Science.gov

Sample records for neurotensin receptor type

  1. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  2. Altered Morphine-Induced Analgesia in Neurotensin Type 1 Receptor Null Mice

    PubMed Central

    Roussy, Geneviève; Beaudry, Hélène; Lafrance, Mylène; Belleville, Karine; Beaudet, Nicolas; Wada, Keiji; Gendron, Louis; Sarret, Philippe

    2013-01-01

    Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain. PMID:20727387

  3. Structure and dynamics of a constitutively active neurotensin receptor

    PubMed Central

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-01-01

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846

  4. Structure and dynamics of a constitutively active neurotensin receptor

    SciTech Connect

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.

  5. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  6. Mechanisms of Radiosensitization by the Neurotensin Receptor Antagonist SR48692 in Prostate Cancer Models

    DTIC Science & Technology

    2009-04-01

    Neurotensin Receptor Antagonist SR48692 in Prostate Cancer Models PRINCIPAL INVESTIGATOR: Jaroslaw Dziegielewski, Ph.D...Receptor Antagonist 5a. CONTRACT NUMBER SR48692 in Prostate Cancer Models 5b. GRANT NUMBER W81XWH-08-1-0114 5c. PROGRAM ELEMENT NUMBER 6...neurotensin receptor by SR48692 drug could sensitize cancer cells to radiation. SR48692 activity was measured in PC3, C42 and LNCaP prostate cancer

  7. Mediation by neurotensin-receptors of effects of neurotensin on self-stimulation of the medial prefrontal cortex.

    PubMed Central

    Fernández, R.; Sabater, R.; Sáez, J. A.; Montes, R.; Alba, F.; Ferrer, J. M.

    1996-01-01

    1 Intracortical microinjections of neurotensin (NT) selectively decreased intracranial self-stimulation (ICSS) of the medial prefrontal cortex in the rat. 2 To elucidate whether this effect is mediated by NT receptors or by the formation of NT-dopamine complexes, we investigated the effects on ICSS of intracortical microinjections of neurotensin (1-11), an NT fragment that forms extracellular complexes with dopamine but does not bind to NT receptors. 3 We also studied the effects of the peripheral administration of SR 48692, a selective antagonist of NT receptors, on the inhibition of ICSS produced by the intracortical administration of NT. 4 Unilateral microinjections of neurotensin (1-11) at doses of 10, 20 and 40 nmol into the medial prefrontal cortex did not change the basal ICSS rate of this area. 5 The intraperitoneal administration of SR 48692 at doses of 0.08 and 0.16 mg kg-1 30 min before microinjection of 10 nmol of NT into the medial prefrontal cortex, antagonized the inhibition of ICSS produced by the neuropeptide. 6 These results demonstrate that the inhibitory effect of NT on ICSS is mediated by NT receptors. PMID:8886412

  8. Identification of 1-({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound

    PubMed Central

    2015-01-01

    Compounds active at neurotensin receptors (NTS1 and NTS2) exert analgesic effects on different types of nociceptive modalities, including thermal, mechanical, and chemical stimuli. The NTS2 preferring peptide JMV-431 (2) and the NTS2 selective nonpeptide compound levocabastine (6) have been shown to be effective in relieving the pain associated with peripheral neuropathies. With the aim of identifying novel nonpeptide compounds selective for NTS2, we examined analogues of SR48692 (5a) using a FLIPR calcium assay in CHO cells stably expressing rat NTS2. This led to the discovery of the NTS2 selective nonpeptide compound 1-({[1-(4-fluorophenyl)-5-(2-methoxyphenyl)-1H-pyrazol-3-yl]carbonyl}amino)cyclohexane carboxylic acid (NTRC-739, 7b) starting from the nonselective compound 5a. PMID:24856674

  9. Interaction of lipids with the neurotensin receptor 1.

    PubMed

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony

    2016-06-01

    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs.

  10. Endogenous CNS expression of neurotensin and neurotensin receptors is altered during the postpartum period in outbred mice.

    PubMed

    Driessen, Terri M; Zhao, Changjiu; Whittlinger, Anna; Williams, Horecia; Gammie, Stephen C

    2014-01-01

    Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors.

  11. Effects of Neurotensin-2 Receptor Deletion on Sensorimotor Gating and Locomotor Activity

    PubMed Central

    Feifel, David; Pang, Zheng; Shilling, Paul D.; Melendez, Gilia; Schreiber, Rudy; Button, Donald

    2010-01-01

    SUMMARY Endogenous neurotensin (NT) has been implicated in brain processes relevant to schizophrenia as well as the therapeutic effects of antipsychotic drugs (APDs) used to treat this disorder. Converging evidence suggests that NT1 receptors mediate the antipsychotic-like effects of NT, such as prepulse inhibition (PPI) elevation. However, the role of NT2 receptors in these effects is not known. To investigate the contribution of NT2 receptors to the regulation of PPI, we measured baseline PPI and acoustic startle response (ASR), in male and female wild type (WT) and NT2 knockout (KO) mice. For comparison, we also measured locomotor activity. Baseline PPI was significantly elevated in both male (P < 0.01) and female (P < 0.01) NT2 KO compared to WT mice, while ASR was significantly decreased in KO mice of both genders (P < 0.01). In contrast, female but not male KO mice exhibited significantly less baseline ambulations (P < 0.05). These data support the regulation of baseline PPI, ASR and locomotor activity by endogenous NT acting at the NT2 receptor. Further studies investigating the role of NT2 receptors in the modulation of APD-like effects are warranted. PMID:20399236

  12. Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Reich, Dominik; Hübner, Harald; Gmeiner, Peter; Wester, Hans-Jürgen; Prante, Olaf; Notni, Johannes

    2017-01-01

    Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial. PMID:28287433

  13. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting

    PubMed Central

    Jia, Yinnong; Shi, Wen; Zhou, Zhengyuan; Wagh, Nilesh K.; Fan, Wei; Brusnahan, Susan K.; Garrison, Jered C.

    2015-01-01

    Introduction Neurotensin receptor 1 (NTR1) is overexpressed in many cancers types. Neurotensin (NT), a 13 amino acid peptide, is the native ligand for NTR1 and exhibits high (nM) affinity to the receptor. Many laboratories have been investigating the development of diagnostic and therapeutic radiopharmaceuticals for NTR1-positive cancers based on the NT peptide. To improve the biological performance for targeting NTR1, we proposed NT analogs with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelation system and different lengths of spacers. Methods We synthesized four NTR1-targeted conjugates with spacer lengths from 0 to 9 atoms (null (N0), β-Ala-OH (N1), 5-Ava-OH (N2), and 8-Aoc-OH (N3)) between the DOTA and the pharmacophore. In vitro competitive binding, internalization and efflux studies were performed on all four NT analogs. Based on these findings, metabolism studies were carried out on our best performing conjugate, 177Lu-N1. Lastly, in vivo biodistribution and SPECT/CT imaging studies were performed using 177Lu-N1 in an HT-29 xenograft mouse model. Results As shown in competitive binding assay, the NT analogs with different spacers (N1, N2 and N3) exhibited lower IC50 values than the NT analog without a spacer (N0). Furthermore, N1 revealed higher retention in HT-29 cells with more rapid internalization and slower efflux than the other NT analogs. In vivo biodistribution and SPECT/CT imaging studies of 177Lu-N1 demonstrated excellent accumulation (3.1 ± 0.4 %ID/g) in the NTR1-positive tumors at 4 h post-administration. Conclusions The DOTA chelation system demonstrated some modest steric inhibition of the pharmacophore. However, the insertion of a 4-atom hydrocarbon spacer group restored optimal binding affinity of the analog. The in vivo assays indicated that 177Lu-N1 could be used for imaging and radiotherapy of NTR1-positive tumors. PMID:26302836

  14. Neurotensin promotes the dendrite elongation and the dendritic spine maturation of the cerebral cortex in vitro.

    PubMed

    Gandou, Chihiro; Ohtani, Akiko; Senzaki, Kouji; Shiga, Takashi

    2010-03-01

    We examined roles of neurotensin in the dendrite formation and the maturation of dendritic spines in the rat cerebral cortex. Embryonic day (E) 18 cortical neurons were cultured for 2 or 4 days in the presence of neurotensin. The chronic treatment of cortical neurons with neurotensin for 4 days increased the dendritic length of non-GABAergic neurons. In addition, the acute treatment of cortical neurons for 24h at 3 days in vitro also increased the dendritic length of non-GABAergic neurons similarly but more strongly than the chronic treatment. In contrast, the acute treatment for 4h had no effects on the dendrite formation. Next, we examined the effects of neurotensin on the maturation of dendritic spines. E16 cortical neurons were cultured for 10 or 14 days in a basal medium and then treated with neurotensin for 24h. At 11 days in vitro, neurotensin increased the postsynaptic density (PSD) 95-positive dendritic protrusions (filopodia, puncta and spines) together with the increase of spine density and the decrease of puncta density. At 15 days in vitro, neurotensin decreased the puncta density. In addition, the immunohistochemical localization of neurotensin type 1 and type 3 receptors in cultured neurons suggested the differential contribution of the receptors in these effects. These findings suggest that neurotensin promotes the dendrite outgrowth and the maturation of dendritic spines of cultured cortical neurons, although further studies are needed to conclude that these roles of neurotensin are also the case in vivo.

  15. Structural prerequisites for G-protein activation by the neurotensin receptor

    DOE PAGES

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka; ...

    2015-07-24

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A3.49, L310A6.37, F358A7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F3587.42 causes the conserved W3216.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocket and linking the agonist withmore » residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L3106.37 side chain dictates the position of R1673.50 of the highly conserved D/ERY motif. These residues, together with the presence of E1663.49 provide determinants for G-protein activation by NTSR1.« less

  16. Structural prerequisites for G-protein activation by the neurotensin receptor

    PubMed Central

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka; Grisshammer, Reinhard

    2015-01-01

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A3.49, L310A6.37, F358A7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F3587.42 causes the conserved W3216.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocket and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L3106.37 side chain dictates the position of R1673.50 of the highly conserved D/ERY motif. These residues, together with the presence of E1663.49 provide determinants for G-protein activation by NTSR1. PMID:26205105

  17. Structural prerequisites for G-protein activation by the neurotensin receptor

    SciTech Connect

    Krumm, Brian E.; White, Jim F.; Shah, Priyanka; Grisshammer, Reinhard

    2015-07-24

    We previously determined the structure of neurotensin receptor NTSR1 in an active-like conformation with six thermostabilizing mutations bound to the peptide agonist neurotensin. This receptor was unable to activate G proteins, indicating that the mutations restricted NTSR1 to relate agonist binding to G-protein activation. Here we analyse the effect of three of those mutations (E166A3.49, L310A6.37, F358A7.42) and present two structures of NTSR1 able to catalyse nucleotide exchange at Gα. The presence of F3587.42 causes the conserved W3216.48 to adopt a side chain orientation parallel to the lipid bilayer sealing the collapsed Na+ ion pocket and linking the agonist with residues in the lower receptor part implicated in GPCR activation. In the intracellular receptor half, the bulkier L3106.37 side chain dictates the position of R1673.50 of the highly conserved D/ERY motif. These residues, together with the presence of E1663.49 provide determinants for G-protein activation by NTSR1.

  18. Neurotensin-induced Proinflammatory Signaling in Human Colonocytes Is Regulated by β-Arrestins and Endothelin-converting Enzyme-1-dependent Endocytosis and Resensitization of Neurotensin Receptor 1*

    PubMed Central

    Law, Ivy Ka Man; Murphy, Jane E.; Bakirtzi, Kyriaki; Bunnett, Nigel W.; Pothoulakis, Charalabos

    2012-01-01

    The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT. PMID:22416137

  19. A Review of the Role of Neurotensin and Its Receptors in Colorectal Cancer

    PubMed Central

    Qiu, Shengyang; Fiorentino, Francesca; Rasheed, Shahnawaz; Darzi, Ara; Tekkis, Paris

    2017-01-01

    Neurotensin (NTS) is a physiologically occurring hormone which affects the function of the gastrointestinal (GI) tract. In recent years, NTS, acting through its cellular receptors (NTSR), has been implicated in the carcinogenesis of several cancers. In colorectal cancer (CRC), a significant body of evidence, from in vitro and in vivo studies, is available which elucidates the molecular biology of NTS/NTSR signalling and the resultant growth of CRC cells. There is growing clinical data from human studies which corroborate the role NTS/NTSR plays in the development of human CRC. Furthermore, blockade and modulation of the NTS/NTSR signalling pathways appears to reduce CRC growth in cell cultures and animal studies. Lastly, NTS/NTSR also shows potential of being utilised as a diagnostic biomarker for cancers as well as targets for functional imaging. We summarise the existing evidence and understanding of the role of NTS and its receptors in CRC. PMID:28316623

  20. The anorectic effect of neurotensin is mediated via a histamine H1 receptor in mice.

    PubMed

    Ohinata, Kousaku; Shimano, Tomoko; Yamauchi, Rena; Sakurada, Shinobu; Yanai, Kazuhiko; Yoshikawa, Masaaki

    2004-12-01

    Neurotensin (NT), a tridecapeptide found in the mammalian brain and peripheral tissues, induces a decrease in food intake after central administration. In this investigation, we examine whether the histaminergic system is involved in NT-induced suppression of feeding. Intracerebroventricular injection of NT (0.1-1 nmol/mouse) led to dose-dependent inhibition of food intake in fasted ddY mice. The anorectic effect induced by NT (0.1 nmol/mouse) was ameliorated upon co-administration of pyrilamine (3 nmol/mouse), an antagonist for histomine H1 receptor. The NT-induced anorectic effect was partially ameliorated in H1 knockout mice. The findings suggest that the H1 receptor in part mediates the NT-induced suppression of food intake.

  1. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors

    SciTech Connect

    Perron, Amelie; Sharif, Nadder; Gendron, Louis; Lavallee, Mariette; Stroh, Thomas; Mazella, Jean; Beaudet, Alain . E-mail: abeaudet@frsq.gouv.qc.ca

    2006-05-12

    In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.

  2. Neurotensin NTS1 and NTS2 receptor agonists produce anxiolytic-like effects in the 22-kHz ultrasonic vocalization model in rats.

    PubMed

    Steele, Floyd F; Whitehouse, Shannon C; Aday, Jacob S; Prus, Adam J

    2017-03-01

    Neurotensin is a neuropeptide neurotransmitter that interacts with multiple neurotransmitter systems, including those regulating amygdalar function, via NTS1 and NTS2 receptors. Both receptors are expressed in the amygdala and agonists for NTS1 or NTS2 receptors have exhibited anxiolytic effects in animal models. Systemic adminstration of NTS1 receptor agonist PD149163 was recently shown to reduce footshock conditioned 22-kHz ultrasonic vocalizations in rats, suggesting that PD149163 produced an anxiolytic effect. The effects that neurotensin may have or a selective NTS2 receptor agonist may have on 22-kHz vocalizations has yet to be examined. The current study evaluated the effects of intracerebroventricularly administered neurotensin (0.1-10.0μg), PD149163 (0.1-10.0ng), or the NTS2 receptor agonist JMV-431 (0.1-1.0μg) on footshock conditioned 22-kHz vocalizations in male Wistar rats. Neurotensin, PD149163, and JMV-431 all significantly reduced the number 22-kHz calls. No changes in call duration were found, suggesting that non-specific drug effects do not account for the reductions in 22-kHz calls. These data support anxiolytic effects produced by activation of NTS1 or NTS2 receptors, and suggest that neurotensin plays a natural role in the expression of conditioned USVs. These data suggest that both receptor subtypes are putative pharmacologic targets.

  3. The Neurotensin Receptor-1 Pathway Contributes to Human Ductal Breast Cancer Progression

    PubMed Central

    Dupouy, Sandra; Viardot-Foucault, Véronique; Alifano, Marco; Souazé, Frédérique; Plu-Bureau, Geneviève; Chaouat, Marc; Lavaur, Anne; Hugol, Danielle; Gespach, Christian

    2009-01-01

    Background The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. Methods and Results we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. Conclusion these data support the activation of neurotensinergic deleterious pathways in breast cancer progression. PMID:19156213

  4. In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor.

    PubMed Central

    Alvarez-Maya, I.; Navarro-Quiroga, I.; Meraz-Ríos, M. A.; Aceves, J.; Martinez-Fong, D.

    2001-01-01

    BACKGROUND: Recently, we synthesized a nonviral gene vector capable of transfecting cell lines taking advantage of neurotensin (NT) internalization. The vector is NT cross-linked with poly-L-lysine, to which a plasmid DNA was bound to form a complex (NT-polyplex). Nigral dopamine neurons are able to internalize NT, thus representing a target for gene transfer via NT-polyplex. This hypothesis was tested here using reporter genes encoding green fluorescent protein or chloramphenicol acetyl transferase. MATERIALS AND METHODS: NT-polyplex was injected into the substantia nigra. Double immunofluorescence labeling was used to reveal the cell type involved in the propidium iodide-labeled polyplex internalization and reporter gene expression. RESULTS: Polyplex internalization was observed within dopamine neurons but not within glial cells, and was prevented by both hypertonic sucrose solution and SR-48692, a selective nonpeptide antagonist of NT receptors. Reporter gene expression was observed in dopamine neurons from 48 hr up to 15 days after NT-polyplex injection, and was prevented by SR-48692. However, no expression was seen when the NT-polyplex was injected into the ansiform lobule of the cerebellum, which contains low- but not high-affinity NT receptors. Neither internalization nor expression was observed in cultured glial cells, despite the NT-polyplex binding to those cells that was prevented by levocabastine, a low-affinity NT receptor antagonist. CONCLUSIONS: These results suggest that high-affinity NT receptors mediate the uptake of NT-polyplex with the subsequent reporter gene expression in vivo. NT polyfection may be used to transfer genes of physiologic interest to nigrostriatal dopamine neurons, and to produce transgenic animal models of dopamine-related diseases. PMID:11471555

  5. The Neurotensin-1 Receptor Agonist PD149163 Blocks Fear-Potentiated Startle

    PubMed Central

    Shilling, Paul D.; Feifel, David

    2014-01-01

    Preliminary evidence suggests that the neuropeptide, neurotensin (NT) may regulate fear/anxiety circuits. We investigated the effects of PD149163, a NT-1 receptor agonist, on fear-potentiated startle (FPS). Sprague Dawley rats were trained to associate a white light with a mild foot shock. In one experiment, animals were treated with either subcutaneous vehicle or PD149163 (0.01, 0.1 or 1.0 mg/kg) twenty-four hours after training. Twenty minutes later their acoustic startle response in the presence or absence of the white light was tested. In a second experiment, saline and 1.0 mg/kg PD149163 were tested using a separate group of rats. In the first experiment, PD149163 produced a non-significant decrease in baseline acoustic startle at all three doses. As expected, saline treated rats exhibited significant FPS. An ANOVA of percentage FPS revealed no significant effect of treatment group overall but the high dose group did not display FPS strongly suggesting an FPS effect at this dose. This finding was confirmed in the second experiment where the high dose of PD149163 reduced percent FPS relative to saline (P<0.05). These data suggest that systemically administered NT-1 agonists modulate the neural circuitry that regulates fear and anxiety to produce dose-dependent anxiolytic-like effects on FPS. PMID:18577396

  6. Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells

    PubMed Central

    Kim, Ji Tae; Li, Jing; Song, Jun; Lee, Eun Y.; Weiss, Heidi L.; Townsend, Courtney M.; Evers, B. Mark

    2015-01-01

    Neurotensin (NTS), localized predominantly to the small bowel, stimulates the growth of a variety of cancers, including neuroendocrine tumors (NETs), mainly through its interaction with the high-affinity NTS receptor 1 (NTSR1). Here, we observed increased expression of NTSR1 in almost all tested clinical NET samples, but not in normal tissues. Through RT-PCR analysis, we found that the expression of NTSR1 and NTSR2 was either variable (NTSR1) or absent (NTSR2) in human NET cell lines. In contrast, NTSR3 and NTS were expressed in all NET cells. Treatment with 5-aza-2′-deoxycytidine, a demethylating agent, increased levels of NTSR1 and NTSR2 suggesting that DNA methylation contributes to NTSR1/2 expression patterns, which was confirmed by methylation analyses. In addition, we found that knockdown of NTSR1 decreased proliferation, expression levels of growth-related proteins, and anchorage-independent growth of BON human carcinoid cells. Moreover, stable silencing of NTSR1 suppressed BON cell growth, adhesion, migration and invasion. Our results show that high expression of NTSR1 is found in clinical NETs and that promoter methylation is an important mechanism controlling the differential expression of NTSR1 and silencing of NTSR2 in NET cells. Furthermore, knockdown of NTSR1 in BON cells suppressed oncogenic functions suggesting that NTSR1 contributes to NET tumorigenesis. PMID:26298774

  7. Neurotensin receptor antagonist administered during cocaine withdrawal decreases locomotor sensitization and conditioned place preference.

    PubMed

    Felszeghy, Klara; Espinosa, José Manuel; Scarna, Hélène; Bérod, Anne; Rostène, William; Pélaprat, Didier

    2007-12-01

    Chronic use of psychostimulants induces enduringly increased responsiveness to a subsequent psychostimulant injection and sensitivity to drug-associated cues, contributing to drug craving and relapse. Neurotensin (NT), a neuropeptide functionally linked to dopaminergic neurons, was suggested to participate in these phenomena. We and others have reported that SR 48692, an NT receptor antagonist, given in pre- or co-treatments with cocaine or amphetamine, alters some behavioral effects of these drugs in rats. However, its efficacy when applied following repeated cocaine administration remains unknown. We, therefore, evaluated the ability of SR 48692, administered after a cocaine regimen, to interfere with the expression of locomotor sensitization and conditioned place preference (CPP) in rats. We demonstrated that the expression of locomotor sensitization, induced by four cocaine injections (15 mg/kg, i.p.) every other day and a cocaine challenge 1 week later, was attenuated by a subsequent 2-week daily administration of SR 48692 (1 mg/kg, i.p.). Furthermore, the expression of cocaine-induced CPP was suppressed by a 10-day SR 48692 treatment started after the conditioning period (four 15 mg/kg cocaine injections every other day). Taken together, our data show that a chronic SR 48692 treatment given after a cocaine regimen partly reverses the expression of locomotor sensitization and CPP in the rat, suggesting that NT participates in the maintenance of these behaviors. Our results support the hypothesis that targeting neuromodulatory systems, such as the NT systems may offer new strategies in the treatment of drug addiction.

  8. Focal Adhesion Kinase-Dependent Role of the Soluble Form of Neurotensin Receptor-3/Sortilin in Colorectal Cancer Cell Dissociation

    PubMed Central

    Béraud-Dufour, Sophie; Devader, Christelle; Massa, Fabienne; Roulot, Morgane; Coppola, Thierry; Mazella, Jean

    2016-01-01

    The aim of the present review is to unravel the mechanisms of action of the soluble form of the neurotensin (NT) receptor-3 (NTSR3), also called Sortilin, in numerous physiopathological processes including cancer development, cardiovascular diseases and depression. Sortilin/NTSR3 is a transmembrane protein thought to exert multiple functions both intracellularly and at the level of the plasma membrane. The Sortilin/NTSR3 extracellular domain is released by shedding from all the cells expressing the protein. Although the existence of the soluble form of Sortilin/NTSR3 (sSortilin/NTSR3) has been evidenced for more than 10 years, the studies focusing on the role of this soluble protein at the mechanistic level remain rare. Numerous cancer cells, including colonic cancer cells, express the receptor family of neurotensin (NT), and particularly Sortilin/NTSR3. This review aims to summarize the functional role of sSortilin/NTSR3 characterized in the colonic cancer cell line HT29. This includes mechanisms involving signaling cascades through focal adhesion kinase (FAK), a key pathway leading to the weakening of cell–cell and cell–extracellular matrix adhesions, a series of events which could be responsible for cancer metastasis. Finally, some future approaches targeting the release of sNTSR3 through the inhibition of matrix metalloproteases (MMPs) are suggested. PMID:27834811

  9. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    PubMed

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  10. Role of [Ca2+]i in "Ca2+ stores depletion-Ca2+ entry coupling' in fibroblasts expressing the rat neurotensin receptor.

    PubMed Central

    Gailly, P; Hermans, E; Gillis, J M

    1996-01-01

    1. Transfected Chinese hamster ovary fibroblasts expressing the rat neurotensin receptor were used to study the 'Ca2+ stores depletion-Ca2+ entry coupling' which follows stimulation with neurotensin and liberation of InsP3. 2. This coupling could be dissociated in time. Firstly, stores depletion was produced by neurotensin or thapsigargin which caused a first [Ca2+]i transient in a Ca(2+)-free external medium. Secondly, readmission of external Ca2+ produced an influx of Ca2+ and a second [Ca2+]i transient. 3. Various concentrations of thapsigargin (20 nM to 1 microM) were used to produce complete stores depletion with small or large first peaks of [Ca2+]i. Upon return to external Ca2+, small or large second [Ca2+]i peaks were observed. The amplitudes of both peaks were positively correlated. 4. The Ca2+ entry which followed stores depletion could occur at very low basal values of [Ca2+]i, was accelerated by okadaic acid and inhibited by staurosporine and the calmodulin antagonist W-7. 5. It is concluded that the rise in [Ca2+]i during Ca2+ stores depletion is an essential parameter which determines the size of the subsequent Ca2+ entry. PMID:8815199

  11. Discovery of ML314, a Brain Penetrant Nonpeptidic β-Arrestin Biased Agonist of the Neurotensin NTR1 Receptor

    PubMed Central

    2013-01-01

    The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high-throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a nonpeptidic β-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)-piperazin-1-yl)quinazoline, 32 (ML314), exhibits full agonist behavior against NTR1 (EC50 = 2.0 μM) in the primary assay and selectivity against NTR2. The effect of 32 is blocked by the NTR1 antagonist SR142948A in a dose-dependent manner. Unlike peptide-based NTR1 agonists, compound 32 has no significant response in a Ca2+ mobilization assay and is thus a biased agonist that activates the β-arrestin pathway rather than the traditional Gq coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound 32 displays good brain penetration in rodents, and studies examining its in vivo properties are underway. PMID:24611085

  12. Neurotensin activates GABAergic interneurons in the prefrontal cortex.

    PubMed

    Petrie, Kimberly A; Schmidt, Dennis; Bubser, Michael; Fadel, Jim; Carraway, Robert E; Deutch, Ariel Y

    2005-02-16

    Converging data suggest a dysfunction of prefrontal cortical GABAergic interneurons in schizophrenia. Morphological and physiological studies indicate that cortical GABA cells are modulated by a variety of afferents. The peptide transmitter neurotensin may be one such modulator of interneurons. In the rat prefrontal cortex (PFC), neurotensin is exclusively localized to dopamine axons and has been suggested to be decreased in schizophrenia. However, the effects of neurotensin on cortical interneurons are poorly understood. We used in vivo microdialysis in freely moving rats to assess whether neurotensin regulates PFC GABAergic interneurons. Intra-PFC administration of neurotensin concentration-dependently increased extracellular GABA levels; this effect was impulse dependent, being blocked by treatment with tetrodotoxin. The ability of neurotensin to increase GABA levels in the PFC was also blocked by pretreatment with 2-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazole-3-yl)carbonylamino]tricyclo(3.3.1.1 [EC] .3.7)decan-2-carboxylic acid (SR48692), a high-affinity neurotensin receptor 1 (NTR1) antagonist. This finding is consistent with our observation that NTR1 was localized to GABAergic interneurons in the PFC, particularly parvalbumin-containing interneurons. Because neurotensin is exclusively localized to dopamine axons in the PFC, we also determined whether neurotensin plays a role in the ability of dopamine agonists to increase extracellular GABA levels. We found that D2 agonist-elicited increases in PFC GABA levels were blocked by pretreatment with SR48692, consistent with data indicating that D2 autoreceptor agonists increase neurotensin release from dopamine-neurotensin axons in the PFC. These findings suggest that neurotensin plays an important role in regulating prefrontal cortical interneurons and that it may be useful to consider neurotensin agonists as an adjunct in the treatment of schizophrenia.

  13. Changes in [(3)H]-ouabain and [(3)H]-neurotensin binding to rat cerebral cortex membranes after administration of antipsychotic drugs haloperidol and clozapine.

    PubMed

    Rosin, Carina; López Ordieres, María Graciela; Rodríguez de Lores Arnaiz, Georgina

    2017-03-01

    Evidences indicate the relationship between neurotensinergic and dopaminergic systems. Neurotensin inhibits synaptosomal membrane Na(+), K(+)-ATPase activity, an effect blocked by SR 48692, antagonist for high affinity neurotensin receptor (NTS1) type. Assays of high affinity [(3)H]-ouabain binding (to analyze K(+) site of Na(+), K(+)-ATPase) show that in vitro addition of neurotensin decreases binding. Herein potential interaction between NTS1 receptor, dopaminergic D2 receptor and Na(+), K(+)-ATPase was studied. To test the involvement of dopaminergic D2 receptors in [(3)H]-ouabain binding inhibition by neurotensin, Wistar rats were administered i.p.with antipsychotic drugs haloperidol (2mg/kg) and clozapine (3, 10 and 30mg/kg). Animals were sacrificed 18h later, cerebral cortices harvested, membrane fractions prepared and high affinity [(3)H]-ouabain binding assayed in the absence or presence of neurotensin at a 10 micromolar concentration. No differences versus controls for basal binding or for binding inhibition by neurotensin were recorded, except after 10mg/kg clozapine. Rats were administered with neurotensin (3, 10y 30μg, i.c.v.) and 60min later, animals were sacrificed, cerebral cortices harvested and processed to obtain membrane fractions for high affinity [(3)H]-ouabain binding assays. Results showed a slight but statistically significant decrease in binding with the 30μg neurotensin dose. To analyze the interaction between dopaminergic D2 and NTS1 receptors, [(3)H]-neurotensin binding to cortical membranes from rats injected with haloperidol (2mg/kg, i.p.) or clozapine (10mg/kg) was assayed. Saturation curves and Scatchard transformation showed that the only statistically significant change occurred in Bmax after haloperidol administration. Hill number was close to the unit in all cases. Results indicated that typical and atypical antipsychotic drugs differentially modulate the interaction between neurotensin and Na(+), K(+)-ATPase. At the same time

  14. Systemic administration of the neurotensin NTS₁-receptor agonist PD149163 improves performance on a memory task in naturally deficient male brown Norway rats.

    PubMed

    Keiser, Ashley A; Matazel, Katelin S; Esser, Melissa K; Feifel, David; Prus, Adam J

    2014-12-01

    Agonists for the neurotensin NTS₁ receptor consistently exhibit antipsychotic effects in animal models without producing catalepsy, suggesting that NTS₁-receptor agonists may be a novel class of drugs to treat schizophrenia. Moreover, studies utilizing NTS₁ agonists have reported improvements in some aspects of cognitive functioning, including prepulse inhibition and learning procedures, which suggest an ability of NTS₁-receptor agonists to diminish neurocognitive deficits. The present study sought to assess both baseline delay-induced memory performance and the effects of NTS₁-receptor activation on learning and memory consolidation in male Long-Evans and Brown Norway rats using a delayed nonmatch-to-position task radial arm-maze task. In the absence of drugs, Brown Norway rats displayed a significant increase in spatial memory errors following 3-, 7-, and 24-hr delay, whereas Long-Evans rats exhibited an increase in spatial memory errors following only a 7-, and 24-hr delay. With Brown Norway rats, administration of PD149163 before or after an information trial significantly reduced errors during a retention trial after a 24 hr delay. Administration of the NTS(1/2)-receptor antagonist SR142948 prior to the information trial did not affect retention-trial errors. These data are consistent with previous findings that Brown Norway rats have natural cognitive deficits and that they may be useful for assessing putative antipsychotic drugs for cognitive efficacy. Moreover, the results of this study support previous findings suggesting that NTS₁-receptor agonists may improve some aspects of cognitive functioning.

  15. Characterization and distribution of binding sites for a new neurotensin receptor antagonist ligand, [3H]SR 48692, in the guinea pig brain1

    PubMed Central

    Betancur, Catalina; Canton, Maryse; Gully, Danielle; Vela, Gema; Pélaprat, Didier; Rostène, William

    1995-01-01

    SR 48692, a selective non-peptide antagonist of neurotensin (NT) receptors was recently developed. In the present work we studied the binding properties of the corresponding radioligand, 3H-SR 48692, in the adult guinea-pig brain. The characterization of 3H-SR 48692 binding was carried out on brain membrane preparations and the distribution of 3H-SR 48692 binding sites was determined by receptor autoradiography, and compared to that of 125I-NT binding sites. In brain homogenates, 3H-SR 48692 bound to a single population of sites with a Kd of 2.19 nM and a Bmax of 1.15 pmol/mg protein. This Bmax value was 20 times higher than that observed for 125I-NT. NT agonists were able to competitively interact with the entire population of binding sites labeled by 3H-SR 48692, but their affinities were much lower than those observed for 125I-NT. By contrast, NT antagonists exhibited similar abilities to inhibit the binding of both radioligands. The addition of unlabeled NT in saturation assays revealed a competitive inhibition of 3H-SR 48692 binding, suggesting that agonist and antagonists ligands bind to overlapping domains of the NT receptor. The autoradiographic distribution of the low-affinity NT binding sites detected by 3H-SR 48692 (96% of the receptors) was very similar to the distribution of high-affinity receptors labeled with 125I-NT (4% of the receptors). In addition, the binding of 3H-SR 48692 was insensitive to guanyl nucleotides. Taken together, these findings suggest that the binding sites detected by 3H-SR 48692 in the guinea-pig brain mainly represent the uncoupled form of the NT receptor. PMID:7791120

  16. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    SciTech Connect

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry; Mazella, Jean

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  17. The neurotensin agonist PD149163 increases Fos expression in the prefrontal cortex of the rat.

    PubMed

    Petrie, Kimberly A; Bubser, Michael; Casey, Cheryl D; Davis, M Duff; Roth, Bryan L; Deutch, Ariel Y

    2004-10-01

    Dopaminergic axons innervating the prefrontal cortex (PFC) target both pyramidal cells and GABAergic interneurons. Many of these dopamine (DA) axons in the rat coexpress the peptide neurotransmitter neurotensin. Previous electrophysiological data have suggested that neurotensin activates GABAergic interneurons in the PFC. Activation of D2-like DA receptors increases extracellular GABA levels in the PFC, as opposed to the striatum, where D2 receptor activation inhibits GABAergic neurons. Because activation of presynaptic D2 release-modulating autoreceptors in the PFC suppresses DA release but increases release of the cotransmitter neurotensin, D2 agonists may enhance the activity of GABAergic interneurons via release of neurotensin. In order to determine if neurotensin can activate GABAergic interneurons, we treated rats with the peptide neurotensin agonist, PD149163, and examined Fos expression in PFC neurons. Systemic administration of PD149163 increased overall Fos expression in the PFC, but not in the dorsal striatum. PD149163 induced Fos in PFC interneurons, as defined by the presence of calcium-binding proteins, and in pyramidal cells. Pretreatment with the high-affinity neurotensin antagonist, SR48692, blocked neurotensin agonist-induced Fos expression. These data suggest that neurotensin activates interneurons in the PFC of the rat.

  18. The quetiapine active metabolite N-desalkylquetiapine and the neurotensin NTS₁ receptor agonist PD149163 exhibit antidepressant-like effects on operant responding in male rats.

    PubMed

    Hillhouse, Todd M; Shankland, Zachary; Matazel, Katelin S; Keiser, Ashley A; Prus, Adam J

    2014-12-01

    Major depressive disorder is the most common mood disorder in the United States and European Union; however, the limitations of clinically available antidepressant drugs have led researchers to pursue novel pharmacological treatments. Clinical studies have reported that monotherapy with the atypical antipsychotic drug quetiapine produces a rapid reduction in depressive symptoms that is apparent after 1 week of treatment, and it is possible that the active metabolite N-desalkylquetiapine, which structurally resembles an antidepressant drug, produces antidepressant effects. Neuropharmacological evaluations of the neurotensin NTS1 receptor agonist PD149163 suggest antidepressant efficacy, but the effects of a NTS₁ receptor agonist in an antidepressant animal model have yet to be reported. The present study examined the antidepressant-like effects of N-desalkylquetiapine, PD14916, quetiapine, the tricyclic antidepressant drug imipramine, the atypical antipsychotic drug risperidone, and the typical antipsychotic drug raclopride on responding in male Sprague-Dawley rats trained on a differential-reinforcement-of-low-rate 72-s operant schedule, a procedure used for screening antidepressant drugs. Quetiapine, PD149163, risperidone, and imipramine exhibited antidepressant-like effects by increasing the number of reinforcers earned, decreasing the number of responses emitted, and shifting the interresponse time (IRT) distributions to the right. N-Desalkylquetiapine produced a partial antidepressant-like effect by decreasing the number of responses emitted and producing a rightward shift in the IRT distributions, but it did not significantly alter the number of reinforcers earned. Raclopride decreased reinforcers and responses. These data suggest that N-desalkylquetiapine likely contributes to quetiapine's antidepressant efficacy and identify NTS₁ receptor activation as a potential novel pharmacologic strategy for antidepressant drugs.

  19. Secretion of neurotensin from a human pancreatic islet cell carcinoma cell line (QGP-1N).

    PubMed

    Tateishi, K; Funakoshi, A; Kitayama, N; Matsuoka, Y

    1993-12-10

    Effects of various secretagogues on secretion of neurotensin from a pancreatic islet cell carcinoma cell line (QGP-1N) were examined. Carbachol stimulated secretion of neurotensin concentration-dependently in the range of 10(-6) - 10(-4) M. The neurotensin secretion stimulated with 10(-5) M carbachol was completely inhibited by atropine at 10(-5) M. Phorbol ester and calcium ionophore (A23187) stimulated secretion of neurotensin. The removal of extracellular Ca2+ suppressed the secretion through the stimulation with 10(-5) M carbachol. Fluoride, an activator of guanine nucleotide-binding (G) protein, stimulated secretion of neurotensin. Neurotensin released into culture medium through stimulation with carbachol coeluted with neurotensin 1-13 on a gel-chromatography. Our results suggest that secretion of neurotensin from QGP-1N cells is mainly regulated by acetylcholine through muscarinic receptors coupled to G protein and that an increase in intracellular Ca2+ and protein kinase C play an important role in stimulus-secretion coupling.

  20. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  1. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  2. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  3. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon

    PubMed Central

    Li, Hongfei; Chen, Ji-Hong; Yang, Zixian; Huang, Min; Yu, Yuanjie; Tan, Shiyun; Luo, Hesheng; Huizinga, Jan D

    2016-01-01

    Background/Aims Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. Methods The effects of neurotensin with concentrations ranging from 0.1–100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. Results Low concentration of neurotensin (0.1–1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction—relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. Conclusions Neurotensin (0.1–1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions. PMID:26882114

  4. Amphetamine-elicited striatal Fos expression is attenuated in neurotensin null mutant mice.

    PubMed

    Fadel, Jim; Dobner, Paul R; Deutch, Ariel Y

    2006-07-10

    Neurotensin (NT) has been suggested to interact with dopamine systems in different forebrain sites to exert both antipsychotic- and psychostimulant-like effects. We previously found that genetic or pharmacological manipulations that disrupt endogenous NT signaling attenuate antipsychotic drug-induced Fos expression in the dorsolateral and central striatum but not other striatal regions. To assess the role of NT in psychostimulant responses, we examined the ability of d-amphetamine (AMP) to induce Fos in wild-type and NT null mutant mice. AMP-elicited Fos expression was significantly attenuated in the medial striatum of NT null mutant mice, but was unaffected in other striatal territories. Similar results were obtained in rats and mice pretreated with the high affinity neurotensin receptor (NTR1) antagonist SR 48692. The effect of the NTR1 antagonist was particularly apparent in the striatal patch (striosome) compartment, as defined by mu-opioid receptor immunoreactivity. These data suggest that NT is required for the full activation by AMP of medial striatal neurons.

  5. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  6. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis.

    PubMed

    Piliponsky, Adrian M; Chen, Ching-Cheng; Nishimura, Toshihiko; Metz, Martin; Rios, Eon J; Dobner, Paul R; Wada, Etsuko; Wada, Keiji; Zacharias, Sherma; Mohanasundaram, Uma M; Faix, James D; Abrink, Magnus; Pejler, Gunnar; Pearl, Ronald G; Tsai, Mindy; Galli, Stephen J

    2008-04-01

    Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell-dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.

  7. Neurotensin excitation of serotonergic neurons in the rat nucleus raphe magnus: ionic and molecular mechanisms.

    PubMed

    Li, A H; Yeh, T H; Tan, P P; Hwang, H M; Wang, H L

    2001-06-01

    To understand the cellular and molecular mechanisms by which neurotensin (NT) induces an analgesic effect in the nucleus raphe magnus (NRM), whole-cell patch-clamp recordings were performed to investigate the electrophysiological effects of NT on acutely dissociated NRM neurons. Two subtypes of neurons, primary serotonergic and secondary non-serotonergic cells, were identified from acutely isolated NRM neurons. During current-clamp recordings, NT depolarized NRM serotonergic neurons and evoked action potentials. Voltage-clamp recordings showed that NT excited serotonergic neurons by enhancing a voltage-insensitive and non-selective cationic conductance. Both SR48692, a selective antagonist of subtype 1 neurotensin receptor (NTR-1), and SR 142948A, a non-selective antagonist of NTR-1 and subtype 2 neurotensin receptor (NTR-2), failed to prevent neurotensin from exciting NRM serotonergic neurons. NT-evoked cationic current was inhibited by the intracellular administration of GDP-beta-S. NT failed to induce cationic currents after dialyzing serotonergic neurons with the anti-G(alphaq/11) antibody. Cellular Ca(2+) imaging study using fura-2 showed that NT induced the calcium release from the intracellular store. NT-evoked current was blocked after the internal perfusion of heparin, an IP(3) receptor antagonist, or BAPTA, a fast Ca(2+) chelator. It is concluded that neurotensin enhancement of the cationic conductance of NRM serotonergic neurons is mediated by a novel subtype of neurotensin receptors. The coupling mechanism via G(alphaq/11) proteins is likely to involve the generation of IP(3), and subsequent IP(3)-evoked Ca(2+) release from intracellular stores results in activating the non-selective cationic conductance.

  8. Syntheses, receptor bindings, in vitro and in vivo stabilities and biodistributions of DOTA-neurotensin(8-13) derivatives containing β-amino acid residues - a lesson about the importance of animal experiments.

    PubMed

    Sparr, Christof; Purkayastha, Nirupam; Yoshinari, Tomohiro; Seebach, Dieter; Maschauer, Simone; Prante, Olaf; Hübner, Harald; Gmeiner, Peter; Kolesinska, Beata; Cescato, Renzo; Waser, Beatrice; Reubi, Jean Claude

    2013-12-01

    Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).

  9. Multiple toxic doses of methamphetamine alter neurotensin concentrations in various region of the rat brain

    SciTech Connect

    Hanson, G.R.; Merchant, K.; Gibb, J.W.; Letter, A.A.

    1986-03-05

    The authors have previously reported that multiple high doses of methamphetamine (METH) alter neuronal monoamine metabolism and release. Recently, Hokfelt et al. showed that neurotensin, a tridecapeptide, has neurotransmitter properties which may be involved with DA neuronal activity. In the present study they investigated the possible effects of METH on the CNS neurotensin system. Five doses of METH (15 mg/kg) were administered every 6 h; control and treated rats were sacrificed 18 h after the last dose and concentrations of neurotensin-like immuno-reactivity (NTLI) were measured by radioimmunoassay. NTLI was elevated 200-300% in the nucleus accumbens, neostriatum, and substantia nigra; 30-40% increases in NTLI were measured in the hippocampus and hypothalamus. No change was observed in amygdala, A-10 or periaqueductal gray. In contrast to the above measured areas, the frontal lobe and olfactory bulb showed decreases of 25-35%. These findings demonstrate that METH treatment alters the activities of several CNS neurotensin systems, possibly due to the influence of this drug on DA pathways. The variability in the type and magnitude of these responses suggests that DA and neurotensin systems interact by more than one mechanism.

  10. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    DTIC Science & Technology

    2010-01-01

    Res Commun 2002;295:482–8. [78] Souaze F, Viardot- Foucault V, Roullet N, Toy-Miou-Leong M, Gompel A, Bruyneel E, et al. Neurotensin receptor 1 gene...Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP

  11. Elucidating the Role of Neurotensin in the Pathophysiology and Management of Major Mental Disorders

    PubMed Central

    Boules, Mona M; Fredrickson, Paul; Muehlmann, Amber M; Richelson, Elliott

    2014-01-01

    Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders. PMID:25379273

  12. Role of Neurotensin in Radiation-Induced Hypothermia in Rats

    DTIC Science & Technology

    1991-01-01

    variety of behavioral and physiolog- of Neurotensin in Radiation-induced Hypothermia in Rat.A- ical effects, including the stimulation of histamine relmeas...induction of hypothermia, after intracisternal or intraven- was examined. Intracerebroventricular (IafCV) adminis-tration of tricular administration...1S-4 7). ’The purposes of this study ne-urotensin produced dose-dependent hypoihermia. Histamine were to investigate the role of neurotensin in

  13. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    PubMed

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward.

  14. Neurotensin modulation of acetylcholine, GABA, and aspartate release from rat prefrontal cortex studied in vivo with microdialysis.

    PubMed

    Petkova-Kirova, Polina; Rakovska, Angelina; Della Corte, Laura; Zaekova, Galina; Radomirov, Radomir; Mayer, Aliz

    2008-09-30

    The effects of the peptide transmitter neurotensin (NT) on the release of acetylcholine (ACh), gamma-aminobutyric acid (GABA), glutamate (Glu), aspartate (Asp), and taurine from the prefrontal cortex (PFC) of freely moving rats were studied by transversal microdialysis. Neurotensin (0.2 and 1 microM) administered locally in the PFC produced a concentration-dependent increase in the extracellular levels of ACh, GABA, and Asp, but not of Glu or taurine. The increase produced by 1 microM NT reached a maximum of about 240% for ACh, 370% for GABA, and 380% for Asp. Lower doses of NT (0.05 microM) did not cause a significant change in ACh, GABA, or Asp output in the PFC. Higher concentrations of NT (2 microM) did not induce further increases in the level of neurotransmitters. A high-affinity selective neurotensin receptor (NTR1) antagonist SR 48692 (0.5 microM) perfused locally blocked neurotensin (1 microM)-evoked ACh, GABA, and Asp release. Local infusion of the sodium channel blocker tetrodotoxin (TTX) (1 microM) decreased the release of ACh, had no significant effect on GABA or Asp release, and prevented the 1 microM neurotensin-induced increase in ACh, GABA, and Asp output. Removal of calcium from the Ringer's solution prevented the peptide from having any effects on the neurotransmitters. Thus, in vivo NT plays a modulatory role in the PFC by interacting with cortical neurons releasing GABA and Asp and with ACh-containing neurons projecting to the PFC. The NT effects are of neural origin, as they are TTX-sensitive, and mediated by the NTR1 receptor, as they are antagonized by SR 48692.

  15. Emerging role of neurotensin in regulation of the cardiovascular system.

    PubMed

    Osadchii, Oleg E

    2015-09-05

    There is increasing evidence in support of an important role played by neurotensin (NT), a tridecapeptide originally found in bovine hypothalamus, in regulation of cardiovascular system. Elevated systemic levels of NT may contribute to pathogenesis of acute circulatory disoders, and predict the risk for cardiovascular morbidity and mortality in population-based studies. Within cardiovascular system, NT-containing neural fibers are found in close contact with atrial and ventricular cardiac myocytes, cardiac conduction system, intracardiac ganglia, as well as coronary vessels in humans and various animal species. The density of NT-immunoreactive innervation is reduced in cardiac disease. NT produces a variety of cardiovascular actions including effects on heart rate, myocardial contractility, systemic blood pressure, coronary vascular tone, venous smooth muscle tone, and regional blood flow in gastrointestinal tract, cutaneous and adipose tissue. NT could trigger cardiovascular reflexes by stimulating primary visceral afferents synaptically connected with preganglionic sympathetic neurons at the spinal cord. Structural determinants of biological activity of NT reside primarily in the C-terminal portion of its molecule which is responsible for receptor activation. NT effects are mediated via activation of NT receptors, or produced indirectly via stimulation of release of various endogenous neuromodulators/neurotransmitters such as histamine, catecholamines and prostaglandins. Three subtypes of NT receptor (NTS1, NTS2 and NTS3) have been shown to be expressed in the myocardium. NTS1, a high-affinity NT binding site coupled to phospholipase C-inositoltrisphosphate transduction pathway, is thought to mediate NT-induced cardiovascular responses.

  16. The effect of the stereoisomers of butaclamol on neurotensin content in discrete regions of the rat brain.

    PubMed

    Bissette, G; Dauer, W T; Kilts, C D; O'Connor, L; Nemeroff, C B

    1988-12-01

    The prevailing hypothesis concerning the mechanism of antipsychotic drug action is principally based on the striking correlation between their clinical potency and their potency in blockade of D2 dopamine receptors. However, most of these compounds also have effects at serotonin, acetylcholine, histamine, and alpha-adrenergic receptors and have recently been shown to alter the concentrations of certain neuropeptides in the rat brain after chronic drug administration. One such neuropeptide that is increased in concentration in dopamine terminal regions by clinically effective neuroleptic drugs is neurotensin (NT). Neurotensin is closely associated with dopamine neurons, as demonstrated by evidence derived from anatomic, physiologic, and pharmacologic studies. In this report, we determined the effects of chronic administration of the potent D2 receptor antagonist (+)-butaclamol and its inactive (-) stereoisomer on regional brain NT content. Moreover, we sought to determine whether the effects of haloperidol on NT concentrations can be antagonized by concomitant administration of an indirect dopamine agonist, d-amphetamine. Neurotensin content in the caudate nucleus and nucleus accumbens of the rat were significantly increased by 3 weeks of daily injections of haloperidol or (+)-butaclamol, but not (-)-butaclamol. d-Amphetamine did not alter this effect of haloperidol on NT concentrations in either the nucleus accumbens or caudate nucleus. These data are concordant with the hypothesis that D2 receptor blockade is required for NT concentration increases after antipsychotic drug treatment and that the increase in synaptic cleft dopamine content produced by d-amphetamine cannot reverse this effect of dopamine receptor antagonists.

  17. Response of neurotensin basal ganglia systems during extinction of methamphetamine self-administration in rat.

    PubMed

    Hanson, Glen R; Hoonakker, Amanda J; Robson, Christina M; McFadden, Lisa M; Frankel, Paul S; Alburges, Mario E

    2013-08-01

    Because of persistent social problems caused by methamphetamine (METH), new therapeutic strategies need to be developed. Thus, we investigated the response of central nervous system neurotensin (NT) systems to METH self-administration (SA) and their interaction with basal ganglia dopamine (DA) pathways. Neurotensin is a peptide associated with inhibitory feedback pathways to nigrostriatal DA projections. We observed that NT levels decreased in rats during extinction of METH SA when lever pressing resulted in intravenous infusions of saline rather than METH. Thus, 6 h after the first session of extinction, NT levels were 53, 42, and 49% of corresponding controls in the anterior dorsal striatum, posterior dorsal striatum, and globus pallidus, respectively. NT levels were also significantly reduced in corresponding yoked rats in the anterior dorsal striatum (64% of control), but not the other structures examined. The reductions in NT levels in the anterior dorsal striatum particularly correlated with the lever pressing during the first session of extinction (r =s; 0.745). These, and previously reported findings, suggest that the extinction-related reductions in NT levels were mediated by activation of D2 receptors. Finally, administration of the neurotensin receptor 1 (NTR1) agonist [PD149163 [Lys(CH2NH)Lys-Pro,Trp-tert-Leu-Leu-Oet]; 0.25 or 0.5 mg/kg] diminished lever pressing during the first extinction session, whereas the NTR1 antagonist [SR48692 [2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-imethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo(3.3.1.1.(3.7))decan-2-carboxylic acid]; 0.3 mg/kg per administration] attenuated the reduction of lever pressing during the second to fourth days of extinction. In summary, these findings support the hypothesis that some of the endogenous basal ganglia NT systems contribute to the elimination of contingent behavior during the early stages of the METH SA extinction process.

  18. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  19. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala.

    PubMed

    László, Kristóf; Tóth, Krisztián; Kertes, Erika; Péczely, László; Lénárd, László

    2010-04-02

    In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.

  20. Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test.

    PubMed

    Ollmann, Tamás; Péczely, László; László, Kristóf; Kovács, Anita; Gálosi, Rita; Berente, Eszter; Karádi, Zoltán; Lénárd, László

    2015-02-01

    The ventral pallidum (VP) is innervated by the mesolimbic dopaminergic system and it has a key role in motivation, reward, and memory processes. Neurotensin (NT) is an important neuromodulator which has been shown to modulate reinforcement in the ventral tegmental area, in the ventral mesencephalic region and in the central nucleus of amygdala. Neurotensin receptor 1 (NTR1) has already been detected in the VP in abundance, but its role in rewarding and reinforcing processes is not fully understood yet. In our present experiments, the effects of NT on positive reinforcement were investigated in the VP. In conditioned place preference (CPP) test, male Wistar rats were microinjected bilaterally with 100 ng or 250 ng NT in the volume of 0.4 μl. In other groups of animals, 35 ng NTR1 antagonist SR 48692 was applied by itself, or microinjected 15 min before 100 ng NT treatment. One hundred ng dose of NT induced CPP, whereas animals injected with 250 ng NT did not exhibit significant differences from the vehicle group. Antagonist pretreatment inhibited the effect of NT, while the antagonist applied by itself had no effect. Our results show that NT injected into the VP is involved in positive reinforcement. This effect is specific to NTR1 receptors because the development of CPP can be prevented by specific antagonist.

  1. Neurotensin expression and outcome of malignant pleural mesothelioma.

    PubMed

    Alifano, Marco; Loi, Mauro; Camilleri-Broet, Sophie; Dupouy, Sandra; Régnard, Jean François; Forgez, Patricia

    2010-02-01

    Malignant pleural mesothelioma is a frequently fatal disease and the impact of available treatments is globally poor. Identification of new prognostic factors would help in the understanding of disease progression and, possibly, patient management. Here, we evaluate the prognostic impact of the neurotensin (NTS) and its cognate receptor (NTSR1) known for mediating cellular proliferation, survival, invasiveness, and mobility. We studied a series of 52 consecutive patients with epithelioid malignant mesothelioma undergoing management with curative intent, by immunohistochemistry for the expression of NTS and NTSR1. Specimens were scored as 0, 1, or 2 for less than 10%, between 10 and 50%, or more than 50% of NTS positive staining in tumor cells, respectively. Immunohistochemistry revealed that NTS and NTSR1 expression was found in 71.1% and 90.4% of malignant mesotheliomas, respectively. Using univariate analysis, expression of NTS was significantly (p = 0.015) related with a poor prognosis, with median survivals of 11.0 months, 18.4 months, and 29.8 months in patients showing expression scored as 2, 1, and 0, respectively. Multivariate analysis showed that expression of NTS (p = 0.007) and non-surgical therapy (p = 0.004) were independent predictors of poor prognosis. In order to evaluate the role of NTS/NTSR1 complex in mesothelioma progression, in vitro cell invasion assays and wound healing were performed on the mesothelioma cell line, MSTO-211H, and showed that inhibition of the NTS system resulted in a significant reduction of both migration and collagen invasion of mesothelioma cells. The expression of NTS is identified as a prognostic marker in patients with malignant pleural mesothelioma (Patent EP 08305971.7).

  2. Differential response of neurotensin to methamphetamine self-administration.

    PubMed

    Frankel, Paul S; Hoonakker, Amanda J; Hanson, Glen R

    2008-10-01

    Neurotensin (NT) is a tridecapeptide associated with extrapyramidal and limbic pathways and is thought to inhibit dopamine (DA) functions in nigrostriatal, mesocortical, and mesolimbic systems. Because of these effects, NT has been referred to as an endogenous neuroleptic. We previously reported that low, high, and multiple doses of psychostimulants such as methamphetamine (METH) have profound effects on tissue levels, expression of associated mRNA, and release of NT in DA-linked brain structures via activation of DA D-1 and D-2 receptors. In order to investigate the potential clinical significance of responses by NT systems to these stimulants, we have examined METH in a self-administration paradigm and evaluated changes in tissue levels of NT in limbic and extrapyramidal regions. After food training, adult Sprague-Dawley rats were allowed to self-administer (i.v.) METH (0.03 or 0.06 mg/0.01 mL) by lever-pressing (FR = 5) during 4-hr sessions until a cumulative total of approximately 3-4 mg was infused. Animals were sacrificed 6 hr after the last infusion of drug, and NT tissue levels were determined by established RIA techniques. For comparisons, the treatment sessions also included yoked animals that received identical quantities and/or patterns of either METH or saline solution. The results demonstrated four distinct patterns of NT response including (1) regions of no NT changes in either self-administering or yoked METH groups; (2) regions of comparably increased NT levels in both METH-treated groups; (3) regions where self-administration of METH potentiated the increased NT levels relative to yoked METH groups; and (4) a region of increased NT levels only in self-administering, and not yoked, METH-treated groups.

  3. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    SciTech Connect

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  4. New hydroxamate inhibitors of neurotensin-degrading enzymes. Synthesis and enzyme active-site recognition.

    PubMed

    Bourdel, E; Doulut, S; Jarretou, G; Labbe-Jullie, C; Fehrentz, J A; Doumbia, O; Kitabgi, P; Martinez, J

    1996-08-01

    Selective and mixed inhibitors of the three zinc metallopeptidases that degrade neurotensin (NT), e.g. endopeptidase 24-16 (EC 3.4.24.16), endopeptidase 24-11 (EC 3.4.24.11 or neutral endopeptidase, NEP) and endopeptidase 24-15 (EC 3.4.24.15), and leucine-aminopeptidase (type IV-S), that degrades the NT-related peptides, Neuromedin N (NN), are of great interest. On the structural basis of compound JMV 390-1 (N-[3-[(hydroxyamino)carbonyl]-1-oxo-2(R)-benzylpropyl]-L- isoleucyl-L-leucine), which was a full inhibitor of the major NT degrading enzymes, several hydroxamate inhibitors corresponding to the general formula HONHCO-CH2-CH(CH2-C6H5)CO-X-Y-OH (with X-Y = dipeptide) have been synthesized. Compound 7a (X-Y = Ile-Ala) was nearly 40-times more potent in inhibiting EC 24-16 than NEP and more than 800-times more potent than EC 24-15, with an IC50 (12 nM) almost equivalent to that of compound JMV 390-1. Therefore, this compound is an interesting selective inhibitor of EC 24-16, and should be an interesting probe to explore the physiological involvement of EC 24-16 in the metabolism of neurotensin.

  5. The neurotensin gene is a downstream target for Ras activation.

    PubMed Central

    Evers, B M; Zhou, Z; Celano, P; Li, J

    1995-01-01

    Ras regulates novel patterns of gene expression and the differentiation of various eukaryotic cell types. Stable transfection of Ha-ras into the human colon cancer line CaCo2 results in the morphologic differentiation to a small bowel phenotype. The purpose of our study was to determine whether the Ras regulatory pathway plays a role in the expression of the neurotensin gene (NT/N), a terminally differentiated endocrine product specifically localized in the gastrointestinal tract to the adult small bowel. We found that CaCo2-ras cells, but not parental CaCo2, express high levels of the human NT/N gene and, moreover, that this increase in gene expression is regulated at the level of transcription. Transfection experiments using NT/N-CAT mutation constructs identify the proximal 200 bp of NT/N flanking sequence as sufficient for maximal Ras-mediated NT/N reporter gene induction. Furthermore, a proximal AP-1/CRE motif is crucial for this Ras-mediated NT/N activation. Wild-type Ha-ras induces NT/N gene expression, albeit at lower levels than activated Ras; a dominant-negative Raf blocks this NT/N induction, suggesting that Raf lies down-stream of Ras in this pathway. In addition, postconfluent cultures of CaCo2 cells, which are differentiated to a small bowel phenotype, express the NT/N gene by 6 d after reaching confluency; this increase of NT/N expression is associated with concomitant increases of cellular p21ras protein. We conclude that Ras (both wild-type and activated) enhances expression of the NT/N gene in the gut-derived CaCo2 cell line, suggesting an important role for the Ras signaling pathway in NT/N gene transcription. Our results underscore the possibility that tissue-specific genes (such as NT/N) expressed in distinct subpopulations of the gut may be subject to Ras regulation. Finally, we speculate that the NT/N gene and the CaCo2 and CaCo2-ras cell systems will provide unique models to further define the cellular mechanisms leading to mammalian

  6. Action of neurotensin on size, composition, and growth of pancreas and stomach in the rat.

    PubMed

    Feurle, G E; Müller, B; Ohnheiser, G; Baća, I

    1985-12-01

    Since the gastrointestinal peptide neurotensin has a stimulatory effect on the secretion of the exocrine pancreas and an inhibitory effect on secretion and motility of the stomach, we investigated whether chronic parenteral administration of neurotensin would affect pancreatic and gastric growth. We therefore infused synthetic neurotensin subcutaneously (dose, 43 and 282 pmol X kg-1 X min-1) in 20 Wistar rats for 2 weeks using Alzet osmotic minipumps and compared pancreatic weight, DNA, RNA, protein, lipase, amylase, pancreatic polypeptide and insulin with these parameters in 10 control rats from the same litter with subcutaneously implanted plastic cylinders approximately the size of the minipumps. In another experiment, synthetic neurotensin (836 pmol X kg-1) was injected intraperitoneally three times a day for 3 days in 12 rats. Thereafter, we measured pancreatic DNA and in vitro incorporation of [3H]thymidine into pancreatic DNA. These effects were compared with the actions of caerulein and normal saline. Long term infusion of the high neurotensin dose induced an increase of pancreatic weight (control: 0.87 g, neurotensin: 1.02 g) and of DNA (control: 2.5 micrograms; neurotensin: 3.5 micrograms) and pancreatic polypeptide (control: 2.4 ng; neurotensin: 7.4 ng) contents, whereas pancreatic protein, RNA, amylase and lipase contents were not stimulated. In relation to DNA, these parameters even were significantly depressed. Insulin remained unchanged. Intraperitoneal injection of neurotensin induced an increase of pancreatic DNA content and stimulated [3H]thymidine incorporation into DNA (control: 11 000 dpm/g; neurotensin: 15 800 dpm/g pancreas). Moreover, long-term neurotensin infusion with the high dose led to a rise in protein concentration and an increase in the thickness of the gastric antrum; antral DNA concentration was insignificantly stimulated. Parenteral neurotensin in the doses and at the times administered, led therefore, to hyperplasia of the

  7. Neurotensin and bombesin, a relationship between their effects on body temperature and locomotor activity?

    PubMed

    van Wimersma Greidanus, T B; Schijff, J A; Noteboom, J L; Spit, M C; Bruins, L; van Zummeren, B M; Rinkel, G J

    1984-08-01

    Neurotensin and bombesin have been tested for their effects on body temperature and locomotor activity in an open field. Both peptides induce hypothermia and suppress ambulation and rearing. The time curves of the hypothermic effects of both peptides appear to be rather similar, although bombesin is a more potent hypothermic agent than neurotensin. The time curves of the effects on locomotor activity appear to be quite different. The suppressive effect of neurotensin on locomotor activity is relatively short lasting and reaches its maximum at approximately 32 minutes. The effect of bombesin follows a different time curve and shows two peaks, suggesting that two different mechanisms are involved in the suppressive action of bombesin on locomotor activity. Calculation of the correlation coefficients between the effects of neurotensin and of bombesin on body temperature and on locomotor activity (ambulation) suggest that a causal relationship between these two effects is not likely, in particular for neurotensin.

  8. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.

  9. Suicide HSVtk Gene Delivery by Neurotensin-Polyplex Nanoparticles via the Bloodstream and GCV Treatment Specifically Inhibit the Growth of Human MDA-MB-231 Triple Negative Breast Cancer Tumors Xenografted in Athymic Mice

    PubMed Central

    Castillo-Rodríguez, Rosa A.; Arango-Rodríguez, Martha L.; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  10. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the alpha 7 nicotinic receptor exerts anti-inflammatory effects on immune cells, the role of muscarinic receptors in mucosal homeostasis, response to enteric pathogens, and modulation of immune cell function is undefined. The contribution of type 3 muscarinic receptor (M3R) to mucosal homeo...

  11. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    PubMed Central

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Strandbygård, Dorthe; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; de Jong, Inge E. M.; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Uppalanchi, Srinivas; Sakumudi, Durga Rao; Eradi, Pradheep; Watson, Steven P.; Thirup, Søren

    2014-01-01

    Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methyl­umbelliferone moiety of AF40431 forming π-stacking with a phenylalanine. PMID:24531479

  12. Increased Brain Neurotensin and NTSR2 Lead to Weak Nociception in NTSR3/Sortilin Knockout Mice

    PubMed Central

    Devader, Christelle; Moreno, Sébastien; Roulot, Morgane; Deval, Emmanuel; Dix, Thomas; Morales, Carlos R.; Mazella, Jean

    2016-01-01

    The neuropeptide neurotensin (NT) elicits numerous pharmacological effects through three different receptors (NTSR1, NTSR2, and NTSR3 also called sortilin). Pharmacological approaches and generation of NTSR1 and NTSR2-deficient mice allowed to determine the NT-induced antipsychotic like behavior, the inhibitory of weak fear memory and the nociceptive signaling in a rat formalin tonic pain model to NTSR1. Conversely, the effects of NT on thermal and tonic nociceptions were mediated by NTSR2. However, the role of NTSR3/sortilin on the neurotensinergic system was not investigated. Here, by using C57Bl/6J mouse model in which the gene coding for NTSR3/sortilin has been inactivated, we observed a modification of the expression of both NTSR2 and NT itself. Quantitative PCR and protein expression using Western blot analyses and AlphaLisa™ technology resulted in the observation that brain NTSR2 as well as brain and blood NT were 2-fold increased in KO mice leading to a resistance of these mice to thermal and chemical pain. These data confirm that NTSR3/sortilin interacts with other NT receptors (i.e., NTSR2) and that its deletion modifies also the affinity of this receptor to NT. PMID:27932946

  13. Effect of a novel neurotensin analog, NT69L, on nicotine-induced alterations in monoamine levels in rat brain.

    PubMed

    Liang, Yanqi; Boules, Mona; Shaw, Amanda M; Williams, Katrina; Fredrickson, Paul; Richelson, Elliott

    2008-09-22

    NT69L, is a novel neurotensin (8-13) analog that participates in the modulation of the dopaminergic pathways implicated in addiction to psychostimulants. NT69L blocks nicotine-induced hyperactivity as well as the initiation and expression of sensitization in rats. Recent evidence suggests that stimulation of mesocorticolimbic dopamine system, with influences from the other monoamine systems, e.g. norepinephrine and serotonin, is involved in nicotine's reinforcing properties. The aim of the present study was to investigate the effect of pretreatment with NT69L on nicotine-induced changes in monoamine levels in the rat brain using in vivo microdialysis. Acute or chronic (0.4 mg/kg, sc, once daily for 2 weeks) administration of nicotine elicited increases in extracellular levels of dopamine, dopamine metabolites, norepinephrine, or serotonin in medial prefrontal cortex, nucleus accumbens shell, and core of rats. Pretreatment with NT69L (1 mg/kg, intraperitoneally, ip) administered 40 min before nicotine injection significantly attenuated the acute nicotine-evoked increases in norepinephrine levels in medial prefrontal cortex, dopamine and serotonin in nucleus accumbens shell. After chronic nicotine administration, pretreatment of NT69L markedly reversed the increase in dopamine levels in the nucleus accumbens core. NT69L's attenuation of some of the biochemical effects of acute and chronic nicotine is consistent with this peptide's attenuation of nicotine-induced behavioral effects. These data further support a role for NT69L or other neurotensin receptor agonists to treat nicotine addiction.

  14. Neurotensin induces hyperplasia of the pancreas and growth of the gastric antrum in rats.

    PubMed

    Feurle, G E; Müller, B; Rix, E

    1987-01-01

    We investigated whether chronic subcutaneous infusion of neurotensin during 14 days would affect pancreatic and gastric growth of rats. In another experiment, neurotensin (836 pmol/kg) was injected intraperitoneally three times a day for three days in 12 rats. Thereafter, pancreatic DNA and in vitro incorporation of 3H-thymidine into pancreatic DNA was determined. Long term infusion of 282 pmol/kg neurotensin induced an increase of pancreatic weight, DNA, and pancreatic polypeptide, whereas pancreatic protein, RNA, amylase and lipase contents were not increased. In relation to DNA, even these parameters were significantly depressed. Insulin remained unchanged. Neurotensin, therefore, caused hyperplasia of the pancreas. Intraperitoneal injection of neurotensin induced an increase of pancreatic DNA content and stimulated 3H-thymidine incorporation into DNA, whereas caerulein only augmented 3H-thymidine incorporation. Moreover, long term neurotensin infusion led to a rise in protein concentration and an increase in the thickness of the gastric antrum; antral DNA concentration was insignificantly stimulated. Neurotensin, therefore, can act as a trophic factor on pancreas and gastric antrum of the rat.

  15. Structure-Activity Relationship Studies of Amino Acid Substitutions in Radiolabeled Neurotensin Conjugates.

    PubMed

    Mascarin, Alba; Valverde, Ibai E; Mindt, Thomas L

    2016-01-05

    Radiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8-13) have been studied as potential imaging probes and therapeutics for NT-1-receptor-positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8-13) for radiotracer development, we herein report a side-by-side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence. Performed investigations include cell internalization experiments, determinations of receptor affinity, measurements of the distribution coefficient, and blood serum stability studies. Of the [(177)Lu]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-labeled examples studied, analogues of NT(8-13) containing a short hydrophilic tetraethylene glycol (PEG4 ) spacer between the peptide and the radiometal complex, and a minimum number of substitutions of amino acid residues, exhibited the most promising properties in vitro.

  16. Use of Molecular Modeling to Design Selective-NTS2 Neurotensin Analogues.

    PubMed

    Fanelli, Roberto; Floquet, Nicolas; Besserer-Offroy, Élie; Delort, Bartholomé; Vivancos, Mélanie; Longpré, Jean-Michel; Renault, Pedro; Martinez, Jean; Sarret, Philippe; Cavelier, Florine

    2017-04-03

    Neurotensin exerts potent analgesia by acting at both NTS1 and NTS2 receptors, whereas NTS1 activation also results in other physiological effects, such as hypotension and hypothermia. Here, we used molecular modeling approach to design highly-selective NTS2 ligands by investigating the docking of novel NT[8-13] compounds at both NTS1 and NTS2 sites. Molecular dynamics simulations revealed an interaction of the Tyr(11) residue of NT[8-13] with an acidic residue (Glu(179)) located in the ECL2 of hNTS2 or with a basic residue (Arg(212)) at the same position in hNTS1. The importance of the residue at position 11 for NTS1/NTS2 selectivity was further demonstrated by the design of new NT analogues bearing basic (Lys, Orn) or acid (Asp or Glu) function. As predicted by the molecular dynamics simulations, binding of NT[8-13] analogues harboring a Lys(11) exhibited higher affinity toward the hNTS1-R212E mutant receptor, in which Arg(212) was substituted by the negatively charged Glu residue.

  17. A neurotensin analog blocks cocaine-conditioned place preference and reinstatement.

    PubMed

    Boules, Mona; Netz, Rebecca; Fredrickson, Paul A; Richelson, Elliott

    2016-04-01

    Neurotensin (NT) is a neuropeptide that acts as a neurotransmitter and neuromodulator in the central nervous system. Several studies suggest a therapeutic role for NT analogs in nicotine and other psychostimulant addictions. We studied the effects of the nonselective NT receptor agonist NT69L, which has equal affinity for the two major NT receptors, NTS1 and NTS2, on the expression of cocaine-conditioned place preference (cocaine-CPP) and reinstatement after extinction. Robust cocaine-CPP was obtained after 5 days of conditioning. Extinction was induced using eight repeated daily injections of saline. Reinstatement was prompted by priming with one injection of cocaine (12 mg/kg intraperitoneally). On the test day, NT69L (1 mg/kg intraperitoneally) was administered 30 min before assessing cocaine-CPP. Extinction led to the loss of cocaine-CPP. One injection of cocaine (12 mg/kg intraperitoneally) for cocaine priming reinstated cocaine-CPP. NT69L blocked cocaine-CPP reinstatement in cocaine-primed animals. In addition, NT69L blocked cocaine-CPP reinstatement when administered before priming with cocaine. Thus, the NT agonist NT69L blocked both cocaine-CPP and reinstatement to cocaine preference. NT69L may exert this action by modulating the mesocorticolimbic dopamine and glutamatergic pathways involved in addiction and relapse processes. Therefore, NT agonists may represent a novel therapy for the treatment of addiction to cocaine and possibly to other psychostimulants.

  18. Neurotensin agonist attenuates nicotine potentiation to cocaine sensitization.

    PubMed

    Fredrickson, Paul; Boules, Mona; Stennett, Bethany; Richelson, Elliott

    2014-03-01

    Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a "gateway drug". Neurotensin (NT) is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13) analog, blocks behavioral sensitization (an animal model for psychostimulant addiction) to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control) followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  19. Cannabinoid type 1 receptor: another arrow in the adipocytes' bow.

    PubMed

    Bellocchio, L; Cervino, C; Vicennati, V; Pasquali, R; Pagotto, U

    2008-05-01

    The endocannabinoid system has recently emerged as an important modulator of several functions of adipose tissue, including cell proliferation, differentiation and secretion. Here, we will review the effects of cannabinoid type 1 (CB(1)) receptor activation/blockade in adipocytes by summarising the data in the literature since the discovery of the presence of this receptor in adipose tissue. We will also discuss our original data obtained in mouse 3T3-L1 adipocyte cells using WIN55 212, a CB(1)/CB(2) receptor agonist and SR141716 (rimonabant), a specific CB(1) receptor antagonist, respectively, in different experimental settings.

  20. Effects of neurotensin on small bowel propulsion in intact and vagotomized rats.

    PubMed

    Wilén, T; Gustavsson, S; Jung, B

    1982-09-01

    The effects of intravenous infusion of neurotensin on small bowel motility was studied in conscious rats. During 1 h a standardized test meal of glucose, polyethyleneglycol (PEG) 3000, phenol red and 125I-labelled polyvinylpyrrolidone was administered via a permanent gastric catheter and simultaneously the bile-excreted radio-pharmaceutic 99Tcm-Solco-HIDA was infused intravenously. Immediately after the infusions the gastrointestinal specimen was excised and examined for distribution of radioactivity. Both doses of neurotensin (0.1 and 0.3 microgram . kg-1 . h-1) resulted in an increase in the neurotensin-like immunoreactivity (NTLI) of plasma to levels similar to that found after a fatty meal. Concurrently the small bowel transport pattern was changed from an interdigestive state to one similar to that found after a meal. In animals not receiving the gastric test meal, neurotensin (0.1-0.5 microgram . kg-1 . h-) had no effect on motility. Infusion of the gastric test meal alone did not change the interdigestive motility or the NTLI value. This indicates that the presence of gastric infusates potentiates the effect of neurotensin on small bowel motility. The motility response to neurotensin did not differ between intact and vagotomized animals. This contrasts to earlier findings that the small bowel motility response to a fatty meal is dependent on intact vagal function. Thus, a difference in the mechanism responsible for the motility responses between a fatty meal and neurotensin exists. In view of this finding it seems reasonable to assume that neurotensin cannot be the only factor responsible for the shift in motility found after a fatty meal.

  1. Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism.

    PubMed

    Salomone, Leslie J; Howell, Nancy L; McGrath, Helen E; Kemp, Brandon A; Keller, Susanna R; Gildea, John J; Felder, Robin A; Carey, Robert M

    2007-01-01

    We explored the effects of direct renal interstitial stimulation of dopamine D(1)-like receptors with fenoldopam, a selective D(1)-like receptor agonist, on renal sodium excretion and angiotensin type-2 (AT(2)) receptor expression and cellular distribution in rats on a high-sodium intake. In contrast to vehicle-infused rats, sodium excretion increased in fenoldopam-infused rats during each of three 1-hour experimental periods (<0.001). Blood pressure was unaffected by vehicle or fenoldopam. In plasma membranes of renal cortical cells, fenoldopam increased D(1) receptor expression by 38% (P<0.05) and AT(2) receptor expression by 69% (P<0.01). In plasma membranes of renal proximal tubule cells, fenoldopam increased AT(2) receptor expression by 108% (P<0.01). In outer apical membranes of proximal tubule cells, fenoldopam increased AT(2) receptor expression by 59% (P<0.01). No significant change in total AT(2) receptor protein expression was detectable in response to fenoldopam. Fenoldopam-induced natriuresis was abolished when either PD-123319, a specific AT(2) receptor antagonist, or SCH-23390, a potent D(1)-like receptor antagonist, was coinfused with F (P<0.001). In summary, direct renal D(1)-like receptor activation increased urinary sodium excretion and the plasma membrane expression of AT(2) receptors in renal cortical and proximal tubule cells. D(1)-like receptor-induced natriuresis was abolished by intrarenal AT(2) receptor inhibition. These findings suggest that dopaminergic regulation of sodium excretion involves recruitment of AT(2) receptors to the outer plasma membranes of renal proximal tubule cells and that dopamine-induced natriuresis requires AT(2) receptor activation.

  2. Effect of methamphetamine self-administration on neurotensin systems of the basal ganglia.

    PubMed

    Frankel, Paul S; Hoonakker, Amanda J; Alburges, Mario E; McDougall, Jacob W; McFadden, Lisa M; Fleckenstein, Annette E; Hanson, Glen R

    2011-03-01

    Methamphetamine (METH) dependence causes alarming personal and social damage. Even though many of the problems associated with abuse of METH are related to its profound actions on dopamine (DA) basal ganglia systems, there currently are no approved medications to treat METH addiction. For this reason, we and others have examined the METH-induced responses of neurotensin (NT) systems in the basal ganglia. This neuropeptide is associated with inhibitory feedback pathways to nigrostriatal DA projections, and NT tissue levels are elevated in response to high doses of noncontingent METH because of its increased synthesis in the striatonigral pathway. The present study reports the contingent responses of NT in the basal ganglia to self-administration of METH (SAM). Intravenous infusions of METH linked to appropriate lever-pressing behavior by rats significantly elevated NT content in both dorsal striatum (210%) and substantia nigra (202%). In these same structures, NT levels were also elevated in yoked METH animals (160 and 146%, respectively) but not as much as in the SAM rats. These effects were blocked by a D1, but not D2, antagonist. A NT agonist administered before the day 5 of operant behavior blocked lever-pressing behavior in responding rats, but a NT antagonist had no significant effect on this behavior. These are the first reports that NT systems associated with striatonigral pathway are significantly altered during METH self-administration, and our findings suggest that activation of NT receptors during maintenance of operant responding reduces the associated lever-pressing behavior.

  3. Diverse Roles of Neurotensin Agonists in the Central Nervous System

    PubMed Central

    Boules, Mona; Li, Zhimin; Smith, Kristin; Fredrickson, Paul; Richelson, Elliott

    2013-01-01

    Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD. PMID:23526754

  4. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    SciTech Connect

    Parola, A.L.; Laird, H.E. II )

    1991-01-01

    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  5. Type 2 Diabetes and ADP Receptor Blocker Therapy

    PubMed Central

    Samoš, Matej; Fedor, Marián; Kovář, František; Mokáň, Michal; Bolek, Tomáš; Galajda, Peter; Kubisz, Peter; Mokáň, Marián

    2016-01-01

    Type 2 diabetes (T2D) is associated with several abnormalities in haemostasis predisposing to thrombosis. Moreover, T2D was recently connected with a failure in antiplatelet response to clopidogrel, the most commonly used ADP receptor blocker in clinical practice. Clopidogrel high on-treatment platelet reactivity (HTPR) was repeatedly associated with the risk of ischemic adverse events. Patients with T2D show significantly higher residual platelet reactivity on ADP receptor blocker therapy and are more frequently represented in the group of patients with HTPR. This paper reviews the current knowledge about possible interactions between T2D and ADP receptor blocker therapy. PMID:26824047

  6. Role of endopeptidase 3.4.24.16 in the catabolism of neurotensin, in vivo, in the vascularly perfused dog ileum.

    PubMed

    Barelli, H; Fox-Threlkeld, J E; Dive, V; Daniel, E E; Vincent, J P; Checler, F

    1994-05-01

    1. The degradation of tritiated and unlabelled neurotensin (NT) following close intra-arterial infusion of the peptides in ileal segments of anaesthetized dogs was examined. 2. Intact NT and its catabolites recovered in the venous effluents were purified by chromatography on Sep-Pak columns followed by reverse-phase h.p.l.c. and identified by their retention times or by radioimmunoassay. 3. The half-life of neurotensin was estimated to be between 2 and 6 min. Four labelled catabolites, corresponding to free tyrosine, neurotensin (1-8), neurotensin (1-10) and neurotensin (1-11), were detected. 4. Neurotensin (1-11) was mainly generated by a phosphoramidon-sensitive cleavage, probably elicited by endopeptidase 24-11. 5. Two endopeptidase 3.4.24.16 inhibitors, phosphodiepryl 03 and the dipeptide Pro-Ile, dose-dependently potentiated the recovery of intact neurotensin. Furthermore, both agents inhibited the formation of neurotensin (1-10), the product that results from the hydrolysis of neurotensin by purified endopeptidase 3.4.24.16. In contrast, the endopeptidase 3.4.24.15 inhibitor Cpp-AAY-pAB neither protected neurotensin from degradation nor modified the production of neurotensin (1-10). 6. Our study is the first evidence to indicate that endopeptidase 3.4.24.16 contributes to the catabolism of neurotensin, in vivo, in the dog intestine.

  7. Use of antiserum to neurotensin reveals a physiological role for the peptide in rat prolactin release.

    PubMed Central

    Vijayan, E; Carraway, R; Leeman, S E; McCann, S M

    1988-01-01

    Previous studies have indicated that the brain peptide neurotensin can stimulate prolactin release by direct action on the pituitary gland, whereas its action within the hypothalamus is inhibitory. The inhibitory action is mediated by the release of dopamine into the hypophyseal portal veins, which deliver the neurotransmitter to the anterior pituitary gland to inhibit prolactin release. Our experiments were done to evaluate the physiologic significance of these neurotensin actions by injecting the globulin fraction of highly specific neurotensin antiserum either intravenously or intraventricularly. Injection into the third ventricle of either 1 or 3 microliter of neurotensin antiserum significantly increased plasma prolactin concentrations in (i) ovariectomized and (ii) ovariectomized estrogen- and progesterone-primed rats within 1 hr of injection. The response was more pronounced in the ovariectomized than in the ovariectomized estrogen- and progesterone-treated animals and was dose related. Intraventricular injection of these doses of neurotensin antiserum also evoked elevations in plasma prolactin in intact males, which were significant but smaller in magnitude than those seen in female rats. To evaluate the effect of the antiserum on the pituitary directly, the antiserum was injected intravenously at a dose of 40 microliter, which was sufficient to block the blood pressure-lowering effect of neurotensin. After the intravenous injection of antiserum, a highly significant suppression of plasma prolactin occurred, detectable when first measured at 1 hr after injection in both ovariectomized and ovariectomized estrogen- and progesterone-treated animals; however, the intravenous injection of antiserum had no significant effect on the prolactin release in males. These data indicate the physiological significance of the hypothalamic inhibitory actions of neurotensin on prolactin release, which are probably mediated by its stimulation of dopamine release that in turn

  8. Metabotropic glutamate receptor type 1 autoimmunity

    PubMed Central

    Lopez-Chiriboga, A. Sebastian; Komorowski, Lars; Kümpfel, Tania; Probst, Christian; Hinson, Shannon R.; Pittock, Sean J.

    2016-01-01

    Objective: To describe retrospectively the clinical associations of immunoglobulin G (IgG) targeting metabotropic glutamate receptor 1 (mGluR1-IgG). Methods: Specimens of 9 patients evaluated on a service basis in the Mayo Clinic Neuroimmunology Laboratory by tissue-based immunofluorescence assay (IFA) yielded a robust, synaptic immunostaining pattern consistent with mGluR1-IgG (serum, 9; CSF, 2 available). Transfected HEK293 cell-based assay (CBA) confirmed mGluR1 specificity in all 11 specimens. A further 2 patients were detected in Germany primarily by CBA. Results: The median symptom onset age for the 11 patients was 58 years (range 33–81 years); 6 were male. All 9 Mayo Clinic patients had subacute onset of cerebellar ataxia, 4 had dysgeusia, 1 had psychiatric symptoms, and 1 had cognitive impairment. All were evaluated for malignancy, but only 1 was affected (cutaneous T-cell lymphoma). One developed ataxia post–herpes zoster infection. Head MRIs were generally atrophic or normal-appearing, and CSF was inflammatory in just 1 of 5 tested, though mGluR1-IgG was detected in both specimens submitted. Five patients improved (attributable to immunotherapy in 4, spontaneously in 1), 3 stabilized (attributable to immunotherapy in 2, cancer therapy in 1), and 1 progressively declined (untreated). The 2 German patients had ataxia, but fulfilled multiple sclerosis diagnostic criteria (1 relapsing-remitting, 1 progressive). However, both had histories of hematologic malignancy (acute lymphocytic leukemia and mantle cell lymphoma), and had mGluR1-IgG detected in serum by CBA (weakly positive on tissue-based IFA). Conclusions: mGluR1 autoimmunity represents a treatable form of cerebellar ataxia. Dysgeusia may be a diagnostic clue. Paraneoplastic, parainfectious, or idiopathic causes may occur. PMID:26888994

  9. A neurotensin analog, NT69L, attenuates intravenous nicotine self-administration in rats.

    PubMed

    Boules, Mona; Oliveros, Alfredo; Liang, Yanqi; Williams, Katrina; Shaw, Amanda; Robinson, Jessica; Fredrickson, Paul; Richelson, Elliott

    2011-02-01

    NT69L is a neurotensin analog that blocks nicotine-induced locomotor activity and has sustained efficacy in a rat model of nicotine-induced sensitization when administered peripherally. Additionally, NT69L attenuates food-reinforcement in rats. The present study tested the effect of acute administration of NT69L on nicotine self-infusion in Sprague-Dawley rats. Rats were trained to self-infuse nicotine intravenously (0.03mg/kg per infusion) following operant training. Once the rats acquired stable responding to nicotine self-infusion they were pretreated with NT69L (1mg/kg, i.p.) or saline 30min before being assessed for nicotine self-infusion. Pretreatment with NT69L significantly attenuated nicotine self-infusion under FR1 (fixed ratio of 1) and FR5 schedule of reinforcement as compared to saline pretreatment. Control rats that were response-independent "yoked" as well as rats that self-infused saline or NT69L showed minimal responses, indicating that nicotine served as a reinforcer. Additionally, NT69L modulated serum corticosterone; brain norepinephrine serotonin; and dopamine receptors mRNA levels altered in the nicotine self-infused rats after a 24h withdrawal period. Pretreatment with NT69L significantly decreased the nicotine-induced increase in serum corticosterone levels and striatal norepinephrine and increased the nicotine-induced reduction in serotonin in both the striatum and the prefrontal cortex (PFC). NT69L might modulate dopamine neurotransmission implicated in the reinforcing effects of nicotine by modulating tyrosine hydroxylase and dopamine receptor mRNA levels in the PFC and striatum. These data support further study of the effects of NT analogs on attenuating the reinforcing effects of psychostimulants.

  10. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer?

    PubMed Central

    Shen, Fang; Gao, Yifei; Ding, Jingxin; Chen, Qi

    2017-01-01

    Endometrial cancer is a major cancer in women and traditionally divided into type 1 and type 2. It is well known that type 2 endometrial cancer has a poor prognosis. Studies have suggested that estrogen receptor (ER) or progesterone receptor (PR) positive are positively associated with endometrial cancer survive. However whether the positivity of ER or PR is different between cancer types has not been investigated yet. In this retrospective study, the positivity of ER or PR was analysed in 1054 women with primary diagnosed endometrial cancer taking into account cancer types and menopausal status from the largest university teaching women's hospital in China. The positivity of ER or PR (over 90%) was significantly higher in type 1 compared to that in type 2 endometrial cancer (71% or 64%) in both premenopausal and postmenopausal women. There was no different in positivity of ER or PR in type 1 endometrial cancer between premenopausal and postmenopausal women. However, in type 2 endometrial cancer, the positivity of ER or PR in premenopausal women was significantly higher compared to that in postmenopausal women. Our data demonstrate that both ER and PR positivity are significantly higher in type 1 endometrial cancer (92%) compared to type 2 (72% ER positive, 65% PR positive). Menopausal status is not associated with the positivity of ER or PR in type 1 endometrial cancer. Our data may provide some novel insights why Asian women have better outcomes of endometrial cancer which was reported in the literature. PMID:27888807

  11. Amphioxus expresses both vertebrate-type and invertebrate-type dopamine D(1) receptors.

    PubMed

    Burman, Chloe; Evans, Peter D

    2010-12-01

    The cephalochordate amphioxus (Branchiostoma floridae) has recently been placed as the most basal of all the chordates, which makes it an ideal organism for studying the molecular basis of the evolutionary transition from invertebrates to vertebrates. The biogenic amine, dopamine regulates many aspects of motor control in both vertebrates and invertebrates, and in both cases, its receptors can be divided into two main groups (D1 and D2) based on sequence similarity, ligand affinity and effector coupling. A bioinformatic study shows that amphioxus has at least three dopamine D1-like receptor sequences. We have recently characterized one of these receptors, AmphiD1/β, which was found to have high levels of sequence similarity to both vertebrate D1 receptors and to β-adrenergic receptors, but functionally appeared to be a vertebrate-type dopamine D(1) receptor. Here, we report on the cloning of two further dopamine D(1) receptors (AmphiAmR1 and AmphiAmR2) from adult amphioxus cDNA libraries and their pharmacological characterisation subsequent to their expression in cell lines. AmphiAmR1 shows closer structural similarities to vertebrate D(1)-like receptors but shows some pharmacological similarities to invertebrate "DOP1" dopamine D(1)-like receptors. In contrast, AmphiAmR2 shows closer structural and pharmacological similarities to invertebrate "INDR"-like dopamine D(1)-like receptors.

  12. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm.

    PubMed Central

    Bhushan, A; Lin, H Y; Lodish, H F; Kintner, C R

    1994-01-01

    The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells. Images PMID:8196664

  13. Inactivation of neurotensin and neuromedin N by Zn metallopeptidases.

    PubMed

    Kitabgi, Patrick

    2006-10-01

    The two related peptides neurotensin (NT) and neuromedin N (NN) are efficiently inactivated by peptidases in vitro. Whereas NT is primarily degraded by a combination of three Zn metallo-endopeptidases, namely endopeptidases 24.11, 24.15 and 24.16, in all systems examined, NN is essentially inactivated by the Zn metallo-exopeptidase aminopeptidase M. In this paper we review the work that has led to the identification of the NT- and NN-degrading enzymes and to the purification and cloning of EP 24.16, a previously unidentified peptidase. We provide a brief description of the three NT-inactivating endopeptidases and of their specific and mixed inhibitors, some of them developed in the course of studying NT degradation. Finally, we review in vivo data obtained with these inhibitors that strongly support a physiological role for EP 24.11, 24.15 and 24.16 in the termination of NT-generated signals and for aminopeptidase in terminating NN action. Knowledge of the NT and NN inactivation mechanisms offers the perspective to develop metabolically stable analogs of these peptides with potential therapeutic value.

  14. Effect of low doses of methamphetamine on rat limbic-related neurotensin systems.

    PubMed

    Alburges, Mario E; Hoonakker, Amanda J; Cordova, Nathaniel M; Robson, Christina M; McFadden, Lisa M; Martin, Amber L; Hanson, Glen R

    2015-08-01

    Administration of methamphetamine (METH) alters limbic-related (LR) neurotensin (NT) systems. Thus, through a D1-receptor mechanism, noncontingent high doses (5-15 mg kg(-1)), and likely self-administration, of METH appears to reduce NT release causing its accumulation and an elevation of NT-like immunoreactivity (NTLI) in limbic-related NT pathways. For comparison, we tested the effect of low doses of METH, that are more like those used in therapy, on NTLI in the core and shell of the nucleus accumbens (NAc and NAs), prefrontal cortex (PFC), ventral tegmental area (VTA), the lateral habenula (Hb) and basolateral amygdala (Amyg). METH at the dose of 0.25 mg kg(-1) in particular, but not 1.00 mg kg(-1), decreased NTLI concentration in all of the LR structures studied, except for the prefrontal cortex; however, these effects were rapid and brief being observed at 5 h but not at 24 h after treatment. In all of the LR areas where NTLI levels were reduced after the low dose of METH, the effect was blocked by pretreatment with either a D1 or a D2 antagonist. Thus, opposite to high doses like those associated with abuse, the therapeutic-like low-dose METH treatment induced reduction in NT tissue levels likely reflected an increase in NT release and a short-term depletion of the levels of this neuropeptide in LR structures, manifesting features comparable to the response of basal ganglia NT systems to similar low doses of METH.

  15. Characterization of Promoter Elements Regulating the Expression of the Human Neurotensin/Neuromedin N Gene*

    PubMed Central

    Wang, Xiaofu; Gulhati, Pat; Li, Jing; Dobner, Paul R.; Weiss, Heidi; Townsend, Courtney M.; Evers, B. Mark

    2011-01-01

    Expression of the gene encoding neurotensin/neuromedin N (NT/N) is mostly limited to the brain and specialized enteroendocrine N cells in the distal small intestine. We have identified key regulatory elements in the promoter region that are involved in human NT/N (hNT/N) gene expression in the novel human endocrine cell line, BON, which resembles intestinal N cells in several important aspects including NT/N precursor protein processing, ratios of different NT/N mRNA isoforms, and high levels of constitutive expression of the NT/N gene. In this study, we demonstrated multiple cis-regulatory elements including a proximal region containing a cAMP-responsive element (CRE)/AP-1-like element that binds both the AP-1 and CRE-binding protein (CREB)/ATF proteins (c-Jun, ATF-1, ATF-2, JunD, and CREB). Similar to the rat NT/N gene, this region is critical for constitutive hNT/N gene expression. Moreover, we identified a novel region that binds the orphan hormone receptor, NR2F2. We have demonstrated that the C terminus of NR2F2 strongly represses hNT/N transcription, whereas an N-terminal domain antagonizes this repressive effect. Regulation of NT/N expression by NR2F2 may have important consequences for lipid metabolism. We speculate that a complex interplay between the proximal CRE/AP-1-like motif and NR2F2 binding region exists to regulate hNT/N expression, which is critical for the high level of constitutive expression of NT/N in enteroendocrine cells. Finally, the BON cell line provides a unique model to characterize the factors regulating expression of the hNT/N gene and to better understand the mechanisms responsible for terminal differentiation of the N cell lineage in the gut. PMID:21030593

  16. Evidence that neurotensin mediates postprandial intestinal hyperemia in the python, Python regius.

    PubMed

    Skovgaard, Nini; Conlon, J Michael; Wang, Tobias

    2007-09-01

    Digestion of large meals in pythons produces substantial increases in heart rate and cardiac output, as well as a dilation of the mesenteric vascular bed leading to intestinal hyperemia, but the mediators of these effects are unknown. Bolus intra-arterial injections of python neurotensin ([His(3), Val(4), Ala(7)]NT) (1 - 1,000 pmol/kg) into the anesthetized ball python Python regius (n = 7) produced a dose-dependent vasodilation that was associated with a decrease in systemic pressure (P(sys)) and increase in systemic blood flow (Q(sys)). There was no effect on pulmonary pressure and conductance. A significant (P < 0.05) increase in heart rate (f(H)) and total cardiac output (Q(tot)) was seen only at high doses (>30 pmol/kg). The systemic vasodilation and increase in Q(tot) persisted after beta-adrenergic blockade with propranolol, but the rise in f(H) was abolished. Also, the systemic vasodilation persisted after histamine H(2)-receptor blockade. In unanesthetized pythons (n = 4), bolus injection of python NT in a dose as low as 1 pmol/kg produced a significant increase in blood flow to the mesenteric artery (177% +/- 54%; mean +/- SE) and mesenteric conductance (219% +/- 74%) without any increase in Q(sys), systemic conductance, P(sys), and f(H). The data provide evidence that NT is an important hormonal mediator of postprandial intestinal hyperemia in the python, but its involvement in mediating the cardiac responses to digestion may be relatively minor.

  17. Distribution of sup 125 I-neurotensin binding sites in human forebrain: Comparison with the localization of acetylcholinesterase

    SciTech Connect

    Szigethy, E.; Quirion, R.; Beaudet, A. )

    1990-07-22

    The distribution of 125I-neurotensin binding sites was compared with that of acetylcholinesterase reactivity in the human basal forebrain by using combined light microscopic radioautography/histochemistry. High 125I-neurotensin binding densities were observed in the bed nucleus of the stria terminalis, islands of Calleja, claustrum, olfactory tubercle, and central nucleus of the amygdala; lower levels were seen in the caudate, putamen, medial septum, diagonal band nucleus, and nucleus basalis of Meynert. Adjacent sections processed for cholinesterase histochemistry demonstrated a regional overlap between the distribution of labeled neurotensin binding sites and that of intense acetylcholinesterase staining in all of the above regions, except in the bed nucleus of the stria terminalis, claustrum, and central amygdaloid nucleus, where dense 125I-neurotensin labeling was detected over areas containing only weak to moderate cholinesterase staining. At higher magnification, 125I-neurotensin-labeled binding sites in the islands of Calleja, supraoptic nucleus of the hypothalamus, medial septum, diagonal band nucleus, and nucleus basalis of Meynert were selectively associated with neuronal perikarya found to be cholinesterase-positive in adjacent sections. Moderate 125I-neurotensin binding was also apparent over the cholinesterase-reactive neuropil of these latter three regions. These data suggest that neurotensin (NT) may directly influence the activity of magnocellular cholinergic neurons in the human basal forebrain, and may be involved in the physiopathology of dementing disorders such as Alzheimer's disease, in which these neurons have been shown to be affected.

  18. Cardiovascular effects of the angiotensin type 2 receptor.

    PubMed

    Faria-Costa, Gabriel; Leite-Moreira, Adelino; Henriques-Coelho, Tiago

    2014-01-01

    The angiotensin type 2 receptor, AT2R, has been described as having opposite effects to the angiotensin type 1 receptor, AT1R. Although the quantities of the AT2R found in the adult are low, its expression rises in pathological situations. The AT2R has three major signaling pathways: activation of serine/threonine phosphatases (promoting apoptosis and antioxidant effects), activation of the bradykinin/NO/cGMP pathway (promoting vasodilation), and activation of phospholipase A2 (associated with regulation of potassium currents). The AT2R appears to have effects in vascular remodeling, atherosclerosis prevention and blood pressure lowering (when associated with an AT1R inhibitor). After myocardial infarction, the AT2R appears to decrease infarct size, cardiac hypertrophy and fibrosis, and to improve cardiac function. However, its role in the heart is controversial. In the kidney, the AT2R promotes natriuresis. Until now, treatment directed at the renin-angiotensin-aldosterone system has been based on angiotensin-converting enzyme inhibitors or angiotensin type 1 receptor blockers. The study of the AT2R has been revolutionized by the discovery of a direct agonist, C21, which promises to become part of the treatment of cardiovascular disease.

  19. Central- and peripheral-type benzodiazepine receptors: similar regulation by stress and GABA receptor agonists.

    PubMed

    Rägo, L; Kiivet, R A; Harro, J; Pŏld, M

    1989-04-01

    Central- and peripheral-type benzodiazepine (BD) receptors were labelled either by 3H-flunitrazepam or 3H-Ro 5-4864 in vitro after stress and in vivo administration of GABAA and GABAB agonists. A significant increase in the density of cerebral cortex and kidney BD binding sites was observed in rats after forced swimming stress. Similar changes in both type of BD receptors were also followed when naive (stressed) and handling-habituated (unstressed) rats were used. Stress in both models was unable to change the affinity of BD receptors in cerebral cortex, but significantly lowered it in kidneys. Acute treatment of rats with muscimol (1.5 mg/kg) or (-)baclofen (5 mg/kg) resulted in marked increase in the affinity of BD binding not only in cerebral cortex but also in kidneys. After (-)baclofen treatment the number of BD binding sites was lowered in the structures studied. In a separate study mice selected according to their behavioral response to (-)baclofen (1 mg/kg) were studied. Two weeks after the selection it appeared that baclofen responders were behaviorally more "anxious" than baclofen nonresponders. The number of BD binding sites was reduced in cerebral cortex, cerebellum, heart and kidneys in baclofen responders as compared to baclofen nonresponders. In several cases the changes in peripheral BD binding sites were even more pronounced than those in central ones. The data presented here evidence that peripheral- and central-type BD receptors are regulated similarly by GABA and some models of stress. The physiological mechanisms involved in similar regulation of central- and peripheral-type BD receptors are yet unknown.

  20. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells

    PubMed Central

    Li, Jing; Song, Jun; Weiss, Heidi L.; Weiss, Todd; Townsend, Courtney M.

    2016-01-01

    AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca2+ calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion. PMID:26528831

  1. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells.

    PubMed

    Li, Jing; Song, Jun; Weiss, Heidi L; Weiss, Todd; Townsend, Courtney M; Evers, B Mark

    2016-01-01

    AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.

  2. Neurotensin analog NT77 induces regulated hypothermia in the rat.

    PubMed

    Gordon, Christopher J; McMahon, Beth; Richelson, Elliott; Padnos, Beth; Katz, Laurence

    2003-10-03

    The potential use of hypothermia as a therapeutic treatment for stroke and other pathological insults has prompted the search for drugs that can lower core temperature. Ideally, a drug is needed that reduces the set-point for control of core temperature (T(c)) and thereby induces a regulated reduction in T(c). To this end, a neurotensin analog (NT77) that crosses the blood brain barrier and induces hypothermia was assessed for its effects on the set-point for temperature regulation in the Sprague-Dawley rat by measuring behavioral and autonomic thermoregulatory responses. Following surgical implanation of radiotransmitters to monitor T(c), rats were placed in a temperature gradient and allowed to select from a range of ambient temperatures (T(a)) while T(c) was monitored by radiotelemetry. There was an abrupt decrease in selected T(a) from 29 to 16 degrees C and a concomitant reduction in T(c) from 37.4 to 34.0 degrees C 1 hr after IP injection of 5.0 mg/kg NT77. Selected T(a) and T(c) then recovered to control levels by 1.5 hr and 4 hr, respectively. Oxygen consumption (M) and heat loss (H) were measured in telemetered rats housed in a direct calorimeter maintained at a T(a) of 23.5 degrees C. Injection of NT77 initially led to a reduction in M, little change in H, and marked decrease in T(c). H initially rose but decreased around the time of the maximal decrease in T(c). Overall, NT77 appears to induce a regulated hypothermic response because the decrease in T(c) was preceded by a reduction in heat production, no change in heat loss, and preference for cold T(a)'s. Inducing a regulated hypothermic response with drugs such as NT77 may be an important therapy for ischemic disease and other insults.

  3. Response of limbic neurotensin systems to methamphetamine self-administration.

    PubMed

    Hanson, G R; Hoonakker, A J; Alburges, M E; McFadden, L M; Robson, C M; Frankel, P S

    2012-02-17

    Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems. NT is associated with inhibitory feedback action on DA projections, and NT levels are elevated in both the nucleus accumbens and dorsal striatum after noncontingent treatment with high doses of METH. In the present study, we used a METH self-administration (SA) model (linked to lever pressing) to demonstrate that substitution of an NT agonist for METH, while not significantly affecting motor activity, dramatically reduced lever pressing but was not self-administered per se. We also found that nucleus accumbens NT levels were elevated via a D1 mechanism after five sessions in rats self-administering METH (SAM), with a lesser effect in corresponding yoked rats. Extended (15 daily sessions) exposure to METH SA manifested similar NT responses; however, more detailed analyses revealed (i) 15 days of METH SA significantly elevated NT levels in the nucleus accumbens shell and dorsal striatum, but not the nucleus accumbens core, with a lesser effect in the corresponding yoked METH rats; (ii) the elevation of NT in both the nucleus accumbens shell and dorsal striatum significantly correlated with the total amount of METH received in the self-administering, but not the corresponding yoked METH rats; and (iii) an NT agonist blocked, but an NT antagonist did not alter, lever-pressing behavior on day 15 in SAM rats. After 5 days in SAM animals, NT levels were also elevated in the ventral tegmental area, but not frontal cortex of rats self-administering METH.

  4. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.

  5. African lungfish, Protopterus annectens, possess an arginine vasotocin receptor homologous to the tetrapod V2-type receptor.

    PubMed

    Konno, Norifumi; Hyodo, Susumu; Yamaguchi, Yoko; Kaiya, Hiroyuki; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2009-07-01

    In tetrapods, arginine vasopressin and its counterpart, arginine vasotocin (AVT), are involved in renal water conservation through vascular V1a-type and tubular V2-type receptors, and only the former has thus far been cloned in fish. We successfully cloned the V1a-type and V2-type AVT receptor from the kidney of the African lungfish, Protopterus annectens, and the deduced amino acid sequences exhibited high homology with amphibian V1a- and V2-type receptors, respectively. Functional analysis showed that AVT addition to CHO cells transfected with lungfish V1a-type receptor increased [Ca2+]i in a concentration-dependent manner, whereas CHO cells transfected with lungfish V2-type receptor responded with cAMP accumulation after AVT stimulation. Lungfish V2-type receptor mRNA was strongly expressed in the heart and kidney, while V1a-type receptor mRNA was ubiquitously expressed in all the tissues examined. In the kidney, immunohistochemistry using a specific antibody to lungfish V2-type receptor showed localization in the basolateral area of the cells in the late part of the distal tubules. Artificial estivation (EST) for 90 days significantly increased plasma osmolality and sodium and urea concentrations. There was no significant difference in the V2-type receptor mRNA and protein expression levels in the kidney between the freshwater and EST lungfish, while the AVT precursor mRNA level in the hypothalamus was remarkably higher in the EST lungfish. Our results indicate that African lungfish possess a functional V2-type receptor similar to that in tetrapods, suggesting that elevated plasma AVT during estivation exerts a renal tubular antidiuretic effect through the V2-type receptor expressed in the distal segments of lungfish kidney.

  6. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation.

  7. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  8. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    PubMed

    Silvani, Alessandro; Berteotti, Chiara; Bastianini, Stefano; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD). We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD) and HFD. CB1 cannabinoid receptor knock-out (KO) and wild-type (WT) mice were fed SD or HFD for 4 months (n = 9-10 per group). Mice were instrumented with electroencephalographic (EEG) and electromyographic electrodes. Recordings were performed during baseline (48 hours), sleep deprivation (gentle handling, 6 hours), sleep recovery (18 hours), and after cage switch (insomnia model paradigm, 6 hours). We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) than WT during the dark (active) period but not during the light (rest) period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  9. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  10. Neurotensin high affinity binding sites and endopeptidase 24. 11 are present respectively in the meningothelial and in the fibroblastic components of human meningiomas

    SciTech Connect

    Mailleux, P.; Przedborski, S.; Beaumont, A.; Verslijpe, M.; Depierreux, M.; Levivier, M.; Kitabgi, P.; Roques, B.P.; Vanderhaeghen, J.J. )

    1990-11-01

    The presence of neurotensin receptors and endopeptidase 24.11 (E-24.11) in 16 human meningioma specimens, obtained at surgery, was assessed by measuring the binding of {sup 125}I-(tyrosyl3)neurotensin(1-13) ({sup 125}I-NT) and the inhibitor {sup 3}H-N(2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-(oxopropyl)glycine ({sup 3}H-HACBO-Gly), for the receptor and enzyme, respectively. E-24.11 activity was also measured. Autoradiography, on the 16 meningiomas, showed that specific {sup 125}I-NT labeling (nonspecific labeling was assessed in the presence of excess NT) was exclusively located in the meningothelial regions. In contrast, specific {sup 3}H-HACBO-Gly labeling (nonspecific labeling was assessed in the presence of an excess of the E-24.11 inhibitor thiorphan) was exclusively found in fibroblastic regions. No specific labeling of either ligand was found on collagen or blood vessels. In vitro binding assays were performed on membranes of 10 of the 16 meningiomas. In the 4 meningiomas rich in meningothelial cells, {sup 125}I-NT specifically bound to one population of sites with Bmax ranging from 57 to 405 fmol/mg protein and Kd around 0.3 nM. These sites share common properties with the brain NT receptor, since the carboxy terminal acetyl NT(8-13) fragment bound to the same sites but with a higher affinity. The carboxy terminal analogue of NT, neuromedin N, also bound to the same sites with a 10-fold lower affinity and the sites were bradykinin and levocabastine insensitive. In the 4 meningiomas rich in fibroblastic cells, {sup 3}H-HACBO-Gly specifically bound to one population of sites with Bmax ranging from 251 to 739 fmol/mg protein and Kd around 2.8 nM.

  11. Functional CB2 type cannabinoid receptors at CNS synapses.

    PubMed

    Morgan, Nicola H; Stanford, Ian M; Woodhall, Gavin L

    2009-09-01

    To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.

  12. C-type lectin receptors in tuberculosis: what we know.

    PubMed

    Goyal, Surabhi; Klassert, Tilman E; Slevogt, Hortense

    2016-12-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), is recognized by a number of pathogen recognition receptors (PRRs), either soluble or predominantly expressed on the surface of various cells of innate and adaptive immunity. C-type lectin receptors (CTLRs) are a class of PRRs which can recognize a variety of endogenous and exogenous ligands, thereby playing a crucial role in immunity, as well as in maintaining homeostasis. Mtb surface ligands, including mannose-capped lipoarabinomannan and cord factor, are important immune modulators which recently have been found to be directly recognized by several CTLRs. Receptor ligation is followed by cellular activation, mainly via nuclear factor κB mediated by a series of adaptors with subsequent expression of pro-inflammatory cytokines. Mtb recognition by CTLRs and their cross talk with other PRRs on immune cells is of key importance for the better understanding of the Mtb-induced complexity of the host immune responses. Epidemiological studies have shown that single nucleotide polymorphisms (SNPs) in several PRRs, as well as the adaptors in their signaling cascades, are directly involved in the susceptibility for developing disease and the disease outcome. In addition, an increasing number of CTLRs have been studied for their functional effects in the pathogenesis of TB. This review summarizes current knowledge regarding the various roles played by different CTLRs in TB, as well as the role of their SNPs associated with disease susceptibility and outcome in different human populations.

  13. Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice.

    PubMed

    Lee, Jennifer; Martin, Elizabeth; Paulino, Gabriel; de Lartigue, Guillaume; Raybould, Helen E

    2011-05-03

    Vagal afferent neurons (VAN) express the cholecystokinin (CCK) type 1 receptor (CCK₁R) and, as predicted by the role of CCK in inducing satiation, CCK₁R⁻/⁻ mice ingest larger and longer meals. However, after a short fast, CCK₁R⁻/⁻ mice ingesting high fat (HF) diets initiate feeding earlier than wild-type mice. We hypothesized that the increased drive to eat in CCK₁R⁻/⁻ mice eating HF diet is mediated by ghrelin, a gut peptide that stimulates food intake. The decrease in time to first meal, and the increase in meal size and duration in CCK₁R⁻/⁻ compared to wild-type mice ingesting high fat (HF) diet were reversed by administration of GHSR1a antagonist D-(Lys3)-GHRP-6 (p<0.05). Administration of the GHSR1a antagonist significantly increased expression of the neuropeptide cocaine and amphetamine-regulated transcript (CART) in VAN of HF-fed CCK₁R⁻/⁻ but not wild-type mice. Administration of the GHSR1a antagonist decreased neuronal activity measured by immunoreactivity for fos protein in the nucleus of the solitary tract (NTS) and the arcuate nucleus of both HF-fed wild-type and CCK₁R⁻/⁻ mice. The data show that hyperphagia in CCK₁R⁻/⁻ mice ingesting HF diet is reversed by blockade of the ghrelin receptor, suggesting that in the absence of the CCK₁R, there is an increased ghrelin-dependent drive to feed. The site of action of ghrelin receptors is unclear, but may involve an increase in expression of CART peptide in VAN in HF-fed CCK₁R⁻/⁻ mice.

  14. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  15. Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes.

    PubMed

    Bettler, Bernhard; Fakler, Bernd

    2017-03-07

    Ionotropic AMPA-type glutamate receptors and G-protein-coupled metabotropic GABAB receptors are key elements of neurotransmission whose cellular functions are determined by their protein constituents. Over the past couple of years unbiased proteomic approaches identified comprehensive sets of protein building blocks of these two types of neurotransmitter receptors in the brain (termed receptor proteomes). This provided the opportunity to match receptor proteomes with receptor physiology and to study the structural organization, regulation and function of native receptor complexes in an unprecedented manner. In this review we discuss the principles of receptor architecture and regulation emerging from the functional characterization of the proteomes of AMPA and GABAB receptors. We also highlight progress in unraveling the role of unexpected protein components for receptor physiology.

  16. A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment.

    PubMed

    Desai, Aditya J; Harikumar, Kaleeckal G; Miller, Laurence J

    2014-06-27

    Cholecystokinin (CCK) stimulates the type 1 CCK receptor (CCK1R) to elicit satiety after a meal. Agonists with this activity, although potentially useful for treatment of obesity, can also have side effects and toxicities of concern, making the development of an intrinsically inactive positive allosteric modulator quite attractive. Positive allosteric modulators also have the potential to correct the defective receptor-G protein coupling observed in the high membrane cholesterol environment described in metabolic syndrome. Current model systems to study CCK1R in such an environment are unstable and expensive to maintain. We now report that the Y140A mutation within a cholesterol-binding motif and the conserved, class A G protein-coupled receptor-specific (E/D)RY signature sequence results in ligand binding and activity characteristics similar to wild type CCK1R in a high cholesterol environment. This is true for natural CCK, as well as ligands with distinct chemistries and activity profiles. Additionally, the Y140A construct also behaved like CCK1R in high cholesterol in regard to its internalization, sensitivity to a nonhydrolyzable GTP analog, and anisotropy of a bound fluorescent CCK analog. Chimeric CCK1R/CCK2R constructs that systematically changed the residues in the allosteric ligand-binding pocket were studied in the presence of Y140A. This established increased importance of unique residues within TM3 and reduced the importance of TM2 for binding in the presence of this mutation, with the agonist trigger likely pulled away from its Leu(356) target on TM7. The distinct conformation of this intramembranous pocket within Y140A CCK1R provides an opportunity to normalize this by using a small molecule allosteric ligand, thereby providing safe and effective correction of the coupling defect in metabolic syndrome.

  17. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  18. The discoidin domain receptor DDR2 is a receptor for type X collagen.

    PubMed

    Leitinger, Birgit; Kwan, Alvin P L

    2006-08-01

    During endochondral ossification, collagen X is deposited in the hypertrophic zone of the growth plate. Our previous results have shown that collagen X is capable of interacting directly with chondrocytes, primarily via integrin alpha2beta1. In this study, we determined whether collagen X could also interact with the non-integrin collagen receptors, discoidin domain receptors (DDRs), DDR1 or DDR2. The widely expressed DDRs are receptor tyrosine kinases that are activated by a number of different collagen types. Collagen X was found to be a much better ligand for DDR2 than for DDR1. Collagen X bound to the DDR2 extracellular domain with high affinity and stimulated DDR2 autophosphorylation, the first step in transmembrane signalling. Expression of DDR2 in the epiphyseal plate was confirmed by RT-PCR and immunohistochemistry. The spatial expression of DDR2 in the hypertrophic zone of the growth plate is consistent with a physiological interaction of DDR2 with collagen X. Surprisingly, the discoidin domain of DDR2, which fully contains the binding sites for the fibrillar collagens I and II, was not sufficient for collagen X binding. The nature of the DDR2 binding site(s) within collagen X was further analysed. In addition to a collagenous domain, collagen X contains a C-terminal NC1 domain. DDR2 was found to recognise the triple-helical region of collagen X as well as the NC1 domain. Binding to the collagenous region was dependent on the triple-helical conformation. DDR2 autophosphorylation was induced by the collagen X triple-helical region but not the NC1 domain, indicating that the triple-helical region of collagen X contains a specific DDR2 binding site that is capable of receptor activation. Our study is the first to describe a non-fibrillar collagen ligand for DDR2 and will form the basis for further studies into the biological function of collagen X during endochondral ossification.

  19. Urokinase type plasminogen activator receptor expression in colorectal neoplasms

    PubMed Central

    Suzuki, S; Hayashi, Y; Wang, Y; Nakamura, T; Morita, Y; Kawasaki, K; Ohta, K; Aoyama, N; Kim, S; Itoh, H; Kuroda, Y; Doe, W

    1998-01-01

    Background—The urokinase type plasminogen activator receptor (uPAR) may play a critical role in cancer invasion and metastasis. 
Aims—To study the involvement of uPAR in colorectal carcinogenesis. 
Methods—The cellular expression and localisation of uPAR were investigated in colorectal adenomas and invasive carcinomas by in situ hybridisation, immunohistochemistry, and northern and western blot analyses. 
Results—uPAR mRNA expression was found mainly in the cytoplasm of dysplastic epithelial cells of 30% of adenomas with mild (19%), moderate (21%), and severe (47%) dysplasia, and in that of carcinomatous cells of 85% of invasive carcinomas: Dukes' stages A (72%), B (93%), and C (91%). Some stromal cells in the adjacent neoplastic epithelium were faintly positive. Immunoreactivity for uPAR was detected in dysplastic epithelial cells of 14% of adenomas and in carcinomatous cells of 49% of invasive carcinomas. uPAR mRNA and protein concentrations were significantly higher in severe than in mild or moderate dysplasia (p<0.05); they were notably higher in Dukes' stage A than in severe dysplasia (p<0.05), and significantly higher in Dukes' stage B than in stage A (p<0.05), but those in stage B were not different from those in stage C or in metastatic colorectal carcinomas of the liver. 
Conclusions—Colorectal adenoma uPAR, expressed essentially in dysplastic epithelial cells, was upregulated with increasing severity of atypia, and increased notably during the critical transition from severe dysplasic adenoma to invasive carcinoma. These findings implicate uPAR expression in the invasive and metastatic processes of colorectal cancer. 

 Keywords: urokinase type plasminogen activator receptor; colorectal adenoma; colorectal cancer; adenoma-carcinoma sequence PMID:9824607

  20. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    SciTech Connect

    Andersen, Jacob Lauwring; Schrøder, Tenna Juul; Christensen, Søren; Pallesen, Lone Tjener; García-Alai, Maria Marta; Lindberg, Samsa; Langgård, Morten; Eskildsen, Jørgen Calí; David, Laurent; Tagmose, Lena; Simonsen, Klaus Baek; Maltas, Philip James; Rønn, Lars Christian Biilmann; Jong, Inge E. M. de; Malik, Ibrahim John; Egebjerg, Jan; Karlsson, Jens-Jacob; Watson, Steven P.

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained by co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.

  1. Angiotensin-(1–7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor

    PubMed Central

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-01-01

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1–7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1–7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1–7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1–7), high-dose Ang-(1–7), high-dose Ang-(1–7) + A779 and high-dose Ang-(1–7) + PD123319. Ang-(1–7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1–7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1–7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell–endothelial cell communication. Thus, Ang-(1–7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma. PMID:26225830

  2. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor.

    PubMed

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-07-27

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1-7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1-7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1-7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1-7), high-dose Ang-(1-7), high-dose Ang-(1-7) + A779 and high-dose Ang-(1-7) + PD123319. Ang-(1-7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1-7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1-7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell-endothelial cell communication. Thus, Ang-(1-7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma.

  3. Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin.

    PubMed

    Vincent, B; Vincent, J P; Checler, F

    1996-02-12

    We have purified and characterized human brain endopeptidase 3.4.24.16. The enzyme behaved as a 72 kDa protein and belonged to the metalloprotease family. Human endopeptidase 3.4.24.16 cleaved neurotensin at a unique site at the Pro10-Tyr11 bond, leading to the formation of neurotensin(1-10) and neurotensin(11-13). The kinetic parameters displayed by human endopeptidase 3.4.24.16 towards a series of natural neuropeptides indicated that bradykinin was the most efficiently proteolysed. Angiotensin I, dynorphins 1-8 and 1-9 and substance P also behaved as good substrates while neuromedin N, angiotensin II, leucine and methionine enkephalin and neurokinin A resisted degradation by human endopeptidase 3.4.24.16. We have purified the porcine counterpart of endopeptidase 3.4.24.16 and compared its ability to cleave neurotensin with that of the enzyme from human origin. It appeared that, besides a major production of neurotensin(1-10), an additional formation of neurotensin(1-8) was observed with the pig enzyme, suggesting a cleavage of neurotensin not only at the Pro10-Tyr11 bond but also at the Arg8-Arg9 peptidyl bond. The latter cleavage appeared reminiscent of endopeptidase 3.4.24.15 since this peptidase was reported to cleave neurotensin at the Arg8-Arg9 bond. Our study indicated that neurotensin(1-10) formation by porcine endopeptidase 3.4.24.16 could be potently blocked with the selective endopeptidase 3.4.24.16 dipeptide inhibitor Pro-Ile without interfering with neurotensin(1-8) formation. By contrast, the formation of the latter product was highly potentiated by dithiothreitol and inhibited by the endopeptidase 3.4.24.15 inhibitor Cpp-Ala-Ala-Tyr-pAB, two effects that were not observed for neurotensin(1-10) production. Altogether, our results indicate that porcine endopeptidase 3.4.24.16 cleaves neurotensin at a unique site, leading to the formation of neurotensin(1-10) and that the production of neurotensin(1-8) is due to contaminating endopeptidase 3.4.24.15.

  4. The Administration of Levocabastine, a NTS2 Receptor Antagonist, Modifies Na(+), K(+)-ATPase Properties.

    PubMed

    Gutnisky, Alicia; López Ordieres, María Graciela; Rodríguez de Lores Arnaiz, Georgina

    2016-06-01

    Neurotensin behaves as a neuromodulator or as a neurotransmitter interacting with NTS1 and NTS2 receptors. Neurotensin in vitro inhibits synaptosomal membrane Na(+), K(+)-ATPase activity. This effect is prevented by administration of SR 48692 (antagonist for NTS1 receptor). The administration of levocabastine (antagonist for NTS2 receptor) does not prevent Na(+), K(+)-ATPase inhibition by neurotensin when the enzyme is assayed with ATP as substrate. Herein levocabastine effect on Na(+), K(+)-ATPase K(+) site was explored. For this purpose, levocabastine was administered to rats and K(+)-p-nitrophenylphosphatase (K(+)-p-NPPase) activity in synaptosomal membranes and [(3)H]-ouabain binding to cerebral cortex membranes were assayed in the absence (basal) and in the presence of neurotensin. Male Wistar rats were administered with levocabastine (50 μg/kg, i.p., 30 min) or the vehicle (saline solution). Synaptosomal membranes were obtained from cerebral cortex by differential and gradient centrifugation. The activity of K(+)-p-NPPase was determined in media laking or containing ATP plus NaCl. In such phosphorylating condition enzyme behaviour resembles that observed when ATP hydrolyses is recorded. In the absence of ATP plus NaCl, K(+)-p-NPPase activity was similar for levocabastine or vehicle injected (roughly 11 μmole hydrolyzed substrate per mg protein per hour). Such value remained unaltered by the presence of 3.5 × 10(-6) M neurotensin. In the phosphorylating medium, neurotensin decreased (32 %) the enzyme activity in membranes obtained from rats injected with the vehicle but failed to alter those obtained from rats injected with levocabastine. Levocabastine administration enhanced (50 %) basal [(3)H]-ouabain binding to cerebral cortex membranes but failed to modify neurotensin inhibitory effect on this ligand binding. It is concluded that NTS2 receptor blockade modifies the properties of neuronal Na(+), K(+)-ATPase and that neurotensin effect on Na(+), K

  5. Use of Enterally Delivered Angiotensin II Type Ia Receptor Antagonists to Reduce the Severity of Colitis

    PubMed Central

    Okawada, Manabu; Koga, Hiroyuki; Larsen, Scott D.; Showalter, Hollis D.; Turbiak, Anjanette J.; Jin, Xiaohong; Lucas, Peter C.; Lipka, Elke; Hillfinger, John; Kim, Jae Seung

    2011-01-01

    Background Renin-angiotensin system blockade reduces inflammation in several organ systems. Having found a fourfold increase in angiotensin II type Ia receptor expression in a dextran sodium sulfate colitis model, we targeted blockade with angiotensin II type Ia receptor antagonists to prevent colitis development. Because hypotension is a major complication of angiotensin II type Ia receptor antagonists use, we hypothesized that use of angiotensin II type Ia receptor antagonists compounds which lack cell membrane permeability, and thus enteric absorption, would allow for direct enteral delivery at far higher concentrations than would be tolerated systemically, yet retain efficacy. Methods Based on the structure of the angiotensin II type Ia receptor antagonist losartan, deschloro-losartan was synthesized, which has extremely poor cell membrane permeability. Angiotensin II type Ia receptor antagonist efficacy was evaluated by determining the ability to block NF-κB activation in vitro. Dextran sodium sulfate colitis was induced in mice and angiotensin II type Ia receptor antagonist efficacy delivered transanally was assessed. Results In vitro, deschloro-losartan demonstrated near equal angiotensin II type Ia receptor blockade compared to losartan as well as another angiotensin II type Ia receptor antagonist, candesartan. In the dextran sodium sulfate model, each compound significantly improved clinical and histologic scores and epithelial cell apoptosis. Abundance of TNF-α, IL-1β, and IL6 mRNA were significantly decreased with each compound. In vitro and in vivo intestinal drug absorption, as well as measures of blood pressure and mucosal and colonic blood flow, showed significantly lower uptake of deschloro-losartan compared to losartan and candesartan. Conclusions This study demonstrated efficacy of high-dose angiotensin II type Ia receptor antagonists in this colitis model. We postulate that a specially designed angiotensin II type Ia receptor antagonist with

  6. Subunit dissociation and activation of wild-type and mutant glucocorticoid receptors.

    PubMed

    Gehring, U; Mugele, K; Arndt, H; Busch, W

    1987-09-01

    Apparent molecular weights of wild-type and nti ('increased nuclear transfer') mutant glucocorticoid receptors were obtained from Stokes radii and sedimentation coefficients. At low salt concentrations molecular forms of Mr 328,000 and 298,000 of the wild-type and mutant, respectively, were predominant. Increasing ionic strength resulted in receptor dissociation. Dissociated forms of Mr 130,000 and 63,000 of the wild-type and mutant, respectively, were obtained at 300 mM KCl and above. Some metal oxi-anions prevented dissociation. Receptor activation to allow DNA binding produced the dissociated forms which could be separated from non-activated receptors by filtration through DNA-cellulose or by DEAE-cellulose chromatography. Non-activated wild-type and nti receptors eluted from DEAE-cellulose under identical conditions while activated wild-type and nti receptors eluted differently. Partially proteolyzed wild-type receptors behaved identically to nti receptors. We conclude that the large forms of wild-type and nti receptors are heteromeric and contain only one hormone-building polypeptide per complex.

  7. Ligand-induced interaction between. alpha. - and. beta. -type platelet-derived growth factor (PDGF) receptors: Role of receptor heterodimers in kinase activation

    SciTech Connect

    Kanakaraj, P.; Raj, S.; Bishayee, S. ); Khan, S.A. )

    1991-02-19

    Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. The authors have shown earlier that ligand-induced activation of the {beta}-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form. In the present studies, they have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the {alpha}-receptor and the role of {alpha}-receptor in the activation of {beta}-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-{sup 125}I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to {alpha}-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, {beta}-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for {alpha}- or {beta}-type PDGF receptor, they demonstrated that in the presence of {alpha}-receptor, {beta}-receptor kinase can be activated by PDGF AB. They present here direct evidence that strongly suggests that such PDGF AB induced activation of {beta}-receptor is due to the formation of a noncovalently linked {alpha}-{beta} receptor heterodimer.

  8. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  9. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways.

    PubMed

    Plato, Anthony; Willment, Janet A; Brown, Gordon D

    2013-04-01

    Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.

  10. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  11. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed

    Yakushiji, T; Shirasaki, T; Munakata, M; Hirata, A; Akaike, N

    1993-07-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA. 6. The results are important in clarifying the mechanism of anxiety and might explain the anxioselectivity of BZR partial agonists.

  12. A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors

    PubMed Central

    Zhang, Wei; St-Gelais, Fannie; Grabner, Chad P.; Trinidad, Jonathan C.; Sumioka, Akio; Morimoto-Tomita, Megumi; Kim, Kwang S.; Straub, Christoph; Burlingame, Alma L.; Howe, James R.; Tomita, Susumu

    2009-01-01

    SUMMARY Glutamate receptors play major roles in excitatory transmission in the vertebrate brain. Among ionotropic glutamate receptors (AMPA, kainate, NMDA), AMPA receptors mediate fast synaptic transmission and require TARP auxiliary subunits. NMDA receptors and kainate receptors play roles in synaptic transmission, but it remains uncertain whether these ionotropic glutamate receptors also have essential subunits. Using a proteomic screen, we have identified NETO2, a brain-specific protein of unknown function, as an interactor with kainate-type glutamate receptors. NETO2 modulates the channel properties of recombinant and native kainate receptors without affecting trafficking of the receptors and also modulates kainate-receptor-mediated mEPSCs. Furthermore, we found that kainate receptors regulate the surface expression of NETO2 and that NETO2 protein levels and surface expression are decreased in mice lacking the kainate receptor GluR6. The results show that NETO2 is a kainate receptor subunit with significant effects on glutamate signaling mechanisms in brain. PMID:19217376

  13. On the terminal homologation of physiologically active peptides as a means of increasing stability in human serum--neurotensin, opiorphin, B27-KK10 epitope, NPY.

    PubMed

    Seebach, Dieter; Lukaszuk, Aneta; Patora-Komisarska, Krystyna; Podwysocka, Dominika; Gardiner, James; Ebert, Marc-Olivier; Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Gmeiner, Peter; Hübner, Harald; Rougeot, Catherine

    2011-05-01

    The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed.

  14. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons

    PubMed Central

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin

    2016-01-01

    Key points Transient receptor potential vanilloid type 1 (TRPV1) receptors transduce noxious thermal stimuli and are responsible for the thermal hyperalgesia associated with inflammatory pain.A large population of dorsal root ganglia (DRG) neurons, including the C low threshold mechanoreceptors (C‐LTMRs), express tyrosine hydroxylase, and probably release dopamine.We found that dopamine and SKF 81297 (an agonist at D1/D5 receptors), but not quinpirole (an agonist at D2 receptors), downregulate the activity of TRPV1 channels in DRG neurons.The inhibitory effect of SKF 81297 on TRPV1 channels was strongly dependent on external calcium and preferentially linked to calcium–calmodulin‐dependent protein kinase II (CaMKII).We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. Abstract The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin‐activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin‐activated current. Inhibition of the capsaicin‐activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin‐activated current was not affected when

  15. Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Nora, E. H.; Munzenmaier, D. H.; Hansen-Smith, F. M.; Lombard, J. H.; Greene, A. S.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Only functional studies have suggested the presence of the ANG II type 2 (AT2) receptor in the microcirculation. To determine the distribution of this receptor in the rat skeletal muscle microcirculation, a polyclonal rabbit anti-rat antiserum was developed and used for immunohistochemistry and Western blot analysis. The antiserum was prepared against a highly specific and antigenic AT2-receptor synthetic peptide and was validated by competition and sensitivity assays. Western blot analysis demonstrated a prominent, single band at approximately 40 kDa in cremaster and soleus muscle. Immunohistochemical analysis revealed a wide distribution of AT2 receptors throughout the skeletal muscle microcirculation in large and small microvessels. Microanatomic studies displayed an endothelial localization of the AT2 receptor, whereas dual labeling with smooth muscle alpha-actin also showed colocalization of the AT2 receptor with vascular smooth muscle cells. Other cells associated with the microvessels also stained positive for AT2 receptors. Briefly, this study confirms previous functional data and localizes the AT2 receptor to the microcirculation. These studies demonstrate that the AT2 receptor is present on a variety of vascular cell types and that it is situated in a fashion that would allow it to directly oppose ANG II type 1 receptor actions.

  16. Role of CXC chemokine receptor type 4 as a lactoferrin receptor.

    PubMed

    Takayama, Yoshiharu; Aoki, Reiji; Uchida, Ryo; Tajima, Atsushi; Aoki-Yoshida, Ayako

    2017-02-01

    Lactoferrin exerts its biological activities by interacting with receptors on target cells, including LDL receptor-related protein-1 (LRP-1/CD91), intelectin-1 (omentin-1), and Toll-like receptor 4 (TLR4). However, the effects mediated by these receptors are not sufficient to fully explain the many functions of lactoferrin. C-X-C-motif cytokine receptor 4 (CXCR4) is a ubiquitously expressed G-protein coupled receptor for stromal cell-derived factor-1 (SDF-1/CXCL12). Lactoferrin was found to be as capable as SDF-1 in blocking infection by an HIV variant that uses CXCR4 as a co-receptor (X4-tropic HIV), suggesting that lactoferrin interacts with CXCR4. We addressed whether CXCR4 acts as a lactoferrin receptor using HaCaT human keratinocytes and Caco-2 human intestinal cells. We found that bovine lactoferrin interacted with CXCR4-containing lipoparticles, and that this interaction was not antagonized by SDF-1. In addition, activation of Akt in response to lactoferrin was abrogated by AMD3100, a small molecule inhibitor of CXCR4, or by a CXCR4-neutralizing antibody, suggesting that CXCR4 functions as a lactoferrin receptor able to mediate activation of the PI3K-Akt signaling pathway. Lactoferrin stimulation mimicked many aspects of SDF-1-induced CXCR4 activity, including receptor dimerization, tyrosine phosphorylation, and ubiquitination. Cycloheximide chase assays indicated that turnover of CXCR4 was accelerated in response to lactoferrin. These results indicate that CXCR4 is a potent lactoferrin receptor that mediates lactoferrin-induced activation of Akt signaling.

  17. Identification of cannabinoid type 1 receptor in dog hair follicles.

    PubMed

    Mercati, Francesca; Dall'Aglio, Cecilia; Pascucci, Luisa; Boiti, Cristiano; Ceccarelli, Piero

    2012-01-01

    In veterinary medicine, there is an increasing interest in the study of the endo-cannabinoid system and the possible use of the cannabinoids for the treatment of several diseases. Cannabinoid receptors (CB) are widely distributed in human and laboratory animal tissues, justifying the involvement of the endo-cannabinoid system in a great number of metabolic ways. Since there are no data regarding cannabinoid receptors in hair follicles of domestic animals, we investigated the presence and localization of CB1 receptor in dog hair follicles. By using a goat anti-CB1 polyclonal antibody, we observed CB1 receptor in the proximal part of both primary and secondary hair follicles. Staining was localized in the inner root sheath cells. We suppose that the endo-cannabinoid system is involved in the molecular mechanisms regulating hair follicle activity in dog. The identification of CB1 receptor at the level of the inner root sheath may help in the understanding of hair follicle biology and the possibility that cannabinoid molecules could be considered as suitable therapeutic tools in dog.

  18. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding

    SciTech Connect

    Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S.

    2010-03-08

    TGF-{beta} ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-{beta} ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.

  19. Amphioxus: beginning of vertebrate and end of invertebrate type GnRH receptor lineage.

    PubMed

    Tello, Javier A; Sherwood, Nancy M

    2009-06-01

    In vertebrates, activation of the GnRH receptor is necessary to initiate the reproductive cascade. However, little is known about the characteristics of GnRH receptors before the vertebrates evolved. Recently genome sequencing was completed for amphioxus, Branchiostoma floridae. To understand the GnRH receptors (GnRHR) from this most basal chordate, which is also classified as an invertebrate, we cloned and characterized four GnRHR cDNAs encoded in the amphioxus genome. We found that incubation of GnRH1 (mammalian GnRH) and GnRH2 (chicken GnRH II) with COS7 cells heterologously expressing the amphioxus GnRHRs caused potent intracellular inositol phosphate turnover in two of the receptors. One of the two receptors displayed a clear preference for GnRH1 over GnRH2, a characteristic not previously seen outside the type I mammalian GnRHRs. Phylogenetic analysis grouped the four receptors into two paralogous pairs, with one pair grouping basally with the vertebrate GnRH receptors and the other grouping with the octopus GnRHR-like sequence and the related receptor for insect adipokinetic hormone. Pharmacological studies showed that octopus GnRH-like peptide and adipokinetic hormone induced potent inositol phosphate turnover in one of these other two amphioxus receptors. These data demonstrate the functional conservation of two distinct types of GnRH receptors at the base of chordates. We propose that one receptor type led to vertebrate GnRHRs, whereas the other type, related to the mollusk GnRHR-like receptor, was lost in the vertebrate lineage. This is the first report to suggest that distinct invertebrate and vertebrate GnRHRs are present simultaneously in a basal chordate, amphioxus.

  20. Identification of Growth Hormone Receptor in Plexiform Neurofibromas of Patients with Neurofibromatosis Type 1

    PubMed Central

    Cunha, Karin Soares Gonçalves; Barboza, Eliane Porto; da Fonseca, Eliene Carvalho

    2008-01-01

    OBJECTIVE The aim of this study was to investigate the presence of growth hormone receptor in plexiform neurofibromas of neurofibromatosis type 1 patients. INTRODUCTION The development of multiple neurofibromas is one of the major features of neurofibromatosis type 1. Since neurofibromas commonly grow during periods of hormonal change, especially during puberty and pregnancy, it has been suggested that hormones may influence neurofibromatosis type 1 neurofibromas. A recent study showed that the majority of localized neurofibromas from neurofibromatosis type 1 patients have growth hormone receptor. METHODS Growth hormone receptor expression was investigated in 5 plexiform neurofibromas using immunohistochemistry. RESULTS Four of the 5 plexiform neurofibromas were immunopositive for growth hormone receptor. CONCLUSION This study suggests that growth hormone may influence the development of plexiform neurofibromas in patients with neurofibromatosis type 1. PMID:18297205

  1. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin And Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    DTIC Science & Technology

    2007-01-01

    Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003;31(Pt 1):162–8...Forgez P. Neurotensin counteracts apoptosis in breast cancer cells. Biochem Biophys Res Commun 2002;295:482–8. [78] Souaze F, Viardot- Foucault V, Roullet N

  2. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  3. POLLUTANT PARTICLES PRODUCE VASOCONSTRICTION AND ENHANCE MAPK SIGNALING VIA ANGIOTENSIN TYPE 1 RECEPTOR

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates ...

  4. Expression of Interleukin-1 and Interleukin-1 Receptors Type 1 and Type 2 in Hodgkin Lymphoma

    PubMed Central

    Oelmann, Elisabeth; Stein, Harald; Berdel, Wolfgang E.; Herbst, Hermann

    2015-01-01

    Signaling through the IL-1-receptor type 1 (IL-1R1), IL-1 is required for initiation and maintenance of diverse activities of the immune system. A second receptor, IL-1R2, blocks IL-1 signal transduction. We studied expression of IL-1beta, IL-1R1, and IL-1R2 in 17 Hodgkin lymphomas (HL) by in situ hybridization (ISH). IL-1beta expressing cells, morphologically consistent with endothelial cells and fibroblasts, occurred in all HL tissues with elevated transcript levels in areas of active fibrosis. Hodgkin and Reed-Sternberg (HRS) cells of all cases expressed low IL-1R1 transcript levels in some tumor cells, and high levels of IL-1R2 in large proportions of HRS cells. Only few bystander cells showed low levels of IL-1R1 and IL-1R2 RNA. Supernatants of 4 out of 7 HL-derived cell lines contained soluble IL-1R2 protein at high levels. HL patient sera carried variably amounts of IL-1R2 protein with significantly increased titers in patients with active disease compared to patients in complete remission and control individuals without HL. Western blots and co-immunoprecipitations showed binding of the IL-1R2 to the intracellular IL-1R-accessory protein (IL-1IRAcP). These data suggest functions of the IL-1R2 as a „decoy-receptor” sequestrating paracrine IL-1 extracellularly and intracellularly by engaging IL-1IRAcP, thus depriving IL1-R1 molecules of their extracellular and intracellular ligands. Expression of IL1-R2 by HRS cells seems to contribute to local and systemic modulation of immune function in HL. PMID:26406983

  5. Mechanism of partial agonism in AMPA-type glutamate receptors

    PubMed Central

    Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew

    2017-01-01

    Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453

  6. Modulation of direct pathway striatal projection neurons by muscarinic M₄-type receptors.

    PubMed

    Hernández-Flores, Teresa; Hernández-González, Omar; Pérez-Ramírez, María B; Lara-González, Esther; Arias-García, Mario A; Duhne, Mariana; Pérez-Burgos, Azucena; Prieto, G Aleph; Figueroa, Alejandra; Galarraga, Elvira; Bargas, José

    2015-02-01

    Models of basal ganglia (BG) function posit a dynamic balance between two classes of striatal projection neurons (SPNs): direct pathway neurons (dSPNs) that facilitate movements, and indirect pathway neurons (iSPNs) that repress movement execution. Two main modulatory transmitters regulate the output of these neurons: dopamine (DA) and acetylcholine (ACh). dSPNs express D1-type DA, M1-and M4-type ACh receptors, while iSPNs express D2-type DA and M1-type ACh receptors. Actions of M1-, D1-, and D2-receptors have been extensively reported, but we still ignore most actions of muscarinic M4-type receptors. Here, we used whole-cell recordings in acutely dissociated neurons, pharmacological tools such as mamba-toxins, and BAC D(1 or 2)-eGFP transgenic mice to show that activation of M4-type receptors with bath applied muscarine enhances Ca(2+)-currents through CaV1-channels in dSPNs and not in iSPNs. This action increases excitability of dSPNs after both direct current injection and synaptically driven stimulation. The increases in Ca(2+)-current and excitability were blocked specifically by mamba toxin-3, suggesting mediation via M4-type receptors. M4-receptor activation also increased network activity of dSPNs but not of iSPNs as seen with calcium-imaging techniques. Moreover, actions of D1-type and M4-type receptors may add to produce a larger enhancement of excitability of dSPNs or, paradoxically, oppose each other depending on the order of their activation. Possible implications of these findings are discussed.

  7. Post-natal development of type 1 cannabinoid receptor immunoreactivity in the rat hippocampus.

    PubMed

    Morozov, Yury M; Freund, Tamás F

    2003-09-01

    Type 1 cannabinoid receptors, selectively located on axon terminals of GABAergic interneurons in the hippocampus, are known to be involved in endocannabinoid-mediated retrograde synaptic signalling. The question arises whether type 1 cannabinoid receptors appear on these axons during early post-natal life, when GABAergic transmission is still depolarizing, and whether there are any developmental changes in the cellular or subcellular expression pattern. Here we demonstrate, using single and double immunocytochemical methods at the light and electron microscopic levels, that type 1 cannabinoid receptors are expressed only on the membrane of axon terminals and pre-terminal axons but not on the soma-dendritic membrane at all examined timepoints between post-natal days 0 and 20, similar to the adult distribution. All type 1 cannabinoid receptor-positive boutons formed symmetric synapses. Granular labelling in the somata was already strong at post-natal day 0 and corresponded to multivesicular bodies, lysosomes, Golgi apparatus and rough endoplasmic reticulum. The type 1 cannabinoid receptor-positive axons were shown to originate largely from cholecystokinin-immunoreactive basket and bistratified neurons throughout the hippocampus (90% of all type 1 cannabinoid receptor-containing cells) and dentate gyrus (70% of all type 1 cannabinoid receptor-containing cells). The remaining cells have not been identified but probably belong to the somatostatin- and/or neuropeptide Y-containing subsets, as cholecystokinin-negative, type 1 cannabinoid receptor-positive axons have been observed in strata moleculare and lacunosum-moleculare of the dentate gyrus and CA1-3, respectively, where these neurons are known to arborize. No cell types were found that expressed type 1 cannabinoid receptors transiently at some developmental stage. We conclude that the cellular and subcellular pattern of type 1 cannabinoid receptor expression during early post-natal life is similar to the adult

  8. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  9. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors.

    PubMed

    Metna-Laurent, Mathilde; Marsicano, Giovanni

    2015-03-01

    The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field.

  10. The Angiotensin II Type 2 Receptor in Brain Functions: An Update

    PubMed Central

    Guimond, Marie-Odile; Gallo-Payet, Nicole

    2012-01-01

    Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor. PMID:23320146

  11. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    SciTech Connect

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-10-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for (/sup 3/H)diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with (/sup 3/H)flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines.

  12. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease

    PubMed Central

    Kim, Young-Cho; Alberico, Stephanie L.; Emmons, Eric; Narayanan, Nandakumar S.

    2017-01-01

    The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson’s disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders. PMID:28280503

  13. RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding.

    PubMed

    Wauman, Joris; De Ceuninck, Leentje; Vanderroost, Nele; Lievens, Sam; Tavernier, Jan

    2011-03-15

    Cytokines, such as interferons, erythropoietin, leptin and most interleukins, signal through type 1 cytokine receptors and activate the canonical JAK-STAT pathway. Aberrant cytokine signalling underlies numerous pathologies and adequate, temporary receptor activation is therefore under tight control. Negative-feedback mechanisms are very well studied, but cellular sensitivity also depends on the number of receptors exposed at the cell surface. This is determined by the equilibrium between receptor synthesis and transport to the plasma membrane, internalisation and recycling, degradation and ectodomain shedding, but the molecular basis of how cells establish steady state receptor levels is poorly understood. Here, we report that ring finger protein 41 (RNF41, also known as E3 ubiquitin-protein ligase Nrdp1) interacts with JAK2-associated cytokine receptor complexes and modulates their cell surface exposure and signalling. Moreover, ectopic expression of RNF41 affected turnover of leptin, leukaemia inhibitory factor and interleukin-6 receptor in a dual way: it blocked intracellular cathepsin-L-dependent receptor cleavage and concomitantly enhanced receptor shedding by metalloproteases of the ADAM family. Receptor degradation and shedding are thus interconnected phenomena with a single protein, RNF41, determining the balance.

  14. RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding

    PubMed Central

    Wauman, Joris; De Ceuninck, Leentje; Vanderroost, Nele; Lievens, Sam; Tavernier, Jan

    2011-01-01

    Cytokines, such as interferons, erythropoietin, leptin and most interleukins, signal through type 1 cytokine receptors and activate the canonical JAK–STAT pathway. Aberrant cytokine signalling underlies numerous pathologies and adequate, temporary receptor activation is therefore under tight control. Negative-feedback mechanisms are very well studied, but cellular sensitivity also depends on the number of receptors exposed at the cell surface. This is determined by the equilibrium between receptor synthesis and transport to the plasma membrane, internalisation and recycling, degradation and ectodomain shedding, but the molecular basis of how cells establish steady state receptor levels is poorly understood. Here, we report that ring finger protein 41 (RNF41, also known as E3 ubiquitin-protein ligase Nrdp1) interacts with JAK2-associated cytokine receptor complexes and modulates their cell surface exposure and signalling. Moreover, ectopic expression of RNF41 affected turnover of leptin, leukaemia inhibitory factor and interleukin-6 receptor in a dual way: it blocked intracellular cathepsin-L-dependent receptor cleavage and concomitantly enhanced receptor shedding by metalloproteases of the ADAM family. Receptor degradation and shedding are thus interconnected phenomena with a single protein, RNF41, determining the balance. PMID:21378310

  15. Removal of melatonin receptor type 1 induces insulin resistance in the mouse.

    PubMed

    Contreras-Alcantara, Susana; Baba, Kenkichi; Tosini, Gianluca

    2010-09-01

    The incidence of obesity, insulin resistance, and type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Emerging experimental evidence suggests that the hormone melatonin plays an important role in the regulation of glucose metabolisms. In this study, we report that removal of melatonin receptor type 1 (MT1) significantly impairs the ability of mice to metabolize glucose and such inability is probably due to an increased insulin resistance in these mice. Our data suggest that MT1 receptors are implicated in the pathogenesis of T2D and open the door for a detailed exploration on the mechanisms by which MT1 receptors signaling may affect glucose metabolism.

  16. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  17. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  18. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.

  19. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  20. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  1. Effect of the nonpeptide neurotensin antagonist, SR 48692, and two enantiomeric analogs, SR 48527 and SR 49711, on neurotensin binding and contractile responses in guinea pig ileum and colon.

    PubMed

    Labbé-Jullié, C; Deschaintres, S; Gully, D; Le Fur, G; Kitabgi, P

    1994-10-01

    The tridecapeptide neurotensin (NT) contracts the guinea pig ileum through a neurogenic process that is mediated in part by acetylcholine and substance P and relaxes the guinea pig colon through a direct action on smooth muscle cells involving the opening of Ca(++)-dependent K+ channels. The non-peptide NT antagonist, SR 48692 (2-[1-(7-chloro-4-quinolinyl)-5-(2,6- dimethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo-(3.3.1.1 .3.7)decan-2- carboxylic acid), potently inhibited NT binding to membranes prepared from the guinea pig ileum and colon with Ki values of approximately 3 nM. SR 48527 ((S)-(+)-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3- yl)carbonylamino]cyclohexylacetic acid) and SR 49711 ((R)-(-)-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol- 3-yl)carbonylamino]cyclohexylacetic acid), two enantiomers structurally related to SR 48692, were respectively equipotent with and a 100-fold less potent than SR 48692 in inhibiting NT binding in both tissues. In both membrane preparations, NT binding was increased by Mg++ and decreased by Na+ and guanosine 5'-[gamma-thio]triphosphate, whereas SR 48692 binding was not significantly affected by these agents. SR 48692 inhibited NT-induced contraction and relaxation in guinea pig ileum and colon preparations, respectively, with Ki values between 4 and 5 nM. As in binding studies, SR 48527 was as potent, whereas SR 49711 was 100-fold less potent than SR 48692 in antagonizing NT responses in both the guinea pig ileum and colon. Altogether, our results show that NT receptors in the guinea pig ileum and colon, although functionally distinct, are coupled to G-proteins and display similar biochemical and pharmacological properties, in particular with regard to their sensitivity and stereoselectivity toward nonpeptide antagonists related to SR 48692. Because of their high potency to antagonize NT actions in intestinal preparations, SR 48692 and SR 48527 represent useful tools to study the physiological

  2. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  3. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-05

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone.

  4. Elevated serum neurotensin and CRH levels in children with autistic spectrum disorders and tail-chasing Bull Terriers with a phenotype similar to autism.

    PubMed

    Tsilioni, I; Dodman, N; Petra, A I; Taliou, A; Francis, K; Moon-Fanelli, A; Shuster, L; Theoharides, T C

    2014-10-14

    Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by defects in communication and social interactions, as well as stereotypic behaviors. Symptoms typically worsen with anxiety and stress. ASD occur in early childhood, often present with regression and have a prevalence of 1 out of 68 children. The lack of distinct pathogenesis or any objective biomarkers or reliable animal models hampers our understanding and treatment of ASD. Neurotensin (NT) and corticotropin-releasing hormone (CRH) are secreted under stress in various tissues, and have proinflammatory actions. We had previously shown that NT augments the ability of CRH to increase mast cell (MC)-dependent skin vascular permeability in rodents. CRH also induced NT receptor gene and protein expression in MCs, which have been implicated in ASD. Here we report that serum of ASD children (4-10 years old) has significantly higher NT and CRH levels as compared with normotypic controls. Moreover, there is a statistically significant correlation between the number of children with gastrointestinal symptoms and high serum NT levels. In Bull Terriers that exhibit a behavioral phenotype similar to the clinical presentation of ASD, NT and CRH levels are also significantly elevated, as compared with unaffected dogs of the same breed. Further investigation of serum NT and CRH, as well as characterization of this putative canine breed could provide useful insights into the pathogenesis, diagnosis and treatment of ASD.

  5. [The search of small molecules with antipsychotic activity on the background of neurotensin].

    PubMed

    Ostrovskaia, R U; Gudasheva, T A; Krupina, N A; Seredin, S B

    2012-01-01

    Tridecapeptide neurotensin (NT) is known to exert the neuroleptic-like effects in case of its intracerebral administration. The group of systemically active dipeptides , acylprolyltyrosines, was constructed on the background of NT. Methyl ester of N-caproyl-L-prolyl-L-tyrosine (Dilept) was chosen for further development. The paper is dealing with main principles of Dilept'design and with analysis of the experimental data concerning its effect on the "translational" model of schizophrenia--the deficit of prepulse inhibition of the acoustic startle-reaction caused by either dopamine-mimetic, apomorphine, or by the uncompetitive NMDA-blocker, ketamine. Dilept was shown to attenuate these deficits both in case ofintraperitoneal and peroral administration. Dilept is considered as a potential antipsychotic.

  6. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    PubMed

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  7. [Serotonin receptors in the brain of animals selected for their domesticated type of behavior].

    PubMed

    Maslova, G B; Avgustinovich, D F

    1989-01-01

    Participation was studied of central serotonin receptors of the first and second types in behaviour change of animals selected by the character of defensive reaction to man. Serotonin receptors were determined by radioligand method by binding of the brain preparations 3H-serotonin and 3H-spiperone. An increase of C2 receptors number was found in the frontal brain cortex of the tame brown rats in comparison with the aggressive ones. Differences were not found in specific C1-receptor binding in the frontal brain cortex of tame and aggressive brown rats, silver foxes and American minks in various relatively early selection stages. It is supposed that disappearance of aggressive reaction to man at domestication is connected with an increase of C2 receptors number.

  8. Parathyroid Hormone Receptor Type 1/Indian Hedgehog Expression Is Preserved in the Growth Plate of Human Fetuses Affected with Fibroblast Growth Factor Receptor Type 3 Activating Mutations

    PubMed Central

    Cormier, Sarah; Delezoide, Anne-Lise; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence; Bonaventure, Jacky; Silve, Caroline

    2002-01-01

    The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes. PMID:12368206

  9. Release of avian neurotensin in response to intraluminal contents in the duodenum of chickens.

    PubMed

    DeGolier, Teresa F; Carraway, Robert E; Duke, Gary E

    2013-02-01

    Peripheral and hepatic-portal plasma levels of neurotensin (NT) in fed and fasted chickens were determined using RIA. Portal levels of NT(1-13) (fed = 61.3 ± 3.9 fmol/mL; fasted = 44.5 ± 3.9 fmol/mL) were significantly higher than peripheral levels (fed = 8.2 ± 3.3 fmol/mL; fasted = 7.8 ± 3.0 fmol/mL) collected from the wing vein, indicating that some NT is metabolized in the liver. Portal plasma levels of NT collected from fed birds were also significantly higher than portal plasma levels of NT collected from fasted birds. Neurotensin, as identified by HPLC, exhibited a 2-fold increase in plasma extracts following perfusion of the proximal ileum with a 10-mg sample of oleic acid, as compared with control samples of plasma collected before oleic acid perfusion. In whole-animal studies, the injection of a micellar solution of oleic acid into isolated segments of the duodenum resulted in elevated plasma immunoreactive NT in blood collected from the pancreaticoduodenal vein. Injection of a 1,000 mOsm sodium chloride solution had a slightly lesser and delayed effect compared with oleic acid, but a greater effect than 0.1 N hydrochloric acid in isotonic saline solution. Injection of an amino acid solution (10% Travasol), 300 mOsm glucose solution, or pure corn oil had no effect. These results demonstrate that intraduodenal oleic acid is a potent stimulus for the release of NT from the duodenum into the hepatic-portal circulation of chickens.

  10. A type 1 serine/threonine kinase receptor that can dorsalize mesoderm in Xenopus.

    PubMed Central

    Mahony, D; Gurdon, J B

    1995-01-01

    We have cloned a type I serine/threonine kinase receptor, XTrR-I, from Xenopus. XTrR-I (Xenopus transforming growth factor beta-related receptor type I) is expressed in all regions of embryos throughout early development. Overexpression of this receptor does not affect ectoderm or endoderm but dorsalizes the mesoderm such that muscle appears in ventral mesoderm and notochord appears in lateral mesoderm normally fated to become muscle. In addition, overexpression of XTrR-I in UV-treated embryos is able to cause formation of a partial dorsal axis. These results suggest that XTrR-I encodes a receptor which responds in normal development to a transforming growth factor beta-like ligand so as to promote dorsalization. Its function would therefore be to direct mesodermalized tissue into muscle or notochord. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7604016

  11. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri.

    PubMed

    Ahuja, S K; Murphy, P M

    1993-10-05

    Viruses are known to acquire and modify the genes of their hosts to attain a survival advantage in the host environment. Herpesvirus saimiri (HVS) is a T-lymphotropic virus that causes fatal lymphoproliferative diseases in several non-human primates. The gene ECRF3 of HVS was most likely acquired from a primate host. ECRF3 encodes a putative seven-transmembrane-domain receptor that is remotely related (approximately 30% amino acid identity) to the known mammalian alpha and beta chemokine receptors, namely interleukin-8 receptor (IL8R) types A and B and the MIP-1 alpha/RANTES receptor, respectively. Chemokines regulate the trafficking, activation, and, in some cases, proliferation of myeloid and lymphoid cell types. We now show that ECRF3 encodes a functional receptor for the alpha chemokines IL-8, GRO/melanoma growth stimulatory activity (MGSA), and NAP-2 but not for beta chemokines, a specificity identical to that of IL8RB. Paradoxically, IL8RA shares 77% amino acid identity with IL8RB but is not a receptor for GRO/MGSA or NAP-2. This is the first functional characterization of a viral seven-transmembrane-domain receptor. It suggests a novel role for alpha chemokines in the pathogenesis of HVS infection by transmembrane signaling via the product of ECRF3.

  12. Histamine receptor type coupled to nitric oxide-induced relaxation of guinea-pig nasal mucosa.

    PubMed

    Bockman, C S; Zeng, W

    2002-01-01

    1 The aim of this study was to characterize the histamine receptor type mediating relaxation of the vascular bed of the nasal mucosa from the guinea-pig, and to determine the role of cyclo-oxygenase products and nitric oxide in this relaxant response to histamine. These studies were performed in isolated nasal mucosae examined in vitro to obtain potencies of histamine receptor-type selective agonists in causing vasorelaxation and to determine affinities of histamine receptor antagonists for inhibiting histamine-induced relaxation. 2 After contraction of nasal mucosae with noradrenaline, histamine caused a maximal relaxation response that was 75 +/- 6% of the contraction caused by noradrenaline with a mean EC50 value of 4.3 +/- 0.5 microM. Neither dimaprit (H2-receptor selective) nor R-alpha-methylhistamine (H3-receptor selective) caused significant relaxation of nasal mucosae. In contrast, betahistine (H1-receptor selective) caused an 81 +/- 7% relaxation of noradrenaline-induced tone with an EC50 value of 15 +/- 1 microM. 3 pA2 experiments were performed to obtain KB values of chlorpheniramine (H1-receptor selective) and diphenhydramine (H1-receptor selective) for blocking histamine-stimulated relaxation of nasal mucosae. KB values for chlorpheniramine (0.87 nM) and diphenhydramine (7.4 nM) were consistent with their interaction at the H1-receptor type. Additionally, neither 10 microM cimetidine (H2-receptor selective) nor 1 microM thioperamide (H3-receptor selective) had any effect on the relaxation curve for histamine. 4 In the presence of 10 microM indomethacin (cyclo-oxygenase inhibitor), histamine caused a maximal relaxation response of 73 +/- 5% of the noradrenaline-induced tone with an EC50 value of 2.9 +/- 0.2 microM, which was not different from control values (EC50 = 5.0 +/- 0.4 microM; maximal relaxation = 71 +/- 6%). In contrast, 200 microM NG-nitro-L-arginine (nitric oxide synthase inhibitor) completely inhibited histamine-induced relaxation of nasal

  13. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  14. Mechanisms of Radiosensitization by the Neurotensin Receptor Antagonist SR48692 in Prostate Cancer Models

    DTIC Science & Technology

    2011-04-01

    the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER...5e. TASK NUMBER E-Mail: 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

  15. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  16. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  17. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.

  18. Patterning in the regeneration of type I cutaneous receptors

    PubMed Central

    Burgess, P. R.; English, Kathleen B.; Horch, K. W.; Stensaas, L. J.

    1974-01-01

    1. Type I sensory fibres in cat hairy skin innervate structures characterized by twenty to fifty specialized epithelial (Merkel) cells aggregated in a small dome-shaped elevation. Only one fibre enters each dome and it branches repeatedly to supply at least one terminal to each Merkel cell. After the nerve is cut, the Merkel cells and the dome ultimately disappear. 2. The distribution of domes on the posterior thigh was mapped before interruption of the femoral cutaneous nerve and after its regeneration. Regeneration after nerve crush was apparently complete, producing a coincidence pattern similar to those seen in control studies where the nerve was not damaged. After cutting the nerve fewer domes returned, but coincidence of regenerated femoral cutaneous domes with old sites generally was significantly greater than would be expected by chance alone. Non-femoral cutaneous fibres sprouting into the denervated femoral cutaneous field tended to form domes at old sites. Domes were also reformed on scars where domes had been excised. 3. Domes appearing at new locations and on excision scars were often small and close together (clustered). Individual domes in a cluster could be innervated by different Type I fibres. 4. Type I fibres are directed by some mechanism to sites formerly occupied by domes and to sites where domes are being induced. ImagesPlate 2Plate 3Plate 4Plate 1 PMID:4818522

  19. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system.

    PubMed

    Liu, Sumei; Gao, Xiang; Gao, Na; Wang, Xiyu; Fang, Xiucai; Hu, Hong-Zhen; Wang, Guo-Du; Xia, Yun; Wood, Jackie D

    2005-01-17

    Reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiological recording, and intraneuronal injection of the neuronal tracer biocytin were integrated in a study of the functional expression of corticotropin-releasing factor (CRF) receptors in the guinea pig enteric nervous system. RT-PCR revealed expression of CRF1 receptor mRNA, but not CRF2, in both myenteric and submucosal plexuses. Immunoreactivity for the CRF1 receptor was distributed widely in the myenteric plexus of the stomach and small and large intestine and in the submucosal plexus of the small and large intestine. CRF1 receptor immunoreactivity was coexpressed with calbindin, choline acetyltransferase, and substance P in the myenteric plexus. In the submucosal plexus, CRF1 receptor immunoreactivity was found in neurons that expressed calbindin, substance P, choline acetyltransferase, or neuropeptide Y. Application of CRF evoked slowly activating depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. Histological analysis of biocytin-filled neurons revealed that both uniaxonal neurons with S-type electrophysiological behavior and neurons with AH-type electrophysiological behavior and Dogiel II morphology responded to CRF. The CRF-evoked depolarizing responses were suppressed by the CRF1/CRF2 receptor antagonist astressin and the selective CRF1 receptor antagonist NBI27914 and were unaffected by the selective CRF2 receptor antagonist antisauvagine-30. The findings support the hypothesis that the CRF1 receptor mediates the excitatory actions of CRF on neurons in the enteric nervous system. Actions on enteric neurons might underlie the neural mechanisms by which stress-related release of CRF in the periphery alters intestinal propulsive motor function, mucosal secretion, and barrier functions.

  20. Down-regulation of pancreatic transcription factors and incretin receptors in type 2 diabetes

    PubMed Central

    Kaneto, Hideaki; Matsuoka, Taka-aki

    2013-01-01

    Type 2 diabetes is one of the most prevalent and serious metabolic diseases. Under diabetic conditions, chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreatic β-cell function, which leads to the aggravation of type 2 diabetes. Although such phenomena are well known as glucose toxicity, its molecular mechanism remains unclear. In this review article, we describe the possible molecular mechanism for β-cell dysfunction found in type 2 diabetes, focusing on (1) oxidative stress, (2) pancreatic transcription factors (PDX-1 and MafA) and (3) incretin receptors (GLP-1 and GIP receptors). Under such conditions, nuclear expression levels of PDX-1 and MafA are decreased, which leads to suppression of insulin biosynthesis and secretion. In addition, expression levels of GLP-1 and GIP receptors are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, it is likely that down-regulation of pancreatic transcription factors (PDX-1 and MafA) and down-regulation of incretin receptors (GLP-1 and GIP receptors) explain, at least in part, the molecular mechanism for β-cell dysfunction found in type 2 diabetes. PMID:24379916

  1. Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Mortensen, Martin; Ebert, Bjarke; Wafford, Keith; Smart, Trevor G

    2010-01-01

    The activation characteristics of synaptic and extrasynaptic GABAA receptors are important for shaping the profile of phasic and tonic inhibition in the central nervous system, which will critically impact on the activity of neuronal networks. Here, we study in isolation the activity of three agonists, GABA, muscimol and 4,5,6,7-tetrahydoisoxazolo[5,4-c]pyridin-3(2H)-one (THIP), to further understand the activation profiles of α1β3γ2, α4β3γ2 and α4β3δ receptors that typify synaptic- and extrasynaptic-type receptors expressed in the hippocampus and thalamus. The agonists display an order of potency that is invariant between the three receptors, which is reliant mostly on the agonist dissociation constant. At δ subunit-containing extrasynaptic-type GABAA receptors, both THIP and muscimol additionally exhibited, to different degrees, superagonist behaviour. By comparing whole-cell and single channel currents induced by the agonists, we provide a molecular explanation for their different activation profiles. For THIP at high concentrations, the unusual superagonist behaviour on α4β3δ receptors is a consequence of its ability to increase the duration of longer channel openings and their frequency, resulting in longer burst durations. By contrast, for muscimol, moderate superagonist behaviour was caused by reduced desensitisation of the extrasynaptic-type receptors. The ability to specifically increase the efficacy of receptor activation, by selected exogenous agonists over that obtained with the natural transmitter, may prove to be of therapeutic benefit under circumstances when synaptic inhibition is compromised or dysfunctional. PMID:20176630

  2. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  3. Type II Turn of Receptor-bound Salmon Calcitonin Revealed by X-ray Crystallography.

    PubMed

    Johansson, Eva; Hansen, Jakob Lerche; Hansen, Ann Maria Kruse; Shaw, Allan Christian; Becker, Peter; Schäffer, Lauge; Reedtz-Runge, Steffen

    2016-06-24

    Calcitonin is a peptide hormone consisting of 32 amino acid residues and the calcitonin receptor is a Class B G protein-coupled receptor (GPCR). The crystal structure of the human calcitonin receptor ectodomain (CTR ECD) in complex with a truncated analogue of salmon calcitonin ([BrPhe(22)]sCT(8-32)) has been determined to 2.1-Å resolution. Parallel analysis of a series of peptide ligands showed that the rank order of binding of the CTR ECD is identical to the rank order of binding of the full-length CTR, confirming the structural integrity and relevance of the isolated CTR ECD. The structure of the CTR ECD is similar to other Class B GPCRs and the ligand binding site is similar to the binding site of the homologous receptors for the calcitonin gene-related peptide (CGRP) and adrenomedulin (AM) recently published (Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. L., and Pioszak, A. A. (2015) Mol. Cell 58, 1040-1052). Interestingly the receptor-bound structure of the ligand [BrPhe(22)]sCT(8-32) differs from the receptor-bound structure of the homologous ligands CGRP and AM. They all adopt an extended conformation followed by a C-terminal β turn, however, [BrPhe(22)]sCT(8-32) adopts a type II turn (Gly(28)-Thr(31)), whereas CGRP and AM adopt type I turns. Our results suggest that a type II turn is the preferred conformation of calcitonin, whereas a type I turn is the preferred conformation of peptides that require RAMPs; CGRP, AM, and amylin. In addition the structure provides a detailed molecular explanation and hypothesis regarding ligand binding properties of CTR and the amylin receptors.

  4. G protein-coupled receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics.

    PubMed

    Violin, Jonathan D; Dewire, Scott M; Barnes, William G; Lefkowitz, Robert J

    2006-11-24

    Receptor desensitization progressively limits responsiveness of cells to chronically applied stimuli. Desensitization in the continuous presence of agonist has been difficult to study with available assay methods. Here, we used a fluorescence resonance energy transfer-based live cell assay for the second messenger diacylglycerol to measure desensitization of a model seven-transmembrane receptor, the Gq-coupled angiotensin II type 1(A) receptor, expressed in human embryonic kidney 293 cells. In response to angiotensin II, we observed a transient diacylglycerol response reflecting activation and complete desensitization of the receptor within 2-5 min. By utilizing a variety of approaches including graded tetracycline-inducible receptor expression, mutated receptors, and overexpression or short interfering RNA-mediated silencing of putative components of the cellular desensitization machinery, we conclude that the rate and extent of receptor desensitization are critically determined by the following: receptor concentration in the plasma membrane; the presence of phosphorylation sites on the carboxyl terminus of the receptor; kinase activity of G protein-coupled receptor kinase 2, but not of G protein-coupled receptor kinases 3, 5, or 6; and stoichiometric expression of beta-arrestin. The findings introduce the use of the biosensor diacylglycerol reporter as a powerful means for studying Gq-coupled receptor desensitization and document that, at the levels of receptor overexpression commonly used in such studies, the properties of the desensitization process are markedly perturbed and do not reflect normal cellular physiology.

  5. Protective role for type 4 metabotropic glutamate receptors against ischemic brain damage.

    PubMed

    Moyanova, Slavianka G; Mastroiacovo, Federica; Kortenska, Lidia V; Mitreva, Rumiana G; Fardone, Erminia; Santolini, Ines; Sobrado, Mónica; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Ngomba, Richard T

    2011-04-01

    We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10  mg/kg, subcutaneous, administered once 30  minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20  minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson's disease and other central nervous system disorders.

  6. Functional interaction of hybrid response elements with wild-type and mutant steroid hormone receptors.

    PubMed Central

    Truss, M; Chalepakis, G; Slater, E P; Mader, S; Beato, M

    1991-01-01

    Steroid hormone receptors can be divided into two subfamilies according to the structure of their DNA binding domains and the nucleotide sequences which they recognize. The glucocorticoid receptor and the progesterone receptor (PR) recognize an imperfect palindrome (glucocorticoid responsive element/progesterone responsive element [GRE/PRE]) with the conserved half-sequence TGTYCY, whereas the estrogen receptor (ER) recognizes a palindrome (estrogen responsive element) with the half-sequence TGACC. A series of symmetric and asymmetric variants of these hormone responsive elements (HREs) have been tested for receptor binding and for the ability to mediate induction in vivo. High-resolution analysis demonstrates that the overall number and distribution of contacts with the N-7 position of guanines and with the phosphate backbone of various HREs are quite similar for PR and ER. However, PR and glucocorticoid receptor, but not ER, are able to contact the 5'-methyl group of thymines found in position 3 of HREs, as shown by potassium permanganate interference. The ER mutant HE84, which contains a single amino acid exchange, Glu-203 to Gly, in the knuckle of ER, creates a promiscuous ER that is able to bind to GRE/PREs by contacting this thymine. Elements with the sequence GGTCAcagTGTYCT that represent hybrids between an estrogen response element and a GRE/PRE respond to estrogens, glucocorticoids, and progestins in vivo and bind all three wild-type receptors in vitro. These hybrid HREs could serve to confer promiscuous gene regulation. Images PMID:2038329

  7. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.

  8. E-type prostanoid receptor 4 (EP4) in disease and therapy

    PubMed Central

    Konya, Viktoria; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2013-01-01

    The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists. PMID:23523686

  9. Type I receptors in parotid, colon, and pituitary are aldosterone selective in vivo

    SciTech Connect

    Sheppard, K.; Funder, J.W. )

    1987-10-01

    Previous in vivo studies have demonstrated that type I receptors in the rat kidney are aldosterone selective, whereas those in the hippocampus do not appear to discriminate between aldosterone and corticosterone. The authors have injected mature rats with ({sup 3}H)aldosterone or ({sup 3}H)corticosterone plus 100-fold excess of RU 28362, with or without unlabeled aldosterone or corticosterone, and compared type I receptor occupancy in two classic mineralocorticoid target tissues (parotid and colon) and in the pituitary. Mature rats were killed 10-180 min after tracer administration; ({sup 3}H)aldosterone was well taken up and retained in all tissues, whereas ({sup 3}H)corticosterone was significantly retained only in the pituitary 10 min after tracer administration. To assess a possible role for corticosterone-binding globulin (CBG) in conferring aldosterone specificity on type I receptors, 10-day-old rats (with very low levels of CBG) were similarly injected. In the colon and parotid, ({sup 3}H)aldosterone binding was at least an order of magnitude higher than that of corticosterone; in the pituitary aldosterone binding was approximately three times that of corticosterone. They interpret these data as evidence that in the parotid and colon type I receptors are aldosterone selective by a non-CBG-requiring mechanism, whereas in the pituitary there appear to be both aldosterone-selective and nonselective type I sites.

  10. Immunohistochemical expression of Type IV Collagen and Autocrine Motility Factor Receptor in Odontogenic Tumours

    PubMed Central

    Sethi, Sneha

    2014-01-01

    Background: Autocrine motility factor receptor (AMFR) is a tumour motility stimulating protein secreted by tumour cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. It has been known to play a role in progression of neoplastic lesions. Basement membranes are specialized extracellular matrices that serve as structural barriers as well as substrates for cellular interactions. The network of type IV collagen is thought to define the scaffold integrating other components such as laminins and perlecan into highly organized supramolecular architecture. The aim of this study was to determine and evaluate the immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor in odontogenic lesions. Materials and Methods: Immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor was evaluated in 31 odontogenic lesions, including unicystic ameloblastoma, multicystic ameloblastoma, keratocystic odontogenic tumour and ameloblastic carcinoma. Normal follicular tissue formed the control. Results: Maximum expression for Type IV Collagen was seen in multicystic ameloblastoma and minimum expression in keratocystic odontogenic tumour. The maximum expression of AMFR was seen in ameloblastic carcinoma and minimum expression in multicystic ameloblastoma. Conclusion: The results of this study suggested an association of loss of expression of type IV Collagen with progression of lesion. AMFR expression was found to be associated with the aggressive potential of tumours. PMID:25478440

  11. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.

    PubMed Central

    Cardy, T J; Taylor, C W

    1998-01-01

    Calmodulin inhibits both inositol 1,4,5-trisphosphate (IP3) binding to, and IP3-evoked Ca2+ release by, cerebellar IP3 receptors [Patel, Morris, Adkins, O'Beirne and Taylor (1997) Proc. Natl. Acad. Sci. U. S.A. 94, 11627-11632]. In the present study, full-length rat type-1 and -3 IP3 receptors were expressed at high levels in insect Spodoptera frugiperda 9 cells and the effects of calmodulin were examined. In the absence of Ca2+, calmodulin caused a concentration-dependent and reversible inhibition of [3H]IP3 binding to type-1 IP3 receptors by decreasing their apparent affinity for IP3. The effect was not reproduced by high concentrations of troponin C, parvalbumin or S-100. Increasing the medium free [Ca2+] ([Ca2+]m) inhibited [3H]IP3 binding to type-1 receptors, but the further inhibition caused by a submaximal concentration of calmodulin was similar at each [Ca2+]m. In the absence of Ca2+, 125I-calmodulin bound to a single site on each type-1 receptor subunit and to an additional site in the presence of Ca2+. There was no detectable binding of 125I-calmodulin to type-3 receptors and binding of [3H]IP3 was insensitive to calmodulin at all [Ca2+]m. Both peptide and conventional Ca2+-calmodulin antagonists affected neither [3H]IP3 binding directly nor the inhibitory effect of calmodulin in the absence of Ca2+, but each caused a [Ca2+]m-dependent reversal of the inhibition of [3H]IP3 binding caused by calmodulin. Camstatin, a peptide that binds to calmodulin equally well in the presence or absence of Ca2+, reversed the inhibitory effects of calmodulin on [3H]IP3 binding at all [Ca2+]m. We conclude that calmodulin specifically inhibits [3H]IP3 binding to type-1 IP3 receptors: the first example of a protein regulated by calmodulin in an entirely Ca2+-independent manner. Inhibition of type-1 IP3 receptors by calmodulin may dynamically regulate their sensitivity to IP3 in response to the changes in cytosolic free calmodulin concentration thought to accompany stimulation

  12. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  13. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  14. Neutrophil Resolvin E1 Receptor Expression and Function in Type 2 Diabetes.

    PubMed

    Freire, Marcelo O; Dalli, Jesmond; Serhan, Charles N; Van Dyke, Thomas E

    2017-01-15

    Unresolved inflammation is key in linking metabolic dysregulation and the immune system in type 2 diabetes. Successful regulation of acute inflammation requires biosynthesis of specialized proresolving lipid mediators, such as E-series resolvin (RvE) 1, and activation of cognate G protein-coupled receptors. RvE1 binds to leukotriene B4 (BLT-1) on neutrophils and to ERV-1/ChemR23 on monocyte/macrophages. We show novel actions of RvE1 and expression patterns of neutrophil receptors in type 2 diabetes. Neutrophils from healthy subjects express functional BLT-1, low levels of minimally functional ERV-1, and inversed coexpression when compared to neutrophils from type 2 diabetes subjects. Stimulation with TNF-α or LPS increased the expression of ERV-1 by healthy and diabetic neutrophils. RvE1 counteracted LPS and TNF-α induction of ERV-1 overexpression and endogenous diabetic overexpression, activating phagocytosis and resolution signals. Functional ERV-1 was determined by phosphorylation of the signaling protein ribosomal S6. Receptor-antagonism experiments revealed that the increase in phosphorylation of ribosomal S6 was mediated by BLT-1 in healthy subject neutrophils and by ERV-1 in diabetes. Metabololipidomics reveal a proinflammatory profile in diabetic serum. Cell phagocytosis is impaired in type 2 diabetes and requires RvE1 for activation. The dose of RvE1 required to activate resolution signals in type 2 diabetic neutrophils was significantly higher than in healthy controls. RvE1 rescues the dysregulation seen on neutrophil receptor profile and, following a therapeutic dosage, activates phagocytosis and resolution signals in type 2 diabetes. These findings reveal the importance of resolution receptors in health, disease, and dysregulation of inflammation in type 2 diabetes.

  15. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  16. Cripto forms a complex with activin and type II activin receptors and can block activin signaling

    PubMed Central

    Gray, Peter C.; Harrison, Craig A.; Vale, Wylie

    2003-01-01

    Activin, nodal, Vg1, and growth and differentiation factor 1 are members of the transforming growth factor β superfamily and signal via the activin type II (ActRII/IIB) and type I (ALK4) serine/threonine kinase receptors. Unlike activins, however, signaling by nodal, Vg1, and growth and differentiation factor 1 requires a coreceptor from the epidermal growth factor-Cripto-FRL1-Cryptic protein family such as Cripto. Cripto has important roles during development and oncogenesis and binds nodal or related ligands and ALK4 to facilitate assembly of type I and type II receptor signaling complexes. Because Cripto mediates signaling via activin receptors and binds directly to ALK4, we tested whether transfection with Cripto would affect the ability of activin to signal and/or interact with its receptors. Here we show that Cripto can form a complex with activin and ActRII/IIB. We were unable to detect activin binding to Cripto in the absence of ActRII/IIB, indicating that unlike nodal, activin requires type II receptors to bind Cripto. If cotransfected with ActRII/IIB and ALK4, Cripto inhibited crosslinking of activin to ALK4 and the association of ALK4 with ActRII/IIB. In addition, Cripto blocked activin signaling when transfected into either HepG2 cells or 293T cells. We have also shown that under conditions in which Cripto facilitates nodal signaling, it antagonizes activin. Inhibition of activin signaling provides an additional example of a Cripto effect on the regulation of signaling by transforming growth factor-β superfamily members. Because activin is a potent inhibitor of cell growth in multiple cell types, these results provide a mechanism that may partially explain the oncogenic action of Cripto. PMID:12682303

  17. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  18. Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells

    EPA Science Inventory

    This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

  19. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  20. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13 and 14, encode proteins containing a single variable (V...

  1. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  2. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  3. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  4. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen.

    PubMed

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2012-05-01

    The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.

  5. Transgenic Expression of an Altered Angiotensin type I AT1 Receptor Resulting in Marked Modulation of Vascular Type I Collagen

    PubMed Central

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2011-01-01

    The angiotensin II type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in angiotensin II responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not angiotensin II activated, while in the aSMCs from wild type mice the cascade was angiotensin II activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G protein linked signaling remained unaltered in response to angiotensin II. Akt and PI3K activation inhibitors blocked angiotensin II stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/ mTOR/ p70S6K regulation of collagen production by angiotensin II with participation of Smad2 and Stat3 cascades in this process. PMID:21751211

  6. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer

    PubMed Central

    Montuori, Nunzia; Pesapane, Ada; Rossi, Francesca W; Giudice, Valentina; De Paulis, Amato; Selleri, Carmine; Ragno, Pia

    2016-01-01

    The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials. PMID:27896223

  7. Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts.

    PubMed

    Stabellini, Giordano; Balducci, Chiara; Lilli, Cinzia; Marinucci, Lorella; Becchetti, Ennio; Carinci, Francesco; Calastrini, Carla; Dolci, Claudia; Lumare, Eleonora; Locci, Paola

    2008-09-01

    Tissue infiltration is different in desmoid and fibroma tumours. Both produce high levels of transforming growth factor beta1 (TGFbeta1), which is related to extracellular matrix (ECM) accumulation which in turn regulates cell function and cell migration. Interactions between collagen, proteoglycans and cell surface fibronectin are involved in the assembly and functions of the ECM. As toremifene inhibits collagen and TGFbeta1 synthesis, we tested it in normal, desmoid and fibroma fibroblasts. We will report the changes in glycosaminoglycan (GAG) and collagen synthesis, TGFbeta1 activity, fibronectin mRNA expression and TGFbeta1 receptors after toremifene treatment in normal, fibroma and desmoid fibroblasts. We evaluated GAG and collagen synthesis with 3H-glucosamine and 3H-proline incorporation, TGFbeta1 activity with the ELISA method, TGFbeta1 receptor affinity with 125I-TGFbeta1 binding and total RNA with Northern blot analysis. GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels were higher in fibroma and desmoid than normal fibroblasts. The increase was greater in desmoid than fibroma tumour cells. Toremifene treatment reduced GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels in all cell cultures. The percentage reduction in GAG was similar in all cultures; the reduction in collagen synthesis and TGFbeta1 activity was the highest in desmoid fibroblasts. TGFbeta1 receptors were higher in fibroma and desmoid cells than controls. Toremifene reduced TGFbeta1 receptors only in desmoid fibroblasts, with no effect on the changes in type I, II, and III receptors. Our data show that toremifene modifies the ECM components that regulate cytokine activity and cell migration. The reduction in receptor number only in desmoid cells suggests that toremifene may reduce TGFbeta1's affinity for its receptors. Synthesis of a substance regulating protein kinase activity, which is directly involved in the link between TGFbeta1 and its receptors

  8. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    PubMed Central

    PRICE, T. J.; HELESIC, G.; PARGHI, D.; HARGREAVES, K. M.; FLORES, C. M.

    2007-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (<5%). Furthermore, very few neurons (approximately 5%) in the peptidergic (defined as calcitonin gene-related peptide- or substance P-immunoreactive) or the isolectin B4-binding sensory neuron populations contained CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions. PMID:12849749

  9. Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor

    PubMed Central

    Meusel, Andrej; Teupser, Daniel; Ricken, Albert; Thiery, Joachim; Schiller, Jürgen; Huster, Daniel; Schöneberg, Torsten

    2016-01-01

    Dysfunction of the melanocortin system can result in severe obesity accompanied with dyslipidemia and symptoms of the metabolic syndrome but the effect on vascular atherogenesis is not known. To study the impact of obesity and dyslipidemia on the cardiovascular system, we generated mice double-deficient for the melanocortin type 4 receptor (Mc4rmut mice) and the LDL receptor (Ldlr-/- mice). Mc4rmut mice develop obesity due to hyperphagia. Double-mutant mice (Mc4rmut;Ldlr-/-) exhibited massive increases in body weight, plasma cholesterol and triacylglycerol levels and developed atherosclerosis. Atherosclerotic lesion size was affected throughout the aortic root and brachiocephalic artery not only under semisynthetic, cholesterol-containing diet but also under cholesterol-free standard chow. The Mc4rmut mice developed a hepatic steatosis which contributes to increased plasma cholesterol levels even under cholesterol-free standard chow. Transcripts of cholesterol biosynthesis components and liver cholesterol levels did not significantly differ between wild-type and all mutant mouse strains but RNA sequencing data and biochemical measurements point to an altered bile acid elimination in Mc4rmut;Ldlr-/-. Therefore, the unchanged endogenous cholesterol biosynthesis together with a reduced hepatic VLDL and LDL-cholesterol clearance most likely led to increased plasma lipid levels and consequently to atherosclerosis in this animal model. Our data indicate that dysfunction of the melanocortin-regulated food intake and the resulting obesity significantly add to the proatherogenic lipoprotein profile caused by LDL receptor deficiency and, therefore, can be regarded as relevant risk factor for atherosclerosis. PMID:28030540

  10. Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor

    PubMed Central

    Garten, Antje; Popkova, Yulia; Penke, Melanie; Franke, Christin; Ricken, Albert; Schulz, Angela; Kiess, Wieland; Huster, Daniel; Schöneberg, Torsten; Schiller, Jürgen

    2017-01-01

    Obesity is often associated with dyslipidemia and hepatosteatosis. A number of animal models of non-alcoholic fatty liver disease (NAFLD) are established but they significantly differ in the molecular and biochemical changes depending on the genetic modification and diet used. Mice deficient for melanocortin type 4 receptor (Mc4rmut) develop hyperphagia, obesity, and subsequently NAFLD already under regular chow and resemble more closely the energy supply-driven obesity found in humans. This animal model was used to assess the molecular and biochemical consequences of hyperphagia-induced obesity on hepatic lipid metabolism. We analyzed transcriptome changes in Mc4rmut mice by RNA sequencing and used high resolution 1H magic angle spinning NMR spectroscopy and MALDI-TOF mass spectrometry to assess changes in the lipid composition. On the transcriptomic level we found significant changes in components of the triacylglycerol metabolism, unsaturated fatty acids biosynthesis, peroxisome proliferator-activated receptor signaling pathways, and lipid transport and storage compared to the wild-type. These findings were supported by increases in triacylglycerol, monounsaturated fatty acid, and arachidonic acid levels. The transcriptome signatures significantly differ from those of other NAFLD mouse models supporting the concept of hepatic subphenotypes depending on the genetic background and diet. Comparative analyses of our data with previous studies allowed for the identification of common changes and genotype-specific components and pathways involved in obesity-associated NAFLD. PMID:28207798

  11. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  12. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  13. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.

  14. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  15. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Freeman, Mason; Rohrer, Lucia; Zabrecky, James; Matsudaira, Paul; Krieger, Monty

    1990-02-01

    The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the transmembrane domain by a long fibrous stalk. This stalk structure, composed of an a-helical coiled coil and a collagen-like triple helix, has not previously been observed in an integral membrane protein.

  16. Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes☆

    PubMed Central

    Tsukamoto, Ichiro; Inoue, Shinji; Teramura, Takeshi; Takehara, Toshiyuki; Ohtani, Kazuhiro; Akagi, Masao

    2013-01-01

    A local tissue-specific renin–angiotensin system (local RAS) has been identified in many organs. However, no report has described the role of a local RAS in the hypertrophic differentiation of chondrocytes. To examine the role of a local RAS in the hypertrophic differentiation, we activated angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) separately in the cell line ATDC5, which involves differentiation from mesenchymal stem cells to hypertrophic chondrocytes. Activation of AT1R suppressed and activation of AT2R enhanced the expression of markers of hypertrophic differentiation, including type X collagen, matrix metalloproteinase 13 and runt-related transcription factor 2. PMID:23905010

  17. Opposing roles for cannabinoid receptor type-1 (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats.

    PubMed

    Casarotto, Plínio C; Terzian, Ana Luisa B; Aguiar, Daniele C; Zangrossi, Hélio; Guimarães, Francisco S; Wotjak, Carsten T; Moreira, Fabrício A

    2012-01-01

    The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety- and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB₁ and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB₁-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB₁-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB₁ and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB₁ receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders.

  18. Rat kidney endopeptidase 24.16. Purification, physico-chemical characteristics and differential specificity towards opiates, tachykinins and neurotensin-related peptides.

    PubMed

    Barelli, H; Vincent, J P; Checler, F

    1993-01-15

    Endopeptidase 24.16 was purified from rat kidney homogenate on the basis of its ability to generate the biologically inactive degradation products neurotensin (1-10) and neurotensin (11-13). On SDS gels of the proteins pooled after the last purification step, the enzyme appeared homogeneous and behaved as a 70-kDa monomer. The peptidase was not sensitive to specific inhibitors of aminopeptidases, pyroglutamyl aminopeptidase I, endopeptidase 24.11, endopeptidase 24.15, proline endopeptidase and angiotensin-converting enzyme but was potently inhibited by several metal chelators such as o-phenanthroline and EDTA and was blocked by divalent cations. The specificity of endopeptidase 24.16 towards peptides of the tachykinin, opioid and neurotensin families was examined by competition experiments of tritiated neurotensin hydrolysis as well as HPLC analysis. These results indicated that endopeptidase 24.16 could discriminate between peptides belonging to the same family. Neurotensin, Lys8-Asn9-neurotensin(8-13) and xenopsin were efficiently hydrolysed while neuromedin N and kinetensin underwent little if any proteolysis by the peptidase. Analogously, substance P and dynorphins (1-7) and (1-8) were readily proteolysed by endopeptidase 24.16 while neurokinin A, amphibian tachykinins and leucine or methionine enkephalins totally resisted degradation. By Triton X-114 phase separation, 15-20% of endopeptidase 24.16 partitioned in the detergent phase, indicating that renal endopeptidase 24.16 might exist in a genuine membrane-bound form. The equipotent solubilization of the enzyme by seven detergents of various critical miscellar concentrations confirmed the occurrence of a membrane-bound counterpart of endopeptidase 24.16. Furthermore, the absence of release elicited by phosphatidylinositol-specific phospholipase C suggested that the enzyme was not attached by a glycosyl-phosphatidylinositol anchor in the membrane of renal microvilli. Finally, endopeptidase 24.16 could not be

  19. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses

    PubMed Central

    Coles, Charlotte H.; Jones, E. Yvonne; Aricescu, A. Radu

    2016-01-01

    The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation. PMID:25234613

  20. Neurotensin is increased in serum of young children with autistic disorder.

    PubMed

    Angelidou, Asimenia; Francis, Konstantinos; Vasiadi, Magdalini; Alysandratos, Konstantinos-Dionysios; Zhang, Bodi; Theoharides, Athanasios; Lykouras, Lefteris; Sideri, Kyriaki; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2010-08-23

    Autism spectrum disorders (ASD) are a group of pervasive neurodevelopmental disorders diagnosed in early childhood. They are associated with a set of "core symptoms" that include disabilities in social interaction skills, verbal and non-verbal communication, as well as repetitive and stereotypic behaviors. There is no definite pathogenetic mechanism or diagnostic tests. Many children with ASD also have "allergic-like" symptoms, but test negative implying mast cell activation by non-allergic triggers. We measured by Milliplex arrays serum levels of 3 neuropeptides that could stimulate mast cells in children with autistic disorder (n = 19; 16 males and 3 females; mean age 3.0 ± 0.4 years) and healthy, unrelated controls (n = 16; 13 males and 3 females; mean age 3 ± 1.2 years). Only neurotensin (NT) was significantly increased from 60.5 ± 6.0 pg/ml in controls to 105.6 ± 12.4 pg/ml in autistic disorder (p = 0.004). There was no statistically significant difference in the serum levels of β-endorphin or substance P (SP). NT could stimulate immune cells, especially mast cells, and/or have direct effects on brain inflammation and ASD.

  1. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells.

    PubMed

    Kim, Ji Tae; Liu, Chunming; Zaytseva, Yekaterina Y; Weiss, Heidi L; Townsend, Courtney M; Evers, B Mark

    2015-03-15

    Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth.

  2. High affinity binding of (/sup 3/H)neurotensin of rat uterus

    SciTech Connect

    Pettibone, D.J.; Totaro, J.A.

    1987-11-01

    (/sup 3/H)Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that (/sup 3/H)NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited (/sup 3/H)NT binding with the following potencies (approximately IC50): NT 8-13 (0.4 nM), NT 1-13 (4 nM), NT 9-13 (130 nM), NT 1-11, NT 1-8 (greater than 100 microM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.

  3. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors.

    PubMed

    Gurevich, V V; Dion, S B; Onorato, J J; Ptasienski, J; Kim, C M; Sterne-Marr, R; Hosey, M M; Benovic, J L

    1995-01-13

    Arrestins play an important role in quenching signal transduction initiated by G protein-coupled receptors. To explore the specificity of arrestin-receptor interaction, we have characterized the ability of various wild-type arrestins to bind to rhodopsin, the beta 2-adrenergic receptor (beta 2AR), and the m2 muscarinic cholinergic receptor (m2 mAChR). Visual arrestin was found to be the most selective arrestin since it discriminated best between the three different receptors tested (highest binding to rhodopsin) as well as between the phosphorylation and activation state of the receptor (> 10-fold higher binding to the phosphorylated light-activated form of rhodopsin compared to any other form of rhodopsin). While beta-arrestin and arrestin 3 were also found to preferentially bind to the phosphorylated activated form of a given receptor, they only modestly discriminated among the three receptors tested. To explore the structural characteristics important in arrestin function, we constructed a series of truncated and chimeric arrestins. Analysis of the binding characteristics of the various mutant arrestins suggests a common molecular mechanism involved in determining receptor binding selectivity. Structural elements that contribute to arrestin binding include: 1) a C-terminal acidic region that serves a regulatory role in controlling arrestin binding selectivity toward the phosphorylated and activated form of a receptor, without directly participating in receptor interaction; 2) a basic N-terminal domain that directly participates in receptor interaction and appears to serve a regulatory role via intramolecular interaction with the C-terminal acidic region; and 3) two centrally localized domains that are directly involved in determining receptor binding specificity and selectivity. A comparative structure-function model of all arrestins and a kinetic model of beta-arrestin and arrestin 3 interaction with receptors are proposed.

  4. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses.

  5. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  6. Assessment of 5-HT(7) Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice.

    PubMed

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT(7) receptor agonists on nociception by using 5-HT(7) receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT(7) receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT(7) receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT(7) receptor knockout mice. At these active analgesic doses, none of the three 5-HT(7) receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT(7) receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT(7) receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT(7) receptors. These results also strengthen the idea that the 5-HT(7) receptor plays a role in thermoregulation, but by acting in concert with other receptors.

  7. Assessment of 5-HT7 Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice

    PubMed Central

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT7 receptor agonists on nociception by using 5-HT7 receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT7 receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT7 receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT7 receptor knockout mice. At these active analgesic doses, none of the three 5-HT7 receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT7 receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT7 receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT7 receptors. These results also strengthen the idea that the 5-HT7 receptor plays a role in thermoregulation, but by acting in concert with other receptors. PMID:22761612

  8. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.

    PubMed

    Martín, Ricardo; Ladera, Carolina; Bartolomé-Martín, David; Torres, Magdalena; Sánchez-Prieto, José

    2008-09-01

    Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.

  9. Minimally Modified LDL Upregulates Endothelin Type A Receptors in Rat Coronary Arterial Smooth Muscle Cells

    PubMed Central

    Li, Jie; Cao, Lei; Xu, Cang-Bao; Wang, Jun-Jie

    2013-01-01

    Minimally modified low-density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. The present study investigated the effects of mmLDL on the expression of endothelin type A (ETA) receptors in coronary arteries. Rat coronary arteries were organ-cultured for 24 h. The contractile responses were recorded using a myographic system. ETA receptor mRNA and protein expressions were determined using real-time PCR and western blotting, respectively. The results showed that organ-culturing in the presence of mmLDL enhanced the arterial contractility mediated by the ETA receptor in a concentration-dependent and time-dependent manner. Culturing with mmLDL (10 μg/mL) for 24 h shifted the concentration-contractile curves toward the left significantly with increased Emax of 228% ± 20% from control of 100% ± 10% and significantly increased ETA receptor mRNA and protein levels. Inhibition of the protein kinase C, extracellular signal-related kinases 1 and 2 (ERK1/2), or NF-κB activities significantly attenuated the effects of mmLDL. The c-Jun N-terminal kinase inhibitor or the p38 pathway inhibitor, however, had no such effects. The results indicate that mmLDL upregulates the ETA receptors in rat coronary arterial smooth muscle cells mainly via activating protein kinase C, ERK1/2, and the downstream transcriptional factor, NF-κB. PMID:23861561

  10. Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Troppmann, Britta; Balfanz, Sabine; Krach, Christian; Baumann, Arnd; Blenau, Wolfgang

    2014-01-01

    We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology. PMID:24398985

  11. Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana.

    PubMed

    Troppmann, Britta; Balfanz, Sabine; Krach, Christian; Baumann, Arnd; Blenau, Wolfgang

    2014-01-06

    We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.

  12. Cationic modulation of rho 1-type gamma-aminobutyrate receptors expressed in Xenopus oocytes.

    PubMed Central

    Calvo, D J; Vazquez, A E; Miledi, R

    1994-01-01

    A study was made of the effects of di- and trivalent cations on homomeric rho 1-type gamma-aminobutyrate (GABA rho 1) receptors expressed in Xenopus oocytes after injection of mRNA coding for the GABA rho 1 subunit. GABA elicited large currents with a Kd approximately 1 microM. The properties of these GABA rho 1 receptors were similar to those of native bicuculline-resistant GABA receptors expressed by retinal mRNA. GABA rho 1 currents showed very little desensitization, were blocked by picrotoxin but not by bicuculline, and were not modulated by barbiturates, benzodiazepines, or beta-carbolines. Zn2+ reversibly decreased GABA rho 1 responses (IC50 = 22 microM). Other divalent cations were also tested and their rank order of potency was: Zn2+ approximately Ni2+ approximately Cu2+ >> Cd2+, whereas Ba2+, Co2+, Sr2+, Mn2+, Mg2+, and Ca2+ showed little or no effect. In contrast, La3+ reversibly potentiated the GABA currents mediated by homomeric GABA rho 1 receptors, with an EC50 = 135 microM and a maximal potentiation of about 100% (GABA, 1 microM; La3+, 1 mM). Other lanthanides showed similar effects (Lu3+ > Eu3+ > Tb3+ > Gd3+ > Er3% > Nd3+ > La3+ > Ce3+). Thus, GABA rho 1 receptors contain sites for cationic recognition, and in particular, Zn2+ may play a role during synaptic transmission in the retina. Images Fig. 3 PMID:7809110

  13. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  14. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods.

    PubMed

    Collin, Caitlin; Hauser, Frank; Gonzalez de Valdivia, Ernesto; de Valdivia, Ernesto Gonzalez; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M M; Khan, Zaid; Hansen, Niels O; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin R; Grimmelikhuijzen, Cornelis J P

    2013-09-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

  15. Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor.

    PubMed

    Mirabito, Katrina M; Hilliard, Lucinda M; Kett, Michelle M; Brown, Russell D; Booth, Sean C; Widdop, Robert E; Moritz, Karen M; Evans, Roger G; Denton, Kate M

    2014-10-15

    Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner.

  16. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  17. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  18. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    PubMed

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  19. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    PubMed Central

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  20. Detection of interleukin-1 receptors in human epidermis. Induction of the type II receptor after organ culture and in psoriasis.

    PubMed Central

    Groves, R. W.; Sherman, L.; Mizutani, H.; Dower, S. K.; Kupper, T. S.

    1994-01-01

    Normal human epidermis is a rich source of biologically active interleukin-1 alpha (IL-1 alpha). Keratinocytes both synthesize this cytokine and respond to it via cell surface receptors (IL-1R), suggesting that the IL-1 system may play an important role in normal epidermal physiology and inflammation. In this study, we have examined the expression of IL-1R in normal and psoriatic epidermis, as judged at a functional level by the capacity to bind 125I-labeled IL-1 alpha (the principal IL-1 species present in epidermis) and by immunostaining with antibodies specific for each species of IL-1R. IL-1R was not readily detectable by either technique in normal, freshly isolated human epidermis. However, in lesional psoriasis or normal epidermis after 24 hours of organ culture, expression of IL-1R was dramatically induced, especially in basal keratinocytes. Immunostaining and antibody blocking studies demonstrated the induced IL-1R to be the type II species, a nonsignal transducing molecule previously demonstrated only on leukocytes. The Ka of this receptor was comparable to that previously demonstrated in vitro. mRNA for both species of IL-1R could be demonstrated by reverse transcriptase-polymerase chain reaction in fresh and cultured epidermis. These in vivo findings were confirmed in culture, where normal human keratinocytes expressed few IL-1R at rest but large numbers of type II IL-1R after activation by phorbol ester or interferon-gamma. We conclude that under resting conditions, epidermal expression of IL-1R is low. However, the potential for keratinocytes in vivo to express large numbers of the nonsignal transducing type II IL-1R is evident from both organ cultured and psoriatic epidermis. The in vitro induction of keratinocyte IL-1R by interferon-gamma suggests that this cytokine may be involved in the induction of type II IL-1R in inflammatory skin disease. The presence of bioactive IL-1 in epidermis, coupled with the inducible expression of the decoy type II IL

  1. Increase of cardiac M2-muscarinic receptor gene expression in type-1 but not in type-2 diabetic rats.

    PubMed

    Lee, Liang-Ming; Chang, Cheng Kuei; Cheng, Kai-Chun; Kou, Dai-Huang; Liu, I-Min; Cheng, Juei-Tang

    2008-08-22

    Changes of cardiac M2-muscarinic receptor (M2-mAChR) gene expression was investigated in type-1 like diabetic rats induced by intravenous injection of streptozotocin (STZ) and type-2 like diabetic rats induced by fed with fructose-rich chow. Systolic blood pressure (SBP) in STZ-diabetic rats was significantly lower than that in age-matched non-diabetic rats, while the SBP in type-2 like diabetic rats was higher than in non-diabetic rats. Also, the mRNA or protein level of cardiac M2-mAChR in STZ-diabetic rats was markedly higher than non-diabetic rats, but it was not observed in type-2 like diabetic rats as compared to age-matched non-diabetic rats. Arecaidine propargyl ester (APE), the agonist of M2-mAChR, produced a marked reduction of heart rate in STZ-diabetic rats but made less influence on heart rate in fructose-fed rats or non-diabetic rats. The results suggest that cardiac M2-mAChR gene expression is raised in type-1 like diabetic rats but not in type-2 like diabetic rats, this difference mainly due to hyperglycemia, for the production of hypotension in diabetic disorders.

  2. Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes

    PubMed Central

    Begorre, Marc-Antoine; Dib, Abdallah; Habchi, Khalil; Guihot, Anne-Laure; Bourreau, Jennifer; Vessieres, Emilie; Blondeau, Bertrand; Loufrani, Laurent; Chabbert, Marie; Henrion, Daniel; Fassot, Céline

    2017-01-01

    Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R−/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R−/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R−/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R−/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes. PMID:28361992

  3. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor

    PubMed Central

    Xuan, Shouhong; Kitamura, Tadahiro; Nakae, Jun; Politi, Katerina; Kido, Yoshiaki; Fisher, Peter E.; Morroni, Manrico; Cinti, Saverio; White, Morris F.; Herrera, Pedro L.; Accili, Domenico; Efstratiadis, Argiris

    2002-01-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase of β cell mass and impaired glucose-dependent insulin release. β cell proliferation and secretion are thought to be regulated by signaling through receptor tyrosine kinases. In this regard, we sought to examine the potential proliferative and/or antiapoptotic role of IGFs in β cells by tissue-specific conditional mutagenesis ablating type 1 IGF receptor (IGF1R) signaling. Unexpectedly, lack of functional IGF1R did not affect β cell mass, but resulted in age-dependent impairment of glucose tolerance, associated with a decrease of glucose- and arginine-dependent insulin release. These observations reveal a requirement of IGF1R-mediated signaling for insulin secretion. PMID:12370279

  4. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors

    PubMed Central

    Graves, Austin R; Moore, Shannon J; Bloss, Erik B; Mensh, Brett D; Kath, William L; Spruston, Nelson

    2012-01-01

    Summary Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class, or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information. PMID:23177962

  5. The activating receptor NKp46 is essential for the development of type 1 diabetes.

    PubMed

    Gur, Chamutal; Porgador, Angel; Elboim, Moran; Gazit, Roi; Mizrahi, Saar; Stern-Ginossar, Noam; Achdout, Hagit; Ghadially, Hormas; Dor, Yuval; Nir, Tomer; Doviner, Victoria; Hershkovitz, Oren; Mendelson, Michal; Naparstek, Yaakov; Mandelboim, Ofer

    2010-02-01

    The mechanism of action of natural killer (NK) cells in type 1 diabetes is still unknown. Here we show that the activating receptor NKp46 recognizes mouse and human ligands on pancreatic beta cells. NK cells appeared in the pancreas when insulitis progressed to type 1 diabetes, and NKp46 engagement by beta cells led to degranulation of NK cells. NKp46-deficient mice had less development of type 1 diabetes induced by injection of a low dose of streptozotocin. Injection of soluble NKp46 proteins into nonobese diabetic mice during the early phase of insulitis and the prediabetic stage prevented the development of type 1 diabetes. Our findings demonstrate that NKp46 is essential for the development of type 1 diabetes and highlight potential new therapeutic modalities for this disease.

  6. Different Involvement of Type 1, 2, and 3 Ryanodine Receptors in Memory Processes

    ERIC Educational Resources Information Center

    Galeotti, Nicoletta; Quattrone, Alessandro; Vivoli, Elisa; Norcini, Monica; Bartolini, Alessandro; Ghelardini, Carla

    2008-01-01

    The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was…

  7. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals.

    PubMed

    Sun, Baojian; Greiner-Tollersrud, Linn; Koop, Ben F; Robertsen, Børre

    2014-12-01

    Mammalian type I interferons (IFNs) signal through a receptor composed of the IFNAR1 and IFNAR2 chains. In zebrafish two-cysteine IFNs utilize a receptor composed of CRFB1 and CRFB5, while four-cysteine IFNs signal through a receptor formed by CRFB2 and CRFB5. In the present work two CRFB clusters were identified in different chromosomes of Atlantic salmon. Genes of three CRFB5s, one CRFB1, one CRFB2 and the novel CRFB5x were identified, cloned and studied functionally. All CRFBs were expressed in 10 different organs, but the relative expression of CRFBs varied. Mx-reporter assay was used to study which CRFBs might be involved in receptors for salmon IFNa, IFNb and IFNc. The results of Mx-reporter assays suggest that IFNa signals through a receptor composed of CRFB1a as the long chain and either CRFB5a, CRFB5b or CRFB5c as the short chain; IFNc signals through a receptor with CRFB5a or CRFB5c as the short chain while IFNb may signal through a receptor with CRFB5x as a short chain. Taken together, the present work demonstrates that Atlantic salmon has a more diverse repertoire of type I IFN receptors compared to zebrafish or mammals.

  8. Structure and function of the type 1 insulin-like growth factor receptor.

    PubMed

    Adams, T E; Epa, V C; Garrett, T P; Ward, C W

    2000-07-01

    The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.

  9. Structural Basis of Interaction Between Urokinase-type Plasminogen Activator and its Receptor

    SciTech Connect

    Barinka,C.; Parry, G.; Callahan, J.; Shaw, D.; Kuo, A.; Cines, B.; Mazar, A.; Lubkowski, J.

    2006-01-01

    Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 {angstrom}. We report the 1.9 {angstrom} crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.

  10. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production.

    PubMed

    Berger, Christian; Montag, Cindy; Berndt, Sandra; Huster, Daniel

    2011-03-01

    The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 μg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25.

  11. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis.

    PubMed

    Wu, Shun-Fan; Xu, Gang; Ye, Gong-Yin

    2015-04-01

    Calcium acts as a second messenger in many cell types, including insect hemocytes. Intracellular calcium level has a definite role in innate and adaptive immune signaling. Biogenic amines such as octopamine (OA), tyramine (TA), dopamine (DA) and serotonin (5-HT) play various important physiological roles in insects by activating distinct G-protein-coupled receptors (GPCRs) that share a putative seven transmembrane domain structure. OA and 5-HT have been shown that can mediate insect hemocytic immune reactions to infections and invasions. Here, we showed that TA increase hemocyte spreading in the rice stem borer, Chilo suppressalis. Furthermore, we cloned a cDNA encoding a tyramine receptor type 2 from the hemocytes in the C. suppressalis, viz., CsTA2, which shares high sequence similarity to members of the invertebrate tyramine receptor family. The CsTA2 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with TA induced a dose-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)]i) in cells, with an EC50 value of 18.7±5.3 nM, whereas OA, DA, 5-HT and other potential agonists did not have this response. The mRNA is present in various tissues including nerve cord, hemocytes, fat body, midgut, Malpighian tubules, and epidermis in the larval stage. Western blot analysis and immunohistochemistry assay displayed that CsTA2 was detected and presented on hemocytes. We also showed that TA induced Ca(2+) release from the hemocytes of C. suppressalis.

  12. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure.

    PubMed

    Gao, Lie; Wang, Wei-Zhong; Wang, Wei; Zucker, Irving H

    2008-10-01

    Upregulation of angiotensin II type 1 receptors (AT(1)R) in the rostral ventrolateral medulla (RVLM) contributes to the sympathoexcitation in the chronic heart failure (CHF). However, the role of angiotensin II type 2 receptor (AT(2)R) is not clear. In this study, we measured AT(1)R and AT(2)R protein expression in the RVLM and determined their effects on renal sympathetic nerve activity, blood pressure, and heart rate in anesthetized sham and CHF rats. We found that (1) although AT(1)R expression in the RVLM was upregulated, the AT(2)R was significantly downregulated (CHF: 0.06+/-0.02 versus sham: 0.15+/-0.02, P<0.05); (2) simultaneously stimulating RVLM AT(1)R and AT(2)R by angiotensin II evoked sympathoexcitation, hypertension, and tachycardia in both sham and CHF rats with greater responses in CHF; (3) stimulating RVLM AT1R with angiotensin II plus the specific AT(2)R antagonist PD123319 induced a larger sympathoexcitatory response than simultaneously stimulating AT(1)R and AT(2)R in sham rats, but not in CHF; (4) activating RVLM AT(2)R with CGP42112 induced a sympathoinhibition, hypotension, and bradycardia only in sham rats (renal sympathetic nerve activity: 36.4+/-5.1% of baseline versus 102+/-3.9% of baseline in artificial cerebrospinal fluid, P<0.05); (5) pretreatment with 5,8,11,14-eicosatetraynoic acid, a general inhibitor of arachidonic acid metabolism, into the RVLM attenuates the CGP42112-induced sympathoinhibition. These results suggest that AT(2)R in the RVLM exhibits an inhibitory effect on sympathetic outflow, which is, at least partially, mediated by an arachidonic acid metabolic pathway. These data implicate a downregulation in the AT(2)R as a contributory factor in the sympathoexcitation in CHF.

  13. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation

    PubMed Central

    Liu, Zhaoting; Ning, Guozhu; Xu, Ranran; Cao, Yu; Meng, Anming; Wang, Qiang

    2016-01-01

    Microtubules function in TGF-β signalling by facilitating the cytoplasmic trafficking of internalized receptors and the nucleocytoplasmic shuttling of Smads. However, nothing is known about whether actin filaments are required for these processes. Here we report that zebrafish actin-bundling protein fscn1a is highly expressed in mesendodermal precursors and its expression is directly regulated by the TGF-β superfamily member Nodal. Knockdown or knockout of fscn1a leads to a reduction of Nodal signal transduction and endoderm formation in zebrafish embryos. Fscn1 specifically interacts with TGF-β family type I receptors, and its depletion disrupts the association between receptors and actin filaments and sequesters the internalized receptors into clathrin-coated vesicles. Therefore, Fscn1 acts as a molecular linker between TGF-β family type I receptors and the actin filaments to promote the trafficking of internalized receptors from clathrin-coated vesicles to early endosomes during zebrafish endoderm formation. PMID:27545838

  14. The role of angiotensin II type 1 receptor antagonists in elderly patients with hypertension.

    PubMed

    Thomas, G Neil; Chan, Paul; Tomlinson, Brian

    2006-01-01

    Hypertension is a major risk factor for stroke and coronary events in elderly people and clinical trials have shown that treatment of hypertension with various drugs can result in a substantial reduction in cerebrovascular and cardiovascular events. The angiotensin II type 1 (AT1) receptor antagonists are the newest class of antihypertensive agents to be used widely in clinical practice. AT1 receptor antagonists can generally be given once-daily. They are also extremely well tolerated with minimal first-dose hypotension and an incidence of adverse effects similar to that seen with placebo. Adverse event rates are significantly lower than with other classes of antihypertensive drugs including ACE inhibitors. These factors result in improved compliance and increased rates of continuance on therapy. AT1 receptor antagonists show similar efficacy in lowering blood pressure to other classes of antihypertensive agents and their antihypertensive effect is potentiated when they are given concomitantly with low-dose thiazide diuretics. AT1 receptor antagonists are eliminated predominantly by the hepatic route but most are not subject to extensive metabolism and interactions with other drugs are uncommon. This is an advantage in the elderly, who are often receiving multiple medications which increases the risk for adverse drug interactions. Dose adjustments are not usually required in the elderly unless there is plasma volume depletion. Although plasma AT1 receptor antagonist concentrations are generally higher in the elderly than in younger subjects, this pharmacokinetic difference may be balanced by decreased activation of the circulating renin-angiotensin-aldosterone system in the elderly. Recent clinical studies in high-risk hypertensive patients with left ventricular hypertrophy or in patients with diabetic nephropathy or heart failure have demonstrated that AT1 receptor antagonists can improve clinical outcomes to a similar or sometimes greater extent than other

  15. Enterotoxin/guanylin receptor type guanylyl cyclases in non-mammalian vertebrates.

    PubMed

    Nakauchi, Mina; Suzuki, Norio

    2005-05-01

    Cyclic GMP is a ubiquitous intracellular second messenger produced by guanylyl cyclases (GCs). The enterotoxin/guanylin receptor type membrane GC (designated as GC-C in mammals) is activated by exogenous ligands such as heat-stable enterotoxins (STa), small peptides secreted by some pathogenic strains of Escherichia coli which cause severe secretory diarrhea and also activated by endogenous ligands such as guanylin and uroguanylin. The STa/guanylin receptor type membrane GC, as well as other type membrane GCs, is composed of an extracellular domain, a single transmembrane domain, and an intracellular region comprising a kinase-like domain and a catalytic domain. The STa/guanylin receptor type membrane GC is identified in various vertebrates including fishes, amphibians, reptiles, and birds, implying that it serves some important and undefined physiological roles in the intestine of non-mammalian vertebrates, e.g. the regulation of water and salt absorption. In mammals, only a single membrane GC (GC-C) is known to be the STa/guanylin receptor. On the contrary, two membrane GC cDNAs are cloned from the intestine of the European eel Anguilla anguilla (GC-C1 and GC-C2) and the medaka fish Oryzias latipes (OlGC6 and OlGC9). OlGC6 and OlGC9 are structurally distinct and show different ligand responsibility. Accumulated evidences indicate that the transcriptional regulatory mechanism of the human GC-C gene is different from that of the corresponding medaka fish GC gene; the human GC-C gene is regulated by Cdx2 and/or HNF-4, and the medaka fish OlGC6 gene is regulated by OlPC4, which is a medaka fish homologue of the mammalian transcriptional positive co-factor 4 (PC4). Furthermore, the transcriptional regulatory mechanism of the OlGC9 gene is different from those of both the OlGC6 and human GC-C genes, indicating that the study on these two medaka fish GCs will be useful for further understanding of the STa/guanylin receptor type membrane GC in the vertebrates.

  16. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  17. Understanding CELSRs - Cadherin EGF LAG seven-pass G-type receptors

    PubMed Central

    Wang, Xiao-Jing; Zhang, Dao-Lai; Xu, Zhi-Gang; Ma, Ming-Liang; Wang, Wen-Bo; Li, Lin-Lin; Han, Xiao-Lin; Huo, Yuqing; Yu, Xiao; Sun, Jin-Peng

    2014-01-01

    The cadherin EGF LAG seven-pass G-type receptors (CELSRs) are a special subgroup of adhesion G protein-coupled receptors (GPCRs), which are pivotal regulators of many biological processes such as neuronal/endocrine cell differentiation, vessel valve formation and the control of planar cell polarity during embryonic development. All three members of the CELSR family (CELSR1-3) have large ecto-domains that form homophilic interactions and encompass more than 2,000 amino acids. Mutations in the ecto-domain or other gene locations of CELSRs are associated with neural tube defects (NTDs) and other diseases in humans. Celsr knockout (KO) animals have many developmental defects. Therefore, specific agonists or antagonists of CELSR members may have therapeutic potential. Although significant progress has been made regarding the functions and biochemical properties of CELSRs, our knowledge of these receptors is still lacking, especially considering that they are broadly distributed but have few characterized functions in a limited number of tissues. The dynamic activation and inactivation of CELSRs and the presence of endogenous ligands beyond homophilic interactions remain elusive, as do the regulatory mechanisms and downstream signaling of these receptors. Given this motivation, future studies with more advanced cell biology or biochemical tools, such as conditional KO mice, may provide further insights into the mechanisms underlying CELSR function, laying the foundation for the design of new CELSR-targeted therapeutic reagents. PMID:25280249

  18. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    PubMed

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.

  19. A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence

    PubMed Central

    1987-01-01

    To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen- Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly- Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat- denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex. PMID:3469204

  20. Neurotensin releases norepinephrine differentially from perfused hypothalamus of sated and fasted rat

    SciTech Connect

    Lee, T.F.; Rezvani, A.H.; Hepler, J.R.; Myers, R.D.

    1987-01-01

    The central injection of neurotensin (NT) has been reported to attenuate the intake of food in the fasted animal. To determine whether endogenous norepinephrine (NE) is involved in the satiating effect of NT, the in vivo activity of NE in circumscribed sites in the hypothalamus of the unanesthetized rat was examined. Bilateral guide tubes for push-pull perfusion were implanted stereotaxically to rest permanently above one of several intended sites of perfusion, which included the paraventricular nucleus (PVN), ventromedial nucleus (VMN), and the lateral hypothalamic (LH) area. After endogenous stores of NE at a specific hypothalamic locus were radiolabeled by microinjection of 0.02-0.5 ..mu..Ci of (/sup 3/H)NE, an artificial cerebrospinal fluid was perfused at the site at a rate of 20 ..mu..l/min over successive intervals of 5.0 min. When 0.05 or 0.1 ..mu..g/..mu..l NT was added to the perfusate, the peptide served either to enhance or educe the local release of NE at 50% of the sites of perfusion. In these experiments, the circumscribed effect of NT on the characteristics of catecholamine efflux depended entirely on the state of hunger or satiety of the rat. That is, when NT was perfused in the fully satiated rat, NE release was augmented within the PVn or VMN; conversely, NE release was inhibited in the LH. in the animal fasted for 18-22 h, NT exerted an opposite effect on the activity of NE within the same anatomical loci in that the efflux of NE was enhanced in the LH but attenuated or unaffected in the PVN or VMN. Taken together, these observations provide experimental support for the view-point that NT could act as a neuromodulator of the activity of hypothalamic noradrenergic neurons that are thought to play a functional role in the regulation of food intake.

  1. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells

    PubMed Central

    Kim, Ji Tae; Liu, Chunming; Zaytseva, Yekaterina Y.; Weiss, Heidi L.; Townsend, Courtney M.; Evers, B. Mark

    2014-01-01

    Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located approximately 900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth. PMID:25098665

  2. Haemodynamic and abdominal motor reflexes elicited by neurotensin in anaesthetized guinea-pigs.

    PubMed Central

    Rioux, F.; Lemieux, M.

    1992-01-01

    1. Single intraperitoneal (i.p.) injections of neurotensin (NT) (0.14- 140 nmol kg-1) in anaesthetized guinea-pigs were found to trigger transient abdominal wall contractions (TAWC) accompanied by relatively sustained increases of systemic blood pressure (BP) and heart rate (HR). The modification of the latter NT effects by various drugs and surgical manipulations was examined to obtain some insight into the nature of, and possible relationship between, these responses. 2. The abdominal motor response (i.e. TAWC) to i.p. NT (14 nmol kg-1) was inhibited by prior i.v. injection of the guinea-pigs with pancuronium (0.27 mumol kg-1), morphine (1.5 and 15 mumol kg-1), clonidine (0.34 mumol kg-1), by concomitant i.p. injection of procaine 2% w/v, or by acute spinalization. It was potentiated by naloxone (2.8 and 28 mumol kg-1), but not affected by i.v. injection of autonomic drugs (i.e. pentolinium, prazosin, yohimbine and atropine), by capsaicin desensitization, or by acute bilateral cervical vagotomy. In spinalized animals a sustained abdominal wall contraction (SAWC) was unmasked, which was resistant to i.v. morphine, clonidine or baclofen but suppressed by i.v. pancuronium or i.p. lignocaine 2% w/v. 3. Haemodynamic responses to i.p. NT were not affected by i.v. pancuronium, morphine, naloxone, atropine, or by vagotomy. They were inhibited by i.v. pentolinium or clonidine (BP, HR), i.v. prazosin (BP), i.p. procaine 2% w/v (BP, HR), capsaicin desensitization or acute spinalization (BP, HR). Yohimbine (i.v.) potentiated BP and HR increases caused by i.p. NT.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504727

  3. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    PubMed

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  4. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias.

    PubMed

    Ehlert, Frederick J; Stein, Richard S L

    We describe a method for estimating the affinities of ligands for active and inactive states of a G protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling responses of a wild type GPCR and a constitutively active mutant of it under control conditions and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is based on the assumption that the activating mutation increases receptor isomerization into the active state without affecting the affinities of ligands for receptor states. A means of confirming this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active (Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). The latter two parameters define the output response of the receptor, and hence, their ratio (Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of additional agonists can be estimated in subsequent experiments on cells expressing the wild type receptor. We validated our method through computer simulation, an analytical proof, and analysis of previously published data. Our approach provides 1) a more meaningful analysis of structure-activity relationships, 2) a means of validating in silico docking experiments on active and inactive receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.

  5. cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity to the B-type PDGF receptor

    SciTech Connect

    Claesson-Welsh, L.; Eriksson, A.; Westermark, B.; Heldin, C.H. )

    1989-07-01

    The primary structure of the human A-type receptor for platelet-derived growth factor (PDGF) has been determined. A 6.5-kilobase (kb) transcript was identified through low-stringency hybridization with a probe derived from the B-type PDGF receptor cDNA. The sequence of a cDNA clone corresponding to the 6.5-kb transcript contains an open reading frame that predicts a 1,089-amino acid growth factor receptor-like molecule, which displays 44% overall amino acid similarity with the PDGF B-type receptor. The two receptors have a similar domain organization, with five immunoglobulin-like domains extracellularly and an intracellular split protein tyrosine kinase domain. Transfection of the new cDNA into COS cells led to the expression of a protein specifically recognized by an antiserum previously shown to react with the PDGF A-type receptor. The expressed protein was shown to display high-affinity binding of all three {sup 125}I-labeled dimeric forms of PdGF A and B chains in a manner that is characteristic for the PDGF A-type receptor.

  6. The safety and tolerability of GLP-1 receptor agonists in the treatment of type-2 diabetes.

    PubMed

    Russell-Jones, D

    2010-09-01

    Established therapies for type-2 diabetes effectively reduce blood glucose, but are often associated with adverse effects that pose risks to patient's health or diminish adherence to treatment. Weight gain, hypoglycaemia and gastrointestinal symptoms are commonly reported and some agents may not be safe for use in patients with renal impairment or elevated cardiovascular risk. New treatments based on the action of the endogenous human hormone glucagon-like peptide-1 (GLP-1), including exenatide and liraglutide, are available. These therapies provide a novel pharmacological approach to glycaemic control via multiple mechanisms of action, and accordingly exhibit different safety and tolerability profiles than conventional treatments. GLP-1 receptor agonists stimulate insulin release only in the presence of elevated blood glucose and are therefore associated with a fairly low risk of hypoglycaemia. Gastrointestinal symptoms are common but transient, and there appears to be little potential for interaction with other drugs. GLP-1 receptor agonists are associated with weight loss rather than weight gain. As protein-based therapies, these agents have the potential to induce antibody formation, but the impact on efficacy and safety is minor. GLP-1 receptor agonists thus offer a new and potentially useful option for clinicians concerned about some of the common adverse effects of type-2 diabetes therapies.

  7. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  8. Immunohistochemistry Detected and Localized Cannabinoid Receptor Type 2 in Bovine Fetal Pancreas at Late Gestation

    PubMed Central

    Dall’Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita

    2017-01-01

    At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Consequently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood. PMID:28348424

  9. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  10. Identification and developmental analysis of endothelin receptor type-A expressing cells in the mouse kidney.

    PubMed

    Kitazawa, Taro; Sato, Takahiro; Nishiyama, Koichi; Asai, Rieko; Arima, Yuichiro; Uchijima, Yasunobu; Kurihara, Yukiko; Kurihara, Hiroki

    2011-10-01

    The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.

  11. The TGFβ type II receptor plays a critical role in the endothelial cells during cardiac development.

    PubMed

    Robson, Andrew; Allinson, Kathleen R; Anderson, Robert H; Henderson, Deborah J; Arthur, Helen M

    2010-09-01

    TGFβ signalling is required for normal cardiac development. To investigate which cell types are involved, we used mice carrying a floxed Type II TGFβ receptor (Tgfbr2fl) allele and Cre-lox genetics to deplete this receptor in different regions of the heart. The three target tissues and corresponding Cre transgenic lines were atrioventricular myocardium (using cGata6-Cre), ventricular myocardium (using Mlc2v-Cre), and vascular endothelium (using tamoxifen-activated Cdh5(PAC)-CreERT2). Spatio-temporal Cre activity in each case was tracked via lacZ activation from the Rosa26R locus. Atrioventricular-myocardial-specific Tgfbr2 knockout (KO) embryos had short septal leaflets of the tricuspid valve, whereas ventricular myocardial-specific KO embryos mainly exhibited a normal cardiac phenotype. Inactivation of Tgfbr2 in endothelial cells from E11.5 resulted in deficient ventricular septation, accompanied by haemorrhage from cerebral blood vessels. We conclude that TGFβ signalling through the Tgfbr2 receptor, in endothelial cells, plays an important role in cardiac development, and is essential for cerebral vascular integrity.

  12. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy.

    PubMed

    Jourdan, Tony; Szanda, Gergő; Rosenberg, Avi Z; Tam, Joseph; Earley, Brian James; Godlewski, Grzegorz; Cinar, Resat; Liu, Ziyi; Liu, Jie; Ju, Cynthia; Pacher, Pál; Kunos, George

    2014-12-16

    Diabetic nephropathy is a major cause of end-stage kidney disease, and overactivity of the endocannabinoid/cannabinoid 1 receptor (CB1R) system contributes to diabetes and its complications. Zucker diabetic fatty (ZDF) rats develop type 2 diabetic nephropathy with albuminuria, reduced glomerular filtration, activation of the renin-angiotensin system (RAS), oxidative/nitrative stress, podocyte loss, and increased CB1R expression in glomeruli. Peripheral CB1R blockade initiated in the prediabetic stage prevented these changes or reversed them when animals with fully developed diabetic nephropathy were treated. Treatment of diabetic ZDF rats with losartan, an angiotensin II receptor-1 (Agtr1) antagonist, attenuated the development of nephropathy and down-regulated renal cortical CB1R expression, without affecting the marked hyperglycemia. In cultured human podocytes, CB1R and desmin gene expression were increased and podocin and nephrin content were decreased by either the CB1R agonist arachydonoyl-2'-chloroethylamide, angiotensin II, or high glucose, and the effects of all three were antagonized by CB1R blockade or siRNA-mediated knockdown of CNR1 (the cannabinoid type 1 receptor gene). We conclude that increased CB1R signaling in podocytes contributes to the development of diabetic nephropathy and represents a common pathway through which both hyperglycemia and increased RAS activity exert their deleterious effects, highlighting the therapeutic potential of peripheral CB1R blockade.

  13. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  14. Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Knight, Victoria; Balakrishnan, Anju; Howatt, Deborah A.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. Methodology/Principal Findings AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Conclusions Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies. PMID:23236507

  15. Modulation by different GABAB receptor types of voltage-activated calcium currents in rat thalamocortical neurones.

    PubMed Central

    Guyon, A; Leresche, N

    1995-01-01

    1. The effects of the GABAB receptor agonist baclofen on the voltage-dependent Ca2+ currents were studied in rat thalamocortical neurones with the use of whole cell voltage-clamp recordings in brain slices. 2. The contribution of N-, L- and P-types of Ca2+ channels to the total high voltage-activated Ca2+ (HVA Ca2+) current was assessed by the use of omega-conotoxin, nifedipine and omega-agatoxin IVA, respectively. No P-type current could be detected. Thus, the HVA Ca2+ current contained an N- and an L-type current (23 and 15% of the total current, respectively) and a residual current, which will be referred to as the 'R' component. 3. Baclofen (1-50 microM) had no effect on the low voltage-activated (LVA) Ca2+ current (IT). 4. At low concentrations (0.5-10 microM), baclofen decreased the HVA Ca2+ currents by about 10-20% without a marked modification on the kinetics, whereas 50 microM baclofen decreased the HVA Ca2+ currents by about 40% with a pronounced slowing down of the kinetics. 5. The 10-20% decrease of the total HVA Ca2+ currents produced by the low concentrations of baclofen occurred as the result of a 30% block of the 'R' component. The additional decrease observed with the dose of 50 microM was due to a full block of the N-type current. The L-type was unaffected by baclofen. 6. The effect of baclofen on the total HVA Ca2+ current was partially blocked by GABAB receptor antagonists indicating that it occurred through stimulation of GABAB receptors. 7. The effect of baclofen on the N-type current was abolished by CGP 35348 (100 microM) and CGP 55845A (100 nM). The effect on the 'R' component was also antagonized by CGP 55845A (100 nM) although with a lower potency, but was not blocked by CGP 35348 (100 microM). 8. We conclude that the effects of baclofen on the various components of the HVA Ca2+ currents occur through different types of GABAB receptors. One receptor has a high affinity for baclofen (i.e. saturated by concentrations as low as 0.5 micro

  16. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family.

    PubMed

    Kosaka, Hiromichi; Hirayama, Kazunori; Yoda, Nobuyuki; Sasaki, Katsutoshi; Kitayama, Tetsuya; Kusaka, Hideaki; Matsubara, Masahiro

    2010-06-10

    Aldosterone-induced activation of mineralocorticoid receptor, a member of the nuclear receptor family, results in increased tissue damage such as vascular inflammation and cardiac and perivascular fibrosis. Benidipine, a long-lasting dihydropyridine calcium channel blocker, is used for hypertension and angina. Benidipine exhibits pleiotropic pharmacological features such as renoprotective and cardioprotective effects through triple blockade of L-, N-, and T-type calcium channels. However, the mechanism of additional beneficial effects on end-organ damage is poorly understood. Here, we examined the effects of benidipine and other calcium channel blockers on aldosterone-induced mineralocorticoid receptor activation using luciferase reporter assay system. Benidipine showed more potent activity than efonidipine, amlodipine, or azelnidipine. Benidipine depressed the response to higher concentrations of aldosterone, whereas pretreatment of eplerenone, a steroidal mineralocorticoid receptor antagonist, did not. Binding studies using [(3)H] aldosterone indicated that benidipine and other calcium channel blockers competed for binding to mineralocorticoid receptor. Benidipine and other calcium channel blockers showed antagonistic activity on Ser810 to Leu mutant mineralocorticoid receptor, which is identified in patients with early-onset hypertension. On the other hand, eplerenone partially activated the mutant. Results of analysis using optical isomers of benidipine indicated that inhibitory effect of aldosterone-induced mineralocorticoid receptor activation was independent of its primary blockade of calcium channels. These results suggested that benidipine directly inhibits aldosterone-induced mineralocorticoid receptor activation, and the antagonistic activity might contribute to the drug's pleiotropic pharmacological features.

  17. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats.

    PubMed

    Gonzalez-Barrios, Juan A; Lindahl, Maria; Bannon, Michael J; Anaya-Martínez, Veronica; Flores, Gonzalo; Navarro-Quiroga, Ivan; Trudeau, Louis E; Aceves, Jorge; Martinez-Arguelles, Daniel B; Garcia-Villegas, Refugio; Jiménez, Ismael; Segovia, Jose; Martinez-Fong, Daniel

    2006-12-01

    Recently we showed that the neurotensin polyplex is a nanoparticle carrier system that targets reporter genes in nigral dopamine neurons in vivo. Herein, we report its first practical application in experimental parkinsonism, which consisted of transfecting dopamine neurons with the gene coding for human glial cell line-derived neurotrophic factor (hGDNF). Hemiparkinsonism was induced in rats by a single dose of 6-hydroxydopamine (30 microg) into the ventrolateral part of the striatum. We showed that transfection of the hGDNF gene into the substantia nigra of rats 1 week after the neurotoxin injection produced biochemical, anatomical, and functional recovery from hemiparkinsonism. RT-PCR analysis showed mRNA expression of exogenous hGDNF in the transfected substantia nigra. Western blot analysis verified transgene expression by recognizing the flag epitope added at the C-terminus of the hGDNF polypeptide, which was found mainly in dopamine neurons by double immunofluorescence techniques. These data indicate that the neurotensin polyplex holds great promise for the neuroprotective therapy of Parkinson disease.

  18. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity

    PubMed Central

    Monteiro, João T.; Lepenies, Bernd

    2017-01-01

    Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens. PMID:28327518

  19. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    PubMed Central

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  20. Mechanisms of dopamine D(1) and angiotensin type 2 receptor interaction in natriuresis.

    PubMed

    Padia, Shetal H; Kemp, Brandon A; Howell, Nancy L; Keller, Susanna R; Gildea, John J; Carey, Robert M

    2012-02-01

    Renal dopamine D(1)-like receptors (D(1)Rs) and angiotensin type 2 receptors (AT(2)Rs) are important natriuretic receptors counterbalancing angiotensin type 1 receptor-mediated tubular sodium reabsorption. Here we explore the mechanisms of D(1)R and AT(2)R interactions in natriuresis. In uninephrectomized, sodium-loaded Sprague-Dawley rats, direct renal interstitial infusion of the highly selective D(1)R agonist fenoldopam induced a natriuretic response that was abolished by the AT(2)R-specific antagonist PD-123319 or by microtubule polymerization inhibitor nocodazole but not by actin polymerization inhibitor cytochalasin D. By confocal microscopy and immunoelectron microscopy, fenoldopam translocated AT(2)Rs from intracellular sites to the apical plasma membranes of renal proximal tubule cells, and this translocation was abolished by nocodazole. Because D(1)R activation induces natriuresis via an adenylyl cyclase/cAMP signaling pathway, we explored whether this pathway is responsible for AT(2)R recruitment and AT(2)R-mediated natriuresis. Renal interstitial coinfusion of the adenylyl cyclase activator forskolin and 3-isobutly-1-methylxanthine induced natriuresis that was abolished either by PD-123319 or nocodazole but was unaffected by specific the D(1)R antagonist SCH-23390. Coadministration of forskolin and 3-isobutly-1-methylxanthine also translocated AT(2)Rs to the apical plasma membranes of renal proximal tubule cells; this translocation was abolished by nocodazole but was unaffected by SCH-23390. The results demonstrate that D(1)R-induced natriuresis requires AT(2)R recruitment to the apical plasma membranes of renal proximal tubule cells in a microtubule-dependent manner involving an adenylyl cyclase/cAMP signaling pathway. These studies provide novel insights regarding the mechanisms whereby renal D(1)Rs and AT(2)Rs act in concert to promote sodium excretion in vivo.

  1. Metabotropic glutamate receptor antagonists selectively enhance responses of slowly adapting type I mechanoreceptors.

    PubMed

    Cahusac, Peter M B; Senok, Solomon S

    2006-03-15

    There is evidence that glutamate may participate as a transmitter at the junction between Merkel cells and the nerve terminals of slowly adapting type I (St I) units. We recorded extracellularly from the deep vibrissal nerve of an isolated rat vibrissa preparation in vitro. Five second trapezoid stimulus ramp deflections of the hair shaft were used to evoke responses. We bath-applied two compounds, which we planned would interfere with glutamatergic transmission. (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) was used at concentrations up to 100 microM to block all known metabotropic glutamate (mGlu) receptors. The racemic mixture (RS)-4-carboxy-3-hydroxyphenylglycine ((RS)-4C3HPG) was used up to 100 microM to block ionotropic and Group I metabotropic glutamate receptors, and as an agonist at Group II mGlu receptors. Unexpectedly, both compounds had rapid onset excitatory effects on mechanically-evoked responses. (RS)-4C3HPG increased responses, with a mean 146% of control (P < 0.05) in a concentration-dependent manner. LY341495 increased responses, with a mean 128% of control (P < 0.05). With (RS)-4C3HPG in particular, it was noted that the static component (the firing during the last 1 s plateau) was preferentially enhanced relative to the dynamic component (firing during the first 0.5 s). Rapid recovery was seen after wash. Slowly adapting type II units, which have no junctional transmission, were completely unaffected by these compounds up to 200 microM. These results suggest that mGlu receptors play a role in Merkel cell-neurite complex mechanotransduction, although other explanations are considered.

  2. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.

    PubMed

    Sophocleous, Antonia; Marino, Silvia; Logan, John G; Mollat, Patrick; Ralston, Stuart H; Idris, Aymen I

    2015-09-04

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.

  3. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis*

    PubMed Central

    Sophocleous, Antonia; Marino, Silvia; Logan, John G.; Mollat, Patrick; Ralston, Stuart H.; Idris, Aymen I.

    2015-01-01

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing. PMID:26195631

  4. Characterization of the Ligand Binding Functionality of the Extracellular Domain of Activin Receptor Type IIB

    PubMed Central

    Sako, Dianne; Grinberg, Asya V.; Liu, June; Davies, Monique V.; Castonguay, Roselyne; Maniatis, Silas; Andreucci, Amy J.; Pobre, Eileen G.; Tomkinson, Kathleen N.; Monnell, Travis E.; Ucran, Jeffrey A.; Martinez-Hackert, Erik; Pearsall, R. Scott; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra

    2010-01-01

    The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu79 effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways. PMID:20385559

  5. Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population.

    PubMed

    Douroudis, K; Prans, E; Haller, K; Nemvalts, V; Rajasalu, T; Tillmann, V; Kisand, K; Uibo, R

    2008-11-01

    Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is considered an important regulator of T-cell activation. Polymorphisms within the PTPN22 gene have been suggested to confer susceptibility to autoimmune endocrine disorders. To evaluate the impact of a functional variation in the PTPN22 gene in type 1 (T1D) and type 2 diabetes (T2D), the PTPN22 C1858T single nucleotide polymorphism (SNP) was studied in the population of Estonian origin, including 170 T1D patients, 244 T2D patients and 230 controls. Using two methods for PTPN22 C1858T detection in parallel, we found that not only T1D but also T2D is associated with the PTPN22 1858T allele. The role of PTPN22 gene in the pathogenesis of T2D is yet unclear and needs further investigation.

  6. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: Implications for ligand binding

    SciTech Connect

    Mace, Peter D.; Cutfield, John F.; Cutfield, Sue M. . E-mail: sue.cutfield@otago.ac.nz

    2006-12-29

    BMPRII is a type II TGF-{beta} serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-{beta} type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-{beta} receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-{beta} receptors, may play a key role in ligand recognition.

  7. Interleukin 1 type 1 receptor restore: a genetic mouse model for studying interleukin 1 receptor-mediated effects in specific cell types.

    PubMed

    Liu, Xiaoyu; Yamashita, Tetsuji; Chen, Qun; Belevych, Natalya; Mckim, Daniel B; Tarr, Andrew J; Coppola, Vincenzo; Nath, Nikitaa; Nemeth, Daniel P; Syed, Zunera W; Sheridan, John F; Godbout, Jonathan P; Zuo, Jian; Quan, Ning

    2015-02-18

    Interleukin-1 (IL-1) mediates diverse neurophysiological and neuropathological effects in the CNS through type I IL-1 receptor (IL-1R1). However, identification of IL-1R1-expressing cell types and cell-type-specific functions of IL-1R1 remains challenging. In this study, we created a novel genetic mouse model in which IL-1R1 gene expression is disrupted by an intronic insertion of a loxP flanked disruptive sequence that can be deleted by Cre recombinase, resulting in restored IL-1R1 gene expression under its endogenous promoters. A second mutation was introduced at stop codon of the IL-1R1 gene to allow tracking of the restored IL-1R1 protein by a 3HA tag and IL-1R1 mRNA by tdTomato fluorescence. These animals were designated as IL-1R1(r/r) and exhibited an IL-1R1 knock-out phenotype. We used IL-1R1 globally restored mice (IL-1R1(GR/GR)) as an IL-1R1 reporter and observed concordant labeling of IL-1R1 mRNA and protein in brain endothelial cells. Two cell-type-specific IL-1R1 restore lines were generated: Tie2Cre-IL-1R1(r/r) and LysMCre-IL-1R1(r/r). Brain endothelial COX-2 expression, CNS leukocyte infiltration, and global microglia activation induced by intracerebroventricular injection of IL-1β were not observed in IL-1R1(r/r) or LysMCre-IL-1R1(r/r) mice, but were restored in Tie2Cre-IL-1R1(r/r) mice. These results reveal IL-1R1 expression in endothelial cells alone is sufficient to mediate these central IL-1-induced responses. In addition, ex vivo IL-1β stimulation increased IL-1β expression in bone marrow cells in wild-type, Tie2Cre-IL-1R1(r/r), and LysMCre-IL-1R1(r/r), but not IL-1R1(r/r) mice. These results demonstrate this IL-1R1 restore model is a valuable tool for studying cell-type-specific functions of IL-1R1.

  8. Immunohistochemical identification and localization of orexin A and orexin type 2 receptor in the horse gastrointestinal tract.

    PubMed

    Dall'aglio, Cecilia; Pascucci, Luisa; Mercati, Francesca; Giontella, Andrea; Pedini, Vera; Ceccarelli, Piero

    2009-04-01

    The aim of the present study was to investigate the presence and the distribution of cells containing orexin A and orexin type 2 receptor in the horse stomach and gut, by means of immunohistochemical techniques. Orexin A was identified in the stomach fundic and pyloric regions and in the duodenum. In the same stomach regions, a large subset of orexin A-positive cells also showed orexin type 2 receptor-like immunoreactivity. Moreover, in the duodenum, many of them, seemed to store serotonin. Characteristically, enteric neurons or ganglia also displayed orexin A and, sometimes, orexin type 2 receptor immunoreaction. Orexin A and orexin type 2 receptor immunoreactivity was also found in the nerve fibers in the enteric submucosal layer. Our results, together with data present in the literature, could contribute to the understanding of complex mechanisms regulating the horse gut functionality that are depending very likely on the consequence of the co-operation of both a central and a peripheral control.

  9. Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation.

    PubMed

    Vincent, B; Jiracek, J; Noble, F; Loog, M; Roques, B; Dive, V; Vincent, J P; Checler, F

    1997-06-01

    1. We have examined a series of novel phosphinic peptides as putative potent and selective inhibitors of endopeptidase 3.4.24.16. 2. The most selective inhibitor, Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 displayed a Ki value of 12 nM towards endopeptidase 3.4.24.16 and was 5540 fold less potent on its related peptidase endopeptidase 3.4.24.15. Furthermore, this inhibitor was 12.5 less potent on angiotensin-converting enzyme and was unable to block endopeptidase 3.4.24.11, aminopeptidases B and M, dipeptidylaminopeptidase IV and proline endopeptidase. 3. The effect of Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2, in vitro and in vivo, on neurotensin metabolism in the central nervous system was examined. 4. Pro-Phe-psi(PO2CHH2)-Leu-Pro-NH2 dose-dependently inhibited the formation of neurotensin 1-10 and concomittantly protected neurotensin from degradation by primary cultured neurones from mouse embryos. 5. Intracerebroventricular administration of Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 significantly potentiated the neurotensin-induced antinociception of mice in the hot plate test. 6. Altogether, our study has established Pro-Phe-psi(PO2CH2)-Leu-Pro-NH2 as a fully selective and highly potent inhibitor of endopeptidase 3.4.24.16 and demonstrates, for the first time, the contribution of this enzyme in the central metabolism of neurotensin.

  10. Type I insulin-like growth factor receptor signaling in hematological malignancies

    PubMed Central

    Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.

    2017-01-01

    The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006

  11. Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor

    PubMed Central

    Balaraman, Gouthaman S.; Bhattacharya, Supriyo; Vaidehi, Nagarajan

    2010-01-01

    Abstract Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (β1AR) have shown that a combination of six single point mutations resulted in a 20°C increase in thermal stability in mutant β1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in β1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-β1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R1393.50 on transmembrane helix3 and E2856.30 on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type β1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in β2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors. PMID:20643076

  12. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H

    PubMed Central

    Yao, Guorui; Lam, Kwok-ho; Perry, Kay; Weisemann, Jasmin; Rummel, Andreas; Jin, Rongsheng

    2017-01-01

    Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures. PMID:28282873

  13. Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration

    PubMed Central

    Maccarone, Rita; Rapino, Cinzia; Zerti, Darin; di Tommaso, Monia; Battista, Natalia; Di Marco, Stefano; Bisti, Silvia; Maccarrone, Mauro

    2016-01-01

    Experimental studies demonstrated that saffron (Crocus sativus) given as a dietary supplement counteracts the effects of bright continuous light (BCL) exposure in the albino rat retina, preserving both morphology and function and probably acting as a regulator of programmed cell death [1]. The purpose of this study was to ascertain whether the neuroprotective effect of saffron on rat retina exposed to BCL is associated with a modulation of the endocannabinoid system (ECS). To this aim, we used eight experimental groups of Sprague-Dawley rats, of which six were exposed to BCL for 24 hours. Following retinal function evaluation, retinas were quickly removed for biochemical and morphological analyses. Rats were either saffron-prefed or intravitreally injected with selective type-1 (CB1) or type-2 (CB2) cannabinoid receptor antagonists before BCL. Prefeeding and intravitreally injections were combined in two experimental groups before BCL. BCL exposure led to enhanced gene and protein expression of retinal CB1 and CB2 without affecting the other ECS elements. This effect of BCL on CB1 and CB2 was reversed by saffron treatment. Selective CB1 and CB2 antagonists reduced photoreceptor death, preserved morphology and visual function of retina, and mitigated the outer nuclear layer (ONL) damage due to BCL. Of interest, CB2-dependent neuroprotection was more pronounced than that conferred by CB1. These data suggest that BCL modulates only distinct ECS elements like CB1 and CB2, and that saffron and cannabinoid receptors could share the same mechanism in order to afford retinal protection. PMID:27861558

  14. Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia

    PubMed Central

    Marcellino, Daniel; Woods, Amina S.; Giuseppina, Leo; Antonelli, Tiziana; Ferraro, Luca; Tanganelli, Sergio; Agnati, Luigi F.

    2010-01-01

    Receptor–receptor interactions within receptor heterodimers and receptor mosaics formed by different types of GPCRs represent an important integrative mechanism for signaling in brain networks at the level of the plasma membrane. The malfunction of special heterodimers and receptor mosaics in the ventral striatum containing D2 receptors and 5-HT2A receptors in cortical networks may contribute to disturbances of key pathways involving ventral striato-pallidal GABA neurons and mediodorsal thalamic prefrontal glutamate neurons that may lead to the development of schizophrenia. The ventral striatum transmits emotional information to the cerebral cortex through a D2 regulated accumbal–ventral pallidal–mediodorsal–prefrontal circuit which is of special interest to schizophrenia in view of the reduced number of glutamate mediodorsal–prefrontal projections associated with this disease. This circuit is especially vulnerable to D2 receptor activity in the nucleus accumbens, since it produces a reduction in the prefrontal glutamate drive from the mediodorsal nucleus. The following D2 receptor containing heterodimers/receptor mosaics are of special interest to schizophrenia: A2A–D2, mGluR5–D2, CB1–D2, NTS1–D2 and D2–D3 and are discussed in this review. They may have a differential distribution pattern in the local circuits of the ventral striato-pallidal GABA pathway, predominantly located extrasynaptically. Specifically, trimeric receptor mosaics consisting of A2A–D2–mGluR5 and CB1–D2–A2A may also exist in these local circuits and are discussed. The integration of receptor signaling within assembled heterodimers/receptor mosaics is brought about by agonists and allosteric modulators. These cause the intramembrane receptor–receptor interactions, via allosteric mechanisms, to produce conformational changes that pass over the receptor interfaces. Exogenous and endogenous cooperativity is discussed as well as the role of the cortical mGluR2–5-HT2A

  15. Postsynaptic clustering of γ-aminobutyric acid type A receptors by the γ3 subunit in vivo

    PubMed Central

    Baer, Kristin; Essrich, Christian; Benson, Jack A.; Benke, Dietmar; Bluethmann, Horst; Fritschy, Jean-Marc; Lüscher, Bernhard

    1999-01-01

    Synaptic localization of γ-aminobutyric acid type A (GABAA) receptors is a prerequisite for synaptic inhibitory function, but the mechanism by which different receptor subtypes are localized to postsynaptic sites is poorly understood. The γ2 subunit and the postsynaptic clustering protein gephyrin are required for synaptic localization and function of major GABAA receptor subtypes. We now show that transgenic overexpression of the γ3 subunit in γ2 subunit-deficient mice restores benzodiazepine binding sites, benzodiazepine-modulated whole cell currents, and postsynaptic miniature currents, suggesting the formation of functional, postsynaptic receptors. Moreover, the γ3 subunit can substitute for γ2 in the formation of GABAA receptors that are synaptically clustered and colocalized with gephyrin in vivo. These clusters were formed even in brain regions devoid of endogenous γ3 subunit, indicating that the factors present for clustering of γ2 subunit-containing receptors are sufficient to cluster γ3 subunit-containing receptors. The GABAA receptor and gephyrin-clustering properties of the ectopic γ3 subunit were also observed for the endogenous γ3 subunit, but only in the absence of the γ2 subunit, suggesting that the γ3 subunit is at a competitive disadvantage with the γ2 subunit for clustering of postsynaptic GABAA receptors in wild-type mice. PMID:10536013

  16. Inhibitory effect of positively charged triazine antagonists of prokineticin receptors on the transient receptor vanilloid type-1 (TRPV1) channel.

    PubMed

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Byun, Joon Seok; Sohn, Joo Mi; Lee, Jae Yeol; Vázquez-Romero, Ana; Garrido, Maria; Messeguer, Angel; Zhang, Fang-Xiong; Zamponi, Gerald W; Deplano, Alessandro; Congiu, Cenzo; Onnis, Valentina; Balboni, Gianfranco; Di Marzo, Vincenzo

    2015-09-01

    Four positively charged compounds, previously shown to produce analgesic activity by interacting with prokineticin receptor or T-type calcium channels, were tested for their ability to inhibit capsaicin-induced elevation of intracellular Ca(2+) in HEK-293 cells stably transfected with the human recombinant TRPV1, with the goal of identifying novel TRPV1 open-pore inhibitors. KYS-05090 showed the highest potency as a TRPV1 antagonist, even higher than that of the open-pore triazine inhibitor 8aA. The latter showed quite remarkable agonist/desensitizer activity at the rat recombinant TRPM8 channel. The activity of KYS-05090 and the other compounds was selective because none of these compounds was able to modulate the rat TRPA1 channel. Open-pore inhibitors of TRPV1 may be a new class of multi-target analgesics with lesser side effects, such as loss of acute pain sensitivity and hyperthermia, than most TRPV1 antagonists developed so far.

  17. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors.

    PubMed

    Seifert, Roland; Wenzel-Seifert, Katharina

    2002-11-01

    The aim of this review is to provide a systematic overview on constitutively active G-protein-coupled receptors (GPCRs), a rapidly evolving area in signal transduction research. We will discuss mechanisms, pharmacological tools and methodological approaches to analyze constitutive activity. The two-state model defines constitutive activity as the ability of a GPCR to undergo agonist-independent isomerization from an inactive (R) state to an active (R*) state. While the two-state model explains basic concepts of constitutive GPCR activity and inverse agonism, there is increasing evidence for multiple active GPCR conformations with distinct biological activities. As a result of constitutive GPCR activity, basal G-protein activity increases. Until now, constitutive activity has been observed for more than 60 wild-type GPCRs from the families 1-3 and from different species including humans and commonly used laboratory animal species. Additionally, several naturally occurring and disease-causing GPCR mutants with increased constitutive activity relative to wild-type GPCRs have been identified. Alternative splicing, RNA editing, polymorphisms within a given species, species variants and coupling to specific G-proteins all modulate the constitutive activity of GPCRs, providing multiple regulatory switches to fine-tune basal cellular activities. The most important pharmacological tools to analyze constitutive activity are inverse agonists and Na(+) that stabilize the R state, and pertussis toxin that uncouples GPCRs from G(i)/G(o)-proteins. Constitutive activity is observed at low and high GPCR expression levels, in native systems and in recombinant systems, and has been reported for GPCRs coupled to G(s)-, G(i)- and G(q)-proteins. Constitutive activity of neurotransmitter GPCRs may provide a tonic support for basal neuronal activity. For the majority of GPCRs known to be constitutively active, inverse agonists have already been identified. Inverse agonists may be useful

  18. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    PubMed

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  19. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  20. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins.

    PubMed Central

    Danielsen, M; Northrop, J P; Ringold, G M

    1986-01-01

    We have isolated mouse glucocorticoid receptor (GR) cDNAs which, when expressed in transfected mammalian cells, produce a fully functional GR protein. Sequence analysis reveals an open reading frame of 2349 bp which could encode a protein of approximately 86,000 daltons. We have also isolated two receptor cDNAs from mouse S49 nuclear transfer-deficient (nt-) cells which encode mutant forms of the receptor protein. One cDNA encodes a protein that is unable to bind hormone and represents the endogenous hormone binding deficient receptor recently discovered in S49 cells. The lesion in this receptor is due to a single amino acid substitution (Glu-546 to Gly). The second cDNA from nt- cells produces a receptor protein that is able to bind hormone but has reduced nuclear binding. This cDNA, therefore, encodes for the S49 nt- receptor which has been shown to have reduced affinity for DNA. The lesion maps to a single amino acid substitution (Arg-484 to His) located in a highly Cys, Lys, Arg-rich region of the protein previously implicated in DNA binding. Our studies provide unambiguous identification of receptor domains and specific amino acids critical for the hormone and DNA binding properties of this transcriptional regulatory protein. Contained within the first 106 amino acids of the mouse GR is a stretch of nine glutamines with two prolines which are related to the family of transcribed repetitive elements, opa, found in Drosophila melanogaster. A truncated receptor lacking these 106 amino acids is functionally indistinguishable from the wild-type receptor. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:3780669

  1. Estrogen receptor alpha single nucleotide polymorphism as predictor of diabetes type 2 risk in hypogonadal men.

    PubMed

    Linnér, Carl; Svartberg, Johan; Giwercman, Aleksander; Giwercman, Yvonne Lundberg

    2013-06-01

    Estradiol (E2) is, apart from its role as a reproductive hormone, also important for cardiac function and bone maturation in both genders. It has also been shown to play a role in insulin production, energy expenditure and in inducing lipolysis. The aim of the study was to investigate if low circulating testosterone or E2 levels in combination with variants in the estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) genes were of importance for the risk of type-2 diabetes. The single nucleotide polymorphisms rs2207396 and rs1256049, in ESR1 and ESR2, respectively, were analysed by allele specific PCR in 172 elderly men from the population-based Tromsø study. The results were adjusted for age. In individuals with low total (≤11 nmol/L) or free testosterone (≤0.18 nmol/L) being carriers of the variant A-allele in ESR1 was associated with 7.3 and 15.9 times, respectively, increased odds ratio of being diagnosed with diabetes mellitus type 2 (p = 0.025 and p = 0.018, respectively). Lower concentrations of E2 did not seem to increase the risk of being diagnosed with diabetes. In conclusion, in hypogonadal men, the rs2207396 variant in ESR1 predicts the risk of type 2 diabetes.

  2. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  3. The role of myeloid receptors on murine plasmacytoid dendritic cells in induction of type I interferon

    PubMed Central

    Seeds, Rosalind E.; Mukhopadhyay, Subhankar; Jones, Ian M.; Gordon, Siamon; Miller, Joanna L.

    2011-01-01

    This study tested the hypothesis that a set of predominantly myeloid restricted receptors (F4/80, CD36, Dectin-1, CD200 receptor and mannan binding lectins) and the broadly expressed CD200 played a role in a key function of plasmacytoid DC (pDC), virally induced type I interferon (IFN) production. The Dectin-1 ligands zymosan, glucan phosphate and the anti-Dectin-1 monoclonal antibody (mAb) 2A11 had no effect on influenza virus induced IFNα/β production by murine splenic pDC. However, mannan, a broad blocking reagent against mannose specific receptors, inhibited IFNα/β production by pDC in response to inactivated influenza virus. Moreover, viral glycoproteins (influenza virus haemagglutinin and HIV-1 gp120) stimulated IFNα/β production by splenocytes in a mannan-inhibitable manner, implicating the function of a lectin in glycoprotein induced IFN production. Lastly, the effect of CD200 on IFN induction was investigated. CD200 knock-out macrophages produced more IFNα than wild-type macrophages in response to polyI:C, a MyD88-independent stimulus, consistent with CD200's known inhibitory effect on myeloid cells. In contrast, blocking CD200 with an anti-CD200 mAb resulted in reduced IFNα production by pDC-containing splenocytes in response to CpG and influenza virus (MyD88-dependent stimuli). This suggests there could be a differential effect of CD200 on MyD88 dependent and independent IFN induction pathways in pDC and macrophages. This study supports the hypothesis that a mannan-inhibitable lectin and CD200 are involved in virally induced type I IFN induction. PMID:21281752

  4. The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex.

    PubMed

    Xie, Jianhui

    2012-08-01

    Natural killer gene complex (NKC) encodes a group of proteins with a single C-type lectin-like domain, (CTLD) which can be subdivided several subfamilies according to their structures and expression patterns. The receptors containing the conserved calcium binding sites in the CTLD fold belong to group II of C-type lectin superfamily and are expressed on myeloid cells and non- myeloid cells. The receptors lacking conserved calcium binding sites in the CTLD fold have evolved to bind ligands other than carbohydrates independently on calcium and thereby are named as C-type lectin-like receptors. The C-type lectin-like receptors are previously thought to be exclusively expressed on natural killer (NK) cells and enable NK cells to discriminate self, missing self or altered self. However, some C-type lectin-like receptors are identified in myeloid cells and are intensely investigated, recently. These myeloid C-type lectin-like receptors, especially Dectin-1 cluster, have a wide variety of ligands, including those of exogenous origin, and play important roles in the physiological functions and pathological processes including immune homeostasis, immune defenses, and immune surveillance. In this review, we summarize each member of the Dectin-1 cluster, including their structural profiles, expression patterns, signaling properties as well as known physiological functions.

  5. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins.

    PubMed Central

    Erickson, A K; Baker, D R; Bosworth, B T; Casey, T A; Benfield, D A; Francis, D H

    1994-01-01

    We have previously identified two K88ac adhesion receptors (210 and 240 kDa) which are present in membrane preparations from adhesive but not nonadhesive porcine intestinal brush border cells; these adhesin receptors are postulated to be important determinants of the susceptibility of pigs to K88ac+ enterotoxigenic Escherichia coli infections (A.K. Erickson, J.A. Willgohs, S.Y. McFarland, D.A. Benfield, and D.F. Francis, Infect. Immun. 60:983-988, 1992). We now describe a procedure for the purification of these two receptors. Receptors were solubilized from adhesive intestinal brush border vesicles using deoxycholate and were purified by gel filtration chromatography on Sepharose CL-4B and then by hydroxyapatite chromatography. Amino acid compositional analyses indicated that the two receptors have similar amino acid compositions. The most distinguishing characteristic of both receptors is a high percentage of threonine and proline residues. Neuraminidase treatment caused the K88ac adhesin receptors to migrate with a slower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, indicating that these receptors are sialoglycoproteins. Results from lectin-binding studies indicated that the receptors contain O-linked oligosaccharides composed of galactosyl (beta-1,3)N-acetylgalactosamine, alpha-linked fucose, galactosyl(beta-1,4)N-acetylglucosamine, sialic acid, galactose, and N-acetylgalactosamine. Collectively, these characteristics indicate that the K88ac adhesin receptors are mucin-type sialoglycoproteins. Images PMID:7960120

  6. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    PubMed Central

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  7. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk.

    PubMed

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-09-22

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction.

  8. Interferon Type I Receptor-Deficient Mice have Altered Disease Symptoms in Response to Influenza Virus

    PubMed Central

    Traynor, Tim R.; Majde, Jeannine A.; Bohnet, Stewart G.; Krueger, James M.

    2007-01-01

    The role of type I interferons (IFNs) in mediation of acute viral symptoms (fever, somnolence, anorexia, etc.) is unknown. To determine the role of type I IFN in selected symptom development, body temperature and sleep responses to a marginally lethal dose of X-31 influenza virus were examined in mice with a targeted mutation of the IFN receptor type I (IFN-RI knockouts) and compared to wild-type 129 SvEv control mice. Mice were monitored for 48 hr to determine baseline temperature and sleep profiles prior to infection, and then for 9 days following infection. Hypothermic responses to virus were perceptible beginning at 64 hr post-infection (PI) and were more marked in KO mice until 108 hr, when hypothermia became more exaggerated in wild-type controls. Temperatures of wild-type mice continued to decline through day 9 while temperatures in IFN-RI KO mice stabilized. Time spent in non-rapid eye movement sleep (NREMS) increased in KO mice when hypothermia was marked and then returned to baseline levels, while NREMS continued to increase in wild-type mice through day 9. Other sleep parameters [time spent in rapid eye movement sleep (REMS), relative NREMS EEG slow wave activity, NREMS EEG power density] were all reduced in wild-type mice compared to KOs from days 3 to 8 while REMS low frequency EEG power density increased in wild-type relative to KOs. In conclusion, our results indicate that the presence of functional type I IFN slightly ameliorates disease symptoms early in the X-31 infection while exacerbating disease symptoms later in the infection. PMID:17098395

  9. Do cysteine residues regulate transient receptor potential canonical type 6 channel protein expression?

    PubMed

    Thilo, Florian; Liu, Ying; Krueger, Katharina; Förste, Nora; Wittstock, Antje; Scholze, Alexandra; Tepel, Martin

    2012-03-01

    The regulation of calcium influx through transient receptor potential canonical type 6 (TRPC6) channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine (HC) or acetylcysteine (ACC) affect TRPC6 expression in human monocytes. We observed that patients with chronic renal failure had significantly elevated HC levels and TRPC6 mRNA expression levels in monocytes compared with control subjects. We further observed that administration of HC or ACC significantly increased TRPC6 channel protein expression compared with control conditions. We, therefore, hypothesize that cysteine residues increase TRPC6 channel protein expression in humans.

  10. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP

    PubMed Central

    Traynor, David

    2017-01-01

    ABSTRACT ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. PMID:28011630

  11. Mutations in the Endothelin Receptor Type A Cause Mandibulofacial Dysostosis with Alopecia

    PubMed Central

    Gordon, Christopher T.; Weaver, K. Nicole; Zechi-Ceide, Roseli Maria; Madsen, Erik C.; Tavares, Andre L.P.; Oufadem, Myriam; Kurihara, Yukiko; Adameyko, Igor; Picard, Arnaud; Breton, Sylvain; Pierrot, Sébastien; Biosse-Duplan, Martin; Voisin, Norine; Masson, Cécile; Bole-Feysot, Christine; Nitschké, Patrick; Delrue, Marie-Ange; Lacombe, Didier; Guion-Almeida, Maria Leine; Moura, Priscila Padilha; Garib, Daniela Gamba; Munnich, Arnold; Ernfors, Patrik; Hufnagel, Robert B.; Hopkin, Robert J.; Kurihara, Hiroki; Saal, Howard M.; Weaver, David D.; Katsanis, Nicholas; Lyonnet, Stanislas; Golzio, Christelle; Clouthier, David E.; Amiel, Jeanne

    2015-01-01

    The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws. PMID:25772936

  12. Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes

    PubMed Central

    Heidarzadeh, Sara; Farzanegi, Parvin; Azarbayjani, Mohammad Ali; Daliri, Roja

    2013-01-01

    Background: The aim of this study was to examine the effect of purslane seeds in glucagon-like peptide-1 concentration and glucagon-like peptide-1 receptor in women with diabetes. Methods: This was a quasi-experimental study. The population was consisted of the city of Sari where diabetic women with diabetes II who had no history of using purslane seeds. All individuals used the same dose of metformin under the specialist supervision. Among these individuals, 16 were assigned at random to Purslane group and control group. The purslane group consumed 2.5 grams Purslane with lunch and along with 5 grams of purslane (Portulaca oleracea seeds 7.5 g daily) with dinner meals twice daily for 8 weeks. Blood sample was taken before and after 8 weeks, after 12 hours of fasting to 5 ml of the left brachial vein. Results: After 8 weeks using purslane seeds in the experimental group, a significant increase was seen in glucagon-like peptide-1 concentrations (p<0.007), but there was no significant difference in the concentration of glucagon-like peptide-1 receptor (p <0.455). No significant relationship was found between changes in glucagon-like peptide-1 and its receptor. Conclusion: The use of purslane seeds improved Type II diabetes; therefore it can be effective in improving the health of women with diabetes. PMID:26120386

  13. Tumor necrosis factor-alpha inhibits pre-osteoblast differentiation through its type-1 receptor.

    PubMed

    Abbas, Sabiha; Zhang, Yan-Hong; Clohisy, John C; Abu-Amer, Yousef

    2003-04-01

    Tumor necrosis factor-alpha (TNF) is a pro-inflammatory cytokine with a profound role in many skeletal diseases. The cytokine has been described as a mediator of bone loss in osteolysis and other inflammatory bone diseases. In addition to its known bone resorptive action, TNF reduces bone formation by inhibiting osteoblast differentiation. Using primary and transformed osteoblastic cells, we first document that TNF inhibits expression of alkaline phosphatase and matrix deposition, both considered markers of osteoblast differentiation. The effects are dose- and time-dependent. Core-binding factor A1 (cbfa1) is a transcription factor critical for osteoblast differentiation, and we show here that it is activated by the osteoblast differentiation agent, beta-glycerophosphate. Therefore, we investigated whether the inhibitory effects of TNF were associated with altered activity of this transcription factor. Using retardation assays, we show that TNF significantly inhibits cbfal activation by beta-glycerophosphate, manifested by reduced DNA-binding activity. Next, we turned to determine the signaling pathway by which TNF inhibits osteoblast differentiation. Utilizing animals lacking individual TNF receptors, we document that TNFr1 is required for transmitting the cytokine's inhibitory effect. In the absence of this receptor, TNF failed to impact all osteoblast differentiation markers tested. In summary, TNF blocks expression of osteoblast differentiation markers and inhibits beta-glycerophosphate-induced activation of the osteoblast differentiation factor cbfa1. Importantly, these effects are mediated via a mechanism requiring the TNF type-1 receptor.

  14. Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: preclinical and clinical studies.

    PubMed

    Smith, Maree T; Anand, Praveen; Rice, Andrew S C

    2016-02-01

    Neuropathic pain affects up to 10% of the general population, but drug treatments recommended for the treatment of neuropathic pain are associated with modest efficacy and/or produce dose-limiting side effects. Hence, neuropathic pain is an unmet medical need. In the past 2 decades, research on the pathobiology of neuropathic pain has revealed many novel pain targets for use in analgesic drug discovery programs. However, these efforts have been largely unsuccessful as molecules that showed promising pain relief in rodent models of neuropathic pain generally failed to produce analgesia in early phase clinical trials in patients with neuropathic pain. One notable exception is the angiotensin II type 2 (AT2) receptor that has clinical validity on the basis of a successful double-blind, randomized, placebo-controlled, clinical trial of EMA401, a highly selective, orally active, peripherally restricted AT2 receptor antagonist in patients with postherpetic neuralgia. In this study, we review research to date on target validation, efficacy, and mode of action of small molecule AT2 receptor antagonists in rodent models of peripheral neuropathic pain and in cultured human sensory neurons, the preclinical pharmacokinetics of these compounds, and the outcome of the above clinical trial.

  15. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  16. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types.

    PubMed

    Walisser, Jacqueline A; Glover, Edward; Pande, Kalyan; Liss, Adam L; Bradfield, Christopher A

    2005-12-06

    The aryl hydrocarbon receptor (AHR) plays a role in three areas of biology that include the adaptive metabolism of xenobiotics, the toxic responses associated with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), and vascular remodeling of the developing embryo. To test the hypothesis that receptor signaling in different cell types is responsible for these aspects of AHR biology, we generated a conditional Ahr allele where exon 2 is flanked by loxP sites. Through the use of Cre-lox technology, we then investigated the role of AHR signaling in hepatocytes or endothelial cells in mediating prototypical endpoints of adaptive, toxic, or developmental signaling. Using this model, we provide evidence that AHR signaling in endothelial/hematopoietic cells is necessary for developmental closure of the ductus venosus, whereas AHR signaling in hepatocytes is necessary to generate adaptive and toxic responses of the liver in response to dioxin exposure. Taken together, these data illustrate the importance of cell-specific receptor signaling for the generation of distinct AHR-dependent physiological outcomes.

  17. Epidrug-induced upregulation of functional somatostatin type 2 receptors in human pancreatic neuroendocrine tumor cells.

    PubMed

    Veenstra, Marije J; van Koetsveld, Peter M; Dogan, Fadime; Farrell, William E; Feelders, Richard A; Lamberts, Steven W J; de Herder, Wouter W; Vitale, Giovanni; Hofland, Leo J

    2016-05-19

    Somatostatin receptors are a pivotal target for treatment of pancreatic neuroendocrine tumors (pNET), either with somatostatin analogues (SSA) or radiolabeled SSA. The highest affinity target for the most commonly used SSA is the somatostatin receptor type 2 (sst2). An important factor that may complicate treatment efficacy, is the variable number of receptors expressed on pNETs. Gene expression is subject to complex regulation, in which epigenetics has a central role. In this study we explored the possible role of epigenetic modifications in the variations in sst2 expression levels in two human pNET cell lines, BON-1 and QGP-1. We found upregulation of sst2 mRNA after treatment with the epidrugs 5-aza-2'-deoxycytidine (5-aza-dC) and valproic acid (VPA), an increased uptake of radiolabeled octreotide, as well as increased sensitivity to the SSA octreotide in functional cAMP inhibition. At epigenetic level we observed low methylation levels of the sst2 gene promoter region irrespective of expression. Activating histone mark H3K9Ac can be regulated with epidrug treatment, with an angle of effect corresponding to the effect on mRNA expression. Repressive histone mark H3K27me3 is not regulated by either 5-aza-dC or VPA. We conclude that epidrug treatment, in particular with combined 5-aza-dC and VPA treatment, might hold promise for improving and adding to current SSA treatment strategies of patients with pNETs.

  18. Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels.

    PubMed

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2005-08-19

    After 7 years from its cloning, the transient receptor potential vanilloid type-1 (TRPV1) channel remains the sole membrane receptor mediating the pharmacological effects of the hot chilli pepper pungent component, capsaicin, and of the Euphorbia toxin, resiniferatoxin. Yet, this ion channel represents one of the most complex examples of how the activity of a protein can be regulated. Among the several chemicophysical stimuli that can modulate TRPV1 permeability to cations, endogenous lipids appear to play a major role, either as allosteric effectors or as direct agonists, or both. Furthermore, the capability of some mediators, such as the endocannabinoid anandamide, or the eicosanoid precursors 12- and 5-hydroperoxy-eicosatetraenoic acids, to activate TRPV1 receptors provides a striking example of the "site-dependent" and "metabolic" functional plasticity, respectively, typical of bioactive lipids. In this article, the multi-faceted and most recently discovered aspects of TRPV1 regulation are reviewed, with particular emphasis on the interaction between these membrane channels and some lipid molecules.

  19. [Involvement of melatonin MT2 receptor mutants in type 2 diabetes development].

    PubMed

    Karamitri, Angeliki; Vincens, Monique; Chen, Min; Jockers, Ralf

    2013-01-01

    Genetic and environmental factors participate in the development of type 2 diabetes (T2D). Genome-wide association studies have revealed new genetic variants associated with T2D, including the rs10830963 variant located in the intron of the MTNR1B gene. This gene encodes the melatonin MT2 receptor, a member of the family of G protein-coupled receptors involved in the regulation of circadian and seasonal rhythms. This surprising result stimulated new investigations in the field of T2D to better understand the role of MT2 receptors and circadian rhythms in this emerging disease. The current article intends to cover this issue starting from the discovery of the first MTNR1B gene variants until the establishment of a functional link between MTNR1B variants and the risk of developing T2D and finishes by proposing some hypotheses that might potentially explain the importance of impaired MT2 function in T2D development.

  20. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    PubMed

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  1. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury

    PubMed Central

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M.; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold

    2015-01-01

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1–LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA–LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. PMID:26180199

  2. Blocking 5-HT2 receptor restores cardiovascular disorders in type 1 experimental diabetes

    PubMed Central

    García-Pedraza, José-Ángel; Ferreira-Santos, Pedro; Aparicio, Rubén; Montero, María-José; Morán, Asunción

    2016-01-01

    This study aimed to determine whether the serotonergic modulation, through selective 5-HT2 receptor blockade, restores cardiovascular disturbances in type 1 diabetic rats. Diabetes was induced by alloxan (150 mg/kg, s.c.) and maintained for 4 weeks. 5-HT2 receptor was blocked by sarpogrelate (30 mg/kg.day; 14 days; p.o.). Systolic blood pressure (SBP), heart rate (HR), glycaemia and body weight (BW) were monitored periodically. Animals were sacrificed at the end of the study and the heart, right kidney and thoracic aorta were removed; plasma samples were also obtained. Left ventricular hypertrophy index (LVH) and renal hypertrophy index (RH) were determined. Vascular function was studied in aorta rings; additionally, superoxide anion (O2•−) production (by lucigenin-enhanced chemiluminescence) and lipid peroxidation (by thiobarbituric acid reactive substances assay) were measured. Neither alloxan nor sarpogrelate treatments altered HR, LVH or endothelium-independent relaxation. SBP, glycaemia, BW, RH, O2•− production and lipid peroxidation were significantly altered in diabetic animals compared with controls. Sarpogrelate treatment considerably decreased SBP, RH, O2•− production and lipid peroxidation. Endothelium-dependent relaxation was severely reduced in diabetic animal aortas compared to controls; sarpogrelate treatment markedly improved it. Our outcomes show that selectively blocking 5-HT2 receptors has beneficial effects on impaired cardiovascular parameters in diabetes. PMID:27659784

  3. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    SciTech Connect

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the log EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.

  4. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb.

    PubMed

    Silvestre, Jean-Sébastien; Tamarat, Radia; Senbonmatsu, Takaaki; Icchiki, Toshihiro; Ebrahimian, Teni; Iglarz, Marc; Besnard, Sandrine; Duriez, Micheline; Inagami, Tadashi; Lévy, Bernard I

    2002-05-31

    This study examined the potential role of angiotensin type 2 (AT(2)) receptor on angiogenesis in a model of surgically induced hindlimb ischemia. Ischemia was produced by femoral artery ligature in both wild-type and AT(2) gene-deleted mice (Agtr2(-)/Y). After 28 days, angiogenesis was quantitated by microangiography, capillary density measurement, and laser Doppler perfusion imaging. Protein levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Bax, and Bcl-2 were determined by Western blot analysis in hindlimbs. The AT(2) mRNA level (assessed by semiquantitative RT-PCR) was increased in the ischemic hindlimb of wild-type mice. Angiographic vessel density and laser Doppler perfusion data showed significant improvement in ischemic/nonischemic leg ratio, 1.9- and 1.7-fold, respectively, in Agtr2(-)/Y mice compared with controls. In ischemic leg of Agtr2(-)/Y mice, revascularization was associated with an increase in the antiapoptotic protein content, Bcl-2 (211% of basal), and a decrease (60% of basal) in the number of cell death, determined by TUNEL method. Angiotensin II treatment (0.3 mg/kg per day) raised angiogenic score, blood perfusion, and both VEGF and eNOS protein content in ischemic leg of wild-type control but did not modulate the enhanced angiogenic response observed in untreated Agtr2(-)/Y mice. Finally, immunohistochemistry analysis revealed that VEGF was mainly localized to myocyte, whereas eNOS-positive staining was mainly observed in the capillary of ischemic leg of both wild-type and AT(2)-deficient mice. This study demonstrates for the first time that the AT(2) receptor subtype may negatively modulate ischemia-induced angiogenesis through an activation of the apoptotic process.

  5. A type III effector antagonises death receptor signalling during bacterial gut infection

    PubMed Central

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Wong, Tania; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare VL; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O’Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-01-01

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonise the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic E. coli (EPEC and EHEC), utilise a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonisation and interfere with antimicrobial host responses 1-3. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death domain containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death receptor induced apoptosis. This inhibition depended on the N-GlcNAc transferase activity of NleB1, which specifically modified Arg117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing (A/E) pathogens antagonise death receptor induced apoptosis of infected cells, thereby blocking a major antimicrobial host response. PMID:24025841

  6. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    PubMed Central

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  7. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

    PubMed

    Dong, Maoqing; Miller, Laurence J

    2013-08-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe¹²⁰ in the first extracellular loop. This was in contrast to its covalent attachment to Glu³⁴⁵ in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.

  8. Soluble complement receptor type 1 (CD35) in bronchoalveolar lavage of inflammatory lung diseases.

    PubMed

    Hamacher, J; Sadallah, S; Schifferli, J A; Villard, J; Nicod, L P

    1998-01-01

    Complement receptor type 1 (CR1) (CD35; C3b/C4b receptor) is a transmembrane protein of many haematopoietic cells. Once cleaved, soluble complement receptor type 1 (sCR1) exerts opposite effects as a powerful inhibitor of complement. This study addressed both the question of whether sCR1 was found in bronchoalveolar lavage (BAL) of normals and patients with various inflammatory disease, and its possible origin. In this retrospective study covering specimen and clinical data of 124 patients with acute and chronic inflammatory lung pathologies, BAL supernatants were analysed by enzyme-linked immunosorbent assay technique for sCR1. Correlations were made between the sCR1 levels obtained and the constituents of BAL. Human alveolar macrophages were cultivated in order to determine their secretory capacity of sCR1. Alveolar macrophages from normal subjects were shown to release sCR1 in vitro. In addition, sCR1 was present in BAL of normal controls and was significantly increased in acute inflammatory lung diseases such as acute respiratory distress syndrome (ARDS), bacterial and Pneumocystis carinii pneumonia, as well as in chronic inflammatory diseases such as interstitial lung fibrosis and sarcoidosis. In BAL of ARDS, bacterial, and P. carinii pneumonia, there was a good correlation between sCR1 and the absolute neutrophil counts. In sarcoidosis, a correlation was found with BAL lymphocyte counts. Serum sCR1 was not increased in patients compared to controls. Soluble complement receptor type 1 (sCR1) is found in the bronchoalveolar lavage in health as well as in acute and chronic inflammatory disease. Alveolar macrophages are capable of releasing sCR1 in vitro and may be the main physiological source of sCR1 in the alveoli. The good correlation between sCR1 and the absolute neutrophil or lymphocyte numbers in bronchoalveolar lavage of inflammatory diseases suggests a predominant role of leucocytes for the release of sCR1 in such conditions. The release of this

  9. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes

    PubMed Central

    Clar, Christine; Gill, James Alexander; Court, Rachel; Waugh, Norman

    2012-01-01

    Background Despite the number of medications for type 2 diabetes, many people with the condition do not achieve good glycaemic control. Some existing glucose-lowering agents have adverse effects such as weight gain or hypoglycaemia. Type 2 diabetes tends to be a progressive disease, and most patients require treatment with combinations of glucose-lowering agents. The sodium glucose co-transporter 2 (SGLT2) receptor inhibitors are a new class of glucose-lowering agents. Objective To assess the clinical effectiveness and safety of the SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. Data sources MEDLINE, Embase, Cochrane Library (all sections); Science Citation Index; trial registries; conference abstracts; drug regulatory authorities; bibliographies of retrieved papers. Inclusion criteria Randomised controlled trials of SGLT2 receptor inhibitors compared with placebo or active comparator in type 2 diabetes in dual or combination therapy. Methods Systematic review. Quality assessment used the Cochrane risk of bias score. Results Seven trials, published in full, assessed dapagliflozin and one assessed canagliflozin. Trial quality appeared good. Dapagliflozin 10 mg reduced HbA1c by −0.54% (weighted mean differences (WMD), 95% CI −0.67 to −0.40) compared to placebo, but there was no difference compared to glipizide. Canagliflozin reduced HbA1c slightly more than sitagliptin (up to −0.21% vs sitagliptin). Both dapagliflozin and canagliflozin led to weight loss (dapagliflozin WMD −1.81 kg (95% CI −2.04 to −1.57), canagliflozin up to −2.3 kg compared to placebo). Limitations Long-term trial extensions suggested that effects were maintained over time. Data on canagliflozin are currently available from only one paper. Costs of the drugs are not known so cost-effectiveness cannot be assessed. More data on safety are needed, with the Food and Drug Administration having concerns about breast and bladder cancers. Conclusions

  10. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  11. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation

    PubMed Central

    Martineau, Corine; Kevorkova, Olha; Brissette, Louise; Moreau, Robert

    2014-01-01

    Abstract Scavenger receptor class B type I (SR‐BI), the Scarb1 gene product, is a high‐density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1‐deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1‐null and wild‐type (WT) cells. Scarb1 genic expression was down‐regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1‐null mice. Genic expression of co‐receptors for Wnt signaling, namely LDL‐related protein (Lrp) 5 and Lrp8, was increased, respectively, by two‐ and threefold, and of transcription target‐genes axis inhibition protein 2 (Axin2) and lymphoid enhancer‐binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs‐related protein 1 (Dkk1) were found to be increased 10‐ to 20‐fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1‐deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice. PMID:25281615

  12. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense.

    PubMed

    Yamada, Taisho; Horimoto, Hiromasa; Kameyama, Takeshi; Hayakawa, Sumio; Yamato, Hiroaki; Dazai, Masayoshi; Takada, Ayato; Kida, Hiroshi; Bott, Debbie; Zhou, Angela C; Hutin, David; Watts, Tania H; Asaka, Masahiro; Matthews, Jason; Takaoka, Akinori

    2016-06-01

    Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic activity of many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood. Here we demonstrate that constitutive AHR signaling negatively regulates the type I interferon (IFN-I) response during infection with various types of virus. Virus-induced IFN-β production was enhanced in AHR-deficient cells and mice and resulted in restricted viral replication. We found that AHR upregulates expression of the ADP-ribosylase TIPARP, which in turn causes downregulation of the IFN-I response. Mechanistically, TIPARP interacted with the kinase TBK1 and suppressed its activity by ADP-ribosylation. Thus, this study reveals the physiological importance of endogenous activation of AHR signaling in shaping the IFN-I-mediated innate response and, further, suggests that the AHR-TIPARP axis is a potential therapeutic target for enhancing antiviral responses.

  13. Rimonabant: a cannabinoid receptor type 1 blocker for management of multiple cardiometabolic risk factors.

    PubMed

    Gelfand, Eli V; Cannon, Christopher P

    2006-05-16

    Rimonabant is a first selective blocker of the cannabinoid receptor type 1 (CB1) being developed for the treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking. In four large trials, after one year of treatment, rimonabant 20 mg led to greater weight loss and reduction in waist circumference compared with placebo. Therapy with rimonabant is also associated with favorable changes in serum lipid levels and an improvement in glycemic control in prediabetes patients and in type 2 diabetic patients. At the same dose, rimonabant significantly increased cigarette smoking quit rates as compared with placebo. Rimonabant seems to be well tolerated, with a primary side effect of mild nausea. As an agent with a novel mechanism of action, rimonabant has a potential to be a useful adjunct to lifestyle and behavior modification in treatment of multiple cardiometabolic risk factors, including abdominal obesity and smoking.

  14. Mineralocorticoid specificity of renal type I receptors: in vivo binding studies

    SciTech Connect

    Sheppard, K.; Funder, J.W.

    1987-02-01

    The authors have injected rats with (TH)aldosterone or (TH) corticosterone, plus 100-fold excess of the highly specific glucocorticoid RU 28362, with or without excess unlabeled aldosterone or corticosterone and compared type I receptor occupancy in kidney and hippocampus. Thirty minutes after subcutaneous injection (TH)aldosterone was well retained in renal papilla-inner medulla, renal cortex-outer medulla, and hippocampus; in contrast, (TH)corticosterone was well retained only in hippocampus. Competition studies for (TH)aldosterone binding sites showed corticosterone to be a poor competitor in the kidney compared with hippocampus. Time-course studies, with rats killed 10-180 min after tracer administration, showed very low uptake/retention of (TH)corticosterone by kidney; in hippocampus (TH)corticosterone retention was similar to that of (TH)aldosterone in kidney, and retention of (TH)aldosterone by hippocampus was much more prolonged than of either tracer in any other tissue. Studies in 10-day-old rats, with very low levels of corticosteroid binding globulin (CBG), showed a high degree of aldosterone selectivity in both zones of the kidney, whereas 9TH)aldosterone and (TH)corticosterone were equivalently bound in hippocampus. They interpret these data as evidenced for a mechanism unrelated to extravascular CBG conferring mineralocorticoid specificity on renal type I receptors and propose two models derived from their findings consistent with such differential selectivity.

  15. The Endothelin Type A Receptor as a Potential Therapeutic Target in Preeclampsia

    PubMed Central

    Bakrania, Bhavisha; Duncan, Jeremy; Warrington, Junie P.; Granger, Joey P.

    2017-01-01

    Preeclampsia (PE) is a disorder of pregnancy typically characterized by new onset hypertension after gestational week 20 and proteinuria. Although PE is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disease remain unclear and treatment options are limited. However, there is increasing evidence to suggest that endothelin-1 (ET-1) plays a critical role in the pathophysiology of PE. Multiple studies report that ET-1 is increased in PE and some studies report a positive correlation between ET-1 and the severity of symptoms. A number of experimental models of PE are also associated with elevated tissue levels of prepro ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 infusion, Tumor necrosis factor (TNF) -α infusion, and Angiotensin II type 1 receptor autoantibody (AT1-AA) infusion) have proven to be susceptible to Endothelin Type A (ETA) receptor antagonism. While the results are promising, further work is needed to determine whether ET antagonists could provide an effective therapy for the management of preeclampsia. PMID:28264495

  16. Small Molecule Agonists for the Type I Interferon Receptor: An In Silico Approach.

    PubMed

    Wei, Lianhu; Bello, Angelica M; Majchrzak-Kita, Beata; Salum, Noruê; Lewis, Melissa M; Kotra, Lakshmi P; Fish, Eleanor N

    2016-03-01

    Type I interferons (IFNs) exhibit broad-spectrum antiviral activity, with potential utility against emerging acute virus infections that pose a threat to global health. Recombinant IFN-αs that have been approved for clinical use require cold storage and are administered through intramuscular or subcutaneous injection, features that are problematic for global distribution, storage, and administration. Cognizant that the biological potency of an IFN-α subtype is determined by its binding affinity to the type I IFN receptor, IFNAR, we identified a panel of small molecule nonpeptide compounds using an in silico screening strategy that incorporated specific structural features of amino acids in the receptor-binding domains of the most potent IFN-α, IFN alfacon-1. Hit compounds were selected based on ease of synthesis and formulation properties. In preliminary biological assays, we provide evidence that these compounds exhibit antiviral activity. This proof-of-concept study validates the strategy of in silico design and development for IFN mimetics.

  17. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development

    PubMed Central

    Qi, Huabing; Jin, Min; Duan, Yaqi; Du, Xiaolan; Zhang, Yuanquan; Ren, Fangli; Wang, Yinyin; Tian, Qingyun; Wang, Xiaofeng; Wang, Quan; Zhu, Ying; Xie, Yangli; Liu, Chuanju; Cao, Xu; Mishina, Yuji; Chen, Di; Deng, Chu-xia; Chang, Zhijie; Chen, Lin

    2014-01-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia. PMID:24657641

  18. Common pathways regulate Type III TGFβ receptor-dependent cell invasion in epicardial and endocardial cells.

    PubMed

    Clark, Cynthia R; Robinson, Jamille Y; Sanchez, Nora S; Townsend, Todd A; Arrieta, Julian A; Merryman, W David; Trykall, David Z; Olivey, Harold E; Hong, Charles C; Barnett, Joey V

    2016-06-01

    Epithelial-Mesenchymal Transformation (EMT) and the subsequent invasion of epicardial and endocardial cells during cardiac development is critical to the development of the coronary vessels and heart valves. The transformed cells give rise to cardiac fibroblasts and vascular smooth muscle cells or valvular interstitial cells, respectively. The Type III Transforming Growth Factor β (TGFβR3) receptor regulates EMT and cell invasion in both cell types, but the signaling mechanisms downstream of TGFβR3 are not well understood. Here we use epicardial and endocardial cells in in vitro cell invasion assays to identify common mechanisms downstream of TGFβR3 that regulate cell invasion. Inhibition of NF-κB activity blocked cell invasion in epicardial and endocardial cells. NF-κB signaling was found to be dysregulated in Tgfbr3(-/-) epicardial cells which also show impaired cell invasion in response to ligand. TGFβR3-dependent cell invasion is also dependent upon Activin Receptor-Like Kinase (ALK) 2, ALK3, and ALK5 activity. A TGFβR3 mutant that contains a threonine to alanine substitution at residue 841 (TGFβR3-T841A) induces ligand-independent cell invasion in both epicardial and endocardial cells in vitro. These findings reveal a role for NF-κB signaling in the regulation of epicardial and endocardial cell invasion and identify a mutation in TGFβR3 which stimulates ligand-independent signaling.

  19. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes.

    PubMed

    Pirie, F J; Pegoraro, R; Motala, A A; Rauff, S; Rom, L; Govender, T; Esterhuizen, T M

    2005-08-01

    Type 1 diabetes is the consequence of exposure of genetically susceptible individuals to specific environmental precipitants. The innate immune system provides the initial response to exogenous antigen and links with the adaptive immune system. The aim of this study was to assess the role of polymorphisms occurring in the cytoplasmic region of toll-like receptor (TLR) 3 gene and immediate 5' sequence, in subjects of Zulu descent with type 1 diabetes in KwaZulu-Natal, South Africa. Seventy-nine subjects with type 1 diabetes and 74 healthy normal glucose tolerant gender-matched control subjects were studied. Parts of exon 4 and exon 3/intron 3 of the TLR3 gene were studied by polymerase chain reaction, direct sequencing and restriction enzyme digestion with Bts 1. Of the nine polymorphisms studied, a significant association with type 1 diabetes was found for the major allele in the 2593 C/T polymorphism and for the minor alleles in the 2642 C/A and 2690 A/G polymorphisms, which were found to be in complete linkage disequilibrium. Correction of the P-values for the number of alleles studied, however, rendered the results no longer significant. These results suggest that polymorphisms in the TLR3 gene, which is part of the innate immune system, may be associated with type 1 diabetes in this population.

  20. Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.

    PubMed

    Castelló, M E; Aguilera, P A; Trujillo-Cenóz, O; Caputi, A A

    2000-11-01

    This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to the body of the fish were studied. The density of tuberous electroreceptors was found to be maximal on the jaw (foveal region) and very high on the dorsal region of the snout (parafoveal region), decaying caudally. Tuberous type II electroreceptors were much more abundant than type I electroreceptors. Type I electroreceptors occurred exclusively on the head and rostral trunk regions, while type II electroreceptors were found along as much as 90 % of the fish. Electrophysiological data indicated that conspecific- and self-generated electric currents are 'funnelled' by the high conductivity and geometry of the body of the fish. These currents are concentrated at the peri-oral zone, where most electroreceptors are located. Moreover, within this region, field vector directions were collimated, constituting the most efficient stimulus for electroreceptors. It can be concluded that the passive properties of the fish tissue represent a pre-receptor device that enhances exafferent and reafferent electrical signals at the fovea-parafoveal region.

  1. Neuronal merlin influences ERBB2 receptor expression on Schwann cells through neuregulin 1 type III signalling

    PubMed Central

    Schulz, Alexander; Kyselyova, Anna; Baader, Stephan L.; Jung, Marie Juliane; Zoch, Ansgar; Mautner, Victor-Felix

    2014-01-01

    Axonal surface proteins encompass a group of heterogeneous molecules, which exert a variety of different functions in the highly interdependent relationship between axons and Schwann cells. We recently revealed that the tumour suppressor protein merlin, mutated in the hereditary tumour syndrome neurofibromatosis type 2, impacts significantly on axon structure maintenance in the peripheral nervous system. We now report on a role of neuronal merlin in the regulation of the axonal surface protein neuregulin 1 important for modulating Schwann cell differentiation and myelination. Specifically, neuregulin 1 type III expression is reduced in sciatic nerve tissue of neuron-specific knockout animals as well as in biopsies from seven patients with neurofibromatosis type 2. In vitro experiments performed on both the P19 neuronal cell line and primary dorsal root ganglion cells demonstrate the influence of merlin on neuregulin 1 type III expression. Moreover, expression of ERBB2, a Schwann cell receptor for neuregulin 1 ligands is increased in nerve tissue of both neuron-specific merlin knockout animals and patients with neurofibromatosis type 2, demonstrating for the first time that axonal merlin indirectly regulates Schwann cell behaviour. Collectively, we have identified that neuronally expressed merlin can influence Schwann cell activity in a cell-extrinsic manner. PMID:24309211

  2. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    PubMed

    Sørensen, Martine C Holst; Gencay, Yilmaz Emre; Birk, Tina; Baldvinsson, Signe Berg; Jäckel, Claudia; Hammerl, Jens A; Vegge, Christina S; Neve, Horst; Brøndsted, Lone

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.

  3. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons.

    PubMed

    Agosti, F; Cordisco Gonzalez, S; Martinez Damonte, V; Tolosa, M J; Di Siervi, N; Schioth, H B; Davio, C; Perello, M; Raingo, J

    2017-03-27

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  4. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons.

    PubMed

    Agosti, Francina; López Soto, Eduardo J; Cabral, Agustina; Castrogiovanni, Daniel; Schioth, Helgi B; Perelló, Mario; Raingo, Jesica

    2014-09-01

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.

  5. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes.

    PubMed

    Young, Richard L; Chia, Bridgette; Isaacs, Nicole J; Ma, Jing; Khoo, Joan; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2013-10-01

    We previously established that the intestinal sweet taste receptors (STRs), T1R2 and T1R3, were expressed in distinct epithelial cells in the human proximal intestine and that their transcript levels varied with glycemic status in patients with type 2 diabetes. Here we determined whether STR expression was 1) acutely regulated by changes in luminal and systemic glucose levels, 2) disordered in type 2 diabetes, and 3) linked to glucose absorption. Fourteen healthy subjects and 13 patients with type 2 diabetes were studied twice, at euglycemia (5.2 ± 0.2 mmol/L) or hyperglycemia (12.3 ± 0.2 mmol/L). Endoscopic biopsy specimens were collected from the duodenum at baseline and after a 30-min intraduodenal glucose infusion of 30 g/150 mL water plus 3 g 3-O-methylglucose (3-OMG). STR transcripts were quantified by RT-PCR, and plasma was assayed for 3-OMG concentration. Intestinal STR transcript levels at baseline were unaffected by acute variations in glycemia in healthy subjects and in type 2 diabetic patients. T1R2 transcript levels increased after luminal glucose infusion in both groups during euglycemia (+5.8 × 10(4) and +5.8 × 10(4) copies, respectively) but decreased in healthy subjects during hyperglycemia (-1.4 × 10(4) copies). T1R2 levels increased significantly in type 2 diabetic patients under the same conditions (+6.9 × 10(5) copies). Plasma 3-OMG concentrations were significantly higher in type 2 diabetic patients than in healthy control subjects during acute hyperglycemia. Intestinal T1R2 expression is reciprocally regulated by luminal glucose in health according to glycemic status but is disordered in type 2 diabetes during acute hyperglycemia. This defect may enhance glucose absorption in type 2 diabetic patients and exacerbate postprandial hyperglycemia.

  6. Disordered Control of Intestinal Sweet Taste Receptor Expression and Glucose Absorption in Type 2 Diabetes

    PubMed Central

    Young, Richard L.; Chia, Bridgette; Isaacs, Nicole J.; Ma, Jing; Khoo, Joan; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K.

    2013-01-01

    We previously established that the intestinal sweet taste receptors (STRs), T1R2 and T1R3, were expressed in distinct epithelial cells in the human proximal intestine and that their transcript levels varied with glycemic status in patients with type 2 diabetes. Here we determined whether STR expression was 1) acutely regulated by changes in luminal and systemic glucose levels, 2) disordered in type 2 diabetes, and 3) linked to glucose absorption. Fourteen healthy subjects and 13 patients with type 2 diabetes were studied twice, at euglycemia (5.2 ± 0.2 mmol/L) or hyperglycemia (12.3 ± 0.2 mmol/L). Endoscopic biopsy specimens were collected from the duodenum at baseline and after a 30-min intraduodenal glucose infusion of 30 g/150 mL water plus 3 g 3-O-methylglucose (3-OMG). STR transcripts were quantified by RT-PCR, and plasma was assayed for 3-OMG concentration. Intestinal STR transcript levels at baseline were unaffected by acute variations in glycemia in healthy subjects and in type 2 diabetic patients. T1R2 transcript levels increased after luminal glucose infusion in both groups during euglycemia (+5.8 × 104 and +5.8 × 104 copies, respectively) but decreased in healthy subjects during hyperglycemia (−1.4 × 104 copies). T1R2 levels increased significantly in type 2 diabetic patients under the same conditions (+6.9 × 105 copies). Plasma 3-OMG concentrations were significantly higher in type 2 diabetic patients than in healthy control subjects during acute hyperglycemia. Intestinal T1R2 expression is reciprocally regulated by luminal glucose in health according to glycemic status but is disordered in type 2 diabetes during acute hyperglycemia. This defect may enhance glucose absorption in type 2 diabetic patients and exacerbate postprandial hyperglycemia. PMID:23761104

  7. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  8. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor.

    PubMed Central

    Yamada, Y.; Fausto, N.

    1998-01-01

    Signaling by tumor necrosis factor type 1 receptor (TNFR-1) is required for the initiation of liver regeneration after partial hepatectomy. Using knockout mice that lack either TNFR-1 or TNFR-2, we determined whether signaling through TNF receptors is important for liver injury and hepatocyte proliferation induced by carbon tetrachloride (CCl4). Lack of TNFR-1 inhibited hepatocyte DNA synthesis after CCl4 injection. At 44 hours after the injection, replication of hepatocytes in TNFR-1 was 50% to 90% lower than in wild-type (WT) animals, depending on the dose injected. In WT animals, hepatocyte replication was essentially completed by 4 days after CCl4 injection, but replication at a low level persisted in TNFR-1 mice for at least 2 weeks. TNFR-1 knockout mice had little detectable NF-kappa B and STAT3 binding during the first 5 hours after CCl4, high plasma TNF, and reduced levels of plasma interleukin (IL)-6 and liver IL-6 mRNA. Injection of IL-6 30 minutes before CCl4 administration corrected the deficiency of hepatocyte replication at 44 hours and restored STAT3 binding to normal levels. In contrast, mice lacking TNFR-2 did not differ significantly from WT mice in NF-kappa B and STAT3 binding, IL-6 and TNF levels, or hepatocyte replication. Although AP-1 binding was induced in WT TNFR-1 and TNFR-2 knockout mice, binding in TNFR-2 knockouts was lower than in WT mice. C/EBP binding was much lower in TNFR-1 and TNFR-2 knockout mice than in WT mice. As assessed by morphological analysis and alanine aminotransferase levels, the acute injury caused by CCl4 appeared to be similar in the three groups of animals, but subsequent regeneration was impaired in mice lacking TNFR-1. We conclude that a TNFR-1 signaling pathway involving NF-kappa B, IL-6, and STAT3 is an important component of the hepatocyte mitogenic response induced by CCl4 injury in mouse liver. Images Figure 2 Figure 4 Figure 6 Figure 8 Figure 9 Figure 10 Figure 12 PMID:9626061

  9. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart.

    PubMed

    Thilo, Florian; Liu, Ying; Schulz, Nico; Gergs, Ulrich; Neumann, Joachim; Loddenkemper, Christoph; Gollasch, Maik; Tepel, Martin

    2010-10-08

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-/- mice. Transcripts of TRPV1, matrix metalloproteinase 9 (MMP9), discoidin domain receptor family, member 2 (DDR-2), atrial natriuretic peptide (ANP), GATA 4, and regulatory microRNA (miR-21) were analyzed using quantitative real-time PCR. Ventricle-to-body-weight-ratio was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p<0.05 by Kruskal-Wallis test). TRPV1 transcripts were significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice (1.7±0.2 arbitrary units vs. 0.8±0.1 arbitrary units; p<0.05). TRPV1 protein expression was also significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice. A significant linear correlation was observed between TRPV1 transcripts and the ventricle-to-body-weight-ratio (Spearman r=0.78; p<0.05). The expression of DDR-2 was significantly higher in PP2Ac alpha transgenic mice compared to wild-type mice and TRPV1 knockout mice. The expression of miR21 was significantly higher in PP2Ac alpha transgenic mice compared with TRPV1-/- mice (0.103±0.018 (PP2Ac alpha transgenic mice); 0.089±0.009 (wild-type mice); and 0.045±0.013 (TRPV1-/- mice), respectively; p<0.05). Masson Goldner staining revealed that PP2Ac alpha transgenic mice showed increased heart fibrosis compared with TRPV1 knockout mice. The study suggests an important role of TRPV1 in the pathogenesis of genetically associated heart hypertrophy.

  10. Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior

    PubMed Central

    Kasanetz, Fernando; Lynch, Diane L.; Friemel, Chris M.; Lassalle, Olivier; Hurst, Dow P.; Steindel, Frauke; Monory, Krisztina; Schäfer, Carola; Miederer, Isabelle; Leweke, F. Markus; Schreckenberger, Mathias; Lutz, Beat; Reggio, Patricia H.; Manzoni, Olivier J.; Spanagel, Rainer

    2015-01-01

    Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1F238L) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1F238L mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent

  11. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells.

    PubMed

    Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2013-01-01

    G-protein-coupled receptors (GPCRs) are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N) ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively) were chosen as human GPCR(s). The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s).

  12. Cannabinoid type 1 receptors located on single-minded 1-expressing neurons control emotional behaviors.

    PubMed

    Dubreucq, S; Kambire, S; Conforzi, M; Metna-Laurent, M; Cannich, A; Soria-Gomez, E; Richard, E; Marsicano, G; Chaouloff, F

    2012-03-01

    This study has investigated the role of hypothalamic and amygdalar type-1 cannabinoid (CB1) receptors in the emotional and neuroendocrine responses to stress. To do so, we used the Cre/loxP system to generate conditional mutant mice lacking the CB1 gene in neurons expressing the transcription factor single-minded 1 (Sim1). This choice was dictated by former evidence for Sim1-Cre transgenic mice bearing Cre activity in all areas expressing Sim1, which chiefly includes the hypothalamus (especially the paraventricular nucleus, the supraoptic nucleus, and the posterior hypothalamus) and the mediobasal amygdala. Genomic DNA analyses in Sim1-CB1(-/-) mice indicated that the CB1 allele was excised from the hypothalamus and the amygdala, but not from the cortex, the striatum, the thalamus, the nucleus accumbens, the brainstem, the hippocampus, the pituitary gland, and the spinal cord. Double-fluorescent in situ hybridization experiments further indicated that Sim1-CB1(-/-) mice displayed a weaker CB1 receptor mRNA expression in the paraventricular nucleus of the hypothalamus and the mediobasal part of the amygdala, compared to wild-type animals. Individually housed Sim1-CB1(-/-) mice and their Sim1-CB1(+/+) littermates were exposed to anxiety and fear memory tests under basal conditions as well as after acute/repeated social stress. A principal component analysis of the behaviors of Sim1-CB1(-/-) and Sim1-CB1(+/+) mice in anxiety tests (open field, elevated plus-maze, and light/dark box) revealed that CB1 receptors from Sim1-expressing neurons exert tonic, albeit opposite, controls of locomotor and anxiety reactivity to novel environments. No difference between genotypes was observed during the recall of contextual fear conditioning or during active avoidance learning. Sim1-CB1(-/-), but not Sim1-CB1(+/+), mice proved sensitive to an acute social stress as this procedure reverted the increased ambulation in the center of the open field. The stimulatory influence of

  13. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging.

    PubMed

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based (11)C-labeled PET ligands designated [(11)C]AAT-015 and [(11)C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [(11)C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [(11)C]AAT-015 and [(11)C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [(11)C]AAT-015 was administered to healthy rats via tail

  14. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    PubMed Central

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail-vein injection

  15. Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2

    PubMed Central

    Brann, Jessica H.; Dennis, John C.; Morrison, Edward E.; Fadool, Debra A.

    2011-01-01

    The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in vertebrate olfactory sensory neurons. We used immunohistochemical (IHC) and SDS–PAGE/western analysis to localize three IP3 receptors (IP3R) in the rat VNO epithelium. Type-I IP3R expression was weak or absent. Antisera for type-II and -III IP3R recognized appropriate molecular weight proteins by SDS–PAGE, and labeled protein could be abolished by pre-adsorption of the respective antibody with antigenic peptide. In tissue sections, type-II IP3R immunoreactivity was present in the supporting cell zone but not in the sensory cell zone. Type-III IP3R immunoreactivity was present throughout the sensory zone and overlapped that of transient receptor potential channel 2 (TRPC2) in the microvillar layer of sensory epithelium. Co-immunoprecipitation of type-III IP3R and TRPC2 from VNO lysates confirmed the overlapping immunoreactivity patterns. The protein–protein interaction complex between type-III IP3R and TRPC2 could initiate calcium signaling leading to electrical signal production in VNO neurons. PMID:12472899

  16. Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans.

    PubMed

    Pivovarova, Olga; Hornemann, Silke; Weimer, Sandra; Lu, Ye; Murahovschi, Veronica; Zhuk, Sergei; Seltmann, Anne-Cathrin; Malashicheva, Anna; Kostareva, Anna; Kruse, Michael; Busjahn, Andreas; Rudovich, Natalia; Pfeiffer, Andreas F H

    2015-03-01

    Obesity, type 2 diabetes and associated metabolic diseases are characterized by low-grade systemic inflammation which involves interplay of nutrition and monocyte/macrophage functions. We suggested that some factors such as nutrient components, neuropeptides involved in the control of gastrointestinal functions, and gastrointestinal hormones might influence immune cell functions and in this way contribute to the disease pathogenesis. The aim of this study was to investigate the mRNA expression of twelve nutrition-associated receptors in peripheral blood mononuclear cells (PBMC), isolated monocytes and monocyte-derived macrophages and their regulation under the switching from the high-carbohydrate low-fat diet to the low-carbohydrate high-fat (LC/HFD) isocaloric diet in healthy humans. The mRNA expression of receptors for short chain fatty acids (GPR41, GPR43), bile acids (TGR5), incretins (GIPR, GLP1R), cholecystokinin (CCKAR), neuropeptides VIP and PACAP (VIPR1, VIPR2), and neurotensin (NTSR1) was detected in PBMC and monocytes, while GPR41, GPR43, GIPR, TGR5, and VIPR1 were found in macrophages. Correlations of the receptor expression in monocytes with a range of metabolic and inflammatory markers were found. In non-obese subjects, the dietary switch to LC/HFD induced the increase of GPR43 and VIPR1 expression in monocytes. No significant differences of receptor expression between normal weight and moderately obese subjects were found. Our study characterized for the first time the expression pattern of nutrition-associated receptors in human blood monocytes and its dietary-induced changes linking metabolic responses to nutrition with immune functions in health and metabolic diseases.

  17. The location of muscarinic type 2 receptors within the synaptic circuitry of the cat lateral posterior nucleus.

    PubMed

    Carden, W B; Bickford, M E

    1999-12-10

    The ultrastructural distribution of the muscarinic type 2 acetylcholine receptor (M2) was examined in the lateral division of the lateral posterior (LP) nucleus of the cat thalamus, using immunocytochemistry. Postembedding immunocytochemical staining for gamma-aminobutyric acid (GABA) further characterized M2 stained profiles. M2 receptors were predominately found on small caliber (presumably distal) dendritic arbors of thalamocortical cells and interneurons in the lateral LP nucleus. While glomeruli were not abundant in the lateral LP nucleus, occasionally they contained dendritic terminals of interneurons (F2 profiles) stained for M2 receptors. Some GABAergic terminals throughout the neuropil also stained for M2 receptors. The location of M2 receptors correlates well with the cholinergic innervation of the lateral LP nucleus and suggests that muscarinic modulation of visual signals differs in the lateral LP nucleus as compared with the lateral geniculate and pulvinar nuclei.

  18. Phenotype of the fibroblast growth factor receptor 2 Ser351Cys mutation: Pfeiffer syndrome type III.

    PubMed

    Gripp, K W; Stolle, C A; McDonald-McGinn, D M; Markowitz, R I; Bartlett, S P; Katowitz, J A; Muenke, M; Zackai, E H

    1998-07-24

    We present a patient with pansynostosis, hydrocephalus, seizures, extreme proptosis with luxation of the eyes out of the lids, apnea and airway obstruction, intestinal non-rotation, and severe developmental delay. His skeletal abnormalities include bilateral elbow ankylosis, radial head dislocation, and unilateral broad and deviated first toe. The phenotype of this patient is consistent with that previously reported in Pfeiffer syndrome type III, but is unusual for the lack of broad thumbs. Our patient most closely resembles the case described by Kerr et al. [1996: Am J Med Genet 66:138-143] as Pfeiffer syndrome type III with normal thumbs. Mutations in the genes for fibroblast growth factor receptors (FGFR) 1 and 2 have previously been seen in patients with Pfeiffer syndrome type I. The mutation identified in our patient, Ser351Cys in FGFR2, represents the first reported cause of Pfeiffer syndrome type III. An identical mutation was described once previously by Pulleyn et al., in a patient whose brief clinical description included cloverleaf skull, significant developmental delay, and normal hands and feet [Eur. J. Hum. Genet. 4: 283-291, 1996]. In our patient, previously performed single-strand conformation polymorphism analysis failed to detect a band shift; the mutation was identified only after independent sequence analysis.

  19. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity.

    PubMed

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun; Luo, Zhi Dan; Cao, Ting Bing; Zhong, Jian; Yan, Zhen Cheng; Wang, Li Juan; Zhao, Zhi Gang; Zhu, Shan Jun; Schrader, Mark; Thilo, Florian; Zhu, Zhi Ming; Tepel, Martin

    2007-04-13

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.

  20. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

    PubMed

    Yesilyurt, Ozgur; Seyrek, Melik; Tasdemir, Serdar; Kahraman, Serdar; Deveci, Mehmet Salih; Karakus, Emre; Halici, Zekai; Dogrul, Ahmet

    2015-09-05

    The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system. We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia. Stress-induced analgesia was induced with warm (32°C) or cold (20°C) water swim stress in male Balb-C mice. The effects of intrathecal injection of a selective 5-HT7 receptor antagonist, SB 269970, of the denervation of serotonergic neurons by intrathecal administration of 5,7-dihydroxytryptamine (5,7-DHT) and of lesions of the dorsolateral funiculus on opioid and non-opioid type stress-induced analgesia were evaluated with the tail-flick and hot plate tests. The expression of 5-HT7 receptors mRNA in the dorsal lumbar region of spinal cord were analyzed by RT-PCR following spinal serotonin depletion or dorsolateral funiculus lesion. The effects of the selective 5-HT7 receptor agonists LP 44 and AS 19 were tested on nociception. Intrathecal SB 269970 blocked both opioid and non-opioid type stress-induced analgesia. Dorsolateral funiculus lesion or denervation of the spinal serotonergic neurons resulted in a marked decrease in 5-HT7 receptor expression in the dorsal lumbar spinal cord, accompanied by inhibition of opioid and non-opioid type stress-induced analgesia. However, the systemic or intrathecal LP 44 and AS 19 alone did not produce analgesia in unstressed mice. These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.

  1. Epigenetic alteration of the purinergic type 7 receptor in salivary epithelial cells

    PubMed Central

    Shin, Yong-Hwan; Kim, Minkyoung; Kim, Nahyun; Choi, Seul-Ki; Namkoong, Eun; Choi, Se-Young; Lee, Jong-Ho; Cha, Seunghee; Park, Kyungpyo

    2016-01-01

    Purinergic receptors, particularly type 7 (P2RX7), are involved in apoptotic cell death. However, the expression and function of P2RX7 are suppressed in HSG cells. In the present study, we explored whether P2RX7 function is regulated by epigenetic alteration of the receptors in two different cell lines, HSG cells derived from human submandibular ducts, and A253 cells, originated from human submandibular carcinoma. We discovered that HSG cells expressed all subtypes of purinergic receptors, excluding P2RX7, at the mRNA level. However, treatment of the cells with 5-Aza-CdR, a DNA demethylating agent, increased the mRNA expression levels of P2RX7 in a time-dependent manner. Furthermore, 5-Aza-CdR completely rescued the calcium response induced by P2RX7 agonist BzATP, a response that was absent in untreated HSG cells. In contrast, A253 cells showed a moderate methylation pattern in the P2RX7 CpG island. Most CG pairs from the first to the 21st were methylated in untreated HSG cells, but 5-Aza-CdR-treatment partially demethylated the methylated CG pairs. We obtained similar results when investigated human tissues; the CG pairs in the P2RX7 CpG islands showed hypermethylation and hypomethylation patterns in human normal and cancer tissues, respectively. Our results suggest that the expression level and function of P2RX7 are regulated by DNA methylation in epithelial cells. PMID:26399685

  2. Changes in Synaptic Plasticity and Glutamate Receptors in Type 2 Diabetic KK-Ay Mice.

    PubMed

    Yin, Huajing; Wang, Weiping; Yu, Wenwen; Li, Jiang; Feng, Nan; Wang, Ling; Wang, Xiaoliang

    2017-03-18

    In the present study, the progressive alteration of cognition and the mechanisms of reduction in long-term potentiation (LTP) in spontaneous obese KK-Ay type 2 diabetic mice were investigated. In the study, 3-, 5-, and 7-month-old KK-Ay mice were used. The results indicated that KK-Ay mice showed cognitive deficits in the Morris water maze test beginning at the age of 3 months. LTP was significantly impaired in KK-Ay mice during whole study period (3 to 7 months). The above deficits were reversible at an early stage (3 to 5 months old) by diet intervention. Moreover, we found the underlying mechanisms of LTP impairment in KK-Ay mice might be attributed to abnormal phosphorylation or expression of postsynaptic glutamate receptor subunits instead of alteration of basal synaptic transmission. The expression levels of NR1, NR2A, and NR2B subunits of N-methyl-d-aspartate receptors were unchanged while the Tyr-dependent phosphorylation of both NR2A and NR2B subunits were significantly reduced in KK-Ay mice. The level of p-Src expression mediating this process was decreased, and the level of αCaMKII autophosphorylation was also reduced. Meanwhile, the GluR1 of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) was decreased, and GluR2 was significantly increased. These data suggest that deficits in synaptic plasticity in KK-Ay mice may arise from the abnormal phosphorylation of the NR2 subunits and the alteration of subunit composition of AMPARs. Diet intervention at an early stage of diabetes might alleviate the cognitive deficits and LTP reduction in KK-Ay mice.

  3. Lung macrophage uptake of unopsonized environmental particulates: Role of scavenger-type receptors

    SciTech Connect

    Kobzik, L.

    1995-07-01

    The receptors responsible for avid alveolar macrophage (AM) phagocytosis of unopsonized environmental particulates have not been well defined. This study used flow cytometry to quantitate the effects of a panel of soluble ligands for macrophage adhesion receptors on AM binding of unopsonized environmental dusts (titanium dioxide, TiO{sub 2}; iron oxide, Fe{sub 2}O{sub 3}; {alpha}-quartz, SiO{sub 2}; diesel engine exhaust dust) or fluorescent latex beads. Polyanionic ligands of the macrophage scavenger receptor (SR) for acetylated-LDL caused marked inhibition of AM binding of the oxide particles and latex beads (e.g., TiO{sub 2} binding; polyinosinic acid (polyl), 10 {mu}g/ml: 70.2 {+-} 1.5% inhibition, mean {+-} SE, n = 11). In contrast, no inhibition was seen with the polyanions heparin and chondroitin sulfate (chond-S), or dextran, consistent with the known inhibitor profile of macrophage SRs for acetylated-LDL. AM uptake of latex or SiO{sub 2} beads instilled into lungs of hamsters was inhibited by administration of polyl but not chondroitin sulfate (AM beads per cell: control, 6.1 {+-} 0.7; polyl, 3.5 {+-} 0.2; chond-S, 5.1 {+-} 0.7, n {ge} 4, p < 0.05 for control vs polyl) indicating macrophage SRs operate in vivo as well as in vitro. In contrast, AM binding of the carbonaceous diesel dust particles was not inhibited by any ligand tested. AM uptake of unopsonized TiO{sub 2}, SR ligands or acetylated LDL caused no significant activation of AM respiratory burst or TNF production, consistent with past observations that opsonin-independent phagocytosis of inert particles by normal AMs is not accompanied by pro-inflammatory activation. These data implicate macrophage-type SRs in AM binding of charged environmental particles and indicate that distinct mechanisms mediate binding of carbonaceous dusts. 54 refs., 7 figs., 4 tabs.

  4. Effect of disodium cromoglycate (DSCG) and antihistamines on postirradiation cerebral blood flow and plasma levels of histamine and neurotensin

    SciTech Connect

    Cockerham, L.G.; Pautler, E.L.; Carraway, R.E.; Cochrane, D.E.; Hampton, J.D.

    1988-02-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and visual cortical blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100 Gy, whole-body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Systemic arterial plasma histamine and neurotensin levels were determined preirradiation and postirradiation. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 23% of the preirradiation level within 10 min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10 min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The cortical blood flow for the same animals showed a steady decrease to 29% of the preirradiation levels by 60 min postirradiation. Animals given the mast cell stabilizer disodium cromoglycate and the antihistamines mepyramine and cimetidine before irradiation did not exhibit an abrupt decline in blood pressure but displayed a gradual decrease to a level 33% below preirradiation levels by 60 min postirradiation. Also, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. The plasma neurotensin levels in the irradiated animals, treated and untreated, indicated a nonsignificant postirradiation increase above control levels. However, the postirradiation plasma histamine levels in both irradiated groups showed an increase of approximately 1600% above the preirradiation levels and the postirradiation control levels.

  5. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    SciTech Connect

    Wang, Xianwei Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast

  6. Aberrant Methylation Inactivates Somatostatin and Somatostatin Receptor Type 1 in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Misawa, Kiyoshi; Misawa, Yuki; Kondo, Haruki; Mochizuki, Daiki; Imai, Atsushi; Fukushima, Hirofumi; Uehara, Takayuki; Kanazawa, Takeharu; Mineta, Hiroyuki

    2015-01-01

    Purpose The aim of this study was to define somatostatin (SST) and somatostatin receptor type 1 (SSTR1) methylation profiles for head and neck squamous cell carcinoma (HNSCC) tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker. Methods Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP) in HNSCC. Results Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043), stage (P = 0.008), galanin receptor type 2 (GALR2) methylation (P = 0.041), and tachykinin-1 (TAC1) (P = 0.040). SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037), stage (P = 0.037), SST methylation (P < 0.001), and expression of galanin (P = 0.03), GALR2 (P = 0.014), TAC1 (P = 0.023), and tachykinin receptor type 1 (TACR1) (P = 0.003). SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001). Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028). In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002). Conclusions CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker. PMID:25734919

  7. Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region.

    PubMed Central

    Wieser, R; Attisano, L; Wrana, J L; Massagué, J

    1993-01-01

    The transforming growth factor beta (TGF-beta) type II receptor (T beta R-II) is a transmembrane serine/threonine kinase that contains two inserts in the kinase region and a serine/threonine-rich C-terminal extension. T beta R-II is required for TGF-beta binding to the type I receptor, with which it forms a heteromeric receptor complex, and its kinase activity is required for signaling by this complex. We investigated the role of various cytoplasmic regions in T beta R-II by altering or deleting these regions and determining the signaling activity of the resulting products in cell lines made resistant to TGF-beta by inactivation of the endogenous T beta R-II. TGF-beta binding to receptor I and responsiveness to TGF-beta in these cells can be restored by transfection of wild-type T beta R-II. Using this system, we show that the kinase insert 1 and the C-terminal tail of T beta R-II, in contrast to the corresponding regions in most tyrosine kinase receptors, are not essential to specify ligand-induced responses. Insert 2 is necessary to support the catalytic activity of the receptor kinase, and its deletion yields a receptor that is unable to mediate any of the responses tested. However, substitution of this insert with insert 2 from the activin receptor, ActR-IIB, does not diminish the ability of T beta R-II to elicit these responses. A truncated T beta R-II lacking the cytoplasmic domain still binds TGF-beta, supports ligand binding to receptor I, and forms a complex with this receptor. However, TGF-beta binding to receptor I facilitated by this truncated T beta R-II fails to inhibit cell proliferation, activate extracellular matrix protein production, or activate transcription from a promoter containing TGF-beta-responsive elements. We conclude that the transcriptional and antiproliferative responses to TGF-beta require both components of a heteromeric receptor complex that differs from tyrosine kinase receptors in its mode of signaling. Images PMID:8246946

  8. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes.

    PubMed

    He, Kangmin; Yan, Xiaohua; Li, Nan; Dang, Song; Xu, Li; Zhao, Bing; Li, Zijian; Lv, Zhizhen; Fang, Xiaohong; Zhang, Youyi; Chen, Ye-Guang

    2015-06-01

    Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.

  9. Peptide ligand recognition by G protein-coupled receptors

    PubMed Central

    Krumm, Brian E.

    2015-01-01

    The past few years have seen spectacular progress in the structure determination of G protein-coupled receptors (GPCRs). We now have structural representatives from classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong to the α group, whereas fewer GPCR structures are available from the β, γ, and δ groups, which include peptide GPCRs such as the receptors for neurotensin (β group), opioids, chemokines (γ group), and protease-activated receptors (δ group). Structural information on peptide GPCRs is restricted to complexes with non-peptidic drug-like antagonists with the exception of the chemokine receptor CXCR4 that has been crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin receptor 1 is to date the only peptide GPCR whose structure has been solved in the presence of a peptide agonist. Although limited in number, the current peptide GPCR structures reveal great diversity in shape and electrostatic properties of the ligand binding pockets, features that play key roles in the discrimination of ligands. Here, we review these aspects of peptide GPCRs in view of possible models for peptide agonist binding. PMID:25852552

  10. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  11. Type-1, but Not Type-5, Metabotropic Glutamate Receptors are Coupled to Polyphosphoinositide Hydrolysis in the Retina.

    PubMed

    Romano, Maria Rosaria; Di Menna, Luisa; Scarselli, Pamela; Mascio, Giada; Madonna, Michele; Notartomaso, Serena; Puliti, Aldamaria; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando

    2016-04-01

    mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.

  12. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity

    PubMed Central

    Akpan, Imo; Goncalves, Marcus D.; Dhir, Ravindra; Yin, Xiaoyan; Pistilli, Emidio; Bogdanovich, Sasha; Khurana, Tejvir; Ucran, Jeffrey; Lachey, Jennifer; Ahima, Rexford S.

    2009-01-01

    Myostatin, also known as Growth and Differentiation Factor 8, is a secreted protein that inhibits muscle growth. Disruption of myostatin signaling increases muscle mass and decreases glucose, but it is unclear whether these changes are related. We treated mice on chow and high-fat diets with a soluble activin receptor type IIB (ActRIIB.Fc) which is a putative endogenous signaling receptor for myostatin and other ligands of the TGF-β superfamily. After 4 weeks, RAP-031 increased lean and muscle mass, grip strength, and contractile force. RAP-031 enhanced the ability of insulin to suppress glucose production under clamp conditions in high-fat fed mice, but did not significantly change insulin-mediated glucose disposal. The hepatic insulin sensitizing effect of RAP-031 treatment was associated with increased adiponectin levels. RAP-031 treatment for 10 weeks further increased muscle mass and drastically reduced fat content in mice on either chow or high-fat diet. RAP-031 suppressed hepatic glucose production and increased peripheral glucose uptake in chow fed mice. In contrast, RAP-031 suppressed glucose production with no apparent change in glucose disposal in high-fat diet mice. Our findings demonstrate that disruption of ActRIIB signaling is a viable pharmacological approach for treating obesity and diabetes. PMID:19668253

  13. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function

    PubMed Central

    Vasquez, Marcos; Fioravanti, Jessica; Aranda, Fernando; Paredes, Vladimir; Gomar, Celia; Ardaiz, Nuria; Fernandez-Ruiz, Veronica; Méndez, Miriam; Nistal-Villan, Estanislao; Larrea, Esther; Gao, Qinshan; Gonzalez-Aseguinolaza, Gloria; Prieto, Jesus; Berraondo, Pedro

    2016-01-01

    ABSTRACT Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses. PMID:27622065

  14. Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity

    PubMed Central

    Verkaart, Sjoerd A. J.; Lameris, Anke L.; Basmadjian, Christine; Zhao, Qian; Désaubry, Laurent; Bindels, René J. M.; Hoenderop, Joost G. J.

    2015-01-01

    Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway. PMID:25774985

  15. Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity.

    PubMed

    Blanchard, Maxime G; de Baaij, Jeroen H F; Verkaart, Sjoerd A J; Lameris, Anke L; Basmadjian, Christine; Zhao, Qian; Désaubry, Laurent; Bindels, René J M; Hoenderop, Joost G J

    2015-01-01

    Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway.

  16. Construction, purification, and immunogenicity of recombinant cystein-cystein type chemokine receptor 5 vaccine.

    PubMed

    Wu, Kongtian; Xue, Xiaochang; Wang, Zenglu; Yan, Zhen; Shi, Jihong; Han, Wei; Zhang, Yingqi

    2006-09-01

    Cystein-Cystein type chemokine receptor 5 (CCR5) is a seven-transmembrane, G-protein coupled receptor. It is a major coreceptor with CD4 glycoprotein mediating cellular entry of CCR5 strains of HIV-1. A lack of cell-surface expression of CCR5 found in the homozygous Delta32 CCR5 mutation, upregulation of CC chemokines and antibodies to CCR5 are associated with resistance to HIV infection. In addition, CCR5 can be blocked by three CC chemokines and antibodies to three extracellular domains of CCR5. Consequently, CCR5 is considered an attractive therapeutic target against HIV infection. In the current study, we constructed a recombinant vaccine by coupling a T helper epitope AKFVAAWTLKAA (PADRE) to the N terminus of CCR5 extracellular domains (PADRE-CCR5) and expressed this protein in Escherichia coli. We have developed an inexpensive and scalable purification process for the fusion protein from inclusion bodies and the final yields of 6mg purified fusion protein per gram of cell paste was obtained. The immunogenicity of the recombinant vaccine generated was examined in BALB/c mice. Sera from the vaccinated mice demonstrated high-titer specific antibodies to the recombinant vaccine, suggesting that PADRE-rCCR5 may be used as a candidate of active CCR5 vaccine.

  17. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element.

    PubMed

    Stanley, Frederick M; Linder, Kathryn M; Cardozo, Timothy J

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter.

  18. The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product.

    PubMed Central

    Refaeli, Y; Levy, D N; Weiner, D B

    1995-01-01

    The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 15-kDa virion-associated protein that functions as a regulator of cellular processes linked to the HIV life cycle. We report the interaction of a 41-kDa cytosolic viral protein R interacting protein 1 (Rip-1) with Vpr in vitro. Rip-1 displays a wide tissue distribution, including relevant targets of HIV infection. Vpr protein induced nuclear translocation of Rip-1, as did glucocorticoid receptor (GR)-II-stimulating steroids. Importantly, Vpr and Rip-1 coimmunoprecipitated with the human GR as part of an activated receptor complex. Vpr complementation of a vpr mutant virus was also mimicked by GR-II-stimulating steroids. Vpr and GR-II actions were inhibited by mifepristone, a GR-II pathway inhibitor. Together these data directly link the activity of the vpr gene product to the glucocorticoid steroid pathway and provide a biochemical mechanism for the cellular and viral activity of Vpr, as well as suggest that a unique class of antivirals, which includes mifepristone (RU486), may influence HIV-1 replication. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724608

  19. Goat activin receptor type IIB knockdown by muscle specific promoter driven artificial microRNAs.

    PubMed

    Patel, Amrutlal K; Shah, Ravi K; Patel, Utsav A; Tripathi, Ajai K; Joshi, Chaitanya G

    2014-10-10

    Activin receptor type IIB (ACVR2B) is a transmembrane receptor which mediates signaling of TGF beta superfamily ligands known to function in regulation of muscle mass, embryonic development and reproduction. ACVR2B antagonism has shown to enhance the muscle growth in several disease and transgenic models. Here, we show ACVR2B knockdown by RNA interference using muscle creatine kinase (MCK) promoter driven artificial microRNAs (amiRNAs). Among the various promoter elements tested, the ∼1.26 kb MCK promoter region showed maximum transcriptional activity in goat myoblasts cells. We observed up to 20% silencing in non-myogenic 293T cells and up to 32% silencing in myogenic goat myoblasts by MCK directed amiRNAs by transient transfection. Goat myoblasts stably integrated with MCK directed amiRNAs showed merely 8% silencing in proliferating myoblasts which was increased to 34% upon induction of differentiation at transcript level whereas up to 57% silencing at protein level. Knockdown of ACVR2B by 5'-UTR derived amiRNAs resulted in decreased SMAD2/3 signaling, increased expression of myogenic regulatory factors (MRFs) and enhanced proliferation and differentiation of myoblasts. Unexpectedly, knockdown of ACVR2B by 3'-UTR derived amiRNAs resulted in increased SMAD2/3 signaling, reduced expression of MRFs and suppression of myogenesis. Our study offers muscle specific knockdown of ACVR2B as a potential strategy to enhance muscle mass in the farm animal species.

  20. Angiotensin II type 1 receptor A1166C gene polymorphism and essential hypertension in San Luis.

    PubMed

    Lapierre, Alicia Viviana; Arce, Maria Elena; Lopez, José Raul; Ciuffo, Gladys María

    2006-12-01

    Essential hypertension is considered a multifactorial trait resulting from a combination of environmental and genetic factors. The angiotensin II type 1 receptor mediates the vasoconstrictor and growth-promoting effects of Ang II. The A1166C polymorphism of the AT1 receptor gene may be associated with cardiovascular phenotypes, such as high arterial blood pressure, aortic stiffness, and increased cardiovascular risk. We investigated the association between this A1166C polymorphism and hypertension in hypertense and normotense subjects from San Luis (Argentina) by mismatch PCR-RFLP analysis. Hypertense patients exhibited significant increases in lipid related values and body mass index. The frequency of occurrence of the C1166 allele was higher among patients with hypertension (0.19) than in the control group (0.06). No significant association was found between this polymorphism and essential hypertension in the study population, although the AC genotype prevalence was higher in patients with hypertension and positive family history of hypertension (32%) than in control subjects (12%). Patients with the A1166C polymorphism exhibited higher levels of serum total cholesterol, LDL-cholesterol and BMI than in control subjects. Taken together the genotype and biochemical parameters and considering the restrictive selection criteria used, the present results suggest a correlation between AT1 A1166C gene polymorphism and risk of cardiovascular disease.

  1. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].

    PubMed

    Jódar, Esteban

    2014-09-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. Moreover slows gastric emptying -reducing postprandial glycemic excursions-, reduces body weight, systolic blood pressure and has beneficial effects in the cardiovascular and central nervous systems. Since the 1990s, the efficacy of GLP-1 in reducing blood glucose levels in type 2 diabetes (DM2) was well known. However, GLP-1 should be administered by chronic subcutaneous infusion because of the rapid cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4). Hence, DPP-4 inhibitors -which increase pseudo-physiologically endogenous GLP-1 levels- were developed. In addition, several GLP-1 receptor agonists have been designed to avoid DPP-4-breakdown and/or rapid renal elimination and, therefore, induce a pharmacologic effect in the GLP-1 receptor: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different structural, pharmacodynamic and clinical properties and could be administered in different therapeutical regimens giving us the opportunity to individualize the therapy of DM2.

  2. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].

    PubMed

    Jódar, Esteban

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. Moreover slows gastric emptying -reducing postprandial glycemic excursions-, reduces body weight, systolic blood pressure and has beneficial effects in the cardiovascular and central nervous systems. Since the 1990s, the efficacy of GLP-1 in reducing blood glucose levels in type 2 diabetes (DM2) was well known. However, GLP-1 should be administered by chronic subcutaneous infusion because of the rapid cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4). Hence, DPP-4 inhibitors -which increase pseudo-physiologically endogenous GLP-1 levels- were developed. In addition, several GLP-1 receptor agonists have been designed to avoid DPP-4-breakdown and/or rapid renal elimination and, therefore, induce a pharmacologic effect in the GLP-1 receptor: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different structural, pharmacodynamic and clinical properties and could be administered in different therapeutical regimens giving us the opportunity to individualize the therapy of DM2.

  3. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure.

    PubMed

    Zucker, Irving H; Schultz, Harold D; Patel, Kaushik P; Wang, Wei; Gao, Lie

    2009-11-01

    Angiotensin type 1 receptors (AT(1)Rs) play a critical role in a variety of physiological functions and pathophysiological states. They have been strongly implicated in the modulation of sympathetic outflow in the brain. An understanding of the mechanisms by which AT(1)Rs are regulated in a variety of disease states that are characterized by sympathoexcitation is pivotal in development of new strategies for the treatment of these disorders. This review concentrates on several aspects of AT(1)R regulation in the setting of chronic heart failure (CHF). There is now good evidence that AT(1)R expression in neurons is mediated by activation of the transcription factor activator protein 1 (AP-1). This transcription factor and its component proteins are upregulated in the rostral ventrolateral medulla of animals with CHF. Because the increase in AT(1)R expression and transcription factor activation can be blocked by the AT(1)R antagonist losartan, a positive feedback mechanism of AT(1)R expression in CHF is suggested. Oxidative stress has also been implicated in the regulation of receptor expression. Recent data suggest that the newly discovered catabolic enzyme angiotensin-converting enzyme 2 (ACE2) may play a role in the modulation of AT(1)R expression by altering the balance between the octapeptide ANG II and ANG- (1-7). Finally, exercise training reduces both central oxidative stress and AT(1)R expression in animals with CHF. These data strongly suggest that multiple central and peripheral influences dynamically alter AT(1)R expression in CHF.

  4. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription

    PubMed Central

    Laprairie, RB; Kelly, MEM; Denovan-Wright, EM

    2012-01-01

    The type 1 cannabinoid receptor (CB1) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand–receptor binding, mechanisms of signal transduction, and protein–protein interactions. In contrast, comparatively little is known about regulation of CB1 gene expression. The levels and anatomical distribution of CB1 mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB1 gene expression and mRNA levels. As such, alterations in CB1 gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB1 mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22924606

  5. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  6. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues.

    PubMed Central

    Luo, K; Lodish, H F

    1997-01-01

    The type II transforming growth factor-beta (TGF-beta) receptor Ser/Thr kinase (TbetaRII) is responsible for the initiation of multiple TGF-beta signaling pathways, and loss of its function is associated with many types of human cancer. Here we show that TbetaRII kinase is regulated intricately by autophosphorylation on at least three serine residues. Ser213, in the membrane-proximal segment outside the kinase domain, undergoes intra-molecular autophosphorylation which is essential for the activation of TbetaRII kinase activity, activation of TbetaRI and TGF-beta-induced growth inhibition. In contrast, phosphorylation of Ser409 and Ser416, located in a segment corresponding to the substrate recognition T-loop region in a three-dimensional structural model of protein kinases, is enhanced by receptor dimerization and can occur via an intermolecular mechanism. Phosphorylation of Ser409 is essential for TbetaRII kinase signaling, while phosphorylation of Ser416 inhibits receptor function. Mutation of Ser416 to alanine results in a hyperactive receptor that is better able than wild-type to induce TbetaRI activation and subsequent cell cycle arrest. Since on a single receptor either Ser409 or Ser416, but not both simultaneously, can become autophosphorylated, our results show that TbetaRII phosphorylation is regulated intricately and affects TGF-beta receptor signal transduction both positively and negatively. PMID:9155023

  7. Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition.

    PubMed

    Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M; Chen, Shi-You; Konkalmatt, Prasad; Wang, Xiaoyan; Asico, Laureano D; Jones, John E; Yang, Yu; Sanada, Hironobu; Felder, Robin A; Eisner, Gilbert M; Weir, Matthew R; Armando, Ines; Jose, Pedro A

    2016-02-01

    The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure.

  8. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  9. Evolution of Spatially Coexpressed Families of Type-2 Vomeronasal Receptors in Rodents

    PubMed Central

    Francia, Simona; Silvotti, Lucia; Ghirardi, Filippo; Catzeflis, François; Percudani, Riccardo; Tirindelli, Roberto

    2015-01-01

    The vomeronasal organ (VNO) is an olfactory structure for the detection of pheromones. VNO neurons express three groups of unrelated G-protein-coupled receptors. Type-2 vomeronasal receptors (V2Rs) are specifically localized in the basal neurons of the VNO and are believed to sense protein pheromones eliciting specific reproductive behaviors. In murine species, V2Rs are organized into four families. Family-ABD V2Rs are expressed monogenically and coexpress with family-C V2Rs of either subfamily C1 (V2RC1) or subfamily C2 (V2RC2), according to a coordinate temporal diagram. Neurons expressing the phylogenetically ancient V2RC1 coexpress family-BD V2Rs or a specific group of subfamily-A V2Rs (V2RA8-10), whereas a second neuronal subset (V2RC2-positive) coexpresses a recently expanded group of five subfamily-A V2Rs (V2RA1-5) along with vomeronasal-specific Major Histocompatibility Complex molecules (H2-Mv). Through database mining and Sanger sequencing, we have analyzed the onset, diversification, and expansion of the V2R-families throughout the phylogeny of Rodentia. Our results suggest that the separation of V2RC1 and V2RC2 occurred in a Cricetidae ancestor in coincidence with the evolution of the H2-Mv genes; this phylogenetic event did not correspond with the origin of the coexpressing V2RA1-5 genes, which dates back to an ancestral myomorphan lineage. Interestingly, the evolution of receptors within the V2RA1-5 group may be implicated in the origin and diversification of some of the V2R putative cognate ligands, the exocrine secreting peptides. The establishment of V2RC2, which probably reflects the complex expansion and diversification of family-A V2Rs, generated receptors that have probably acquired a more subtle functional specificity. PMID:25539725

  10. Imaging of Prostate Cancer Using Urokinase-Type Plasminogen Activator Receptor PET.

    PubMed

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-04-01

    Urokinase-type plasminogen activator receptor (uPAR) overexpression is an important biomarker for aggressiveness in cancer including prostate cancer (PC) and provides independent clinical information in addition to prostate-specific antigen and Gleason score. This article focuses on uPAR PET as a new diagnostic and prognostic imaging biomarker in PC. Many preclinical uPAR-targeted PET imaging studies using AE105 in cancer models have been undertaken with promising results. A major breakthrough was obtained with the recent human translation of uPAR PET in using (64)Cu- and (68)Ga-labelled versions of AE105, respectively. Clinical results from patients with PC included in these studies are encouraging and support continuation with large-scale clinical trials.

  11. Current issues in GLP-1 receptor agonist therapy for type 2 diabetes.

    PubMed

    Bloomgarden, Zachary T; Blonde, Lawrence; Garber, Alan J; Wysham, Carol H

    2012-01-01

    The clinical management of hyperglycemia in patients with type 2 diabetes mellitus (T2DM) is guided not only by published treatment algorithms, but also by consideration of recent evidence and through consultation with colleagues and experts. Recent studies have dramatically increased the amount of information regarding the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs). Topics that may be of particular interest to clinicians who treat T2DM patients include relative glycemic control efficacy of GLP-1 RAs, use of GLP-1 RAs across T2DM progression and in combination with insulin, recent data regarding GLP-1 RA safety, nonglycemic actions of GLP-1 RAs, including weight effects, and impact of GLP-1 RAs on patient quality of life and treatment satisfaction. The following review includes expert consideration of these topics with emphasis on recent, relevant reports to illustrate current perspectives.

  12. Angiotensin receptor blockade mediated amelioration of mucopolysaccharidosis type I cardiac and craniofacial pathology

    PubMed Central

    Webber, Beau R.; McElmurry, Ronald T.; Rudser, Kyle D.; DeFeo, Anthony P.; Muradian, Michael; Petryk, Anna; Hallgrimsson, Benedikt; Blazar, Bruce R.; Tolar, Jakub

    2017-01-01

    Mucopolysaccharidosis type I (MPS IH) is a lysosomal storage disease (LSD) caused by inactivating mutations to the alpha-L-iduronidase (IDUA) gene. Treatment focuses on IDUA enzyme replacement and currently employed methods can be non-uniform in their efficacy particularly for the cardiac and craniofacial pathology. Therefore, we undertook efforts to better define the pathological cascade accounting for treatment refractory manifestations and demonstrate a role for the renin angiotensin system (RAS) using the IDUA−/− mouse model. Perturbation of the RAS in the aorta was more profound in male animals suggesting a causative role in the observed gender dimorphism and angiotensin receptor blockade (ARB) resulted in improved cardiac function. Further, we show the ability of losartan to prevent shortening of the snout, a common craniofacial anomaly in IDUA−/− mice. These data show a key role for the RAS in MPS associated pathology and support the inclusion of losartan as an augmentation to current therapies. PMID:27743312

  13. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    PubMed

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA.

  14. Peroxisome proliferator-activated receptors as molecular targets in relation to obesity and type 2 diabetes.

    PubMed

    Seda, Ondørej; Sedová, Lucie

    2007-06-01

    The three isotypes of peroxisome proliferator-activated receptors (PPARs) are currently perceived as major regulatory nodes (or hubs) of metabolic pathway networks, linking most prevalent diseases including Type 2 diabetes, obesity, dyslipidemia and atherosclerosis. The integrative functions of PPARs are also reflected in their ecogenetic profile, when the variants underlying pharmacogenetic interactions were also shown to modulate the effect of lifestyle factors. Despite their extensive clinical use, there are many outstanding issues, especially concerning their safety. Critical pharmacogenomic assessment is warranted for the new potent ligands of multiple PPAR isoforms as many have displayed serious side-effects in a limited number of treated subjects. Nevertheless, the advent of genomic, transcriptomic and system biology-level approaches, integrating knowledge from model systems and human biology, should greatly facilitate the transition to individualized PPAR-based therapies.

  15. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  16. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling.

    PubMed

    Börner, Christine; Smida, Michal; Höllt, Volker; Schraven, Burkhart; Kraus, Jürgen

    2009-12-18

    The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.

  17. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  18. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene.

    PubMed

    Mulder, H; Nagorny, C L F; Lyssenko, V; Groop, L

    2009-07-01

    Melatonin is a circulating hormone that is primarily released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms; its levels are high during the night and low during the day. Interestingly, insulin levels also exhibit a nocturnal drop, which has previously been suggested to be controlled, at least in part, by melatonin. This regulation can be explained by the proposed inhibitory action of melatonin on insulin release. Indeed, both melatonin receptor 1A (MTNR1A) and MTNR1B are expressed in pancreatic islets. The role of melatonin in the regulation of glucose homeostasis has been highlighted by three independent publications based on genome-wide association studies of traits connected with type 2 diabetes, such as elevated fasting glucose, and, subsequently, of the disease itself. The studies demonstrate a link between variations in the MTNR1B gene, hyperglycaemia, impaired early phase insulin secretion and beta cell function. The risk genotype predicts the future development of type 2 diabetes. Carriers of the risk genotype exhibit increased expression of MTNR1B in islets. This suggests that these individuals may be more sensitive to the actions of melatonin, leading to impaired insulin secretion. Blocking the inhibition of insulin secretion by melatonin may be a novel therapeutic avenue for type 2 diabetes.

  19. Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay

    PubMed Central

    Block, Thaddeus S; Murphy, Tiffany I; Munster, Pamela N; Nguyen, Dat P; Lynch, Frank J

    2017-01-01

    Background Glucocorticoid receptor (GR) activity plays a role in many aspects of human physiology and may play a crucial role in chemotherapy resistance in a wide variety of solid tumors. A novel immunohistochemistry (IHC) based assay has been previously developed and validated in order to assess GR immunoreactivity in triple-negative breast cancer. The current study investigates the standardized use of this validated assay to assess GR expression in a broad range of solid tumor malignancies. Methods Archived formalin-fixed paraffin-embedded tumor bank samples (n=236) from 20 different solid tumor types were analyzed immunohistochemically. Nuclear staining was reported based on the H-score method using differential intensity scores (0, 1+, 2+, or 3+) with the percent stained (out of at least 100 carcinoma cells) recorded at each intensity. Results GR was expressed in all tumor types that had been evaluated. Renal cell carcinoma, sarcoma, cervical cancer, and melanoma were those with the highest mean H-scores, indicating high levels of GR expression. Colon, endometrial, and gastric cancers had lower GR staining percentages and intensities, resulting in the lowest mean H-scores. Conclusion A validated IHC assay revealed GR immunoreactivity in all solid tumor types studied and allowed for standardized comparison of reactivity among the different malignancies. Impact Baseline expression levels of GR may be a useful biomarker when pharmaceutically targeting GR in research or clinical setting. PMID:28293120

  20. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors

    PubMed Central

    Cui, Jun; Song, Yanxia; Li, Yinyin; Zhu, Qingyuan; Tan, Peng; Qin, Yunfei; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity. PMID:24366338

  1. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  2. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    PubMed

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

  3. Altered pattern of cannabinoid type 1 receptor expression in adipose tissue of dysmetabolic and overweight patients.

    PubMed

    Sarzani, Riccardo; Bordicchia, Marica; Marcucci, Pierfrancesco; Bedetta, Samuele; Santini, Silvia; Giovagnoli, Andrea; Scappini, Lorena; Minardi, Daniele; Muzzonigro, Giovanni; Dessì-Fulgheri, Paolo; Rappelli, Alessandro

    2009-03-01

    In overweight patients (OW), the increased peripheral activity of the endocannabinoid system in visceral adipose tissue (VAT) may be mediated by cannabinoid type 1 (CB1) receptor expression. We determined whether CB1 receptor splice variants and messenger RNA (mRNA) levels in perirenal and subcutaneous adipose tissues are associated with obesity and metabolic syndrome (MetS). Gene expression with multiple-primers real-time polymerase chain reaction (TaqMan; Applied Biosystem, Weiterstadt, Germany) was performed to study VAT and paired subcutaneous adipose tissue (SAT) mRNA from 36 consecutive patients undergoing nephrectomy. Cannabinoid type 1A and CB1E mRNAs variants with the longer version of exon 4 were expressed. The CB1 expression in perirenal VAT significantly correlated with body mass index (BMI). Paired subcutaneous/perirenal samples from normal-weight patients (BMI < 25 kg/m(2)) showed higher CB1 expression in SAT (P = .002), whereas in OW (BMI > or = 25 kg/m(2)), the higher CB1 expression was in VAT (P = .038). In unpaired samples, SAT of normal-weight patients had significantly higher CB1 mRNA levels compared with SAT of OW, whereas higher CB1 expression (P = .009) was found in VAT of OW (n = 25). Overweight patients with increased visceral CB1 expression had higher waist circumference (P < .01), insulin (P < .01), and homeostasis model assessment index (P < .01). In addition, patients with the MetS (n = 22) showed higher CB1 expression in perirenal adipose tissues (P = .007). Visceral adipose CB1 expression correlated with BMI. Overweight patients and those with MetS showed a CB1 expression pattern supporting a CB1-mediated overactivity of the endocannabinoid system in human VAT.

  4. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    PubMed

    Re, Michelle; Pampillo, Macarena; Savard, Martin; Dubuc, Céléna; McArdle, Craig A; Millar, Robert P; Conn, P Michael; Gobeil, Fernand; Bhattacharya, Moshmi; Babwah, Andy V

    2010-07-08

    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  5. Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor.

    PubMed

    Boilard, Eric; Rouault, Morgane; Surrel, Fanny; Le Calvez, Catherine; Bezzine, Sofiane; Singer, Alan; Gelb, Michael H; Lambeau, Gérard

    2006-11-07

    Mammalian secreted phospholipases A(2) (sPLA(2)s) constitute a family of structurally related enzymes that are likely to play numerous biological roles because of their phospholipid hydrolyzing activity and binding to soluble and membrane-bound proteins, including the M-type receptor. Over the past decade, a number of competitive inhibitors have been developed against the inflammatory-type human group IIA (hGIIA) sPLA(2) with the aim of specifically blocking its catalytic activity and pathophysiological functions. The fact that many of these inhibitors, including the indole analogue Me-Indoxam, inhibit several other sPLA(2)s that bind to the M-type receptor prompted us to investigate the impact of Me-Indoxam and other inhibitors on the sPLA(2)-receptor interaction. By using a Ca(2+) loop mutant derived from a venom sPLA(2) which is insensitive to hGIIA inhibitors but still binds to the M-type receptor, we demonstrate that Me-Indoxam dramatically decreases the affinity of various sPLA(2)s for the receptor, yet an sPLA(2)-Me-Indoxam-receptor complex can form at very high sPLA(2) concentrations. Me-Indoxam inhibits the binding of iodinated mouse sPLA(2)s to the mouse M-type receptor expressed on live cells but also enhances binding of sPLA(2) to phospholipids. Because Me-Indoxam and other competitive inhibitors protrude out of the sPLA(2) catalytic groove, it is likely that the inhibitors interfere with the sPLA(2)-receptor interaction by steric hindrance and to different extents that depend on the type of sPLA(2) and inhibitor. Our finding suggests that the various anti-inflammatory therapeutic effects of sPLA(2) inhibitors may be due not only to inhibition of enzymatic activity but also to modulation of binding of sPLA(2) to the M-type receptor or other as yet unknown protein targets.

  6. Participation of NK1 receptors of the amygdala on the processing of different types of fear.

    PubMed

    Carvalho, M C; Santos, J M; Bassi, G S; Brandão, M L

    2013-05-01

    be involved in mediating responses of the animal in only certain types of aversive behavior and suggests a differential participation of the NK1 receptors in the processing of distinct types of fear in the amygdala.

  7. Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors.

    PubMed

    Kargar, Hossein Mohammad-Pour; Azizi, Hossein; Mirnajafi-Zadeh, Javad; Reza, Mani Ali; Semnanian, Saeed

    2015-10-22

    Locus coeruleus (LC) nucleus is involved in noradrenergic descending pain modulation. LC receives dense orexinergic projections from the lateral hypothalamus. Orexin-A and -B are hypothalamic peptides which modulate a variety of brain functions via orexin type-1 (OX1) and orexin type-2 (OX2) receptors. Previous studies have shown that activation of OX1 receptors induces endocannabinoid synthesis and alters synaptic neurotransmission by retrograde signaling via affecting cannabinoid type-1 (CB1) receptors. In the present study the interaction of orexin-A and endocannabinoids was examined at the LC level in a rat model of inflammatory pain. Pain was induced by formalin (2%) injection into the hind paw. Intra-LC microinjection of orexin-A decreased the nociception score during both phases of formalin test. Furthermore, intra-LC microinjection of either SB-334867 (OX1 receptor antagonist) or AM251 (CB1 receptor antagonist) increased flinches and also the nociception score during phase 1, 2 and the inter-phase of formalin test. The analgesic effect of orexin-A was diminished by prior intra-LC microinjection of either SB-334867 or AM251. This data show that, activation of OX1 receptors in the LC can induce analgesia and also the blockade of OX1 or CB1 receptors is associated with hyperalgesia during formalin test. Our findings also suggest that CB1 receptors may modulate the analgesic effect of orexin-A. These results outline a new mechanism by which orexin-A modulates the nociceptive processing in the LC nucleus.

  8. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  9. Role of E-type prostaglandin receptor EP3 in the vasoconstrictor activity evoked by prostacyclin in thromboxane-prostanoid receptor deficient mice

    PubMed Central

    Li, Zhenhua; Zhang, Yingzhan; Liu, Bin; Luo, Wenhong; Li, Hui; Zhou, Yingbi

    2017-01-01

    Prostacyclin, also termed as prostaglandin I2 (PGI2), evokes contraction in vessels with limited expression of the prostacyclin receptor. Although the thromboxane-prostanoid receptor (TP) is proposed to mediate such a response of PGI2, other unknown receptor(s) might also be involved. TP knockout (TP−/−) mice were thus designed and used to test the hypothesis. Vessels, which normally show contraction to PGI2, were isolated for functional and biochemical analyses. Here, we showed that the contractile response evoked by PGI2 was indeed only partially abolished in the abdominal aorta of TP−/− mice. Interestingly, further antagonizing the E-type prostaglandin receptor EP3 removed the remaining contractile activity, resulting in relaxation evoked by PGI2 in such vessels of TP−/− mice. These results suggest that EP3 along with TP contributes to vasoconstrictor responses evoked by PGI2, and hence imply a novel mechanism for endothelial cyclooxygenase metabolites (which consist mainly of PGI2) in regulating vascular functions. PMID:28165064

  10. Immunohistochemical Localization of AMPA Type Glutamate Receptor Subunits in the Striatum of Rhesus Monkey

    PubMed Central

    Deng, Yun-Ping; Shelby, Evan; Reiner, Anton J.

    2010-01-01

    Corticostriatal and thalamostriatal projections utilize glutamate as their neurotransmitter. Their influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. While the cellular localization of AMPA-type subunits in the basal ganglia has been well characterized in rodents, the cellular localization of AMPA subunits in primate basal ganglia is not. We thus carried out immunohistochemical studies of GluR1-4 distribution in rhesus monkey basal ganglia in conjunction with characterization of each major neuron type. In striatum, about 65% of striatal neurons immunolabeled for GluR1, 75%-79% immunolabeled for GluR2 or GluR2/3, and only 2.5% possessed GluR4. All neurons the large size of cholinergic interneurons (mean diameter 26.1μm) were moderately labeled for GluR1, while all neurons in the size range of parvalbuminergic interneurons (mean diameter 13.8μm) were intensely rich in GluR1. Additionally, somewhat more than half of neurons in the size range of projection neurons (mean diameter 11.6μm) immunolabeled for GluR1, and about one third of these were very rich in GluR1. About half of neurons the size of cholinergic interneurons were immunolabeled for GluR2, and the remainder of the neurons that were immunolabeled for GluR2 coincided with projection neurons in size and shape (GluR2 diameter=10.7μm), indicating that the vast majority of striatal projection neurons possess immunodectible GluR2. Similar results were observed with GluR2/3 immunolabeling. Half of the neurons the size of cholinergic interneurons immunolabeled for GluR4 and seemingly all neurons in the size range of parvalbuminergic interneurons possessed GluR4. These results indicate that AMPA receptor subunit combinations for striatal projection neurons in rhesus monkey are similar to those for the corresponding neuron types in rodents, and thus their AMPA responses to glutamate likely to be similar to those demonstrated

  11. Endopeptidases 24.16 and 24.15 are responsible for the degradation of somatostatin, neurotensin, and other neuropeptides by cultivated rat cortical astrocytes.

    PubMed

    Mentlein, R; Dahms, P

    1994-01-01

    Several neuropeptides, including neurotensin, somatostatin, bradykinin, angiotensin II, substance P, and luteinizing hormone-releasing hormone but not vasopressin and oxytocin, were actively metabolized through proteolytic degradation by cultivated astrocytes obtained from rat cerebral cortex. Because phenanthroline was an effective degradation inhibitor, metalloproteases were responsible for neuropeptide fragmentation. Neurotensin was cleaved by astrocytes at the Pro10-Tyr11 and Arg8-Arg9 bonds, whereas somatostatin was cleaved at the Phe6-Phe7 and Thr10-Phe11 bonds. These cleavage sites have been found previously with endopeptidases 24.16 and 24.15 purified from rat brain. Addition of specific inhibitors of these proteases, the dipeptide Pro-Ile and N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Phe-4-aminobenzoate, significantly reduced the generation of the above neuropeptide fragments by astrocytes. The presence of endopeptidases 24.16 and 24.15 in homogenates of astrocytes could also be demonstrated by chromatographic separations of supernatant solubilized cell preparations. Proteolytic activity for neurotensin eluted after both gel and hydroxyapatite chromatography at the same positions as found for purified endopeptidase 24.16 or 24.15. In incubation experiments or in chromatographic separations no phosphoramidon-sensitive endopeptidase 24.11 (enkephalinase) or captopril-sensitive peptidyl dipeptidase A (angiotensin-converting enzyme) could be detected in cultivated astrocytes. Because astrocytes embrace the neuronal synapses where neuropeptides are released, we presume that the endopeptidases 24.16 and 24.15 on astrocytes are strategically located to contribute significantly to the inactivation of neurotensin, somatostatin, and other neuropeptides in the brain.

  12. The Role of Dopamine in Reinforcement: Changes in Reinforcement Sensitivity Induced by D[subscript 1]-Type, D[subscript 2]-Type, and Nonselective Dopamine Receptor Agonists

    ERIC Educational Resources Information Center

    Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.

    2005-01-01

    Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…

  13. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis.

  14. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  15. Induced association of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by novel bivalent ligands

    PubMed Central

    Zheng, Yaguo; Akgün, Eyup; Harikumar, Kaleeckal G.; Hopson, Jessika; Powers, Michael D.; Lunzer, Mary M.; Miller, Laurence J.; Portoghese, Philip S.

    2009-01-01

    Both mu opioid (MOP)† and type 2 cholecystokinin (CCK2) receptors are present in areas of the central nervous system that are involved in modulation of pain processing. We conducted bioluminescence resonance energy transfer (BRET) studies on COS cells coexpressing MOP and CCK2 receptors to determine whether receptor heterodimerization is involved in such modulation. These studies revealed the absence of constitutive or monovalent ligand-induced heterodimerization. Heterodimerization of MOP and CCK2 receptors therefore is unlikely to be responsible for the opposing effects between morphine and CCK in the CNS. However, association was induced, as indicated by a positive BRET signal, on exposure of the cells to bivalent ligands containing mu-opioid agonist and CCK2 receptor antagonist pharmacophores linked through spacers containing 16 to 22 atoms, but not with a shorter (9-atom) spacer. These studies demonstrate for the first time that an appropriately designed bivalent ligand is capable of inducing association of G protein-coupled receptors. The finding that opioid tolerance studies with these ligands in mice showed no correlation with the BRET data is consistent with the absence of association of MOP and CCK2 receptors in vivo. PMID:19113864

  16. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Mallow, H; Trindl, A; Löffler, G

    2000-01-01

    During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.

  17. A fluorescence study of type I and type II receptors of bone morphogenetic proteins with bis-ANS (4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid).

    PubMed

    Yin, Huiran; Zhou, Qing; Panda, Markandeswar; Yeh, Lee-Chuan C; Zavala, Michelle C; Lee, John C

    2007-04-01

    Crystallography studies on several members of the bone morphogenetic protein (BMP) receptors suggested that hydrophobic regions in these proteins play an important role in their structure and function. In the present study, the environment sensitive fluorescent probe 4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid (bis-ANS) was used to study the hydrophobic regions of the extracellular domain of the type I and II receptors for bone morphogenetic proteins (ecBMPR-IB and ecBMPR-II). A single bis-ANS binding site per receptor molecule was found for both receptors, but the two receptors interacted with bis-ANS with distinctive characteristics. A significant shift in the emission maximum from 498 to 510 nm was detected when bis-ANS binds ecBMPR-IB, but a negligible change in the emission maximum was observed when the dye binds ecBMPR-II. Under identical reaction conditions, the maximum fluorescence intensities of the probe (I(max)) for the ecBMPR-IB and -II are 4.0 and 6.2 x 10(4) arbitrary units, respectively. The probe binds to ecBMPR-IB and -II with K(d)=11.0 and 17.5 microM, respectively. The bis-ANS modified site on both receptor types was not readily accessible to acrylamide quenching. Fluorescence energy transfer experiments further revealed close proximity between the tyrosine (in ecBMPR-IB) and the tryptophan residue (in ecBMPR-II) and the respective bis-ANS binding site in these receptors. The binding of bis-ANS did not alter the ligand binding activity of ecBMPR-IB, but enhanced that of ecBMPR-II. These results show that the bis-ANS-modified hydrophobic site on the ecBMPR-IB and -II molecules plays a different functional role.

  18. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-09-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  19. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-01-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy.

  20. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin

    PubMed Central

    Pastore, Saveria

    2016-01-01

    The Epidermal Growth Factor Receptor (EGFR) is centrally involved in the regulation of key processes of the epithelia, including cell proliferation, survival, differentiation, and also tumorigenesis. Humanized antibodies and small-molecule inhibitors targeting EGFR were developed to disrupt these functions in cancer cells and are currently used in the treatment of diverse metastatic epithelial cancers. By contrast, these drugs possess significant skin-specific toxic effects, comprising the establishment of a persistent inflammatory milieu. So far, the molecular mechanisms underlying these epiphenomena have been investigated rather poorly. Here we showed that keratinocytes respond to anti-EGFR drugs with the development of a type I interferon molecular signature. Upregulation of the transcription factor IRF1 is early implicated in the enhanced expression of interferon-kappa, leading to persistent activation of STAT1 and further amplification of downstream interferon-induced genes, including anti-viral effectors and chemokines. When anti-EGFR drugs are associated to TNF-α, whose expression is enhanced by the drugs themselves, all these molecular events undergo a dramatic enhancement by synergy mechanisms. Finally, high levels of interferon-kappa can be observed in epidermal keratinocytes and also in leukocytes infiltrating the upper dermis of cetuximab-driven skin lesions. Our data suggest that dysregulated activation of type I interferon innate immunity is implicated in the molecular processes triggered by anti-EGFR drugs and leading to persistent skin inflammation. PMID:27322144

  1. Therapeutic Elimination of the Type 1 Interferon Receptor for Treating Psoriatic Skin Inflammation.

    PubMed

    Gui, Jun; Gober, Michael; Yang, Xiaoping; Katlinski, Kanstantsin V; Marshall, Christine M; Sharma, Meena; Werth, Victoria P; Baker, Darren P; Rui, Hallgeir; Seykora, John T; Fuchs, Serge Y

    2016-10-01

    Phototherapy with UV light is a standard treatment for psoriasis, yet the mechanisms underlying the therapeutic effects are not well understood. Studies in human and mouse keratinocytes and in the skin tissues from human patients and mice showed that UV treatment triggers ubiquitination and downregulation of the type I IFN receptor chain IFNAR1, leading to suppression of IFN signaling and an ensuing decrease in the expression of inflammatory cytokines and chemokines. The severity of imiquimod-induced psoriasiform inflammation was greatly exacerbated in skin of mice deficient in IFNAR1 ubiquitination (Ifnar1(SA)). Furthermore, these mice did not benefit from UV phototherapy. Pharmacologic induction of IFNAR1 ubiquitination and degradation by an antiprotozoal agent halofuginone also relieved psoriasiform inflammation in wild-type but not in Ifnar1(SA) mice. These data identify downregulation of IFNAR1 by UV as a major mechanism of the UV therapeutic effects against the psoriatic inflammation and provide a proof of principle for future development of agents capable of inducing IFNAR1 ubiquitination and downregulation for the treatment of psoriasis.

  2. Different types of androgen receptor mutations in patients with complete androgen insensitivity syndrome.

    PubMed

    Shao, Jialiang; Hou, Jiangang; Li, Bingkun; Li, Dongyang; Zhang, Ning; Wang, Xiang

    2015-02-01

    Mutations of androgen receptor (AR) are the most frequent cause of 46, XY disorders of sex development and associated with a variety of phenotypes, ranging from phenotypic women (complete androgen insensitivity syndrome (CAIS)) to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). From 2009 to 2012, two young Chinese female individuals with CAIS from two families were referred to our hospital due to primary amenorrhea. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Physical examination revealed that the patients have normal female external genitalia, normal breast development, vellus hair in the axilla and on the arms and legs, but absence of pubic hair, and a blind-ending vagina. Two different types of AR mutations have been detected by sequencing of genomic DNA: Family A showed deletion of exon 2 in AR gene; Family B showed a single nucleotide C-to-T transition in exon 8 of AR gene resulting in a proline 893-to-leucine substitution (Pro893Leu). Testicular histology showed developmental immaturity of seminiferous tubules with the absence of spermatogenic cells or spermatozoa. No AR immunoreactivity was observed in either case. Three adult patients recovered well from bilateral orchiectomy. The juvenile patient of family B was followed up. Our present study on these two families revealed two different types of AR mutation. The definitive diagnosis of AIS was based on clinical examination and genetic investigations. Our findings verified the mechanism of CAIS and also enriched AR Gene Mutation Database.

  3. [Polymorphism of the sulfonylurea receptor gene in type 2 diabetes mellitus].

    PubMed

    Owecki, Maciej; Horst-Sikorska, Wanda; Kaczmarek, Marta; Słomski, Ryszard; Sowiński, Jerzy

    2003-02-01

    Sulfonylureas are used in treatment of diabetes. Resistance to these derivatives is a therapeutical problem. Sulfonylureas act through sulfonylurea receptor 1 (SUR1) in the beta cell. SUR1 also enhances a physiological secretion of insulin induced by an increase of glucose concentration. It may be expected that polymorphism of SUR1 gene can lead to beta cell dysfunction and resistance to sulfonylureas. The aim of this study was to examine the frequency of polymorphism in exon 22 of SUR1 gene and its correlation with type 2 diabetes mellitus and sulfonylurea treatment failure. The group consisted of 42 patients with type 2 diabetes. The controls were 46 persons with proper glucose tolerance. Polymorphism was found in 5 patients and in 1 control person. Neither statistically significant difference of polymorphism frequency nor correlation between polymorphism and sulfonylurea failure was found due to a low number of cases. Polymorphism of exon 22 of SUR1 gene appeared more frequent in diabetic than in non-diabetic subjects but this was statistically not significant.

  4. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  5. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-03

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2.

  6. The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex

    PubMed Central

    Hu, Hongli; Wang, Zhao; Wei, Risheng; Fan, Guizhen; Wang, Qiongling; Zhang, Kaiming; Yin, Chang-Cheng

    2015-01-01

    Dihydropyridine receptor (DHPR), an L-type Ca2+ channel complex, plays an essential role in muscle contraction, secretion, integration of synaptic input in neurons and synaptic transmission. The molecular architecture of DHPR complex remains elusive. Here we present a 15-Å resolution cryo-electron microscopy structure of the skeletal DHPR/L-type Ca2+ channel complex. The DHPR has an asymmetrical main body joined by a hook-like extension. The main body is composed of a “trapezoid” and a “tetrahedroid”. Homologous crystal structure docking and site-specific antibody labelling revealed that the α1 and α2 subunits are located in the “trapezoid” and the β subunit is located in the “tetrahedroid”. This structure revealed the molecular architecture of a eukaryotic Ca2+ channel complex. Furthermore, this structure provides structural insights into the key elements of DHPR involved in physical coupling with the RyR/Ca2+ release channel and shed light onto the mechanism of excitation-contraction coupling. PMID:25667046

  7. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types

    SciTech Connect

    Klimstra, William B.; Williams, Jacqueline C.; Ryman, Kate D.; Heidner, Hans W. . E-mail: hans.heidner@utsa.edu

    2005-07-20

    Some viruses display enhanced infection for Fc receptor (FcR)-positive cell types when complexed with virus-specific immunoglobulin (Ig). This process has been termed antibody-dependent enhancement of viral infection (ADE). We reasoned that the mechanism of ADE could be exploited and adapted to target alphavirus-based vectors to FcR-positive cell types. Towards this goal, recombinant Sindbis viruses were constructed that express 1 to 4 immunoglobulin-binding domains of protein L (PpL) as N-terminal extensions of the E2 glycoprotein. PpL is a bacterial protein that binds the variable region of antibody kappa light chains from a range of mammalian species. The recombinant viruses incorporated PpL/E2 fusion proteins into the virion structure and recapitulated the species-specific Ig-binding phenotypes of native PpL. Virions reacted with non-immune serum or purified IgG displayed enhanced binding and ADE for several species-matched FcR-positive murine and human cell lines. ADE required virus expression of a functional PpL Ig-binding domain, and appeared to be Fc{gamma}R-mediated. Specifically, ADE did not occur with Fc{gamma}R-negative cells, did not require active complement proteins, and did not occur on Fc{gamma}R-positive murine cell lines when virions were bound by murine IgG-derived F(ab'){sub 2} fragments.

  8. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  9. Ligand binding pocket of a novel Allatostatin receptor type C of stick insect, Carausius morosus

    PubMed Central

    Duan Sahbaz, Burcin; Sezerman, Osman Ugur; Torun, Hamdi; Birgül Iyison, Necla

    2017-01-01

    Allatostatins (AST) are neuropeptides with variable function ranging from regulation of developmental processes to the feeding behavior in insects. They exert their effects by binding to cognate GPCRs, called Allatostatin receptors (AlstR), which emerge as promising targets for pesticide design. However, AlstRs are rarely studied. This study is the first reported structural study on AlstR-AST interaction. In this work, the first C type AlstR from the stick insect Carausius morosus (CamAlstR-C) was identified and its interaction with type C AST peptide was shown to be physically consistent with the experimental results. The proposed structure of CamAlstR-C revealed a conserved motif within the third extracellular loop, which, together with the N-terminus is essential for ligand binding. In this work, computational studies were combined with molecular and nano-scale approaches in order to introduce an unknown GPCR-ligand system. Consequently, the data obtained provided a reliable target region for future agonist/inverse agonist studies on AlstRs. PMID:28117376