and quantified image analysis. Motoneurons were counted in the anterior horn region of the lumbar spinal...cord (both sides , then averaged). We do not detect a statistical difference in surviving motoneurons between PEG-HCC and vehicle-treated subjects...beyond this particular funding mechanism in order to better develop PEG-HCCs as a novel and effective treatment for ALS. What was the impact on other

  9. [The effectiveness of endonasal electrophoresis of neuroprotective agents used in the rehabilitative treatment of the patients presenting with primary open angle glaucoma].

    PubMed

    Nazarova, G A; Konchugova, T V; Iurova, O V; Sichinava, N V; Turova, E A; Rassulova, M A; Morozova, N E

    2013-01-01

    The objective of the present study was to estimate the effectiveness of the peptide drug cortexin used to treat primary open angle glaucoma. It was shown that endonasal electrophoresis of cortexin resulted in more pronounced positive changes in the dynamics of clinical, functional, perimetric, and electrophysiological characteristics compared with intramuscular administration of the same drug to the patients of the control group. This difference was apparent both immediately after the termination of the treatment and during the long-term follow-up.

  10. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.

    PubMed

    Mykicki, Nadine; Herrmann, Alexander M; Schwab, Nicholas; Deenen, René; Sparwasser, Tim; Limmer, Andreas; Wachsmuth, Lydia; Klotz, Luisa; Köhrer, Karl; Faber, Cornelius; Wiendl, Heinz; Luger, Thomas A; Meuth, Sven G; Loser, Karin

    2016-10-26

    In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (T H 1) and T H 17 cells cause demyelination and neuronal degeneration. Regulatory T cells (T reg ) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, T reg function is impaired. We show that a recently approved drug, Nle 4 -d-Phe 7 -α-melanocyte-stimulating hormone (NDP-MSH), induced functional T reg , resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders. Copyright © 2016, American Association for the Advancement of Science.

  11. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems

    PubMed Central

    Herrando-Grabulosa, Mireia; Mulet, Roger; Pujol, Albert; Mas, José Manuel; Navarro, Xavier; Aloy, Patrick; Coma, Mireia; Casas, Caty

    2016-01-01

    Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis. PMID:26807587

  12. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R

    2009-08-01

    Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.

  13. Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.

    PubMed

    Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon

    2016-07-20

    The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.

  14. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity.

    PubMed

    Luchtman, Dirk; Gollan, René; Ellwardt, Erik; Birkenstock, Jérôme; Robohm, Kerstin; Siffrin, Volker; Zipp, Frauke

    2016-03-01

    In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes. In vivo, direct and acute (1 h) administration of 100 mM Glu to the brainstem resulted in a rapid and significant up-regulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced, but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 h) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, monomethyl fumerate significantly reduced Glu release from pathogenic T-helper 17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity modulating effects. Evidence suggests MS pathogenesis may involve neuronal excitotoxicity, induced by local release of glutamate. However, current MS drugs, including dimethyl fumerate (DMF) and fingolimod (FTY720) are largely anti-inflammatory and not yet fully tested for their neuroprotective potential. Here, we show that the drugs, in particular DMF metabolite monomethyl fumerate (MMF), protect neurons by excitotoxicity modulating effects. Th17, T-helper 17. © 2015 International Society for Neurochemistry.

  15. Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery

    PubMed Central

    Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio

    2016-01-01

    The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149

  16. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide-co-glycolide) Polymeric Matrix Composition.

    PubMed

    Djiokeng Paka, Ghislain; Doggui, Sihem; Zaghmi, Ahlem; Safar, Ramia; Dao, Lé; Reisch, Andreas; Klymchenko, Andrey; Roullin, V Gaëlle; Joubert, Olivier; Ramassamy, Charles

    2016-02-01

    Curcumin, a neuroprotective agent with promising therapeutic approach has poor brain bioavailability. Herein, we demonstrate that curcumin-encapsulated poly(lactide-co-glycolide) (PLGA) 50:50 nanoparticles (NPs-Cur 50:50) are able to prevent the phosphorylation of Akt and Tau proteins in SK-N-SH cells induced by H2O2 and display higher anti-inflammatory and antioxidant activities than free curcumin. PLGA can display various physicochemical and degradation characteristics for controlled drug release applications according to the matrix used. We demonstrate that the release of curcumin entrapped into a PLGA 50:50 matrix (NPs-Cur 50:50) is faster than into PLGA 65:35. We have studied the effects of the PLGA matrix on the expression of some key antioxidant- and neuroprotective-related genes such as APOE, APOJ, TRX, GLRX, and REST. NPs-Cur induced the elevation of GLRX and TRX while decreasing APOJ mRNA levels and had no effect on APOE and REST expressions. In the presence of H2O2, both NPs-Cur matrices are more efficient than free curcumin to prevent the induction of these genes. Higher uptake was found with NPs-Cur 50:50 than NPs-Cur 65:35 or free curcumin. By using PLGA nanoparticles loaded with the fluorescent dye Lumogen Red, we demonstrated that PLGA nanoparticles are indeed taken up by neuronal cells. These data highlight the importance of polymer composition in the therapeutic properties of the nanodrug delivery systems. Our study demonstrated that NPs-Cur enhance the action of curcumin on several pathways implicated in the pathophysiology of Alzheimer's disease (AD). Overall, these results suggest that PLGA nanoparticles are a promising strategy for the brain delivery of drugs for the treatment of AD.

  17. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons.

    PubMed

    Sendrowski, Krzysztof; Sobaniec, Wojciech; Stasiak-Barmuta, Anna; Sobaniec, Piotr; Popko, Janusz

    2015-04-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, in which progressive neuron loss, mainly in the hippocampus, is observed. The critical events in the pathogenesis of AD are associated with accumulation of β-amyloid (Aβ) peptides in the brain. Deposits of Aβ initiate a neurotoxic "cascade" leading to apoptotic death of neurons. Aim of this study was to assess a putative neuroprotective effects of two nootropic drugs: piracetam (PIR) and levetiracetam (LEV) on Aβ-injured hippocampal neurons in culture. Primary cultures of rat's hippocampal neurons at 7 day in vitro were exposed to Aβ(25-35) in the presence or absence of nootropics in varied concentrations. Flow cytometry with Annexin V/PI staining was used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Aβ(25-35) caused concentration-dependent death of about one third number of hippocampal neurons, mainly through an apoptotic pathway. In drugs-containing cultures, number of neurons injured with 20 μM Aβ(25-35) was about one-third lesser for PIR and almost two-fold lesser for LEV. When 40 μM Aβ(25-35) was used, only LEV exerted beneficial neuroprotective action, while PIR was ineffective. Our results suggest the protective potential of both studied nootropics against Aβ-induced death of cultured hippocampal neurons with more powerful neuroprotective effects of LEV. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases.

    PubMed

    Youdim, Moussa B H; Fridkin, Mati; Zheng, Hailin

    2005-02-01

    Degeneration of nigrostriatal dopamine neurons and cholinergic cortical neurones are the main pathological features of Parkinson's disease (PD) and for the cognitive deficit in dementia of the Alzheimer' type (AD) and in dementia with Lewy bodies (DLB), respectively. Many PD and DLB subjects have dementia and depression resulting from possible degeneration of cholinergic and noradrenergic and serotonergic neurons. On the other hand, AD patients may also develop extrapyramidal features as well as depression. In both PD and AD there is, respectively, accumulation of iron within the melanin containing dopamine neurons of pars compacta and with in the plaques and tangle. It has been suggested that iron accumulation may contribute to the oxidative stress induced apoptosis reported in both diseases. This may result from increased glia hydrogen peroxide producing monoamine oxidase (MAO) activity that can generate of reactive hydroxyl radical formed from interaction of iron and hydrogen peroxide. We have therefore prepared a series of novel bifunctional drugs from the neuroprotective-antiapoptotic antiparkinson monoamine oxidase B inhibitor, rasagiline, by introducing a carbamate cholinesterase (ChE) inhibitory moiety into it. Ladostigil (TV-3326, N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate), has both ChE and MAO-AB inhibitory activity, as potential treatment of AD and DLB or PD subjects with dementia Being a brain selective MAO-AB inhibitor it has limited potentiation of the pressor response to oral tyramine and exhibits antidepressant activity similar to classical non-selective MAO inhibitor antidepressants by increasing brain serotonin and noradrenaline. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats and antagonizes scopolamine-induced inhibition of spatial learning. Ladostigil like MAO-B inhibitor it prevents MPTP Parkinsonism in mice model and retains the in vitro and in vivo neuroprotective activity of rasagiline. Ladostigil, rasagiline and other propargylamines have been demonstrated to have neuroprotective activity in several in vitro and in vivo models, which have been shown be associated with propargylamines moiety, since propargylamines itself possess these properties. The mechanism of neuroprotective activity has been attributed to the ability of propargylamines-inducing the antiapoptotic family proteins Bcl-2 and Bcl-xl, while decreasing Bad and Bax and preventing opening of mitochondrial permeability transition pore. Iron accumulates in brain regions associated with neurodegenerative diseases of PD, AD, amyotrophic lateral sclerosis and Huntington disease. It is thought to be involved in Fenton chemistry oxidative stress observed in these diseases. The neuroprotective activity of propargylamines led us to develop several novel bifunctional iron chelator from our prototype brain permeable iron chelators, VK-28, possessing propargylamine moiety (HLA-20, M30 and M30A) to iron out iron from the brain. These compounds have been shown to have iron chelating and monoamine oxidase A and B selective brain inhibitory and neuroprotective-antiapoptotic actions.

  19. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications.

    PubMed

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  20. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties

    PubMed Central

    Blin, Sandy; Ben Soussia, Ismail; Kim, Eun-Jin; Brau, Frédéric; Kang, Dawon; Lesage, Florian; Bichet, Delphine

    2016-01-01

    The tandem of pore domain in a weak inwardly rectifying K+ channel (Twik)-related acid-arachidonic activated K+ channel (TRAAK) and Twik-related K+ channels (TREK) 1 and TREK2 are active as homodimers gated by stretch, fatty acids, pH, and G protein-coupled receptors. These two-pore domain potassium (K2P) channels are broadly expressed in the nervous system where they control excitability. TREK/TRAAK KO mice display altered phenotypes related to nociception, neuroprotection afforded by polyunsaturated fatty acids, learning and memory, mood control, and sensitivity to general anesthetics. These channels have emerged as promising targets for the development of new classes of anesthetics, analgesics, antidepressants, neuroprotective agents, and drugs against addiction. Here, we show that the TREK1, TREK2, and TRAAK subunits assemble and form active heterodimeric channels with electrophysiological, regulatory, and pharmacological properties different from those of homodimeric channels. Heteromerization occurs between all TREK variants produced by alternative splicing and alternative translation initiation. These results unveil a previously unexpected diversity of K2P channels that will be challenging to analyze in vivo, but which opens new perspectives for the development of clinically relevant drugs. PMID:27035965

  1. Novel therapy in Parkinson's disease: adenosine A(2A) receptor antagonists.

    PubMed

    Szabó, Nikoletta; Kincses, Zsigmond Tamás; Vécsei, László

    2011-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder. To date, most of the currently available therapies in PD target the dopaminergic system and none of these therapeutic approaches have been proven to modify the course of the disease. To various extents, these drugs can also cause motor and non-motor complications. A novel target, the adenosine A(2A) receptor (AA2AR), was recently identified, blockade of which may alleviate Parkinsonian symptoms, reduce motor fluctuations and potentially afford neuroprotection. This review is based on a PubMed search covering the relationship of the adenosine receptors and PD. The role of the AA2AR is reviewed and the results of preclinical investigations of antagonists are assessed. A synopsis of current drug development is provided, with a special focus on the pharmacokinetics and relevant clinical trials. The localization of the AA2AR in the central nervous system, the ultra structural localization and the molecular mechanism of its action reveal the potential importance of the AA2AR in movement disorders. The theoretical background and experimental data indicate that AA2AR antagonists may have a potential therapeutic effect in Parkinson's disease. More importantly, the putative neuroprotective effect needs further investigation.

  2. Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against beta-amyloid toxicity.

    PubMed

    Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Canonico, Pier Luigi; Battaglia, Angelo; Calafiore, Marco; Battaglia, Giuseppe; Bosco, Paolo; Nicoletti, Ferdinando; Copani, Agata; Sortino, Maria Angela

    2005-06-14

    Nicergoline, a drug used for the treatment of Alzheimer's disease and other types of dementia, was tested for its ability to protect neurons against beta-amyloid toxicity. Pure cultures of rat cortical neurons were challenged with a toxic fragment of beta-amyloid peptide (betaAP(25-35)) and toxicity was assessed after 24 h. Micromolar concentrations of nicergoline or its metabolite, MDL, attenuated betaAP(25-35)-induced neuronal death, whereas MMDL (another metabolite of nicergoline), the alpha1-adrenergic receptor antagonist, prazosin, or the serotonin 5HT-2 receptor antagonist, methysergide, were inactive. Nicergoline increased the basal levels of Bcl-2 and reduced the increase in Bax levels induced by beta-amyloid, indicating that the drug inhibits the execution of an apoptotic program in cortical neurons. In mixed cultures of rat cortical cells containing both neurons and astrocytes, nicergoline and MDL were more efficacious than in pure neuronal cultures in reducing beta-amyloid neurotoxicity. Experiments carried out in pure cultures of astrocytes showed that a component of neuroprotection was mediated by a mechanism of glial-neuronal interaction. The conditioned medium of cultured astrocytes treated with nicergoline or MDL for 72-96 h (collected 24 h after drug withdrawal) was neuroprotective when transferred to pure neuronal cultures challenged with beta-amyloid. In cultured astrocytes, nicergoline increased the intracellular levels of transforming-growth factor-beta and glial-derived neurotrophic factor, two trophic factors that are known to protect neurons against beta-amyloid toxicity. These results raise the possibility that nicergoline reduces neurodegeneration in the Alzheimer's brain.

  3. Bile Acids in Neurodegenerative Disorders

    PubMed Central

    Ackerman, Hayley D.; Gerhard, Glenn S.

    2016-01-01

    Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting. PMID:27920719

  4. Perspectives of drug-based neuroprotection targeting mitochondria.

    PubMed

    Procaccio, V; Bris, C; Chao de la Barca, J M; Oca, F; Chevrollier, A; Amati-Bonneau, P; Bonneau, D; Reynier, P

    2014-05-01

    Mitochondrial dysfunction has been reported in most neurodegenerative diseases. These anomalies include bioenergetic defect, respiratory chain-induced oxidative stress, defects of mitochondrial dynamics, increase sensitivity to apoptosis, and accumulation of damaged mitochondria with instable mitochondrial DNA. Significant progress has been made in our understanding of the pathophysiology of inherited mitochondrial disorders but most have no effective therapies. The development of new metabolic treatments will be useful not only for rare mitochondrial disorders but also for the wide spectrum of common age-related neurodegenerative diseases shown to be associated with mitochondrial dysfunction. A better understanding of the mitochondrial regulating pathways raised several promising perspectives of neuroprotection. This review focuses on the pharmacological approaches to modulate mitochondrial biogenesis, the removal of damaged mitochondria through mitophagy, scavenging free radicals and also dietary measures such as ketogenic diet. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF.

    PubMed

    Ji, Chenhui; Xue, Guo-Fang; Lijun, Cao; Feng, Peng; Li, Dongfang; Li, Lin; Li, Guanglai; Hölscher, Christian

    2016-03-01

    The incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are growth factors with neuroprotective properties. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal models of Parkinson's and Alzheimer's disease. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed and are tested in diabetic patients. Here we demonstrate the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20 mg/kg i.p.) for 7 days, and the dual agonist was injected 30 min later i.p. (50 nmol/kg bw). The PI3k inhibitor LY294002 (0.6 mg/kg i.v.) was co-injected in one group. DA-JC1 reduced or reversed most of the MPTP induced motor impairments in the rotarod and in a muscle strength test. The number of tyrosine hydroxylase (TH) positive neurons in the substantia nigra (SN) was reduced by MPTP and increased by DA-JC1. The ratio of anti-inflammatory Bcl-2 to pro-inflammatory BAX as well as the activation of the growth factor kinase Akt was reduced by MPTP and reversed by DA-JC1. The PI3k inhibitor had only limited effect on the DA-JC1 drug effect. Importantly, levels of the neuroprotective brain derived neurotropic factor (BDNF) were reduced by MPTP and enhanced by DA-JC1. The results demonstrate that DA-JC1 shows promise as a novel treatment for PD. Copyright © 2016. Published by Elsevier B.V.

  6. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    PubMed Central

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  7. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  8. Effect of a kynurenic acid analog on home-cage activity and body temperature in rats.

    PubMed

    Kassai, Ferenc; Kedves, Rita; Gyertyán, István; Tuka, Bernadett; Fülöp, Ferenc; Toldi, József; Lendvai, Balázs; Vécsei, László

    2015-12-01

    N-(2-N,N-Dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (SzR-72) is a kynurenic acid (KYNA) amide analog that displays neuroprotective action. Whereas its brain penetration ability and its solubility limit the therapeutic use of KYNA: the corresponding properties of the analog exceed those of the parent compound. Although SzR-72 has been extensively studied, its exact mechanism of action has not yet been fully clarified. As KYNA induces hypothermia in laboratory rodents, it may be hypothesized that SzR-72 may have a similar effect. This would be of major importance, since the hypothermia generated by external cooling is neuroprotective, thus a putative hypothermic effect of SzR-72 could contribute to its neuroprotective action. The effects of SzR-72 on the body temperature and home-cage activity of rats were studied by using a telemetry system. In order to follow the longitudinal changes in the effects of the compound, subchronic drug administration was applied. The initial administration of the compound induced substantial hypothermia and reduced the home-cage activity. During the 5 days of SzR-72 administration, partial tolerance developed to the hypothermic effect, while the inhibition of home-cage activity detected after the acute administration was completely tolerated. On the basis of these results, it cannot be excluded that the hypothermic effect of SzR-72 contributes to its neuroprotective action. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson's disease: a systematic experiment literatures review.

    PubMed

    Wang, Xin-Shi; Zhang, Zeng-Rui; Zhang, Man-Man; Sun, Miao-Xuan; Wang, Wen-Wen; Xie, Cheng-Long

    2017-08-17

    Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Meanwhile, the neuroprotective actions of curcumin have been documented for experimental therapy in Parkinson's disease (PD). In this study, we used a systematic review to comprehensively assess the efficacy of curcumin in experimental PD. Using electronic and manual search for the literatures, we identified studies describing the efficacy of curcumin in animal models of PD. We identified 13 studies with a total of 298 animals describing the efficacy of curcumin in animal models of PD. The methodological quality of all preclinical trials is ranged from 2 to 5. The majority of the experiment studies demonstrated that curcumin was more significantly neuroprotection effective than control groups for treating PD. Among them, five studies indicated that curcumin had an anti-inflammatory effect in the PD animal models (p < 0.05). Meanwhile, four studies showed the antioxidant capability of curcumin, by which it protected substantia nigra neurons and improved striatal dopamine levels. Furthermore, two studies in this review displayed that curcumin treatment was also effective in reducing neuronal apoptosis and improving functional outcome in animal models of PD. Most of the preclinical studies demonstrated the positive findings while one study reported that curcumin had no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis. The results demonstrated a marked efficacy of curcumin in experimental model of PD, suggesting curcumin probably a candidate neuroprotective drug for human PD patients.

  10. A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results.

    PubMed

    Saccà, Francesco; Quarantelli, Mario; Rinaldi, Carlo; Tucci, Tecla; Piro, Raffaele; Perrotta, Gaetano; Carotenuto, Barbara; Marsili, Angela; Palma, Vincenzo; De Michele, Giuseppe; Brunetti, Arturo; Brescia Morra, Vincenzo; Filla, Alessandro; Salvatore, Marco

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease with motor neuron degeneration. Riluzole is the only available treatment. Two-thirds of ALS patients present with growth hormone (GH) deficiency. The aim of this study is to determine if add-on of GH to riluzole, with an individually regulated dose based on Insulin-like growth factor 1 (IGF-I) production, was able to reduce neuronal loss in the motor cortex, reduce mortality, and improve motor function of ALS patients. Patients with definite/probable ALS, in treatment with riluzole, aged 40-85 years, and with disease duration ≤3 years were enrolled. The study was randomized, placebo controlled, and double blind. Before treatment, patients were tested with a GH releasing hormone (GHRH) + arginine test. The initial dose of GH was 2 IU s.c. every other day, and was progressively increased to a maximum of 8 IU. Primary endpoint was N-acetylaspartate/(creatine + choline) (NAA/Cre + Cho) ratio in motor cortex assessed by magnetic resonance spectroscopy performed at months 0, 6, and 12. Secondary endpoints were mortality and ALS functional rating scale revised (ALSFRS-R). The NAA/(Cre + Cho) ratio decreased in all patients who completed the trial. No significant difference was noted between treated and placebo group. At baseline, although IGF-I levels were within the normal range, 73% of patients had GH deficiency, being severe in half of them. Compared with bulbar onset, spinal-onset patients showed more depressed GH response to the GHRH + arginine stimulation test (10.4 ± 7.0 versus 15.5 ± 8.1 ng/mL; p < 0.05). Insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)] increased from 2.1 ± 1.0 at baseline to 4.6 ± 1.9 at 12 months (p < 0.001). Insulin-like growth factor (IGF) binding protein 3 (IGFBP-3) decreased from 8,435 ± 4,477 ng/mL at baseline to 3,250 ± 1,780 ng/mL at 12 months (p < 0.001). The results show that GH exerted no effect on cerebral NAA or clinical progression assessed by ALSFRS-R. Two-thirds of ALS patients had GH deficit, with higher levels in the bulbar-onset group. During follow-up, patients showed progressive increase in HOMA-IR and decrease in IGFBP-3 levels.

  11. Monitoring and Counteracting Functional Deterioration in Parkinson’s Disease: A Multilevel Integrative Approach in a Primate Model System

    DTIC Science & Technology

    2006-09-01

    PD like symptoms (Colisimo et al., 1992; Fukuda, 2001). The effects of Riluzole (anti-excitotoxic) treatment, epigallocatechin -3- gallate ( EGCG ...the dose response study (-)- Epigallocatechin 3-O- gallate ( EGCG ; Teavigo®) was kindly provided bij DSM, Switserland. The anti-excitotoxic compound...2003). " Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse." Toxicol Sci 76(2): 262-70. Heikkila RE, Cohen G

  12. Nationwide incidence of motor neuron disease using the French health insurance information system database.

    PubMed

    Kab, Sofiane; Moisan, Frédéric; Preux, Pierre-Marie; Marin, Benoît; Elbaz, Alexis

    2017-08-01

    There are no estimates of the nationwide incidence of motor neuron disease (MND) in France. We used the French health insurance information system to identify incident MND cases (2012-2014), and compared incidence figures to those from three external sources. We identified incident MND cases (2012-2014) based on three data sources (riluzole claims, hospitalisation records, long-term chronic disease benefits), and computed MND incidence by age, gender, and geographic region. We used French mortality statistics, Limousin ALS registry data, and previous European studies based on administrative databases to perform external comparisons. We identified 6553 MND incident cases. After standardisation to the United States 2010 population, the age/gender-standardised incidence was 2.72/100,000 person-years (males, 3.37; females, 2.17; male:female ratio = 1.53, 95% CI1.46-1.61). There was no major spatial difference in MND distribution. Our data were in agreement with the French death database (standardised mortality ratio = 1.01, 95% CI = 0.96-1.06) and Limousin ALS registry (standardised incidence ratio = 0.92, 95% CI = 0.72-1.15). Incidence estimates were in the same range as those from previous studies. We report French nationwide incidence estimates of MND. Administrative databases including hospital discharge data and riluzole claims offer an interesting approach to identify large population-based samples of patients with MND for epidemiologic studies and surveillance.

  13. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    PubMed

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metformin: an old but still the best treatment for type 2 diabetes

    PubMed Central

    2013-01-01

    The management of T2DM requires aggressive treatment to achieve glycemic and cardiovascular risk factor goals. In this setting, metformin, an old and widely accepted first line agent, stands out not only for its antihyperglycemic properties but also for its effects beyond glycemic control such as improvements in endothelial dysfunction, hemostasis and oxidative stress, insulin resistance, lipid profiles, and fat redistribution. These properties may have contributed to the decrease of adverse cardiovascular outcomes otherwise not attributable to metformin’s mere antihyperglycemic effects. Several other classes of oral antidiabetic agents have been recently launched, introducing the need to evaluate the role of metformin as initial therapy and in combination with these newer drugs. There is increasing evidence from in vivo and in vitro studies supporting its anti-proliferative role in cancer and possibly a neuroprotective effect. Metformin’s negligible risk of hypoglycemia in monotherapy and few drug interactions of clinical relevance give this drug a high safety profile. The tolerability of metformin may be improved by using an appropiate dose titration, starting with low doses, so that side-effects can be minimized or by switching to an extended release form. We reviewed the role of metformin in the treatment of patients with type 2 diabetes and describe the additional benefits beyond its glycemic effect. We also discuss its potential role for a variety of insulin resistant and pre-diabetic states, obesity, metabolic abnormalities associated with HIV disease, gestational diabetes, cancer, and neuroprotection. PMID:23415113

  15. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders

    PubMed Central

    Teruo, Hayashi; Shang-Yi, Tsai; Tomohisa, Mori; Michiko, Fujimoto; Tsung-Ping, Su

    2011-01-01

    Introduction Current conventional therapeutic drugs for the treatment of psychiatric or neurodegenerative disorders have certain limitations of use. Psychotherapeutic drugs such as typical and atypical antipsychotics, tricyclic antidepressants, and selective monoamine reuptake inhibitors, aim to normalize the hyper- or hypo-neurotransmission of monoaminergic systems. Despite their great contribution to the outcomes of psychiatric patients, these agents often exert severe side effects and require chronic treatments to promote amelioration of symptoms. Furthermore, drugs available for the treatment of neurodegenerative disorders are severely limited. Areas covered This review discusses recent evidence that has shed light on sigma-1 receptor ligands, which may serve as a new class of antidepressants or neuroprotective agents. Sigma-1 receptors are novel ligand-operated molecular chaperones regulating a variety of signal transduction, ER stress, cellular redox, cellular survival, and synaptogenesis. Selective sigma-1 receptor ligands exert rapid antidepressant-like, anxiolytic, antinociceptive and robust neuroprotective actions in preclinical studies. The review also looks at recent studies which suggest that reactive oxygen species might play a crucial role as signal integrators at the downstream of Sig-1Rs Expert opinion The significant advances in sigma receptor research in the last decade have begun to elucidate the intracellular signal cascades upstream and downstream of sigma-1 receptors. The novel ligand-operated properties of the sigma-1 receptor chaperone may enable a variety of interventions by which stress-related cellular systems are pharmacologically controlled. PMID:21375464

  16. Structure-activity relationship study of vitamin k derivatives yields highly potent neuroprotective agents.

    PubMed

    Josey, Benjamin J; Inks, Elizabeth S; Wen, Xuejun; Chou, C James

    2013-02-14

    Historically known for its role in blood coagulation and bone formation, vitamin K (VK) has begun to emerge as an important nutrient for brain function. While VK involvement in the brain has not been fully explored, it is well-known that oxidative stress plays a critical role in neurodegenerative diseases. It was recently reported that VK protects neurons and oligodendrocytes from oxidative injury and rescues Drosophila from mitochondrial defects associated with Parkinson's disease. In this study, we take a chemical approach to define the optimal and minimum pharmacophore responsible for the neuroprotective effects of VK. In doing so, we have developed a series of potent VK analogues with favorable drug characteristics that provide full protection at nanomolar concentrations in a well-defined model of neuronal oxidative stress. Additionally, we have characterized key cellular responses and biomarkers consistent with the compounds' ability to rescue cells from oxidative stress induced cell death.

  17. AC-186, a Selective Nonsteroidal Estrogen Receptor β Agonist, Shows Gender Specific Neuroprotection in a Parkinson’s Disease Rat Model

    PubMed Central

    2013-01-01

    Drugs that selectively activate estrogen receptor β (ERβ) are potentially safer than the nonselective estrogens currently used in hormonal replacement treatments that activate both ERβ and ERα. The selective ERβ agonist AC-186 was evaluated in a rat model of Parkinson’s disease induced through bilateral 6-hydroxydopamine lesions of the substantia nigra. In this model, AC-186 prevented motor, cognitive, and sensorimotor gating deficits and mitigated the loss of dopamine neurons in the substantia nigra, in males, but not in females. Furthermore, in male rats, 17β-estradiol, which activates ERβ and ERα with equal potency, did not show the same neuroprotective benefits as AC-186. Hence, in addition to a beneficial safety profile for use in both males and females, a selective ERβ agonist has a differentiated pharmacological profile compared to 17β-estradiol in males. PMID:23898966

  18. Neuroprotection of Chrysanthemum indicum Linne against cerebral ischemia/reperfusion injury by anti-inflammatory effect in gerbils

    PubMed Central

    Yoo, Ki-Yeon; Kim, In Hye; Cho, Jeong-Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Kim, Dae Won; Kim, Jong-Dai; Hong, Seongkweon; Won, Moo-Ho; Kang, Il Jun

    2016-01-01

    In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne (CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region (CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach. PMID:27073380

  19. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research.

    PubMed

    Damar, U; Gersner, R; Johnstone, J T; Schachter, S; Rotenberg, A

    2016-06-01

    Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor extracted from Huperzia Serrata, a firmoss, which has been used for various diseases in traditional Chinese medicine for fever and inflammation. More recently, it has been used in Alzheimer's disease and other forms of dementia with a presumed mechanism of action via central nicotinic and muscarinic receptors. HupA is marketed as a dietary supplement in the U.S. This article reviews newly proposed neuroprotective and anticonvulsant HupA properties based on animal studies. HupA exerts its effects mainly via α7nAChRs and α4β2nAChRs, thereby producing a potent anti-inflammatory response by decreasing IL-1β, TNF-α protein expression, and suppressing transcriptional activation of NF-κB signaling. Thus, it provides protection from excitotoxicity and neuronal death as well as increase in GABAergic transmission associated with anticonvulsant activity.

  20. Modeling Emergence in Neuroprotective Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less

  1. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells.

    PubMed

    Esposito, Giuseppe; De Filippis, Daniele; Carnuccio, Rosa; Izzo, Angelo A; Iuvone, Teresa

    2006-03-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress. The Wnt pathway has multiple actions in the cascade of events triggered by Abeta, and drugs that rescue Wnt activity may be considered as novel therapeutics for AD treatment. Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. However, the molecular mechanism of cannabidiol-induced neuroprotective effect is still unknown. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD. The effect of cannabidiol is mediated through the Wnt/beta-catenin pathway rescue in Abeta-stimulated PC12 cells. These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.

  2. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins.

    PubMed

    Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio

    2015-08-01

    Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.

  3. The Janus Face of VEGF in Stroke

    PubMed Central

    Geiseler, Samuel J.; Morland, Cecilie

    2018-01-01

    The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy. PMID:29734653

  4. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia.

    PubMed

    Choi, Hyun Young; Park, Joon Ha; Chen, Bai Hui; Shin, Bich Na; Lee, Yun Lyul; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Yan, Bing Chun; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Kim, Sung Koo

    2016-09-01

    Lacosamide is a new antiepileptic drug which is widely used to treat partial-onset seizures. In this study, we examined the neuroprotective effect of lacosamide against transient ischemic damage and expressions of antioxidant enzymes such as Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal cornu ammonis 1 (CA1) region following 5 min of transient global cerebral ischemia in gerbils. We found that pre-treatment with 25 mg/kg lacosamide protected CA1 pyramidal neurons from transient global cerebral ischemic insult using hematoxylin-eosin staining and neuronal nuclear antigen immunohistochemistry. Transient ischemia dramatically changed expressions of SOD1, SOD2 and GPX, not CAT, in the CA1 pyramidal neurons. Lacosamide pre-treatment increased expressions of CAT and GPX, not SOD1 and 2, in the CA1 pyramidal neurons compared with controls, and their expressions induced by lacosamide pre-treatment were maintained after transient cerebral ischemia. In brief, pre-treatment with lacosamide protected hippocampal CA1 pyramidal neurons from ischemic damage induced by transient global cerebral ischemia, and the lacosamide-mediated neuroprotection may be closely related to increases of CAT and GPX expressions by lacosamide pre-treatment.

  5. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease

    PubMed Central

    Lauterbach, Edward C.

    2013-01-01

    Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium), histone acetylation (lithium, valproate, lamotrigine), miR-222 (lithium-plus-valproate), mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin), neurogenesis (lithium, valproate, fluoxetine, sertraline), and BDNF (lithium, valproate, sertraline) and downregulated AP-1 DNA binding (lithium), p53 (lithium), huntingtin aggregation (antipsychotics, lithium), and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin). In HD live mouse models, delayed disease onset (nortriptyline, melatonin), striatal preservation (haloperidol, tetrabenazine, lithium, sertraline), memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine), motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine), and extended survival (lithium, valproate, sertraline, melatonin) have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan) and downregulated histone deacetylase (HDAC; valproate) await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3) suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine. PMID:24248060

  6. Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer's Disease

    PubMed Central

    Li, Nan; Wang, Jianping; Ma, Jun; Gu, Zhiqiang; Jiang, Chao; Yu, Lie

    2015-01-01

    Cistanches Herba (CH) is thought to be a “Yang-invigorating” material in traditional Chinese medicine. We evaluated neuroprotective effects of Cistanches Herba on Alzheimer's disease (AD) patients. Moderate AD participants were divided into 3 groups: Cistanches Herba capsule (CH, n = 10), Donepezil tablet (DON, n = 8), and control group without treatment (n = 6). We assessed efficacy by MMSE and ADAS-cog, and investigated the volume changes of hippocampus by 1.5 T MRI scans. Protein, mRNA levels, and secretions of total-tau (T-tau), tumor necrosis factor-α (TNF-α), and interleukin- (IL) 1β (IL-1β) in cerebrospinal fluid (CSF) were detected by Western blot, RT-PCR, and ELISA. The scores showed statistical difference after 48 weeks of treatment compared to control group. Meanwhile, volume changes of hippocampus were slight in drug treatment groups but distinct in control group; the levels of T-tau, TNF-α, and IL-1β were decreased compared to those in control group. Cistanches Herba could improve cognitive and independent living ability of moderate AD patients, slow down volume changes of hippocampus, and reduce the levels of T-tau, TNF-α, and IL-1β. It suggested that Cistanches Herba had potential neuroprotective effects for moderate AD. PMID:26435722

  7. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    PubMed

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  8. Heterocyclic N-Oxides – An Emerging Class of Therapeutic Agents

    PubMed Central

    Mfuh, Adelphe M.; Larionov, Oleg V.

    2016-01-01

    Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764

  9. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest.

    PubMed

    Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2014-03-25

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.

  10. Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer's Disease

    PubMed Central

    Zali, Hakimeh; Zamanian-Azodi, Mona; Rezaei Tavirani, Mostafa; Akbar-zadeh Baghban, Alireza

    2015-01-01

    Different treatment strategies of Alzheimer's disease (AD) are being studied for treating or slowing the progression of AD. Many pharmaceutically important regulation systems operate through proteins as drug targets. Here, we investigate the drug target proteins in beta-amyloid (Aβ) injected rat hippocampus treated with Lavandula angustifolia (LA) by proteomics techniques. The reported study showed that lavender extract (LE) improves the spatial performance in AD animal model by diminishing Aβ production in histopathology of hippocampus, so in this study neuroprotective proteins expressed in Aβ injected rats treated with LE were scrutinized. Rats were divided into three groups including normal, Aβ injected, and Aβ injected that was treated with LE. Protein expression profiles of hippocampus tissue were determined by two-dimensional electrophoresis (2DE) method and dysregulated proteins such as Snca, NF-L, Hspa5, Prdx2, Apoa1, and Atp5a1were identified by MALDI-TOF/TOF. KEGG pathway and gene ontology (GO) categories were used by searching DAVID Bioinformatics Resources. All detected protein spots were used to determine predictedinteractions with other proteins in STRING online database. Different isoforms of important protein, Snca that exhibited neuroprotective effects by anti-apoptotic properties were expressed. NF-L involved in the maintenance of neuronal caliber. Hspa5 likewise Prdx2 displays as anti-apoptotic protein that Prdx2 also involved in the neurotrophic effects. Apoa1 has anti-inflammatory activity and Atp5a1, produces ATP from ADP. To sum up, these proteins as potential drug targets were expressed in hippocampus in response to effective components in LA may have therapeutic properties for the treatment of AD and other neurodegenerative diseases. PMID:25561935

  11. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    PubMed Central

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  12. [The original nootropic and neuroprotective drug noopept potentiates the anticonvulsant activity of valproate in mice].

    PubMed

    Kravchenko, E V; Ponteleeva, I V; Trofimov, S S; Lapa, V I; Ostrovskaia, R U; Voronina, T A

    2009-01-01

    The influence of the original dipeptide drug noopept, known to possess nootrope, neuroprotector, and anxiolytic properties, on the anticonvulsant activity of the antiepileptic drug valproate has been studied on the model of corazole-induced convulsions in mice. Neither a single administration of noopept (0.5 mg/kg, i.p.) nor its repeated introduction in 10 or 35 days enhanced the convulsant effect of corazole, which is evidence that noopept alone does not possess anticonvulsant properties. Prolonged (five weeks) preliminary administration of noopept enhanced the anticonvulsant activity of valproate. This result justifies the joint chronic administration of noopept in combination with valproate in order to potentiate the anticonvulsant effect of the latter drug. In addition, the administration of noopept favorably influences the cognitive functions and suppresses the development of neurodegenerative processes.

  13. Mission Connect Mild TBI Translational Research Consortium

    DTIC Science & Technology

    2010-08-31

    symptoms are known to be associated with the study drug, atorvastatin , and they are listed in the Informed Consent document. In this second year of the...confirm that atorvastatin (see note below) given during the acute phase of MTBI has no adverse effects in patients with MTBI NOTE: Due to an...FDA hold on all human studies involving erythropoietin, the neuroprotective agent for this phase II clinical trial was changed to atorvastatin

  14. The Neuroprotective Benefits of Central Adenosine Receptor Stimulation in a Soman Nerve Agent Rat Model

    DTIC Science & Technology

    2014-04-01

    irreversibly inhibit acetylcholinesterase (AChE), the enzyme responsible for hydrolyzing the neurotransmitter acetylcholine (ACh) in the cholinergic... potential inhibitory compounds and drugs along these lines of neurotransmission perturbations have been investigated (McDonough and Shih 1997; Shih...effects, van Helden et al. (1998) recognized adenosine’s potential as a CWNA countermeasure. In their early study, the A1 adenosine agonist (6

  15. Endocannabinoid signaling in neurotoxicity and neuroprotection.

    PubMed

    Pope, C; Mechoulam, R; Parsons, L

    2010-09-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. Copyright © 2009 Elsevier Inc. All rights reserved.

  16. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    PubMed

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection.

    PubMed

    Joshi, Rayanta P; Negi, Geeta; Kumar, Ashutosh; Pawar, Yogesh B; Munjal, Bhushan; Bansal, Arvind K; Sharma, Shyam S

    2013-08-01

    Curcumin has shown to be effective against various diabetes related complications. However major limitation with curcumin is its low bioavailability. In this study we formulated and characterized self nano emulsifying drug delivery system (SNEDDS) curcumin formulation to enhance its bioavailability and then evaluated its efficacy in experimental diabetic neuropathy. Bioavailability studies were performed in male Sprague Dawley rats. Further to evaluate the efficacy of formulation in diabetic neuropathy various parameters like nerve function and sensorimotor perception were assessed along with study of inflammatory proteins (NF-κB, IKK-β, COX-2, iNOS, TNF-α and IL-6). Nanotechnology based formulation resulted in prolonged plasma exposure and bioavailability. SNEDDS curcumin provided better results against functional, behavioural and biochemical deficits in experimental diabetic neuropathy, when compared with naive curcumin. Further western blot analysis confirmed the greater neuroprotective action of SNEDDS curcumin. SNEDDS curcumin formulation due to higher bioavailability was found to afford enhanced protection in diabetic neuropathy. In this study the authors formulated and characterized a self-emulsifying drug delivery system for formulation to enhance curcumin bioavailability in experimental diabetic neuropathy. Enhanced efficacy was demonstrated in a rat model. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. [Structural endpoints for glaucoma studies].

    PubMed

    Popa-Cherechenau, A; Schmidl, D; Garhöfer, G; Schmetterer, L

    2018-03-06

    Structural endpoints have been discussed as surrogate endpoints for the approval of neuroprotective drugs in glaucoma. Is the evidence strong enough to establish structural endpoints as surrogate endpoints? Review of current understanding between structure and function in glaucoma. The introduction of optical coherence tomography has revolutionized imaging in glaucoma patients. Clinically either the nerve fiber layer thickness can be measured along a circle centered in the optic nerve head or the ganglion cell layer thickness can be assessed in the macular region, the latter being quantified in combination with other inner retinal layers. On a microscopic level there is a strong correlation between structural and functional loss but this relation can only partially be described with currently available clinical methods. This is particularly true for longitudinal course of the disease in glaucoma patients. Novel imaging techniques that are not yet used clinically may have the potential to increase our understanding between structure and function in glaucoma but further research in this field is required. The current evidence does not allow the establishment of structural endpoints as surrogate endpoints for phase 3 studies in glaucoma. Neuroprotective drugs have to be approved on the basis of visual field data because this is the patient-relevant endpoint. Structural endpoints can, however, play an important role in phase 2 and proof of concept studies.

  19. Treatment targets for M2 microglia polarization in ischemic stroke.

    PubMed

    Wang, Ji; Xing, Hongyi; Wan, Lin; Jiang, Xingjun; Wang, Chen; Wu, Yan

    2018-06-05

    As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering.

    PubMed

    Wang, Jing; Tian, Lingling; He, Liumin; Chen, Nuan; Ramakrishna, Seeram; So, Kwok-Fai; Mo, Xiumei

    2018-06-06

    Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.

  1. ROS and brain diseases: the good, the bad, and the ugly.

    PubMed

    Popa-Wagner, Aurel; Mitran, Smaranda; Sivanesan, Senthilkumar; Chang, Edwin; Buga, Ana-Maria

    2013-01-01

    The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid 2-related factor (Nrf2) in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for neuropsychiatric disorders.

  2. ENDOCANNABINOID SIGNALING IN NEUROTOXICITY AND NEUROPROTECTION

    PubMed Central

    Pope, C.; Mechoulam, R.; Parsons, L.

    2010-01-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Δ9 -tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. PMID:19969019

  3. Rasagiline delays retinal degeneration in a mouse model of retinitis pigmentosa via modulation of Bax/Bcl-2 expression.

    PubMed

    Garcia-Delgado, Ana B; Valdés-Sánchez, Lourdes; Calado, Sofia M; Diaz-Corrales, Francisco J; Bhattacharya, Shom S

    2018-05-01

    Retinitis pigmentosa (RP) is an inherited disease characterized by a progressive degeneration of rod photoreceptors. An imbalance between pro- and antiapoptotic factors, such as Bax/Bcl-2, has been involved in retinal degeneration. To date, no cure or effective treatments are available for RP. Rasagiline is an antiparkinsonian drug that has shown neuroprotective effects in part attributed to a modulation of Bax/Bcl-2 expression. In this study, we have evaluated the use of rasagiline as a potential treatment for RP. Newborn rd10 mice, a RP model, were treated with oral rasagiline during 30 days followed by a functional and morphological characterization of their mouse retinas. Treated animals showed a significant improvement in visual acuity and in the electrical responses of photoreceptors to light stimuli. Rasagiline delayed photoreceptor degeneration, which was confirmed not only by a high photoreceptor nuclei counting, but also by a sustained expression of photoreceptor-specific markers. In addition, the expression of proapoptotic Bax decreased, whereas the antiapoptotic factor Bcl-2 increased after rasagiline treatment. This study provides new evidences regarding the neuroprotective effect of rasagiline in the retina, and it brings new insight into the development of future clinical trials using this well-established antiparkinsonian drug to treat RP. © 2017 John Wiley & Sons Ltd.

  4. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice.

    PubMed

    Jia, Tingting; Sun, Zhiguo; Lu, Ying; Gao, Jie; Zou, Hao; Xie, Fangyuan; Zhang, Guoqing; Xu, Hao; Sun, Duxin; Yu, Yuan; Zhong, Yanqiang

    2016-01-01

    Due to the impermeability of the blood-brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood-brain barrier permeability-surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics.

  5. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    PubMed Central

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing. PMID:26881099

  6. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  7. Neuroprotective effect of sevoflurane in general anaesthesia.

    PubMed

    Ramos Ramos, Victoria; Mesa Suárez, Pablo; Santotoribio, José Diego; González García, María Ángela; Muñoz Hoyos, Antonio

    2017-02-23

    The aim of this study was to evaluate the brain damage caused by inhaled sevoflurane, by determining the concentration of serum S100B protein before and after the exposure to this drug as the only anaesthetic agent. Paediatric patients undergoing general anaesthesia for the conduct of a nuclear magnetic resonance were included in the study. A venous blood sample was taken from each patient before (basal sample) and after (post-exposure sample) administering the general anaesthesia. The concentration of serum S100B protein was determined in the basal (S100Bb) and post-exposure sample (S100Bp). A total of 72 patients were included in the study, with a mean patient age of 2 to 13 years (median=6), 28 males and 44 females. S100Bp values (median=66.5ng/L) were significantly lower (P=.0059) than those of S100Bb (median=84.0ng/L). The median of the difference between S100Bp and S100Bb was -11.0ng/L. Inhaled sevoflurane at low doses causes a decrease of serum S100B protein levels, hence, this drug could have a neuroprotective effect in the central nervous system. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  8. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.

    PubMed

    Kumar, Gaurav; Patnaik, Ranjana

    2016-07-01

    N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    PubMed

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  10. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin.

    PubMed

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-03-21

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H(+) through the polymersome membrane was 5.659 × 10(-26) cm(2) s(-1), while that of liposomes was 1.017 × 10(-24) cm(2) s(-1). The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  11. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model.

    PubMed

    Nyakas, Csaba; Felszeghy, Klára; Szabó, Róbert; Keijser, Jan N; Luiten, Paul G M; Szombathelyi, Zsolt; Tihanyi, Károly

    2009-01-01

    Vinpocetine (ethyl-apovincaminate, Cavinton), a synthetic derivative of the Vinca minor alkaloid vincamine, has been used now for decades for prevention and treatment of cerebrovascular diseases predisposing to development of dementia. Both vinpocetine and its main metabolite cis-apovincaminic acid (cAVA) exert a neuroprotective type of action. Bilateral N-methyl-D-aspartate (NMDA)-induced neurodegeneration in the entorhinal cortex of rat was used as a dementia model to confirm the neuroprotective action of these compounds in vivo. NMDA-lesioned rats were treated 60 min before lesion and throughout 3 postoperative days with a 10 mg/kg intraperitoneal dose of vinpocetine or cAVA. Behavioral tests started after termination of drug treatment and consisted of novel object recognition, social discrimination, and spontaneous alternation in a Y-maze, and spatial learning in the Morris water maze. At the end of behavioral testing brains were perfused with fixative and the size of the excitotoxic neuronal lesion and that of microglial activation around the lesion were assayed quantitatively on brain sections immunostained for neuron-specific nuclear protein (NeuN) and integrin CD11b, respectively. Entorhinal NMDA lesions impaired recognition of novel objects and the new social partner, and suppressed spontaneous alternation and spatial learning performance in the Morris maze. Both vinpocetine and cAVA effectively attenuated the behavioral deficits, and significantly decreased lesion size and the region of microglia activation. Both lesion-induced attention deficit and learning disabilities were markedly alleviated by vinpocetine and cAVA. The morphological findings corroborated the behavioral observations and indicated reduced lesion size and microglia activation especially after vinpocetine treatment which supports an in vivo neuroprotective mode of action of vinpocitine and a less potent action of cAVA.

  12. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  13. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease

    PubMed Central

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M.; Wang, Gelin; Williams, Noelle S.; Ready, Joseph M.; McKnight, Steven L.; Pieper, Andrew A.

    2012-01-01

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose–response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP+)-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP+ exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD. PMID:23027934

  14. Morin hydrate mitigates rapid eye movement sleep deprivation-induced neurobehavioural impairments and loss of viable neurons in the hippocampus of mice.

    PubMed

    Olonode, Elizabeth T; Aderibigbe, Adegbuyi O; Adeoluwa, Olusegun A; Eduviere, Anthony T; Ben-Azu, Benneth

    2017-12-25

    Rapid eye movement sleep deprivation distorts the body's homeostasis and results in oxidative breakdown which may be responsible for a variety of neurological disorders. Some naturally occurring compounds of plant origin with antioxidant and neuroprotective properties are known to attenuate the detrimental effects of REM sleep deprivation. Morin hydrate, a flavonoid from Mulberry has demonstrated antioxidant and neuroprotective activities but its effect in sleep disturbed mice is unknown. The study was designed to explore the neuroprotective effect of Morin hydrate on 48 h. REM sleep deprivation-induced behavioural impairments and neuronal damage in mice. Mice were allotted into six treatment groups (n = 6): groups 1 and 2 received vehicle (10 ml/kg normal saline), groups 3-5 received Morin hydrate (5, 10, 20 mg/kg i.p) while group 6 received ginseng (25 mg/kg) which served as the reference drug. Treatment was performed daily for 5 days and animals were sleep-deprived on the last 48 h. Various behavioural tests (Elevated plus maze, Y-maze, locomotor activity) followed by oxidative parameters (malondialdehyde, nitric oxide, reduced glutathione) and histolopathological changes in the Cornu ammonis 1 (CA1) region of the hippocampus were assessed. Data were analysed using ANOVA at α 0.05 . Morin hydrate (5, 10, 20 mg/kg) significantly enhanced memory performance, improves anxiolytic-like behaviour, reverses hyperlocomotion, restored depleted reduced glutathione, attenuated raised malondialdehyde and nitric oxide levels as compared to control animals and protects against loss of hippocampal neurons. Results of this present study suggest that Morin hydrate possess neuroprotective effects against sleep deprivation-induced behavioural impairments, oxidative stress and neuronal damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.

    PubMed

    Pizzi, M; Consolandi, O; Memo, M; Spano, P

    1995-03-14

    Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.

  16. Drug Delivery to the Inner Ear

    PubMed Central

    Wise, Andrew K; Gillespie, Lisa N

    2012-01-01

    Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic. PMID:23186937

  17. Glaucoma: Hot Topics in Pharmacology.

    PubMed

    Balendra, Shiama I; Shah, Parth Arvind; Jain, Mishank; Grzybowski, Andrzej; Cordeiro, Maria F

    2017-01-01

    Glaucoma comprises a group of neurodegenerative diseases resulting in retinal ganglion cell death within the optic nerve head. It is projected to affect almost 80 million people worldwide by 2020. The condition's asymptomatic nature translates to over half of glaucoma sufferers being unaware of their condition. By the time of diagnosis, irreversible blindness is likely to have occurred. Prime areas of glaucoma research therefore include identification and optimization of risk factors for the disease, accurate and early diagnostic tools and novel therapeutic methods. The goal of this review was to summarize main areas of latest glaucoma research into risk factors of glaucoma, diagnostic tools and treatments. PubMed was used to search for terms including glaucoma risk factors, glaucoma diagnostics, glaucoma treatment, glaucoma drug delivery and glaucoma IOP. The evidence for risk factors of low CSF pressure, IOP, smoking, vascular risk factors and light toxicity is described. Latest diagnostic and monitoring techniques for glaucoma include SD-OCT, DARC and IOP telemetry. Current and emerging medical and surgical treatments in glaucoma are discussed. Rho kinase inhibitors have the potential to both lower IOP and also provide neuroprotection, several of which are in clinical trials. Several other new medical treatments such as calcium channel blockers and neurotrophic agents also have the capacity to provide neuroprotection. Minimally Invasive Glaucoma Surgery (MIGS) devices provide an improved safety profile compared to traditional trabeculectomy; the latest ab interno and ab externo devices are described. Novel drug delivery methods, including punctual plugs and contact lenses, help overcome the challenges with patient adherence. The ultimate goals are to reduce the individual patient risk factors associated with glaucoma, diagnose the condition early and to find treatments that not only reduce IOP but also reverse neurodegeneration of RGCs. The usage of combinations of novel medical and surgical treatments may help maximize IOP reduction and neuroprotection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Quercetin in brain diseases: Potential and limits.

    PubMed

    Dajas, Federico; Abin-Carriquiry, Juan Andrés; Arredondo, Florencia; Blasina, Fernanda; Echeverry, Carolina; Martínez, Marcela; Rivera, Felicia; Vaamonde, Lucía

    2015-10-01

    Quercetin is a ubiquitous flavonoid present in beverages, food and plants that has been demonstrated to have a role in the prevention of neurodegenerative and cerebrovascular diseases. In neuronal culture, quercetin increases survival against oxidative insults. Antioxidation appears to be a necessary but not sufficient condition for its neuroprotective action and modulation of intracellular signaling and transcription factors, increasing the expression of antioxidant and pro survival proteins and modulating inflammation, appears as important for neuronal protection. Quercetin also regulates the activity of kinases, changing the phosphorylation state of target molecules, resulting in modulation of cellular function and gene expression. Concentrations of quercetin higher than 100 μM consistently show cytotoxic and apoptotic effects by its autoxidation and generation of toxic quinones. In vivo, results are controversial with some studies showing neuroprotection by quercetin and others not, requiring a drug delivery system or chronic treatments to show neuroprotective effects. The blood and brain bioavailability of free quercetin after ingestion is a complex and controversial process that produces final low concentrations, a fact that has led to suggestions that metabolites would be active by themselves and/or as pro-drugs that would release the active aglycone in the brain. Available studies show that in normal or low oxidative conditions, chronic treatments with quercetin contributes to re-establish the redox regulation of proteins, transcription factors and survival signaling cascades that promote survival. In the presence of highly oxidative conditions such as in an ischemic tissue, quercetin could become pro-oxidant and toxic. At present, evidence points to quercetin as a preventive molecule for neuropathology when administered in natural matrices such as vegetables and food. More research is needed to support its use as a lead compound in its free form in acute treatments, requiring new pharmaceutical formulations and/or structural changes to limit its pro-oxidant and toxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Evolution of the neuroprotection concept].

    PubMed

    Ostrovskaia, R U

    2003-01-01

    Although the modern concept of neuroprotection has been formulated quite recently, the basis of this approach was laid about four decades ago when Zakusov initiated the study of mechanisms involved in the neuroprotector action of GABA shunt metabolites (in particular, alpha-hydroxybutyric acid and succinic semialdehyde) during hypoxia. It was suggested to consider these agents as a system of endogenous neuroprotectors. The interest of Zakusov in endogenous regulators (including oligopeptides) had stimulated research in this direction and gave impact to the investigations of A. P. Skoldinov and T. A. Gudasheva initiated in the early 1980s. Proceeding from the original concept of the possibility of imitation of the action of neurotropic agents by their structural-conformational oligopeptide analogs, a number of biologically active stable dipeptides were obtained, based on pyroglutamate and proline, and high specific bioaccessibility of these dipeptides for the brain was established. Our investigations showed that these compounds not only possess nootropic activity (in a dose 1000 times lower than that of piracetam), but produce a pronounced neuroprotector action as well. Most thoroughly studied in this respect were substituted acyl-prolyl dipeptides, in particular, the drug noopept exhibiting a combined neuroprotector effect both in vitro and in vivo. Noopept decreases the extent of necrotic damage caused by photoinduced thrombosis of cortical blood vessels. It was established that the neuroprotector effect of noopept is related to its action upon the well-known "triad", whereby the drug reduces neurotoxic effects of excess extracellular calcium, glutamate, and free radicals. Two additional components of the neuroprotector action of noopept are related to the antiinflammatory and antithrombotic activity. The prospects of using direct and indirect action upon neurotrophin system for neuroprotection purposes are considered. Taking into account common secondary mechanisms of the neuronal damage, it is possible to provide for pleotrophic brain protection with dipeptides in a broad spectrum of pathological states, including strokes, cerebral traumas, neurodegenerative processes, epilepsy, and schizophrenia.

  20. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole

    2009-02-15

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcriptmore » (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism.« less

  1. Current insights into pathogenesis of Parkinson's disease: Approach to mevalonate pathway and protective role of statins.

    PubMed

    Saeedi Saravi, Seyed Soheil; Saeedi Saravi, Seyed Sobhan; Khoshbin, Katayoun; Dehpour, Ahmad Reza

    2017-06-01

    Although Parkinson's disease (PD) is considered as the second most common life threatening age-related neurodegenerative disorder, but the underlying mechanisms for pathogenesis of PD are remained to be fully found. However, a complex relationship between genetic and environmental predisposing factors are involved in progression of PD. Dopaminergic neuronal cell death caused by mutations and accumulation of α-synuclein in Lewy bodies and neurites was suggested as the main strategy for PD, but current studies have paid attention to the role of mevalonate pathway in incidence of neurodegenerative diseases including PD. The discovery may change the therapeutic protocols from symptomatic treatment by dopamine precursors and agonists to neurodegenerative process halting drugs. Moreover, the downstream metabolites of mevalonate pathway may be used as diagnostic biomarkers for early diagnosis of PD. Statins, as cholesterol lowering drugs, may ameliorate the enzyme complex dysfunction, a key step in the progression of the neurodegenerative disorders, oxidative stress-induced damage and neuro-inflammation. Statins exert the neuroprotective effects on striatal dopaminergic neurons through blocking the mevalonate pathway. In the present review, we have focused on the new approaches to pathogenesis of PD regarding to mevalonate pathway, in addition to the previous understood mechanisms for the disease. It tries to elucidate the novel findings about PD for the development of future diagnostic and therapeutic strategies. Moreover, we explain the controversial role of statins in improvement or progression of PD and the position of these drugs in neuroprotection in PD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Disease Modifying Therapy in Multiple Sclerosis

    PubMed Central

    Williams, U. E.; Oparah, S. K.; Philip-Ephraim, E. E.

    2014-01-01

    Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory demyelination and axonal degeneration. It is the commonest cause of permanent disability in young adults. Environmental and genetic factors have been suggested in its etiology. Currently available disease modifying drugs are only effective in controlling inflammation but not prevention of neurodegeneration or accumulation of disability. Search for an effective neuroprotective therapy is at the forefront of multiple sclerosis research. PMID:27355035

  3. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration

    PubMed Central

    Dong, Yun; Fischer, Roman; Naudé, Petrus J. W.; Maier, Olaf; Nyakas, Csaba; Duffey, Maëlle; Van der Zee, Eddy A.; Dekens, Doortje; Douwenga, Wanda; Herrmann, Andreas; Guenzi, Eric; Kontermann, Roland E.; Pfizenmaier, Klaus; Eisel, Ulrich L. M.

    2016-01-01

    Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases. PMID:27791020

  4. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration.

    PubMed

    Dong, Yun; Fischer, Roman; Naudé, Petrus J W; Maier, Olaf; Nyakas, Csaba; Duffey, Maëlle; Van der Zee, Eddy A; Dekens, Doortje; Douwenga, Wanda; Herrmann, Andreas; Guenzi, Eric; Kontermann, Roland E; Pfizenmaier, Klaus; Eisel, Ulrich L M

    2016-10-25

    Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNF R2 , an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNF R2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.

  5. Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats.

    PubMed

    Cai, Hong-Yan; Wang, Zhao-Jun; Hölscher, Christian; Yuan, Li; Zhang, Jun; Sun, Peng; Li, Jing; Yang, Wei; Wu, Mei-Na; Qi, Jin-Shun

    2017-02-01

    Type 2 diabetes mellitus(T2DM) is a risk factor of Alzheimer's disease (AD), which is most likely linked to impairments of insulin signaling in the brain. Hence, drugs enhancing insulin signaling may have therapeutic potential for AD. Lixisenatide, a novel long-lasting glucagon-like peptide 1 (GLP-1) analogue, facilitates insulin signaling and has neuroprotective properties. We previously reported the protective effects of lixisenatide on memory formation and synaptic plasticity. Here, we describe additional key neuroprotective properties of lixisenatide and its possible molecular and cellular mechanisms against AD-related impairments in rats. The results show that lixisenatide effectively alleviated amyloid β protein (Aβ) 25-35-induced working memory impairment, reversed Aβ25-35-triggered cytotoxicity on hippocampal cell cultures, and prevented against Aβ25-35-induced suppression of the Akt-MEK1/2 signaling pathway. Lixisenatide also reduced the Aβ25-35 acute application induced intracellular calcium overload, which was abolished by U0126, a specific MEK1/2 inhibitor. These results further confirmed the neuroprotective and cytoprotective action of lixisenatide against Aβ-induced impairments, suggesting that the protective effects of lixisenatide may involve the activation of the Akt-MEK1/2 signaling pathway and the regulation of intracellular calcium homeostasis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.

    PubMed

    Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung

    2017-01-01

    Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.

  7. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats

    PubMed Central

    Rakhunde, Purushottam B.; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Objectives: Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. Materials and Methods: We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. Results: The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). Conclusion: These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation. PMID:25538333

  8. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.

    PubMed

    Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.

  9. Neurodegeneration in diabetic retinopathy: Potential for novel therapies.

    PubMed

    Barber, Alistair J; Baccouche, Basma

    2017-10-01

    The complex pathology of diabetic retinopathy (DR) affects both vascular and neural tissue. The characteristics of neurodegeneration are well-described in animal models but have more recently been confirmed in the clinical setting, mostly by using non-invasive imaging approaches such as spectral domain optical coherence tomography (SD-OCT). The most frequent observations report loss of tissue in the nerve fiber layer and inner plexiform layer, confirming earlier findings from animal models. In several cases the reduction in inner retinal layers is reported in patients with little evidence of vascular lesions or macular edema, suggesting that degenerative loss of neural tissue in the inner retina can occur after relatively short durations of diabetes. Animal studies also suggest that neurodegeneration leading to retinal thinning is not limited to cell death and tissue loss but also includes changes in neuronal morphology, reduced synaptic protein expression and alterations in neurotransmission, including changes in expression of neurotransmitter receptors as well as neurotransmitter release, reuptake and metabolism. The concept of neurodegeneration as an early component of DR introduces the possibility to explore alternative therapies to prevent the onset of vision loss, including neuroprotective therapies and drugs targeting individual neurotransmitter systems, as well as more general neuroprotective approaches to preserve the integrity of the neural retina. In this review we consider some of the evidence for progressive retinal neurodegeneration in diabetes, and explore potential neuroprotective therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural Modifications of Neuroprotective Anti-Parkinsonian (−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): An Effort toward the Improvement of in Vivo Efficacy of the Parent Molecule

    PubMed Central

    2015-01-01

    In our overall goal to develop multifunctional dopamine D2/D3 agonist drugs for the treatment of Parkinson’s disease (PD), we previously synthesized potent D3 preferring agonist D-264 (1a), which exhibited neuroprotective properties in two animal models of PD. To enhance the in vivo efficacy of 1a, a structure–activity relationship study was carried out. Competitive binding and [35S]GTPγS functional assays identified compound (−)-9b as one of the lead molecules with preferential D3 agonist activity (EC50(GTPγS); D3 = 0.10 nM; D2/D3 (EC50): 159). Compounds (−)-9b and (−)-8b exhibited high in vivo activity in two PD animal models, reserpinized and 6-hydroxydopamine (OHDA)-induced unilateral lesioned rats. On the other hand, 1a failed to show any in vivo activity in these models unless the compound was dissolved in 5–10% beta-hydroxy propyl cyclodextrin solution. Lead compounds exhibited appreciable radical scavenging activity. In vitro experiments with dopaminergic MN9D cells indicated neuroprotection by both 1a and (−)-9b from toxicity of MPP+. PMID:24471976

  11. Neuroprotection for the new millennium. Matchmaking pharmacology and technology

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    2001-01-01

    A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.

  12. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID:26961958

  13. Design and Efficacy of Nanogels Formulations for Intranasal Administration.

    PubMed

    Aderibigbe, Blessing A; Naki, Tobeka

    2018-05-23

    Nanogels are drug delivery systems that can bypass the blood-brain barrier and deliver drugs to the desired site when administered intranasally. They have been used as a drug delivery platform for the management of brain diseases such as Alzheimer disease, migraine, schizophrenia and depression. nanogels have also been developed as vaccine carriers for the protection of bacterial infections such as influenza, meningitis, pneumonia and as veterinary vaccine carriers for the protection of animals from encephalomyelitis and mouth to foot disease. It has been developed as vaccine carriers for the prevention of lifestyle disease such as obesity. Intranasal administration of therapeutics using nanogels for the management of brain diseases revealed that the drug transportation was via the olfactory nerve pathway resulting in rapid drug delivery to the brain with excellent neuroprotective effect. The application of nanogels as vaccine carriers also induced significant responses associated with protective immunity against selected bacterial and viral infections. This review provides a detailed information on the enhanced therapeutic effects, mechanisms and biological efficacy of nanogels for intranasal administration.

  14. Nanocomposites for neurodegenerative diseases: hydrogel-nanoparticle combinations for a challenging drug delivery.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Rodilossi, Serena; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2011-12-01

    Neurodegenerative disorders are expected to strike social and health care systems of developed countries heavily in the coming decades. Alzheimer's and Parkinson's diseases (AD/PD) are the most prevalent neurodegenerative pathologies, and currently their available therapy is only symptomatic. However, innovative potential drugs are actively under development, though their efficacy is sometimes limited by poor brain bioavailability and/or sustained peripheral degradation. To partly overcome these constraints, the development of drug delivery devices made by biocompatible and easily administrable materials might be a great adjuvant. In particular, materials science can provide a powerful tool to design hydrogels and nanoparticles as basic components of more complex nanocomposites that might ameliorate drug or cell delivery in AD/PD. This kind of approach is particularly promising for intranasal delivery, which might increase brain targeting of neuroprotective molecules or proteins. Here we review these issues, with a focus on nanoparticles as nanocomponents able to carry and tune drug release in the central nervous system, without ignoring warnings concerning their potential toxicity.

  15. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies.

    PubMed

    Rocha, Natália Pessoa; de Miranda, Aline Silva; Teixeira, Antônio Lúcio

    2015-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.

  16. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease.

    PubMed

    Reddy, P Hemachandra; Tonk, Sahil; Kumar, Subodh; Vijayan, Murali; Kandimalla, Ramesh; Kuruva, Chandra Sekhar; Reddy, Arubala P

    2017-02-19

    Currently, 5.4 million Americans suffer from AD, and these numbers are expected to increase up to 16 million by 2050. Despite tremendous research efforts, we still do not have drugs or agents that can delay, or prevent AD and its progression, and we still do not have early detectable biomarkers for AD. Multiple cellular changes have been implicated in AD, including synaptic damage, mitochondrial damage, production and accumulation of Aβ and phosphorylated tau, inflammatory response, deficits in neurotransmitters, deregulation of the cell cycle, and hormonal imbalance. Research into AD has revealed that miRNAs are involved in each of these cellular changes and interfere with gene regulation and translation. Recent discoveries in molecular biology have also revealed that microRNAs play a major role in post-translational regulation of gene expression. The purpose of this article is to review research that has assessed neuroprotective and neurodegenerative characteristics of microRNAs in brain samples from AD transgenic mouse models and patients with AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    PubMed

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Antidiabetic Drugs in Alzheimer's Disease: Mechanisms of Action and Future Perspectives

    PubMed Central

    Femminella, Grazia Daniela; Bencivenga, Leonardo; Petraglia, Laura; Visaggi, Lucia; Gioia, Lucia; Grieco, Fabrizio Vincenzo; de Lucia, Claudio; Komici, Klara; Edison, Paul

    2017-01-01

    Diabetes mellitus (DM) and Alzheimer's disease (AD) are two highly prevalent conditions in the elderly population and major public health burden. In the past decades, a pathophysiological link between DM and AD has emerged and central nervous system insulin resistance might play a significant role as a common mechanism; however, other factors such as inflammation and oxidative stress seem to contribute to the shared pathophysiological link. Both preclinical and clinical studies have evaluated the possible neuroprotective mechanisms of different classes of antidiabetic medications in AD, with some promising results. Here, we review the evidence on the mechanisms of action of antidiabetic drugs and their potential use in AD. PMID:28656154

  19. Report on the Symposium “Molecular Mechanisms Involved in Neurodegeneration”

    PubMed Central

    Pentón-Rol, Giselle; Cervantes-Llanos, Majel

    2018-01-01

    The prevalence of neurodegenerative diseases is currently a major concern in public health because of the lack of neuroprotective and neuroregenerative drugs. The symposium on Molecular Mechanisms Involved in Neurodegeneration held in Varadero, Cuba, updated the participants on the basic mechanisms of neurodegeneration, on the different approaches for drug discovery, and on early research results on therapeutic approaches for the treatment of neurodegenerative diseases. Alzheimer’s disease and in silico research were covered by many of the presentations in the symposium, under the umbrella of the “State of the Art of Non-clinical Models for Neurodegenerative Diseases” International Congress, held from 20 to 24 June 2017. This paper summarizes the highlights of the symposium. PMID:29346273

  20. North American Clinical Trials Network (NACTN) for Treatment of Spinal Cord Injury: A Consortium of Military, Veterans Administration and Civilian Hospitals

    DTIC Science & Technology

    2012-03-01

    Study Coordinator 75 Kim Clark Nurse Clinician 75 Ralph Frankowski PhD PI 2.3 Keith Burau Co PI 15 Hyvan Dang Analyst 50 Joy De Los Reyes Research... los Reyes, M.P.H., Research Assistant IV - performs electronic scanning/verification/entry of all TeleForm data for the NACTN registry /Riluzole...Lansing, MI PhD 1993 Physiology University of California, Los Angeles, CA Postdoctoral 1993-95 Neurophysiology A. Personal Statement I am a Prof

  1. Prehospital use of magnesium sulfate as neuroprotection in acute stroke.

    PubMed

    Saver, Jeffrey L; Starkman, Sidney; Eckstein, Marc; Stratton, Samuel J; Pratt, Franklin D; Hamilton, Scott; Conwit, Robin; Liebeskind, David S; Sung, Gene; Kramer, Ian; Moreau, Gary; Goldweber, Robert; Sanossian, Nerses

    2015-02-05

    Magnesium sulfate is neuroprotective in preclinical models of stroke and has shown signals of potential efficacy with an acceptable safety profile when delivered early after stroke onset in humans. Delayed initiation of neuroprotective agents has hindered earlier phase 3 trials of neuroprotective agents. We randomly assigned patients with suspected stroke to receive either intravenous magnesium sulfate or placebo, beginning within 2 hours after symptom onset. A loading dose was initiated by paramedics before the patient arrived at the hospital, and a 24-hour maintenance infusion was started on the patient's arrival at the hospital. The primary outcome was the degree of disability at 90 days, as measured by scores on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability). Among the 1700 enrolled patients (857 in the magnesium group and 843 in the placebo group), the mean (±SD) age was 69±13 years, 42.6% were women, and the mean pretreatment score on the Los Angeles Motor Scale of stroke severity (range, 0 to 10, with higher scores indicating greater motor deficits) was 3.7±1.3. The final diagnosis of the qualifying event was cerebral ischemia in 73.3% of patients, intracranial hemorrhage in 22.8%, and a stroke-mimicking condition in 3.9%. The median interval between the time the patient was last known to be free of stroke symptoms and the start of the study-drug infusion was 45 minutes (interquartile range, 35 to 62), and 74.3% of patients received the study-drug infusion within the first hour after symptom onset. There was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the magnesium group and those in the placebo group (P=0.28 by the Cochran-Mantel-Haenszel test); mean scores at 90 days did not differ between the magnesium group and the placebo group (2.7 in each group, P=1.00). No significant between-group differences were noted with respect to mortality (15.4% in the magnesium group and 15.5% in the placebo group, P=0.95) or all serious adverse events. Prehospital initiation of magnesium sulfate therapy was safe and allowed the start of therapy within 2 hours after the onset of stroke symptoms, but it did not improve disability outcomes at 90 days. (Funded by the National Institute of Neurological Disorders and Stroke; FAST-MAG ClinicalTrials.gov number, NCT00059332.).

  2. Biotherapies in stroke.

    PubMed

    Detante, O; Jaillard, A; Moisan, A; Barbieux, M; Favre, I M; Garambois, K; Hommel, M; Remy, C

    2014-12-01

    Stroke is the second leading cause of death worldwide and the most common cause of severe disability. Neuroprotection and repair mechanisms supporting endogenous brain plasticity are often insufficient to allow complete recovery. While numerous neuroprotective drugs trials have failed to demonstrate benefits for patients, they have provided interesting translational research lessons related to neurorestorative therapy mechanisms in stroke. Stroke damage is not limited to neurons but involve all brain cell type including the extracellular matrix in a "glio-neurovascular niche". Targeting a range of host brain cells, biotherapies such as growth factors and therapeutic cells, currently hold great promise as a regenerative medical strategy for stroke. These techniques can promote both neuroprotection and delayed neural repair through neuro-synaptogenesis, angiogenesis, oligodendrogliogenesis, axonal sprouting and immunomodulatory effects. Their complex mechanisms of action are interdependent and vary according to the particular growth factor or grafted cell type. For example, while "peripheral" stem or stromal cells can provide paracrine trophic support, neural stem/progenitor cells (NSC) or mature neurons can act as more direct neural replacements. With a wide therapeutic time window after stroke, biotherapies could be used to treat many patients. However, guidelines for selecting the optimal time window, and the best delivery routes and doses are still debated and the answers may depend on the chosen product and its expected mechanism including early neuroprotection, delayed neural repair, trophic systemic transient effects or graft survival and integration. Currently, the great variety of growth factors, cell sources and cell therapy products form a therapeutic arsenal that is available for stroke treatment. Their effective clinical use will require prior careful considerations regarding safety (e.g. tumorgenicity, immunogenicity), potential efficacy, cell characterization, delivery route and in vivo biodistribution. Bone marrow-derived cell populations such as mesenchymal stromal/stem cells (MSC) or mononuclear cells (MNC), umbilical cord stem cells and NSC are most investigated notably in clinical trials. Finally, we discuss perspectives concerning potential novel biotherapies such as combinatorial approaches (growth factor combined with cell therapy, in vitro optimization of cell products, or co-transplantation) and the development of biomaterials, which could be used as injectable hydrogel scaffold matrices that could protect a cell graft or selectively deliver drugs and growth factors into the post-stroke cavity at chronic stages. Considering the remaining questions about the best procedure and the safety cautions, we can hope that future translational research about biotherapies will bring more efficient treatments that will decrease post-stroke disability for many patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. The potential role of cotinine in the cognitive and neuroprotective actions of nicotine.

    PubMed

    Buccafusco, Jerry J; Terry, Alvin V

    2003-05-16

    Cotinine is a primary metabolite of nicotine that has been suggested in many studies in animals and in humans to exert measurable effects on aspects of on-going behavior or on cognitive function. Much of the interest in cotinine derives from its long pharmacological half-life (15-19 hours) relative to nicotine (2-3 hours). Despite decades of study focusing on nicotine as the predominant behaviorally active component of tobacco, there continue to be aspects of the pharmacology of the drug that have yet to be explained. For example, nicotine can evoke a protracted behavioral response, i.e., in great excess of the presence of the drug in the plasma. Also, there is often a striking differential between the potency for nicotine-induced behavioral responses in humans and animals, and its potency as a cholinergic agonist, neurochemically. One possibility that may explain one or more of these properties of nicotine is the presence of a long-lived bioactive metabolite or breakdown product of nicotine such as cotinine. Preliminary data in support of this hypothesis are consistent with the ability of cotinine to improve performance accuracy on delayed matching task by macaque monkeys, and in reversing apomorphine-induced deficits in prepulse inhibition of acoustic startle in rats. The drug also was shown to be as potent as nicotine in the ability to act as a cytoprotective agent in cells that express a neuronal cholinergic phenotype. This new appreciation for the role of cotinine in nicotine's actions, and as a pharmacological agent in its own right, particularly in aspects of cognitive function and for neuroprotection, ultimately may be applied towards the treatment of Alzheimer's disease and related disorders, and for various psychiatric syndromes.

  4. Noninvasive PK11195-PET Image Analysis Techniques Can Detect Abnormal Cerebral Microglial Activation in Parkinson's Disease.

    PubMed

    Kang, Yeona; Mozley, P David; Verma, Ajay; Schlyer, David; Henchcliffe, Claire; Gauthier, Susan A; Chiao, Ping C; He, Bin; Nikolopoulou, Anastasia; Logan, Jean; Sullivan, Jenna M; Pryor, Kane O; Hesterman, Jacob; Kothari, Paresh J; Vallabhajosula, Shankar

    2018-05-04

    Neuroinflammation has been implicated in the pathophysiology of Parkinson's disease (PD), which might be influenced by successful neuroprotective drugs. The uptake of [ 11 C](R)-PK11195 (PK) is often considered to be a proxy for neuroinflammation, and can be quantified using the Logan graphical method with an image-derived blood input function, or the Logan reference tissue model using automated reference region extraction. The purposes of this study were (1) to assess whether these noninvasive image analysis methods can discriminate between patients with PD and healthy volunteers (HVs), and (2) to establish the effect size that would be required to distinguish true drug-induced changes from system variance in longitudinal trials. The sample consisted of 20 participants with PD and 19 HVs. Two independent teams analyzed the data to compare the volume of distribution calculated using image-derived input functions (IDIFs), and binding potentials calculated using the Logan reference region model. With all methods, the higher signal-to-background in patients resulted in lower variability and better repeatability than in controls. We were able to use noninvasive techniques showing significantly increased uptake of PK in multiple brain regions of participants with PD compared to HVs. Although not necessarily reflecting absolute values, these noninvasive image analysis methods can discriminate between PD patients and HVs. We see a difference of 24% in the substantia nigra between PD and HV with a repeatability coefficient of 13%, showing that it will be possible to estimate responses in longitudinal, within subject trials of novel neuroprotective drugs. © 2018 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  5. Up-regulation of hypoxia-inducible factor (HIF)-1α and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug, M30.

    PubMed

    Avramovich-Tirosh, Y; Bar-Am, O; Amit, T; Youdim, M B H; Weinreb, O

    2010-06-01

    Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline derivative of our iron chelator, VK28. M30 was recently found to confer potential neuroprotective effects in vitro and in various preclinical neurodegenerative models and regulate the levels and processing of the Alzheimer's amyloid precursor protein and its toxic amyloidogenic derivative, Abeta. Here, we show that M30 activates the hypoxia-inducible factor (HIF)-1alpha signaling pathway, thus promoting HIF-1alpha mRNA and protein expression levels, as well as increasing transcription of HIF-1alpha-dependent genes, including vascular endothelial growth factor, erythropoietin, enolase-1, p21 and tyrosine hydroxylase in rat primary cortical cells. In addition, M30 also increased the expression levels of the transcripts of brain derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43). Regarding aspects of relevance to Alzheimer's disease (AD), western blotting analysis of glycogen synthase kinase- 3beta (GSK-3beta) signaling pathway revealed that M30 enhanced the levels of phospho-AKT (Ser473) and phospho- GSK-3beta (Ser9) and attenuated Tau phosphorylation. M30 was also shown to protect cultured cortical neurons against Abeta(25-35) toxicity. All these multimodal pharmacological activities of M30 might be beneficial for its potent efficacy in the prevention and treatment of neurodegenerative conditions, such as Parkinson's disease and AD in which oxidative stress and iron-mediated toxicity are involved.

  6. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat

    PubMed Central

    Akhtar, Mohammad; Maikiyo, Aliyu Muhammad; Najmi, Abul Kalam; Khanam, Razia; Mujeeb, Mohd; Aqil, Mohd

    2013-01-01

    PURPOSE: Stroke still remains a challenge for the researchers and scientists for developing ideal drug. Several new drugs are being evaluated showing excellent results in preclinical studies but when tested in clinical trials, they failed. Many herbal drugs in different indigenous system of medicine claim to have beneficial effects but not extensively evaluated for stroke (cerebral ischemia). AIM: The present study was undertaken to evaluate chloroform and petroleum ether extract of Nigella sativa seeds administered at a dose of 400 mg/kg, per orally for seven days in middle cerebral artery occluded (MCAO) rats for its neuroprotective role in cerebral ischemia. MATERIALS AND METHODS: Focal cerebral ischemia was induced by middle cerebral artery occlusion for two hours followed by reperfusion for 22 hours. After 24 hours, grip strength, locomotor activity tests were performed in different treatment groups of rats. After completing behavioral tests, animals were sacrificed; brains were removed for the measurement of infarct volume followed by the estimation of markers of oxidative stress. RESULTS: Both chloroform and petroleum ether extracts-pretreated rats showed improvement in locomotor activity and grip strength, reduced infarct volume when compared with MCAO rats. MCA occlusion resulted in the elevation of levels of thiobarbituric acid reactive substance (TBARS), while a reduction in the levels of glutathione (GSH) and antioxidant enzymes viz. superoxide dismutase (SOD) and catalase levels were observed. Pre-treatment of both extracts of Nigella sativa showed reduction in TBARS, elevation in glutathione, SOD, and catalase levels when compared with MCAO rats. CONCLUSION: The chloroform and petroleum ether extract of Nigella sativa showed the protective effects in cerebral ischemia. The present study confirms the antioxidant, free radical scavenging, and anti-inflammatory properties of Nigella sativa already reported. PMID:23833517

  7. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury.

    PubMed

    Zhao, Li-xia; Liu, An-chang; Yu, Shu-wen; Wang, Zeng-xin; Lin, Xiao-qian; Zhai, Guang-xi; Zhang, Qing-zhu

    2013-01-01

    Puerarin (PUE) is a good candidate for treating stroke, but its low concentration in brain after administration limits its curative efficacy. The aim of the present work was to design and characterize PUE loaded poly(butylcyanoacrylate) nanoparticles (PBCN) coated with polysorbate 80 (Ps 80), and to evaluate the effect of PBCN on the permeability of PUE across the blood-brain barrier (BBB) and the effect of PUE loaded PBCN on the cerebral ischemia/reperfusion injury. PUE loaded PBCN were successfully prepared by anionic polymerization method with the mean particle size of 201.2 nm and the zeta potential of -7.72 mV. The in vitro release behavior of PUE from the nanoparticles showed a biphasic profile manner with an initial burst release followed by a sustained release. The results of pharmacokinetic and biodistribution to brain performed in mice after intravenous administration showed that the drug concentrations in blood and brain for PUE loaded PBCN were both greater than these for the free drug. Moreover, compared with free drug, the vein injection of PUE loaded PBCN exerted the better neuroprotective effect in rats with focal cerebral ischemic injury via significantly decreasing neurological deficit scores, increasing body weight, lowing brain water content, and reducing the infarct volume. The results indicated that this preparation may reduce the total dose required for the stroke therapy with concurrent reduction in dose related toxicity. All these findings suggest that PBCN could enhance the transport of PUE to brain and have a potential as a neuroprotective agent in the focal cerebral ischemic injury.

  8. Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action.

    PubMed

    Strekalova, Tatyana; Bahzenova, Nataliia; Trofimov, Alexander; Schmitt-Böhrer, Angelika G; Markova, Nataliia; Grigoriev, Vladimir; Zamoyski, Vladimir; Serkova, Tatiana; Redkozubova, Olga; Vinogradova, Daria; Umriukhin, Alexei; Fisenko, Vladimir; Lillesaar, Christina; Shevtsova, Elena; Sokolov, Vladimir; Aksinenko, Alexey; Lesch, Klaus-Peter; Bachurin, Sergey

    2018-01-01

    A comparative study performed in mice investigating the action of DF302, a novel fluoride-containing gamma-carboline derivative, in comparison to the structurally similar neuroprotective drug dimebon. Drug effects on learning and memory, emotionality, hippocampal neurogenesis and mitochondrial functions, as well as AMPA-mediated currents and the 5-HT6 receptor are reported. In the step-down avoidance and fear-conditioning paradigms, bolus administration of drugs at doses of 10 or 40 mg/kg showed that only the higher dose of DF302 improved long-term memory while dimebon was ineffective at either dosage. Short-term memory and fear extinction remained unaltered across treatment groups. During the 5-day predation stress paradigm, oral drug treatment over a period of 2 weeks at the higher dosage regimen decreased anxiety-like behaviour. Both compounds supressed inter-male aggression in CD1 mice, the most eminent being the effects of DF302 in its highest dose. DF302 at the higher dose decreased floating behaviour in a 2-day swim test and after 21-day ultrasound stress. The density of Ki67-positive cells, a marker of adult neurogenesis, was reduced in the dentate gyrus of stressed dimebon-treated and non-treated mice, but not in DF302-treated mice. Non-stressed mice that received DF302 had a higher density of Ki67-positive cells than controls unlike dimebon-treated mice. Similar to dimebon, DF302 effectively potentiated AMPA receptor-mediated currents, bound to the 5-HT6 receptor, inhibited mitochondrial permeability transition and displayed cytoprotective properties in cellular models of neurodegeneration. Thus, DF302 exerts multi-target effects on the key mechanisms of neurodegenerative pathologies and can be considered as an optimized novel analogue of the neuroprotective agent dimebon.

  9. The Moral Obligation to Explore the Military Use of Performance-Enhancing Supplements and Drugs

    DTIC Science & Technology

    2017-06-01

    effects as well. Creatinine is a natural by-product of the consumption of creatine in the muscles during heavy exertion.131 Creatinine must then be...Basel: Karger Landes Systems, 1997), 9−18. 162 G. S. Hughes Jr. et al., “Hematologic Effects of a Novel Hemoglobin-Based Oxygen Carrier in Normal...like the regulation of blood pressure, neuroprotection, and maximum oxygen uptake.167 Moderate rHuEPO use has been shown to have beneficial effects

  10. Disease Severity and Progression in Progressive Supranuclear Palsy and Multiple System Atrophy: Validation of the NNIPPS – PARKINSON PLUS SCALE

    PubMed Central

    Payan, Christine A. M.; Viallet, François; Landwehrmeyer, Bernhard G.; Bonnet, Anne-Marie; Borg, Michel; Durif, Franck; Lacomblez, Lucette; Bloch, Frédéric; Verny, Marc; Fermanian, Jacques; Agid, Yves; Ludolph, Albert C.

    2011-01-01

    Background The Natural History and Neuroprotection in Parkinson Plus Syndromes (NNIPPS) study was a large phase III randomized placebo-controlled trial of riluzole in Progressive Supranuclear Palsy (PSP, n = 362) and Multiple System Atrophy (MSA, n = 398). To assess disease severity and progression, we constructed and validated a new clinical rating scale as an ancillary study. Methods and Findings Patients were assessed at entry and 6-montly for up to 3 years. Evaluation of the scale's psychometric properties included reliability (n = 116), validity (n = 760), and responsiveness (n = 642). Among the 85 items of the initial scale, factor analysis revealed 83 items contributing to 15 clinically relevant dimensions, including Activity of daily Living/Mobility, Axial bradykinesia, Limb bradykinesia, Rigidity, Oculomotor, Cerebellar, Bulbar/Pseudo-bulbar, Mental, Orthostatic, Urinary, Limb dystonia, Axial dystonia, Pyramidal, Myoclonus and Tremor. All but the Pyramidal dimension demonstrated good internal consistency (Cronbach α≥0.70). Inter-rater reliability was high for the total score (Intra-class coefficient = 0.94) and 9 dimensions (Intra-class coefficient = 0.80–0.93), and moderate (Intra-class coefficient = 0.54–0.77) for 6. Correlations of the total score with other clinical measures of severity were good (rho≥0.70). The total score was significantly and linearly related to survival (p<0.0001). Responsiveness expressed as the Standardized Response Mean was high for the total score slope of change (SRM = 1.10), though higher in PSP (SRM = 1.25) than in MSA (SRM = 1.0), indicating a more rapid progression of PSP. The slope of change was constant with increasing disease severity demonstrating good linearity of the scale throughout disease stages. Although MSA and PSP differed quantitatively on the total score at entry and on rate of progression, the relative contribution of clinical dimensions to overall severity and progression was similar. Conclusions The NNIPPS-PPS has suitable validity, is reliable and sensitive, and therefore is appropriate for use in clinical studies with PSP or MSA. Trial Registration ClinicalTrials.gov NCT00211224 PMID:21829612

  11. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  12. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  13. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  14. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, LaTisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S.; Ready, Joseph M.; McKnight, Steven L.; Pieper, Andrew A.

    2012-01-01

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS. PMID:23027932

  15. Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    PubMed Central

    Lidster, Katie; Jackson, Samuel J.; Ahmed, Zubair; Munro, Peter; Coffey, Pete; Giovannoni, Gavin; Baker, Mark D.; Baker, David

    2013-01-01

    Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine) or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment. PMID:24223903

  16. Neuroprotective effect of schizandrin A on oxygen and glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    PubMed

    Wang, Cai-Ping; Li, Gui-Cai; Shi, Yun-Wei; Zhang, Xiao-Chuan; Li, Jian-Long; Wang, Zhi-Wei; Ding, Fei; Liang, Xin-Miao

    2014-09-01

    Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca(2+)]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases.

  17. Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson's disease mouse model.

    PubMed

    Zhang, YanFang; Chen, YiMei; Li, Lin; Hölscher, Christian

    2015-10-15

    Glucagon-like peptide 1 (GLP-1) is a hormone and a growth factor. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. They also have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a first clinical trial in PD patients showed promising results. (Val8)GLP-1-glu-PAL is a new GLP-1 analogue which has a longer biological half-life than exendin-4. We previously showed that (Val8)GLP-1-glu-PAL has neuroprotective properties. Here we tested the drug in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected (30mg/kg i.p.) along with (Val8)GLP-1-glu-PAL (25nmol/kg i.p.) once-daily for 8 days. (Val8)GLP-1-glu-PAL showed good effects in preventing the MPTP-induced motor impairment (Rotarod, open field locomotion, swim test), reduction in tyrosine hydroxylase levels (dopamine synthesis) in the substantia nigra, a reduction of activated caspase 3 levels, of TUNEL positive cell numbers, of the pro-apoptotic signaling molecule BAX and an increase in the growth signaling molecule Bcl-2. The results demonstrate that (Val8)GLP-1-glu-PAL shows promise as a novel treatment of PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain.

    PubMed

    Cao, Lijun; Li, Dongfang; Feng, Peng; Li, Lin; Xue, Guo-Fang; Li, Guanglai; Hölscher, Christian

    2016-04-13

    The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once daily (20 mg/kg intraperitoneally) for 7 days and the dual agonist was coinjected once daily (50 nmol/kg intraperitoneally). We found that the drug reduced most of the MPTP-induced motor impairments in the rotarod, open-field locomotion, and muscle strength test. The number of tyrosine hydroxylase-positive neurons in the substantia nigra and striatum was reduced by MPTP and increased by DA-JC1. Synapse numbers (synaptophysin expression) were reduced in the substantia nigra and the striatum by MPTP and DA-JC1 reversed this effect. The activation of a chronic inflammation response by MPTP was considerably reduced by the dual agonist (DA) (astroglia and microglia activation). Therefore, dual agonists show promise as a novel treatment of PD.

  19. Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress.

    PubMed

    Kumar, Anil; Singh, Barinder; Mishra, Jitendriya; Sah, Sangeeta Pilkhwal; Pottabathini, Raghavender

    2015-12-01

    Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.

  20. A novel indication of platonin, a therapeutic immunomodulating medicine, on neuroprotection against ischemic stroke in mice

    PubMed Central

    Sheu, Joen-Rong; Chen, Zhih-Cherng; Jayakumar, Thanasekaran; Chou, Duen-Suey; Yen, Ting-Lin; Lee, Hsing-Ni; Pan, Szu-Han; Hsia, Chih-Hsuan; Yang, Chih-Hao; Hsieh, Cheng-Ying

    2017-01-01

    Thrombosis and stroke are major causes of disability and death worldwide. However, the regular antithrombotic drugs may have unsatisfactory results and side effects. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers and some acute inflammation. Here, we explored the neuroprotective effects of platonin against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in mice. Platonin(200 μg/kg) substantially reduced cerebral infarct volume, brain edema, neuronal cell death and neurological deficit scores, and improved the MCAO-reduced locomotor activity and rotarod performance. Platonin(5–10 μM) potently inhibited platelet aggregation and c-Jun NH2-terminal kinase (JNK) phosphorylation in collagen-activated platelets. The antiaggregation effect did not affect bleeding time but increased occlusion time in platonin(100 and 200 μg/kg)-treated mice. Platonin(2–10 μM) was potent in diminishing collagen- and Fenton reaction-induced ∙OH formation. Platonin(5–10 μM) also suppressed the expression of nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1β, and JNK phosphorylation in lipopolysaccharide-stimulated macrophages. MCAO-induced expression of 3-nitrotyrosine and Iba1 was apparently attenuated in platonin(200 μg/kg)-treated mice. In conclusion, platonin exhibited remarkable neuroprotective properties against MCAO-induced ischemia in a mouse model through its antiaggregation, antiinflammatory and antiradical properties. The observed therapeutic efficacy of platonin may consider being a novel medcine against ischemic stroke. PMID:28165057

  1. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    PubMed Central

    Kiss, Tibor; Jungling, Adel

    2017-01-01

    ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. PMID:28067625

  2. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population

    PubMed Central

    Apland, James P.; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Pidoplichko, Volodymyr I.; Rossetti, Katia

    2018-01-01

    The currently Food and Drug Administration–approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe—depending on the region—in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats. PMID:29467308

  3. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models.

    PubMed

    Maasz, Gabor; Zrinyi, Zita; Reglodi, Dora; Petrovics, Dora; Rivnyak, Adam; Kiss, Tibor; Jungling, Adel; Tamas, Andrea; Pirger, Zsolt

    2017-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. © 2017. Published by The Company of Biologists Ltd.

  4. Thiorphan, a neutral endopeptidase inhibitor used for diarrhoea, is neuroprotective in newborn mice.

    PubMed

    Medja, Fadia; Lelièvre, Vincent; Fontaine, Romain H; Lebas, Fanny; Leroux, Philippe; Ouimet, Tanja; Saria, Alois; Rougeot, Catherine; Dournaud, Pascal; Gressens, Pierre

    2006-12-01

    Excitotoxic damage appears to be a critical factor in the formation of perinatal brain lesions associated with cerebral palsy (CP). When injected into newborn mice, the glutamatergic analogue, ibotenate, produces cortical lesions and white matter cysts that mimic human perinatal brain lesions. Neuropeptides are neuronal activity modulators and could therefore modulate glutamate-induced lesions. However, neuropeptides are rapidly degraded by peptidases. Racecadotril, which is rapidly metabolized to its active metabolite thiorphan, is a neutral endopeptidase (NEP) inhibitor used in clinical practice for diarrhoea with a remarkable safety profile. This study aimed to test the original hypothesis that thiorphan could be neuroprotective against ibotenate-induced lesions in newborn mice. Intraperitoneal administration of thiorphan reduced ibotenate-induced cortical lesions by up to 57% and cortical caspase-3 cleavage by up to 59%. This neuroprotective effect was long-lasting and was still observed when thiorphan was administered 12 h after the insult, showing a remarkable window for therapeutic intervention. Further supporting the neuroprotective effect of pharmacological blockade of NEP, mouse pups with a genetic deletion of NEP displayed a significantly reduced size of the ibotenate-induced cortical grey matter lesion when compared with wild-type animals. Thiorphan effects were mimicked by substance P (SP) and, in a less potent manner, by neurokinin A. Thiorphan effects were inhibited by blockers of NK1 and NK2 receptors. Real-time reverse transcription-polymerase chain reaction, autoradiography and immunohistochemistry confirmed the expression of NK1 and NK2 receptors in the neonatal murine neocortex. These data demonstrate that thiorphan prevents neonatal excitotoxic cortical damage, an effect largely mediated by SP. Thiorphan could represent a promising drug for the prevention of CP, which remains a challenging disease. In a broader context, these results also raise potential implications for the prevention of neurodegenerative diseases involving glutamate-mediated excitotoxic neuronal death.

  5. Exendin-4 Ameliorates Motor Neuron Degeneration in Cellular and Animal Models of Amyotrophic Lateral Sclerosis

    PubMed Central

    Li, Yazhou; Chigurupati, Srinivasulu; Holloway, Harold W.; Mughal, Mohamed; Tweedie, David; Bruestle, Daniel A.; Mattson, Mark P.; Wang, Yun; Harvey, Brandon K.; Ray, Balmiki; Lahiri, Debomoy K.; Greig, Nigel H.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS. PMID:22384126

  6. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury.

    PubMed

    Wang, Yanzhe; He, Zhiyi; Deng, Shumin

    2016-01-01

    Activators of PPARs, particularly PPARγ, may be effective neuroprotective drugs against inflammatory responses in cerebral ischemia and reperfusion injury. Ursolic acid (UA) may act as a PPARγ agonist and serve as an anti-inflammatory agent. In this study, we used a rat middle cerebral artery occlusion and reperfusion model to examine how UA acts as a neuroprotective agent to modulate the metalloprotease/anti-metalloprotease balance. The middle cerebral artery occlusion and reperfusion model (occlusion for 2 hours followed by reperfusion for 48 hours) was induced in male Sprague Dawley rats. UA was administered intragastrically 0.5, 24, and 47 hours after reperfusion. Bisphenol A diglycidyl ether (a PPARγ antagonist) was intraperitoneally administered 1, 24.5, and 47.5 hours after reperfusion. Forty-eight hours after reperfusion, neurological deficits and infarct volume were estimated. The PPARγ level and the metalloprotease/anti-metalloprotease balance were examined by Western blotting and immunohistochemistry. The activation of MAPK signaling pathways was also assessed. UA-treated (5, 10, or 20 mg/kg) rats showed significant improvement in neurological deficit score, infarct volume, and the number of intact neurons compared with control rats (P<0.01). Both the PPARγ protein level and the percentage of PPARγ-positive cells were increased in the UA-treated groups (P<0.01). Compared with the control group, the UA-treated groups exhibited reduced protein levels of MMP2, MMP9, and activated MAPKs (P<0.01) but an increased level of TIMP1 (P<0.01). UA exerted its protective effects in a dose-dependent manner. Co-treatment with UA and bisphenol A diglycidyl ether completely abolished the UA-induced changes in PPARγ expression; however UA continued to exert a significant but partial neuroprotective effect. UA can act as a PPARγ agonist to improve the metalloprotease/anti-metalloprotease balance, possibly by inhibiting the activation of the MAPK signaling pathway, thereby attenuating cerebral ischemia and reperfusion injury. Therefore, UA may serve as a novel neuroprotective therapeutic agent.

  7. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review)

    PubMed Central

    Miller, R G.; Jackson, C E.; Kasarskis, E J.; England, J D.; Forshew, D; Johnston, W; Kalra, S; Katz, J S.; Mitsumoto, H; Rosenfeld, J; Shoesmith, C; Strong, M J.; Woolley, S C.

    2009-01-01

    Objective: To systematically review evidence bearing on the management of patients with amyotrophic lateral sclerosis (ALS). Methods: The authors analyzed studies from 1998 to 2007 to update the 1999 practice parameter. Topics covered in this section include breaking the news, multidisciplinary clinics, symptom management, cognitive and behavioral impairment, communication, and palliative care for patients with ALS. Results: The authors identified 2 Class I studies, 8 Class II studies, and 30 Class III studies in ALS, but many important areas have been little studied. More high-quality, controlled studies of symptomatic therapies and palliative care are needed to guide management and assess outcomes in patients with ALS. Recommendations: Multidisciplinary clinic referral should be considered for managing patients with ALS to optimize health care delivery and prolong survival (Level B) and may be considered to enhance quality of life (Level C). For the treatment of refractory sialorrhea, botulinum toxin B should be considered (Level B) and low-dose radiation therapy to the salivary glands may be considered (Level C). For treatment of pseudobulbar affect, dextromethorphan and quinidine should be considered if approved by the US Food and Drug Administration (Level B). For patients who develop fatigue while taking riluzole, withholding the drug may be considered (Level C). Because many patients with ALS demonstrate cognitive impairment, which in some cases meets criteria for dementia, screening for cognitive and behavioral impairment should be considered in patients with ALS (Level B). Other management strategies all lack strong evidence. GLOSSARY ALS = amyotrophic lateral sclerosis; ALS-FTD = amyotrophic lateral sclerosis with a dementia meeting the Neary criteria for frontotemporal dementia; ALSbi = amyotrophic lateral sclerosis with behavioral impairment; ALSci = amyotrophic lateral sclerosis with cognitive impairment; BTxA = botulinum toxin type A; BTxB = botulinum toxin type B; DM = dextromethorphan; FDA = Food and Drug Administration; FTD = frontotemporal dementia; NIV = noninvasive ventilation; PEG = percutaneous endoscopic gastrostomy; Q = quinidine. PMID:19822873

  8. Pharmacological treatments for preventing epilepsy following traumatic head injury.

    PubMed

    Thompson, Kara; Pohlmann-Eden, Bernhard; Campbell, Leslie A; Abel, Hannah

    2015-08-10

    Head injury is a common event and can cause a spectrum of motor and cognition disabilities. A frequent complication is seizures. Antiepileptic drugs (AED) such as phenytoin are often used in clinical practice with the hopes of preventing post-traumatic epilepsy. Whether immediate medical intervention following head trauma with either AEDs or neuroprotective drugs can alter the process of epileptogenesis and lead to a more favorable outcome is currently unknown. This review attempted to address the effectiveness of these treatment interventions. This review updates and expands on the earlier Cochrane review. To compare the efficacy of antiepileptic drugs and neuroprotective agents with placebo, usual care or other pharmacologic agents for the prevention of post-traumatic epilepsy in people diagnosed with any severity of traumatic brain injury. We searched The Cochrane Epilepsy Group's specialized register, CENTRAL, MEDLINE, ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform (ICTRP) in January 2015. We searched EMBASE, Biological Abstracts and National Research Register in September 2014 and SCOPUS in December 2013. The Cochrane Epilepsy Group performed handsearches of relevant journals. We included randomized controlled trials (RCTs) that include AEDs or neuroprotective agents compared with placebo, another pharmacologic agent or a usual care group. The outcomes measured included a seizure occurring within one week of trauma (early seizure), seizure occurring later than one week post-trauma (late seizure), mortality and any adverse events. Two review authors independently assessed study quality and extracted the data. We calculated risk ratios (RR) and 95% confidence intervals (CI) for each outcome. We used random-effects models in the meta-analyses and performed pre-defined subgroup and sensitivity analyses. This review included 10 RCTs (reported in 12 articles) consisting of 2326 participants The methodological quality of the studies varied. The type of intervention was separated into three categories; AED versus placebo or standard care, alternative neuroprotective agent versus placebo or standard care and AED versus other AED. Treatment with an AED (phenytoin or carbamazepine) decreased the risk of early seizure compared with placebo or standard care (RR 0.42, 95% CI 0.23 to 0.73; very low quality evidence). There was no evidence of a difference in the risk of late seizure occurrence between AEDs and placebo or standard care (RR 0.91, 95% CI 0.57 to 1.46; very low quality evidence). There was no evidence of a significant difference in all-cause mortality between AEDs and placebo or standard care (RR 1.08 95% CI 0.79 to 1.46,very low quality of evidence). Only one study looked at other potentially neuroprotective agents (magnesium sulfate) compared with placebo. The risk ratios were: late seizure 1.07 (95% CI 0.53 to 2.17) and all-cause mortality 1.20 (95% CI 0.80 to 1.81). The risk ratio for occurrence of early seizure was not estimable.Two studies looked at comparison of two AEDs (levetiracetam, valproate) with phenytoin used as the main comparator in each study. The risk ratio for all-cause mortality was 0.53 (95% CI 0.30 to 0.94). There was no evidence of treatment benefit of phenytoin compared with another AED for early seizures (RR 0.66, 95% 0.20 to 2.12) or late seizures(RR 0.77, 95% CI 0.46 to 1.30).Only two studies reported adverse events. The RR of any adverse event with AED compared with placebo was 1.65 (95% CI 0.73 to 3.66; low quality evidence). There were insufficient data on adverse events in the other treatment comparisons. This review found low-quality evidence that early treatment with an AED compared with placebo or standard care reduced the risk of early post-traumatic seizures. There was no evidence to support a reduction in the risk of late seizures or mortality. There was insufficient evidence to make any conclusions regarding the effectiveness or safety of other neuroprotective agents compared with placebo or for the comparison of phenytoin, a traditional AED, with another AED.

  9. Safety and Efficacy of Nanocurcumin as Add-On Therapy to Riluzole in Patients With Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial.

    PubMed

    Ahmadi, Mona; Agah, Elmira; Nafissi, Shahriar; Jaafari, Mahmoud Reza; Harirchian, Mohammad Hossein; Sarraf, Payam; Faghihi-Kashani, Sara; Hosseini, Seyed Jalal; Ghoreishi, Abdolreza; Aghamollaii, Vajiheh; Hosseini, Mostafa; Tafakhori, Abbas

    2018-04-01

    The objective of present study was to assess the safety and efficacy of nanocurcumin as an anti-inflammatory and antioxidant agent in adults with amyotrophic lateral sclerosis (ALS). We conducted a 12-month, double-blind, randomized, placebo-controlled trial at a neurological referral center in Iran. Eligible patients with a definite or probable ALS diagnosis were randomly assigned to receive either nanocurcumin (80 mg daily) or placebo in a 1:1 ratio. A computerized random number generator was used to prepare the randomization list. All patients and research investigators were blinded to treatment allocation. The primary outcome was survival, and event was defined to be death or mechanical ventilation dependency. Analysis was by intention-to-treat and included all patients who received at least one dose of study drug. A total of 54 patients were randomized to receive either nanocurcumin (n = 27) or placebo (n = 27). After 12 months, events occurred in 1 patient (3.7%) in the nanocurcumin group and in 6 patients (22.2%) in the placebo group. Kaplan-Meier analysis revealed a significant difference between the study groups regarding their survival curves (p = 0.036). No significant between-group differences were observed for any other outcome measures. No serious adverse events or treatment-related deaths were detected. No patients withdrew as a result of drug adverse events. The results suggest that nanocurcumin is safe and might improve the probability of survival as an add-on treatment in patients with ALS, especially in those with existing bulbar symptoms. Future studies with larger sample sizes and of longer duration are needed to confirm these findings.

  10. Activation of mGluR5 induces spike afterdepolarization and enhanced excitability in medium spiny neurons of the nucleus accumbens by modulating persistent Na+ currents

    PubMed Central

    D’Ascenzo, Marcello; Podda, Maria Vittoria; Fellin, Tommaso; Azzena, Gian Battista; Haydon, Philip; Grassi, Claudio

    2009-01-01

    The involvement of metabotropic glutamate receptors type 5 (mGluR5) in drug-induced behaviours is well-established but limited information is available on their functional roles in addiction-relevant brain areas like the nucleus accumbens (NAc). This study demonstrates that pharmacological and synaptic activation of mGluR5 increases the spike discharge of medium spiny neurons (MSNs) in the NAc. This effect was associated with the appearance of a slow afterdepolarization (ADP) which, in voltage-clamp experiments, was recorded as a slowly inactivating inward current. Pharmacological studies showed that ADP was elicited by mGluR5 stimulation via G-protein-dependent activation of phospholipase C and elevation of intracellular Ca2+ levels. Both ADP and spike aftercurrents were significantly inhibited by the Na+ channel-blocker, tetrodotoxin (TTX). Moreover, the selective blockade of persistent Na+ currents (INaP), achieved by NAc slice pre-incubation with 20 nm TTX or 10 μm riluzole, significantly reduced the ADP amplitude, indicating that this type of Na+ current is responsible for the mGluR5-dependent ADP. mGluR5 activation also produced significant increases in INaP, and the pharmacological blockade of this current prevented the mGluR5-induced enhancement of spike discharge. Collectively, these data suggest that mGluR5 activation upregulates INaP in MSNs of the NAc, thereby inducing an ADP that results in enhanced MSN excitability. Activation of mGluR5 will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of drug-induced behaviours. PMID:19433572

  11. Behavioral and Stereological Analysis of the Effects of Intermittent Feeding Diet on the Orally Administrated MDMA ("ecstasy") in Mice.

    PubMed

    Ebrahimian, Zeinab; Karimi, Zeinab; Khoshnoud, Mohammad Javad; Namavar, Mohammad Reza; Daraei, Bahram; Haidari, Mohsen Raza

    2017-01-01

    Background: 3,4-methylenedioxy-methamphetamine or MDMA (also known as "ecstasy" or "molly") is a commonly abused drug that affects behavior and can lead to neuronal damage. Intermittent feeding is an effective dietary protocol that promotes neuroprotection and improves behavioral outcomes in animal models of neurotoxicity and neurodegenerative diseases. In this study, we investigated the behavioral and histological outcomes of the effect of intermittent feeding on the orally administered MDMA in mice. Methods: The animals (male albino mice) were divided into four groups: ad libitum (AL), intermittent feeding (IF) (food given every other day), and AL and IF control groups. After five weeks, AL and IF groups were given a single oral dose of 20 or 60mg/kg MDMA. Behavior was assessed with the elevated plus-maze and the open field tests. Each of the treatment groups were then divided in to two groups: AL-AL (AL diet throughout), AL-IF (IF after MDMA administration), IF-IF (IF diet throughout), IF-AL (AL after MDMA administration). The second behavioral assessment was performed on ninth and 12th day after MDMA administration. The brains were then prepared with cresyl fast violet stain for stereology of the CA1 area of hippocampus. Results: The AL groups showed enhanced locomotion and anxiety compared to the IF ( p <0.001); however, IF groups showed significantly ( p <0.05) more locomotor activity and less anxiety recovery at ninth and 12th days compared to the AL animals. The neuronal numerical density was significantly ( p <0.05) higher in the hippocampus in the AL-IF groups compared to the AL-AL. Conclusion: IF regimen can significantly modify various behavioral characteristics induced by MDMA and promotes faster recovery from MDMA's anxiogenic effects. Additionally, IF regimen had neuroprotective effects on the neurons of the CA1 area of the hippocampus after a single oral dose of MDMA. We believe the results of our study support the need for further research examining the behavior modifying and neuroprotective potential of the IF regminen for the treatment of drug addiction in humans.

  12. New Tacrines as Anti-Alzheimer's Disease Agents. The (Benzo)Chromeno- PyranoTacrines.

    PubMed

    Oset-Gasque, Maria Jesus; Marco-Contelles, Jose

    2017-01-01

    Tacrine was the first drug approved by FDA (US) for the treatment of Alzheimer's disease suffering patients. Nowadays, this agent has been withdrawn from the clinics due to secondary effects, which, most importantly, include hepatotoxicity. However, the research on new tacrine analogues devoid of these therapeutically undesirable effects, but benefiting of their high and well known positive cholinergic power, has produced a number of new non-hepatotoxic tacrines. In this context, our laboratory has recently prepared a new set of heterocyclic tacrines by changing the benzene ring present in tacrine by appropriate heterocyclic motifs. Based on this approach, in this review we summarize the results that we have found in the ChromenoPyranoTacrines, one of the families of tacrine analogues. This highlights their pharmacological profile, such as their cholinesterase inhibition power, calcium channel blockade, antioxidant capacity, Aβ-anti-aggregating, and neuroprotective properties. As a result of this work we have identified permeable, neuroprotective MTD tacrines racemic hit-tacrines 11-amino-12-(3,4,5-trimethoxyphenyl)-7,9,10,12-tetrahydro-8H-chromeno[2,3- b]quinolin-3-ol (6g) and 14-(3,4-dimethoxyphenyl)-9,11,12,14-tetrahydro-10H-benzo[5,6] chromeno [2,3-b] quinolin-13-amine (7i),devoid of toxic effects and showing potent anti-cholinesterasic properties, that deserve attention and further development in order to find new, and more efficient drugs, for AD therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    PubMed

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  14. Neuroprotective Effects of Herbal Extract (Rosa canina, Tanacetum vulgare and Urtica dioica) on Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Daneshmand, Parvaneh; Saliminejad, Kioomars; Dehghan Shasaltaneh, Marzieh; Kamali, Koorosh; Riazi, Gholam Hossein; Nazari, Reza; Azimzadeh, Pedram; Khorram Khorshid, Hamid Reza

    2016-01-01

    Sporadic Alzheimer's Disease (SAD) is caused by genetic risk factors, aging and oxidative stresses. The herbal extract of Rosa canina (R. canina), Tanacetum vulgare (T. vulgare) and Urtica dioica (U. dioica) has a beneficial role in aging, as an anti-inflammatory and anti-oxidative agent. In this study, the neuroprotective effects of this herbal extract in the rat model of SAD was investigated. The rats were divided into control, sham, model, herbal extract -treated and ethanol-treated groups. Drug interventions were started on the 21(st) day after modeling and each treatment group was given the drugs by intraperitoneal (I.P.) route for 21 days. The expression levels of the five important genes for pathogenesis of SAD including Syp, Psen1, Mapk3, Map2 and Tnf-α were measured by qPCR between the hippocampi of SAD model which were treated by this herbal extract and control groups. The Morris Water Maze was adapted to test spatial learning and memory ability of the rats. Treatment of the rat model of SAD with herbal extract induced a significant change in expression of Syp (p=0.001) and Psen1 (p=0.029). In Morris Water Maze, significant changes in spatial learning seen in the rat model group were improved in herbal-treated group. This herbal extract could have anti-dementia properties and improve spatial learning and memory in SAD rat model.

  15. A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.

    PubMed

    Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David

    2017-07-14

    CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.

  16. Curcumin's Neuroprotective Efficacy in Drosophila Model of Idiopathic Parkinson's Disease Is Phase Specific: Implication of its Therapeutic Effectiveness

    PubMed Central

    Phom, Limamanen; Achumi, Bovito; Alone, Debasmita P.; Muralidhara

    2014-01-01

    Abstract Selective degeneration of dopaminergic neurons in the substantia nigra underlies the basic motor impairments of Parkinson's disease (PD). Curcumin has been used for centuries in traditional medicines in India. Our aim is to understand the efficacy of genotropic drug curcumin as a neuroprotective agent in PD. Analysis of different developmental stages in model organisms revealed that they are characterized by different patterns of gene expression which is similar to that of developmental stages of human. Genotropic drugs would be effective only during those life cycle stages for which their target molecules are available. Hence there exists a possibility that targets of genotropic compounds such as curcumin may not be present in all life stages. However, no reports are available in PD models illustrating the efficacy of curcumin in later phases of adult life. This is important because this is the period during which late-onset disorders such as idiopathic PD set in. To understand this paradigm, we tested the protective efficacy of curcumin in different growth stages (early, late health stage, and transition phase) in adult Drosophila flies. Results showed that it can rescue the motor defects during early stages of life but is ineffective at later phases. This observation was substantiated with the finding that curcumin treatment could replenish depleted brain dopamine levels in the PD model only during early stages of life cycle, clearly suggesting its limitation as a therapeutic agent in late-onset neurodegenerative disorders such as PD. PMID:25238331

  17. Is chlormethiazole neuroprotective in experimental global cerebral ischemia? A microdialysis and behavioral study.

    PubMed

    Thaminy, S; Reymann, J M; Heresbach, N; Allain, H; Lechat, P; Bentué-Ferrer, D

    1997-04-01

    Chlormethiazole, an anticonvulsive agent, has been shown to have a possible neuroprotective effect against cerebral ischemia. In addition, chlormethiazole inhibits methamphetamine-induced release of dopamine, protecting against this neurotransmitter's neurotoxicity. The aim of this work was to ascertain whether, in experimental cerebral ischemia, chlormethiazole administration attenuated the ischemia-induced rise of the extracellular concentration of aminergic neurotransmitters and whether it reduces ischemia-induced deficits in memory and learning. Histology for assessment of ischemic damage was a so included. The four-vessel occlusion rat model was used to induce global cerebral ischemia. Aminergic neurotransmitters and their metabolites in the striatal extracellular fluid obtained by microdialysis were assayed by high-performance liquid chromatography-electrochemical detection. The drug was administered either IP (50 mg/kg-1) or directly through the dialysis probe (30 microM) 80 min before ischemia. For the behavioral test and histology, the drug was given IP (100 mg/kg-1) 1 h postischemia. The results obtained did not demonstrate any statistically significant evidence that chlormethiazole has an effect on the ischemia-induced rise in extracellular dopamine and serotonin levels. There was also no variation in metabolite levels. Behavioral measures (learning, recall) were not changed appreciably by the treatment. We observed no significant cell protection in the hippocampus (CA1, CA1), striatum, and entorhinal cortex in animals treated with chlormethiazole. We conclude that, under our experimental conditions, chlormethiazole has little or no effect on the neurochemical, neurobehavioral, and histological consequences of global cerebral ischemia.

  18. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    PubMed

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  19. [Epilepsy, cognition and ketogenic diet].

    PubMed

    Garcia-Penas, J J

    2018-03-01

    Most individuals with epilepsy will respond to pharmacologic treatment; however, approximately 20-30% will develop medically refractory epilepsy. Cognitive side effects of antiepileptic drugs are common and can negatively affect tolerability, compliance, and long-term retention of the treatment. Ketogenic diet is an effective and well-tolerated treatment for these children with refractory epilepsy without any negative effect on cognition or behavior. To review the current state of experimental and clinical data concerning the neuroprotective and cognitive effects of the ketogenic diet in both humans and animals. In different animal models, with or without epilepsy, the ketogenic diet seems to have neuroprotective and mood-stabilizing effects. In the observational studies in pediatric epilepsy, improvements during treatment with the ketogenic diet are reported in behavior and cognitive function, particularly with respect to attention, alertness, activity level, socialization, and sleep quality. One randomized controlled trial in patients with pediatric refractory epilepsy showed a mood and cognitive activation during ketogenic diet treatment. Ketogenic diet shows a positive impact on behavioral and cognitive functioning in children and adolescents with refractory epilepsy. More specifically, an improvement is observed in mood, sustained attention, and social interaction.

  20. S-52, a novel nootropic compound, protects against β-amyloid induced neuronal injury by attenuating mitochondrial dysfunction.

    PubMed

    Gao, Xin; Zheng, Chun Yan; Qin, Guo Wei; Tang, Xi Can; Zhang, Hai Yan

    2012-10-01

    Accumulating evidence suggests that β-amyloid (Aβ)-induced oxidative DNA damage and mitochondrial dysfunction may initiate and contribute to the progression of Alzheimer's disease (AD). This study evaluated the neuroprotective effects of S-52, a novel nootropic compound, on Aβ-induced mitochondrial failure. In an established paradigm of moderate cellular injury induced by Aβ, S-52 was observed to attenuate the toxicity of Aβ to energy metabolism, mitochondrial membrane structure, and key enzymes in the electron transport chain and tricarboxylic acid cycle. In addition, S-52 also effectively inhibited reactive oxygen species accumulation dose dependently not only in Aβ-harmed cells but also in unharmed, normal cells. The role of S-52 as a scavenger of free radicals is involved in the antioxidative effect of this compound. The beneficial effects on mitochondria and oxidative stress extend the neuroprotective effects of S-52. The present study provides crucial information for better understanding the beneficial profiles of this compound and discovering novel potential drug candidates for AD therapy. Copyright © 2012 Wiley Periodicals, Inc.

  1. Perspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury

    PubMed Central

    Mendes Arent, André; de Souza, Luiz Felipe; Walz, Roger; Dafre, Alcir Luiz

    2014-01-01

    Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies. PMID:24689052

  2. Minocycline prevents cholinergic loss in a mouse model of Down's syndrome.

    PubMed

    Hunter, Christopher L; Bachman, David; Granholm, Ann-Charlotte

    2004-11-01

    Individuals with Down's syndrome develop Alzheimer's-like pathologies comparatively early in life, including progressive degeneration of basal forebrain cholinergic neurons (BFCNs). Cholinergic hypofunction contributes to dementia-related cognitive decline and remains a target of therapeutic intervention for Alzheimer's disease. In light of this, partial trisomy 16 (Ts65Dn) mice have been developed to provide an animal model of Down's syndrome that exhibits progressive loss of BFCNs and cognitive ability. Another feature common to both Down's syndrome and Alzheimer's disease is neuroinflammation, which may exacerbate neurodegeneration, including cholinergic loss. Minocycline is a semisynthetic tetracycline with antiinflammatory properties that has demonstrated neuroprotective properties in certain disease models. Consistent with a role for inflammatory processes in BFCN degeneration, we have shown previously that minocycline protects BFCNs and improves memory in mice with acute, immunotoxic BFCN lesions. We now report that minocycline treatment inhibits microglial activation, prevents progressive BFCN decline, and markedly improves performance of Ts65Dn mice on a working and reference memory task. Minocycline is an established antiinflammatory and neuroprotective drug and may provide a novel approach to treat specific AD-like pathologies.

  3. Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling.

    PubMed

    Abdel-Aleem, Ghada A; Khaleel, Eman F

    2017-12-07

    This study aimed at studying the potential neuroprotective effect of Rutin hydrate (RH) alone or in conjugation with α-tocopherol against cadmium chloride (CdCl 2 )-induced neurotoxicity and cognitive impairment in rats and to investigate the mechanisms of action. Rats intoxicated with CdCl 2 were treated with the vehicle, RH, α-tocopherol or combined treatment were examined, and compared to control rats received vehicle or individual doses of either drug. Data confirmed that RH improves spatial memory function by increasing acetylcholine availability, boosting endogenous antioxidant potential, activating cell survival and inhibiting apoptotic pathways, an effect that is more effective when RH was conjugated with α-tocopherol. Mechanism of RH action includes activation of PP2A mediated inhibiting of ERK1/2 and JNK apoptotic pathways and inhibition of PTEN mediated activation of mTOR survival pathway. In conclusion, RH affords a potent neuroprotection against CdCl 2 -induced brain damage and memory dysfunction and co-administration of α-tocopherol enhances its activity.

  4. Combined use of Pregabalin and Memantine in Fibromyalgia Syndrome Treatment: A Novel Analgesic and Neuroprotective Strategy?

    PubMed Central

    Recla, Jill M.; Sarantopoulos, Constantine D.

    2009-01-01

    Fibromyalgia syndrome (FMS) is a chronic widespread pain syndrome that is estimated to affect 4 to 8 million U.S. adults. The exact molecular mechanisms underlying this illness remain unclear, rendering most clinical treatment and management techniques relatively ineffective. It is now known that abnormalities in both nociceptive and central pain processing systems are necessary (but perhaps not sufficient) to condition the onset and maintenance of FMS. These same systemic abnormalities are thought to be responsible for the loss of cephalic gray matter density observed in all FMS patients groups studied to date. The current scope of FMS treatment focuses largely on analgesia and does not clearly address potential neuroprotective strategies. This article proposes a combined treatment of pregabalin and memantine to decrease the pain and rate of gray matter atrophy associated with FMS. This dual-drug therapy targets the voltage-gated calcium ion channel (VGCC) and the N-methyl D-aspartate receptor (NMDAR) (respectively), two primary components of the human nociceptive and pain processing systems. PMID:19362430

  5. Recent Knowledge on Medicinal Plants as Source of Cholinesterase Inhibitors for the Treatment of Dementia.

    PubMed

    Tundis, Rosa; Bonesi, Marco; Menichini, Francesco; Loizzo, Monica R

    2016-01-01

    Dementia is becoming a major public health problem worldwide. The most common form of dementia is Alzheimer's disease (AD), characterized by a deficient cholinergic transmission, deposition of amyloid plaques and neurofibrillary tangles, and neuro-inflammation that result in progressive degeneration and/or death of nerve cells and cognitive impairment. At present, AD cannot be prevented or cured, so the symptomatic relief obtainable by the use of acetylcholinesterase (AChE) inhibitors is one of the therapeutic strategies. Accumulated evidence suggests that naturally occurring compounds may potentially improve memory and cognitive function, and prevent neurodegeneration. Even today the search for new neuroprotective agents of natural origin is very active. The neuroprotective effects of medicinal plants covering studies of the last years will be summarized and discussed in this review choosing a family classification with particular emphasis on extracts and isolated compounds as promising new drugs. The search of a multifunctional potential anti-AD agent able to act on different crucial targets, such as galanthamine, quercetin and timosaponin AIII, could be a useful approach to recognizing therapeutics against AD.

  6. A systematic review and meta-analysis of the efficacy of piracetam and piracetam-like compounds in experimental stroke.

    PubMed

    Wheble, Philippa C R; Sena, Emily S; Macleod, Malcolm R

    2008-01-01

    Piracetam was a candidate neuroprotective drug for acute stroke ineffective in clinical trial. Here we use systematic review and meta-analysis to describe the evidence supporting a protective effect of piracetam and its derivatives in animal models of stroke. We present a systematic review of reports describing the use of piracetam and its derivatives in animal models of focal ischaemia, where the outcome was measured as an infarct size or neurological score (Der Simonian and Laird random effects meta-analysis). Only 2 studies, published 10 years after the first clinical trial of piracetam had been initiated, described its efficacy in animal models of stroke. A further 4 studies described the efficacy of related compounds. Piracetam and its derivatives improved the outcome by 30.2% (95% CI = 16.1-44.4). The median study quality was 4/10 (inter-quartile range = 4-6). Piracetam and its derivatives demonstrate neuroprotective efficacy in experimental stroke, but our findings raise concerns about the amount of available data, the quality of the studies and publication bias. (c) 2007 S. Karger AG, Basel.

  7. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    PubMed

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  8. Design, synthesis, and evaluation of salicyladimine derivatives as multitarget-directed ligands against Alzheimer's disease.

    PubMed

    Yang, Hua-Li; Cai, Pei; Liu, Qiao-Hong; Yang, Xue-Lian; Fang, Si-Qiang; Tang, Yan-Wei; Wang, Cheng; Wang, Xiao-Bing; Kong, Ling-Yi

    2017-11-01

    A series of salicyladimine derivatives were designed, synthesized and evaluated as multi-target-directed ligands for the treatment of Alzheimer's disease (AD). Biological activity results demonstrated that some derivatives possessed significant inhibitory activities against amyloid-β (Aβ) aggregation and human monoamine oxidase B (hMAO-B) as well as remarkable antioxidant effects and low cell toxicity. The optimal compound, 5, exhibited excellent potency for inhibition of self-induced Aβ 1-42 aggregation (91.3±2.1%, 25μM), inhibition of hMAO-B (IC 50 , 1.73±0.39μM), antioxidant effects (43.4±2.6μM of IC 50 by DPPH method, 0.67±0.06 trolox equivalent by ABTS method), metal chelation and BBB penetration. Furthermore, compound 5 had neuroprotective effects against ROS generation, H 2 O 2 -induced apoptosis, 6-OHDA-induced cell injury, and a significant in vitro anti-inflammatory activity. Collectively, these findings highlighted that compound 5 was a potential balanced multifunctional neuroprotective agent for the development of anti-AD drugs. Copyright © 2017. Published by Elsevier Ltd.

  9. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    NASA Astrophysics Data System (ADS)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  10. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation

    PubMed Central

    VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R

    2014-01-01

    Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891

  11. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential.

    PubMed

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as "Gotu Kola." The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words "Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory" through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine.

  12. [The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia].

    PubMed

    Bespalov, A G; Tregub, P P; Kulikov, V P; Pijanzin, A I; Belousov, A A

    2014-01-01

    Studied the role of VEGF, HSP-70 and S-100B in potentiating hypercapnia neuroprotective effect of hypoxia. Demonstrated that neuroprotective effects when exposed hypercapnic hypoxia-mediated protein synthesis increased S-100B, mainly due to the action of carbon dioxide, and not oxygen deficiency. Neuroprotective effects of HSP-70 due to hypoxia, but the combined effect of hypoxia and hypercapnia gives a significant increase in the synthesis of HSP-70 in comparison with the isolated effect of hypoxia. Vascularization activated equally as hypoxia and hypercapnia, without adding significant effects in combination. This suggests dominant effect hypercapnia, hypoxia compared in neuroprotection mechanisms related to protein S-100B, but not the protein VEGF, hypercapnia and potentiate the neuroprotective efficacy of hypoxia-related protein HSP-70.

  13. Drug delivery strategies for Alzheimer's disease treatment.

    PubMed

    Di Stefano, Antonio; Iannitelli, Antonio; Laserra, Sara; Sozio, Piera

    2011-05-01

    Current Alzheimer's disease (AD) therapy is based on the administration of the drugs donepezil, galantamine, rivastigmine and memantine. Until disease-modifying therapies become available, further research is needed to develop new drug delivery strategies to ensure ease of administration and treatment persistence. In addition to the conventional oral formulations, a variety of drug delivery strategies applied to the treatment of AD are reviewed in this paper, with a focus on strategies leading to simplified dosage regimens and to providing new pharmacological tools. Alternatives include extended release, orally disintegrating or sublingual formulations, intranasal or short- and long-acting intramuscular or transdermal forms, and nanotechnology-based delivery systems. The advent of new research on molecular mechanisms of AD pathogenesis has outlined new strategies for therapeutic intervention; these include the stimulation of α-secretase cleavage, the inhibition of γ-secretase activity, the use of non-steroidal anti-inflammatory drugs, neuroprotection based on antioxidant therapy, the use of estrogens, NO synthetase inhibitors, and natural agents such as polyphenols. Unfortunately, these compounds might not help patients with end stage AD, but might hopefully slow or stop the disease process in its early stage. Nanotechnologies may prove to be a promising contribution in future AD drug delivery strategies, in particular drug carrier nano- or microsystems, which can limit the side effects of anti-Alzheimer drugs.

  14. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson's Disease

    PubMed Central

    Dong, Jie; Cui, Yanhua; Li, Song; Le, Weidong

    2016-01-01

    Over the decades, pharmaceutical treatments, particularly dopaminergic (DAergic) drugs have been considered as the main therapy against motor symptoms of Parkinson's disease (PD). It is proposed that DAergic drugs in combination with other medications, such as monoamine oxidase type B inhibitors, catechol-O-methyl transferase inhibitors, anticholinergics and other newly developed non-DAergic drugs can make a better control of motor symptoms or alleviate levodopa-induced motor complications. Moreover, non-motor symptoms of PD, such as cognitive, neuropsychiatric, sleep, autonomic and sensory disturbances caused by intrinsic PD pathology or drug-induced side effects, are gaining increasing attention and urgently need to be taken care of due to their impact on quality of life. Currently, neuroprotective therapies have been investigated extensively in pre-clinical studies, and some of them have been subjected to clinical trials. Furthermore, non-pharmaceutical treatments, including deep brain stimulation (DBS), gene therapy, cell replacement therapy and some complementary managements, such as Tai chi, Yoga, traditional herbs and molecular targeted therapies have also been considered as effective alternative therapies to classical pharmaceutics. This review will provide us updated information regarding the current drugs and non-drugs therapies for PD. PMID:26585523

  15. Intranasal administration of Exendin-4 antagonizes Aβ31-35-induced disruption of circadian rhythm and impairment of learning and memory.

    PubMed

    Wang, Xiaohui; Wang, Li; Xu, Yunyun; Yu, Qianqian; Li, Lin; Guo, Yanlin

    2016-12-01

    The deposition of β-amyloid protein (Aβ) is one of the pathological characteristics of Alzheimer's disease (AD) and can disrupt circadian rhythm and impair learning and memory. Exendin-4, a therapeutic drug for type II diabetes mellitus (T2DM), exerts neuroprotective effects from the toxicity of Aβ. However, it is not clear whether Exendin-4 protects against Aβ-induced disruption of circadian rhythm. The neuroprotective effects of Exendin-4 have been studied using injection of Exendin-4 into the lateral ventricle and abdomen. However, these procedures are not suitable for clinical application. First, male C57BL/6 mice received triple distilled water or Exendin-4 (0.1 nmol, 0.5 nmol) by intranasal administration. Exendin-4 levels were measured in the hippocampal samples using an ELISA Kit. Then, the study examined whether intranasal or hippocampal administration of Exendin-4 antagonized Aβ-induced disruption of circadian rhythm as well as impairment of learning and memory using the wheel-running activity assay and the Morris water maze test. The study showed that intranasally administered Exendin-4 passed through the blood-brain barrier. Aβ31-35 given by intrahippocampal injection disrupted circadian rhythm and impaired learning and memory in C57BL/6 mice, and Exendin-4 given by nasal cavity or hippocampal administration ameliorated Aβ31-35-induced circadian rhythm disturbance of locomotor activity and impairment of learning and memory. These findings provide pivotal experimental support for further study of the neuroprotective effects and clinical application of Exendin-4.

  16. Effects of caffeine in Parkinson's disease: from neuroprotection to the management of motor and non-motor symptoms.

    PubMed

    Prediger, Rui D S

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. Classically, PD is considered to be a motor system disease and its diagnosis is based on the presence of a set of cardinal motor signs (rigidity, bradykinesia, rest tremor) that are consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta. Nowadays there is considerable evidence showing that non-dopaminergic degeneration also occurs in other brain areas which seems to be responsible for the deficits in olfactory, emotional and memory functions that precede the classical motor symptoms in PD. The present review attempts to examine results reported in epidemiological, clinical and animal studies to provide a comprehensive picture of the antiparkinsonian potential of caffeine. Convergent epidemiological and pre-clinical data suggest that caffeine may confer neuroprotection against the underlying dopaminergic neuron degeneration, and influence the onset and progression of PD. The available data also suggest that caffeine can improve the motor deficits of PD and that adenosine A2A receptor antagonists such as istradefylline reduces OFF time and dyskinesia associated with standard 'dopamine replacement' treatments. Finally, recent experimental findings have indicated the potential of caffeine in the management of non-motor symptoms of PD, which do not improve with the current dopaminergic drugs. Altogether, the studies reviewed provide strong evidence that caffeine may represent a promising therapeutic tool in PD, thus being the first compound to restore both motor and non-motor early symptoms of PD together with its neuroprotective potential.

  17. Ashwagandha (Withania somnifera) Reverses β-Amyloid1-42 Induced Toxicity in Human Neuronal Cells: Implications in HIV-Associated Neurocognitive Disorders (HAND)

    PubMed Central

    Kurapati, Kesava Rao Venkata; Atluri, Venkata Subba Rao; Samikkannu, Thangavel; Nair, Madhavan P. N.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS) also known as ‘ashwagandha’ is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1–42)-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1) extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B) infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ) levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B) induced neuro-pathogenesis. PMID:24147038

  18. Antioxidants as a Preventive Treatment for Epileptic Process: A Review of the Current Status

    PubMed Central

    Martinc, Boštjan; Grabnar, Iztok; Vovk, Tomaž

    2014-01-01

    Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted. PMID:25977679

  19. Ventral tegmental area/substantia nigra and prefrontal cortex rodent organotypic brain slices as an integrated model to study the cellular changes induced by oxygen/glucose deprivation and reperfusion: effect of neuroprotective agents.

    PubMed

    Colombo, Laura; Parravicini, Chiara; Lecca, Davide; Dossi, Elena; Heine, Claudia; Cimino, Mauro; Wanke, Enzo; Illes, Peter; Franke, Heike; Abbracchio, Maria P

    2014-01-01

    Unveiling the roles of distinct cell types in brain response to insults is a partially unsolved challenge and a key issue for new neuroreparative approaches. In vivo models are not able to dissect the contribution of residential microglia and infiltrating blood-borne monocytes/macrophages, which are fundamentally undistinguishable; conversely, cultured cells lack original tissue anatomical and functional complexity, which profoundly alters reactivity. Here, we tested whether rodent organotypic co-cultures from mesencephalic ventral tegmental area/substantia nigra and prefrontal cortex (VTA/SN-PFC) represent a suitable model to study changes induced by oxygen/glucose deprivation and reperfusion (OGD/R). OGD/R induced cytotoxicity to both VTA/SN and PFC slices, with higher VTA/SN susceptibility. Neurons were highly affected, with astrocytes and oligodendrocytes undergoing very mild damage. Marked reactive astrogliosis was also evident. Notably, OGD/R triggered the activation of CD68-expressing microglia and increased expression of Ym1 and Arg1, two markers of "alternatively" activated beneficial microglia. Treatment with two well-known neuroprotective drugs, the anticonvulsant agent valproic acid and the purinergic P2-antagonist PPADS, prevented neuronal damage. Thus, VTA/SN-PFC cultures are an integrated model to investigate OGD/R-induced effects on distinct cells and easily screen neuroprotective agents. The model is particularly adequate to dissect the microglia phenotypic shift in the lack of a functional vascular compartment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease.

    PubMed

    Liu, Quan Feng; Lee, Jang Ho; Kim, Young-Mi; Lee, Soojin; Hong, Yoon Ki; Hwang, Soojin; Oh, Youngje; Lee, Kyungho; Yun, Hye Sup; Lee, Im-Soon; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.

  1. Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-Like Disease.

    PubMed

    Ahuja, Manuj; Ammal Kaidery, Navneet; Yang, Lichuan; Calingasan, Noel; Smirnova, Natalya; Gaisin, Arsen; Gaisina, Irina N; Gazaryan, Irina; Hushpulian, Dmitry M; Kaddour-Djebbar, Ismail; Bollag, Wendy B; Morgan, John C; Ratan, Rajiv R; Starkov, Anatoly A; Beal, M Flint; Thomas, Bobby

    2016-06-08

    A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects. Copyright © 2016 the authors 0270-6474/16/366333-20$15.00/0.

  2. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?

    PubMed

    Johnson, Stephen M; Wiegel, Liana M; Majewski, David J

    2007-08-01

    The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5-10.0 mM). Riluzole (50 microM; persistent Na(+) channel blocker) increased burst frequency by 31 +/- 5% (P < 0.05) and decreased burst amplitude by 42 +/- 4% (P < 0.05). In contrast, flufenamic acid (FFA, 20-500 microM; Ca(2+)-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner (P < 0.05). During synaptic inhibition blockade with bicuculline (50 microM; GABA(A) channel blocker) and strychnine (50 muM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5-10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 microM) did not alter burst frequency, whereas FFA (100 microM) abolished burst frequency (P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca(2+)-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca(2+)-activated cation channels.

  3. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    PubMed Central

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine. PMID:22666298

  4. Propofol and sodium thiopental protect against MK-801-induced neuronal necrosis in the posterior cingulate/retrosplenial cortex.

    PubMed

    Jevtovic-Todorovic, V; Wozniak, D F; Powell, S; Olney, J W

    2001-09-21

    N-Methyl-D-aspartate (NMDA) antagonists act by an anti-excitotoxic action to provide neuroprotection against acute brain injury, but these agents can also cause toxic effects. In low doses they induce reversible neuronal injury, but in higher doses they cause irreversible degeneration of cerebrocortical neurons. GABAmimetic drugs protect against the reversible neurotoxic changes in rat brain. Here we show that two GABAmimetic anesthetic agents--propofol and sodium thiopental--protect against the irreversible neurodegenerative reaction induced by the powerful NMDA antagonist, MK-801.

  5. Reprint: Good laboratory practice: preventing introduction of bias at the bench

    PubMed Central

    Macleod, Malcolm R; Fisher, Marc; O’Collins, Victoria; Sena, Emily S; Dirnagl, Ulrich; Bath, Philip MW; Buchan, Alistair; van der Worp, H Bart; Traystman, Richard J; Minematsu, Kazuo; Donnan, Geoffrey A; Howells, David W

    2009-01-01

    As a research community, we have failed to show that drugs, which show substantial efficacy in animal models of cerebral ischemia, can also improve outcome in human stroke. Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct, and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke. PMID:18797473

  6. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine

    PubMed Central

    Marashly, Eyad T.; Bohlega, Saeed A.

    2017-01-01

    With the huge negative impact of neurological disorders on patient’s life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson’s disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future. PMID:28775706

  7. Safinamide for the treatment of Parkinson's disease.

    PubMed

    Kandadai, Rukmini Mridula; Jabeen, Shaik Afshan; Kanikannan, Meena A; Borgohain, Rupam

    2014-11-01

    Parkinson's disease (PD) is a neurodegenerative disease caused by a complex interaction of loss of dopaminergic and non-dopaminergic neurotransmitter systems. Drugs acting on the dopaminergic pathways are the mainstay of treatment for motor symptoms today. Safinamide (NW-1015) is a novel drug with multiple actions. It is a monoamine oxidase B inhibitor and improves dopaminergic transmission. In addition, it has antiglutamatergic effects and can thus reduce dyskinesias, which is a side effect limiting most dopaminergic therapy. In Phase III trials, safinamide has been found to be a useful adjunctive to dopamine agonists in early PD and has been shown to increase time without increasing troublesome dyskinesias when used as an adjunct to levodopa in patients with advanced PD. A possible neuroprotective role in inhibiting PD disease progression is envisaged and warrants future studies.

  8. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  9. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  10. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    PubMed Central

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  11. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    PubMed Central

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neuroprotective as their caffeine and nicotine-containing counterparts and that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco are also evident in Drosophila models of Alzheimer's disease and polyglutamine disease. Finally, we report that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco require the cytoprotective transcription factor Nrf2 and that a known Nrf2 activator in coffee, cafestol, is also able to confer neuroprotection in our fly models of PD. Our findings indicate that coffee and tobacco contain Nrf2-activating compounds that may account for the reduced risk of PD among coffee and tobacco users. These compounds represent attractive candidates for therapeutic intervention in PD and perhaps other neurodegenerative diseases. PMID:20410106

  12. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  13. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were subjected to image-analysis morphometry. The extent of retianl damage was assessed by measuring the lesion diameter and the amount of photoreceptor cell loss in the outer nuclear layer. Methylprednisolone and MI-801 were shown to ameliorate laser-induced retinal damage, whereas both superoxide dismutase and flunarizine were ineffective. Furthermore, MK-801 diminished the proliferative reaction of the retinal pigment epithelial cells. On the basis of our results we suggest that the pigmented rat model is suitable for studying and screening various compounds for their neuroprotective efficacy in treating retinal laser injury. We further suggest that glutamate might play a key role in mediating retinal injury induced by laser irradiation.

  14. Topical treatment of glaucoma: established and emerging pharmacology.

    PubMed

    Dikopf, Mark S; Vajaranant, Thasarat S; Edward, Deepak P

    2017-06-01

    Glaucoma is a collection of optic neuropathies consisting of retinal ganglion cell death and corresponding visual field loss. Glaucoma is the leading cause of irreversible vision loss worldwide and is forecasted to precipitously increase in prevalence in the coming decades. Current treatment options aim to lower intraocular pressure (IOP) via topical or oral therapy, laser treatment to the trabecular meshwork or ciliary body, and incisional surgery. Despite increasing use of trabecular laser therapy, topical therapy remains first-line in the treatment of most forms of glaucoma. Areas covered: Novel glaucoma therapies are a long-standing focus of investigational study. More than two decades have passed since the last United States Food and Drug Administration (FDA) approval of a topical glaucoma drug. Here, the authors review established topical glaucoma drops as well as those currently in FDA phase 2 and 3 clinical trial, nearing clinical use. Expert opinion: Current investigational glaucoma drugs lower IOP, mainly through enhanced trabecular meshwork outflow. Although few emerging therapies show evidence of retinal ganglion cell and optic nerve neuroprotection in animal models, emerging drugs are focused on lowering IOP, similar to established medicines.

  15. [STUDYING SOME PHARMACOLOGICAL EFFECTS OF NEW 3-HYDROXYPYRIDINE DERIVATIVE].

    PubMed

    Yasnetsov, V V; Tsublova, E G; Yasnetsov, Vic V; Skachilova, S Ya; Karsanova, S K; Ivanov, Yu V

    2016-01-01

    It was established that a new 3-hydroxypyridine (3-HP) derivative, 2-ethyl-6-methyl-3-hydroxypyridine L-aspartate (3-HP), in small doses (1 and 5 mg/kg) increased physical performance in treadmill and swimming tests on rats. The new substance showed greater or equal effects compared to the reference actoprotector drugs metaprot and ladasten in much higher doses. The gluconeogenesis inhibitor tryptophan significantly (74 ± 5%, p < 0.01) prevented this stimulatory effect of 3-HPA in the treadmill test on rats. 3-HPA at a higher dose (30 mg/kg) had marked antiamnesic effect on various models of amnesia in mice. It was more effective than reference drugs mexidol (another 3-HP derivative) in a dose of 30 mg/kg and nootropic drug piracetam in a dose of 200 mg/kg, but had equal effect with these drugs in doses of 50 and 800 mg/kg, respectively. 3-HPA (30 mg/kg per day) had neuroprotective effect in rats with brain ischemia and decreased the neurologic deficiency more effectively than mexidol (50 mg/kg per day).

  16. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy

    NASA Astrophysics Data System (ADS)

    Chung, Joo Eun; Tan, Susi; Gao, Shu Jun; Yongvongsoontorn, Nunnarpas; Kim, Soon Hee; Lee, Jeong Heon; Choi, Hak Soo; Yano, Hirohisa; Zhuo, Lang; Kurisawa, Motoichi; Ying, Jackie Y.

    2014-11-01

    When designing drug carriers, the drug-to-carrier ratio is an important consideration, because the use of high quantities of carriers can result in toxicity as a consequence of poor metabolism and elimination of the carriers. However, these issues would be of less concern if both the drug and carrier had therapeutic effects. (-)-Epigallocatechin-3-O-gallate (EGCG), a major ingredient of green tea, has been shown, for example, to possess anticancer effects, anti-HIV effects, neuroprotective effects and DNA-protective effects. Here, we show that sequential self-assembly of the EGCG derivative with anticancer proteins leads to the formation of stable micellar nanocomplexes, which have greater anticancer effects in vitro and in vivo than the free protein. The micellar nanocomplex is obtained by complexation of oligomerized EGCG with the anticancer protein Herceptin to form the core, followed by complexation of poly(ethylene glycol)-EGCG to form the shell. When injected into mice, the Herceptin-loaded micellar nanocomplex demonstrates better tumour selectivity and growth reduction, as well as longer blood half-life, than free Herceptin.

  17. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model.

    PubMed

    Yadav, Satyndra Kumar; Prakash, Jay; Chouhan, Shikha; Westfall, Susan; Verma, Mradul; Singh, Tryambak Deo; Singh, Surya Pratap

    2014-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disease found in the aging population. Currently, many studies are being conducted to find a suitable and effective cure for PD, with an emphasis on the use of herbal plants. In Ayurveda, Mucuna pruriens (Mp), a leguminous plant, is used as an anti-inflammatory drug. In this study, the neuroprotective effect of an ethanolic extract of Mp seed is evaluated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD and compared to estrogen, a well reported neuroprotective agent used for treating PD. Twenty-four Swiss albino mice were randomly divided into four groups: Control, MPTP, MPTP+Mp and MPTP+estrogen. The behavioural recovery in both Mp and estrogen treated mice was investigated using the rotarod, foot printing and hanging tests. The recovery of dopamine neurons in the substantia nigra (SN) region was estimated by tyrosine hydroxylase (TH), immunostaining. Additionally inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity was evaluated to assess the level of oxidative damage and glial activation respectively. The levels of dopamine and its metabolite in the nigrostriatal region were measured by HPLC. Mp treatment restored all the deficits induced by MPTP more effectively than estrogen. Mp treatment recovered the number of TH-positive cells in both the SN region and the striatum while reducing the expression of iNOS and GFAP in the SN. Treatment with Mp significantly increased the levels of dopamine, DOPAC and homovanillic acid compared to MPTP intoxicated mice. Notably, the effect of Mp was greater than that elicited by estrogen. Mp down regulates NO production, neuroinflammation and microglial activation and all of these actions contribute to Mp's neuroprotective activity. These results suggest that Mp can be an effective treatment for neurodegenerative diseases, especially PD by decreasing oxidative stress and possibly by implementing neuronal and glial cell crosstalk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury

    PubMed Central

    Wang, Yanzhe; He, Zhiyi; Deng, Shumin

    2016-01-01

    Background Activators of PPARs, particularly PPARγ, may be effective neuroprotective drugs against inflammatory responses in cerebral ischemia and reperfusion injury. Ursolic acid (UA) may act as a PPARγ agonist and serve as an anti-inflammatory agent. In this study, we used a rat middle cerebral artery occlusion and reperfusion model to examine how UA acts as a neuroprotective agent to modulate the metalloprotease/anti-metalloprotease balance. Methods The middle cerebral artery occlusion and reperfusion model (occlusion for 2 hours followed by reperfusion for 48 hours) was induced in male Sprague Dawley rats. UA was administered intragastrically 0.5, 24, and 47 hours after reperfusion. Bisphenol A diglycidyl ether (a PPARγ antagonist) was intraperitoneally administered 1, 24.5, and 47.5 hours after reperfusion. Forty-eight hours after reperfusion, neurological deficits and infarct volume were estimated. The PPARγ level and the metalloprotease/anti-metalloprotease balance were examined by Western blotting and immunohistochemistry. The activation of MAPK signaling pathways was also assessed. Results UA-treated (5, 10, or 20 mg/kg) rats showed significant improvement in neurological deficit score, infarct volume, and the number of intact neurons compared with control rats (P<0.01). Both the PPARγ protein level and the percentage of PPARγ-positive cells were increased in the UA-treated groups (P<0.01). Compared with the control group, the UA-treated groups exhibited reduced protein levels of MMP2, MMP9, and activated MAPKs (P<0.01) but an increased level of TIMP1 (P<0.01). UA exerted its protective effects in a dose-dependent manner. Co-treatment with UA and bisphenol A diglycidyl ether completely abolished the UA-induced changes in PPARγ expression; however UA continued to exert a significant but partial neuroprotective effect. Conclusion UA can act as a PPARγ agonist to improve the metalloprotease/anti-metalloprotease balance, possibly by inhibiting the activation of the MAPK signaling pathway, thereby attenuating cerebral ischemia and reperfusion injury. Therefore, UA may serve as a novel neuroprotective therapeutic agent. PMID:27274199

  19. Global Cerebral Ischemia: Synaptic and Cognitive Dysfunction

    PubMed Central

    Neumann, Jake T.; Cohan, Charles H.; Dave, Kunjan R.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2018-01-01

    Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia. PMID:23170794

  20. Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy.

    PubMed

    Beltramo, Elena; Lopatina, Tatiana; Mazzeo, Aurora; Arroba, Ana I; Valverde, Angela M; Hernández, Cristina; Simó, Rafael; Porta, Massimo

    2016-12-01

    Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α 2 -adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood-retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina. Expression of SST receptors 1-5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed. HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina-vascular crosstalk under diabetic-like conditions. Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.

  1. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  2. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review.

    PubMed

    Pomara, Cristoforo; Neri, Margherita; Bello, Stefania; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela

    2015-01-01

    Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.

  3. Unfavorable effect of levetiracetam on cultured hippocampal neurons after hyperthermic injury.

    PubMed

    Sendrowski, Krzysztof; Sobaniec, Piotr; Poskrobko, Elżbieta; Rusak, Małgorzata; Sobaniec, Wojciech

    2017-06-01

    The aim of this study was to examine the viability of neurons and the putative neuroprotective effects of second-generation antiepileptic drug, levetiracetam (LEV), on cultured hippocampal neurons injured by hyperthermia. Primary cultures of rat's hippocampal neurons at 7day in vitro (DIV) were incubated in the presence or absence of LEV in varied concentrations under hyperthermic conditions. Cultures were heated in a temperature of 40°C for 24h or in a temperature of 41°C for 6h. Flow cytometry with Annexin V/PI staining as well as fluorescent microscopy assay were used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, the release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Assessment was performed after 9DIV and 10 DIV. Incubation of hippocampal cultures in hyperthermic conditions resulted in statistically significant increase in the number of injured neurons when compared with non-heated control cultures. Intensity of neuronal destruction was dependent on temperature-value. When incubation temperature 40°C was used, over 80% of the population of neurons remained viable after 10 DIV. Under higher temperature 41°C, only less than 60% of neurons were viable after 10 DIV. Both apoptotic and necrotic pathways of neuronal death induced by hyperthermia were confirmed by Annexin V/PI staining. LEV showed no neuroprotective effects in the current model of hyperthermia in vitro. Moreover, drug, especially when used in higher concentrations, exerted unfavorable intensification of aponecrosis of cultured hippocampal neurons. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  4. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson's disease.

    PubMed

    Erbaş, Oytun; Yılmaz, Mustafa; Taşkıran, Dilek

    2016-03-01

    Levetiracetam (LEV), a second-generation anti-epileptic drug, is used for treatment of both focal and generalized epilepsy. Growing body of evidence suggests that LEV may have neuroprotective effects. The present study was undertaken to investigate the neuroprotective effects of LEV on rotenone-induced Parkinson's disease (PD) in rats. Twenty-four adult Sprague-Dawley rats were infused with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) under stereotaxic surgery. PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly distributed into two groups; Group 1 (n=8) and Group 2 (n=8) were administered saline (1 ml/kg/day, i.p.) and LEV (600 mg/kg/day, i.p.) through 21 days, respectively. The effects of LEV treatment were evaluated by behavioral (rotation score), biochemical (brain homovalinic acid level and oxidant/antioxidant status) and immunohistochemical (tyrosine hydroxylase) parameters. Apomorphine-induced rotations in PD rats were significantly suppressed by LEV treatment. While unilateral rotenone lesion induced a dramatic loss of dopaminergic neurons both in the striatum and SNc, LEV treatment significantly attenuated the degenerative changes in dopaminergic neurons. Furthermore, LEV significantly decreased lipid peroxide levels, a marker of lipid peroxidation, and induced glutathione levels, catalase and superoxide dismutase activity in PD rats compared with saline group. We conclude that LEV may have beneficial effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the attenuation of oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In vitro 6-hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801.

    PubMed

    Massari, Caio M; Castro, Adalberto A; Dal-Cim, Tharine; Lanznaster, Débora; Tasca, Carla I

    2016-12-01

    Parkinson's disease (PD) involves the loss of striatal dopaminergic neurons, although other neurotransmitters and brain areas are also involved in its pathophysiology. In rodent models to PD it has been shown statins improve cognitive and motor deficits and attenuate inflammatory responses evoked by PD-related toxins. Statins are the drugs most prescribed to hypercholesterolemia, but neuroprotective effects have also been attributed to statins treatment in humans and in animal models. This study aimed to establish an in vitro model of 6-hydroxydopamine (6-OHDA)-induced toxicity, used as an initial screening test to identify effective drugs against neural degeneration related to PD. The putative neuroprotective effect of atorvastatin against 6-OHDA-induced toxicity in rat striatal, cerebrocortical and hippocampal slices was also evaluated. 6-OHDA (100μM) decreased cellular viability in slices obtained from rat cerebral cortex, hippocampus and striatum. 6-OHDA also induced an increased reactive oxygen species (ROS) production and mitochondrial dysfunction. Co-incubation of 6-OHDA with atorvastatin (10μM) or MK-801 (50μM) an N-methyl-d-aspartate (NMDA) receptor antagonist, partially attenuated the cellular damage evoked by 6-OHDA in the three brain areas. Atorvastatin partially reduced ROS production in the hippocampus and striatum and disturbances of mitochondria membrane potential in cortex and striatum. 6-OHDA-induced toxicity in vitro displays differences among the brain structures, but it is also observed in cerebrocortical and hippocampal slices, besides striatum. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Neurotoxicity by Synthetic Androgen Steroids: Oxidative Stress, Apoptosis, and Neuropathology: A Review

    PubMed Central

    Pomara, Cristoforo; Neri, Margherita; Bello, Stefania; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela

    2015-01-01

    Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS – induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future. PMID:26074748

  7. Improving drug delivery technology for treating neurodegenerative diseases.

    PubMed

    Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-07-01

    Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.

  8. Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Antidiabetes Drugs

    PubMed Central

    2011-01-01

    The widely employed antidiabetic drug pioglitazone (Actos) is shown to be a specific and reversible inhibitor of human monoamine oxidase B (MAO B). The crystal structure of the enzyme–inhibitor complex shows that the R-enantiomer is bound with the thiazolidinedione ring near the flavin. The molecule occupies both substrate and entrance cavities of the active site, establishing noncovalent interactions with the surrounding amino acids. These binding properties differentiate pioglitazone from the clinically used MAO inhibitors, which act through covalent inhibition mechanisms and do not exhibit a high degree of MAO A versus B selectivity. Rosiglitazone (Avandia) and troglitazone, other members of the glitazone class, are less selective in that they are weaker inhibitors of both MAO A and MAO B. These results suggest that pioglitazone may have utility as a “repurposed” neuroprotectant drug in retarding the progression of disease in Parkinson's patients. They also provide new insights for the development of reversible isoenzyme-specific MAO inhibitors. PMID:22282722

  9. [The role of the MAO-B inhibitor razagiline in the treatment of Parkinson's disease].

    PubMed

    Fedorova, N V; Tekaeva, F K; Bel'gusheva, M E

    2011-01-01

    The features of the new selective MAO-B inhibitor razagiline (azilect) are reviewed against the background of latest advances in the field of treatment of Parkinson's disease (PD). The authors present the results of treatment of 20 patients in the full-blown stage of disease (mean age of patients 61.4±7.0 years). One of the objectives was to study the effect of razagiline on speech disorders in PD. A battery of scales was used to assess the global efficacy of treatment and the effect of the drug on the groups of symptoms. The high symptomatic effect of the drug used as monotherapy in early stages and in the combination with levodopa drugs in the full-blown stages of disease was revealed. It has been concluded that razagiline has a neuroprotective effect and modifies the course of PD. It exerts an effect on axial symptoms of PD: reduces speech disorders, postural instability, frequency of freezing episodes, severity of pharmacological dyskinesias.

  10. [EFFICACY OF CYTOFLAVIN IN COMPLEX TREATMENT OF DIABETIC FOOT SYNDROME].

    PubMed

    Skrypko, V; Kovalenko, A; Zaplutanov, V; Kharitonova, T; Myhaloyko, I

    2017-04-01

    The study involved 97 patients with severe diabetic foot syndrome (DFS) subcompensated type 2 diabetes. All patients were available mediacalcification foot and lower leg arteries of different severity. Depending on the treatment, all patients were divided into 2 groups by stratified randomization. The І group received standard therapy, which is indicated for the DFS. A ІІ group of patients additionally received basic therapy drug Cytoflavin 10 ml 0,9% NaCl 200 ml for 10 days, followed by transfer to tablet form Cytoflavin 2 tablets 2 times per day orally for one month. We noted a positive trend of treatment of patients who, in addition to standard therapy received the drug Cytoflavin. Thus, the use of complex surgical treatment of patients with mixed form of DFS Cytoflavin reduces the severity of distal polyneuropathy, improves oxygenation of tissues and restores the enzyme activity of antioxidant system, that manifested neuroprotective, antioxidant and anti-hypoxic effects of drugs, which substantiates the indications for its use in the this pathology.

  11. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  12. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  13. To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents?

    PubMed

    Hunter, A J; Mackay, K B; Rogers, D C

    1998-02-01

    A general consensus is being reached on the use of a combination of mortality and functional end-points in clinical trials of neuroprotective agents. However, to date, few preclinical studies have examined the effects of putative neuroprotective agents on functional outcome after ischaemia. The data described in this review show the importance of combining both histopathological and neurobehavioural studies when evaluating the neuroprotective efficacy of anti-ischaemic agents in animal models of cerebral ischaemia. Here, Jackie Hunter, Ken Mackay and Derek Rogers argue that measures of functional improvement in models of ischaemia should be incorporated to characterize further the neuroprotection afforded by a compound that could aid the selection of doses and end-point measures in early clinical trials.

  14. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism

    PubMed Central

    Efremova, Liudmila; Schildknecht, Stefan; Adam, Martina; Pape, Regina; Gutbier, Simon; Hanf, Benjamin; Bürkle, Alexander; Leist, Marcel

    2015-01-01

    Background and Purpose Few neuropharmacological model systems use human neurons. Moreover, available test systems rarely reflect functional roles of co-cultured glial cells. There is no human in vitro counterpart of the widely used 1-methyl-4-phenyl-tetrahydropyridine (MPTP) mouse model of Parkinson's disease Experimental Approach We generated such a model by growing an intricate network of human dopaminergic neurons on a dense layer of astrocytes. In these co-cultures, MPTP was metabolized to 1-methyl-4-phenyl-pyridinium (MPP+) by the glial cells, and the toxic metabolite was taken up through the dopamine transporter into neurons. Cell viability was measured biochemically and by quantitative neurite imaging, siRNA techniques were also used. Key Results We initially characterized the activation of PARP. As in mouse models, MPTP exposure induced (poly-ADP-ribose) synthesis and neurodegeneration was blocked by PARP inhibitors. Several different putative neuroprotectants were then compared in mono-cultures and co-cultures. Rho kinase inhibitors worked in both models; CEP1347, ascorbic acid or a caspase inhibitor protected mono-cultures from MPP+ toxicity, but did not protect co-cultures, when used alone or in combination. Application of GSSG prevented degeneration in co-cultures, but not in mono-cultures. The surprisingly different pharmacological profiles of the models suggest that the presence of glial cells, and the in situ generation of the toxic metabolite MPP+ within the layered cultures played an important role in neuroprotection. Conclusions and Implications Our new model system is a closer model of human brain tissue than conventional cultures. Its use for screening of candidate neuroprotectants may increase the predictiveness of a test battery. PMID:25989025

  16. Pharmacokinetics and Metabolism of 4R-Cembranoid.

    PubMed

    Vélez-Carrasco, Wanda; Green, Carol E; Catz, Paul; Furimsky, Anna; O'Loughlin, Kathleen; Eterović, Vesna A; Ferchmin, P A

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect.

  17. Pharmacokinetics and Metabolism of 4R-Cembranoid

    PubMed Central

    Vélez-Carrasco, Wanda; Green, Carol E.; Catz, Paul; Furimsky, Anna; O’Loughlin, Kathleen; Eterović, Vesna A.; Ferchmin, P. A.

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect. PMID:25811857

  18. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  19. Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models

    PubMed Central

    Gigler, G; Móricz, K; ágoston, M; Simó, A; Albert, M; Benedek, A; Kapus, G; Kertész, S; Vegh, M; Barkóczy, J; Markó, B; Szabó, G; Matucz, É; Gacsályi, I; Lévay, G; Hársing, L G; Szénási, G

    2007-01-01

    Background and purpose: Blockade of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors is a good treatment option for a variety of central nervous system disorders. The present study evaluated the neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, as a potential drug candidate. Experimental approach: AMPA antagonist effects of EGIS-8332 were measured using patch-clamp techniques. Neuroprotective and anticonvulsant effects of EGIS-8332 were evaluated in various experimental models, relative to those of GYKI 53405. Key results: EGIS-8332 inhibited AMPA currents in rat cerebellar Purkinje cells and inhibited the AMPA- and quisqualate-induced excitotoxicity in primary cultures of telencephalon neurons (IC50=5.1-9.0 μM), in vitro. Good anticonvulsant actions were obtained in maximal electroshock-, sound- and chemically-induced seizures (range of ED50=1.4-14.0 mg kg−1 i.p.) in mice. Four days after transient global cerebral ischaemia, EGIS-8332 decreased neuronal loss in the hippocampal CA1 area in gerbils and rats. EGIS-8332 dose-dependently reduced cerebral infarct size after permanent middle cerebral artery occlusion in mice and rats (minimum effective dose=3 mg kg−1 i.p.). Side effects of EGIS-8332 emerged much above its pharmacologically active doses. A tendency for better efficacy of GYKI 53405 than that of EGIS-8332 was observed in anticonvulsant tests that reached statistical significance in few cases, while the contrary was perceived in cerebral ischaemia tests. Conclusions and implications: EGIS-8332 seems suitable for further development for the treatment of epilepsy, ischaemia and stroke based on its efficacy in a variety of experimental disease models, and on its low side effect potential. PMID:17603549

  20. PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia.

    PubMed

    Parrella, Edoardo; Porrini, Vanessa; Iorio, Rosa; Benarese, Marina; Lanzillotta, Annamaria; Mota, Mariana; Fusco, Mariella; Tonin, Paolo; Spano, PierFranco; Pizzi, Marina

    2016-10-01

    The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-08-05

    Spirulina is a widely used health supplement and is a dietary source of C-Phycocyanin (CPC), a potent anti-oxidant. We have previously reported the neurotoxic potential of tributyltin chloride (TBTC), an environmental pollutant and potent biocide. In this study, we have evaluated the protective efficacy of CPC against TBTC induced neurotoxicity. To evaluate the extent of neuroprotection offered by CPC, its efficacy was compared with the degree of protection offered by N-acetylcysteine (NAC) (a well known neuroprotective drug, taken as a positive control). Male Wistar rats (28 day old) were administered with 20mg/kg TBTC (oral) and 50mg/kg CPC or 50mg/kg NAC (i.p.), alone or in combination, and various parameters were evaluated. These include blood-brain barrier (BBB) damage; redox parameters (ROS, GSH, redox pathway associated enzymes, oxidative stress markers); inflammatory, cellular, and stress markers; apoptotic proteins and in situ cell death assay (TUNEL). We observed increased CPC availability in cortical tissue following its administration. Although BBB associated proteins like claudin-5, p-glycoprotein and ZO-1 were restored, CPC/NAC failed to protect against TBTC induced overall BBB permeability (Evans blue extravasation). Both CPC and NAC remarkably reduced oxidative stress and inflammation. NAC effectively modulated redox pathway associated enzymes whereas CPC countered ROS levels efficiently. Interestingly, CPC and NAC were equivalently capable of reducing apoptotic markers, astroglial activation and cell death. This study illustrates the various pathways involved in CPC mediated neuroprotection against this environmental neurotoxicant and highlights its capability to modulate glial cell activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury.

    PubMed

    Mann, Aniv; Smoum, Reem; Trembovler, Victoria; Alexandrovich, Alexander; Breuer, Aviva; Mechoulam, Raphael; Shohami, Esther

    2015-06-01

    The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI). Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage. Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI. We utilized the TBI model in mice to examine the therapeutic potential of PalmS, injected 1 h following closed head injury (CHI). We followed the functional recovery of the injured mice for 28 days post-CHI, and evaluated cognitive and motor function, lesion volume, cytokines levels, molecular signaling, and infarct volume at different time points after CHI. PalmS treatment led to a significant improvement of the neurobehavioral outcome of the treated mice, compared with vehicle. This effect was attenuated in the presence of eCBR antagonists and in CB2-/- mice, compared to controls. Unexpectedly, treatment with PalmS did not affect edema and lesion volume, TNFα and IL1β levels, anti-apoptotic mechanisms, nor did it exert improvement in cognitive and motor function. Finally, co-administration of PalmS, AraS and 2-AG, did not enhance the effect of the individual drugs. We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.

  3. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    PubMed

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  4. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease.

    PubMed

    Batista, Andre F; Forny-Germano, Leticia; Clarke, Julia R; Lyra E Silva, Natalia M; Brito-Moreira, Jordano; Boehnke, Susan E; Winterborn, Andrew; Coe, Brian C; Lablans, Ann; Vital, Juliana F; Marques, Suelen A; Martinez, Ana Mb; Gralle, Matthias; Holscher, Christian; Klein, William L; Houzel, Jean-Christophe; Ferreira, Sergio T; Munoz, Douglas P; De Felice, Fernanda G

    2018-05-01

    Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-β oligomers (AβOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AβOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  5. Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5'-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study.

    PubMed

    Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F

    2010-04-01

    Cytidine-5'-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy ((1)H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using (1)H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.

  6. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.

    PubMed

    Green, A R; De Souza, R J; Williams, J L; Murray, T K; Cross, A J

    1992-04-01

    Studies were undertaken in mice and rats on the neurotoxic effects of methamphetamine on dopaminergic and 5-hydroxytryptaminergic neurones in the brain and the neuroprotective action of chlormethiazole. In initial studies, mice were injected with methamphetamine (5 mg/kg, i.p.) at 2 hr intervals, to a total of 4 times. This procedure produced a 66% loss of striatal dopamine and a 50% loss of tyrosine hydroxylase activity 3 days later. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each dose of methamphetamine, totally prevented the methamphetamine-induced loss of tyrosine hydroxylase activity and partly prevented the loss of dopamine. Phencyclidine (20 mg/kg, i.p.), given in place of chlormethiazole, also prevented the loss of tyrosine hydroxylase. Administration to rats of 4 doses of methamphetamine (15 mg/kg, i.p.) at 3 hr intervals resulted in a 75% loss of striatal dopamine 3 days later and a similar loss of 5-HT and 5-HIAA in cortex and hippocampus. Chlormethiazole (50 mg/kg, i.p.), given 15 min before each injection of methamphetamine, protected against the loss of dopamine and indoleamine content, in the respective regions. Pentobarbital (25 mg/kg, i.p.) also provided substantial protection but diazepam (2.5 mg/kg, i.p.) was without effect. Confirming earlier studies, dizocilpine (1 mg/kg) also provided substantial protection against the methamphetamine-induced neurotoxicity. Preliminary data indicated that chlormethiazole was not neuroprotective because of a hypothermic action. These data therefore demonstrate that chlormethiazole is an effective neuroprotective agent against methamphetamine-induced neurotoxicity and extend the evidence for the possible value of this drug in preventing neurodegeneration.

  7. Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis.

    PubMed

    Callaway, J K; Beart, P M; Jarrott, B; Giardina, S F

    2001-04-01

    AM-36 is a novel neuroprotective agent incorporating both antioxidant and Na(+) channel blocking actions. In cerebral ischaemia, loss of cellular ion homeostasis due to Na(+) channel activation, together with increased reactive oxygen species (ROS) production, are thought to contribute to neuronal death. Since neuronal death in the penumbra of the ischaemic lesion is suggested to occur by apoptosis, we investigated the ability of AM-36, antioxidants and Na(+) channel antagonists to inhibit toxicity induced by the neurotoxin, veratridine in cultured cerebellar granule cells (CGC's). Veratridine (10 - 300 microM) concentration-dependently reduced cell viability of cultured CGC's. Under the experimental conditions employed, cell death induced by veratridine (100 microM) possessed the characteristics of apoptosis as assessed by morphology, TUNEL staining and DNA laddering on agarose gels. Neurotoxicity and apoptosis induced by veratridine (100 microM) were inhibited to a maximum of 50% by the antioxidants, U74500A (0.1 - 10 microM) and U83836E (0.03 - 10 microM), and to a maximum of 30% by the Na(+) channel blocker, dibucaine (0.1 - 100 microM). In contrast, AM-36 (0.01 - 10 microM) completely inhibited veratridine-induced toxicity ( IC(50) 1.7 (1.5 - 1.9) microM, 95% confidence intervals (CI) in parentheses) and concentration-dependently inhibited apoptosis. These findings suggest veratridine-induced toxicity and apoptosis are partially mediated by generation of ROS. AM-36, which combines both Na(+) channel blocking and antioxidant activity, provided superior neuroprotection compared with agents possessing only one of these actions. This bifunctional profile of activity may underlie the potent neuroprotective effects of AM-36 recently found in a stroke model in conscious rats.

  8. Subacute Fluoxetine Reduces Signs of Hippocampal Damage Induced by a Single Convulsant Dose of 4-Aminopyridine in Rats.

    PubMed

    Shiha, Ahmed A; de la Rosa, Rubén Fernández; Delgado, Mercedes; Pozo, Miguel A; García-García, Luis

    2017-01-01

    Epilepsy is a central disorder associated with neuronal damage and brain hypometabolism. It has been reported that antidepressant drugs show anticonvulsant and neuroprotective effects in different animal models of seizures and epilepsy. The purpose of this study was to investigate the eventual short-term brain impairment induced by a single low convulsant dose of the potassium channel blocker 4-aminopyridine (4-AP) and the eventual neuroprotective effects exerted by fluoxetine, a prototypical selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI). In vivo 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and several histological assessments were carried out in adult male rats after i.p. administration of 3 mg/kg 4-AP for evaluating eventual brain metabolism impairment and signs of hippocampal damage. We also evaluated the effects of a short-term fluoxetine treatment (10 mg/kg, i.p. for 7 days) in this seizure model. [18F]FDG PET analysis revealed no changes in the regional brain metabolism on day 3 after 4-AP injection. The histological assessments revealed signs of damage in the hippocampus, a brain area usually affected by seizures. Thus, reactive gliosis and a significant increase in the expression of caspase-9 were found in the aforementioned brain area. By contrast, we observed no signs of neurodegeneration or neuronal death. Regarding the effects of fluoxetine, this SSRI showed beneficial neurologic effects, since it significantly increased the seizure latency time and reduced the abovementioned 4-AP-induced hippocampal damage markers. Overall, our results point to SSRIs and eventually endogenous 5-HT as neuroprotective agents against convulsant-induced hippocampal damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma.

    PubMed

    Lusthaus, Jed Asher; Goldberg, Ivan

    2016-10-01

    Intraocular pressure (IOP) is the most significant modifiable risk factor to prevent onset or progression of glaucoma. Glaucoma prevalence continues to increase, emphasizing the need for improved ocular hypotensive treatment options. To try to improve on both tolerance and IOP control of currently available therapies, different receptors or mechanisms are being explored to reduce IOP more effectively and to improve tolerance. We review synthetic topical and oral drugs in early development for the management of ocular hypertension and glaucoma. New therapeutic agents for IOP control have been discovered; some appear to be reasonably tolerated. IOP reduction may be limited with some agents, but other benefits although unproven may compensate for this, such as less ocular surface disease, enhanced neuro-protection or increased ocular blood flow. Further product development promises improved treatment options for ocular hypertensives and glaucoma sufferers.

  10. [Plant metabolites as nootropics and cognitives].

    PubMed

    Cervenka, F; Jahodár, L

    2006-09-01

    Nowadays several millions of people suffer from Alzheimer's disease and other types of dementia. Etiology of these diseases is not known very well. There occur different levels of neurotransmitters, the level of acetylcholine in the brain is decreased and pathological changes affect the brain tissue. Organic and toxic damage of the brain, free radicals, and other changes participate in the development of these diseases. Drugs as nootropics, cognitives, and neuroprotectives are commonly used to treat these diseases. Some of these drugs have often side and undesirable effects. In recent years some natural substances (galanthamine, huperzine A, vinpocetine), and standardized plant extracts (Ginkgo biloba L., Centella asiatica L.) Urban, Bacopa monniera L., Evolvulus alsinoides L.) are often used. These plant preparations produce fewer undesirable effects and the same effectiveness as the classic therapy, or these preparations are used as a supplement to the classic therapy.

  11. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    PubMed

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine.

  13. Physicochemical and biological evaluation of a cinnamamide derivative R,S-(2E)-1-(3-hydroxypiperidin-1-yl)-3-phenylprop-2-en-1-one (KM-608) for nervous system disorders.

    PubMed

    Gunia-Krzyżak, Agnieszka; Żesławska, Ewa; Bareyre, Florence M; Nitek, Wojciech; Waszkielewicz, Anna M; Marona, Henryk

    2017-08-01

    A cinnamamide scaffold has been successfully incorporated in several compounds possessing desirable pharmacological activities in central and peripheral nervous system such as anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative/hypnotic properties. R,S-(2E)-1-(3-hydroxypiperidin-1-yl)-3-phenylprop-2-en-1-one (KM-608), a cinnamamide derivative, was synthesized, its chemical structure was confirmed by means of spectroscopy and crystallography, and additionally, thermal analysis showed that it exists in one crystalline form. The compound was evaluated in vivo in rodents as anticonvulsant, antiepileptogenic, analgesic, and neuroprotective agent. The beneficial properties of the compound were found in animal models of seizures evoked electrically (maximal electroshock test, 6-Hz) and chemically (subcutaneous pentylenetetrazole seizure test) as well as in three animal models of epileptogenesis: corneal-kindled mice, hippocampal-kindled rats, and lamotrigine-resistant amygdala-kindled rats. Quantitative pharmacological parameters calculated for the tested compound were comparable to those of currently used antiepileptic drugs. In vivo pharmacological profile of KM-608 corresponds with the activity of valproic acid. © 2017 John Wiley & Sons A/S.

  14. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by beta-amyloid25-35 injection into Meynert basal nuclei of rats).

    PubMed

    Ostrovskaya, R U; Belnik, A P; Storozheva, Z I

    2008-07-01

    Experiments on adult Wistar rats showed that injection of beta-amyloid25-35 (2 microg) into Meynert basal nuclei caused long-term memory deficiency which was detected 24 days after this injection by the memory trace retrieval in conditioned passive avoidance reflex (CPAR). The effects of noopept, an original nootropic and neuroprotective dipeptide, on the severity of this cognitive deficiency were studied. Preventive (for 7 days before the injury) intraperitoneal injections of noopept in a dose of 0.5 mg/kg completely prevented mnestic disorders under conditions of this model. Noopept exhibited a significant normalizing effect, if the treatment was started 15 days after the injury, when neurodegenerative changes in the basal nuclei, cortex, and hippocampus were still acutely pronounced. The mechanisms of this effect of the drug are studied, including, in addition to the choline-positive effect, its multicomponent neuroprotective effect and stimulation of production of antibodies to beta-amyloid25-35. Noopept efficiency in many models of Alzheimer disease, its high bioavailability and low toxicity suggest this dipeptide for further studies as a potential agent for the treatment of this condition (initial and moderate phases).

  15. Neuroprotective Effects of Oleocanthal, A Compound in Virgin Olive Oil, in A Rat Model of Traumatic Brain Injury.

    PubMed

    Mete, Mesut; Aydemir, Isıl; Unsal, Ulkun Unlu; Collu, Fatih; Vatandas, Gokhan; Gurcu, Beyhan; Duransoy, Yusuf Kurtulus; Taneli, Fatma; Tugrul, Mehmet Ibrahim; Selcuki, Mehmet

    2017-11-01

    TBI has two distinct phases: primary and secondary injury. Many agents have been used to prevent secondary injury. Oleocanthal (OC) has anti-inflammatory and antioxidant properties similar nonsteroidal anti-inflammatory drug. We evaluated the neuroprotective effects of OC in a rat model of TBI. Twenty-six adult male, Wistar albino rats were used. The rats were divided into 4 groups. group 1, sham (n = 5). group 2, trauma (n = 5): Rats were treated with 10 mg/kg saline intraperitoneally (IP) twice a day. Groups 3 and 4, rats were treated with 10 (group 3, n = 8) or 30 (group 4, n = 8) mg/kg OC IP twice a day. For each group brain samples were collected 72 h after injury. Brain samples and blood were evaluated with histopathological and biochemical methods. Histopathological evaluation revealed a significant difference between group 2 and group 4. Biochemical findings demonstrated that, oxidative stress index was the highest in group 2 and was the lowest in the group 4. Results indicated that OC has a protective effect on neural cells after TBI. This effect is achieved by reducing oxidative stress and apoptosis.

  16. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer's and Parkinson's Disease.

    PubMed

    Braidy, Nady; Behzad, Sahar; Habtemariam, Solomon; Ahmed, Touqeer; Daglia, Maria; Nabavi, Seyed Mohammad; Sobarzo-Sanchez, Eduardo; Nabavi, Seyed Fazel

    2017-01-01

    Neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease represent a deleterious impact worldwide. Despite extensive preclinical and clinical research in neurodegenerative disorders, therapeutic strategies aimed at the prevention and chronic treatment of neurodegenerative conditions have not been successfully translated to the clinic. Therefore, the identification of novel pharmacological intervention derived from natural products is warranted. Nobiletin and tangeretin are important citrus flavonoids derived from the peel and other parts of Citrus L. genus, and have been shown to exhibit neuroprotective effects in several in vitro and in vivo studies. Apart from there antioxidant and anti-inflammatory effects, nobiletin and tangeretin have been shown to attenuate cholinergic deficits, reduce the abnormal accumulation of neurotoxic amyloid-beta peptides, reverse N-methyl- D-aspartate (NMDA) receptor hypofunction, ameliorate ischemic injury, inhibit hyperphosphorylation of tau protein, enhance neprilysin levels, modulate several signaling cascades, and protect against 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Taken together, these naturally occurring phytochemicals may represent beneficial drug candidates for the treatment and prevention of Alzheimer's and Parkinson's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Mood stabilizer psychopharmacology

    PubMed Central

    Gould, Todd D.; Chen, Guang; Manji, Husseini K.

    2012-01-01

    Mood stabilizers represent a class of drugs that are efficacious in the treatment of bipolar disorder. The most established medications in this class are lithium, valproic acid, and carbamazepine. In addition to their therapeutic effects for treatment of acute manic episodes, these medications often are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. While important extracellular effects have not been excluded, most available evidence suggests that the therapeutically relevant targets of this class of medications are in the interior of cells. Herein we give a prospective of a rapidly evolving field, discussing common effects of mood stabilizers as well as effects that are unique to individual medications. Mood stabilizers have been shown to modulate the activity of enzymes, ion channels, arachidonic acid turnover, G protein coupled receptors and intracellular pathways involved in synaptic plasticity and neuroprotection. Understanding the therapeutic targets of mood stabilizers will undoubtedly lead to a better understanding of the pathophysiology of bipolar disorder and to the development of improved therapeutics for the treatment of this disease. Furthermore, the involvement of mood stabilizers in pathways operative in neuroprotection suggests that they may have utility in the treatment of classical neurodegenerative disorders. PMID:22707923

  18. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    PubMed

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. New flavone-cyanoacetamide hybrids with combination of cholinergic, antioxidant, modulation β-amyloid aggregation and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer's disease and unraveling their mechanism of action with acetylcholinesterase.

    PubMed

    Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah

    2018-05-10

    In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.

  20. Antiamnesic Effect of Actinidia arguta Extract Intake in a Mouse Model of TMT-Induced Learning and Memory Dysfunction

    PubMed Central

    Ha, Jeong Su; Jin, Dong Eun; Park, Seon Kyeong; Park, Chang Hyeon; Seung, Tae Wan; Bae, Dong-Won; Kim, Dae-Ok; Heo, Ho Jin

    2015-01-01

    The antiamnesic effects of ethyl acetate fraction from Actinidia arguta (EFAA) on trimethyltin- (TMT-) induced memory impairment were investigated to find the possibility of functional food substances. EFAA showed a potent AChE inhibitory effect (IC50 = 53 μg/mL) and efficient neuroprotection against H2O2-induced oxidative stress. The administration of EFAA significantly decreased TMT-induced cognitive deficit in Y-maze, passive avoidance, and Morris water maze (MWM) tests. After the behavioral tests, the antioxidant activities were confirmed using mice brain tissues. EFAA not only showed the inhibition of AChE activity and the decline of malondialdehyde (MDA) level as a sign of lipid peroxidation but also presented the increase of the superoxide dismutase (SOD) level and the decrease of the oxidized glutathione (GSSG)/total glutathione (GSH + GSSG) ratio. Finally, the phenolics in EFAA were identified using liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry, and four main phenolics, such as quinic acid, chlorogenic acid, caffeoyl hexose, and quercetin-3-glucoside, were identified. These results suggest that EFAA containing physiological phenolics might enhance drug-induced amnesia through AChE inhibition and neuroprotection. PMID:26576196

  1. Antiamnesic Effect of Actinidia arguta Extract Intake in a Mouse Model of TMT-Induced Learning and Memory Dysfunction.

    PubMed

    Ha, Jeong Su; Jin, Dong Eun; Park, Seon Kyeong; Park, Chang Hyeon; Seung, Tae Wan; Bae, Dong-Won; Kim, Dae-Ok; Heo, Ho Jin

    2015-01-01

    The antiamnesic effects of ethyl acetate fraction from Actinidia arguta (EFAA) on trimethyltin- (TMT-) induced memory impairment were investigated to find the possibility of functional food substances. EFAA showed a potent AChE inhibitory effect (IC50 = 53 μg/mL) and efficient neuroprotection against H2O2-induced oxidative stress. The administration of EFAA significantly decreased TMT-induced cognitive deficit in Y-maze, passive avoidance, and Morris water maze (MWM) tests. After the behavioral tests, the antioxidant activities were confirmed using mice brain tissues. EFAA not only showed the inhibition of AChE activity and the decline of malondialdehyde (MDA) level as a sign of lipid peroxidation but also presented the increase of the superoxide dismutase (SOD) level and the decrease of the oxidized glutathione (GSSG)/total glutathione (GSH + GSSG) ratio. Finally, the phenolics in EFAA were identified using liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry, and four main phenolics, such as quinic acid, chlorogenic acid, caffeoyl hexose, and quercetin-3-glucoside, were identified. These results suggest that EFAA containing physiological phenolics might enhance drug-induced amnesia through AChE inhibition and neuroprotection.

  2. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity.

    PubMed

    Kaur, Shamsherjit; Singh, Satinderpal; Chahal, Karan Singh; Prakash, Atish

    2014-11-01

    Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.

  3. Phytochemicals in Ischemic Stroke.

    PubMed

    Kim, Joonki; Fann, David Yang-Wei; Seet, Raymond Chee Seong; Jo, Dong-Gyu; Mattson, Mark P; Arumugam, Thiruma V

    2016-09-01

    Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.

  4. Anesthetic Neuroprotection in Experimental Stroke in Rodents: A Systematic Review and Meta-analysis.

    PubMed

    Archer, David P; Walker, Andrew M; McCann, Sarah K; Moser, Joanna J; Appireddy, Ramana M

    2017-04-01

    Patients undergoing endovascular therapy for acute ischemic stroke may require general anesthesia to undergo the procedure. At present, there is little clinical evidence to guide the choice of anesthetic in this acute setting. The clinical implications of experimental studies demonstrating anesthetic neuroprotection are poorly understood. Here, the authors evaluated the impact of anesthetic treatment on neurologic outcome in experimental stroke. Controlled studies of anesthetics in stroke using the filament occlusion model were identified in electronic databases up to December 15, 2015. The primary outcome measures, infarct volume, and neurologic deficit score were used to calculate the normalized mean difference for each comparison. Meta-analysis of normalized mean difference values provided estimates of neuroprotection and contributions of predefined factors: study quality, the timing of treatment, and the duration of ischemia. In 80 retrieved publications anesthetic treatment reduced neurologic injury by 28% (95% CI, 24 to 32%; P < 0.0001). Internal validity was high: publication bias enhanced the effect size by 4% or less, effect size increased with study quality (P = 0.0004), and approximately 70% of studies were adequately powered. Apart from study quality, no predefined factor influenced neuroprotection. Neuroprotection failed in animals with comorbidities. Neuroprotection by anesthetics was associated with prosurvival mechanisms. Anesthetic neuroprotection is a robust finding in studies using the filament occlusion model of ischemic stroke and should be assumed to influence outcomes in studies using this model. Neuroprotection failed in female animals and animals with comorbidities, suggesting that the results in young male animals may not reflect human stroke.

  5. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease.

    PubMed

    Francardo, Veronica; Schmitz, Yvonne; Sulzer, David; Cenci, M Angela

    2017-12-01

    Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease. Copyright © 2017. Published by Elsevier Inc.

  6. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2018-06-11

    Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.

  7. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol.

    PubMed

    Morales, Paula; Reggio, Patricia H; Jagerovic, Nadine

    2017-01-01

    Cannabidiol (CBD) has been traditionally used in Cannabis -based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis . Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.

  8. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic–Ischemic Encephalopathy

    PubMed Central

    Lange, Sigrun

    2016-01-01

    Oxygen deprivation and infection are major causes of perinatal brain injury leading to cerebral palsy and other neurological disabilities. The identification of novel key factors mediating white and gray matter damage are crucial to allow better understanding of the specific contribution of different cell types to the injury processes and pathways for clinical intervention. Recent studies in the Rice–Vannucci mouse model of neonatal hypoxic ischemia (HI) have highlighted novel roles for calcium-regulated peptidylarginine deiminases (PADs) and demonstrated neuroprotective effects of pharmacological PAD inhibition following HI and synergistic infection mimicked by lipopolysaccharide stimulation. PMID:26941709

  9. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol

    PubMed Central

    Morales, Paula; Reggio, Patricia H.; Jagerovic, Nadine

    2017-01-01

    Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging. PMID:28701957

  10. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke

    PubMed Central

    Romero, Alejandro; Ramos, Eva; Patiño, Paloma; Oset-Gasque, Maria J.; López-Muñoz, Francisco; Marco-Contelles, José; Ayuso, María I.; Alcázar, Alberto

    2016-01-01

    Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented. PMID:27932976

  11. Bile Acids Reduce Prion Conversion, Reduce Neuronal Loss, and Prolong Male Survival in Models of Prion Disease

    PubMed Central

    Cortez, Leonardo M.; Campeau, Jody; Norman, Grant; Kalayil, Marian; Van der Merwe, Jacques; McKenzie, Debbie

    2015-01-01

    ABSTRACT Prion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis. Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPSc seeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2α were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases. IMPORTANCE Prion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades of research. Treatment targets have included inhibition of protein accumulation, clearance of toxic aggregates, and prevention of downstream neurodegeneration. No one target may be sufficient; rather, compounds which have a multimodal mechanism, acting on different targets, would be ideal. TUDCA and UDCA are bile acids that may fulfill this dual role. Previous studies have demonstrated their neuroprotective effects in several neurodegenerative disease models, and we now demonstrate that this effect occurs in prion disease, with an added mechanistic target of upstream prion seeding. Importantly, these are natural compounds which are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans with primary biliary cirrhosis. They have recently been proven efficacious in human amyotrophic lateral sclerosis. Therefore, these compounds are promising options for the treatment of prion diseases. PMID:25972546

  12. Neuroprotection and Acute Spinal Cord Injury: A Reappraisal

    PubMed Central

    Hall, Edward D.; Springer, Joe E.

    2004-01-01

    Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by MP therapy alone. The present paper reviews the past development of MP, naloxone, tirilazad, and GM1 for acute SCI, the ongoing MP-SCI controversy, identifies the regulatory complications involved in future SCI drug development, and suggests some promising neuroprotective approaches that could either replace or be used in combination with high-dose MP. PMID:15717009

  13. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress.

    PubMed

    Amin, Faiz Ul; Shah, Shahid Ali; Badshah, Haroon; Khan, Mehtab; Kim, Myeong Ok

    2017-02-07

    In order to increase the bioavailability of hydrophilic unstable drugs like anthocyanins, we employed a polymer-based nanoparticles approach due to its unique properties such as high stability, improved bioavailability and high water-soluble drug loading efficiency. Anthocyanins constitute a subfamily of flavonoids that possess anti-oxidative, anti-inflammatory and neuroprotective properties. However, anthocyanins are unstable because their phenolic hydroxyl groups are easily oxidized into quinones, causing a reduced biological activity. To overcome this drawback and improve the free radical scavenging capabilities of anthocyanins, in the current study we for the first time encapsulated the anthocyanins in biodegradable nanoparticle formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-2000. The biological activity and neuroprotective effect of anthocyanin loaded nanoparticles (An-NPs) were investigated in SH-SY5Y cell lines. Morphological examination under transmission electron microscopy (TEM) showed the formation of smooth spherically shaped nanoparticles. The average particle size and zeta potential of An-NPs were in the range of 120-165 nm and -12 mV respectively, with a low polydispersity index (0.4) and displayed a biphasic release profile in vitro. Anthocyanins encapsulation in PLGA@PEG nanoparticles (NPs) did not destroy its inherent properties and exhibit more potent neuroprotective properties. An-NPs were nontoxic to SH-SY5Y cells and increased their cell viability against Aβ 1-42 by its free radical scavenging characteristics and abrogated ROS generation via the p38-MAPK/JNK pathways accompanied by induction of endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Comparative to native bulk anthocyanins, An-NPs effectively attenuated Alzheimer's markers like APP (amyloid precursor protein), BACE-1 (beta-site amyloid precursor protein cleaving enzyme 1), neuroinflammatory markers such as p-NF-kB (phospho-nuclear factor kappa B), TNF-α (tumor necrosis factor) and iNOS (inducible nitric oxide synthase) and neuroapoptotic markers including Bax, Bcl 2 , and Caspase-3 protein expressions accompanied by neurodegeneration against Aβ 1-42 in SH-SY5Y cell lines. Overall, this data not only confirmed the therapeutic potential of anthocyanins in reducing AD pathology but also offer an effective way to improve the efficiency of anthocyanins through the use of nanodrug delivery systems.

  14. Neuroprotective effects of Lepidium meyenii (Maca).

    PubMed

    Pino-Figueroa, Alejandro; Nguyen, Diane; Maher, Timothy J

    2010-06-01

    The neuroprotective activity of the plant Lepidium meyenii (Maca) was studied in two experimental models: in vitro and in vivo. Crayfish neurons were pretreated with vehicle or the pentane extract from Maca, subjected to H(2)O(2), and their viability determined microscopically and chemically. A significant concentration-neuroprotective effect relationship was demonstrated. The pentane extract was then administered intravenously to rats prior to and following middle cerebral artery occlusion. While infarct volumes were decreased for the lower dose, higher doses increased infarct volumes compared to controls. These results suggest a potential application of Maca as a neuroprotectant.

  15. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    PubMed Central

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David

    2011-01-01

    Abstract Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI. PMID:21083427

  16. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection

    PubMed Central

    Rosenberg, Evan C.; Patra, Pabitra H.; Whalley, Benjamin J.

    2017-01-01

    The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies. However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies. The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy. Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood. Therefore, in light of these paradigm-changing clinical events, the present review's findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy. PMID:28190698

  17. NeuroAIDS, drug abuse, and inflammation: building collaborative research activities.

    PubMed

    Berman, Joan W; Carson, Monica J; Chang, Linda; Cox, Brian M; Fox, Howard S; Gonzalez, R Gilberto; Hanson, Glen R; Hauser, Kurt F; Ho, Wen-Zhe; Hong, Jau-Shyong; Major, Eugene O; Maragos, William F; Masliah, Eliezer; McArthur, Justin C; Miller, Diane B; Nath, Avindra; O'Callaghan, James P; Persidsky, Yuri; Power, Christopher; Rogers, Thomas J; Royal, Walter

    2006-12-01

    Neurological complications of human immunodeficiency virus (HIV) infection are a public health problem despite the availability of active antiretroviral therapies. The neuropathogenesis of HIV infection revolves around a complex cascade of events that include viral infection and glial immune activation, monocyte-macrophage brain infiltration, and secretion of a host of viral and cellular inflammatory and neurotoxic molecules. Although there is evidence that HIV-infected drug abusers experience more severe neurological disease, the biological basis for this finding is unknown. A scientific workshop organized by the National Institute on Drug Abuse (NIDA) was held on March 23-24, 2006 to address this question. The goal of the meeting was to bring together basic science and clinical researchers who are experts in NeuroAIDS, glial immunity, drugs of abuse, and/or pharmacology in order to find new approaches to understanding interactions between drug abuse and neuroAIDS. The format of the meeting was designed to stimulate open discussion and forge new multidisciplinary research collaborations. This report includes transcripts of active discussions and short presentations from invited participants. The presentations were separated into sections that included: Glial Biology, Inflammation, and HIV; Pharmacology, Neurotoxicology, and Neuroprotection; NeuroAIDS and Virology; and Virus-Drug and Immune-Drug Interactions. Research priorities were identified. Additional information about this meeting is available through links from the NIDA AIDS Research Program website ( http://www.nida.nih.gov/about/organization/arp/arp-websites.htm ).

  18. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness.

    PubMed

    Macedo, Danielle; Filho, Adriano José Maia Chaves; Soares de Sousa, Caren Nádia; Quevedo, João; Barichello, Tatiana; Júnior, Hélio Vitoriano Nobre; Freitas de Lucena, David

    2017-01-15

    The first drug repurposed for the treatment of depression was the tuberculostatic iproniazid. At present, drugs belonging to new classes of antidepressants still have antimicrobial effects. Dysbiosis of gut microbiota was implicated in the development or exacerbation of mental disorders, such as major depressive disorder (MDD). Based on the current interest in the gut-brain axis, the focus of this narrative review is to compile the available studies regarding the influences of gut microbiota in behavior and depression and to show the antimicrobial effect of antidepressant drugs. A discussion regarding the possible contribution of the antimicrobial effect of antidepressant drugs to its effectiveness/resistance is included. The search included relevant articles from PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge. MDD is associated with changes in gut permeability and microbiota composition. In this respect, antidepressant drugs present antimicrobial effects that could also be related to the effectiveness of these drugs for MDD treatment. Conversely, some antimicrobials present antidepressant effects. Both antidepressants and antimicrobials present neuroprotective/antidepressant and antimicrobial effects. Further studies are needed to evaluate the participation of antimicrobial mechanisms of antidepressants in MDD treatment as well as to determine the contribution of this effect to antidepressant resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of drugs of abuse on the central neuropeptide Y system.

    PubMed

    Gonçalves, Joana; Martins, João; Baptista, Sofia; Ambrósio, António Francisco; Silva, Ana Paula

    2016-07-01

    Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs. © 2015 Society for the Study of Addiction.

  20. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  2. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate.

    PubMed

    Harrison, Ian F; Anis, Hiba K; Dexter, David T

    2016-02-12

    Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved intraoperative neuroprotection.

  4. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784

  5. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases.

    PubMed

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B

    2014-09-25

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.

  6. Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit

    PubMed Central

    Muehlschlegel, Susanne; Sims, John R.

    2009-01-01

    Background and aims Calcium plays a central role in neuronal function and injury. Dantrolene, an inhibitor of the ryanodine receptor, inhibits intracellular calcium release from the sarcoendoplasmic reticulum and might serve as novel agent for neuroprotection and other applications in the Neurointensive Care Unit. Methods We reviewed the available data of dantrolene as a potential neuroprotective agent through literature searches on Ovid, Pubmed and Google Scholar. Results Dantrolene provides neuroprotection in multiple in vitro models and some in vivo models of neural injury. Its efficacy has an early and narrow time-window of protection. We briefly summarize its other pharmacologic effects that may have potential applications for patients in the neurointensive care unit. Areas with the need for continued research are identified. Conclusion Targeted use of dantrolene in selected ICU disease models of anticipated neural injury, such as impending ischemia from vasospastic syndromes, might provided neuroprotection. PMID:18696266

  7. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection

    PubMed Central

    2010-01-01

    In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents. PMID:20836899

  8. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  9. Differential effects of environment-induced changes in body temperature on modafinil’s actions against methamphetamine-induced striatal toxicity in mice

    PubMed Central

    Raineri, Mariana; González, Betina; Echeto, Celeste Rivero; Muñiz, Javier A.; Gutierrez, María Laura; Ghanem, Carolina I.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Veronica, Bisagno

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg , 2h apart; modafinil (90mg/kg) was injected twice, 1h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out six days after treatments and processed for TH, DAT, GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by sriatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures. PMID:25261212

  10. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice.

    PubMed

    Raineri, Mariana; González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A; Gutiérrez, María Laura; Ghanem, Carolina I; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica

    2015-01-01

    Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.

  11. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors.

    PubMed

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2014-12-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release.

    PubMed

    Finberg, John P M

    2014-08-01

    Inhibitors of monoamine oxidase (MAO) were initially used in medicine following the discovery of their antidepressant action. Subsequently their ability to potentiate the effects of an indirectly-acting sympathomimetic amine such as tyramine was discovered, leading to their limitation in clinical use, except for cases of treatment-resistant depression. More recently, the understanding that: a) potentiation of indirectly-acting sympathomimetic amines is caused by inhibitors of MAO-A but not by inhibitors of MAO-B, and b) that reversible inhibitors of MAO-A cause minimal tyramine potentiation, has led to their re-introduction to clinical use for treatment of depression (reversible MAO-A inhibitors and new dose form MAO-B inhibitor) and treatment of Parkinson's disease (MAO-B inhibitors). The profound neuroprotective properties of propargyl-based inhibitors of MAO-B in preclinical experiments have drawn attention to the possibility of employing these drugs for their neuroprotective effect in neurodegenerative diseases, and have raised the question of the involvement of the MAO-mediated reaction as a source of reactive free radicals. Despite the long-standing history of MAO inhibitors in medicine, the way in which they affect neuronal release of monoamine neurotransmitters is still poorly understood. In recent years, the detailed chemical structure of MAO-B and MAO-A has become available, providing new possibilities for synthesis of mechanism-based inhibitors. This review describes the latest advances in understanding the way in which MAO inhibitors affect the release of the monoamine neurotransmitters dopamine, noradrenaline and serotonin (5-HT) in the CNS, with an accent on the importance of these effects for the clinical actions of the drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway.

    PubMed

    Guo, Xiao-Qian; Cao, Yu-Ling; Hao, Fang; Yan, Zhong-Rui; Wang, Mei-Ling; Liu, Xue-Wu

    2017-09-01

    Epilepsy is complex neural disarray categorized by recurring seizures. Despite recent advances in pharmacotherapies for epilepsy, its treatment remains a challenge due to the contrary effects of the drugs. As a result, the identification of novel anti-epileptic drugs (AEDs) with neuroprotective properties and few side effects is of great value. Thus, the present study assessed the treatment effects of tangeretin using a rat model of pilocarpine-induced epilepsy. Separate groups of male Wistar rats received oral administrations of tangeretin at 50, 100, or 200mg/kg for 10 days and then, on the 10th day, they received an intraperitoneal injection of pilocarpine (30mg/kg). Subsequently, neuronal degeneration and apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay procedures. Additionally, the expressions of phosphatidylinositol-3-kinase (PI3K/Akt) pathway proteins, cleaved caspase-3, Bad, Bcl-2, Bcl-xL, and Bax were determined using Western blot analyses. Tangeretin reduced the seizure scores and latency to first seizure of the rats and effectively activated the pilocarpine-induced suppression of PI3K/Akt signaling. Additionally, tangeretin effectively regulated the levels of apoptosis-inducing factor (AIF) in mitochondria as well as the expressions of apoptotic pathway proteins. Seizure-induced elevations in the activities and expressions of matrix metalloproteinases (MMPs)-2 and -9 were also modulated. The present results indicate that tangeretin exerted potent neuroprotective effects against pilocarpine-induced seizures via the activation of PI3K/Akt signaling and the regulation of MMPs. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  14. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    PubMed Central

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  15. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: Possible neurotransmitters modulation.

    PubMed

    Gill, Jaskamal Singh; Jamwal, Sumit; Kumar, Puneet; Deshmukh, Rahul

    2017-04-01

    Huntington Disease is autosomal, fatal and progressive neurodegenerative disorder for which clinically available drugs offer only symptomatic relief. Emerging strides have indicated that antidepressants improve motor performance, restore neurotransmitters level, ameliorates striatal atrophy, increases BDNF level and may enhance neurogenesis. Therefore, we investigated sertraline and venlafaxine, clinically available drugs for depression with numerous neuroprotective properties, for their beneficial effects, if any, in quinolinic acid induced Huntington's like symptoms in rats. Rats were administered quinolinic acid (QA) (200 nmol/2μl saline) intrastriatal bilaterally on 0day. Sertraline and venlafaxine (10 and 20mg/kg, po) each were administered for 21days once a day. Motor performance was assessed using rotarod test, grip strength test, narrow beam walk test on weekly basis. On day 22, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH and Nitrite), neuroinflammation (TNF-α, IL-1β and IL-6) and neurochemical analysis (GABA, glutamate, norepinephrine, dopamine, serotonin, DOPAC, HVA and 5-HIAA). QA treatment significantly altered body weight, motor performance, oxidative defense (increased LPO, nitrite and decreased GSH), pro-inflammatory cytokines levels (TNF-α, IL-6 and IL-1β), neurochemical level (GABA, glutamate, nor-epinephrine, dopamine, serotonin, HVA, DOPAC, 5-HIAA). Sertraline and venlafaxine at selected doses significantly attenuated QA induced alterations in striatum. The present study suggests that modulation of monoamines level, normalization of GABA and glutamatergic signaling, anti-oxidant and anti-inflammatory properties could underlie the neuroprotective effect of sertraline and venlafaxine in QA induced Huntington's like symptoms. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  16. TVP1022 Protects Neonatal Rat Ventricular Myocytes against Doxorubicin-Induced Functional Derangements

    PubMed Central

    Berdichevski, Alexandra; Meiry, Gideon; Milman, Felix; Reiter, Irena; Sedan, Oshra; Eliyahu, Sivan; Duffy, Heather S.; Youdim, Moussa B.; Binah, Ofer

    2010-01-01

    Our recent studies demonstrated that propargylamine derivatives such as rasagiline (Azilect, Food and Drug Administration-approved anti-Parkinson drug) and its S-isomer TVP1022 protect cardiac and neuronal cell cultures against apoptotic-inducing stimuli. Studies on structure-activity relationship revealed that their neuroprotective effect is associated with the propargylamine moiety, which protects mitochondrial viability and prevents apoptosis by activating Bcl-2 and protein kinase C-ε and by down-regulating the proapoptotic protein Bax. Based on the established cytoprotective and neuroprotective efficacies of propargylamine derivatives, as well as on our recent study showing that TVP1022 attenuates serum starvation-induced and doxorubicin-induced apoptosis in neonatal rat ventricular myocytes (NRVMs), we tested the hypothesis that TVP1022 will also provide protection against doxorubicin-induced NRVM functional derangements. The present study demonstrates that pretreatment of NRVMs with TVP1022 (1 μM, 24 h) prevented doxorubicin (0.5 μM, 24 h)-induced elevation of diastolic [Ca2+]i, the slowing of [Ca2+]i relaxation kinetics, and the decrease in the rates of myocyte contraction and relaxation. Furthermore, pretreatment with TVP1022 attenuated the doxorubicin-induced reduction in the protein expression of sarco/endoplasmic reticulum calcium (Ca2+) ATPase, Na+/Ca2+ exchanger 1, and total connexin 43. Finally, TVP1022 diminished the inhibitory effect of doxorubicin on gap junctional intercellular coupling (measured by means of Lucifer yellow transfer) and on conduction velocity, the amplitude of the activation phase, and the maximal rate of activation (dv/dtmax) measured by the Micro-Electrode-Array system. In summary, our results indicate that TVP1022 acts as a novel cardioprotective agent against anthracycline cardiotoxicity, and therefore potentially can be coadmhence, the inistered with doxorubicin in the treatment of malignancies in humans. PMID:19915070

  17. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration. PMID:28235894

  18. The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line

    PubMed Central

    2009-01-01

    Background N-acylethanolamines (NAEs) are lipids upregulated in response to cell and tissue injury and are involved in cytoprotection. Arachidonylethanolamide (AEA) is a well characterized NAE that is an endogenous ligand at cannabinoid and vanilloid receptors, but it exists in small quantities relative to other NAE types. The abundance of other NAE species, such as palmitoylethanolamine (PEA), together with their largely unknown function and receptors, has prompted us to examine the neuroprotective properties and mechanism of action of PEA. We hypothesized that PEA protects HT22 cells from oxidative stress and activates neuroprotective kinase signaling pathways. Results Indeed PEA protected HT22 cells from oxidative stress in part by mediating an increase in phosphorylated Akt (pAkt) and ERK1/2 immunoreactivity as well as pAkt nuclear translocation. These changes take place within a time frame consistent with neuroprotection. Furthermore, we determined that changes in pAkt immunoreactivity elicited by PEA were not mediated by activation of cannabinoid receptor type 2 (CB2), thus indicating a novel mechanism of action. These results establish a role for PEA as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases. Conclusions The results from this study reveal that PEA protects HT22 cells from oxidative stress and alters the localization and expression levels of kinases known to be involved in neuroprotection by a novel mechanism. Overall, these results identify PEA as a neuroprotectant with potential as a possible therapeutic agent in neurodegenerative diseases involving oxidative stress. PMID:20003317

  19. Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Sawai, Hajime; Fujikado, Takashi

    2010-02-01

    We previously showed that transcorneal electrical stimulation (TES) promoted the survival of axotomized retinal ganglion cells (RGCs) of rats. However the relationship between the parameters of TES and the neuroprotective effect of TES on axotomized RGCs was unclear. In the present study, we determined whether the neuroprotective effect of TES is affected by the parameters of TES. Adult male Wistar rats received TES just after transection of the left optic nerve (ON). The pulse duration, current intensity, frequency, waveform, and numbers of sessions of the TES were changed systematically. The alterations of the retina were examined histologically seven days or fourteen days after the ON transection. The optimal neuroprotective parameters were pulse duration of 1 and 2 ms/phase (P < 0.001, each), current intensity of 100 and 200 muA (P < 0.05, each), and stimulation frequency of 1, 5, and 20 Hz (P < 0.001, respectively). More than 30 min of TES was necessary to have a neuroprotective effect (P < 0.001). Symmetric pulses without an inter-pulse interval were most effective (P < 0.001). Repeated TES was more neuroprotective than a single TES at 14 days after ON transection (P < 0.001). Our results indicate that there is a range of optimal neuroprotective parameters of TES for axotomized RGCs of rats. These values will provide a guideline for the use of TES in patients with different retinal and optic nerve diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

Top