Science.gov

Sample records for neurotoxic catecholamine metabolite

  1. Clozapine response and plasma catecholamines and their metabolites.

    PubMed

    Green, A I; Alam, M Y; Sobieraj, J T; Pappalardo, K M; Waternaux, C; Salzman, C; Schatzberg, A F; Schildkraut, J J

    1993-02-01

    The atypical neuroleptic clozapine has an unusual profile of clinical effects and a distinctive spectrum of pharmacological actions. Plasma measures of catecholamines and their metabolites have been used in the past to study the action of typical neuroleptics. We obtained longitudinal assessments of plasma measures of dopamine (pDA), norepinephrine (pNE), and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG), in eight treatment-resistant or treatment-intolerant schizophrenic patients who were treated with clozapine for 12 weeks following a prolonged drug-washout period. Our findings from the study of these eight patients suggest the following: Plasma levels of HVA and possibly NE derived from the neuroleptic-free baseline period may predict response to clozapine; plasma levels of HVA and MHPG decrease during the initial weeks of treatment in responders but not in nonresponders; and plasma levels of DA and NE increase in both responders and nonresponders to clozapine.

  2. ALTERATION OF CATECHOLAMINES IN PHOECHROMOCYTOMA (PC12) CELLS IN VITRO BY THE METABOLITES OF CHLOROTRIAZINE HERBICIDE

    EPA Science Inventory

    The effects of four major chlorotriazine metabolites on the constitutive synthesis of the catecholamines dopamine (DA) and norepinephrine (NE) were examined using undifferentiated PC12 cells. NE release and intracellular DA and NE concentrations were quantified following treatme...

  3. Haloperidol response and plasma catecholamines and their metabolites.

    PubMed

    Green, A I; Alam, M Y; Boshes, R A; Waternaux, C; Pappalardo, K M; Fitzgibbon, M E; Tsuang, M T; Schildkraut, J J

    1993-06-01

    Eleven acutely psychotic patients with schizophrenia or schizoaffective disorder underwent a 5-7 day drug-washout period (with lorazepam allowed) prior to participating in a 6-week controlled dose haloperidol trial. Patients were evaluated longitudinally with clinical ratings and with plasma measures of the catecholamines dopamine (pDA) and norepinephrine (pNE) and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG). All patients exhibited clinical improvement with haloperidol; the decrease in their Brief Psychiatric Rating Scale (BPRS) scores ranged from 32 to 89%. Measures of pHVA increased within the first week of treatment and returned to baseline by week 5. The pattern of change of pDA resembled that of pHVA. The pattern of change of pNE and pMHPG revealed a decrease over the course of treatment. The early increase and the subsequent decrease in pHVA were strongly correlated with improvement in positive symptoms on the BPRS. These data are consistent with previous reports on the change in pHVA and pMHPG during clinical response to haloperidol. The data on change of pDA and pNE further describe the nature of the biochemical response to this drug.

  4. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    PubMed

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  5. Plasma free metanephrines are superior to urine and plasma catecholamines and urine catecholamine metabolites for the investigation of phaeochromocytoma.

    PubMed

    Hickman, Peter E; Leong, Michelle; Chang, Julia; Wilson, Susan R; McWhinney, Brett

    2009-02-01

    To compare the relative diagnostic efficacy of several different tests used to establish a diagnosis of phaeochromocytoma, in patients with a proven diagnosis of phaeochromocytoma, and in hospital patients with significant disease of other types. We prospectively compared biochemical markers of catecholamine output and metabolism in plasma and urine in 22 patients with histologically proven phaeochromocytoma, 15 intensive care unit (ICU) patients, 30 patients on chronic haemodialysis and both hypertensive (n = 10) and normotensive (n = 16) controls. Receiver operating characteristic curves were plotted. At the point of maximum efficiency, plasma free metanephrines showed 100% sensitivity and 97.6% specificity, compared with plasma catecholamines (78.6% and 70.7%), urine catecholamines (78.6% and 87.8%), urine metanephrines (85.7% and 95.1%), and urine hydroxymethoxymandelic acid (HMMA or VMA) (93.0% and 75.8%). All patients with phaeochromocytoma had plasma free metanephrine concentrations at least 27% above the upper limit of the reference range. Only three other patients (two on haemodialysis and one in ICU) had PFM concentrations more than 50% above the upper limit of the reference range. In patients with phaeochromocytoma, plasma free metanephrines displayed superior diagnostic sensitivity and specificity compared with other biochemical markers of catecholamine output and metabolism.

  6. COMT haplotypes, catecholamine metabolites in plasma and clinical response in schizophrenic and bipolar patients.

    PubMed

    Zumárraga, Mercedes; Arrúe, Aurora; Basterreche, Nieves; Macías, Isabel; Catalán, Ana; Madrazo, Arantza; Bustamante, Sonia; Zamalloa, María I; Erkoreka, Leire; Gordo, Estibaliz; Arnaiz, Ainara; Olivas, Olga; Arroita, Ariane; Marín, Elena; González-Torres, Miguel A

    2016-06-01

    We examined the association of COMT haplotypes and plasma metabolites of catecholamines in relation to the clinical response to antipsychotics in schizophrenic and bipolar patients. We studied 165 patients before and after four weeks of treatment, and 163 healthy controls. We assessed four COMT haplotypes and the plasma concentrations of HVA, DOPAC and MHPG. Bipolar patients: haplotypes are associated with age at onset and clinical evolution. In schizophrenic patients, an haplotype previously associated with increased risk, is related to better response of negative symptoms. Haplotypes would be good indicators of the clinical status and the treatment response in bipolar and schizophrenic patients. Larger studies are required to elucidate the clinical usefulness of these findings.

  7. [Catecholamines and their metabolites in children with Asperger and Kanner syndromes].

    PubMed

    Gorina, A S; Kolesnichenko, L S; Mikhnovich, V I

    2011-01-01

    Children with Asperger and Kanner syndromes in the stable state demonstrate similar decrease in plasma norepinephrine. In the aggravated state, these changes become more expressed and are characterized by a decrease in plasma tyrosine, norepinephrine, normetanephrine and by an increase in dopamine and homovanylic acid and a decrease in excretion of norepinephrine and an increase in excretion of homovanylic acid, epinephrine and MHPG. Only in children with Kanner syndrome in the aggravated state plasma MHPG increases, excretion of tyrosine decreases and excretion of normetanephrine increases. The observed imbalance in dopamine and epinephrine/norepinephrine systems justifies combined analysis of changes in catecholamines and their metabolites levels as the most informative approach in the study of the effect of autistic disorders.

  8. Preservation of urine free catecholamines and their free O-methylated metabolites with citric acid as an alternative to hydrochloric acid for LC-MS/MS-based analyses.

    PubMed

    Peitzsch, Mirko; Pelzel, Daniela; Lattke, Peter; Siegert, Gabriele; Eisenhofer, Graeme

    2016-01-01

    Measurements of urinary fractionated metadrenalines provide a useful screening test to diagnose phaeochromocytoma. Stability of these compounds and their parent catecholamines during and after urine collection is crucial to ensure accuracy of the measurements. Stabilisation with hydrochloric acid (HCl) can promote deconjugation of sulphate-conjugated metadrenalines, indicating a need for alternative preservatives. Urine samples with an intrinsically acidic or alkaline pH (5.5-6.9 or 7.1-8.7, respectively) were used to assess stability of free catecholamines and their free O-methylated metabolites over 7 days of room temperature storage. Stabilisation with HCl was compared with ethylenediaminetetraacetic acid/metabisulphite and monobasic citric acid. Catecholamines and metabolites were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Free catecholamines and their O-methylated metabolites were stable in acidic urine samples over 7 days of room temperature storage, independent of the presence or absence of any stabilisation method. In contrast, free catecholamines, but not the free O-methylated metabolites, showed rapid degradation within 24 h and continuing degradation over 7 days in urine samples with an alkaline pH. Adjustment of alkaline urine samples to a pH of 3-5 with HCl or 4.8-5.4 with citric acid completely blocked degradation of catecholamines. Ethylenediaminetetraacetic acid/metabisulphite, although reducing the extent of degradation of catecholamines in alkaline urine, was largely ineffectual as a stabiliser. Citric acid is equally effective as HCl for stabilisation of urinary free catecholamines and minimises hazards associated with use of strong inorganic acids while avoiding deconjugation of sulphate-conjugated metabolites during simultaneous LC-MS/MS measurements of free catecholamines and their free O-methylated metabolites.

  9. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    PubMed

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  10. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites.

    PubMed

    Xie, Li; Chen, Liqin; Gu, Pan; Wei, Lanlan; Kang, Xuejun

    2018-03-01

    The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a

  11. Plasma levels of catecholamine metabolites predict the response to sulpiride or fluvoxamine in major depression.

    PubMed

    Ueda, N; Yoshimura, R; Shinkai, K; Nakamura, J

    2002-09-01

    We investigated the relationships between the changes in plasma catecholamine metabolites obtained from depressed patients before and after administration of sulpiride, a benzamide compound, or fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), and between clinical responses to treatment with each of these drugs. Responders to sulpiride had significantly lower plasma homovanillic acid (pHVA) levels before administration of sulpiride than did non-responders or controls (responders: 4.5 +/- 3.1 ng/ml, non-responders: 11.1 +/- 5.9 ng/ml, controls: 10.9 +/- 5.3 ng/ml). Positive relationships were observed between changes in pHVA levels and improvement rates in the 17-item Hamilton Depression Rating Scale (Ham-D). In contrast, responders to fluvoxamine had significantly higher plasma free 3-methoxy-4-hydroxyphenylglycol (pMHPG) levels before administration of fluvoxamine than did non-responders or controls (responders: 8.5 +/- 1.8 ng/ml, non-responders: 5.9 +/- 2.I ng/ml, controls: 5.2 +/- 2.9 ng/ml). Negative relationships were observed between changes in pMHPG levels and improvement rates in Ham-D. These results suggest that lower pretreatment pHVA levels and higher pretreatment levels of pMHPG might be predictors of response to sulpiride and fluvoxamine, respectively, and that sulpiride might produce a functional increase in the dopaminergic system, resulting in improvement in some depressive symptoms; fluvoxamine, on the other hand, might produce a functional decrease in the noradrenergic system via serotonergic neurons, resulting in improvement of those symptoms.

  12. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    PubMed Central

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  13. Evaluation of the effects of zilpateral hydrochloride supplementation on catecholamin response and other blood metabolites following a combined corticotropin releasing hormone and vasopressin challenge

    USDA-ARS?s Scientific Manuscript database

    The stress response of cattle supplemented with zilpaterol hydrochloride (ZH) has become a topic due to anecdotal claims of supplemented cattle responding poorly to stress. This study was designed to determine if differences exist in the catecholamine and blood metabolite response of ZH-supplemente...

  14. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    PubMed

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.

    PubMed

    Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K

    2001-12-01

    The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.

  16. Serotonergic Neurotoxic Thioether Metabolites of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”): Synthesis, Isolation and Characterization of Diastereoisomers

    PubMed Central

    Pizarro, Nieves; de la Torre, Rafael; Joglar, Jesús; Okumura, Noriko; Perfetti, Ximena; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a synthetic recreational drug of abuse that produces long-term toxicity associated with the degeneration of serotonergic nerve terminals. In various animal models direct administration of MDMA into the brain fails to reproduce the serotonergic neurotoxicity, implying a requirement for the systemic metabolism and bioactivation of MDMA. Catechol-thioether metabolites of MDMA, formed via oxidation of 3,4-dihydroxymetamphetamine and 3,4-dihydroxyamphetamine (HHMA and HHA) and subsequent conjugation with glutathione (GSH), are selective serotonergic neurotoxicants when administered directly into brain. Moreover, following systemic administration of MDMA, the thioether adducts are present in rat brain dialysate. MDMA contains a stereogenic center, and is consumed as a racemate. Interestingly, different pharmacological properties have been attributed to the two enantiomers, (S)-MDMA being the most active in the central nervous system and responsible for the entactogenic effects, and most likely also for the neurodegeneration. The present study focused on the synthesis and stereochemical analysis of the neurotoxic MDMA thioether metabolites, 5-(glutathion-S-yl)-HHMA, 5-(N-acetylcysteine-S-yl)-HHMA, 2,5-bis-(glutathion-S-yl)-HHMA and 2,5-bis-(N-acetylcysteine-S-yl)-HHMA. Both enzymatic and electrochemical syntheses were explored, and methodologies for analytical and semi-preparative diastereoisomeric separation of MDMA thioether conjugates by HPLC-CEAS and HPLC-UV respectively were developed. Synthesis, diastereoisomeric separation, and unequivocal identification of the thioether conjugates of MDMA provide the chemical tools necessary for appropriate toxicological and metabolic studies on MDMA metabolites contributing to its neurotoxicity. PMID:19548351

  17. Catecholamines - urine

    MedlinePlus

    Dopamine - urine test; Epinephrine - urine test; Adrenalin - urine test; Urine metanephrine; Normetanephrine; Norepinephrine - urine test; Urine catecholamines; VMA; HVA; Metanephrine; Homovanillic ...

  18. High-performance Liquid Chromatography Measured Metabolites of Endogenous Catecholamines and Their Relations to Chronic Kidney Disease and High Blood Pressure in Heart Transplant Recipients.

    PubMed

    Wasilewski, G; Przybylowski, P; Wilusz, M; Sztefko, K; Janik, Ł; Koc-Żórawska, E; Malyszko, J

    2016-06-01

    Patients after solid organ transplantation, especially heart and kidneys, are prone to be hypertensive. Recently chronic kidney disease and renalase metabolism of endogenous catecholamines are thought to make major contribution to the pathogenesis of hypertension. We analyzed 75 heart recipients (80% male, 20% female), medium age 54.9 years (range, 25-75) at 0.5 to 22 years after heart transplantation (median, 10.74). Diagnosis of hypertension was made on the basis of ambulatory blood pressure monitoring. Complete blood count, urea, creatinine, estimated glomerular filtration rate (eGFR), renalase in serum, and levels of metanefrine, normetanefrine, and 3-metoxytyramine in 24-hour urine collection calculated with a high-performance liquid chromatography were recorded. Urine endogenous catecholamine metabolites were estimated according to creatinine clearance. Normetanefrine was correlated with age (r = 0.27; P < .05), urea (r = 0.64; P < .01), creatinine (r = 0.6; P < .01), eGFR (r = -0.51; P < .01), renalase (r = 0.5; P < .01), and diastolic blood pressure (r = 0.26; P < .05). Metanefrine was correlated with urea (r = 0.43; P < .01), creatinine (0.32; P < .01), eGFR (r = -0.4; P < .01), renalase (r = 0.34; P < .05), height (r = -0.26; P < .05), weight (r = -0.23; P < .05), and time after heart transplantation (r = 0.27; P < .05). 3-Metoxytyramine was correlated with urea (r = 0.43; P < .01), creatinine (r = 0.32; P < .01), and the eGFR (r = -0.24; P < .05). Creatinine was correlated with age (r = 0.36; P < .01), diastolic blood pressure (r = 0.26; P < .05), time after heart transplantation (r = 0.24; P < .05), and renalase (r = 0.69; P < .01). Systolic blood pressure was correlated with proteinuria (r = 0.26; P < .05). Chronic kidney disease and concomitant hypertension are the most prevalent comorbidities in the population of heart transplant recipients. Urine catecholamine metabolites were related to kidney

  19. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder.

    PubMed

    Meier, Timothy B; Drevets, Wayne C; Wurfel, Brent E; Ford, Bart N; Morris, Harvey M; Victor, Teresa A; Bodurka, Jerzy; Teague, T Kent; Dantzer, Robert; Savitz, Jonathan

    2016-03-01

    Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0

  20. (1)H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites.

    PubMed

    Harting, Inga; Boy, Nikolas; Heringer, Jana; Seitz, Angelika; Bendszus, Martin; Pouwels, Petra J W; Kölker, Stefan

    2015-09-01

    In glutaric aciduria type 1 (GA1) the neurotoxic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) accumulate within the brain. Due to limited efflux across the blood-brain-barrier biochemical monitoring of intracerebrally accumulating toxic metabolites is as yet not possible. To investigate brain metabolic patterns in glutaric aciduria type 1 using (1)H magnetic resonance spectroscopy ((1)H-MRS) with focus on detecting the disease-related neurotoxic metabolites GA and 3-OH-GA. Short echo time (1)H-MRS was performed in 13 treated metabolically stable patients. Twenty-one white matter and 16 basal ganglia spectra from 12 patients (age range 7 months - 22 years) were included. Subgroups based on age, biochemical phenotype and/or associated MRI changes were compared with control spectra. GA was elevated in white matter of patients. 3-OH-GA was elevated in white matter of older patients with associated signal changes on MRI, which was structurally characterized by decreased creatine and phosphocreatine (tCr) and elevated choline (Cho). Metabolite changes differed with biochemical phenotype and disease duration: Low excretors with up to 30% residual enzyme activity had only mildly, non-significantly elevated GA and mildly subnormal N-acetylaspartate (tNAA). High excretors with complete lack of enzyme activity had significantly increased GA, tNAA was mildly subnormal in younger and decreased in older high excretors. GA and 3-OH-GA are detectable by in vivo (1)H-MRS, which might finally allow biochemical follow-up monitoring of intracerebrally accumulating neurotoxic metabolites in GA1. A high excreting phenotype appears to be a risk factor for cerebral GA accumulation and progressive neuroaxonal compromise despite a similar clinical course in younger high and low excreting patients. This might have consequences for long-term outcome.

  1. Brain Levels of the Neurotoxic Pyridinium Metabolite HPP+ and Extrapyramidal Symptoms in Haloperidol-Treated Mice

    PubMed Central

    Crowley, James J.; Ashraf-Khorassani, Mehdi; Castagnoli, Neal; Sullivan, Patrick F.

    2013-01-01

    The typical antipsychotic haloperidol is a highly effective treatment for schizophrenia but its use is limited by a number of serious, and often irreversible, motor side effects. These adverse drug reactions, termed extrapyramidal syndromes (EPS), result from an unknown pathophysiological mechanism. One theory relates to the observation that the haloperidol metabolite HPP+ (4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium) is structurally similar to MPP+ (1-methyl-4-phenylpyridinium), a neurotoxin responsible for an irreversible neurodegenerative condition similar to Parkinson's disease. To determine whether HPP+ contributes to haloperidol-induced EPS, we measured brain HPP+ and haloperidol levels in strains of mice at high (C57BL/6J and NZO/HILtJ) and low (BALB/cByJ and PWK/PhJ) liability to haloperidol-induced EPS following chronic treatment (7–10 adult male mice per strain). Brain levels of HPP+ and the ratio of HPP+ to haloperidol were not significantly different between the haloperidol-sensitive and haloperidol-resistant strain groups (P = 0.50). Within each group, however, strain differences were seen (P < 0.01), indicating that genetic variation regulating steady-state HPP+ levels exists. Since the HPP+ levels that we observed in mouse brain overlap the range of those detected in post-mortem human brains following chronic haloperidol treatment, the findings from this study are physiologically relevant to humans. The results suggest that strain differences in steady-state HPP+ levels do not explain sensitivity to haloperidol-induced EPS in the mice we studied. PMID:24107597

  2. Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells.

    PubMed

    Dingemans, Milou M L; de Groot, Aart; van Kleef, Regina G D M; Bergman, Ake; van den Berg, Martin; Vijverberg, Henk P M; Westerink, Remco H S

    2008-05-01

    Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. Our objective was to investigate the effects of a hydroxylated metabolite of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+]i) and vesicular catecholamine release in PC12 cells. We measured vesicular catecholamine release and [Ca2+]i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively. Acute exposure of PC12 cells to 6-OH-BDE-47 (5 microM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+]i, which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 microM). An additional late increase in [Ca2+]i was often observed at > or =1 microM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 microM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria. The hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+]i cannot be ruled out.

  3. Relationships between serum brain-derived neurotrophic factor, plasma catecholamine metabolites, cytokines, cognitive function and clinical symptoms in Japanese patients with chronic schizophrenia treated with atypical antipsychotic monotherapy.

    PubMed

    Hori, Hikaru; Yoshimura, Reiji; Katsuki, Asuka; Atake, Kiyokazu; Igata, Ryohei; Konishi, Yuki; Nakamura, Jun

    2017-08-01

    Catecholamines, brain-derived neurotrophic factor (BDNF) and cytokines may be involved in the pathophysiology of schizophrenia. The aim of this study was to examine the associations between serum BDNF levels, plasma catecholamine metablolites, cytokines and the cognitive functions of patients with schizophrenia treated with atypical antipsychotic monotherapy. One hundred and forty-six patients with schizophrenia and 51 age- and sex-matched healthy controls were examined for peripheral biological markers and neurocognitive test. There were positive correlations between serum BDNF levels and scores for verbal memory and attention and processing speed as well as between serum BDNF levels and negative symptoms. Furthermore, there was a negative correlation between the plasma homovanillic acid (HVA) level and motor function and a positive correlation between the plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) level and attention and processing speed. There were no significant correlations between interleukin-6 or tumour necrosis factor alpha and cognitive function. Moreover, there were no significant correlations between the plasma levels of HVA, MHPG, cytokines and clinical symptoms. Serum BDNF levels are positively related to the impairment of verbal memory and attention, plasma HVA levels are positively related to motor function, and plasma MHPG levels are positively related to attention in patients with schizophrenia.

  4. Amphetamine-metabolites of deprenyl involved in protection against neurotoxicity induced by MPTP and 2'-methyl-MPTP.

    PubMed

    Sziráki, I; Kardos, V; Patthy, M; Pátfalusi, M; Gaál, J; Solti, M; Kollár, E; Singer, J

    1994-01-01

    The ability of 1-deprenyl to protect against the parkinsonian effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been attributed to the inhibition of conversion of MPTP to MPP+ (1-methyl-4-phenylpyridinium) catalyzed by MAO-B. We report here that deprenyl-treatment in mice has an additional neuroprotective element associated with the rapid metabolization of 1-deprenyl to 1-methamphetamine and 1-amphetamine. 1-Methamphetamine and 1-amphetamine inhibit MPP(+)-uptake into striatal synaptosomes prepared from rats. Post-treatment by 1-deprenyl, 1-methamphetamine, 1-amphetamine (at times when MPTP is no longer present in the striatum of mice) protects against neurotoxicity in C57BL mice by blocking the uptake of MPP+ into dopaminergic neurons, and even against the neurotoxicity induced by 2'CH3-MPTP, which is partly bioactivated by MAO-A. These findings may have clinical implications since deprenyl has recently been found to delay the progression of Parkinson's disease.

  5. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat.

    PubMed

    Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E

    2017-09-01

    We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.

  6. PHEOCHROMOCYTOMA: A CATECHOLAMINE AND OXIDATIVE STRESS DISORDER

    PubMed Central

    Pacak, Karel

    2012-01-01

    The WHO classification of endocrine tumors defines pheochromocytoma as a tumor arising from chromaffin cells in the adrenal medulla — an intra-adrenal paraganglioma. Closely related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal paragangliomas. Almost all pheochromocytomas and paragangliomas produce catecholamines. The concentrations of catecholamines in pheochromocytoma tissues are enormous, potentially creating a volcano that can erupt at any time. Significant eruptions result in catecholamine storms called “attacks” or “spells”. Acute catecholamine crisis can strike unexpectedly, leaving traumatic memories of acute medical disaster that champions any intensive care unit. A very well-defined genotype-biochemical phenotype relationship exists, guiding proper and cost-effective genetic testing of patients with these tumors. Currently, the production of norepinephrine and epinephrine is optimally assessed by the measurement of their O-methylated metabolites, normetanephrine or metanephrine, respectively. Dopamine is a minor component, but some paragangliomas produce only this catecholamine or this together with norepinephrine. Methoxytyramine, the O-methylated metabolite of dopamine, is the best biochemical marker of these tumors. In those patients with equivocal biochemical results, a modified clonidine suppression test coupled with the measurement of plasma normetanephrine has recently been introduced. In addition to differences in catecholamine enzyme expression, the presence of either constitutive or regulated secretory pathways contributes further to the very unique mutation-dependent catecholamine production and release, resulting in various clinical presentations. Oxidative stress results from a significant imbalance between levels of prooxidants, generated during oxidative phosphorylation, and antioxidants. The gradual accumulation of prooxidants due to metabolic oxidative stress results in proto

  7. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    PubMed

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction

  8. Probing Mechanisms of Axonopathy. Part II: Protein Targets of 2,5-Hexanedione, the Neurotoxic Metabolite of the Aliphatic Solvent n-Hexane

    PubMed Central

    Tshala-Katumbay, Desire; Monterroso, Victor; Kayton, Robert; Lasarev, Michael; Sabri, Mohammad; Spencer, Peter

    2009-01-01

    Neuroprotein changes in the spinal cord of rodents with aliphatic γ-diketone axonopathy induced by 2,5-hexanedione (2,5-HD) are compared with those reported previously in aromatic γ-diketone–like axonopathy induced by 1,2-diacetylbenzene (1,2-DAB). Sprague-Dawley rats were treated intraperitoneally with 500 mg/kg/day 2,5-HD, equimolar doses of 2,3-hexanedione (negative control), or an equivalent amount of saline containing 50% dimethyl sulfoxide (vehicle), 5 days a week, for 3 weeks. Analysis of the lumbosacral proteome by 2-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry revealed 34 proteins markedly modified by 2,5-HD of which neurofilament triplet L, gelsolin, protein disulfide isomerase, glutathione S-transferase, nicotinamide adenine dinucleotide (reduced) dehydrogenase 1α, pyruvate kinase, and fatty acid synthase were also modified by 1,2-DAB. The expression of proteins involved in maintaining the physical integrity of the cytoskeleton or controlling the redox and protein-folding mechanisms was reduced, whereas that of proteins supporting energy metabolism was mainly increased. The similarity of the neuroproteomic patterns of 2,5-HD and 1,2-DAB axonopathy suggests common biomarkers and/or mechanisms of neurotoxicity associated with exposure to their parent chemicals, namely the industrial solvents n-hexane and 1,2-diethylbenzene, respectively. PMID:19033394

  9. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model.

    PubMed

    Nyakas, Csaba; Felszeghy, Klára; Szabó, Róbert; Keijser, Jan N; Luiten, Paul G M; Szombathelyi, Zsolt; Tihanyi, Károly

    2009-01-01

    Vinpocetine (ethyl-apovincaminate, Cavinton), a synthetic derivative of the Vinca minor alkaloid vincamine, has been used now for decades for prevention and treatment of cerebrovascular diseases predisposing to development of dementia. Both vinpocetine and its main metabolite cis-apovincaminic acid (cAVA) exert a neuroprotective type of action. Bilateral N-methyl-D-aspartate (NMDA)-induced neurodegeneration in the entorhinal cortex of rat was used as a dementia model to confirm the neuroprotective action of these compounds in vivo. NMDA-lesioned rats were treated 60 min before lesion and throughout 3 postoperative days with a 10 mg/kg intraperitoneal dose of vinpocetine or cAVA. Behavioral tests started after termination of drug treatment and consisted of novel object recognition, social discrimination, and spontaneous alternation in a Y-maze, and spatial learning in the Morris water maze. At the end of behavioral testing brains were perfused with fixative and the size of the excitotoxic neuronal lesion and that of microglial activation around the lesion were assayed quantitatively on brain sections immunostained for neuron-specific nuclear protein (NeuN) and integrin CD11b, respectively. Entorhinal NMDA lesions impaired recognition of novel objects and the new social partner, and suppressed spontaneous alternation and spatial learning performance in the Morris maze. Both vinpocetine and cAVA effectively attenuated the behavioral deficits, and significantly decreased lesion size and the region of microglia activation. Both lesion-induced attention deficit and learning disabilities were markedly alleviated by vinpocetine and cAVA. The morphological findings corroborated the behavioral observations and indicated reduced lesion size and microglia activation especially after vinpocetine treatment which supports an in vivo neuroprotective mode of action of vinpocitine and a less potent action of cAVA.

  10. Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients.

    PubMed

    Verly, Iedan R N; van Kuilenburg, André B P; Abeling, Nico G G M; Goorden, Susan M I; Fiocco, Marta; Vaz, Frédéric M; van Noesel, Max M; Zwaan, C Michel; Kaspers, GertJan L; Merks, Johannes H M; Caron, Huib N; Tytgat, Godelieve A M

    2017-02-01

    Neuroblastoma (NBL) accounts for 10% of the paediatric malignancies and is responsible for 15% of the paediatric cancer-related deaths. Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are most commonly analysed in urine of NBL patients. However, their diagnostic sensitivity is suboptimal (82%). Therefore, we performed in-depth analysis of the diagnostic sensitivity of a panel of urinary catecholamine metabolites. Retrospective study of a panel of 8 urinary catecholamine metabolites (VMA, HVA, 3-methoxytyramine [3MT], dopamine, epinephrine, metanephrine, norepinephrine and normetanephrine [NMN]) from 301 NBL patients at diagnosis. Special attention was given to subgroups, metaiodobenzylguanidine (MIBG) non-avid tumours and VMA/HVA negative patients. Elevated catecholamine metabolites, especially 3MT, correlated with nine out of 12 NBL characteristics such as stage, age, MYCN amplification, loss of heterozygosity for 1p and bone-marrow invasion. The combination of the classical markers VMA and HVA had a diagnostic sensitivity of 84%. NMN was the most sensitive single diagnostic metabolite with overall sensitivity of 89%. When all 8 metabolites were combined, a diagnostic sensitivity of 95% was achieved. Among the VMA and HVA negative patients, were also 29% with stage 4 disease, which usually had elevation of other catecholamine metabolites (93%). Diagnostic sensitivity for patients with MIBG non-avid tumour was improved from 33% (VMA and/or HVA) to 89% by measuring the panel. Our study demonstrates that analysis of a urinary catecholamine metabolite panel, comprising 8 metabolites, ensures the highest sensitivity to diagnose NBL patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders.

    PubMed

    Goldstein, David S; Kopin, Irwin J; Sharabi, Yehonatan

    2014-12-01

    Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis. Published by Elsevier Inc.

  12. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders☆

    PubMed Central

    Goldstein, David S.; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Several neurodegenerative diseases involve loss of catecholamine neurons—Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of “autotoxicity”—inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the “catecholaldehyde hypothesis” for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis. PMID:24945828

  13. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  14. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Abstract Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  15. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  16. Neurotoxicity and Behavior

    EPA Science Inventory

    Neurotoxicity is important to consider as a component of occupational and environmental safety and health programs. The failure to do so has contributed to a number of cases in which workers, consumers of manufactured products, and people exposed in the environment were irreparab...

  17. Neurotoxicity of Vanadium.

    PubMed

    Ngwa, Hilary Afeseh; Ay, Muhammet; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-01-01

    Vanadium (V) is a transition metal that presents in multiple oxidation states and numerous inorganic compounds and is also an ultra-trace element considered to be essential for most living organisms. Despite being one of the lightest metals, V offers high structural strength and good corrosion resistance and thus has been widely adopted for high-strength steel manufacturing. High doses of V exposure are toxic, and inhalation exposure to V adversely affects the respiratory system. The neurotoxicological properties of V are just beginning to be identified. Recent studies by our group and others demonstrate the neurotoxic potential of this metal in the nigrostriatal system and other parts of the central nervous system (CNS). The neurotoxic effects of V have been mainly attributed to its ability to induce the generation of reactive oxygen species (ROS). It is noteworthy that the neurotoxicity induced by occupational V exposure commonly occurs with co-exposure to other metals, especially manganese (Mn). This review focuses on the chemistry, pharmacology, toxicology, and neurotoxicity of V.

  18. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride.

    PubMed

    Swiercz, Radosław; Grzelińska, Zofia; Gralewicz, Sławomir; Wasowicz, Wojciech

    2009-01-01

    The aim of the study was to obtain quantitative data on the effect of inhalation exposure to benzalkonium chloride (BAC) on the concentration of catecholamines and their metabolites in selected brain structures. Additionally, concentration of corticosterone (CORT) in plasma was estimated. Wistar rats were subjected to a single (6-hour) or repeated (3 days, 6 h/day) exposure to BAC aerosol at ca. 30 mg/m3. The Waters integrated analytical system of HPLC was used to determine the plasma corticosterone. Qualitative and quantitative determinations of catecholamines and their metabolites: 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic (HVA) acids were performed with the use of the Waters integrity HPLC. The determinations have shown that in the BAC-exposed rats the plasma CORT concentration was several times higher than in the control rats. A significant increase of the concentration of dopamine (DA) (striatum and diencephalon) and noradrenaline (NA) (hippocampus and cerebellum) and a significant reduction of adrenaline (A) level (cortex, hippocampus, striatum and mesencephaloon) was found to occur in the brain of rats exposed to BAC compared to control. In the animals exposed to BAC, the concentration of DOPAC, a DA metabolite, was significantly reduced, but the change occurred mainly in the striatum. This resulted in a significant decrease of the DOPAC/DA and HVA/DA metabolic ratio in this structure. It is assumed that the alterations in the concentration of catecholamines and their metabolites in the BAC-exposed rats were related to the unexpectedly strong and persistent activation of the hypothalamo-pituitary-adrenocortical (HPA) axis evidenced by the high plasma CORT concentration.

  19. Intraoperative hypertensive crisis due to a catecholamine-secreting esthesioneuroblastoma.

    PubMed

    Salmasi, Vafi; Schiavi, Adam; Binder, Zev A; Ruzevick, Jacob; Orr, Brent A; Burger, Peter C; Ball, Douglas W; Blitz, Ari M; Koch, Wayne M; Ishii, Masaru; Gallia, Gary L

    2015-06-01

    Although uncommon, esthesioneuroblastomas may produce clinically significant amounts of catecholamines. We report a patient with a catecholamine-secreting esthesioneuroblastoma who developed an intraoperative hypertensive crisis. A patient with a history of hypertension was referred to our skull base center for management of a residual esthesioneuroblastoma. A staged endonasal endoscopic approach was planned. At the conclusion of the first stage, a hypertensive crisis occurred. Workup revealed elevated levels of serum and urinary catecholamines. The patient was treated with alpha adrenoceptor blockade before the second stage. Serum catecholamine levels after this second stage were normal. On immunohistochemical analysis, the tumor cells were found to be positive for tyrosine hydroxylase, the rate limiting enzyme in catecholamine synthesis, and achaete-scute homologue 1, a transcription factor essential in the development of olfactory and sympathetic neurons. Catecholamine production should be considered in the differential of unexpected extreme hypertension during surgical resection of esthesioneuroblastoma. © 2015 Wiley Periodicals, Inc.

  20. L-DOPA therapy interferes with urine catecholamine analysis in children with suspected neuroblastoma: a case series.

    PubMed

    Kelly, Alison U; Srivastava, Rajeev; Dow, Ellie; Davidson, D Fraser

    2017-09-01

    Neuroblastoma is the most common solid extracranial malignancy diagnosed in childhood. Clinical presentation is variable, and metastatic disease is common at diagnosis. Analyses of urinary catecholamines and their metabolites are commonly requested as a first-line investigation when clinical suspicion exists. Levodopa (L-Dopa) therapy is utilized as a treatment for a number of disorders in childhood, including Dopa-responsive dystonia. Neuroblastoma may mimic some of the clinical features of this disorder. L-Dopa can interfere with analysis of urinary catecholamines and their metabolites and complicate the interpretation of results. We present the cases of three children who were prescribed L-dopa at the time of analysis of urinary catecholamines and metabolites as a screen for neuroblastoma, but who did not have the disease. Comparison of their results with those from cases with true neuroblastoma reveal that it is impossible to reliably distinguish true neuroblastoma from L-Dopa therapy using these tests. We recommend that patients should be off L-dopa therapy, if possible when these tests are performed. These cases illustrate the importance of providing clinical details and drug history to the laboratory in order to avoid diagnostic confusion.

  1. Neurotoxic effects of ecstasy on the thalamus.

    PubMed

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; Ramsey, Nick F; Heeten, Gerard J den; van den Brink, Wim

    2008-10-01

    Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine, cocaine and cannabis as part of The Netherlands XTC Toxicity (NeXT) study. Effects of ecstasy and other substances were assessed with (1)H-magnetic resonance spectroscopy, diffusion tensor imaging, perfusion weighted imaging and [(123)I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane ([(123)I]beta-CIT) single photon emission computed tomography (serotonin transporters) in a sample (n=71) with broad variation in drug use, using multiple regression analyses. Ecstasy showed specific effects in the thalamus with decreased [(123)I]beta-CIT binding, suggesting serotonergic axonal damage; decreased fractional anisotropy, suggesting axonal loss; and increased cerebral blood volume probably caused by serotonin depletion. Ecstasy had no effect on brain metabolites and apparent diffusion coefficients. Converging evidence was found for a specific toxic effect of ecstasy on serotonergic axons in the thalamus.

  2. Intraoperative hypertensive crisis due to a catecholamine-secreting esthesioneuroblastoma

    PubMed Central

    Salmasi, Vafi; Schiavi, Adam; Binder, Zev A.; Ruzevick, Jacob; Orr, Brent A.; Burger, Peter C.; Ball, Douglas W.; Blitz, Ari M.; Koch, Wayne M.; Ishii, Masaru; Gallia, Gary L.

    2015-01-01

    Background Although uncommon, esthesioneuroblastomas may produce clinically significant amounts of catecholamines. Methods We report a patient with a catecholamine-secreting esthesioneuroblastoma who developed intraoperative hypertensive crisis. Results A patient with history of hypertension was referred to our skull base center for management of a residual esthesioneuroblastoma. A staged endonasal endoscopic approach was planned. At the conclusion of the first stage, a hypertensive crisis occurred. Work-up revealed elevated levels of serum and urinary catecholamines. The patient was treated with alpha adrenoceptor blockade prior to the second stage. Serum catecholamine levels following this second stage were normal. On immunohistochemical analysis, the tumor cells were found to be positive for tyrosine hydroxylase, the rate limiting enzyme in cathecholamine synthesis, and achaete-scute homologue 1, a transcription factor essential in the development of olfactory and sympathetic neurons. Conclusion Catecholamine production should be considered in the differential of unexpected extreme hypertension during surgical resection of esthesioneuroblastoma. PMID:25352487

  3. Neurotoxicity and risk assessment of brominated and alternative flame retardants.

    PubMed

    Hendriks, Hester S; Westerink, Remco H S

    2015-01-01

    Brominated flame retardants (BFRs) are widely used chemicals that prevent or slow the onset and spreading of fire. Unfortunately, many of these compounds pose serious threats for human health and the environment, indicating an urgent need for safe(r) and less persistent alternative flame retardants (AFRs). As previous research identified the nervous system as a sensitive target organ, the neurotoxicity of past and present flame retardants is reviewed. First, an overview of the neurotoxicity of BFRs in humans and experimental animals is provided, and some common in vitro neurotoxic mechanisms of action are discussed. The combined epidemiological and toxicological studies clearly underline the need for replacing BFRs. Many potentially suitable AFRs are already in use, despite the absence of a full profile of their environmental behavior and toxicological properties. To prioritize the suitability of some selected halogenated and non-halogenated organophosphorous flame retardants and inorganic halogen-free flame retardants, the available neurotoxic data of these AFRs are discussed. The suitability of the AFRs is rank-ordered and combined with human exposure data (serum concentrations, breast milk concentrations and house dust concentrations) and physicochemical properties (useful to predict e.g. bioavailability and persistence in the environment) for a first semi-quantitative risk assessment of the AFRs. As can be concluded from the reviewed data, several BFRs and AFRs share some neurotoxic effects and modes of action. Moreover, the available neurotoxicity data indicate that some AFRs may be suitable substitutes for BFRs. However, proper risk assessment is hampered by an overall scarcity of data, particularly regarding environmental persistence, human exposure levels, and the formation of breakdown products and possible metabolites as well as their toxicity. Until these data gaps in environmental behavioral and toxicological profiles are filled, large scale use of

  4. Neurotoxic snakes of the Americas

    PubMed Central

    Rolan, Terry D.

    2015-01-01

    Abstract Snake envenomation is a global problem and often a matter of life or death. Emergency treatment is not always readily available or effective. There are numerous neurotoxic snakes in the Americas, chiefly elapids; some crotalids have also evolved neurotoxic venom. The variability of neurotoxins found in snake venom within the same species makes development and choice of proper antivenom a major challenge that has not been completely addressed. This article reviews the epidemiology, clinical effects, and current treatment of neurotoxic snake envenomation in the Americas. PMID:29443174

  5. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  6. Guidelines for Neurotoxicity Risk Assessment

    EPA Pesticide Factsheets

    These Guidelines set forth principles and procedures to guide EPA scientists in evaluating environmental contaminants that may pose neurotoxic risks, and inform Agency decision makers and the public about these procedures.

  7. Catecholamines and obesity: effects of exercise and training.

    PubMed

    Zouhal, Hassane; Lemoine-Morel, Sophie; Mathieu, Marie-Eve; Casazza, Gretchen A; Jabbour, Georges

    2013-07-01

    Excess body fat in obese individuals can affect the catecholamine response to various stimuli. Indeed, several studies report lower plasma catecholamine concentrations in obese subjects compared with nonobese subjects in response to submaximal or maximal exercise. This low catecholamine response reflects decreased sympathetic nervous system (SNS) activity. Although the relationship between the SNS and obesity is not well established, some authors have suggested that low SNS activity may contribute to the development of obesity. A decreased catecholamine response could affect α- and β-adrenoceptor sensitivity in adipose tissue, reducing lipolysis and increasing fat stores. Few studies have examined the effects of obesity on the plasma catecholamine response at rest and during exercise in adolescents. It is interesting to note that the effects of age, sex, and degree of obesity and the impact of very intense exercise on the catecholamine response have not yet been well examined. Moreover, the hormonal concentrations measured in the majority of obesity studies did not take into account plasma volume changes. This methodological factor can also undoubtedly influence plasma catecholamine results.

  8. Neurotoxic Shellfish Poisoning

    PubMed Central

    Watkins, Sharon M.; Reich, Andrew; Fleming, Lora E.; Hammond, Roberta

    2008-01-01

    Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented. PMID:19005578

  9. Phenytoin: neuroprotection or neurotoxicity?

    PubMed

    Keppel Hesselink, Jan M; Kopsky, David J

    2017-06-01

    Phenytoin is an 80-year young molecule and new indications are still emerging. The neuroprotective potential of phenytoin has been evaluated for decades. Recently, a positive phase II trial supported its further development in the treatment of optic neuritis in multiple sclerosis. In 1942, however, peripheral neuritis was first reported to be an adverse event of phenytoin, and since then a small but steady stream of publications discussed peripheral polyneuropathy as being a possible adverse event of phenytoin. We have reviewed the literature and concluded there is some supportive evidence for a reversible polyneuropathy after the oral use of phenytoin, though with no evidence for clear neurotoxicity on the level of peripheral nerves. This is probably due to the fact that the pharmacological effects of phenytoin, based on the stabilizing effect of the voltage-gated sodium channels, make impairment of nerve conduction in asymptomatic and symptomatic reversible polyneuropathies plausible. Clear toxically-induced phenytoin-related polyneuropathies, however, are extremely rare and are always related to high dose or high plasma levels of phenytoin, mostly developing during many years of therapy. We could only find one case of a probable reversible chronic phenytoin intoxication resulting in a biopsy proven axonal atrophy with secondary demyelination and signs of remyelination. All case series and case reports published are insufficient in detail to prove a clear causal relation between phenytoin intake and the induction of a peripheral polyneuropathy. Phenytoin does not lead to irreversible toxicity of the peripheral nerves and might, on the other hand, have neuroprotective properties.

  10. Urban commuting: crowdedness and catecholamine excretion.

    PubMed

    Lundberg, U

    1976-09-01

    Male passengers regularly commuting by train on the Stockholm-Nynäshamn line were investigated on two morning trips to Stockholm. These trips were made under different levels of crowding, before (Trip 1) and after (Trip 2) a period of gas rationing during the oil crisis in 1974. However, seats were available for almost everyone during both trips. One group of subjects boarded the train at its first stop (Nynäshamn), the other midway on its route (Västerhaninge). Physiological reactions were assessed from the rate of catecholamine excretion in urine and subjective experiences were measured by self-ratings. The results showed that feelings of discomfort grew more intense as the train approached Stockholm and the number of passengers increased. Perceived crowdedness increased as the square of the number of passengers. During both trips the subjects from Nynäshamn (longer trip) had a lower rate of adrenaline and noradrenaline excretion on the train than those from Västerhaninge. Furthermore, it was found that the rate of adrenaline excretion was higher for both groups during Trip 2, when the train was more crowded. The results support previous findings indicating that the stress involved in travelling by train varies more with the social and ecological conditions of the trip than with its length or duration.

  11. Phenotypic screening for developmental neurotoxicity ...

    EPA Pesticide Factsheets

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemicals for the potential to affect the developing brain are being explored. Typically, HTP screening uses biochemical and molecular assays to detect the interaction of a chemical with a known target or molecular initiating event (e.g., the mechanism of action). For developmental neurotoxicity, however, the mechanism(s) is often unknown. Thus, we have developed assays for detecting chemical effects on the key events of neurodevelopment at the cellular level (e.g., proliferation, differentiation, neurite growth, synaptogenesis, network formation). Cell-based assays provide a test system at a level of biological complexity that encompasses many potential neurotoxic mechanisms. For example, phenotypic assessment of neurite outgrowth at the cellular level can detect chemicals that target kinases, ion channels, or esterases at the molecular level. The results from cell-based assays can be placed in a conceptual framework using an Adverse Outcome Pathway (AOP) which links molecular, cellular, and organ level effects with apical measures of developmental neurotoxicity. Testing a wide range of concentrations allows for the distinction between selective effects on neurodevelopmental and non-specific

  12. Fatigue and stress studies : an improved semi-automated procedure for flurometric determination of plasma catecholamines.

    DOT National Transportation Integrated Search

    1966-04-01

    A semiautomated technique is described for the estimation of total catecholamines in plasma by the trihydroxyindole procedure. The method utilizes conventional alumina-column chromatography for isolation of the amines. Catecholamine oxidation, tautom...

  13. Phentolamine tests and catecholamine levels in normotensive CVA patients.

    PubMed

    Favazza, A R

    1974-11-01

    Ten normotensive patients diagnosed as having a CVA had Regitine tests and urinary VMA and catecholamine determinations during the first day of hospitalization. The VMA and catecholamine levels were all within normal limits (except for one elevated VMA level) but did not correlate well with each other. The average response to phentolamine was an average drop in blood pressure of 30mm. Hg systolic and 19 mm. Hg diastolic. Mechanisms by which hypertensive states or cerebral damage might effect blood pressure are discussed. It is suggested that CNS damage might induce a vasolabile or hypersensitive state via connections and consequent alterations in the autonomic vasomotor system.

  14. Reversible catecholamine-induced cardiomyopathy due to pheochromocytoma: case report.

    PubMed

    Satendra, Milan; de Jesus, Cláudia; Bordalo e Sá, Armando L; Rosário, Luís; Rocha, José; Bicha Castelo, Henrique; Correia, Maria José; Nunes Diogo, António

    2014-03-01

    Pheochromocytoma is a tumor originating from chromaffin tissue. It commonly presents with symptoms and signs of catecholamine excess, such as hypertension, tachycardia, headache and sweating. Cardiovascular manifestations include catecholamine-induced cardiomyopathy, which may present as severe left ventricular dysfunction and congestive heart failure. We report a case of pheochromocytoma which was diagnosed following investigation of dilated cardiomyopathy. We highlight the dramatic symptomatic improvement and reversal of cardiomyopathy, with recovery of left ventricular function after treatment. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. Occupational Neurotoxic Diseases in Taiwan

    PubMed Central

    Liu, Chi-Hung; Huang, Chu-Yun

    2012-01-01

    Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization. PMID:23251841

  16. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  17. Developmental neurotoxicity of industrial chemicals.

    PubMed

    Grandjean, P; Landrigan, P J

    2006-12-16

    Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.

  18. Local Anesthetic-Induced Neurotoxicity.

    PubMed

    Verlinde, Mark; Hollmann, Markus W; Stevens, Markus F; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-03-04

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.

  19. Multiple mechanisms of PCB neurotoxicity

    SciTech Connect

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A.

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be causedmore » by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.« less

  20. Reduced catecholamine response to exercise in amenorrheic athletes

    USDA-ARS?s Scientific Manuscript database

    Studies have found an array of endocrine disturbances related to energy deprivation in women with functional hypothalamic amenorrhea. Purpose: We examined the catecholamine response to exercise in five eumenorrheic (EU) and five amenorrheic (AM) athletes, matched by age (mean T SEM: EU = 29.8 T 2.5 ...

  1. 21 CFR 862.1165 - Catecholamines (total) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catecholamines (total) test system. 862.1165 Section 862.1165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  2. 21 CFR 862.1165 - Catecholamines (total) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Catecholamines (total) test system. 862.1165 Section 862.1165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  3. 21 CFR 862.1165 - Catecholamines (total) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Catecholamines (total) test system. 862.1165 Section 862.1165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  4. 21 CFR 862.1165 - Catecholamines (total) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Catecholamines (total) test system. 862.1165 Section 862.1165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  5. 21 CFR 862.1165 - Catecholamines (total) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Catecholamines (total) test system. 862.1165 Section 862.1165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  6. Early life permethrin exposure leads to hypervitaminosis D, nitric oxide and catecholamines impairment.

    PubMed

    Fedeli, Donatella; Carloni, Manuel; Nasuti, Cinzia; Gambini, Anna; Scocco, Vitangelo; Gabbianelli, Rosita

    2013-09-01

    The aim of this study is to gain more knowledge on the impact of early life pesticide exposure on premature aging. The effect of a low dose of the insecticide permethrin administered to rats during early life (1/50 LD50, from 6th to 21st day of life) was analyzed by measuring some metabolites in plasma and urine of 500-day-old animals. Significant differences in early life treated rats compared to the control group were found in the plasma levels of Ca(++), Na(+), 25-hydroxy-vitamin D, adrenaline, noradrenaline, nitric oxide, cholesterol and urea while in urine only Na(+) content was different. These results add information on the impact of permethrin during the neonatal period, supporting the evidence that early life environmental exposure to xenobiotics has long-term effects, inducing modifications in adulthood that can be revealed by the analysis of some macroelements, metabolites and catecholamines in plasma, when rats are 500 days old. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. GLUCOCORTICOID TREATMENT—EFFECT ON ADRENAL MEDULLARY CATECHOLAMINE PRODUCTION

    PubMed Central

    Sharara-Chami, Rana I.; Joachim, Maria; Pacak, Karel; Majzoub, Joseph A.

    2016-01-01

    Glucocorticoid and epinephrine are important stress hormones secreted from the adrenal gland during critical illness. Adrenal glucocorticoid stimulates phenylethanolamine N-methyltransferase (PNMT) to convert norepinephrine to epinephrine in the adrenal medulla. Glucocorticoid is sometimes used in catecholamine-resistant septic shock in critically ill patients. By suppressing adrenal glucocorticoid production, glucocorticoid therapy might also reduce the secretion of epinephrine during stress. To investigate this, we used a mouse model subjected to glucocorticoid therapy under basal conditions (experiment 1) and during stress (experiment 2). In experiment 1, pellets containing 0% to 8% dexamethasone were implanted subcutaneously in mice for 4 weeks. In experiment 2, animals received 14 days of intraperitoneal injections of normal saline, low- or high-dose dexamethasone, followed by 2 h of restraint. We found that in experiment 1, adrenal corticosterone did not differ with dexamethasone treatment. Phenylethanolamine N-methyltransferase messenger RNA levels and adrenal catecholamines were highest in the 8% dexamethasone group. Compared with experiment 1, restrained control mice in experiment 2 had high adrenal corticosterone, which decreased with dexamethasone. Phenylethanolamine N-methyltransferase messenger RNA content doubled with restraint but decreased with dexamethasone treatment. As in experiment 1, adrenal catecholamine content increased significantly with dexamethasone treatment. We conclude that without stress, when adrenocorticotropic hormone is low, high doses of exogenous dexamethasone stimulate PNMT and catecholamine synthesis, likely independently of adrenal corticosterone concentration. After stress, adrenocorticotropic hormone levels are elevated, and exogenous dexamethasone suppresses endogenous corticosterone and PNMT production. Nonetheless, catecholamines increase, possibly due to direct neural stimulation, which may override the hormonal

  8. Strategies for enhancing catecholamine-mediated neurotransmission

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.

    1992-01-01

    Major findings made during this project period included the following observations: changes in tyrosine availability do affect brain dopamine release, as assessed by in vivo microdialysis, but that neuronal feedback mechanisms limit the durations of this effect except when dopaminergic neurotransmission has been deficient; the circulating hormone TRH markedly stimulates brain dopamine release, an effect probably mediated by its diketopiperazine metabolite; the amount of circulating L-dopa which enters the brain is both enhanced by carbohydrate consumption and suppressed by protein intake (both nutritional effects can be damaging, inasmuch as a sudden rush of L-dopa into the brain can facilitate dyskinesias, while the inhibition of brain L-dopa uptake by proteins suppresses its conversion to brain dopamine; an appropriate mixture of dietary proteins and carbohydrates can obviate both effects); serotonin release from superfused hypothalamic slices is a linear function of available tryptophan levels throughout the normal dynamic range; the daily rhythm in plasma melatonin levels is abnormal both in the sudden infant death syndrome and in women with secondary amenorrhea; tyrosine can potentiate the anorectic effects of widely-used sympathomimetic drugs; newly-described COMT inhibitors can enhance brain dopamine release in vivo; and a cell culture system, based on Y-79 (retinoblast) cells, exists in which melatonin reliably suppresses dopamine release.

  9. RISK CHARACTERIZATION OF PERSISTENT NEUROTOXIC CONTAMINANTS

    EPA Science Inventory

    Neurotoxicity is an adverse change in structure or function of the central and/or peripheral nervous system following exposure to a chemical, physical, or biological agent. Thousands of chemicals have been estimated to have neurotoxic potential. Many persistent and bioaccumulat...

  10. Neurotoxicity

    MedlinePlus

    ... disorders such as Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and dementia. Also being studied are the mechanisms ... disorders such as Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and dementia. Also being studied are the mechanisms ...

  11. Leisure Activities, Caregiving Demands, and Catecholamine Levels in Dementia Caregivers

    PubMed Central

    Chattillion, Elizabeth A.; Mausbach, Brent T.; Roepke, Susan K.; von Känel, Roland; Mills, Paul J.; Dimsdale, Joel E.; Allison, Matthew; Ziegler, Michael G.; Patterson, Thomas L.; Ancoli-Israel, Sonia; Grant, Igor

    2012-01-01

    This study examined whether satisfaction from leisure activities moderates the relationship between caregiving demands (i.e., hours per day spent caring for a spouse with dementia) and resting levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). Spousal caregivers (N=107; mean age 73.95±8.12 years) were assessed in home for plasma levels of NE and EPI, amount of care provided, and leisure satisfaction. Regression was used to determine whether leisure satisfaction moderated the relationship between hours providing care per day and catecholamine levels. A significant interaction was found between hours caregiving and leisure satisfaction for NE, but not for EPI. Post hoc regressions were conducted for both NE and EPI. At low leisure satisfaction, time spent caring for a spouse was positively associated with plasma NE (β = .41; p = .005) and EPI (β = .44; p = .003). In contrast, at high levels of satisfaction, time caregiving was not significantly associated with plasma NE (β = −.08; p = .57) or EPI (β = .23; p = .12). These findings suggest that leisure satisfaction may protect caregivers from increases in catecholamines, which have been implicated in cardiovascular risk. Further support for these findings may impact psychological treatments for distressed caregivers. PMID:22149759

  12. Prevention moderates associations between family risks and youth catecholamine levels.

    PubMed

    Brody, Gene H; Yu, Tianyi; Chen, Edith; Miller, Gregory E

    2014-11-01

    The purpose of this study was to establish, using a quasi-experimental design, whether 2 family risk factors, parental psychological dysfunction and nonsupportive parenting, during preadolescence could longitudinally predict elevated sympathetic nervous system (SNS) activity 9 years later, and to determine whether participation in an efficacious family centered prevention program could moderate these associations if they emerged. Rural African American preadolescents (N = 476) were assigned randomly to the Strong African American Families (SAAF) program or to a control condition. When youths were 11 years of age (M = 11.2 years), primary caregivers provided data on their own depressive symptoms and self-esteem, and youths provided data on their receipt of nonsupportive parenting. When the youths were 20 years of age, indicators of SNS activity, the catecholamines epinephrine and norepinephrine, were assayed from their overnight urine voids. Parental psychological dysfunction and nonsupportive parenting forecast elevated catecholamine levels for youths in the control condition, but not for those in the SAAF condition. The demonstration that a prevention program can induce reduction of catecholamine levels is important from both theoretical and public health perspectives, because it shows that the developmental progression from family risk factors to heightened sympathetic nervous system activity is not immutable. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Intracoronary infusion of catecholamines causes focal arrhythmias in pigs.

    PubMed

    Doppalapudi, Harish; Jin, Qi; Dosdall, Derek J; Qin, Hao; Walcott, Gregory P; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E; Huang, Jian

    2008-09-01

    Acute ischemia causes myriad changes including increased catecholamines. We tested the hypothesis that elevated catecholamines alone are arrhythmogenic. A 504 electrode sock was placed over both ventricles in six open-chest pigs. During control infusion of saline through a catheter in the left anterior descending coronary artery (LAD), no sustained arrhythmias occurred, and the refractory period estimated by the activation recovery interval (ARI) was 175 +/- 14 ms in the LAD bed below the catheter. After infusion of isoproterenol at 0.1 microg/kg/min through the catheter, the ARI in this bed was significantly reduced to 109 +/- 10 ms. A sharp gradient of refractoriness of 43 +/- 10 ms was at the border of the perfused bed. Sustained monomorphic ventricular tachycardia occurred after drug infusion in the perfused bed or near its boundary in all animals with a cycle length of 329 +/- 26 ms and a focal origin. The maximum slope of the ARI restitution curve at the focal origins of the tachyarrhythmias was always <1 (0.62 +/- 0.15). Similar results with a focal arrhythmia origin occurred in two additional pigs in which intramural mapping was performed with 36 plunge needle electrodes in the left ventricular perfused bed. Regional elevation of a catecholamine, which is one of the alterations produced by acute ischemia, can by itself cause tachyarrhythmias. These arrhythmias are closely associated with a shortened refractory period and a large gradient of the spatial distribution of refractoriness but not with a steep restitution curve.

  14. Biomarkers of adult and developmental neurotoxicity

    SciTech Connect

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  15. Plasma catecholamine metabolites in schizophrenics: evidence for the two-subtype concept.

    PubMed

    Chang, W H; Chen, T Y; Lin, S K; Lung, F W; Lin, W L; Hu, W H; Yeh, E K

    1990-03-01

    Plasma homovanillic acid (pHVA) and plasma methoxyhydroxyphenyl glycol (pMHPG), as well as plasma haloperidol, were measured in 33 schizophrenic patients before and during 6 weeks of haloperidol treatment. Good responders had higher baseline pHVA values compared with poor responders (17.4 +/- 8.8 ng/ml, n = 22 versus 11.4 +/- 5.0 ng/ml, n = 11, p less than 0.05). A higher than 15 ng/ml pretreatment pHVA level was associated with a more consistent clinical response to the subsequent treatment. Differential pHVA changes during treatment were also found between good and poor responders. Within the good responder group, a significant decline in pHVA over time was found. By contrast, pHVA showed a transient increase in the poor responder group. Plasma MHPG changes showed a similar pattern during treatment in good responders, although no significant differences in baseline values were found between the good (n = 13) and poor (n = 9) responders, and pMHPG showed no change during treatment in poor responders. Significant correlations between baseline pHVA and pMHPG values were found in 22 patients. Good responders and poor responders did not differ significantly in terms of age, duration of illness, severity of presenting symptoms, haloperidol dose, or plasma drug concentration. Two hypothetical subtypes of schizophrenia and both dopamine and norepinephrine systems involved in schizophrenic psychopathology are proposed.

  16. Cannabinoids: between neuroprotection and neurotoxicity.

    PubMed

    Sarne, Yosef; Mechoulam, Raphael

    2005-12-01

    Cannabinoids, such as the delta9-tetrahydrocannabinol (THC), present in the cannabis plant, as well as anandamide and 2-arachidonoyl glycerol, produced by the mammalian body, have been shown to protect the brain from various insults and to improve several neurodegenerative diseases. The current review summarizes the evidence for cannabinoid neuroprotection in vivo, and refers to recent in vitro studies, which help elucidate possible molecular mechanisms underlying this protective effect. Some of these mechanisms involve the activation of CB1 and CB2 cannabinoid receptors, while others are not dependent on them. In some cases, protection is due to a direct effect of the cannabinoids on neuronal cells, while in others, it results from their effects on non-neuronal elements within the brain. In many experimental set-ups, cannabinoid neurotoxicity, particularly by THC, resides side by side with neuroprotection. The current review attempts to shed light on this dual activity, and to dissociate between the two contradictory effects.

  17. Catecholamines release mediators in the opossum oesophageal circular smooth muscle.

    PubMed Central

    Daniel, E E; Jager, L P; Jury, J

    1987-01-01

    1. Effects of catecholamines applied exogenously to the circular smooth muscle layer of the body of the oesophagus of the opossum (Didelphis marsupialis) were studied, simultaneously measuring changes in the membrane potential, the membrane conductance and the contractility of the muscle, using the double sucrose-gap technique. 2. Superfusion of the smooth muscle with Krebs solution at 27 degrees C containing dopamine (10(-6)-10(-4) M) dose-dependently caused a hyperpolarization of the smooth muscle cells and an increased membrane resistance followed after gradual repolarization by oscillations of the membrane potential, often accompanied by muscle action potentials. During the hyperpolarization, the tendency for the membrane potential to sag during prolonged application of hyperpolarizing currents was reduced and the 'off' depolarization following such currents was increased. This muscle did not develop active tension prior to treatment; it therefore did not relax during the hyperpolarizations, but contracted following the depolarized phase of oscillations. 3. The non-adrenergic, non-cholinergic nerve-mediated inhibitory junction potential (i.j.p.) showed a small reduction in amplitude during superfusion with dopamine, explicable as a result of the drug-induced hyperpolarization. The 'off' response following the i.j.p., decreased transiently when the membrane potential was hyperpolarized to its maximum value. Then it increased to values larger than control as the membrane repolarized. Vasoactive intestinal polypeptide (VIP, 10(-6) M) produced a similar response but hyperpolarizations were smaller. 4. Of the tested catecholamines, isoprenaline, phenylephrine, butylated hydroxytoluene-920 (BHT-920) and clonidine were ineffective whereas the potency order for other catecholamines was dopamine greater than noradrenaline greater than or equal to adrenaline greater than DOPA. The catecholamine-induced responses were not affected by alpha- or beta

  18. Reversible Lithium Neurotoxicity: Review of the Literature

    PubMed Central

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P < .001) and presented mainly with acute organic brain syndrome. In most cases, the therapeutic serum lithium levels were less than or equal to 1.5 mEq/L (P < .001), and dosage regimens were less than 2,000 mg/day. Specific drug combinations with lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The

  19. Developmental neurotoxicity of succeeding generations of insecticides

    PubMed Central

    Abreu-Villaça, Yael; Levin, Edward D.

    2016-01-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457

  20. Evaluating Developmental Neurotoxicity Hazard: Better than Before

    EPA Pesticide Factsheets

    EPA researchers grew neural networks in their laboratory that showed the promise of helping to screen thousands of chemicals in the environment that are yet to be characterized for developmental neurotoxicity hazard through traditional methods.

  1. ASSESSING HIPPOCAMPAL CHANGES INDICATIVE OF NEUROTOXIC EFFECTS.

    EPA Science Inventory

    Subtle changes in cognitive function are often the earliest indication of neurotoxic effects in humans. The hippocampus is a large forebrain structure subserving specific kinds of information encoding and consolidation in humans and other animals. Because of it laminar structur...

  2. EVALUATION OF POTENTIAL DEVELOPMENTAL NEUROTOXICITY OF ORGANOTINS.

    EPA Science Inventory

    Organotins, including monomethyltin (MMT), dimethyltin (DMT), and dibutyltin (DBT), are widely used as heat stabilizers in PVC and CPVC piping, which results in their presence in drinking water supplies. Concern for developmental neurotoxic effects were raised by published findi...

  3. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    PubMed

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  4. Effects of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32p-incorporation into rat myocardial adenylic nucleotides and their turn-over.

    PubMed

    Merouze, P; Gaudemer, Y; Gautheron, D

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on 32Pi incorporation into intracellular phosphate and adenylic nucleotides has been studied on rat myocardium slices; consequently, the turn-over of nucleotides could be determined and compared under the influence of these two hormones. 2. In order to specify the site of action of these catecholamines, several inhibitors and activators of energetic metabolism were included in the incubation medium: 3'5'-AMP, caffein, ouabain, oligomycin, rotenone + antimycin. 3. Both catecholamines favour Pi exchanges between intra and extracellular spaces; ATP turn-over is greatly increased, while ADP turn-over is slightly decreased, and 32P-incorporation into ADP is increased. 4. 3'5'-AMP and caffein are without effect on Pi penetration; however, caffein increases catecholamine effects on this penetration. ATP turn-over is slightly increased by 3'5'-AMP or caffein. 5. Ouabain decreases ATP turn-over but does not prevent the adrenaline induced acceleration. Inhibitors of oxidative phosphorylation and electron transport decrease ATP-turn-over severely; this inhibition is not released by catecholamines. 6. It is concluded that the catecholamine effects observed are dependent on the oxidative phosphorylations process. The increase of Pi exchange by catecholamines may be related to the increase of extracellular space and cation translocations we observed with the hormones.

  5. Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.

    2018-05-01

    The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.

  6. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    PubMed

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  7. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    PubMed Central

    Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071

  8. The catecholamine response to spaceflight: role of diet and gender.

    PubMed

    Stein, T P; Wade, C E

    2001-09-01

    Compared with men, women appear to have a decreased sympathetic nervous system (SNS) response to stress. The two manifestations where the sexual dimorphism has been the most pronounced involve the response of the SNS to fluid shifts and fuel metabolism during exercise. The objectives of this study were to investigate whether a similar sexual dimorphism was found in the response to spaceflight. To do so, we compared catecholamine excretion by male and female astronauts from two similar shuttle missions, Spacelab Life Sciences 1 (SLS1, 1991) and 2 (SLS2, 1993) for evidence of sexual dimorphism. To evaluate the variability of the catecholamine response in men, we compared catecholamine excretion from the two SLS missions against the 1996 Life and Microgravity Sciences Mission (LMS) and the 1973 Skylab missions. No gender- or mission-dependent changes were found with epinephrine. Separating out the SLS1/2 data by gender shows that norepinephrine excretion was essentially unchanged with spaceflight in women (98 +/- 10%; n = 3) and substantially decreased with the men (41 +/- 9%; n = 4, P < 0.05). Data are a percentage of mean preflight value +/- SE. Comparisons among males demonstrated significant mission effects on norepinephrine excretion. After flight, there was a transient increase in norepinephrine but no evidence of any gender-specific effects. We conclude that norepinephrine excretion during spaceflight is both mission and gender dependent. Men show the greater response, with at least three factors being involved, a response to microgravity, energy balance, and the ratio of carbohydrate to fat in the diet.

  9. The catecholamine response to spaceflight: role of diet and gender

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Wade, C. E.

    2001-01-01

    Compared with men, women appear to have a decreased sympathetic nervous system (SNS) response to stress. The two manifestations where the sexual dimorphism has been the most pronounced involve the response of the SNS to fluid shifts and fuel metabolism during exercise. The objectives of this study were to investigate whether a similar sexual dimorphism was found in the response to spaceflight. To do so, we compared catecholamine excretion by male and female astronauts from two similar shuttle missions, Spacelab Life Sciences 1 (SLS1, 1991) and 2 (SLS2, 1993) for evidence of sexual dimorphism. To evaluate the variability of the catecholamine response in men, we compared catecholamine excretion from the two SLS missions against the 1996 Life and Microgravity Sciences Mission (LMS) and the 1973 Skylab missions. RESULTS: No gender- or mission-dependent changes were found with epinephrine. Separating out the SLS1/2 data by gender shows that norepinephrine excretion was essentially unchanged with spaceflight in women (98 +/- 10%; n = 3) and substantially decreased with the men (41 +/- 9%; n = 4, P < 0.05). Data are a percentage of mean preflight value +/- SE. Comparisons among males demonstrated significant mission effects on norepinephrine excretion. After flight, there was a transient increase in norepinephrine but no evidence of any gender-specific effects. We conclude that norepinephrine excretion during spaceflight is both mission and gender dependent. Men show the greater response, with at least three factors being involved, a response to microgravity, energy balance, and the ratio of carbohydrate to fat in the diet.

  10. Neurogenesis and Developmental Anesthetic Neurotoxicity

    PubMed Central

    Kang, Eunchai; Berg, Daniel A.; Furmanski, Orion; Jackson, William M.; Ryu, Yun Kyoung; Gray, Christy D.; Mintz, C. David

    2017-01-01

    The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive. PMID:27751818

  11. Neurogenesis and developmental anesthetic neurotoxicity.

    PubMed

    Kang, Eunchai; Berg, Daniel A; Furmanski, Orion; Jackson, William M; Ryu, Yun Kyoung; Gray, Christy D; Mintz, C David

    The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive. Copyright © 2016. Published by Elsevier Inc.

  12. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways

    PubMed Central

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B1 (FB1) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB1 induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354

  13. Effects of acupuncture on peripheral T lymphocyte subpopulation and amounts of cerebral catecholamines in mice.

    PubMed

    Okumura, M; Toriizuka, K; Iijima, K; Haruyama, K; Ishino, S; Cyong, J C

    1999-01-01

    The aim of this study was to investigate the effects of acupuncture on peripheral lymphocyte subpopulations and cerebral catecholamines. In order to examine the effects of acupuncture, two experiments were performed. Experiment 1: Eighteen female mice (strain; C57BL/6) at the age of 7 weeks were divided three groups, (a) sham operated (control; n=6), (b) ovariectomized (OVX; n=6), and (c) ovariectomized and stimulated by subcutaneous needles on acupuncture point, Shenshu (BL23) at the both sides of the back for 20 days (OVX+Acu; n=6). These animals were sacrificed at 20 days after needle insertion, and the splenic lymphoid cells were examined by two-color flow cytometry, using monoclonal antibodies (mAb) to the cell surface antigens, CD3, CD4, CD8a and NK1.1 (CD56). In the ovariectomized (OVX) group, the peripheral CD4/CD8 ratio was significantly increased and the ratio of natural killer (NK) cells (CD3-NK1.1+; CD3 negative, NK1.1 positive) to T lymphocytes was decreased compared to the sham control group. In the ovariectomized with needle insertion (OVX+Acu) group, the CD4/CD8 ratio was reduced, but the NK cells ratio was not changed compared to the OVX group. Experiment 2: To investigate the acute effects of subcutaneous needle insertion, male C57BL/6 mice (7 weeks old) were used (n=6, each group). The acupuncture points Shen-shu (BL23) on the backs of the male mice were also stimulated by subcutaneous needles for 3 and 7 days. As a result, the CD4/CD8 ratio was significantly decreased at day 3 and day 7, compared to the control group. On the other hand the NK cells ratio and activated T-cells were increased at day 7. The mitogenic activities in the splenic lymphocytes were also increased by acupuncture stimulation at day 3. Catecholamine contents in the hippocampus were measured by high performance liquid chromatography with the electro-chemical detector (ECD-HPLC) method. No significant change was observed in either dopamine contents or norepinephrine; however

  14. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  15. Calorigenic effect of glucagon and catecholamines in king penguin chicks.

    PubMed

    Barre, H; Rouanet, J L

    1983-06-01

    The calorigenic action of glucagon and catecholamine infusion was evaluated in winter-acclimatized king penguin chicks at 20 and 0 degrees C ambient temperature (Ta). At Ta = 20 degrees C the mean increase in metabolic rate was 0.73 W . kg-1 for epinephrine (80 micrograms . kg-1), 0.42 W . kg-1 for norepinephrine (150 micrograms . kg-1), and 1.16 W . kg-1 for glucagon (0.75 micrograms . kg-1); i.e., respectively 30, 17, and 47% of the control value. The maximum response to glucagon reached 89% over control. At Ta = 0 degrees C, for the same glucagon infusion, the mean increase in specific metabolic rate was 0.84 W . kg-1, 27% of control rate. In the cold, glucagon infusion inhibited shivering and substituted its calorigenic action, resulting in a less apparent effect. In contrast with the negligible effect of catecholamines, glucagon infused at low doses exerted a powerful calorigenic action in young king penguins and could be considered as a possible nonshivering thermogenesis mediator.

  16. Direct effects of recurrent hypoglycaemia on adrenal catecholamine release.

    PubMed

    Orban, Branly O; Routh, Vanessa H; Levin, Barry E; Berlin, Joshua R

    2015-01-01

    In Type 1 and advanced Type 2 diabetes mellitus, elevation of plasma epinephrine plays a key role in normalizing plasma glucose during hypoglycaemia. However, recurrent hypoglycaemia blunts this elevation of plasma epinephrine. To determine whether recurrent hypoglycaemia affects peripheral components of the sympatho-adrenal system responsible for epinephrine release, male rats were administered subcutaneous insulin daily for 3 days. These recurrent hypoglycaemic animals showed a smaller elevation of plasma epinephrine than saline-injected controls when subjected to insulin-induced hypoglycaemia. Electrical stimulation of an adrenal branch of the splanchnic nerve in recurrent hypoglycaemic animals elicited less release of epinephrine and norepinephrine than in controls, without a change in adrenal catecholamine content. Responsiveness of isolated, perfused adrenal glands to acetylcholine and other acetylcholine receptor agonists was also unchanged. These results indicate that recurrent hypoglycaemia compromised the efficacy with which peripheral neuronal activity stimulates adrenal catecholamine release and demonstrate that peripheral components of the sympatho-adrenal system were directly affected by recurrent hypoglycaemia. © The Author(s) 2014.

  17. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  18. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:21615193

  19. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures.

    PubMed

    Duarte, Daniel J; Rutten, Joost M M; van den Berg, Martin; Westerink, Remco H S

    2017-03-01

    Exposure to tricresyl phosphates (TCPs), via for example contaminated cabin air, has been associated with health effects including the so-called aerotoxic syndrome. While TCP neurotoxicity is mainly attributed to ortho-isomers like tri-ortho-cresyl phosphate (ToCP), recent exposure and risk assessments indicate that ToCP levels in cabin air are very low. However, the neurotoxic potential of non-ortho TCP isomers and TCP mixtures is largely unknown. We therefore measured effects of exposure (up to 48h) to different TCP isomers, mixtures and the metabolite of ToCP (CBDP: cresyl saligenin phosphate) on cell viability and mitochondrial activity, spontaneous neuronal electrical activity, and neurite outgrowth in primary rat cortical neurons. The results demonstrate that exposure to TCPs (24-48h, up to 10μM) increases mitochondrial activity, without affecting cell viability. Effects of acute TCP exposure (30min) on neuronal electrical activity are limited. However, electrical activity is markedly decreased for the majority of TCPs (10μM) following 48h exposure. Additional preliminary data indicate that exposure to TCPs (48h, 10μM) did not affect the number of neurites per cell or average neurite length, except for TmCP and the analytical TCP mixture (Sigma) that induced a reduction of average neurite length. The combined neurotoxicity data demonstrate that the different TCPs, including ToCP, are roughly equipotent and a clear structure-activity relation is not apparent for the studied endpoints. The no-observed-effect-concentrations (1μM) are well above current exposure levels indicating limited neurotoxic health risk, although exposures may have been higher in the past. Moreover, prolonged and/or repeated exposure to TCPs may exacerbate the observed neurotoxic effects, which argues for additional research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evidence That High Catecholamine Levels Produced by Pheochromocytoma May be Responsible for Tako-Tsubo Cardiomyopathy.

    PubMed

    Sharkey, Scott W; McAllister, Nancy; Dassenko, David; Lin, David; Han, Kelly; Maron, Barry J

    2015-06-01

    Tako-tsubo cardiomyopathy (TC) is a novel form of acute heart failure, characterized by regional left ventricular dysfunction without coronary artery obstruction, and usually triggered by a stressful event. Excessive circulating catecholamines have been implicated in the pathophysiology of this condition. This report documents the unusual occurrence of acute TC events in 2 male subjects of disparate ages, 16 and 66 years, for whom subsequent investigation in both led to the unexpected discovery of catecholamine-producing pheochromocytoma. Marked elevation of plasma catecholamines (epinephrine, norepinephrine, and dopamine) was present in both subjects and were remarkably similar to those previously reported in female patients with TC triggered by emotional stress. These observations show a common link between TC occurrence and elevated catecholamine levels in both male and female patients and, therefore, support the hypothesis that excessive levels of catecholamines may be involved in the pathophysiology of TC independent of age or gender. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  2. Current Challenges in Neurotoxicity Risk Assessment ...

    EPA Pesticide Factsheets

    Neurotoxicity risk assessment must continue to evolve in parallel with advances in basic research. Along with this evolution is an expansion in the scope of neurotoxicity assessments of environmental health risks. Examples of this expansion include an increasing emphasis on complex animal models that better replicate human behavior and a wider array of molecular and mechanistic data relevant to interpreting the underlying cause(s) of toxicity. However, modern neurotoxicology studies are often more nuanced and complicated than traditional studies, and they often vary considerably in evaluation methods from one study to the next, impeding comparisons. This can pose particular difficulties for risk assessors, especially given the recent demand for chemical risk assessments to be more systematic and transparent. This presentation will introduce and provide some examples of specific challenges in neurotoxicity assessments of environmental chemicals. Some of these challenges are relatively new to the field, such as the incorporation of data on neuron-supportive glial cells into hazard characterization, while other challenges have persisted for several decades, but only recently are studies being designed to evaluate them, including analyses of latent neurotoxicity. The examples provided illustrate some future research areas of interest for scientists and risk assessors examining human neurotoxicity risk. This abstract will be presented to internal U.S. Food and Drug A

  3. Modulation of neurotoxic behavior in F-344 rats by temporal disposition of benzo(a)pyrene.

    PubMed

    Saunders, Crystal R; Ramesh, Aramandla; Shockley, Dolores C

    2002-03-24

    The behavioral changes caused by benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound, were monitored, and also its metabolite levels in cerebellum and cortex were measured in BaP treated rats to see if any relationship existed between these two aspects. Rats were administered 0, 25, 50, 100, and 200 mg/kg of BaP in peanut oil by oral gavage. Plasma, and brain tissue (cerebellum and cortex) samples were collected at 0, 2, 4, 6, 12, 24, 48, 72 and 96 h post administration. Neurotoxic effects peaked at 2 h after dosing and lasted 48 h after dosing for all dose groups. The metabolite levels remained the same from 2 to 4 h, reached a peak at 6 h post gavage and showed a gradual decline returning to baseline levels at 72 h when the motor activity of treatment groups also returned to control levels, indicating recovery from the effects of BaP. A significant (P<0.05) correlation between neurotoxic effects and BaP plasma, and brain metabolite concentrations suggests that metabolism plays an important role in modulating the neurobehavioral effects of BaP.

  4. Effects of catecholamines on rat myocardial metabolism. I. Influence of catecholamines on energy-rich nucleotides and phosphorylated fraction contents.

    PubMed

    Merouze, P; Gaudemer, Y

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.

  5. A 21st Century Update on Neurotoxicity Risk Assessment

    EPA Science Inventory

    In 1998, EPA published Guidelines for Neurotoxicity Risk Assessment as the basis for interpreting neurotoxicity results. At that time, the focus was on traditional toxicity testing and human clinical /epidemiological data. More recently, a change in approach to toxicity testing ...

  6. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  7. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  8. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  9. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine.

    PubMed

    van Vliet, Erwin; Morath, Siegfried; Eskes, Chantra; Linge, Jens; Rappsilber, Juri; Honegger, Paul; Hartung, Thomas; Coecke, Sandra

    2008-01-01

    There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48 h with the neurotoxicant methyl mercury chloride (0.1-100 microM) and the brain stimulant caffeine (1-100 microM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1 microM), and treatment-dependent cluster formations for caffeine (1-100 microM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential

  10. Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity

    PubMed Central

    Mason, Lisa H.; Harp, Jordan P.; Han, Dong Y.

    2014-01-01

    Neurotoxicity is a term used to describe neurophysiological changes caused by exposure to toxic agents. Such exposure can result in neurocognitive symptoms and/or psychiatric disturbances. Common toxic agents include heavy metals, drugs, organophosphates, bacterial, and animal neurotoxins. Among heavy metal exposures, lead exposure is one of the most common exposures that can lead to significant neuropsychological and functional decline in humans. In this review, neurotoxic lead exposure's pathophysiology, etiology, and epidemiology are explored. In addition, commonly associated neuropsychological difficulties in intelligence, memory, executive functioning, attention, processing speed, language, visuospatial skills, motor skills, and affect/mood are explored. PMID:24516855

  11. The role of prefrontal catecholamines in attention and working memory

    PubMed Central

    Clark, Kelsey L.; Noudoost, Behrad

    2014-01-01

    While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory. PMID:24782714

  12. Changes of catecholamine excretion during long-duration confinement.

    PubMed

    Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C

    2002-06-01

    Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.

  13. Effects of water immersion on plasma catecholamines in normal humans

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Johnson, G.; Denunzio, A. G.

    1983-01-01

    An investigation was conducted in order to determine whether water immersion to the neck (NI) alters plasma catecholamines in normal humans. Eight normal subjects were studied during a seated control study (C) and during 4 hr of NI, and the levels of norepinephrine (NE) and epinephrine (E) as determined by radioenzymatic assay were measured hourly. Results show that despite the induction of a marked natriuresis and diuresis indicating significant central hypervolemia, NI failed to alter plasma NE or E levels compared with those of either C or the corresponding prestudy 1.5 hr. In addition, the diuresis and natriuresis was found to vary independently of NE. These results indicate that the response of the sympathetic nervous system to acute volume alteration may differ from the reported response to chronic volume expansion.

  14. Inhibition of radioemesis by disruption of catecholamines in dogs

    SciTech Connect

    Luthra, Y.K.; Mattsson, J.L.; Yochmowitz, M.G.

    1981-03-01

    Dogs were treated 30 min to 1 h before x irradiation with ..cap alpha..-methyl-p-tyrosine or 6-hydroxydopamine. A third group of dogs was given a known antiradioemetic drug, haloperidol to verify the sensitivity of the procedure. Irradiated but untreated controls were also used. Light methoxyflurane anesthesia was used for restraint during the exposure. Exposure dose was 800 rad kerma delivered at 50 rad/min to a 10 x 10-cm area covering the abdominal area from xiphoid to pubis. Haloperidol and 6-hydroxydopamine significantly reduced the number of emetic episodes and delayed the onset time to the first episode, ..cap alpha..-Methyl-p-tyrosine caused no significantmore » changes. The effectiveness of 6-hydroxydopamine indicates that catecholaminergic neurons are involved in radioemesis, whereas haloperidol and phenothiazine-derivative tranquilizers inhibit radiomesis by blocking catecholamine receptor neurons.« less

  15. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  16. Plasma catecholamine levels before and after paroxetine treatment in patients with panic disorder.

    PubMed

    Oh, Jae-Young; Yu, Bum-Hee; Heo, Jung-Yoon; Yoo, Ikki; Song, Hyemin; Jeon, Hong Jin

    2015-02-28

    Catecholamines such as norepinephrine, epinephrine, and dopamine are closely related to the autonomic nervous system, suggesting that panic disorder may involve elevated catecholamine levels. This study investigated basal and posttreatment catecholamine levels in patients with panic disorder. A total of 29 patients with panic disorder and 23 healthy controls participated in the study. Panic disorder patients received paroxetine treatment for 12 weeks after clinical tests and examination had been conducted. We investigated the difference in basal levels of catecholamine and measured the changes in catecholamine levels before and after drug treatment in panic disorder patients. The basal plasma epinephrine (48.87±6.18 pg/ml) and dopamine (34.87±3.57 pg/ml) levels of panic disorder patients were significantly higher than those (34.79±4.72 pg/ml and 20.40±3.53 pg/ml) of the control group. However, basal plasma norepinephrine levels did not show statistically significant differences between patients and controls. After drug therapy, plasma catecholamine levels were nonsignificantly decreased and norepinephrine levels showed a tendency toward a decrease that did not reach significance. In conclusion, this study suggests the possibility of a baseline increase of plasma catecholamine levels and activation of sympathetic nervous systems in patients with panic disorder which may normalize after treatment with paroxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Vasopressin, cortisol, and catecholamine concentrations in dogs with dilated cardiomyopathy.

    PubMed

    Tidholm, Anna; Häggström, Jens; Hansson, Kerstin

    2005-10-01

    To evaluate plasma concentrations and urinary excretion of vasopressin and cortisol and urinary excretion of catecholamines in dogs with dilated cardiomyopathy (DCM). 15 dogs with clinical signs of DCM, 15 dogs with preclinical DCM, and 15 control dogs. Physical examinations, thoracic radiography, ECG, and echocardiography were performed on all dogs. Blood and urine samples were collected. Plasma concentration of vasopressin and the urine cortisol-to-urine creatinine ratio were significantly increased in dogs with clinical signs of DCM and dogs with preclinical DCM, compared with control dogs. Plasma vasopressin concentration was significantly higher in dogs with clinical signs of DCM, compared with dogs with preclinical DCM. Urine vasopressin-to-urine creatinine ratio was significantly increased in dogs with clinical signs of DCM, compared with dogs with preclinical DCM and control dogs. Urine epinephrine-to-urine creatinine ratio and urine norepinephrine-to-urine creatinine ratio were significantly increased in dogs with clinical signs of DCM, compared with control dogs. Plasma concentration of cortisol and urine dopamine-to-urine creatinine ratio did not differ significantly among groups. According to this study, the neuroendocrine pattern is changed in dogs with preclinical DCM. These changes are even more pronounced in dogs with clinical signs of DCM. Analysis of concentrations of vasopressin, cortisol, and catecholamines may aid in identification of the clinical stages of DCM. These findings may also provide a basis for additional studies of the possible beneficial effects of vasopressin antagonists and beta-adrenergic receptor antagonists in the treatment of dogs with congestive heart failure and DCM.

  18. Anticipatory responses of catecholamines on muscle force production.

    PubMed

    French, Duncan N; Kraemer, William J; Volek, Jeff S; Spiering, Barry A; Judelson, Daniel A; Hoffman, Jay R; Maresh, Carl M

    2007-01-01

    Few data exist on the temporal relationship between catecholamines and muscle force production in vivo. The purpose of this study was to examine the influence of preexercise arousal on sympathoadrenal neurohormones on muscular force expression during resistance exercise. Ten resistance-trained men completed two experimental conditions separated by 7 days: 1) acute heavy resistance exercise protocol (AHREP; 6 x 10 repetitions parallel squats, 80% 1 repetition maximum) and 2) control (Cont; rest). Peak force (F(peak)) was recorded during a maximal isometric squat preceding each set and mean force (F(mean)) was measured during each set. Serial venous blood samples were collected before the AHREP and immediately preceding each set. Blood collection times were matched during Cont. Preexercise epinephrine (Epi), norepinephrine (NE), and dopamine (DA) increased (P or= 0.05) in muscular performance (F(peak), F(mean)) during AHREP and that five subjects (F(reducers)) had significant reductions in F(peak) and F(mean). Integrated area under the curve for Epi, NE, and F(peak) were greater (P < 0.02) for F(maintainers) than F(reducers). In conclusion, an anticipatory rise in catecholamines existed, which may be essential for optimal force production at the onset of exercise.

  19. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    PubMed

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  20. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    PubMed

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  1. Aortoarteritis: Could it be a form of catecholamine-induced vasculitis?

    PubMed Central

    Sarathi, Vijaya; Lila, Anurag R.; Bandgar, Tushar R.; Shah, Nalini S.

    2013-01-01

    Catecholamine-induced vasculitis is a well known but rarely described entity. However, aortoarteritis as a manifestation of catecholamine-induced vasculitis is not described in the literature. We have reported two patients in whom pheochromocytoma coexisted with aortoarteritis. Both patients were young females with history of bilateral pheochromocytomas in more than one first-degree relative. Both patients also had bilateral adrenal pheochromocytomas (second patient also had paraganglioma at left renal hilum) with elevation of plasma free normetanephrine levels. We conclude that there may be an association between pheochromocytoma and aortoarteritis, and that catecholamine excess may have a role in the etiopathogenesis of aortoarteritis in these patients. PMID:23776874

  2. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  3. NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE): DISCUSSION PAPER

    EPA Science Inventory

    This paper is a background document for a meeting of neurotoxicity experts to discuss the central nervous system effects of exposure to perchloroethylene (perc). The document reviews the literature on neurological testing of people exposed to perc occupationally in dry cleanin...

  4. MANAGING EXPOSURES TO NEUROTOXIC AIR POLLUTANTS.

    EPA Science Inventory

    Researchers at EPA's National Health and Environmental Effects Research Laboratory are developing a biologically-based dose-response model to describe the neurotoxic effects of exposure to volatile organic compounds (VOCs). The model is being developed to improve risk assessment...

  5. DEVELOPMENTAL NEUROTOXICITY OF PYRETHROID INSECTICIDES: CRITICAL REVIEW.

    EPA Science Inventory

    Pyrethroids are widely utilized insecticides whose primary action is the disruption of voltage-sensitive sodium channels (VSSC). Although these compounds have been in use for over 30 years and their acute neurotoxicity has been well characterized, there is considerably less info...

  6. NEUROTOXICITY TESTING IN HUMAN POPULATIONS: WORKSHOP OVERVIEW

    EPA Science Inventory

    A workshop was held in October 1983 at Rougemont, NC to review strategies and methods for neurotoxicity testing in human populations. Behavioral and electrophysiological testing methods were discussed with a major focus on computerized test batteries. Brief reviews of test method...

  7. Neurotoxic effects of gasoline and gasoline constituents.

    PubMed Central

    Burbacher, T M

    1993-01-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. PMID:8020437

  8. THC Prevents MDMA Neurotoxicity in Mice.

    PubMed

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-02-10

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4) were pretreated with THC (3 mg/kg x 4) at room (21 degrees C) and at warm (26 degrees C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1) receptor antagonist AM251 and the CB(2) receptor antagonist AM630, as well as in CB(1), CB(2) and CB(1)/CB(2) deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1) receptor antagonist AM251, neither in CB(1) and CB(1)/CB(2) knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2) cannabinoid antagonist and in CB(2) knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1) receptor, although CB(2) receptors may also contribute to

  9. THC Prevents MDMA Neurotoxicity in Mice

    PubMed Central

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-01-01

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this

  10. Corneal neurotoxicity due to topical benzalkonium chloride.

    PubMed

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-04-06

    The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.

  11. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  12. DISTRIBUTION OF ATRAZINE IN PC12 CELLS AND MODULATION OF CATECHOLAMINE SYNTHESIS

    EPA Science Inventory

    Previously, we reported that atrazine disrupts ovarian function by altering hypothalamic catecholamine (CA) concentrations and the consequent regulation of pituitary LH release and prolactin secretion in the young female rat. We also showed that atrazine directly interacts with t...

  13. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    PubMed

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  14. Relationship between Urinary Pesticide Residue Levels and Neurotoxic Symptoms among Women on Farms in the Western Cape, South Africa

    PubMed Central

    Motsoeneng, Portia M.; Dalvie, Mohamed A.

    2015-01-01

    Background: This cross-sectional study aimed to investigate the relationship between urinary pesticide residue levels and neurotoxic symptoms amongst women working on Western Cape farms in South Africa. Method: A total of 211 women were recruited from farms (n = 121) and neighbouring towns (n = 90). Participant assessment was via a Q16 questionnaire, reporting on pesticide exposures and measurement of urinary OP metabolite concentrations of dialkyl phosphates (DAP) and chlorpyriphos, 3,5,6-trichloropyridinol (TCPY) and of pyrethroid (PYR) metabolite concentrations (3- phenoxybenzoic acid (3PBA), 4-fluoro-3-phenoxybenzoic acid (4F3PBA), cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the cis- and trans isomers of 2,2-dichlorovinyl-2,2-dimethylcyclopropane-1-carboxylic acid. Results: Median urinary pesticide metabolites were slightly (6%–49%) elevated in the farm group compared to the town group, with 2 metabolites significantly higher and some lower in the farm group. The prevalence of all Q16 symptoms was higher amongst farm women compared to town women. Three Q16 symptoms (problems with buttoning, reading and notes) were significantly positively associated with three pyrethroid metabolites (cis- and trans-DCCA and DBCA), although associations may due to chance as multiple comparisons were made. The strongest association for a pyrethroid metabolite was between problems with buttoning and DBCA (odds ratio (OR) = 8.93, 95% confidence interval (CI):1.71–46.5. There was no association between Q16 symptoms and OP metabolites. Conclusions: Women farm residents and rural women from neighbouring towns in the Western Cape are exposed to OP and PYR pesticides. The study did not provide strong evidence that pesticides are associated with neurotoxic symptoms but associations found could be explored further. PMID:26042367

  15. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  16. 2,2′,3,5′,6-PENTACHLOROBIPHENYL (PCB 95) AND ITS HYDROXYLATED METABOLITES ARE ENANTIOMERICALLY ENRICHED IN FEMALE MICE

    PubMed Central

    Kania-Korwel, Izabela; Barnhart, Christopher D.; Stamou, Marianna; Truong, Kim M.; El-Komy, Mohammed H.M.E.; Lein, Pamela J.; Veng-Pedersen, Peter; Lehmler, Hans-Joachim

    2012-01-01

    Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity. PMID:22974126

  17. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  18. Gill damage and neurotoxicity of ammonia nitrogen on the clam Ruditapes philippinarum.

    PubMed

    Cong, Ming; Wu, Huifeng; Yang, Haiping; Zhao, Jianmin; Lv, Jiasen

    2017-04-01

    Ammonia nitrogen has been a potential menace to aquatic animals along the coastline of China. Presently, the toxicological effects of ammonia nitrogen were mainly concentrated on fishes, while little attention has been paid to molluscs. In this study, the clam Ruditapes philippinarum was used as the target animal to investigate the toxic effects of ammonia nitrogen. Our results showed that ammonia exposure could significantly reduce the integrity of lysosomes in a dose-dependent manner. Metabolite analysis revealed that exposure doses and duration time of ammonia nitrogen could affect the variation profiles of gill metabolites. In detail, branched chain amino acids, glutamate, choline and phosphocholine were significantly decreased after a one-day exposure. Inosine and phenylalanine were found significantly increased and ATP was decreased after a three-day exposure. The changes of metabolites implied that metabolisms of muscle element, neurotransmission and cell apoptosis of gill tissues would be affected by ammonia exposure. Such inferences were supported by the diminished muscle element, decreased concentrations of catecholamines and increased apoptosis rates, respectively. Therefore, we take advantage of metabolomics integrated with conventional biological assays to find out that ammonia exposure could cause lysosome instability, metabolic disturbance, aberrant gill structures and changes to neurotransmitters, and would result in mollusk gill dysfunction in feeding, respiration and immunity.

  19. A 7-day intravenous toxicity study and neurotoxicity assessment of pyridorin in Sprague-Dawley rats.

    PubMed

    Sullivan, D W; Peterson, R C; Mujer, C V; Gad, S C

    2017-07-01

    Pyridorin ® , a naturally occurring metabolite of vitamin B6 that inhibits and scavenges reactive oxygen species, is being developed as a potential therapeutic for acute kidney injury. An investigational new drug application (IND) was opened for Pyridorin in support of its ongoing oral drug clinical development program. Currently, a Pyridorin intravenous (IV) formulation is being developed for use in surgical patients. To support the IND for Pyridorin, a full battery of nonclinical Good Laboratory Practice compliant studies was performed with no neurological or behavioral signs of toxicity seen following oral or IV administration of pyridoxine dihydrochloride (the active ingredient in Pyridorin). However, excessive ingestion of vitamin B6 has been reported to cause neurotoxic syndrome in humans. Therefore, under Food and Drug Administration recommendation, a 7-day IV study in rats was conducted to further evaluate the drug's potential to cause neurotoxicity. Blood plasma samples indicated that exposure to pyridoxamine dihydrochloride and its metabolites, pyridoxal, pyridoxine, and 4-pyridoxic acid was linearly dose proportional and independent of gender. At doses of up to 200 mg/kg/day pyridoxine dihydrochloride, no treatment-related effects were seen in rats, providing further evidence for the absence of pyridoxine dihydrochloride-related changes in the nervous system. A no observed adverse effect level of 200 mg/kg/day was identified for this study.

  20. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    PubMed

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  1. Adulthood Exposure to Lipopolysaccharide Exacerbates the Neurotoxic and Inflammatory Effects of Rotenone in the Substantia Nigra

    PubMed Central

    Huang, Chun; Zhu, Li; Li, Huan; Shi, Fu-Guo; Wang, Guo-Qing; Wei, Yi-Zheng; Liu, Jie; Zhang, Feng

    2017-01-01

    Parkinson’s disease (PD) is the second most neurodegenerative disorder with a regional decrease of dopamine (DA) neurons in the substantia nigra (SN). Despite intense exploration, the etiology of PD progressive process remains unclear. This study was to investigate the synergistic effects of systemic inflammation of lipopolysaccharide (LPS) and neurotoxicity of rotenone (ROT) on exacerbating DA neuron lesion. Male SD adulthood rats received a single intraperitoneal injection of LPS. Seven months later, rats were subcutaneously given ROT five times a week for consecutive 4 weeks. Rat behavior changes were assessed via rotarod and open-field tests. Brain SN was immunostained to evaluate DA neuronal loss and microglia activation. Striatum DA and its metabolites levels were determined by high performance liquid chromatography (HPLC) coupled with electrochemistry. The protein levels of α-synuclein (α-Syn), inflammatory factors and mitogen-activated protein kinase (MAPK) pathway activation were detected by western blotting analysis. Results indicated that no significant difference between the control and LPS alone groups was shown. Compared with ROT alone group, LPS combined with ROT significantly reduced motor activity and induced SN DA neurons loss accompanied by the decreased contents of striatum DA and its metabolites. Furthermore, LPS together with ROT enhanced microglia activation and the increased expressions of α-Syn and inflammatory factors and also MAPK signaling pathway activation. However, LPS alone had no significant effects on the above parameters. These findings suggest that adulthood exposure to LPS exacerbates the neurotoxic and inflammatory effects of ROT in the SN. PMID:28533741

  2. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks

    PubMed Central

    Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena

    2014-01-01

    A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic–phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits. PMID:24723897

  3. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks.

    PubMed

    Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena

    2014-01-01

    A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.

  4. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis

    PubMed Central

    Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay

    2011-01-01

    All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429

  5. Prefrontal/accumbal catecholamine system processes high motivational salience

    PubMed Central

    Puglisi-Allegra, Stefano; Ventura, Rossella

    2012-01-01

    Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events. PMID:22754514

  6. The relationship between core body temperature and 3,4-methylenedioxymethamphetamine metabolism in rats: implications for neurotoxicity.

    PubMed

    Goni-Allo, Beatriz; O Mathúna, Brian; Segura, Mireia; Puerta, Elena; Lasheras, Berta; de la Torre, Rafael; Aguirre, Norberto

    2008-04-01

    A close relationship appears to exist between 3,4-methylenedioxymethamphetamine (MDMA)-induced changes in core body temperature and long-term serotonin (5-HT) loss. We investigated whether changes in core body temperature affect MDMA metabolism. Male Wistar rats were treated with MDMA at ambient temperatures of 15, 21.5, or 30 degrees C to prevent or exacerbate MDMA-induced hyperthermia. Plasma concentrations of MDMA and its main metabolites were determined for 6 h. Seven days later, animals were killed and brain indole content was measured. The administration of MDMA at 15 degrees C blocked the hyperthermic response and long-term 5-HT depletion found in rats treated at 21.5 degrees C. At 15 degrees C, plasma concentrations of MDMA were significantly increased, whereas those of three of its main metabolites were reduced when compared to rats treated at 21.5 degrees C. By contrast, hyperthermia and indole deficits were exacerbated in rats treated at 30 degrees C. Noteworthy, plasma concentrations of MDMA metabolites were greatly enhanced in these animals. Instrastriatal perfusion of MDMA (100 microM for 5 h at 21 degrees C) did not potentiate the long-term depletion of 5-HT after systemic MDMA. Furthermore, interfering in MDMA metabolism using the catechol-O-methyltransferase inhibitor entacapone potentiated the neurotoxicity of MDMA, indicating that metabolites that are substrates for this enzyme may contribute to neurotoxicity. This is the first report showing a direct relationship between core body temperature and MDMA metabolism. This finding has implications on both the temperature dependence of the mechanism of MDMA neurotoxicity and human use, as hyperthermia is often associated with MDMA use in humans.

  7. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  8. Assessing the Developmental Neurotoxicity of 27 ...

    EPA Pesticide Factsheets

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for developmental neurotoxicity. As such, we are exploring a behavioral testing paradigm that can assess the effects of sublethal and subteratogenic concentrations of developmental neurotoxicants on zebrafish (Danio rerio). This in vivo assay quantifies the locomotor response to light stimuli under tandem light and dark conditions in a 96-well plate using a video tracking system on 6 day post fertilization zebrafish larvae. Each of twenty-seven organophosphorus pesticides was tested for their developmental neurotoxic potential by exposing zebrafish embryos/larvae to the pesticide at several concentrations (≤ 100 μM nominal concentration) during the first five days of development, followed by 24 hours of depuration and then behavioral testing. Approximately 22% of the chemicals (Acephate, Dichlorvos, Diazoxon, Bensulide,Tribufos, Tebupirimfos) did not produce any behavioral changes after developmental exposure, while many (Malaoxon Fosthiazate, Dimethoate, Dicrotophos, Ethoprop, Malathion, Naled, Diazinon, Methamidophos, Terbufos, Trichlorfon, Phorate, Pirimiphos-methyl, Profenofos, Z-Tetrachlorvinphos, Chlorpyrifos, Coumaphos, Phosmet, Omethoate) produced changes in swi

  9. A Case of Neurotoxicity Following 5-Fluorouracil-based Chemotherapy

    PubMed Central

    Ki, Seung Seog; Jeong, Jin Mo; Kim, Seong Ho; Jeong, Sook Hyang; Lee, Jin Hyuk; Han, Chul Ju; Kim, You Cheol; Lee, Jhin Oh; Hong, Young Joon

    2002-01-01

    5-Fluorouracil (5-FU) is a commonly used chemotherapeutic agent. However, its neurotoxicity is rare and not well recognized. We report a case of 5-FU neurotoxicity with organic brain syndrome and progression to multifocal leukoencephalopathy in a 44-year-old male patient having malignant gastrointestinal stromal tumor. 5-FU-induced neurotoxicity should, therefore, be considered as an important differential diagnosis in cancer patients with neurological abnormality and history of chemotherapy. PMID:12014219

  10. Central neurotoxicity of immunomodulatory drugs in multiple myeloma.

    PubMed

    Patel, Urmeel H; Mir, Muhammad A; Sivik, Jeffrey K; Raheja, Divisha; Pandey, Manoj K; Talamo, Giampaolo

    2015-02-24

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  11. Central Neurotoxicity of Immunomodulatory Drugs in Multiple Myeloma

    PubMed Central

    Patel, Urmeel H.; Mir, Muhammad A.; Sivik, Jeffrey K.; Raheja, Divisha; Pandey, Manoj K.; Talamo, Giampaolo

    2015-01-01

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy. PMID:25852850

  12. Acute catecholamine cardiomyopathy in patients with phaeochromocytoma or functional paraganglioma.

    PubMed

    Giavarini, Alessandra; Chedid, Antoine; Bobrie, Guillaume; Plouin, Pierre-François; Hagège, Albert; Amar, Laurence

    2013-10-01

    Phaeochromocytomas and paragangliomas (PPGL) can cause acute catecholamine cardiomyopathy (ACC). We assessed the prevalence of ACC and compared the presentation of cases with and without ACC in a large series of PPGL. Single centre retrospective study. Hypertension Unit, University Hospital, Paris. 140 consecutive patients with PPGL, referred from January 2003 to September 2012. Left ventricular ejection fraction (LVEF), perioperative mortality. Fifteen patients (11%) had suffered an ACC, occurring in 14 cases before the diagnosis of PPGL. Precipitating factors were identified in 11 cases. Twelve patients presented with acute pulmonary oedema, including 10 with cardiogenic shock, requiring life support in eight cases. Seven patients (five with pulmonary oedema) presented with acute chest pain and cardiac dysfunction. Electrocardiographic abnormalities were present in 14 cases: ST segment elevation or pathological Q waves, ST segment depression, and/or diffuse T wave inversion. Six patients displayed classical (apical ballooning) or inverted (basal/mid ventricular stunning) takotsubo-like cardiomyopathy. Coronary arteries were always normal on angiography. In patients with ACC, median LVEF rose from 30% (IQR 23-33%) during ACC to 71% (50-72%) before surgery (n=11, p<0.001). Median LVEF before PPGL surgery was 65% (51-72%) and 65% (60-70%) in patients with and without a history of ACC, respectively (not significant). PPGL may present as ACC in 11% of cases, excluding patients dying from undiagnosed tumours. Left ventricular dysfunction is usually reversible before surgery. PPGL should be suspected in patients with acute heart failure without evidence of valvular or coronary artery disease.

  13. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    PubMed

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  14. EXTENT AND MAGNITUDE OF CATECHOLAMINE SURGE IN PEDIATRIC BURNED PATIENTS

    PubMed Central

    Kulp, Gabriela A; Herndon, David N.; Lee, Jong O.; Suman, Oscar E.; Jeschke, Marc G

    2009-01-01

    Increased catecholamine (CA) levels after severe burn are associated with stress, inflammation, hypermetabolism and impaired immune function. The CA secretion profiles in burned patients are not well described. Mechanisms, duration and extent of CA surge are unknown. The purpose of this large unicenter study was to evaluate the extent and magnitude of CA surge following severe burn in pediatric patients. Patients admitted between 1996 and 2008 were enrolled in this study. Twenty-four-hour urine collections were performed during acute hospitalization and up to 2 years post burn. Results from the samples collected from 12 normal, healthy volunteers were compared with the data from the burned patients. Relevant demographic and clinical information was obtained from Medical Records. Student’s t-test and one way ANOVA were used to analyze the data where appropriate. Significance was accepted at p<0.05. Four-hundred thirteen patients were enrolled in this study, 17 patients died during acute hospitalization. Burn caused a marked stress and inflammatory response, indicated by massive tachycardia and elevated pro-inflammatory cytokines. In burned patients, CA levels are consistently and significantly modulated after burn when compared to the levels in normal, healthy volunteers. CA levels were significantly higher in males compared to females, correlated with burn size in burns over 40% and were increased in older children. There were differences over time in survivors vs. non-survivors, with CA levels significantly higher in non-survivors at 2 time points. Inflammatory cytokines show a similar profile during the study period. Our study gives clinicians a useful insight into the extent and magnitude of CA elevation to better design treatment strategies. PMID:20407405

  15. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation.

    PubMed

    Yanagimachi, Masakatsu; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Hiroaki; Yagihashi, Tatsuhiko; Kosaki, Kenjiro; Yokota, Shumpei

    2010-01-01

    One severe side effect of calcineurin inhibitors (CNIs: such as cyclosporine [CsA] and tacrolimus [FK506]) is neurotoxicity. CNIs are substrates for CYP3A5 and P-glycoprotein (P-gp), encoded by ABCB1 gene. In the present study, we hypothesized that genetic variability in CYP3A5 and ABCB1 genes may be associated with CNI-related neurotoxicity. The effects of the polymorphisms, such as CYP3A5 A6986G, ABCB1 C1236T, G2677T/A, and C3435T, associated with CNI-related neurotoxicity were evaluated in 63 patients with hematopoietic stem cell transplantation.   Of the 63 cases, 15 cases developed CNI-related neurotoxicity. In the CsA patient group (n = 30), age (p = 0.008), hypertension (p = 0.017), renal dysfunction (p < 0.001), ABCB1 C1236T (p < 0.001), and G2677T/A (p = 0.014) were associated with neurotoxicities. The CC genotype at ABCB1 C1236T was associated with it, but not significantly so (p = 0.07), adjusted for age, hypertension, and renal dysfunction. In the FK506 patient group (n = 33), CYP3A5 A6986G (p < 0.001), and ABCB1 C1236T (p = 0.002) were associated with neurotoxicity. At least one A allele at CYP3A5 A6986G (expressor genotype) was strongly associated with it according to logistic regression analysis (p = 0.01; OR, 8.5; 95% CI, 1.4-51.4).   The polymorphisms in CYP3A5 and ABCB1 genes were associated with CNI-related neurotoxicity. This outcome is probably because of CYP3A5 or P-gp functions or metabolites of CNIs. © 2009 John Wiley & Sons A/S.

  16. Individual differences in the motivation to communicate relate to levels of midbrain and striatal catecholamine markers in male European starlings

    PubMed Central

    Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V

    2013-01-01

    Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt. PMID:21907203

  17. Individual differences in the motivation to communicate relate to levels of midbrain and striatal catecholamine markers in male European starlings.

    PubMed

    Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V

    2011-11-01

    Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt. Copyright © 2011. Published by Elsevier Inc.

  18. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks.

    PubMed

    Erwan, Edi; Chowdhury, Vishwajit Sur; Nagasawa, Mao; Goda, Ryosei; Otsuka, Tsuyoshi; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-07-25

    L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    PubMed

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    PubMed

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  1. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    PubMed

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  2. The effect of morphine on the biosynthesis of catecholamines in the rat brain.

    PubMed

    Malini, M; Kwan, T K; Perumal, R

    1994-02-01

    In vivo studies involved monitoring the effect of morphine administration on catecholamine biosynthesis by the brain while in vitro studies involved studying the effect of morphine on the uptake of tritiated tyrosine by synaptosomes and its subsequent incorporation into the catecholamines. The extremely low levels of these endogenous compounds required the use of High Performance Liquid Chromatography with electrochemical detection. Intra-peritoneal injection of morphine at a dosage of 10 mg/kg did not produce appreciable changes in the catecholamine levels but a dosage of 30 mg/kg morphine was found to elevate dihydroxy phenylacetic acid content. At a dosage of 60 mg/kg, dopamine levels were elevated while noradrenaline was depleted. Morphine, at a concentration of 1 x 10(-5)M increases the incorporation of tritiated tyrosine into dopamine and dihydroxy phenylacetic acid in synaptosomal preparations.

  3. [Urinary excretion of catecholamines in obese subjects and in diabetics (author's transl)].

    PubMed

    Giorgino, R; Nardelli, G M; Scardapane, R

    1976-03-01

    95 obese subjects, 40 diabetics and 22 normal controls were investigated. The weight of all obese subjects was at least 20% higher than the ideal weight. Catecholamine excretion was determined a few days after hospitalization to minimize the influence of environmental changes. Spectrofluorimetric estimation of adrenaline and noradrenaline in the urine was carried out according to the method of von Euler and Lihajko. Statistical analysis of the results showed a significant increase in both adrenaline and noradrenaline excretion in the group of obeses subjects compared with the diabetics. The increased catecholamine excretion may represent the response of the adrenal medulla to the stress of the disease. Such an increase may be responsible for perpheral insulin resistence and hence acts as a diabetogenic factor. The results obtained emphasize the influence of catecholamines on insulin responsiveness, possibly constituting a major contribution to the diabetic state.

  4. Catecholamine-Independent Heart Rate Increases Require CaMKII

    PubMed Central

    Gao, Zhan; Singh, Madhu V; Hall, Duane D; Koval, Olha M.; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Chen, Biyi; Wu, Yuejin; Chaudhary, Ashok K; Martins, James B; Hund, Thomas J; Mohler, Peter J; Song, Long-Sheng; Anderson, Mark E.

    2011-01-01

    Background Catecholamines increase heart rate by augmenting the cAMP responsive HCN4 ‘pacemaker current’ (If) and/or by promoting inward Na+/Ca2+ exchanger current (INCX), by a ‘Ca2+ clock’ mechanism in sinoatrial nodal cells (SANCs). The importance, identity and function of signals that connect If and Ca2+ clock mechanisms are uncertain and controversial, but the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is required for physiological heart rate responses to β-adrenergic receptor (β-AR) stimulation. The aim of this stuy is to measure the contribution of the Ca2+ clock and CaMKII to cardiac pacing independent of β-AR agonist stimulation. Methods and Results We used the L-type Ca2+ channel agonist BayK 8644 (BayK) to activate the SANC Ca2+ clock. BayK and isoproterenol were similarly effective in increasing rates in SANCs and Langendorff-perfused hearts from WT control mice. In contrast, SANCs and isolated hearts from mice with CaMKII inhibition by transgenic expression of an inhibitory peptide (AC3-I) were resistant to rate increases by BayK. BayK only activated CaMKII in control SANCs, but increased ICa equally in all SANCs, indicating that increasing ICa was insufficient and suggesting CaMKII activation was required for heart rate increases by BayK. BayK did not increase If or protein kinase A (PKA)-dependent phosphorylation of phospholamban (at Ser16), indicating that increased SANC Ca2+ by BayK did not augment cAMP/PKA signaling at these targets. Late diastolic intracellular Ca2+ release and INCX were significantly reduced in AC3-I SANCs and the response to BayK was eliminated by ryanodine in all groups. Conclusions The Ca2+ clock is capable of supporting physiological fight or flight responses, independent of β-AR stimulation or If increases. Complete Ca2+ clock and β-AR stimulation responses require CaMKII. PMID:21406683

  5. Methylphenidate during early consolidation affects long-term associative memory retrieval depending on baseline catecholamines.

    PubMed

    Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén

    2017-02-01

    Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.

  6. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones

    PubMed Central

    Armstrong, Sandra K.; Brickman, Timothy J.; Suhadolc, Ryan J.

    2012-01-01

    Summary Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B. bronchiseptica can use the catecholamine norepinephrine for growth on transferrin. In this study, B. bronchiseptica was shown to use catecholamines to obtain iron from both transferrin and lactoferrin in the absence of siderophore. In the presence of siderophore, norepinephrine augmented transferrin utilization by B. bronchiseptica, as well as siderophore function in vitro. Genetic analysis identified BfrA, BfrD and BfrE as TonB dependent outer membrane catecholamine receptors. The BfeA enterobactin receptor was found to not be involved directly in catecholamine utilization; however, the BfrA, BfrD and BfrE catecholamine receptors could serve as receptors for enterobactin and its degradation product 2,3-dihydroxybenzoic acid. Thus, there is a functional link between enterobactin-dependent and catecholamine-dependent transferrin utilization. This investigation characterizes a new B. bronchiseptica mechanism for iron uptake from transferrin that uses host stress hormones that not only deliver iron directly to catecholamine receptors, but also potentiate siderophore activity by acting as iron shuttles. PMID:22458330

  7. The apelinergic system as an alternative to catecholamines in low-output septic shock.

    PubMed

    Coquerel, David; Sainsily, Xavier; Dumont, Lauralyne; Sarret, Philippe; Marsault, Éric; Auger-Messier, Mannix; Lesur, Olivier

    2018-01-19

    Catecholamines, in concert with fluid resuscitation, have long been recommended in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has emerged, trending toward decatecholaminization. Contextually, it is time to re-examine the "maintaining blood pressure" paradigm by identifying safer and life-saving alternatives. We put in perspective the emerging and growing knowledge on a promising alternative avenue: the apelinergic system. This target exhibits invaluable pleiotropic properties, including inodilator activity, cardio-renal protection, and control of fluid homeostasis. Taken together, its effects are expected to be greatly beneficial for patients in septic shock.

  8. Management of an acute catecholamine-induced cardiomyopathy and circulatory collapse: a multidisciplinary approach

    PubMed Central

    Challis, B G; Pitfield, D; Mahroof, R M; Jamieson, N; Bhagra, C J; Vuylsteke, A; Pettit, S J; Chatterjee, K C

    2017-01-01

    A phaeochromocytoma (PC) is a rare, catecholamine-secreting neuroendocrine tumour arising from the adrenal medulla. Presenting symptoms of this rare tumour are highly variable but life-threatening multiorgan dysfunction can occur secondary to catecholamine-induced hypertension or hypotension and subsequent cardiovascular collapse. High levels of circulating catecholamines can induce an acute stress cardiomyopathy, also known as Takotsubo cardiomyopathy. Recent studies have focused on early diagnosis and estimation of the prevalence of acute stress cardiomyopathy in patients with PC, but very little is reported about management of these complex cases. Here, we report the case of a 38-year-old lady who presented with an acute Takotsubo or stress cardiomyopathy and catecholamine crisis, caused by an occult left-sided 5 cm PC. The initial presenting crisis manifested with symptoms of severe headache and abdominal pain, triggered by a respiratory tract infection. On admission to hospital, the patient rapidly deteriorated, developing respiratory failure, cardiogenic shock and subsequent cardiovascular collapse due to further exacerbation of the catecholamine crisis caused by a combination of opiates and intravenous corticosteroid. An echocardiogram revealed left ventricular apical hypokinesia and ballooning, with an estimated left ventricular ejection fraction of 10–15%. Herein, we outline the early stabilisation period, preoperative optimisation and intraoperative management, providing anecdotal guidance for the management of this rare life-threatening complication of PC. Learning points: A diagnosis of phaeochromocytoma should be considered in patients presenting with acute cardiomyopathy or cardiogenic shock without a clear ischaemic or valvular aetiology. Catecholamine crisis is a life-threatening medical emergency that requires cross-disciplinary expertise and management to ensure the best clinical outcome. After initial resuscitation, treatment of acute

  9. Catecholamine crisis during induction of general anesthesia : A case report.

    PubMed

    Sonntagbauer, M; Koch, A; Strouhal, U; Zacharowski, K; Weber, C F

    2018-03-01

    Catecholamine crises associated with pheochromocytoma may cause life-threatening cardiovascular conditions. We report the case of a 75-year-old male who developed a hypertensive crisis during induction of general anesthesia for elective resection of a cervical neuroma due to an undiagnosed pheochromocytoma. Hemodynamic instability occurred immediately after the injection of fentanyl, propofol and rocuronium, prior to laryngoscopy and in the absence of any manipulation of the abdomen. In this case report, we present the management of this incident and discuss the underlying pathophysiology triggering a catecholamine crisis.

  10. Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    NASA Technical Reports Server (NTRS)

    Pruss, G. M.; Kuznetsov, V. I.; Zhilinskaya, A. A.

    1980-01-01

    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia.

  11. Atropa belladonna neurotoxicity: Implications to neurological disorders.

    PubMed

    Kwakye, Gunnar F; Jiménez, Jennifer; Jiménez, Jessica A; Aschner, Michael

    2018-06-01

    Atropa belladonna, commonly known as belladonna or deadly nightshade, ranks among one of the most poisonous plants in Europe and other parts of the world. The plant contains tropane alkaloids including atropine, scopolamine, and hyoscyamine, which are used as anticholinergics in Food and Drug Administration (FDA) approved drugs and homeopathic remedies. These alkaloids can be very toxic at high dose. The FDA has recently reported that Hyland's baby teething tablets contain inconsistent amounts of Atropa belladonna that may have adverse effects on the nervous system and cause death in children, thus recalled the product in 2017. A greater understanding of the neurotoxicity of Atropa belladonna and its modification of genetic polymorphisms in the nervous system is critical in order to develop better treatment strategies, therapies, regulations, education of at-risk populations, and a more cohesive paradigm for future research. This review offers an integrated view of the homeopathy and neurotoxicity of Atropa belladonna in children, adults, and animal models as well as its implications to neurological disorders. Particular attention is dedicated to the pharmaco/toxicodynamics, pharmaco/toxicokinetics, pathophysiology, epidemiological cases, and animal studies associated with the effects of Atropa belladonna on the nervous system. Additionally, we discuss the influence of active tropane alkaloids in Atropa belladonna and other similar plants on FDA-approved therapeutic drugs for treatment of neurological disorders. Copyright © 2018. Published by Elsevier Ltd.

  12. Molecular pathways of pannexin1-mediated neurotoxicity

    PubMed Central

    Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K+, Zn2+, fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca2+. Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these “danger signals” triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways. PMID:24575045

  13. Meeting Report: Alternatives for Developmental Neurotoxicity Testing

    PubMed Central

    Lein, Pamela; Locke, Paul; Goldberg, Alan

    2007-01-01

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternatives to current animal testing protocols and guidelines. To address this need, the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the U.S. Environmental Protection Agency, and the National Toxicology Program are collaborating in a program called TestSmart DNT, the goals of which are to: (a) develop alternative methodologies for identifying and prioritizing chemicals and exposures that may cause developmental neurotoxicity in humans; (b) develop the policies for incorporating DNT alternatives into regulatory decision making; and (c) identify opportunities for reducing, refining, or replacing the use of animals in DNT. The first TestSmart DNT workshop was an open registration meeting held 13–15 March 2006 in Reston, Virginia. The primary objective was to bring together stakeholders (test developers, test users, regulators, and advocates for children’s health, animal welfare, and environmental health) and individuals representing diverse disciplines (developmental neurobiology, toxicology, policy, and regulatory science) from around the world to share information and concerns relating to the science and policy of DNT. Individual presentations are available at the CAAT TestSmart website. This report provides a synthesis of workgroup discussions and recommendations for future directions and priorities, which include initiating a systematic evaluation of alternative models and technologies, developing a framework for the creation of an open database to catalog DNT data, and devising a strategy for harmonizing the validation process across international jurisdictional borders. PMID:17520065

  14. Meeting report: alternatives for developmental neurotoxicity testing.

    PubMed

    Lein, Pamela; Locke, Paul; Goldberg, Alan

    2007-05-01

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternatives to current animal testing protocols and guidelines. To address this need, the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the U.S. Environmental Protection Agency, and the National Toxicology Program are collaborating in a program called TestSmart DNT, the goals of which are to: (a) develop alternative methodologies for identifying and prioritizing chemicals and exposures that may cause developmental neurotoxicity in humans; (b) develop the policies for incorporating DNT alternatives into regulatory decision making; and (c) identify opportunities for reducing, refining, or replacing the use of animals in DNT. The first TestSmart DNT workshop was an open registration meeting held 13-15 March 2006 in Reston, Virginia. The primary objective was to bring together stakeholders (test developers, test users, regulators, and advocates for children's health, animal welfare, and environmental health) and individuals representing diverse disciplines (developmental neurobiology, toxicology, policy, and regulatory science) from around the world to share information and concerns relating to the science and policy of DNT. Individual presentations are available at the CAAT TestSmart website. This report provides a synthesis of workgroup discussions and recommendations for future directions and priorities, which include initiating a systematic evaluation of alternative models and technologies, developing a framework for the creation of an open database to catalog DNT data, and devising a strategy for harmonizing the validation process across international jurisdictional borders.

  15. The Portland Neurotoxicity Scale: Validation of a Brief Self-Report Measure of Antiepileptic-Drug-Related Neurotoxicity

    ERIC Educational Resources Information Center

    Salinsky, Martin C.; Storzbach, Daniel

    2005-01-01

    The Portland Neurotoxicity Scale (PNS) is a brief patient-based survey of neurotoxicity complaints commonly encountered with the use of antiepileptic drugs (AEDs). The authors present data on the validity of this scale, particularly when used in longitudinal studies. Participants included 55 healthy controls, 23 epilepsy patient controls, and 86…

  16. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.

    PubMed

    Biswas, Saikat P; Jadhao, Arun G; Palande, Nikhil V

    2014-04-01

    We are reporting for the first time that the catecholamines (adrenaline and noradrenaline) inhibit the effect of nitric oxide (NO) on melanosome dispersion in freshly isolated scales of the freshwater snakehead fish, Channa punctatus. We studied the effect of NO and catecholamines on the pigment displacement by observing the changes in the melanophore index. The scales when treated with solution containing NO donor sodium nitroprusside (SNP) showed dispersion of melanosomes, whereas NO synthase blocker N-omega-Nitro-L-arginine suppresses this action of SNP. Treatment with adrenaline and noradrenaline on the isolated scales caused aggregation of melanosomes. Scales treated with solution containing catecholamines and SNP resulted in aggregation of melanosomes suggesting that catecholamines mask the effect of SNP. These results suggest that the catecholamines are inhibiting the effect of NO and causing the aggregation of the melanosomes may be via surface receptors.

  17. Perioperative management of paraganglioma and catecholamine-induced cardiomyopathy in child- a case report and review of the literature.

    PubMed

    Jia, Xixi; Guo, Xiangyang; Zheng, Qing

    2017-10-17

    Paragangliomas are catecholamine-secreting tumors of the paraganglia. Perioperative mortality of children with paraganglioma is high, but preoperative therapy and anesthetic management of paraganglioma resection are controversial in children. The literatures on catecholamine-induced cardiomyopathy are limited to several case reports,with few reports of studies on children. Here we report the anesthetic management of a child with paraganglioma and catecholamine-induced cardiomyopathy, and the possible perioperative anesthesia problems of the paraganglioma resection are discussed. Preoperative and intraoperative anesthetic management of Pheochromocytomas children should follow the same principles as for adults, The most important aspects are the control of blood pressure liability and maintenance of adequate blood volume. Pheochromocytomas patient may have cardiomoyopathy due to myocardial toxicity of excessive circulating catecholamines level. The perioperative management of catecholamine-induced cardiomyopathy should include lowering sympathetic activation by means of α-and β-adrenergic receptor blocker and diuretics administration in case of volume overload.

  18. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    PubMed

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  19. Assessment of Styrene Oxide Neurotoxicity Using In Vitro Auditory Cortex Networks

    PubMed Central

    Gopal, Kamakshi V.; Wu, Calvin; Moore, Ernest J.; Gross, Guenter W.

    2011-01-01

    Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical “protection” by 40 μM bicuculline suggests binding of SO to GABA receptors. PMID:23724250

  20. Catecholamine transport in isolated lung parenchyma of pig

    PubMed Central

    Goldie, Roy G.; Paterson, James W.

    1982-01-01

    1 Lung parenchyma strips of the pig incubated at 37°C with [3H]-(-)-noradrenaline ([3H]-NA) or [3H]-(±)-isoprenaline ([3H]-Iso), accumulated radioactivity via saturable, high affinity uptake processes. Apparent saturation constants (Km) for [3H]-NA and [3H]-Iso were 1.34 × 10-6 M and 1.63 × 10-6 M respectively, while apparent transport maxima (Vmax) were 4.86 and 1.63 × 10-9 mol min-1 g-1 respectively. 2 Cellular accumulation of radioactivity from radiolabelled catecholamines was greatly reduced by lowering the temperature to 7°C, pretreatment with ouabain (100 μM), phentolamine (15 μM) or phenoxybenzamine (80 μM). However, accumulation of radioactivity derived from (3H]-NA was inhibited selectively by cocaine (10 μM) and desipramine (1 μM), while normetanephrine (80 μM) and 3-O-methylisoprenaline (50 μM) caused much greater reductions in cellular radioactivity from [3H]-Iso than from (3H]-NA. Taken together with information from kinetic studies, the results indicate that these amines are transported by separate uptake processes. 3 Cocaine (50 μM) which selectively reduced [3H]-NA transport, had no significant effect on the sensitivity (EC50) of isolated parenchyma lung strips of the pig to the contractile effects of cumulative concentrations of NA. The catechol-O-methyl transferase (COMT) inhibitor, U-0521 (60 μM), also failed to alter the potency of NA, while normetanephrine (80 μM) caused a 2 fold decrease in potency. 4 Phentolamine (15 μM), which reduced the cellular accumulation of radioactivity derived from [3H]-Iso by 64%, caused a small potentiation of Iso-induced relaxations of porcine lung strips. Normetanephrine (80 μM) and 3-O-methylisoprenaline (50 μM), which also depressed the accumulation of cellular radioactivity from [3H]-Iso by > 50%, caused rightward shifts in Iso concentration-effect curves as a result of β-adrenoceptor blockade. In sharp contrast, cortisol (80 μM) and U-0521 (60 μM), which caused smaller reductions in the

  1. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells.

    PubMed

    Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H; Uppal, Karan; Go, Young-Mi; Jones, Dean P

    2018-06-01

    Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl 2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range. Copyright © 2018. Published by Elsevier Ltd.

  2. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.

    PubMed

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew; Xu, Alex; Duhart, Helen; Ali, Syed F

    2004-10-01

    The damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons. In the present study, MPP+ was shown to significantly inhibit the response to MTT by cultured PC12 cells. This inhibitory action of MPP+ could be partially reversed by the co-incubation of the cells with the acetylated form of carnitine, acetyl-L-carnitine (ALC). Since at least part of the toxic action of MPP+ is related to mitochondrial inhibition, the partial reversal of the inhibition of MTT response by ALC could involve a partial restoration of mitochondrial function. The role carnitine derivatives, such as ALC, play in attenuating MPP+ and METH-evoked toxicity is still under investigation to elucidate the contribution of mitochondrial dysfunction in mechanisms of neurotoxicity.

  3. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis in the aged

    PubMed Central

    Camell, Christina D.; Sander, Jil; Spadaro, Olga; Lee, Aileen; Nguyen, Kim Y.; Wing, Allison; Goldberg, Emily L.; Youm, Yun-Hee; Brown, Chester W.; Elsworth, John; Rodeheffer, Matthew S.; Schultze, Joachim L.; Dixit, Vishwa Deep

    2017-01-01

    Catecholamine-induced lipolysis, the first step in generation of energy substrates through hydrolysis of triglycerides (TGs) 1, declines with age 2,3. The defect in mobilization of free fatty acids (FFA) in elderly is accompanied with increased visceral adiposity, lower exercise capacity, failure to maintain core body temperature during cold stress, and reduced ability to survive starvation. While catecholamine signaling in adipocytes is normal in elderly, how lipolysis is impaired in aging remains unknown 2,4. Here we uncover that the adipose tissue macrophages (ATMs) regulate age-related reduction in adipocyte lipolysis by lowering the bioavailability of norepinephrine (NE). Unexpectedly, unbiased whole transcriptome analyses of adipose macrophages revealed that aging upregulates genes controlling catecholamine degradation in an NLRP3 inflammasome-dependent manner. Deletion of NLRP3 in aging restored catecholamine-induced lipolysis through downregulation of growth differentiation factor-3 (GDF3) and monoamine oxidase-a (MAOA) that is known to degrade NE. Consistent with this, deletion of GDF3 in inflammasome-activated macrophages improved lipolysis by decreasing MAOA and caspase-1. Furthermore, inhibition of MAOA reversed age-related reduction in adipose tissue NE concentration and restored lipolysis with increased levels of key lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Our study reveals that targeting neuro-innate signaling between sympathetic nervous system and macrophages may offer new approaches to mitigate chronic inflammation-induced metabolic impairment and functional decline. PMID:28953873

  4. DIFFERENTIAL MODULATION OF CATECHOLAMINES BY CHLOROTRIAZINE HERBICIDES IN PHEOCHROMOCYTOMA (PC12) CELLS IN VITRO

    EPA Science Inventory

    Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro.

    Das PC, McElroy WK, Cooper RL.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

    Epidemiological, wildlife, and lab...

  5. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis

    PubMed Central

    Fischer, Katrin; Ruiz, Henry H.; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J.; van der Heide, Verena; Kalinovich, Anastasia V.; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C.; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C.; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H.

    2017-01-01

    Adaptive thermogenesis is the process of heat generation in response to cold stimulation and is under the control of the sympathetic nervous system whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through beta3 adrenergic receptors to activate brown adipose tissue and by “browning” white adipose tissue. Recent studies reported that the alternative activation of macrophages in response to IL-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and to provide an alternative source of locally produced catecholamines during the thermogenic process. We here report that the deletion of Th in hematopoetic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with Interleukin-4 (IL-4), and conditioned media from IL-4 stimulated macrophages failed to induce expression of thermogenic genes, such as the one for uncoupling protein 1 (Ucp1) in adipocytes cultured with the conditioned media. Further, chronic IL-4 treatment failed to increase energy expenditure in WT, Ucp1-/- and Il4ra-/- mice. Consistent with these findings, adipose tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines and hence are not likely to play a direct role in adipocyte metabolism or adaptive thermogenesis. PMID:28414329

  6. Role of catecholamines in maternal-fetal stress transfer in sheep.

    PubMed

    Rakers, Florian; Bischoff, Sabine; Schiffner, Rene; Haase, Michelle; Rupprecht, Sven; Kiehntopf, Michael; Kühn-Velten, W Nikolaus; Schubert, Harald; Witte, Otto W; Nijland, Mark J; Nathanielsz, Peter W; Schwab, Matthias

    2015-11-01

    We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P < .05). Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P < .05). Fetuses developed a delayed and prolonged shift toward anaerobic metabolism in the presence of an unaltered oxygen supply. Adrenergic blockade prevented the stress-induced UBF decrease and, consequently, the fetal NE and blood pressure increase and the shift toward anaerobic metabolism. We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Control of Responsiveness in ADHD by Catecholamines: Evidence for Dopaminergic, Noradrenergic and Interactive Roles

    ERIC Educational Resources Information Center

    Oades, Robert D.; Sadile, Adolfo G.; Sagvolden, Terje; Viggiano, Davide; Zuddas, Alessandro; Devoto, Paola; Aase, Heidi; Johansen, Espen B.; Ruocco, Lucia A.; Russell, Vivienne A.

    2005-01-01

    We explore the neurobiological bases of attention deficit hyperactivity disorder (ADHD) from the viewpoint of the neurochemistry and psychopharmacology of the catecholamine-based behavioural systems. The contributions of dopamine (DA) and noradrenaline (NA) neurotransmission to the motor and cognitive symptoms of ADHD (e.g. hyperactivity, variable…

  8. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells.

    PubMed

    Ges, Igor A; Brindley, Rebecca L; Currie, Kevin P M; Baudenbacher, Franz J

    2013-12-07

    Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.

  9. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells

    PubMed Central

    Ges, Igor A.; Brindley, Rebecca L.; Currie, Kevin P.M.; Baudenbacher, Franz J.

    2013-01-01

    Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped “cell traps”, each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion / repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time. PMID:24126415

  10. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  11. Reduction in total plasma ghrelin levels following catecholamine depletion: relation to bulimic and depressive symptoms.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2013-09-01

    There is increasing preclinical and clinical evidence of the important role played by the gastric peptide hormone ghrelin in the pathogenesis of symptoms of depression and eating disorders. To investigate the role of ghrelin and its considered counterpart, peptide tyrosine tyrosine (PYY), in the development of bulimic and depressive symptoms induced by catecholamine depletion, we administered the tyrosine hydroxylase inhibitor alpha-methyl-paratyrosine (AMPT) in a randomized, double-blind, placebo-controlled crossover, single-site experimental trial to 29 healthy controls and 20 subjects with fully recovered bulimia nervosa (rBN). We found a decrease between preprandial and postprandial plasma ghrelin levels (p<0.0001) and a postprandial rise in plasma PYY levels (p<0.0001) in both conditions in the entire study population. Plasma ghrelin levels decreased in the entire study population after treatment with AMPT compared to placebo (p<0.006). AMPT-induced changes in plasma ghrelin levels were negatively correlated with AMPT-induced depressive symptoms (p<0.004). Plasma ghrelin and plasma PYY levels were also negatively correlated (p<0.05). We did not observe a difference in ghrelin or PYY response to catecholamine depletion between rBN subjects and healthy controls, and there was no correlation between plasma ghrelin and PYY levels and bulimic symptoms induced by catecholamine depletion. These findings suggest a relationship between catecholamines and ghrelin with depressive symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of Sensitive and Direct Methods for Measuring Plasma Aldosterone and Catecholamine Concentrations

    NASA Technical Reports Server (NTRS)

    Haber, E.

    1972-01-01

    Radioimmunoassays for renin activity, angiotensin 1, and angiotensin 2 in the study of vasomotor regulation give new insight into the role of the renin system in maintaining postural homeostatsis. Similar laboratory procedures for specific assays of aldosterone and catecholamines achieve accurate determinations in small human blood samples.

  13. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  14. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    NASA Astrophysics Data System (ADS)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  15. The novel iron chelator, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone, reduces catecholamine-mediated myocardial toxicity.

    PubMed

    Mladĕnka, Premysl; Kalinowski, Danuta S; Haskova, Pavlína; Bobrovová, Zuzana; Hrdina, Radomír; Simůnek, Tomás; Nachtigal, Petr; Semecký, Vladimĺr; Vávrová, Jaroslava; Holeckova, Magdaléna; Palicka, Vladimir; Mazurová, Yvona; Jansson, Patric J; Richardson, Des R

    2009-01-01

    Iron (Fe) chelators are used clinically for the treatment of Fe overload disease. Iron also plays a role in the pathology of many other conditions, and these potentially include the cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study examined the potential of Fe chelators to prevent ISO cardiotoxicity. This was done as like other catecholamines, ISO contains the classical catechol moiety that binds Fe and may form redox-active and cytotoxic Fe complexes. Studies in vitro used the cardiomyocyte cell line, H9c2, which was treated with ISO in the presence or absence of the chelator, desferrioxamine (DFO), or the lipophilic ligand, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH). Both of these chelators were not cardiotoxic and significantly reduced ISO cardiotoxicity in vitro. However, PCTH was far more effective than DFO, with the latter showing activity only at a high, clinically unachievable concentration. Further studies in vitro showed that interaction of ISO with Fe(II)/(III) did not increase cytotoxic radical generation, suggesting that this mechanism was not involved. Studies in vivo were initiated using rats pretreated intravenously with DFO or PCTH before subcutaneous administration of ISO (100 mg/kg). DFO at a clinically used dose (50 mg/kg) failed to reduce catecholamine cardiotoxicity, while PCTH at an equimolar dose totally prevented catecholamine-induced mortality and reduced cardiotoxicity. This study demonstrates that PCTH reduced ISO-induced cardiotoxicity in vitro and in vivo, demonstrating that Fe plays a role, in part, in the pathology observed.

  16. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis.

    PubMed

    Fischer, Katrin; Ruiz, Henry H; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J; van der Heide, Verena; Kalinovich, Anastasia V; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H; Müller, Timo D; Buettner, Christoph

    2017-05-01

    Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of Th in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (Ucp1), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type, Ucp1 -/- and interleukin-4 receptor-α double-negative (Il4ra -/- ) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.

  17. Catecholamine responses to virtual combat: implications for post-traumatic stress and dimensions of functioning.

    PubMed

    Highland, Krista B; Costanzo, Michelle E; Jovanovic, Tanja; Norrholm, Seth D; Ndiongue, Rochelle B; Reinhardt, Brian J; Rothbaum, Barbara; Rizzo, Albert A; Roy, Michael J

    2015-01-01

    Posttraumatic stress disorder (PTSD) symptoms can result in functional impairment among service members (SMs), even in those without a clinical diagnosis. The variability in outcomes may be related to underlying catecholamine mechanisms. Individuals with PTSD tend to have elevated basal catecholamine levels, though less is known regarding catecholamine responses to trauma-related stimuli. We assessed whether catecholamine responses to a virtual combat environment impact the relationship between PTSD symptom clusters and elements of functioning. Eighty-seven clinically healthy SMs, within 2 months after deployment to Iraq or Afghanistan, completed self-report measures, viewed virtual-reality (VR) combat sequences, and had sequential blood draws. Norepinephrine responses to VR combat exposure moderated the relationship between avoidance symptoms and scales of functioning including physical functioning, physical-role functioning, and vitality. Among those with high levels of avoidance, norepinephrine change was inversely associated with functional status, whereas a positive correlation was observed for those with low levels of avoidance. Our findings represent a novel use of a virtual environment to display combat-related stimuli to returning SMs to elucidate mind-body connections inherent in their responses. The insight gained improves our understanding of post-deployment symptoms and quality of life in SMs and may facilitate enhancements in treatment. Further research is needed to validate these findings in other populations and to define the implications for treatment effectiveness.

  18. POTENTIAL MECHANISMS RESPONSIBLE FOR CHLOROTRIAZINE-INDUCED ALTERATIONS IN CATECHOLAMINES IN PHEOCHROMOCYTOMA (PC12) CELLS

    EPA Science Inventory

    ABSTRACT

    Potential Mechanisms Responsible for Chlorotriazine-induced Changes in Catecholamine Metabolism in Pheochromocytoma (PC12) Cells*
    PARIKSHIT C. DAS1, WILLIAM K. McELROY2 , AND RALPH L. COOPER2+
    1Curriculum in Toxicology, University of North Carolina, Chape...

  19. Studies of (±)-3,4-Methylenedioxymethamphetamine (MDMA) Metabolism and Disposition in Rats and Mice: Relationship to Neuroprotection and Neurotoxicity Profile

    PubMed Central

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D.

    2013-01-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”) is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition. PMID:23209329

  20. Urinary Metabolite Markers of Precocious Puberty*

    PubMed Central

    Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2012-01-01

    The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition. PMID:22027199

  1. Neurotoxic and hepatotoxic cyanotoxins removal by nanofiltration.

    PubMed

    Teixeira, Margarida Ribau; Rosa, Maria João

    2006-08-01

    This study investigates the influence of chemical feed characteristics on nanofiltration performance for cyanotoxins removal, namely the neurotoxic anatoxin-a (alkaloid of 166 g/mol, positively charged) and the hepatotoxic microcystins (cyclic peptides of approximately 1,000 g/mol, negatively charged). Results indicate that NF membranes are an effective barrier against anatoxin-a and microcystins in drinking water. Anatoxin-a and especially microcystins were almost completely removed, regardless of the variations in feed water quality (natural organic matter and competitive toxin), the water recovery rate and the pH values. Anatoxin-a removal was governed by electrostatic interactions and steric hindrance, whereas for microcystins the latter was the main mechanism. In turn, fluxes were significantly impacted by background organics and, especially, inorganics (pH, calcium).

  2. Repin-induced neurotoxicity in rodents.

    PubMed

    Robles, M; Choi, B H; Han, B; Santa Cruz, K; Kim, R C

    1998-07-01

    Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an alpha-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD

  3. Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse.

    PubMed

    Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor

    2017-07-01

    Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    PubMed

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthesis and Neurotoxicity Profile of 2,4,5-Trihydroxymethamphetamine and its 6-(N-Acetylcystein-S-yl) Conjugate

    PubMed Central

    Neudörffer, Anne; Mueller, Melanie; Martinez, Claire-Marie; Mechan, Annis; McCann, Una; Ricaurte, George A.; Largeron, Martine

    2011-01-01

    The purpose of the present study was to determine if trihydroxymethamphetamine (THMA), a metabolite of methylenedioxymethamphetamine (MDMA, “ecstasy”) or its thioether conjugate, 6-(N-acetylcystein-S-yl)-2,4,5-trihydroxymethamphetamine (6-NAC-THMA), plays a role in the lasting effects of MDMA on brain serotonin (5-HT) neurons. To this end, novel high-yield syntheses of THMA and 6-NAC-THMA were developed. Lasting effects of both compounds on brain serotonin (5-HT) neuronal markers were then examined. A single intraventricular injection of THMA produced a significant lasting depletion of regional rat brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), consistent with previous reports that THMA harbors 5-HT neurotoxic potential. The lasting effect of THMA on brain 5-HT markers was blocked by the 5-HT uptake inhibitor fluoxetine, indicating persistent effects of THMA on 5-HT markers, like those of MDMA, are dependent on intact 5-HT transporter function. Efforts to identify THMA in the brains of animals treated with a high, neurotoxic dose (80 mg/kg) of MDMA were unsuccessful. Inability to identify THMA in brains of these animals was not related to the unstable nature of the THMA molecule, because exogenous THMA administered intracerebroventricularly could be readily detected in the rat brain for several hours. The thioether conjugate of THMA, 6-NAC-THMA, led to no detectable lasting alterations of cortical 5-HT or 5-HIAA levels, indicating that it lacks significant 5-HT neurotoxic activity. The present results cast doubt on the role of either THMA or 6-NAC-THMA in the lasting serotonergic effects of MDMA. The possibility remains that different conjugated forms of THMA, or oxidized cyclic forms (e.g. the indole of THMA) play a role in MDMA-induced 5-HT neurotoxicity in vivo. PMID:21557581

  6. INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.

    EPA Science Inventory

    Neurotoxicity risk assessments depend on the best available scientific information, including data from animal toxicity, human experimental studies and human epidemiology studies. There are several factors to consider when evaluating the comparability of data from studies. Reg...

  7. Recommendations for Developing Alternative Test Methods for Developmental Neurotoxicity

    EPA Science Inventory

    There is great interest in developing alternative methods for developmental neurotoxicity testing (DNT) that are cost-efficient, use fewer animals and are based on current scientific knowledge of the developing nervous system. Alternative methods will require demonstration of the...

  8. TESTING FOR DEVELOPMENTAL NEUROTOXICITY: CURRENT APPROACHES AND FUTURE NEEDS.

    EPA Science Inventory

    There are many adverse effects on the nervous system following exposure to environmental chemicals during development. In a number of cases (e.g., lead, methyl mercury) the developing nervous system is a highly susceptible. Developmental Neurotoxicity Testing (DNT) guidelines...

  9. ONTOGENY OF PROTEINS FOR USE AS BIOMARKERS OF DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    The developing nervous system can be uniquely susceptible to adverse effects following exposure to environmental chemicals, and several advisory panels (e.g. ILSI, NRC, NAS) have highlighted the need for rapid and sensitive developmental neurotoxicity testing methods. Measurement...

  10. Developmental Neurotoxicology: History and Outline of Developmental Neurotoxicity Study Guidelines.

    EPA Science Inventory

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratoge...

  11. Impact of recurrent hypoglycemic stress on hindbrain A2 nerve cell energy metabolism and catecholamine biosynthesis: modulation by estradiol.

    PubMed

    Tamrakar, Pratistha; Briski, Karen P

    2017-01-01

    It is unclear if habituation of hindbrain A2 metabolo‑sensory neurons to recurrent insulin-induced hypoglycemia (RIIH) correlates with estradiol-dependent adjustments in energy metabolism that favor positive energy balance. Laser-microdissected A2 cells from estradiolor oil-implanted ovariectomized female rats were analyzed by Western blot to assess effects of three prior daily insulin injections on basal and hypoglycemic patterns of catecholamine biosynthetic enzyme dopamine-beta-hydroxylase (DβH) and rate-limiting energy pathway enzyme protein expression. Precedent hypoglycemia respectively decreased or increased baseline DβH expression in estradiol- (E) vs. oil (O)-treated rats; this protein profile was further suppressed or augmented in those animals at 2 hr after re-induction of hypoglycemia. These data suggest that estradiol may curtail A2 noradrenergic‑controlled functions both in the midst of and between hypoglycemic bouts. Results also show that prior hypoglycemia exposure upregulated A2 neuron glycolytic enzyme protein levels when E was present, and exerted differential effects on basal and hypoglycemia-associated respiratory chain and fatty acid synthetic pathway enzyme expression. E may thus accordingly amplify glycolysis-derived metabolites/energy, coupled with reduced reliance on oxidative phosphorylation, and activate the fatty acid synthetic pathway during RIIH. E may also be of benefit by preventing maladaptive reductions in A2 neuron Krebs cycle/electron transport enzyme expression during re-exposure to hypoglycemia. Augmentation of negative energy balance during this recurring metabolic stress in the absence of E is a likely impetus for augmented vs. decreased A2 signaling of energy imbalance by DβH in O vs. E rats during RIIH.

  12. In vitro techniques for the assessment of neurotoxicity.

    PubMed Central

    Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A

    1998-01-01

    Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected

  13. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice.

    PubMed

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, J A; Colado, M I; O'Shea, E

    2010-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Mice received a course of cocaine (20 mg*kg(-1), x2 for 3 days) followed by MDMA (20 mg*kg(-1), x2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.

  14. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  15. Neurotoxicity in Snakebite—The Limits of Our Knowledge

    PubMed Central

    Ranawaka, Udaya K.; Lalloo, David G.; de Silva, H. Janaka

    2013-01-01

    Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue. PMID:24130909

  16. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  17. Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes

    PubMed Central

    Barbosa, Daniel José; Capela, João Paulo; Oliveira, Jorge MA; Silva, Renata; Ferreira, Luísa Maria; Siopa, Filipa; Branco, Paula Sério; Fernandes, Eduarda; Duarte, José Alberto; de Lourdes Bastos, Maria; Carvalho, Félix

    2012-01-01

    BACKGROUND AND PURPOSE 3,4-Methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects. EXPERIMENTAL APPROACH Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC). KEY RESULTS 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H2O2 production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H2O2 generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds’ pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model. CONCLUSIONS AND IMPLICATIONS MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy. PMID:21506960

  18. Enhanced metabolite generation

    SciTech Connect

    Chidambaram, Devicharan

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  19. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    PubMed

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for

  20. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    PubMed

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the

  1. ENDOCANNABINOID SIGNALING IN NEUROTOXICITY AND NEUROPROTECTION

    PubMed Central

    Pope, C.; Mechoulam, R.; Parsons, L.

    2010-01-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Δ9 -tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. PMID:19969019

  2. Accidental hydroxychloroquine overdose resulting in neurotoxic vestibulopathy.

    PubMed

    Chansky, Peter B; Werth, Victoria P

    2017-04-12

    Hydroxychloroquine is an oral antimalarial medication commonly used off-label for a variety of rheumatological conditions, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and dermatomyositis. We present a case of a 64-year-old woman who presented with acute onset headache, bilateral tinnitus, and left-sided facial numbness and tingling in the setting of accidentally overdosing on hydroxychloroquine. By the next morning, the patient began to experience worsening in the tingling sensation and it eventually spread to her left arm, thigh and distal extremities. The patient also complained of new onset blurring of her peripheral vision and feeling 'off balance.' Despite a complete neurological and ophthalmological work-up with unremarkable imaging and blood work, the patient has had no improvement in her tinnitus, left-sided paresthesias, visual disturbance or ataxia. This is a unique case of hydroxychloroquine overdose resulting in permanent neurotoxic vestibulopathy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Role of prion protein aggregation in neurotoxicity.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer's, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  4. Role of Prion Protein Aggregation in Neurotoxicity

    PubMed Central

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death. PMID:22942726

  5. NEUROTOXICITY OF TRAFFIC-RELATED AIR POLLUTION

    PubMed Central

    Costa, Lucio G.; Cole, Toby B.; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J.

    2015-01-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer’s disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300 μg/m3 for six hours) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. PMID:26610921

  6. Endocannabinoid signaling in neurotoxicity and neuroprotection.

    PubMed

    Pope, C; Mechoulam, R; Parsons, L

    2010-09-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. Copyright © 2009 Elsevier Inc. All rights reserved.

  7. Neurotoxicity of subarachnoid hyperbaric bupivacaine in dogs.

    PubMed

    Ganem, E M; Vianna, P T; Marques, M; Castiglia, Y M; Vane, L A

    1996-01-01

    The study investigated possible neurotoxic effects of increasing concentrations and doses of bupivacaine administered into the subarachnoid space in dogs. Fifty animals were allocated to five experimental groups: G1, control; G2, 5 mg 0.5 bupivacaine in 10% glucose solution; G3, 10 mg of 1% bupivacaine in 10% glucose solution; G4, 20 mg 2% bupivacaine in 10% glucose solution, and G5, 20 mg 2% bupivacaine in water. After 72 hours of observation, the animals were killed and the spinal cords removed for histologic examination by light microscopy. None of the animals showed any neurologic clinical disturbance following recovery from spinal anesthesia. One case of necrosis of nerve tissue was observed in G3 and four in G4. Increasing concentrations and doses of hyperbaric bupivacaine solutions increased the incidence of nerve tissue damage, which did not occur with hypobaric solutions. These results should contribute to the further understanding of neurologic complications following spinal anesthesia when large doses of local anesthetics in hyperbaric solutions are used.

  8. Severe neurotoxicity following ingestion of tetraethyl lead.

    PubMed

    Wills, Brandon K; Christensen, Jason; Mazzoncini, Joe; Miller, Michael

    2010-03-01

    Organic lead compounds are potent neurotoxins which can result in death even from small exposures. Traditionally, these compounds are found in fuel stabilizers, anti-knock agents, and leaded gasoline. Cases of acute organic lead intoxication have not been reported for several decades. We report a case of a 13-year-old Iraqi male who unintentionally ingested a fuel stabilizer containing 80-90% tetraethyl lead, managed at our combat support hospital. The patient developed severe neurologic symptoms including agitation, hallucinations, weakness, and tremor. These symptoms were refractory to escalating doses of benzodiazepines and ultimately required endotracheal intubation and a propofol infusion. Adjunctive therapies included chelation, baclofen, and nutrition provided through a gastrostomy tube. The patient slowly recovered and was discharged in a wheelchair 20 days after ingestion, still requiring tube feeding. Follow-up at 62 days post-ingestion revealed near-resolution of symptoms with residual slurred speech and slight limp. This case highlights the profound neurotoxic manifestations of acute organic lead compounds.

  9. Gemifloxacin-associated neurotoxicity presenting as encephalopathy.

    PubMed

    Barrett, Matthew J; Login, Ivan S

    2009-04-01

    To report a case of acute encephalopathy associated with ingestion of gemifloxacin, a fluoroquinolone. A 67-year-old woman presented to the emergency department with an acute alteration in mental status. Twenty-four hours earlier she had taken one 320-mg tablet of her husband's gemifloxacin prescription to treat symptoms of a mild upper respiratory infection. During her initial evaluation at our institution, the woman was dysphasic, unable to follow commands, and agitated, suggesting encephalopathy. A thorough diagnostic investigation did not reveal any structural, metabolic, or infectious etiology. Her mental status returned to normal within 2 days without any definitive treatment. Fluoroquinolone-associated neurotoxicity may manifest as encephalopathy, seizures, confusion, or toxic psychosis. To date, none of these adverse effects, specifically encephalopathy, has been reported with gemifloxacin. An objective causality assessment revealed that encephalopathy was probably associated with gemifloxacin use. Seizures, either convulsive or nonconvulsive, may have contributed to our patient's presentation, but she denied seizures prior to this event and did not suffer a seizure in the 18 months following her discharge. However, her second electroencephalograph revealed an underlying predisposition to seizures, which gemifloxacin may have unmasked. This report illustrates that severe central nervous system adverse effects associated with some fluoroquinolones may also occur with gemifloxacin. Gemifloxacin and other fluoroquinolones should be considered in the etiologic evaluation of patients with acute encephalopathy.

  10. Alternative Test Methods for Developmental Neurotoxicity: A ...

    EPA Pesticide Factsheets

    Exposure to environmental contaminants is well documented to adversely impact the development of the nervous system. However, the time, animal and resource intensive EPA and OECD testing guideline methods for developmental neurotoxicity (DNT) are not a viable solution to characterizing potential chemical hazards for the thousands of untested chemicals currently in commerce. Thus, research efforts over the past decade have endeavored to develop cost-effective alternative DNT testing methods. These efforts have begun to generate data that can inform regulatory decisions. Yet there are major challenges to both the acceptance and use of this data. Major scientific challenges for DNT include development of new methods and models that are “fit for purpose”, development of a decision-use framework, and regulatory acceptance of the methods. It is critical to understand that use of data from these methods will be driven mainly by the regulatory problems being addressed. Some problems may be addressed with limited datasets, while others may require data for large numbers of chemicals, or require the development and use of new biological and computational models. For example mechanistic information derived from in vitro DNT assays can be used to inform weight of evidence (WoE) or integrated approaches to testing and assessment (IATA) approaches for chemical-specific assessments. Alternatively, in vitro data can be used to prioritize (for further testing) the thousands

  11. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.

  12. Neurotoxicity of traffic-related air pollution.

    PubMed

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modulation of key reactions of the catecholamine metabolism by extracts from Eschscholtzia californica and Corydalis cava.

    PubMed

    Kleber, E; Schneider, W; Schäfer, H L; Elstner, E F

    1995-02-01

    Aqueous-alcoholic extracts from Eschscholtzia californica inhibit the enzymatic degradation of catecholamines as well as the synthesis of adrenaline, whereas aqueous-ethanolic extracts from Corydalis cava enhance the chemical oxidation of adrenaline and the synthesis of melanine from dihydroxyphenylalanine (DOPA). Both extracts dramatically shorten the lag phase in the catalysis of phenolase probably due to their o-diphenol content, where the Corydalis extracts are 10 times more active than the Eschscholtzia preparations. Dopamine beta-hydroxylase and monoamine oxidase (MAO-B) are especially inhibited by Eschscholtzia extracts. Diamine oxidases are inhibited by both preparations to a similar extent. The results of this study may be interpreted as a cooperative function of the two preparations in establishing and preserving high catecholamine levels thus explaining their sedative, antidepressive and hypnotic activities.

  14. Effect of consecutive cooling and immobilization on catecholamine metabolism in rat tissues

    NASA Technical Reports Server (NTRS)

    Matlina, E. S.; Waysman, S. M.; Zaydner, I. G.; Kogan, B. M.; Nozdracheva, L. V.

    1979-01-01

    The combined effect of two stressor stimuli--cooling and immobilization--acting successively on the sympathetic-adrenaline system was studied experimentally in rats that were cooled for 8 hours at 7 C on the first day and immobilized for 6 hours on the next day. The biochemical and histochemical methods used and the experimental technique involved are described in detail. The following conclusions were formulated: (1) the successive action of cooling and immobilization results in a stronger decrease in the adrenaline and noradrenaline content in the adrenal gland than that which could be due to a simple summation of the cooling and immobilization effects; (2) successive cooling and immobilization are followed by activation of catecholamine synthesis in the adrenal gland; and (3) 1-DOPA administration (45 mg/kg 3 times in 2 days) intraabdominally activated catecholamine synthesis in the adrenal glands in both the control and test animals.

  15. Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives.

    PubMed

    Sun, Wu-Ping; Li, Da; Lun, Yong-Zhi; Gong, Xiao-Jie; Sun, Shen-Xia; Guo, Ming; Jing, Li-Xin; Zhang, Li-Bin; Xiao, Fu-Cheng; Zhou, Shi-Sheng

    2012-02-01

    Nicotinamide and catecholamines are both degraded by S-adenosylmethionine-dependent methylation. Whether excess nicotinamide affects the degradation of catecholamines is unknown. The aim of this study was to investigate the effect of nicotinamide on the methylation status of the body and methylation-mediated catecholamine degradation in both normotensives and hypertensives. The study was conducted in 19 normotensives and 27 hypertensives, using a nicotinamide-loading test (100 mg orally). Plasma nicotinamide, N(1)-methylnicotinamide, homocysteine (Hcy), betaine, norepinephrine, epinephrine, normetanephrine and metanephrine levels before and 5 h after nicotinamide loading were measured. Compared with normotensives, hypertensives had higher baseline (fasting) levels of plasma nicotinamide, Hcy and norepinephrine, but lower levels of plasma normetanephrine, a methylated norepinephrine derivative. Nicotinamide loading induced a significant increase in the levels of plasma N(1)-methylnicotinamide and norepinephrine, and a significant decrease in the levels of O-methylated epinephrine (metanephrine) and betaine, a major methyl donor, in both hypertensives and normotensives. Moreover, nicotinamide-loading significantly increased plasma Hcy levels, but decreased plasma normetanephrine levels in normotensives. The baseline levels of plasma epinephrine in hypertensives were similar to those of normotensives, but the post-nicotinamide-loading levels of plasma epinephrine in hypertensives were higher than those of normotensives. This study demonstrated that excess nicotinamide might deplete the labile methyl pool, increase Hcy generation and inhibit catecholamine degradation. It also revealed that hypertensives had an abnormal methylation pattern, characterized by elevated fasting plasma levels of unmethylated substrates, nicotinamide, Hcy and norepinephrine. Therefore, it seems likely that high nicotinamide intake may be involved in the pathogenesis of Hcy

  16. Photoaffinity labelling of MSH receptors on Anolis melanophores: effects of catecholamines, calcium and forskolin.

    PubMed

    Eberle, A N; Girard, J

    1985-01-01

    Photoaffinity labelling of MSH receptors on Anolis melanophores was used as a tool for studying the effects of catecholamines, calcium and forskolin on hormone-receptor interaction and receptor-adenylate cyclase coupling. Covalent attachment of photoreactive alpha-MSH to its receptor was suppressed in calcium-free buffer but was hardly influenced by catecholamines or forskolin. The longlasting signal generated by the covalent MSH-receptor complex was readily and reversibly abolished by adrenaline, noradrenaline, dopamine or clonidine or by the absence of calcium. The suppression of pigment dispersion by catecholamines was blocked by the simultaneous presence of yohimbine but not prazosin, indicating that the catecholamines antagonize the alpha-MSH signal by inhibitory action on the adenylate cyclase system through an alpha-2 receptor. Forskolin, which stimulates melanophores by direct action on the catalytic unit of the adenylate cyclase and at about the same speed as alpha-MSH, produced a slower and weaker response in the presence of noradrenaline. If MSH receptors were covalently labelled and then exposed to noradrenaline, the characteristics of the forskolin-induced response were identical to those of unlabelled cells that had not been exposed to noradrenaline. This may point to a partial restoration of receptor-adenylate cyclase coupling by forskolin. The results show that the longlasting stimulation of Anolis melanophores by photoaffinity labelling proceeds via a permanently stimulated adenylate-cyclase system whose coupling to the receptor depends on calcium and is abolished by alpha-2 receptor agonists. Calcium is also essential for hormone-receptor binding.

  17. Reserpine-induced Reduction in Norepinephrine Transporter Function Requires Catecholamine Storage Vesicles

    PubMed Central

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A.

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, reserpine did not displace the binding of [3H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [3H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [3H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca2+/Ca2+-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [3H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [3H]NE uptake and eliminated the inhibitory effects of reserpine on [3H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca2+-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. PMID:20176067

  18. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles.

    PubMed

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor

    2014-12-07

    A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; P<.0001). The plasma leptin levels were higher under catecholamine depletion compared with placebo in the whole sample (treatment effect; P=.0004). This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with remitted bulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock

    PubMed Central

    Macarthur, Heather; Westfall, Thomas C.; Riley, Dennis P.; Misko, Thomas P.; Salvemini, Daniela

    2000-01-01

    A major feature of septic shock is the development of a vascular crisis characterized by nonresponsiveness to sympathetic vasoconstrictor agents and the subsequent irreversible fall in blood pressure. In addition, sepsis, like other inflammatory conditions, results in a large increase in the production of free radicals, including superoxide anions (O2⨪) within the body. Here we show that O2⨪ reacts with catecholamines deactivating them in vitro. Moreover, this deactivation would appear to account for the hyporeactivity to exogenous catecholamines observed in sepsis, because administration of a superoxide dismutase (SOD) mimetic to a rat model of septic shock to remove excess O2⨪ restored the vasopressor responses to norepinephrine. This treatment with the SOD mimetic also reversed the hypotension in these animals; suggesting that deactivation of endogenous norepinephrine by O2⨪ contributes significantly to this aspect of the vascular crisis. Indeed, the plasma concentrations of both norepinephrine and epinephrine in septic rats treated with the SOD mimetic were significantly higher than in untreated rats. Interestingly, the plasma concentrations for norepinephrine and epinephrine were inversely related to the plasma concentrations of adrenochromes, the product of the autoxidation of catecholamines initiated by O2⨪. We propose, therefore, that the use of a SOD mimetic represents a new paradigm for the treatment of septic shock. By removing O2⨪, exogenous and endogenous catecholamines are protected from autoxidation. As a result, both hyporeactivity and hypotension are reversed, generation of potentially toxic adrenochromes is reduced, and survival rate is improved. PMID:10944234

  1. Occupational EMF exposure from radar at X and Ku frequency band and plasma catecholamine levels.

    PubMed

    Singh, Sarika; Kapoor, Neeru

    2015-09-01

    Workers in certain occupations such as the military may be exposed to technical radiofrequency radiation exposure above current limits, which may pose a health risk. The present investigation intended to find the effect of chronic electromagnetic field (EMF) exposure from radar on plasma catecholamines in the military workforce. In the study, 166 male personnel selected randomly were categorized into three groups: control (n = 68), exposure group-I (X-band, 8-12 GHz, n = 40), and exposure group-II (Ku-band, 12.5-18 GHz, n = 58). The three clusters were further divided into two groups according to their years of service (YOS) (up to 9 years and ≥10 years) to study the effect of years of radar exposure. Enzyme immunoassay was employed to assess catecholamine concentrations. EMF levels were recorded at different occupational distances from radar. Significant adrenaline diminution was registered in exposure group-II with no significant difference in exposure group-I when both groups were weighed against control. Nor-adrenaline and dopamine levels did not vary significantly in both exposure groups when compared to controls. Exposure in terms of YOS also did not yield any significant alteration in any of the catecholamines and in any of the exposure groups when compared with their respective control groups. The shift from baseline catecholamine values due to stress has immense significance for health and well-being. Their continual alteration may prove harmful in due course. Suitable follow-up studies are needed to further strengthen these preliminary observations and for now, exposures should be limited as much as possible with essential safeguards. © 2015 Wiley Periodicals, Inc.

  2. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure

    PubMed Central

    Fargali, Samira; Garcia, Angelo L.; Sadahiro, Masato; Jiang, Cheng; Janssen, William G.; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M.; Mahata, Sushil K.; Osborn, John W.; Huntley, George W.; Phillips, Greg R.; Benson, Deanna L.; Bartolomucci, Alessandro; Salton, Stephen R.

    2014-01-01

    Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1–615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1–524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1–615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.—Fargali, S., Garcia, A. L., Sadahiro, M., Jiang, C., Janssen, W. G., Lin, W.-J., Cogliani, V., Elste, A., Mortillo, S., Cero, C., Veitenheimer, B., Graiani, G., Pasinetti, G. M., Mahata, S. K., Osborn, J. W., Huntley, G. W., Phillips, G. R., Benson, D. L., Bartolomucci, A., Salton, S. R. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. PMID:24497580

  3. Hypoxic alligator embryos: chronic hypoxia, catecholamine levels and autonomic responses of in ovo alligators.

    PubMed

    Eme, John; Altimiras, Jordi; Hicks, James W; Crossley, Dane A

    2011-11-01

    Hypoxia is a naturally occurring environmental challenge for embryonic reptiles, and this is the first study to investigate the impact of chronic hypoxia on the in ovo development of autonomic cardiovascular regulation and circulating catecholamine levels in a reptile. We measured heart rate (f(H)) and chorioallantoic arterial blood pressure (MAP) in normoxic ('N21') and hypoxic-incubated ('H10'; 10% O(2)) American alligator embryos (Alligator mississippiensis) at 70, 80 and 90% of development. Embryonic alligator responses to adrenergic blockade with propranolol and phentolamine were very similar to previously reported responses of embryonic chicken, and demonstrated that embryonic alligator has α and β-adrenergic tone over the final third of development. However, adrenergic tone originates entirely from circulating catecholamines and is not altered by chronic hypoxic incubation, as neither cholinergic blockade with atropine nor ganglionic blockade with hexamethonium altered baseline cardiovascular variables in N21 or H10 embryos. In addition, both atropine and hexamethonium injection did not alter the generally depressive effects of acute hypoxia - bradycardia and hypotension. However, H10 embryos showed significantly higher levels of noradrenaline and adrenaline at 70% of development, as well as higher noradrenaline at 80% of development, suggesting that circulating catecholamines reach maximal levels earlier in incubation for H10 embryos, compared to N21 embryos. Chronically elevated levels of catecholamines may alter the normal balance between α and β-adrenoreceptors in H10 alligator embryos, causing chronic bradycardia and hypotension of H10 embryos measured in normoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Powers, Bethany R; Ritter, Sue

    2014-02-15

    Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.

  5. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons

    PubMed Central

    Wang, Qing; Dinh, Thu T.; Powers, Bethany R.; Ritter, Sue

    2013-01-01

    Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component. PMID:24381177

  6. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation.

    PubMed

    Johansson, P I; Ostrowski, S R

    2010-12-01

    Acute coagulopathy of trauma predicts a poor clinical outcome. Tissue trauma activates the sympathoadrenal system resulting in high circulating levels of catecholamines that influence hemostasis dose-dependently through immediate effects on the two major compartments of hemostasis, i.e., the circulating blood and the vascular endothelium. There appears to be a dose-dependency with regards to injury severity and the hemostatic response to trauma evaluated in whole blood by viscoelastic assays like thrombelastography (TEG), changing from normal to hypercoagulable, to hypocoagulable and finally hyperfibrinolytic in severely injured patients. Since high catecholamine levels may directly damage the endothelium and thereby promote systemic coagulation activation, we hypothesize that the progressive hypocoagulability and ultimate hyperfibrinolysis observed in whole blood with increasing injury severity, is an evolutionary developed response that counterbalances the injury and catecholamine induced endothelial activation and damage. Given this, the rise in circulating catecholamines in trauma patients may favor a switch from hyper- to hypocoagulability in the blood to keep the progressively more procoagulant microvasculature open. The hypothesis delineated in the present paper thus infers that the state of the fluid phase, including its cellular elements, is a consequence of the degree of the tissue injury and importantly, critically related to the degree of endothelial damage, with a progressively more procoagulant endothelium inducing a gradient of increasing anticoagulation towards the fluid phase. The implications of this hypothesis may include targeted treatment strategies according to the degree of sympathoadrenal response as evaluated by whole blood viscoelastical hemostatic assays in trauma patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Growth Stimulation by Catecholamines in Plant Tissue/Organ Cultures 1

    PubMed Central

    Protacio, Calixto M.; Dai, Yao-ren; Lewis, Eldrin F.; Flores, Hector E.

    1992-01-01

    Addition of catecholamines at micromolar concentrations caused a dramatic stimulation of growth of tobacco (Nicotiana tabacum) thin cell layers (TCLs) and Acmella oppositifolia “hairy” root cultures. A threefold increase in the rate of ethylene evolution was observed in the catecholamine-treated explants. Aminooxyacetic acid and silver thiosulfate, inhibitors of ethylene biosynthesis and action, respectively, reduced the growth-promoting effect of dopamine. However, these compounds alone could also inhibit the growth of the TCL explants. When ethylene in the culture vessel was depleted by trapping with mercuric perchlorate, dopamine-stimulated growth was still obtained, suggesting that ethylene does not mediate the dopamine effect. Dopamine potentiated the growth of TCLs grown in Murashige and Skoog medium supplemented with indoleacetic acid (IAA) and kinetin. When IAA was replaced by 2,4-dichlorophenoxyacetic acid, dopamine addition showed no growth-promoting effect. Instead, 2,4-dichlorophenoxyacetic acid stimulated the growth of TCL explants to the same extent as that obtained with IAA plus dopamine. Because synthetic auxins do not appear to be substrates for IAA oxidizing enzymes, we hypothesized that catecholamines exert their effect by preventing IAA oxidation. Consistent with this explanation, dopamine (25 micromolar) inhibited IAA oxidase activity by 60 to 100% in crude enzyme extracts from tobacco roots and etiolated corn coleoptiles, but had no effect on peroxidase activity in the same extracts. Furthermore, addition of dopamine to TCL cultures resulted in a fourfold reduction in the oxidative degradation of [1-14C]IAA fed to the explants. Because the growth enhancement by catecholamines is observed in both IAA-requiring and IAA-independent cultures, we suggest that these aromatic amines may have a role in the regulation of IAA levels in vivo. ImagesFigure 2 PMID:16668653

  8. Fish in hot water: hypoxaemia does not trigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Currie, S; Ahmady, E; Watters, M A; Perry, S F; Gilmour, K M

    2013-06-01

    Rainbow trout (Oncorhynchus mykiss) exposed to an acute heat shock (1 h at 25 °C after raising water temperature from 13 °C to 25 °C over 4 h) mount a significant catecholamine response. The present study investigated the proximate mechanisms underlying catecholamine mobilization. Trout exposed to heat shock in vivo exhibited a significant reduction in arterial O(2) tension, but arterial O(2) concentration was not affected by heat shock, nor was catecholamine release during heat shock prevented by prior and concomitant exposure to hyperoxia (to prevent the fall in arterial O(2) tension). Thus, catecholamine mobilization probably was not triggered by impaired blood O(2) transport. Heat-shocked trout also exhibited an elevation of arterial CO(2) tension coupled with a fall in arterial pH, but these factors are not expected to trigger catecholamine release. The changes in blood O(2) and CO(2) tension occurred despite a significant hyperventilatory response to heat shock. Future studies should investigate whether catecholamine mobilization during heat shock in rainbow trout is triggered by a specific effect of high temperature activating the sympathetic nervous system via a thermosensitive transient receptor potential channel. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effect of quinine on the release of catecholamines from bovine cultured chromaffin cells.

    PubMed Central

    Tang, R.; Novas, M. L.; Glavinovic, M. I.; Trifaró, J. M.

    1990-01-01

    1. The effects of quinine on catecholamine release from cultured bovine chromaffin cells were studied. 2. Quinine (25-400 microM) produced a dose-related inhibition of catecholamine release in response to depolarizing concentrations (12.5-50 mM) of K+. 3. The inhibition of the secretory response to high K+ produced by quinine decreased with the increase in the extracellular concentration of Ca2+. 4. Stimulation of cultured chromaffin cells with 50 mM K+ produced a significant increase in Ca2+ influx. In the presence of 100 microM quinine a 54% inhibition of the K(+)-induced Ca2+ influx was observed. 5. Quinine treatment of chromaffin cell cultures produced a small but significant decrease in membrane resting potential and a less pronounced depolarization in response to 50 mM K+. 6. The results suggest that the inhibition of the K(+)-evoked release of catecholamines produced by quinine is at least partly due to a decrease in Ca2+ influx. Ca2+ influx is lower because quinine reduces the sensitivity of the membrane potential to changes in extracellular K+ but direct effects of quinine on Ca2+ channels cannot be excluded. PMID:2158846

  10. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications.

    PubMed

    Dhand, Chetna; Harini, Sriram; Venkatesh, Mayandi; Dwivedi, Neeraj; Ng, Alice; Liu, Shouping; Verma, Navin Kumar; Ramakrishna, Seeram; Beuerman, Roger W; Loh, Xian Jun; Lakshminarayanan, Rajamani

    2016-01-20

    In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications.

  11. Lower catecholamine activity is associated with greater levels of anger in adults.

    PubMed

    Schwartz, Joseph A; Portnoy, Jill

    2017-10-01

    Previous research has revealed a consistent association between heart rate at rest and during stress and behavioral problems, potentially implicating autonomic nervous system (ANS) functioning in the etiological development of antisocial behavior. A complementary line of research has focused on the potential independent and interactive role of the two subsystems that comprise the ANS, the parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS), on behavioral problems. The current study aims to contribute to the existing literature by examining the influence of heart rate (HR) reactivity, high-frequency heart rate variability (HF-HRV) reactivity, and catecholamine activity on a comprehensive measure of anger in a large, nationally-representative sample of adults from the United States. Results from a series of structural equation models (SEMs) revealed that catecholamine activity was most consistently linked to anger, while associations involving HR and HF-HRV reactivity were nonsignificant. Additional analyses revealed that HF-HRV did not significantly moderate the association between catecholamine activity and anger. These findings highlight the importance of SNS activity in the development of more reactive forms of aggression such as anger. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

    PubMed Central

    Wenisch, C; Parschalk, B; Weiss, A; Zedwitz-Liebenstein, K; Hahsler, B; Wenisch, H; Georgopoulos, A; Graninger, W

    1996-01-01

    Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood. PMID:8807207

  13. Effect of betel quid on catecholamine secretion from adrenal chromaffin cells.

    PubMed

    Wang, C K; Hwang, L S

    1997-10-01

    Health damage and environmental pollution are serious problems caused by betel quid chewing in Taiwan. Many people acquire the habit of chewing betel quid due to its physiological effects, including increased stamina and a general feeling of well-being. In this study, a sympathetic model system of adrenal chromaffin cells and sensory evaluation were used to examine the physiological effects of betel quid and the interaction of all the ingredients (areca fruit, Piper betle inflorescence and red time paste) in betel quid. Physiological effects of cardioacceleration, a slightly drunk feeling, sweating and salivation occurred during the chewing of betel quid (a mixture of areca fruit, Piper betle inflorescence and red lime paste) and a mixture of areca fruit and red lime paste. Both induced much more basal catecholamine secretion from adrenal chromaffin cells than did other ingredients and combinations of ingredients. It was evident that the responses in the sympathetic model system were closely correlated with the physiological feeling of well-being. The inhibitory effects of all the chewing juices on catecholamine secretion evoked by carbachol and a high concentration of potassium (high K+) showed that they perhaps affected the calcium influx through voltage-sensitive channels or the steps involved in secretion after calcium entry to stimulate basal catecholamine secretion from chromaffin cells.

  14. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Decreased catecholamine secretion from the adrenal medullae of chronically diabetic BB-Wistar rats

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Lelkes, P. I.; Hillard, C. J.

    1993-01-01

    Many humans with IDDM eventually lose the capacity to secrete epinephrine from their adrenal medullae. The mechanism for this pathological change is unknown. We hypothesized that this abnormality is attributable to neuropathic changes in the greater splanchnic nerves or in the chromaffin cells that they innervate. To study this hypothesis, we isolated rat adrenal glands, perfused them ex vivo, and measured the epinephrine content of the perfusate under various conditions of stimulation. We used transmural electrical stimulation (20-80 V, at 10 Hz) to induce epinephrine secretion indirectly by selectively activating residual splanchnic nerve terminals within the isolated glands. Under these conditions, epinephrine secretion was severely attenuated in glands from female BB-Wistar rats with diabetes of 4 mo duration compared with their age-matched, nondiabetic controls. These perfused diabetic adrenal medullae also demonstrated decreased catecholamine release in response to direct chromaffin cell depolarization with 20 mM K+, evidence that a functional alteration exists within the chromaffin cells themselves. Nonetheless, total catecholamine content of adrenal medullae from these diabetic rats was not significantly different from controls, indicating that the secretory defect was not simply attributable to a difference in the amount of catecholamines stored and available for release. Herein, we also provide histological evidence of degenerative changes within the cholinergic nerve terminals that innervate these glands.

  16. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure.

    PubMed

    Fargali, Samira; Garcia, Angelo L; Sadahiro, Masato; Jiang, Cheng; Janssen, William G; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M; Mahata, Sushil K; Osborn, John W; Huntley, George W; Phillips, Greg R; Benson, Deanna L; Bartolomucci, Alessandro; Salton, Stephen R

    2014-05-01

    Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.

  17. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    PubMed

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Mind-Body Training on Cytokines and Their Interactions with Catecholamines.

    PubMed

    Jang, Joon Hwan; Park, Hye Yoon; Lee, Ui Soon; Lee, Kyung-Jun; Kang, Do-Hyung

    2017-07-01

    Mind-body training (MBT) may control reactions to stress and regulate the nervous and immune systems. The present study was designed to assess the effects of MBT on plasma cytokines and their interactions with catecholamines. The study group consisted of 80 subjects who practice MBT and a control group of 62 healthy subjects. Plasma catecholamine (norepinephrine, NE; epinephrine, E; and dopamine, DA) and cytokine (TNF-alpha, IL-6, IFN-gamma, and IL-10) levels were measured, and the differences between the MBT and control groups and the interactions of cytokines with catecholamines were investigated. A significant increase in IL-10+IFN-gamma was found in females of the MBT group compared with controls. Also, a significant increase of IL-10 (anti-inflammatory cytokine) in the MBT group was shown in a specific condition in which TNF-alpha and IL-6 (pro-inflammatory cytokines) are almost absent (≤1 ng/L) compared with controls. In the MBT group, significant positive correlations were found between IL-10 and the NE/E ratio and between IL-10 and the DA/E ratio, whereas the control group did not show any such correlations. MBT may increase IL-10, under specific conditions such as a decrease of pro-inflammatory cytokines or E, which may regulate the stress response and possibly contribute to effective and beneficial interactions between the nervous and immune systems.

  19. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    PubMed Central

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  20. Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity.

    PubMed

    Kania-Korwel, Izabela; Lukasiewicz, Tracy; Barnhart, Christopher D; Stamou, Marianna; Chung, Haeun; Kelly, Kevin M; Bandiera, Stelvio; Lein, Pamela J; Lehmler, Hans-Joachim

    2017-07-01

    Chiral polychlorinated biphenyl (PCB) congeners have been implicated by laboratory and epidemiological studies in PCB developmental neurotoxicity. These congeners are metabolized by cytochrome P450 (P450) enzymes to potentially neurotoxic hydroxylated metabolites (OH-PCBs). The present study explores the enantioselective disposition and toxicity of 2 environmentally relevant, neurotoxic PCB congeners and their OH-PCB metabolites in lactating mice and their offspring following dietary exposure of the dam. Female C57BL/6N mice (8-weeks old) were fed daily, beginning 2 weeks prior to conception and continuing throughout gestation and lactation, with 3.1 µmol/kg bw/d of racemic 2,2',3,5',6-pentachlorobiphenyl (PCB 95) or 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in peanut butter; controls received vehicle (peanut oil) in peanut butter. PCB 95 levels were higher than PCB 136 levels in both dams and pups, consistent with the more rapid metabolism of PCB 136 compared with PCB 95. In pups and dams, both congeners were enriched for the enantiomer eluting second on enantioselective gas chromatography columns. OH-PCB profiles in lactating mice and their offspring were complex and varied according to congener, tissue and age. Developmental exposure to PCB 95 versus PCB 136 differentially affected the expression of P450 enzymes as well as neural plasticity (arc and ppp1r9b) and thyroid hormone-responsive genes (nrgn and mbp). The results suggest that the enantioselective metabolism of PCBs to OH-PCBs may influence neurotoxic outcomes following developmental exposures, a hypothesis that warrants further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    PubMed

    Baldwin, H A; Colado, M I; Murray, T K; De Souza, R J; Green, A R

    1993-03-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro. 7. Several NMDA antagonists prevent methamphetamine-induced neurotoxicity; however chlormethiazole is not an NMDA antagonist. Inhibition of striatal dopamine function prevents methamphetamine-induced toxicity of both dopamine and 5

  2. Elucidating the neurotoxic effects of MDMA and its analogs.

    PubMed

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cumulative Genetic Risk Predicts Platinum/Taxane-Induced Neurotoxicity

    PubMed Central

    McWhinney-Glass, Sarah; Winham, Stacey J.; Hertz, Daniel L.; Revollo, Jane Yen; Paul, Jim; He, Yijing; Brown, Robert; Motsinger-Reif, Alison A.; McLeod, Howard L.

    2013-01-01

    Purpose The combination of a platinum and taxane are standard of care for many cancers, but the utility is often limited due to debilitating neurotoxicity. We examined whether single nucleotide polymorphisms (SNPs) from annotated candidate genes will identify genetic risk for chemotherapy-induced neurotoxicity. Patients and Methods A candidate-gene association study was conducted to validate the relevance of 1261 SNPs within 60 candidate genes in 404 ovarian cancer patients receiving platinum/taxane chemotherapy on the SCOTROC1 trial. Statistically significant variants were then assessed for replication in a separate 404 patient replication cohort from SCOTROC1. Results Significant associations with chemotherapy-induced neurotoxicity were identified and replicated for four SNPs in SOX10, BCL2, OPRM1, and TRPV1. The Population Attributable Risk for each of the four SNPs ranged from 5–35%, with a cumulative risk of 62%. According to the multiplicative model, the odds of developing neurotoxicity increase by a factor of 1.64 for every risk genotype. Patients possessing 3 risk variants have an estimated odds ratio of 4.49 (2.36–8.54) compared to individuals with 0 risk variants. Neither the four SNPs nor the risk score were associated with progression free survival or overall survival. Conclusions This study demonstrates that SNPs in four genes have a significant cumulative association with increased risk for the development of chemotherapy-induced neurotoxicity, independent of patient survival. PMID:23963862

  4. Multiple neurotoxic effects of haloperidol resulting in neuronal death.

    PubMed

    Nasrallah, Henry A; Chen, Alexander T

    2017-08-01

    Several published studies have reported an association between antipsychotic medications, especially first-generation agents, and a decline in gray matter volume. This prompted us to review the possible neurotoxic mechanisms of first-generation antipsychotics (FGAs), especially haloperidol, which has been widely used over the past several decades. A PubMed search was conducted using the keywords haloperidol, antipsychotic, neurotoxicity, apoptosis, oxidative stress, and neuroplasticity. No restrictions were placed on the date of the articles or language. Studies with a clearly described methodology were included. Animal, cell culture, and human tissue studies were identified. Thirty reports met the criteria for the search. All studies included haloperidol; a few also included other FGAs (fluphenazine and perphenazine) and/or second-generation agents (SGAs) (aripiprazole, paliperidone, and risperidone). A neurotoxic effect of haloperidol and other FGAs was a common theme across all studies. Minimal (mainly at high doses) or no neurotoxic effects were noted in SGAs. A review of the literature suggests that haloperidol exerts measurable neurotoxic effects at all doses via many molecular mechanisms that lead to neuronal death. A similar effect was observed in 2 other FGAs, but the effect in SGAs was much smaller and occurred mainly at high doses. A stronger binding to serotonin 5HT-2A receptors than to dopamine D2 receptors may have a neuroprotective effect among SGAs. Further studies are warranted to confirm these findings.

  5. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  6. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    PubMed

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH

  7. A screening approach using zebrafish for the detection and characterization of developmental neurotoxicity.

    EPA Science Inventory

    Thousands of chemicals have little or no data to support developmental neurotoxicity risk assessments. Current developmental neurotoxicity guideline studies mandating mammalian model systems are expensive and time consuming. Therefore a rapid, cost-effective method to assess de...

  8. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  9. Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2014-01-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016

  10. The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F

    2014-09-01

    The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca(2+), Cl(-), DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.

  11. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  12. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    SciTech Connect

    Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp; Goto, Yasuaki; Kato, Masaru

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons frommore » glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.« less

  13. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    PubMed

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  14. Reversible metronidazole-induced neurotoxicity after 10 weeks of therapy.

    PubMed

    AlDhaleei, Wafa; AlMarzooqi, Ayesha; Gaber, Nouran

    2018-04-20

    Metronidazole is a commonly used antimicrobial worldwide. The most common side effects that have been reported are nausea, vomiting and hypersensitivity reactions. However, neurotoxicity has been reported with the use of metronidazole but rather rare. The most common neurological manifestation is peripheral neuropathy involvement in the form of sensory loss. It is worth mentioning that central neurotoxicity is a rare side effect of metronidazole use but reversible. The manifestations vary from a headache, altered mental status to focal neurological deficits. The diagnosis is mainly by neuroimaging in the setting of acute neurological change in the patient status. Here, we report a case of metronidazole-induced neurotoxicity in a 38-year-old male patient who was admitted with a brain abscess and was started on metronidazole for more than 10 weeks. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Manganese-induced Neurotoxicity: From C. elegans to Humans

    PubMed Central

    Chen, Pan; Chakraborty, Sudipta; Peres, Tanara V.; Bowman, Aaron B.; Aschner, Michael

    2014-01-01

    Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity. PMID:25893090

  16. The effect of salts on catecholamine fluxes and adenosine triphosphatase activity in storage vesicles from the adrenal medulla

    PubMed Central

    Taugner, G.

    1971-01-01

    1. Influx and efflux of catecholamine and adenosine triphosphatase activity in storage vesicles from the adrenal medulla were studied with dl-[14C]adrenaline in different media. 2. The lowest values for flux and adenosine triphosphatase activity were observed in sucrose media in which an ATP-dependent influx of catecholamine compensated for an efflux of the same magnitude. Efflux in the presence or absence of ATP was similar. 3. In media containing sodium succinate or glutarate adenosine triphosphatase activity was higher and the ATP-dependent influx of catecholamine was about twice that observed in iso-osmotic sucrose medium. In the presence of ATP influx and efflux of catecholamine were balanced; in its absence there was a net release of catecholamine, since efflux was more than twice the influx. Efflux in the presence or absence of ATP was similar. 4. In media containing sodium or potassium chloride and in the presence of ATP influx and adenosine triphosphatase activity were further enhanced, but in the absence of ATP there was no further increase in influx, since catecholamine was released with or without ATP at the same rate. Efflux was therefore twice as high in the presence of ATP as in its absence. 5. Sodium nitrate suppressed the ATP-dependent influx nearly completely, but caused a greatly enhanced efflux, which was twice as high in the presence of ATP as in its absence. 6. The extinction of vesicular suspensions remained unchanged in the presence of ATP under conditions where the catecholamine efflux was balanced by the influx. Under conditions where the efflux was not compensated by influx, the extinction of the suspensions decreased in the presence of ATP more than in its absence. PMID:4256794

  17. Emerging Neurotoxic Mechanisms in Environmental Factors-Induced Neurodegeneration

    PubMed Central

    Kanthasamy, Anumantha; Jin, Huajun; Anantharam, Vellareddy; Sondarva, Gautam; Rangasamy, Velusamy; Rana, Ajay; Kanthasamy, Arthi

    2012-01-01

    Exposure to environmental neurotoxic metals, pesticides and other chemicals is increasingly recognized as a key risk factor in the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. Oxidative stress and apoptosis have been actively investigated as neurotoxic mechanisms over the past two decades, resulting in a greater understanding of neurotoxic processes. Nevertheless, emerging evidence indicates that epigenetic changes, protein aggregation and autophagy are important cellular and molecular correlates of neurodegenerative diseases resulting from chronic neurotoxic chemical exposure. During the Joint Conference of the 13th International Neurotoxicology Association and the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, the recent progress made toward understanding epigenetic mechanisms, protein aggregation, autophagy, and deregulated kinase activation following neurotoxic chemical exposure and the relevance to neurodegenerative conditions were one of the themes of the symposium. Dr. Anumantha G. Kanthasamy described the role of acetylation of histones and non-histone proteins in neurotoxicant-induced neurodegenerative processes in the nigral dopaminergic neuronal system. Dr. Arthi Kanthasamy illustrated the role of autophagy as a key determinant in cell death events during neurotoxic insults. Dr. Ajay Rana provided evidence for posttranslational modification of α-synuclein protein by the Mixed Linage Kinase (MLK) group of kinases to initiate protein aggregation in cell culture and animal models of Parkinson’s disease. These presentations outlined emerging cutting edge mechanisms that might set the stage for future mechanistic investigations into new frontiers of molecular neurotoxicology. This report summarizes the views of symposium participants, with emphasis on future directions for study of environmentally and occupationally linked chronic

  18. The content of catecholamines in the adrenal glands and sections of the brain under hypokinesia and injection of some neurotropic agents

    NASA Technical Reports Server (NTRS)

    Melnik, B. E.; Paladiy, E. S.

    1980-01-01

    The dynamics of catecholamine content were studied in the adrenal glands and in various region of the brain of white rats under hypokinesia and injections of neurotropic agents. Profound changes in body catecholamine balance occured as a result of prolonged acute restriction of motor activity. Adrenalin retention increased and noradrenanalin retention decreased in the adrenal glands, hypothalamus, cerebral hemispheres, cerebellum and medulla oblongata. Observed alterations in catecholamine retention varied depending upon the type of neurotropic substance utilized. Mellipramine increased catecholamine retention in the tissues under observation while spasmolytin brought about an increase in adrenalin concentration in the adrenals and a decrease in the brain.

  19. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study.

    PubMed

    Ghosh, Chaitali; Hossain, Mohammad; Spriggs, Addison; Ghosh, Arnab; Grant, Gerald A; Marchi, Nicola; Perucca, Emilio; Janigro, Damir

    2015-03-01

    Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently

  20. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on The Way Forward

    EPA Science Inventory

    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant acr...

  1. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 18F-FDOPA PET/CT uptake parameters correlate with catecholamines secretion in human pheochromocytomas.

    PubMed

    Moog, Sophie; Moog, Sophie; Houy, Sébastien; Chevalier, Elodie; Ory, Stéphane; Weryha, Georges; Rame, Marion; Klein, Marc; Brunaud, Laurent; Gasman, Stéphane; Cuny, Thomas

    2018-06-27


    Background: 18F-FDOPA positron emission tomography/computed tomography (PET/CT) is a sensitive nuclear imaging for the diagnosis of pheochromocytomas (PHEO). However, its utility as a predictive factor of the secretion of catecholamines remains poorly studied. Thirty-nine histologically-confirmed PHEO were included in this retrospective monocentric study. Patients underwent 18F-FDOPA PET/CT before surgery with evaluation of several uptake parameters (SUVmax, SUVmean and the metabolic burden [MB] calculated as follows: MB = SUVmean x tumor volume) and measurement of plasma and/or urinary metanephrine (MN), normetanephrine (NM) and chromogranin A (CGA). Thirty-five patients were screened for germline mutations in RET, SDHx and VHL genes. Once resected, primary cultures of 5 PHEO were used for real time measurement of catecholamines release by carbon fiber amperometry. The MB of the PHEO positively correlated with 24-h urinary excretion of NM (r=0.64, p<0.0001), MN (r=0.49, p=0.002), combined MN and NM (r=0.75, p<0,0001) and eventually plasma free levels of NM (r=0.55 p=0.006). In mutated-patients (3 SDHD, 2 SDHB, 3 NF1, 1 VHL and 3 RET), a similar correlation was observed between the MB and the 24h-urinary combined MN and NM (r=0.86, p=0.0012). For the first time, we demonstrate a positive correlation between the PHEO-to-liver SUVmax ratio and the mean number of secretory granule fusion events of the corresponding PHEO cells revealed by amperometric spikes (p=0.01). While the 18F-FDOPA PET/CT metabolic burden of PHEO strongly correlates with the concentration of metanephrines, amperometric recordings suggest that the 18F-FDOPA uptake could be enhanced by the overactivity of the catecholamines exocytosis.
    . ©2018S. Karger AG, Basel.

  3. Behavioral and perceived stressor effects on urinary catecholamine excretion in adult Samoans.

    PubMed

    Bergey, Meredith R; Steele, Matthew S; Bereiter, David A; Viali, Satupaitea; McGarvey, Stephen T

    2011-01-01

    The effects of perceptions and behaviors related to culturally patterned socioeconomic obligations on catecholamine excretion rates were studied in a cross-sectional sample of Samoan adults. A total of 378 participants, ages 29-62 years, from 9 villages throughout Samoa, provided timed overnight urine specimens, and self-reported perceptions and behaviors associated with contributions to one's family, aiga, and chief, matai, and communal gift exchanges, fa'alavelave. Urinary norepinephrine and epinephrine excretion rates were measured by high performance liquid chromatography with electrochemical detection. Age (≤40 vs. >40 years) and gender-specific regression models were estimated to detect associations with catecholamine excretion. Young women who contribute more to their matai, who consider fa'alavelave to be a financial strain, and who view their contribution to their matai to be "just right," had significantly higher residence-adjusted norepinephrine excretion. Young women who contribute more to their matai, who consider fa'alavelave to be a financial strain, and who consider their contribution to their aiga not to be a burden, had higher epinephrine excretion. Older men who contribute more to their aiga and who perceive their contribution to their aiga to be "just right" had increased residence-adjusted epinephrine excretion. Individual-level perceptions and behaviors related to traditional socioeconomic obligations are a significant correlate of increased overnight catecholamine excretion rates. Higher excretion rates may be attributed to psychosocial stress arousal associated with a discordance between personal desires for upward social mobility, and family and community-based socioeconomic obligations. Changes in patterns of individual-level psychosocial stress arousal may contribute to cardiovascular disease risk in modernizing Samoans. Copyright © 2011 Wiley-Liss, Inc.

  4. Overnight Changes of Immune Parameters and Catecholamines Are Associated With Mood and Stress

    PubMed Central

    Rief, Winfried; Mills, Paul J.; Ancoli-Israel, Sonia; Ziegler, Michael G.; Pung, Meredith A.; Dimsdale, Joel E.

    2011-01-01

    Objectives To test the hypothesis that a nocturnal decrease of secretion of inflammation markers and catecholamines would be associated with mood and stress variables even after controlling for objective sleep variables. Methods A total of 130 healthy volunteers participated in this study, spending 2 nights in the Gillin Laboratory of Sleep and Chronobiology at the University of California, San Diego, General Clinical Research Center. Blood samples were obtained before sleep (10:30 PM) and after awakening (6:30 AM) on the first day, and these samples were assayed for inflammatory biomarkers and catecholamines. On the second night, polysomnographic records were scored for objective sleep variables, e.g., total sleep time and wake after sleep onset. Self-rating scales for mood, stress, depression, and daily hassles were administered the second day. Results The nocturnal decrease in interleukin-6 was smaller in people who reported more negative mood or fatigue and greater in those who reported more uplift events (e.g., with Profile of Mood States fatigue rp = −.25 to −.30). People with high stress or high depression levels had smaller nocturnal decreases of epinephrine. That relationship was even stronger when partial correlations were used to control for morning level and sleep variables. The associations between nocturnal changes of C-reactive protein, soluble tumor necrosis factor-receptor I, and norepinephrine with psychological states were nonremarkable. Conclusions The analyses of nocturnal change scores (difference scores) add substantial information compared with the traditional analyses of morning levels of immune variables and catecholamines alone. Subjective well-being is significantly associated with a greater nocturnal decrease of interleukin-6 and epinephrine. More research on nocturnal adaptation processes is warranted. PMID:20841563

  5. Overnight changes of immune parameters and catecholamines are associated with mood and stress.

    PubMed

    Rief, Winfried; Mills, Paul J; Ancoli-Israel, Sonia; Ziegler, Michael G; Pung, Meredith A; Dimsdale, Joel E

    2010-10-01

    To test the hypothesis that a nocturnal decrease of secretion of inflammation markers and catecholamines would be associated with mood and stress variables even after controlling for objective sleep variables. A total of 130 healthy volunteers participated in this study, spending 2 nights in the Gillin Laboratory of Sleep and Chronobiology at the University of California, San Diego, General Clinical Research Center. Blood samples were obtained before sleep (10:30 PM) and after awakening (6:30 AM) on the first day, and these samples were assayed for inflammatory biomarkers and catecholamines. On the second night, polysomnographic records were scored for objective sleep variables, e.g., total sleep time and wake after sleep onset. Self-rating scales for mood, stress, depression, and daily hassles were administered the second day. The nocturnal decrease in interleukin-6 was smaller in people who reported more negative mood or fatigue and greater in those who reported more uplift events (e.g., with Profile of Mood States fatigue r(p) = -.25 to -.30). People with high stress or high depression levels had smaller nocturnal decreases of epinephrine. That relationship was even stronger when partial correlations were used to control for morning level and sleep variables. The associations between nocturnal changes of C-reactive protein, soluble tumor necrosis factor-receptor I, and norepinephrine with psychological states were nonremarkable. The analyses of nocturnal change scores (difference scores) add substantial information compared with the traditional analyses of morning levels of immune variables and catecholamines alone. Subjective well-being is significantly associated with a greater nocturnal decrease of interleukin-6 and epinephrine. More research on nocturnal adaptation processes is warranted.

  6. Metabolomics for secondary metabolite research.

    PubMed

    Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko

    2013-11-11

    Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.

  7. Catecholamines of the adrenal medula and their morphological changes during adaptation to repeated immobilization stress

    NASA Technical Reports Server (NTRS)

    Kvetnansky, R.; Mitro, A.; Mikulaj, L.; Hocman, G.

    1980-01-01

    Changes of the adrenal medulla of rats were studied in the course of adaptation to repeated immobilization stress. An increase in the number of cells in the adrenal medulla was found in the adapted animals; this increase was confirmed by weight indices of the medulla and by cell counts per surface unit. Simultaneous karyometric measurements of the nuclei of adrenal medulla cells and an analysis of the catecholamine contents in the adrenals explain the increased activity of the adrenal medulla in the course of adaptation.

  8. Mechanistic insight into neurotoxicity induced by developmental insults

    SciTech Connect

    Tamm, Christoffer; Ceccatelli, Sandra

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells tomore » investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.« less

  9. Research advances on potential neurotoxicity of quantum dots.

    PubMed

    Wu, Tianshu; Zhang, Ting; Chen, Yilu; Tang, Meng

    2016-03-01

    With rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in biological and biomedical studies, including neuroscience, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs with a growing number of studies. However, the knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, while a potential risk of neurotoxicity arises if mass production of QDs leads to increased exposure and distribution in the nervous system. Owing to the quantum size effect of QDs, they are capable of crossing the blood-brain barrier or moving along neural pathways and entering the brain. Nevertheless, the interactions of QDs with cells and tissues in the central nervous system are not well understood. This review highlighted research advances on the neurotoxicity of QDs in the central nervous system, including oxidative stress injury, elevated cytoplasmic Ca(2+) levels and autophagy to damage in vitro neural cells, and impairments of synaptic transmission and plasticity as well as brain functions in tested animals, with the hope of throwing light on future research directions of QD neurotoxicity, which is a demanding topic that requires further exploration. Copyright © 2015 John Wiley & Sons, Ltd.

  10. INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.

    EPA Science Inventory

    This manuscript provides an overview of the use of data from toxicology and epidemiology studies for neurotoxicity risk assessment. Parameters such as the use of subjects, study designs, exposures, and measured outcomes are compared and contrasted. The main concern for use of d...

  11. Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210

    PubMed Central

    Cha, Hye Jin; Seong, Yeon-Hee; Song, Min-Ji; Jeong, Ho-Sang; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Kim, Young-Hoon; Kang, Hoil; Kim, Hyoung Soo

    2015-01-01

    Synthetic cannabinoids JWH-018 and JWH-250 in ‘herbal incense’ also called ‘spice’ were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future. PMID:26535086

  12. Screening for Developmental Neurotoxicity; What Role Can Zebrafish Play?

    EPA Science Inventory

    There are so many chemicals in use today. How can we screen those chemicals for potential developmental neurotoxicity? The zebrafish larval assay with behavioral assessments may prove useful for that chemical screen. This talk presents data from our laboratory as well as others t...

  13. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  14. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  15. THE ROLE OF MOTOR ACTIVITY IN THE ASSESSMENT OF NEUROTOXICITY

    EPA Science Inventory

    Motor activity is a behavioral test that has been recommended as a component of testing batteries that evaluate the neurotoxic potential of chemicals. his brief commentary will address the role of this test in such evaluations. t is organized in accordance with the questions that...

  16. Zebrafish as a systems toxicology model for developmental neurotoxicity testing.

    PubMed

    Nishimura, Yuhei; Murakami, Soichiro; Ashikawa, Yoshifumi; Sasagawa, Shota; Umemoto, Noriko; Shimada, Yasuhito; Tanaka, Toshio

    2015-02-01

    The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments. © 2014 Japanese Teratology Society.

  17. DEVELOPMENTAL NEUROTOXICITY TESTING GUIDELINES: VARIABILITY IN MORPHOMETRIC ASSESSMENTS OF NEUROPATHOLOGY.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for neuropathological and morphometric assessments of rat pups on postnatal day (PND) 11 and at study termination (after PND 60). In recent discussions about conducting these studies on pesti...

  18. Synergic effect studies of the bi-enzymatic system laccase-peroxidase in a voltammetric biosensor for catecholamines.

    PubMed

    Leite, Oldair D; Lupetti, Karina O; Fatibello-Filho, Orlando; Vieira, Iolanda C; Barbosa, Aneli de M

    2003-04-10

    Several bi-enzymatic carbon paste biosensors modified with enzymes laccase from Pleurotus ostreatus fungi and peroxidase from zucchini (Cucurbita pepo) were constructed for evaluating the synergic effect of the two enzymes on the voltammetric biosensor response for various catecholamines. Initially was investigated the effect of pH from 5.0 to 7.5, temperature from 25 to 50 degrees C, initial stirring time from 30 to 150 s, scan rate from 10 to 60 mVs(-1) and potential pulse amplitude from 10 to 60 mV on the biosensor response for several catecholamines such as dopamine, adrenaline, isoprenaline and l-dopa. It was observed a biosensor signal increase employing both enzymes, indicating thus there is a synergic effect between laccase and peroxidase, verified also in spectrophotometric studies, in the determination of these catecholamines.

  19. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    PubMed

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  20. Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

    PubMed Central

    DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644

  1. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

    PubMed Central

    Farina, Marcelo; Rocha, João B. T.; Aschner, Michael

    2011-01-01

    Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle. PMID:21683713

  2. Natalizumab Modifies Catecholamines Levels Present in Patients with Relapsing- Remitting Multiple Sclerosis.

    PubMed

    Escribano, Begona M; Aguilar-Luque, Macarena; Bahamonde, Carmen; Conde, Cristina; Lillo, Rafael; Sanchez-Lopez, Fernando; Giraldo, Ana I; Cruz, Antonio H; Luque, Evelio; Gascon, Felix; Aguera, Eduardo; Tunez, Isaac

    2016-01-01

    The main aim of this study was to verify the effect of natalizumab on the levels of circulating catecholamines and indolamine and their possible relation with MS. For this purpose, 12 healthy individuals (control group) and 12 relapsing-remitting multiple sclerosis patients (RR-MS) were selected. The patients were treated with 300 mg of natalizumab during 56 weeks (1 dose/4 weeks) (MS-56). This selection was based on the McDonalds revision criterion and scheduled to star treatment with natalizumab. Blood samples were taken before treatment (basal level) and after 56 weeks of using natalizumab. Melatonin was measured in serum and in plasma, catecholamines (dopamine, epinephrine, and norepinephrine), carbonylated proteins, 8-hydroxy-2'deoxyguanosine (8OH-dG) and the ratio reduced glutathione/oxidised glutathione (GSH/GSSG). The epinephrine and dopamine levels diminished in the basal group with respect to the control and did not recover normal levels with the treatment. The melatonin was decreased in RR-MS patients and went back to its normal levels with natalizumab. Norepinephrine was increased in RR-MS and decreased in MS-56 until it equalled the control group. Natalizumab normalizes altered melatonin and norepinephrine levels in MS.

  3. Resting-State Peripheral Catecholamine and Anxiety Levels in Korean Male Adolescents with Internet Game Addiction

    PubMed Central

    Kim, Nahyun; Hughes, Tonda L.; Park, Chang G.; Quinn, Laurie

    2016-01-01

    Abstract The purpose of this study was to compare the resting-state plasma catecholamine and anxiety levels of Korean male adolescents with Internet game addiction (IGA) and those without IGA. This cross-sectional comparative study was conducted with 230 male high school students in a South Korean city. Convenience and snowball sampling methods were employed, and data were collected using (1) participant blood samples analyzed for dopamine (DA), epinephrine (Epi), and norepinephrine (NE) and (2) two questionnaires to assess IGA and anxiety levels. Using SPSS 15.0, data were analyzed by descriptive analysis, χ2-tests, t-tests, and Pearson's correlation tests. The plasma Epi (t = 1.962, p < 0.050) and NE (t = 2.003, p = 0.046) levels were significantly lower in the IGA group than in the non-IGA group; DA levels did not significantly differ between the groups. The mean anxiety level of the IGA group was significantly higher compared with the non-IGA group (t =−6.193, p < 0.001). No significant correlations were found between catecholamine and anxiety levels. These results showed that excessive Internet gaming over time induced decreased peripheral Epi and NE levels, thus altering autonomic regulation, and increasing anxiety levels in male high school students. Based on these physiological and psychological effects, interventions intended to prevent and treat IGA should include stabilizing Epi, NE, and anxiety levels in adolescents. PMID:26849530

  4. Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow.

    PubMed

    Rupp, H; Dhalla, K S; Dhalla, N S

    1994-01-01

    A chronically increased rate of catecholamine release has various deleterious actions. Isoproterenol injections (80 mg/kg body weight) resulted in depressed Ca2+ transport in the sarcolemma (ATP-dependent Ca2+ uptake, Na(+)-dependent Ca2+ uptake) and sarcoplasmic reticulum (Ca2+ uptake) of rat heart. The formation of malondialdehyde owing to lipid peroxidation was increased. Pretreatment with vitamin E (10-25 mg/kg/day) strongly inhibited the membrane damage. The toxic effects of catecholamines arise most probably from their oxidation, and it is therefore important either to reduce the central sympathetic outflow or to prevent the oxidation. An inappropriately high sympathetic outflow is a typical feature of Western affluent societies, and is linked to psychosocial stress and hypercaloric nutrition. However, established pharmacologic interventions to reduce sympathetic outflow have proven not practicable because of marked side effects. Using radiotelemetry for monitoring cardiovascular parameters of spontaneously hypertensive rats treated with clonidine or moxonidine, we showed that clonidine, unlike moxonidine, resulted in rebound hypertension after drug withdrawal. Because the rebound blood pressure and the typical side effects of clonidine associated with low patient compliance are mainly mediated by alpha-adrenoceptors, it can be inferred that the I1-imidazoline agonist moxonidine does not exhibit the side effects commonly seen with clonidine and therefore represents a promising approach for reducing an inappropriately high central sympathetic outflow.

  5. Energy balance studies and plasma catecholamine values for patients with healed burns.

    PubMed

    Wallace, B H; Cone, J B; Caldwell, F T

    1991-01-01

    We report heat balance studies and plasma catecholamine values for 49 children and young adults with healed burn wounds (age range 0.6 to 31 years and burn range 1% to 82% body surface area burned; mean 41%). All measurements were made during the week of discharge. Heat production for patients with healed burns was not significantly different from predicted normal values. However, compartmented heat loss demonstrated a persistent increment in evaporative heat loss that was secondary to continued elevation of cutaneous water vapor loss immediately after wound closure. A reciprocal decrement in dry heat loss was demonstrated (as a result of a cooler average surface temperature, 0.84 degree C cooler than the average integrated skin temperature of five normal volunteers who were studied in our unit under similar environmental conditions). Mean values for plasma catecholamines were in the normal range: epinephrine = 56 +/- 37 pg/ml, norepinephrine = 385 +/- 220 pg/ml, and dopamine = 34 +/- 29 pg/ml. In conclusion, patients with freshly healed burn wounds have normal rates of heat production; however, there is a residual increment in transcutaneous water vapor loss, which produces surface cooling and decreased average surface temperature, which in turn lowers dry heat loss by an approximately equivalent amount.

  6. No Elevated Plasma Catecholamine Levels during Sleep in Newly Diagnosed, Untreated Hypertensives

    PubMed Central

    Rasch, Björn; Dodt, Christoph; Sayk, Friedhelm; Mölle, Matthias; Born, Jan

    2011-01-01

    The sympatho-adrenergic system is highly involved in regulating sleep, wake and arousal states, and abnormalities in this system are regarded as a key factor in the development and progression of arterial hypertension. While hypertension is associated with a hyperadrenergic state during wakefulness, the effect of hypertension on plasma-catecholamine levels during sleep is not yet known. Twelve young participants with newly diagnosed, untreated hypertension and twelve healthy controls slept for 7 hours in the sleep laboratory. Before and after sleep, subjects rested in a supine position for 3-h periods of wakefulness. We sampled blood at a fast rate (1/10 min) and monitored blood pressure and heart rate continuously. We show that plasma NE and E levels did not differ between hypertensives and normotensive during sleep as well as before and after sleep. Blood pressure was higher in hypertensives, reaching the largest group difference in the morning after sleep. Unlike in the normotensives, in the hypertensive participants the morning rise in blood pressure did not correlate with the rise in catecholamine levels at awakening. Our results suggest that hypertension in its early stages is not associated with a strong hyperadrenergic state during sleep. In showing a diminished control of blood pressure through sympatho-adrenergic signals in hypertensive participants, our data point towards a possible involvement of dysfunctional sleep-related blood pressure regulation in the development of hypertension. PMID:21695061

  7. Types of aggressiveness and catecholamine response in essential hypertensives and healthy controls.

    PubMed

    Netter, P; Neuhäuser-Metternich, S

    1991-01-01

    Relationships between plasma catecholamine responses, and levels and types of aggression in hyper- and normotensives were investigated by analyses of data obtained in a large psychophysiological experiment on 97 hypertensives (EH) and 98 normotensives (CO) each. Subjects were divided according to levels (high vs low) and types (repressed vs manifest) of aggressiveness according to self rating questionnaire scores. Their plasma catecholamine responses to defined stressors indicating sympathetic arousability were compared by four factor analyses of covariance adjusting for age. Repressed aggression was significantly more frequent among male EH, whereas manifest aggression was significantly more frequent among the male COs. High as compared to low hostility was associated with significantly elevated values of plasma epinephrine in EH but not in CO. The immediate norepinephrine stress response was blunted but showed a delayed increase during the subsequent period of rest in high aggressives of both the EH and CO group, a pattern particularly pronounced in repressed aggressive hypertensives. Neither cardiovascular reactions nor speed of performance were observed to be substantially different in subjects of repressed and of manifest hostility. It was concluded that aggression in general is characterized by a delayed norepinephrine stress response and that an association with high epinephrine is typical for aggressiveness in hypertensives. Repressed hostility, however, does not produce a sympathomedullary pattern substantially different from that of manifest aggression thus casting doubt on the physiological significance of repression claimed by Alexander.

  8. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines.

    PubMed

    Amjadi, Mohammad; Hallaj, Tooba; Manzoori, Jamshid L; Shahbazsaghir, Tahmineh

    2018-08-05

    We report on a chemiluminescence (CL) system based on simultaneous enhancing effect of Si-doped carbon dots (Si-CDs) and cetyltrimethylammonium bromide (CTAB) on HCO 3 - -H 2 O 2 reaction . The possible CL mechanism is investigated and discussed. Excited-state Si-CDs was found to be the final emitting species, which are probably produced via electron and hole injection by oxy-radicals. The effect of several other heteroatom-doped CDs and undoped CDs was also investigated and compared with Si-CDs. Furthermore, it was found that catecholamines such as dopamine, adrenaline and noradrenaline remarkably diminish the CL intensity of Si-CD-HCO 3 - -H 2 O 2 -CTAB system. By taking advantage of this fact, a sensitive probe was designed for determination of dopamine, adrenaline and noradrenaline with a limit of detection of 0.07, 0.60 and 0.01 μM, respectively. The method was applied to the determination of catecholamines in human plasma samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Resting-State Peripheral Catecholamine and Anxiety Levels in Korean Male Adolescents with Internet Game Addiction.

    PubMed

    Kim, Nahyun; Hughes, Tonda L; Park, Chang G; Quinn, Laurie; Kong, In Deok

    2016-03-01

    The purpose of this study was to compare the resting-state plasma catecholamine and anxiety levels of Korean male adolescents with Internet game addiction (IGA) and those without IGA. This cross-sectional comparative study was conducted with 230 male high school students in a South Korean city. Convenience and snowball sampling methods were employed, and data were collected using (1) participant blood samples analyzed for dopamine (DA), epinephrine (Epi), and norepinephrine (NE) and (2) two questionnaires to assess IGA and anxiety levels. Using SPSS 15.0, data were analyzed by descriptive analysis, χ(2)-tests, t-tests, and Pearson's correlation tests. The plasma Epi (t = 1.962, p < 0.050) and NE (t = 2.003, p = 0.046) levels were significantly lower in the IGA group than in the non-IGA group; DA levels did not significantly differ between the groups. The mean anxiety level of the IGA group was significantly higher compared with the non-IGA group (t = -6.193, p < 0.001). No significant correlations were found between catecholamine and anxiety levels. These results showed that excessive Internet gaming over time induced decreased peripheral Epi and NE levels, thus altering autonomic regulation, and increasing anxiety levels in male high school students. Based on these physiological and psychological effects, interventions intended to prevent and treat IGA should include stabilizing Epi, NE, and anxiety levels in adolescents.

  10. Effects of active recovery during interval training on plasma catecholamines and insulin.

    PubMed

    Nalbandian, Harutiun M; Radak, Zsolt; Takeda, Masaki

    2018-06-01

    BACKGROUNDː Active recovery has been used as a method to accelerate the recovery during intense exercise. It also has been shown to improve performance in subsequent exercises, but little is known about its acute effects on the hormonal and metabolic profile. The aim of this research was to study the effects of active recovery on plasma catecholamines and plasma insulin during a high-intensity interval exercise. METHODSː Seven subjects performed two high-intensity interval training protocols which consisted of three 30-second high-intensity bouts (constant intensity), separated by a recovery of 4 minutes. The recovery was either active recovery or passive recovery. During the main test blood samples were collected and plasma insulin, plasma catecholamines and blood lactate were determined. Furthermore, respiratory gasses were also measured. RESULTSː Plasma insulin and blood lactate were significantly higher in the passive recovery trial, while plasma adrenaline was higher in the active recovery. Additionally, VO2 and VCO2 were significantly more increased during the active recovery trials. CONCLUSIONSː These results suggest that active recovery affects the hormonal and metabolic responses to high-intensity interval exercise. Active recovery produces a hormonal environment which may favor lipolysis and oxidative metabolism, while passive recovery may be favoring glycolysis.

  11. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  12. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.

    PubMed

    Currie, Kevin P M

    2010-11-01

    Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.

  13. Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.

    PubMed

    Forlano, Paul M; Sisneros, Joseph A

    2016-01-01

    The plainfin midshipman fish (Porichthys notatus) is a well-studied model to understand the neural and endocrine mechanisms underlying vocal-acoustic communication across vertebrates. It is well established that steroid hormones such as estrogen drive seasonal peripheral auditory plasticity in female Porichthys in order to better encode the male's advertisement call. However, little is known of the neural substrates that underlie the motivation and coordinated behavioral response to auditory social signals. Catecholamines, which include dopamine and noradrenaline, are good candidates for this function, as they are thought to modulate the salience of and reinforce appropriate behavior to socially relevant stimuli. This chapter summarizes our recent studies which aimed to characterize catecholamine innervation in the central and peripheral auditory system of Porichthys as well as test the hypotheses that innervation of the auditory system is seasonally plastic and catecholaminergic neurons are activated in response to conspecific vocalizations. Of particular significance is the discovery of direct dopaminergic innervation of the saccule, the main hearing end organ, by neurons in the diencephalon, which also robustly innervate the cholinergic auditory efferent nucleus in the hindbrain. Seasonal changes in dopamine innervation in both these areas appear dependent on reproductive state in females and may ultimately function to modulate the sensitivity of the peripheral auditory system as an adaptation to the seasonally changing soundscape. Diencephalic dopaminergic neurons are indeed active in response to exposure to midshipman vocalizations and are in a perfect position to integrate the detection and appropriate motor response to conspecific acoustic signals for successful reproduction.

  14. The effects of mind-body training on stress reduction, positive affect, and plasma catecholamines.

    PubMed

    Jung, Ye-Ha; Kang, Do-Hyung; Jang, Joon Hwan; Park, Hye Yoon; Byun, Min Soo; Kwon, Soo Jin; Jang, Go-Eun; Lee, Ul Soon; An, Seung Chan; Kwon, Jun Soo

    2010-07-26

    This study was designed to assess the association between stress, positive affect and catecholamine levels in meditation and control groups. The meditation group consisted of 67 subjects who regularly engaged in mind-body training of "Brain-Wave Vibration" and the control group consisted of 57 healthy subjects. Plasma catecholamine (norepinephrine (NE), epinephrine (E), and dopamine (DA)) levels were measured, and a modified form of the Stress Response Inventory (SRI-MF) and the Positive Affect and Negative Affect Scale (PANAS) were administered. The meditation group showed higher scores on positive affect (p=.019) and lower scores on stress (p<.001) compared with the control group. Plasma DA levels were also higher in the meditation (p=.031) than in the control group. The control group demonstrated a negative correlation between stress and positive affects (r=-.408, p=.002), whereas this correlation was not observed in the meditation group. The control group showed positive correlations between somatization and NE/E (r=.267, p=.045) and DA/E (r=.271, p=.042) ratios, whereas these correlations did not emerge in the meditation group. In conclusion, these results suggest that meditation as mind-body training is associated with lower stress, higher positive affect and higher plasma DA levels when comparing the meditation group with the control group. Thus, mind-body training may influence stress, positive affect and the sympathetic nervous system including DA activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons.

    PubMed

    Du, X; Iacovitti, L

    1995-07-01

    The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.

  16. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water

    PubMed Central

    Saritha, Krishna; Celia, Dodd A.; Shahryar, Hekmatyar K.; Nikolay, Filipov M.

    2013-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e. mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) level, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure. PMID:23832297

  17. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Hekmatyar, Shahryar K; Filipov, Nikolay M

    2014-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.

  18. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    PubMed

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  19. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity.

    PubMed

    Yang, Lichuan; Zhao, Kesheng; Calingasan, Noel Y; Luo, Guoxiong; Szeto, Hazel H; Beal, M Flint

    2009-09-01

    A large body of evidence suggests that mitochondrial dysfunction and oxidative damage play a role in the pathogenesis of Parkinson's disease (PD). A number of antioxidants have been effective in animal models of PD. We have developed a family of mitochondria-targeted peptides that can protect against mitochondrial swelling and apoptosis (SS peptides). In this study, we examined the ability of two peptides, SS-31 and SS-20, to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice. SS-31 produced dose-dependent complete protection against loss of dopamine and its metabolites in striatum, as well as loss of tyrosine hydroxylase immunoreactive neurons in substantia nigra pars compacta. SS-20, which does not possess intrinsic ability in scavenging reactive oxygen species, also demonstrated significant neuroprotective effects on dopaminergic neurons of MPTP-treated mice. Both SS-31 and SS-20 were very potent (nM) in preventing MPP+ (1-methyl-4-phenylpyridinium)-induced cell death in cultured dopamine cells (SN4741). Studies with isolated mitochondria showed that both SS-31 and SS-20 prevented MPP+-induced inhibition of oxygen consumption and ATP production, and mitochondrial swelling. These findings provide strong evidence that these neuroprotective peptides, which target both mitochondrial dysfunction and oxidative damage, are a promising approach for the treatment of PD.

  20. Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission.

    PubMed

    Boireau, A; Bordier, F; Dubédat, P; Doble, A

    1995-07-28

    The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.

  1. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells.

    PubMed

    Zong, Li; Xing, Junpeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-01-01

    The heavy metals such as cadmium (Cd) can induce neurotoxicity. Extensive studies about the effects of Cd on human health have been reported, however, a systematic investigation on the molecular mechanisms of the effects of Cd on central nervous system is still needed. In this paper, the neuronal PC-12 cells were treated with a series of concentrations of CdCl 2 for 48h. Then the cytotoxicity was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The IC 15 value (15% inhibiting concentration) was selected for further mechanism studies. After PC-12 cells incubated with CdCl 2 at a dose of IC 15 for 48h, the intracellular and extracellular metabolites were profiled using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based cell metabolomics approach. As found, the effects of the heavy metal Cd produced on the PC-12 cell viability were dose-dependent. The metabolic changes were involved in the glycolysis and gluconeogenesis, biopterin metabolism, tryptophan metabolism, tyrosine metabolism, glycerophospholipid metabolism, and fatty acids beta-oxidation. These could cause the perturbation of cell membrane, redox balance, energy supply, cellular detoxification, further affecting the cellular proliferation and apoptosis and other cellular activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice

    PubMed Central

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E

    2010-01-01

    Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297

  3. Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson's disease.

    PubMed

    Cheng, Baohua; Yang, Xinxin; An, Liangxiang; Gao, Bo; Liu, Xia; Liu, Shuwei

    2009-08-25

    The high-fat ketogenic diet (KD) leads to an increase of blood ketone bodies (KB) level and has been used to treat refractory childhood seizures for over 80 years. Recent reports show that KD, KB and their components (d-beta-hydroxybutyrate, acetoacetate and acetone) have neuroprotective for acute and chronic neurological disorders. In our present work, we examined whether KD protected dopaminergic neurons of substantia nigra (SN) against 6-hydroxydopamine (6-OHDA) neurotoxicity in a rat model of Parkinson's disease (PD) using Nissl staining and tyrosine hydroxylase (TH) immunohistochemistry. At the same time we measured dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum. To elucidate the mechanism, we also measured the level of glutathione (GSH) of striatum. Our data showed that Nissl and TH-positive neurons increased in rats fed with KD compared to rats with normal diet (ND) after intrastriatal 6-OHDA injection, so did DA and its metabolite DOPAC. While HVA had not changed significantly. The change of GSH was significantly similar to DA. We concluded that KD had neuroprotective against 6-OHDA neurotoxicity and in this period GSH played an important role.

  4. Neurotoxicity of dental amalgam is mediated by zinc.

    PubMed

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  5. Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions

    PubMed Central

    Dambinova, Svetlana A.; Maroon, Joseph C.; Sufrinko, Alicia M.; Mullins, John David; Alexandrova, Eugenia V.; Potapov, Alexander A.

    2016-01-01

    Concussion is a complex, heterogeneous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure that athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity, may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment. PMID:27761129

  6. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    PubMed

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  7. Persistent neurotoxicity from a battery fire: is cadmium the culprit?

    PubMed

    Kilburn, K H; McKinley, K L

    1996-07-01

    Two train conductors had chest tightness, painful breathing, muscle cramps, and nausea after fighting a fire in a battery box under a passenger coach. Shortly thereafter, they became anosmic and had excessive fatigue, persistent headaches, sleep disturbances, irritability, unstable moods, and hypertension. Urinary cadmium and nickel levels were elevated. Neurobehavioral testing showed, in comparison to referents, prolonged reaction times, abnormal balance, prolonged blink reflex latency, severely constricted visual fields, and decreased vibration sense. Test scores showed that immediate verbal and visual recall were normal but delayed recall was reduced. Scores on overlearned information were normal. Tests measuring dexterity, coordination, decision making, and peripheral sensation and discrimination revealed abnormalities. Repeat testing 6 and 12 months after exposure showed persistent abnormalities. Cadmium and vinyl chloride are the most plausible causes of the neurotoxicity, but fumes from the fire may have contained other neurotoxic chemicals.

  8. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques.

    PubMed

    Hausherr, Vanessa; Schöbel, Nicole; Liebing, Julia; van Thriel, Christoph

    2017-03-01

    Environmental exposures to tri-cresyl phosphates (TCPs) and the possible formation of toxic metabolites (e.g. cresyl saligenin phosphate; CBDP) may cause a variety of neurotoxic effects in humans. As reported for other organophosphorus compounds (OPs), the inhibition of acetylcholine esterase (AChE) has also been proposed as the underlying mechanism for TCP neurotoxicity. The ortho-isomer, ToCP and its metabolite CBDP are also known to affect neuropathy target esterase (NTE) leading to organophosphate-induced delayed neuropathy (OPIDN). Recently, in vitro testing has led to the identification of other molecular targets and alternative mechanisms of ToCP toxicity. The metabolite CBDP and other isomers, as well as commercial mixtures have not been tested for such additional modes of actions. Accordingly, the present study investigates alterations of neurobiological correlates of central nervous processes using different in vitro techniques. The three symmetric TCP isomers - ToCP, TpCP, and TmCP - that contain a methyl group at the ortho-, para-, or meta-position of the aromatic ring system, respectively, together with a commercial TCP mixture, and CBDP were all tested using concentrations not exceeding their cytotoxic concentrations. Isolated cortical neurons were kept in culture for 6days followed by 24h incubation with different concentrations of the test compounds. Thus, all endpoints were assessed after 7days in vitro (DIV 7), at which time cell viability, neurite microstructure, and the function of glutamate receptors and voltage-gated calcium cannels (VGCC) were measured. While the cytotoxic potential of the TCP isomers and their mixture were comparable (IC 50 ≥80μM), CBDP was more cytotoxic (IC 50 : 15μM) to primary cortical neurons. In contrast, CBDP (up to 10μM) did not compromise the microstructure of neurites. Ten μM of ToCP significantly reduced the size and complexity of neurite networks, but neither TmCP and TpCP nor the mixture affected this

  9. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion

    SciTech Connect

    Mao, Haoping; Wang, Hong; Ma, Shangwei

    2014-01-01

    Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectionalmore » regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p < 0.01), while it reduced 300 μM acetylcholine (ACh) (p < 0.01), 100 μM veratridine (Ver) (p < 0.01) and 56 mM K{sup +} (p < 0.05) induced CA secretion, respectively. We also found that the stimulation of basal CA secretion by bakuchiol may act through estrogen-like effect and the JNK pathway in an extra-cellular calcium independent manner. Further, bakuchiol elevated tyrosine hydroxylase Ser40 and Ser31 phosphorylation (p < 0.01) through the PKA and ERK1/2 pathways, respectively. Bakuchiol inhibited ACh, Ver and 56 mM K{sup +} induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine

  10. Diurnal Salivary Cortisol and Urinary Catecholamines Are Associated With Diabetes Mellitus: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Champaneri, Shivam; Xu, Xiaoqiang; Carnethon, Mercedes R.; Bertoni, Alain G.; Seeman, Teresa; Roux, Ana Diez; Golden, Sherita Hill

    2011-01-01

    Objective To examine the cross-sectional association of diurnal salivary cortisol curve components and urinary catecholamines with diabetes status. Methods Up to 18 salivary cortisol samples over 3 days and overnight urinary catecholamines were collected from 1,002 participants in the Multi-Ethnic Study of Atherosclerosis. Diabetes was defined as a fasting blood glucose ≥126 mg/dL or medication use. Cortisol curve measures included awakening cortisol, cortisol awakening response (CAR), early decline, late decline, and cortisol area under the curve (AUC). Urinary catecholamines included epinephrine, norepinephrine, and dopamine. Results Participants with diabetes had significantly lower CAR (β=−0.19; 95% CI: −0.34 to −0.04) than those without diabetes in multivariable models. While men with diabetes had a non-significant trend toward lower total AUC (β=−1.56; 95% CI: −3.93 to 0.80), women with diabetes had significantly higher total AUC (β=2.62; 95% CI: 0.72 to 4.51) (p=0.02 for interaction) compared to those without diabetes. Men but not women with diabetes had significantly lower urinary catecholamines, compared to those without diabetes (p<0.05). Conclusions Diabetes is associated with neuroendocrine dysregulation, which may differ by sex. Further studies are needed to determine the role of the neuroendocrine system in the pathophysiology of diabetes. PMID:22209664

  11. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    PubMed Central

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines from cells. Advantages of DLC:N microelectrodes are that they are batch producible at low cost, and are harder and more durable than graphite films. The DLC:N microelectrodes were prepared by a magnetron sputtering process with nitrogen doping. The 30 μm by 40 μm DLC:N microelectrodes were patterned onto microscope glass slides by photolithography and lift-off technology. The properties of the DLC:N microelectrodes were characterized by AFM, Raman spectroscopy and cyclic voltammetry. Quantal catecholamine release was recorded amperometrically from bovine adrenal chromaffin cells on the DLC:N microelectrodes. Amperometric spikes due to quantal release of catecholamines were similar in amplitude and area as those recorded using CFEs and the background current and noise levels of microchip DLC:N electrodes were also comparable to CFEs. Therefore, DLC:N microelectrodes are suitable for microchip-based high-throughput measurement of quantal exocytosis with applications in basic research, drug discovery and cell-based biosensors. PMID:18493856

  12. Neurotoxicity produced by dibromoacetic acid in drinking water of rats.

    PubMed

    Moser, V C; Phillips, P M; Levine, A B; McDaniel, K L; Sills, R C; Jortner, B S; Butt, M T

    2004-05-01

    An evaluation of potential adverse human health effects of disinfection byproducts requires study of both cancer and noncancer endpoints; however, no studies have evaluated the neurotoxic potential of a common haloacetic acid, dibromoacetic acid (DBA). This study characterized the neurotoxicity of DBA during 6-month exposure in the drinking water of rats. Adolescent male and female Fischer 344 rats were administered DBA at 0, 0.2, 0.6, and 1.5 g/l. On a mg/kg/day basis, the consumed dosages decreased greatly over the exposure period, with average intakes of 0, 20, 72, and 161 mg/kg/day. Weight gain was depressed in the high-concentration group, and concentration-related diarrhea and hair loss were observed early in exposure. Testing with a functional observational battery and motor activity took place before dosing and at 1, 2, 4, and 6 months. DBA produced concentration-related neuromuscular toxicity (mid and high concentrations) characterized by limb weakness, mild gait abnormalities, and hypotonia, as well as sensorimotor depression (all concentrations), with decreased responses to a tail-pinch and click. Other signs of toxicity at the highest concentration included decreased activity and chest clasping. Neurotoxicity was evident as early as one month, but did not progress with continued exposure. The major neuropathological finding was degeneration of spinal cord nerve fibers (mid and high concentrations). Cellular vacuolization in spinal cord gray matter (mostly) and in white matter (occasionally) tracts was also observed. No treatment-related changes were seen in brain, eyes, peripheral nerves, or peripheral ganglia. The lowest-observable effect level for neurobehavioral changes was 20 mg/kg/day (produced by 0.2 g/l, lowest concentration tested), whereas this dosage was a no-effect level for neuropathological changes. These studies suggest that neurotoxicity should be considered in the overall hazard evaluation of haloacetic acids.

  13. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  14. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  16. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  17. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  18. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    PubMed Central

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  19. Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice.

    PubMed

    Iqbal, Ramsha; Jain, Gaurav K; Siraj, Fouzia; Vohora, Divya

    2018-07-01

    Evidence shows neurosteroids play a key role in regulating epileptogenesis. Neurosteroids such as testosterone modulate seizure susceptibility through its transformation to metabolites which show proconvulsant and anticonvulsant effects, respectively. Reduction of testosterone by aromatase generates proconvulsant 17-β estradiol. Alternatively, testosterone is metabolized into 5α-dihydrotestosterone (5α-DHT) by 5α-reductase, which is then reduced by 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR) to form anticonvulsant metabolite 3α-androstanediol (3α-Diol), a potent GABA A receptor modulating neurosteroid. The present study evaluated whether inhibition of aromatase inhibitor letrozole protects against seizures and neuronal degeneration induced by kainic acid (KA) (10 mg/kg, i.p.) in Swiss albino mice. Letrozole (1 mg/kg, i.p.) administered one hour prior to KA significantly increased the onset time of seizures and reduced the% incidence of seizures. Pretreatment with finasteride, a selective inhibitor of 5α-reductase and indomethacin, a selective inhibitor of 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR), reversed the protective effects of letrozole in KA-induced seizures in mice. Microscopic examination using cresyl violet staining revealed that letrozole did not modify KA-induced neurotoxicity in the CA1, CA3 and DG region of the hippocampus. Letrozole treatment resulted in the reduced levels of 17-β estradiol and elevated the levels of 5α-dihydrotestosterone (DHT) and 3α-Diol in the hippocampus. Finasteride and indomethacin attenuated letrozole-induced elevations of 5α-DHT and 3α-Diol. Our results indicate the potential anticonvulsant effects of letrozole against KA-induced seizures in mice that might be mediated by inhibiting aromatization of testosterone to 17β-estradiol, a proconvulsant hormone and by redirecting the synthesis to anticonvulsant metabolites, 5α-DHT and 3α-Diol. Acute aromatase inhibition, thus, might be used as an

  20. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats.

    PubMed

    Dronjak, S; Gavrilovic, L

    2006-06-01

    Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4 degrees C, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(3H-methyl)-methionine was used. The O-methylated derivatives were oxidized to 3H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  1. DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis

    PubMed Central

    Piston, Dominik; Alvarez-Erviti, Lydia; Bansal, Vikas; Gargano, Daniela; Yao, Zhi; Szabadkai, Gyorgy; Odell, Mark; Puno, M Rhyan; Björkblom, Benny; Maple-Grødem, Jodi; Breuer, Peter; Kaut, Oliver; Larsen, Jan Petter; Bonn, Stefan; Møller, Simon Geir; Wüllner, Ullrich; Schapira, Anthony H V

    2017-01-01

    Abstract DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson’s disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease. PMID:29016861

  2. Aging and unusual catecholamine-containing structures in the mouse brain.

    PubMed

    Masuoka, D T; Jonsson, G; Finch, C E

    1979-06-22

    Brains of C57BL/6J mice, aged 4, 8 and 20--29 months, were examined by the Falck-Hillarp histochemical fluorescence technique. Numerous large, intensely fluorescent green to yellow-green spots (LIFS) were observed in the brains of senescent mice. LIFS were generally round to ovoid in shape and ranged in size from about 10 micrometer to about 30 micrometer. Histochemical and pharmacological procedures and spectral analysis indicated that the formaldehyde-induced fluorescence of the LIFS was due to the presence of catecholamines (CA) rather than aging pigment. Their distribution in the brain suggests an association with nerve axons or terminals rather than cell bodies. The number of LIFS in the hypothalamus increased progressively during aging. It is proposed that LIFS may represent age-related, unusual CA accumulation in enlargements proximal to axonal or terminal portions undergoing spontaneous degeneration.

  3. Catecholamine excretion rates in relation to life-styles in the male population of Otmoor, Oxfordshire.

    PubMed

    Reynolds, V; Jenner, D A; Palmer, C D; Harrison, G A

    1981-01-01

    The paper gives the results of the number of analyses of aspects of life-style and dietary patterns of members of the Otmoor population, in relation to their catecholamine excretion rates. The data reported here are restricted to males. Feelings of boredom were associated with low adrenaline excretion rates. Reported physical tiredness was associated with low adrenaline levels, while mental tiredness seems to be related to high adrenaline levels. People who regarded themselves as having a competitive personality, as being faced by a large number of life challenges, as having to meet self-set deadlines, as choosing to focus on more than one task at the same time, or as being under time pressure had high rates. Cigarette smoking and coffee consumption were related to high adrenaline excretion rates. Taken together these variables can explain 16-20% of variance in adrenaline excretion. Smoking and coffee consumption are of primary importance. The results of similar analyses of noradrenaline are reported.

  4. Stress hyperglycaemia as a result of a catecholamine producing tumour in an infant.

    PubMed

    de Grauw, Anne Mariëtte; Mul, Dick; van Noesel, Max M; Buddingh, Emilie P

    2015-09-04

    Hyperglycaemia commonly occurs in children presenting at the emergency department. In the absence of diabetic symptoms, this stress-related hyperglycaemia is considered a benign condition. We present a malignant cause of hyperglycaemia in an 11-month-old girl with concomitant symptoms of a neuroendocrine malignancy. One month earlier, she had undergone an episode of stress-related hyperglycaemia concurrent with fever during an upper respiratory tract infection. Current glucose level was 234 mg/dL (13 mmol/L) and the glycosylated haemoglobin level was 44 mmol/mol (6.2%) without metabolic acidosis. We observed periods of hyperglycaemia, sweating, flushing, hypertension and tachypnoea. Urinalysis showed high amounts of catecholamine intermediates. Abdominal ultrasound revealed a mass originating in the right adrenal gland. Histology confirmed the diagnosis of neuroblastoma. Hyperglycaemia in this patient was the first presenting symptom of a metabolically active neuroblastoma. 2015 BMJ Publishing Group Ltd.

  5. Piezoelectric detection of ion pairs between sulphonate and catecholamines for flow injection analysis of pharmaceutical preparations.

    PubMed

    Mo, Z; Long, X; Zhang, M

    1999-03-01

    Fundamentals of ion-pair flow injection with piezoelectric detection were investigated experimentally and theoretically for the adsorption of dodecyl phenylsulfonate and interfacial ion-pair formation with epinephrine and l-dopa on silver electrode of quartz crystal microbalance. The influences of sulfonate concentration and operating parameters on the frequency response were demonstrated and provided the possibility for the discriminating determination of mixtures. The selected system of ion-pair flow injection with piezoelectric detection was applied to the determination of epinephrine and l-dopa. Calibration curves were linear in ranges 4.00-850 and 3.50-730 mug ml(-1), with detection limits of 1.22 and 1.05 mug ml(-1) and sampling frequencies of 120 samples h(-1), for epinephrine and l-dopa, respectively. The method has been satisfactorily applied to the determination of catecholamines in pharmaceutical preparations.

  6. Flow-injection analysis of catecholamine secretion from bovine adrenal medulla cells on microbeads.

    PubMed

    Herrera, M; Kao, L S; Curran, D J; Westhead, E W

    1985-01-01

    Bovine adrenal medullary cells have been cultured on microbeads which are placed in a low-volume flow system for measurements of stimulation-response parameters. Electronically controlled stream switching allows stimulation of cells with pulse lengths from 1 s to many minutes; pulses may be repeated indefinitely. Catecholamines secreted are detected by an electrochemical detector downstream from the cells. This flow-injection analysis technique provides a new level of sensitivity and precision for measurement of kinetic parameters of secretion. A manual injection valve allows stimulation by higher levels of stimulant in the presence of constant low levels of stimulant. Such experiments show interesting differences between the effects of K+ and acetylcholine on cells partially desensitized to acetylcholine.

  7. Gintonin enhances performance of mice in rotarod test: Involvement of lysophosphatidic acid receptors and catecholamine release.

    PubMed

    Lee, Byung-Hwan; Kim, Jisu; Lee, Ra Mi; Choi, Sun-Hye; Kim, Hyeon-Joong; Hwang, Sung-Hee; Lee, Myung Koo; Bae, Chun-Sik; Kim, Hyoung-Chun; Rhim, Hyewon; Lim, Kiwon; Nah, Seung-Yeol

    2016-01-26

    Ginseng has a long history of use as a tonic for restoration of vigor. One example of ginseng-derived tonic effect is that it can improve physical stamina under conditions of stress. However, the active ingredient and the underlying molecular mechanism responsible for the ergogenic effect are unknown. Recent studies show that ginseng contains a novel ingredient, gintonin, which consists of a unique class of herbal-medicine lysophosphatidic acids (LPAs). Gintonin activates G protein-coupled LPA receptors to produce a transient [Ca(2+)]i signal, which is coupled to diverse intra- and inter-cellular signal transduction pathways that stimulate hormone or neurotransmitter release. However, relatively little is known about how gintonin-mediated cellular modulation is linked to physical endurance. In the present study, systemic administration of gintonin, but not ginsenosides, in fasted mice increased blood glucose concentrations in a dose-dependent manner. Gintonin treatment elevated blood glucose to a maximum level after 30min. This elevation in blood glucose level could be abrogated by the LPA1/3 receptor antagonist, Ki16425, or the β-adrenergic receptor antagonist, propranolol. Furthermore, gintonin-dependent enhanced performance of fasted mice in rotarod test was likewise abrogated by Ki16425. Gintonin also elevated plasma epinephrine and norepinephrine concentrations. The present study shows that gintonin mediates catecholamine release through activation of the LPA receptor and that activation of the β-adrenergic receptor is coupled to liver glycogenolysis, thereby increasing the supply of glucose and enhancing performance in the rotarod test. Thus, gintonin acts via the LPA-catecholamine-glycogenolysis axis, representing a candidate mechanism that can explain how ginseng treatment enhances physical stamina. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. [Premature immunosenescence in catecholamines syntesis deficient mice. Effect of social environment].

    PubMed

    Garrido, Antonio; Cruces, Julia; Iriarte, Idoia; Hernández-Sánchez, Catalina; de Pablo, Flora; de la Fuente, Mónica

    Healthy state depends on the appropriate function of the homeostatic systems (nervous, endocrine and immune systems) and the correct communication between them. The functional and redox state of the immune system is an excellent marker of health, and animals with premature immunosenescence show a shorter lifespan. Since catecholamines modulate the function of immune cells, the alteration in their synthesis could provoke immunosenescence. The social environment could be a strategy for modulating this immunosenescence. To determine if an haploinsufficiency of tyrosine hydroxylase (TH), the limiting enzyme of synthesis of catecholamines, may produce a premature immunosenescence and if this immunosenescence could be modulated by the social environment. Adult (9±1 months) male ICR-CD1 mice with deletion of a single allele (hemi-zygotic: HZ) of the tyrosine hydroxylase enzyme (TH-HZ) and wild-type (WT) mice were used. Animals were housed in four subgroups: WT>50% (in the cage, the proportion of WT mice was higher than 50% in relation to TH-HZ), WT<50%, TH-HZ<50% and TH-HZ>50%. Peritoneal leukocytes were collected and phagocytosis, chemotaxis and proliferation of lymphocytes in the presence of lipopolysaccharide were analyzed. Glutathione reductase and glutathione peroxidase activities as well as oxidized/reduced glutathione ratio were studied. TH-HZ>50% mice showed a deteriorated function and redox state in leukocytes respect to WT>50% and similar to old mice. However, TH-HZ<50% animals had similar values to those found in WT<50% mice. The haploinsufficiency of TH generates premature immunosenescence, which appears to be compensated by living together with an appropriate number of WT animals. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    NASA Astrophysics Data System (ADS)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  10. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin

    PubMed Central

    Satomi, Machiko; Asama, Toshiyuki; Ebisawa, Yoshiaki; Chisato, Naoyuki; Suno, Manabu; Karasaki, Hidenori; Furukawa, Hiroyuki; Matsubara, Kazuo

    2010-01-01

    Calcium and magnesium replacement is effective in reducing oxaliplatin-induced neurotoxicity. However, cetuximab treatment has been associated with severe hypomagnesaemia. Therefore, we retrospectively investigated whether cetuximab-induced hypomagnesaemia exacerbated oxaliplatin-induced neurotoxicity. Six patients with metastatic colorectal cancer who were previously treated with oxaliplatin-fluorouracil combination therapy were administered cetuximab in combination with irinotecan alone or irinotecan and fluorouracil as a second-line treatment. All patients had normal magnesium levels before receiving cetuximab. The Common Terminology Criteria for Adverse Events version 3.0 was used to evaluate the grade of neurotoxicity, hypomagnesaemia, hypocalcaemia, and hypokalemia every week. All six patients had grade 1 or higher hypomagnesaemia after starting cetuximab therapy. The serum calcium and potassium levels were within the normal range at the onset of hypomagnesaemia. Oxaliplatin-induced neurotoxicity occurred in all patients at the beginning of cetuximab therapy, with grade 1 neurotoxicity in five patients and grade 2 in one patient. After cetuximab administration, the neurotoxicity worsened in all six patients, and three progressed to grade 3. Among the three patients with grade 3 neurotoxicity, two required a dose reduction and one had to discontinue cetuximab therapy. A discontinuation or dose reduction in cetuximab therapy was associated with exacerbated oxaliplatin-induced neurotoxicity due to cetuximab-induced hypomagnesaemia in half of patients who had previously received oxaliplatin. Therefore, when administering cetuximab after oxaliplatin therapy, we suggest serially evaluating serum magnesium levels and neurotoxicity. PMID:22811813

  11. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. Themore » molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide

  12. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis

    PubMed Central

    Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-01-01

    Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. Methods: We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg’s funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. Results: The standardized weighted mean difference in IQ score between exposed and reference populations was –0.45 (95% confidence interval: –0.56, –0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. Conclusions: The results support the possibility of an adverse effect of high fluoride exposure on children’s neurodevelopment. Future research

  13. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  14. Prolactin is a peripheral marker of manganese neurotoxicity

    PubMed Central

    Marreilha dos Santos, AP; Lopes Santos, M; BatorÉu, Maria C; Aschner, M

    2011-01-01

    Excessive exposure to Mn induces neurotoxicity, referred to as manganism. Exposure assessment relies on Mn blood and urine analyses, both of which show poor correlation to exposure. Accordingly, there is a critical need for better surrogate biomarkers of Mn exposure. The aim of this study was to examine the relationship between Mn exposure and early indicators of neurotoxicity, with particular emphasis on peripheral biomarkers. Male Wistar rats (180–200 g) were injected intraperitoneally with 4 or 8 doses of Mn (10 mg/kg). Mn exposure was evaluated by analysis of Mn levels in brain and blood along with biochemical end-points (see below). Results Brain Mn levels were significantly increased both after 4 and 8 doses of Mn compared with controls (p<0.001). Blood levels failed to reflect a dose-dependent increase in brain Mn, with only the 8-dose treated group showing significant differences (p<0.001). Brain glutathione (GSH) levels were significantly decreased in the 8-dose-treated animals (p<0.001). A significant and dose-dependent increase in prolactin levels was found for both treated groups (p<0.001) compared to controls. In addition, a decrease in motor activity was observed in the 8-dose-treated group compared to controls. Conclusions 1) The present study demonstrates that peripheral blood level is a poor indicator of Mn brain accumulation and exposure; 2) Mn reduces GSH brain levels, likely reflecting oxidative stress; 3) Mn increases blood prolactin levels, indicating changes in the integrity of the dopaminergic system. Taken together these results suggest that peripheral prolactin levels may serve as reliable predictive biomarkers of Mn neurotoxicity. PMID:21262206

  15. Developmental fluoride neurotoxicity: a systematic review and meta-analysis.

    PubMed

    Choi, Anna L; Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-10-01

    Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children's neurodevelopment. We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg's funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. The standardized weighted mean difference in IQ score between exposed and reference populations was -0.45 (95% confidence interval: -0.56, -0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. The results support the possibility of an adverse effect of high fluoride exposure on children's neurodevelopment. Future research should include detailed individual-level information on prenatal

  16. DEVELOPMENTAL NEUROTOXICITY OF POLYBROMINATED DIPHENYL ETHER (PBDE) FLAME RETARDANTS

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro

    2007-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in a variety of consumer products. In the past 25 years, PBDEs have become ubiquitous environmental contaminants. They have been detected in soil, air, sediments, birds, marine species, fish, house dust, and human tissues, blood and breast milk. Diet and house dust appear to be the major sources of PBDE exposure in the general population, though occupational exposure can also occur. Levels of PBDEs in human tissues are particularly high in North America, compared to Asian and European countries, and have been increasing in the past 30 years. Concentrations of PBDEs are particularly high in breast milk, resulting in high exposure of infants. In addition, for toddlers, dust has been estimated to account for a large percentage of exposure. PBDEs can also cross the placenta, as they have been detected in fetal blood and liver. Tetra-, penta- and hexa BDEs are most commonly present in human tissues. The current greatest concern for potential adverse effects of PBDEs relates to their developmental neurotoxicity. Pre- or postnatal exposure of mice or rats to various PBDEs has been shown to cause long-lasting changes in spontaneous motor activity, mostly characterized as hyperactivity or decreased habituation, and to disrupt performance in learning and memory tests. While a reduction in circulating thyroid hormone (T4) may contribute to the developmental neurotoxicity of PBDEs, direct effects on the developing brain have also been reported. Among these, PBDEs have been shown to affect signal transduction pathways and to cause oxidative stress. Levels of PBDEs causing developmental neurotoxicity in animals are not much dissimilar from levels found in highly exposed infants and toddlers. PMID:17904639

  17. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    PubMed

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  18. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterationsmore » in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.« less

  19. Bilirubin-Induced Neurotoxicity in the Preterm Neonate.

    PubMed

    Watchko, Jon F

    2016-06-01

    Bilirubin-induced neurotoxicity in preterm neonates remains a clinical concern. Multiple cellular and molecular cascades likely underlie bilirubin-induced neuronal injury, including plasma membrane perturbations, excitotoxicity, neuroinflammation, oxidative stress, and cell cycle arrest. Preterm newborns are particularly vulnerable secondary to central nervous system immaturity and concurrent adverse clinical conditions that may potentiate bilirubin toxicity. Acute bilirubin encephalopathy in preterm neonates may be subtle and manifest primarily as recurrent symptomatic apneic events. Low-bilirubin kernicterus continues to be reported in preterm neonates, and although multifactorial in nature, is often associated with marked hypoalbuminemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity

    PubMed Central

    Fretham, Stephanie JB; Caito, Samuel; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity. PMID:27795823

  1. Exploration of Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging

    DTIC Science & Technology

    2008-05-01

    report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or decision unless so designated...Prostate Cancer Treatment Induced Neurotoxicity with Neuroimaging 5b. GRANT NUMBER W81XWH-06-1-0033 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Jeri...Janowsky, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: janowskj@ohsu.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND

  2. Lesions of basal ganglia due to disulfiram neurotoxicity.

    PubMed Central

    Laplane, D; Attal, N; Sauron, B; de Billy, A; Dubois, B

    1992-01-01

    Three cases of disulfiram induced Parkinsonism and frontal lobe-like syndrome associated with bilateral lesions of the lentiform nuclei on CT scan are reported. Symptoms developed either after an acute high dose of disulfiram (one case) or after several days to weeks of disulfiram treatment (two cases) and persisted over several years in two patients. These observations suggest that basal ganglia are one of the major targets of disulfiram neurotoxicity. The mechanisms of the lesions of basal ganglia may involve carbon disulfide toxicity. Images PMID:1431956

  3. Novel Methods at Molecular Level for Developmental Neurotoxicity Testing in 21st Century-Utility of Structure-Activity Relationship

    EPA Science Inventory

    Current neurotoxicity and developmental neurotoxicity testing methods for hazard identification rely on in vivo neurobehavior, neurophysiological, and gross pathology of the nervous system. These measures may not be sensitive enough to detect small changes caused by realistic ex...

  4. Novel Methods at Molecular Level for Neurotoxicity Testing in 21st Century-Utility of Structure-Activity Relationship

    EPA Science Inventory

    Current neurotoxicity and developmental neurotoxicity testing methods for hazard identification rely on in vivo neurobehavior, neurophysiological, and gross pathology of the nervous system. These measures may not be sensitive enough to detect small changes caused by realistic ex...

  5. IN VITRO ASSESSMENT OF DEVELOPMENTAL NEUROTOXICITY: USE OF MICROELECTRODE ARRAYS TO MEASURE FUNCTIONAL CHANGES IN NEURONAL NETWORK ONTOGENY

    EPA Science Inventory

    Because the Developmental Neurotoxicity Testing Battery requires large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemical,...

  6. In Vitro Assessment of Developmental Neurotoxicity: Use of Microelectrode Arrays to Measure Functional Changes in Neuronal Network Ontogeny*

    EPA Science Inventory

    Because the Developmental Neurotoxicity Testing Guidelines require large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemica...

  7. Synthesis Of Labeled Metabolites

    DOEpatents

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  8. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.

    PubMed

    Smith, Amanda R; Garris, Paul A; Casto, Joseph M

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  9. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry

    PubMed Central

    Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  10. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.

    PubMed

    Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M

    2005-02-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.

  11. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs

    PubMed Central

    Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.

    2005-01-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048

  12. Effects of somatostatin analog SOM230 on cell proliferation, apoptosis, and catecholamine levels in cultured pheochromocytoma cells.

    PubMed

    Pasquali, Daniela; Rossi, Valentina; Conzo, Giovanni; Pannone, Giuseppe; Bufo, Pantaleo; De Bellis, Annamaria; Renzullo, Andrea; Bellastella, Giuseppe; Colao, Annamaria; Vallone, Gianfranco; Bellastella, Antonio; Sinisi, Antonio A

    2008-06-01

    Surgery is the primary therapy for pheochromocytoma (PHEO), a catecholamine-producing tumor. Benign and malignant PHEO could develop recurrences, and the intraoperative risk of recurrent PHEO is an important unresolved issue. Non-surgical treatments of PHEO recurrence would therefore better prepare patients for reintervention as well as provide them with palliative management. We investigated the effects of the new somatostatin analog (pasireotide) SOM230 versus octreotide (OCT) in primary PHEO cell cultures (Pheo-c). Pheo-c from six benign surgical samples were set up and characterized by immunocytochemistry. Real-time PCR, using both PHEO tissues and Pheo-c, showed different levels of somatostatin receptor(1-5) mRNA expression. Cells treated with various doses of OCT or SOM230 for 48 and 72 h were analyzed to assess their effects on cell proliferation and apoptosis and catecholamine levels. Even if reduction of cell viability was observed in Pheo-c treated for 48 h with either OCT or SOM230 and this effect increased after 72 h, a more significant inhibition of cell growth as well as a significantly higher induction of apoptosis was seen in Pheo-c treated with SOM230 versus OCT. In particular, apoptosis in Pheo-c was detected after 48 h and was associated with increased expression and activation of caspase-3 and cleaved poly(ADP-ribose) polymerase. OCT 10(-6) M and SOM230 10(-7) M significantly reduced catecholamine levels. Our results indicate that while both OCT and SOM230 modulate cell growth and apoptosis and catecholamine levels in Pheo-c through specific receptors, SOM230 is more effective. This improves our knowledge on the mechanism of SOM230 action in PHEO and supports a possible therapeutic use in benign PHEO recurrence.

  13. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed

    Gaykema, Ronald P A; Goehler, Lisa E

    2011-03-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from

  14. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed Central

    Gaykema, Ronald P.A.; Goehler, Lisa E.

    2010-01-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from

  15. Evaluation and validation of a method for determining platelet catecholamine in patients with obstructive sleep apnea and arterial hypertension.

    PubMed

    Feres, Marcia C; Cintra, Fatima D; Rizzi, Camila F; Mello-Fujita, Luciane; Lino de Souza, Altay A; Tufik, Sergio; Poyares, Dalva

    2014-01-01

    Measurements of plasma and urinary catecholamine are susceptible to confounding factors that influence the results, complicating the interpretation of sympathetic nervous system (SNS) activity in the Obstructive sleep apnea (OSA) and arterial hypertension (HYP) conditions. In this study, we validated a test for platelet catecholamine and compared the catecholamine levels (adrenaline and noradrenaline) in urine, plasma and platelets in patients with OSA and HYP compared with controls. In the validation, 30 healthy, nonsmoking volunteers who were not currently undergoing treatment or medication were selected as the control group. One hundred fifty-four individuals (114 OSA, 40 non-OSA) were consecutively selected from the outpatient clinic of the Sleep Institute and underwent clinical, polysomnographic and laboratory evaluation, including the urinary, plasma and platelet levels of adrenaline (AD) and noradrenaline (NA). Patients were then allocated to groups according to the presence of OSA and/or hypertension. A logistic regression model, controlled for age and BMI, showed that urinary AD and urinary NA were risk factors in the OSA+HYP group and the HYP group; however, the model showed higher levels of platelet NA for OSA without HYP. After 1 year of CPAP (continuous upper airway pressure) treatment, patients (n = 9) presented lower levels of urinary NA (p = 0.04) and platelet NA (p = 0.05). Urinary NA and AD levels were significantly associated with the condition of hypertension with and without OSA, whereas platelet NA with OSA without comorbidity. These findings suggest that platelet catecholamine levels might reflect nocturnal sympathetic activation in OSA patients without hypertension.

  16. Seasonal variation in plasma catecholamines and adipose tissue lipolysis in adult female green sea turtles (Chelonia mydas).

    PubMed

    Hamann, Mark; Limpus, Colin J; Whittier, Joan M

    2003-02-15

    We investigated three aspects of potential interrenal regulation of reproduction in female green sea turtles, Chelonia mydas. First, seasonal trends in plasma catecholamines were examined from female C. mydas at different stages of their reproductive cycles. Second, variation in catecholamine levels during a nesting season were analysed in relation to restraint time, and ecological variables such as nesting habitat, body size, and reproductive investment. Third, catecholamine and corticosterone (CORT) induced lipolysis was investigated with adipose tissue collected from gravid green turtles, using in vitro incubations. Plasma epinephrine (EPI) was lowest in non-vitellogenic (1.55 +/- 0.26 ng/ml) and post-breeding (1.57 +/- 0.22 ng/ml) females, and highest in courting females (2.87 +/- 0.28). Concentrations of norepinephrine (NE) and EPI were relatively constant throughout a nesting season, and not significantly related to restraint time, reproductive investment or nesting habitat. In vitro concentrations of CORT (>3 ng/ml) and NE (2 ng/ml) induced significant release of glycerol after 6h of incubation. Epinephrine tended to induce an antilipolytic affect at low concentrations (0.25 ng/ml) and a net lipolytic response at higher concentrations (>1 ng/ml). Our data suggest that EPI may play a role in regulating body condition during vitellogenesis, and maintaining energy stores during prolonged aphagia during courtship and nesting in female green sea turtles. Furthermore, we provide preliminary evidence that suggests that catecholamine production may be either down regulated or de-sensitised in gravid female C. mydas. Copyright 2003 Elsevier Science (USA)

  17. [The catecholamine content of the hypothalamus during the modelling of the ulcer process in the gastroduodenal area].

    PubMed

    Iemel'ianenko, I V; Sultanova, I D; Voronych, N M

    1995-01-01

    The content of catecholamines in rat hypothalamus in experimental ulcer process in gastroduodenal region has been studied in experiments on rats. It was determined that under these conditions the content of hypothalamus adrenalin increases and the content of noradrenalin decreases. The level of dofamin and DOFA in this brain structure changes in phases. The mentioned shifts depended on the duration and character of the pathological process in the gastroduodenal region.

  18. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  19. Changes of blood levels of several hormones, catecholamines, prostaglandins, electrolytes and cAMP in man during emotional stress.

    PubMed

    Tigranian, R A; Orloff, L L; Kalita, N F; Davydova, N A; Pavlova, E A

    1980-01-01

    The levels of several hormones (ACTH, GH, TSH, FSH, LH, parathyroid hormone--PTH, insulin, thyroxine--T4, triiodothyronine--T3, cortisol, testosterone, aldosterone, renin), catecholamines (epinephrine, norepinephrine, dopamin), prostaglandins (F1 alpha, F2 alpha, A + E), electrolytes (Na, K, Ca, Mg), cAMP and glucose in blood were measured before and immediately after the examination in 15 male students aged 28 to 35 years. Simultaneously the blood pressure was measured and hemodynamic measures were registered with the aid of echocardiography. A remarkable increase of catecholamines, ACTH, renin, T3, PTH, cAMP, PG F1 alpha, PG F2 alpha and Ca was found before the examination together with the increase of blood pressure. After the examination the levels of catecholamines, renin, aldosterone, T3, PTH, GH, FSH, LH, testosterone, PG A + E, glucose and Ca were found to be increased, while these of insulin, Na, PG F1 alpha, PG F2 alpha were decreased. The decrease of blood pressure was also found.

  20. The lack of effect of oxytetracycline on responses to sympathetic nerve stimulation and catecholamines in vascular tissue.

    PubMed Central

    Kalsner, S

    1976-01-01

    The effects of oxytetracycline, an inhibitor of amine binding in connective tissue, on the responses of perfused rabbit ear arteries to sympathetic nerve stimulation and to intraluminally administered noradrenaline were examined. The contractions of aortic strips to catecholamines in the presence of oxytetracycline were also examined. Oxytetracycline (0.1 mM) had no discernable effect on the magnitude of constrictions, measured as reductions in flow, produced by either nerve stimulation (0.5-10 Hz) or noradrenaline (0.5-50 ng) in the ear artery. In addition, the time taken for vessels to recover towards control flow values after endogenously released or exogenously applied noradrenaline had acted was not increased by oxytetracycline. Oxytetracycline (0.1 mM) did not alter the position or shape of the concentration-response curve to noradrenaline nor did it enhance the amplitude of individual responses to catecholamines in aortic strips. It is concluded, contrary to the observations of Powis (1973), that oxytetracycline does not increase the magnitude or duration of responses to sympathetic nerve activation or to catecholamines and that binding to connective tissue is of no material consequence in terminating their action in vascular tissue. PMID:974389

  1. Subchronic organophosphorus ester-induced delayed neurotoxicity in mallards

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.; Murray, H.C.

    1984-01-01

    Eighteen-week-old mallard hens received 0, 10, 30, 90, or 270 ppm technical grade EPN (phenylphosphonothioic acid O-ethyl-O-4-nitrophenyl ester) in the diet for 90 days. Ataxia was first observed in the 270-ppm group after 16 days, in the 90-ppm group after 20 days, in the 30-ppm group after 38 days; 10 ppm failed to produce ataxia. By the end of 90 days all 6 birds in the 270-ppm group exhibited ataxia or paralysis whereas 5 of 6 birds in the 90-ppm group and 2 of 6 birds in the 30-ppm group were visibly affected. Treatment with 30 ppm or more resulted in a significant reduction in body weight. Brain neurotoxic esterase activity was inhibited by averages of 16, 69, 73, and 74% in the 10-, 30-, 90-, and 270-ppm groups, respectively. Brain acetylcholinesterase, plasma cholinesterase, and plasma alkaline phosphatase were significantly inhibited as well. Distinct histopathological effects were seen in the 30-, 90-, and 270-ppm groups which included demyelination and degeneration of axons of the spinal cord. Additional ducks were exposed in a similar manner to 60-, 270-, or 540-ppm leptophos (phosphonothioic acid O-4-bromo-2,5-dichlorophenyl-O-methylphenyl ester) which resulted in similar behavioral, biochemical, and histopathological alterations. These findings indicate that adult mallards are probably somewhat less sensitive than chickens to subchronic dietary exposure to organophosphorus insecticides that induce delayed neurotoxicity.

  2. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures

    PubMed Central

    Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.

    2015-01-01

    Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118

  3. Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.

    PubMed

    Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M

    2018-03-28

    Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.

  4. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    PubMed Central

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  5. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review

    PubMed Central

    Abou-Donia, Mohamed B.; Siracuse, Briana; Gupta, Natasha; Sokol, Ashly Sobel

    2017-01-01

    Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as “cholinergic crisis” (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam. PMID:27705071

  6. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds.

    PubMed

    Voorhees, Jaymie R; Rohlman, Diane S; Lein, Pamela J; Pieper, Andrew A

    2016-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.

  7. Neurotoxic effects and biomarkers of lead exposure: a review.

    PubMed

    Sanders, Talia; Liu, Yiming; Buchner, Virginia; Tchounwou, Paul B

    2009-01-01

    Lead, a systemic toxicant affecting virtually every organ system, primarily affects the central nervous system, particularly the developing brain. Consequently, children are at a greater risk than adults of suffering from the neurotoxic effects of lead. To date, no safe lead-exposure threshold has been identified. The ability of lead to pass through the blood-brain barrier is due in large part to its ability to substitute for calcium ions. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurologic disorders. At the molecular level, lead interferes with the regulatory action of calcium on cell functions and disrupts many intracellular biological activities. Experimental studies have also shown that lead exposure may have genotoxic effects, especially in the brain, bone marrow, liver, and lung cells. Knowledge of the neurotoxicology of lead has advanced in recent decades due to new information on its toxic mechanisms and cellular specificity. This paper presents an overview, updated to January 2009, of the neurotoxic effects of lead with regard to children, adults, and experimental animals at both cellular and molecular levels, and discusses the biomarkers of lead exposure that are useful for risk assessment in the field of environmental health.

  8. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity

    PubMed Central

    Costa, Lucio G.; de Laat, Rian; Tagliaferri, Sara; Pellacani, Claudia

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3 to 9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account. PMID:24270005

  9. Effects of rutin on acrylamide-induced neurotoxicity

    PubMed Central

    2014-01-01

    Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity. PMID:24524427

  10. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    PubMed Central

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  11. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity.

    PubMed

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H; Rosenberger, Thad A; Haughey, Norman J; Masino, Susan A; Geiger, Jonathan D

    2012-07-01

    HIV-1-associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  12. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    SciTech Connect

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brainmore » growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive

  13. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  14. Catecholamines alter the intrinsic variability of cortical population activity and perception

    PubMed Central

    Avramiea, Arthur-Ervin; Nolte, Guido; Engel, Andreas K.; Linkenkaer-Hansen, Klaus; Donner, Tobias H.

    2018-01-01

    The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of “scale-free” population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation–inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders. PMID:29420565

  15. Using terlipressin in a pediatric patient with septic shock resistant to catecholamines.

    PubMed

    Erdogan, Seher; Bosnak, Mehmet

    2017-01-01

    Sepsis and septic shock are important causes of morbidity and mortality in critically ill children. The goal of treatment is to ensure adequate mean arterial pressure to maintain organ perfusion. The growing number of instances of peripheral vascular hyporeactivity to catecholamines has necessitated the search for alternative vasopressors. A 14-year-old boy had septic shock, with a high cardiac index and low systemic vascular resistance index (SVRI) measurements according to pulse contour analysis, despite treatment with dopamine, dobutamine, adrenaline, and noradrenaline infusions. A terlipressin (TP) 10 μg/kg intravenous bolus was administered, followed by a 1 μg/kg/minute continuous infusion. The response to TP treatment was assessed using pulse contour analysis. The mean arterial pressure and SVRI increased, and the cardiac index and heart rate decreased within 10 minutes after bolus administration of TP. Noradrenaline infusion could be reduced to 0.7 μg/kg/minute within 5 hours. The goal in presenting this case was to evaluate the vasoconstrictor effects of TP, a long-acting vasopressin analogue, in septic shock.

  16. The TiPS/TINS lecture. Catecholamines: from gene regulation to neuropsychiatric disorders.

    PubMed

    Mallet, J

    1996-04-01

    In addition to their ability to change the electrical properties of neurones, evidence suggests that neurotransmitters are able to alter the cell's metabolism. Transmitter phenotype is labile and expression might be regulated, during development, by the cellular environment of neurones. The study of a key enzyme in the synthesis of catecholamines, tyrosine hydroxylase (TH), has provided clues about these adaptive responses. This enzyme has a large molecular diversity, resulting from the differential splicing of its mRNA, which is tissue-specific and might result in long-term changes in activity of the enzyme and, therefore, in the availability of neurotransmitter at various synapses. The presence of different DNA sequences at the TH locus confers susceptibility to various disorders of the brain, including manic-depressive illness and schizophrenia. Indeed, an association between a rare variant allele of the gene encoding TH and the occurrence of schizophrenia has been found in several populations. New techniques being developed to treat diseases such as Parkinson's disease involve various gene therapies, including a method of transferring genes directly into nerve cells using an adenovirus-based system.

  17. The TiPS/TINS Lecture. Catecholamines: from gene regulation to neuropsychiatric disorders.

    PubMed

    Mallet, J

    1996-05-01

    In addition to their ability to change the electrical properties of neurons, evidence suggests that neurotransmitters are able to alter the cell's metabolism. Transmitter phenotype is labile and expression might be regulated, during development, by the cellular environment of neurons. The study of a key enzyme in the synthesis of catecholamines, tyrosine hydroxylase (TH), has provided clues about these adaptive responses. This enzyme has a large molecular diversity, resulting from the differential splicing of its mRNA, which is tissue-specific and might result in long-term changes in activity of the enzyme and, therefore, in the availability of neurotransmitter at various synapses. The presence of different DNA sequences at the TH locus confers susceptibility to various disorders of the brain, including manic-depressive illness and schizophrenia. Indeed, an association between a rare variant allele of the gene encoding TH and the occurrence of schizophrenia has been found in several populations. New techniques being developed to treat diseases such as Parkinson's disease involve various gene therapies, including a method of transferring genes directly into nerve cells using an adenovirus-based system.

  18. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats.

    PubMed

    Roschlau, Corinna; Hauber, Wolfgang

    2017-04-14

    Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    SciTech Connect

    Scholfield, D.J.; Fields, M.; Beal, T.

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D)more » to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.« less

  20. Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration

    NASA Technical Reports Server (NTRS)

    Mills, P. J.; Meck, J. V.; Waters, W. W.; D'Aunno, D.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The objective of this study was to determine the effects of spaceflight duration on immune cells and their relationship to catecholamine levels. METHODS: Eleven astronauts who flew aboard five different US Space Shuttle flights ranging in duration from 4 to 16 days were studied before launch and after landing. RESULTS: Consistent with prior studies, spaceflight was associated with a significant increase in the number of circulating white blood cells (p <.01), including neutrophils (p <.01), monocytes (p <.05), CD3+CD4+ T-helper cells (p <.05), and CD19+ B cells (p <.01). In contrast, the number of CD3-CD16+56+ natural killer cells was decreased (p <.01). Plasma norepinephrine levels were increased at landing (p <.01) and were significantly correlated with the number of white blood cells (p <.01), neutrophils (p <.01), monocytes (p <.01), and B cells (p <.01). Astronauts who were in space for approximately 1 week showed a significantly larger increase on landing in plasma norepinephrine (p =.02) and epinephrine (p =.03) levels, as well as number of circulating CD3+CD4+ T-helper cells (p <.05) and CD3+CD8+ T-cytotoxic cells (p <.05) as compared with astronauts in space for approximately 2 weeks. CONCLUSIONS: The data suggest that the stress of spaceflight and landing may lead to a sympathetic nervous system-mediated redistribution of circulating leukocytes, an effect potentially attenuated after longer missions.

  1. Postnatal development of EEG patterns, catecholamine contents and myelination, and effect of hyperthyroidism in Suncus brain.

    PubMed

    Takeuchi, T; Sitizyo, K; Harada, E

    1998-03-01

    The postnatal development of the central nervous system (CNS) in house musk shrew in the early stage of maturation was studied. The electroencephalogram (EEG) and visual evoked potential (VEP) in association with catecholamine contents and myelin basic protein (MBP) immunoreactivity were carried out from the 1st to the 20th day of postnatal age. Different EEG patterns which were specific to behavioral states (awake and drowsy) were first recorded on the 5th day, and the total power which was obtained by power spectrum analysis increased after this stage. The latencies of all peaks in VEP markedly shortened between the 5th and the 7th day. Noradrenalin (NA) content of the brain showed a slight increase after the 3rd day, and reached maximum levels on the 7th day, which was delayed a few days compared to dopamine (DA). In hyperthyroidism, the peak latency of VEP was shortened and biosynthesis of NA in cerebral cortex and DA in hippocampus was accelerated. The most obvious change in MBP-immunoreactivity of the telencephalon occurred from the 7th to the 10th day. These morphological changes in the brain advanced at the identical time-course to those in the electrophysiological development and increment of DA and NA contents.

  2. Circulating catecholamine and glucose concentrations in Japanese toads (Bufo japonicus) during the breeding season.

    PubMed

    Wilson, J X; Sawai, H; Kikuchi, M; Kubokawa, K; Ishii, S

    1995-06-01

    We investigated the relationship between catecholamine neurohormones and glucose during seasonal reproductive activity in Japanese toads (Bufo japonicus). Field studies found that plasma epinephrine concentration increased as toads migrated to their breeding ponds, where amplexus most frequently took place. Blood glucose concentration also increased as toads arrived at the ponds, even though these animals did not eat during the breeding season, and there was a positive correlation between epinephrine and glucose levels. Blood glucose concentration was higher in amplectic than in solitary males, whereas this relationship did not occur in females. For both males and females, plasma epinephrine concentration was elevated during amplexus. The plasma concentration of norepinephrine was lower than that of epinephrine and did not correlate with either the proximity of the animal to the breeding ponds or the blood glucose concentration. Laboratory experiments showed that systemic injection of [Trp7,Leu8]gonadotropin-releasing hormone (sGnRH) increased plasma epinephrine to levels characteristic of amplectic feral toads. These results suggest that a physiological role of GnRH-like peptides may be to stimulate epinephrine secretion and consequently to increase glucose production in toads under the starvation conditions associated with the breeding migration.

  3. Using terlipressin in a pediatric patient with septic shock resistant to catecholamines

    PubMed Central

    Erdogan, Seher; Bosnak, Mehmet

    2017-01-01

    Sepsis and septic shock are important causes of morbidity and mortality in critically ill children. The goal of treatment is to ensure adequate mean arterial pressure to maintain organ perfusion. The growing number of instances of peripheral vascular hyporeactivity to catecholamines has necessitated the search for alternative vasopressors. A 14-year-old boy had septic shock, with a high cardiac index and low systemic vascular resistance index (SVRI) measurements according to pulse contour analysis, despite treatment with dopamine, dobutamine, adrenaline, and noradrenaline infusions. A terlipressin (TP) 10 μg/kg intravenous bolus was administered, followed by a 1 μg/kg/minute continuous infusion. The response to TP treatment was assessed using pulse contour analysis. The mean arterial pressure and SVRI increased, and the cardiac index and heart rate decreased within 10 minutes after bolus administration of TP. Noradrenaline infusion could be reduced to 0.7 μg/kg/minute within 5 hours. The goal in presenting this case was to evaluate the vasoconstrictor effects of TP, a long-acting vasopressin analogue, in septic shock. PMID:29270582

  4. Effect of hypoxia and hypercapnia on catecholamine content in cat carotid body.

    PubMed

    Fitzgerald, R S; Garger, P; Hauer, M C; Raff, H; Fechter, L

    1983-05-01

    The purpose of this study was to determine the content of catecholamines (CA) in the cat carotid body before and after 0.5 h exposures to normoxic normocapnia [arterial O2 partial pressure (Pao2) 126 +/- 28 Torr, arterial CO2 partial pressure (Paco2) 36.4 +/- 1.5 Torr], hypoxic normocapnia (Pao2 25 +/- 3 Torr, Paco2 36.7 +/- 3.3 Torr), and normoxic hypercapnia (Pao2 132 +/- 13 Torr, Paco2 = 98.2 +/- 7.6 Torr). CA synthesis was blocked using alpha-methylparatyrosine methyl ester (AMPT) prior to alterations in the inspired air. There was a significant decrease in carotid body content of dopamine (DA), norepinephrine (NE), and epinephrine (E) 1 h after AMPT administration. Analysis of variance and Duncan new multiple range procedures revealed that during the subsequent 0.5-h exposures to normoxia, hypoxia, or hypercapnia, only the decrease in DA during hypoxia was significantly greater than that during normoxia; the loss during hypercapnia was not. The decreases in NE during the three exposures were indistinguishable among themselves as were the decreases in E. The decrease in CA content is probably attributable to increased release. The data reveal that the release of CAs during the chemoreception of hypoxia is different from that during the chemoreception of hypercapnia and support the concept of different mechanisms for the chemoreception of hypoxia and hypercapnia.

  5. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal.

    PubMed

    Burkewitz, Kristopher; Morantte, Ianessa; Weir, Heather J M; Yeo, Robin; Zhang, Yue; Huynh, Frank K; Ilkayeva, Olga R; Hirschey, Matthew D; Grant, Ana R; Mair, William B

    2015-02-26

    Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal

    PubMed Central

    Burkewitz, Kristopher; Morantte, Ianessa; Weir, Heather J.M.; Yeo, Robin; Zhang, Yue; Huynh, Frank K.; Ilkayeva, Olga R.; Hirschey, Matthew D.; Grant, Ana R.; Mair, William B.

    2015-01-01

    SUMMARY Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell-nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging. PMID:25723162

  7. The effect of preoperative magnesium supplementation on blood catecholamine concentrations in patients undergoing CABG.

    PubMed

    Pasternak, K; Dabrowski, W; Dobija, J; Wrońskal, J; Rzecki, Z; Biernacka, J

    2006-06-01

    It is well known that magnesium (Mg) plays an important role in many physiological processes such as regulation of blood catecholamine concentrations, particularly epinephrine (E) and norepinephrine (NE). The complex character of extracorporeal circulation (ECC) with intraoperative normovolemic haemodilution (NH) may alter blood Mg levels, which is likely to result in disorders of E and NE. The aim of this study was to analyze the influence of preoperative Mg supplementation on E and NE in patients undergoing CABG. Forty male patients undergoing CABG under general anaesthesia were included. Patients were randomly divided into two groups: A--the patients receiving pre-operative magnesium supplementation and B--patients without pre-operative magnesium supplementation. The Mg, E and NE blood concentrations were measured in five stages: 1) before anesthesia after the radial artery cannulation, 2) during NH and ECC, 3) immediately after surgery, 4) in the morning of the 1st postoperative day, 5) in the morning of the 2nd postoperative day. The Mg levels were determined by spectrophotometric methods, E and NE were measured by radioimmunoassay methods. The CABG caused a decrease of Mg and an increase of E and NE in both groups, but the changes were significantly higher in group B. 1) CABG causes a decrease of Mg and an increase of E and NE; 2) Preoperative, oral supplementation of Mg substantially reduces intra- and postoperative disorders.

  8. Estrogen supplementation attenuates glucocorticoid and catecholamine responses to mental stress in perimenopausal women.

    PubMed

    Komesaroff, P A; Esler, M D; Sudhir, K

    1999-02-01

    Estrogens are reported to provide protection against the development of cardiovascular disease in women, but the mechanisms underlying these effects are not well defined. We hypothesized that estrogen might affect the hormonal responses to stress. We therefore studied cortisol, ACTH, epinephrine, norepinephrine, and norepinephrine spillover and hemodynamic responses to a 10-min mental arithmetic test in 12 perimenopausal women randomized to 8 weeks of estrogen supplementation (estradiol valerate, 2 mg daily; n = 7) or placebo (n = 5). Total body and forearm norepinephrine spillover were measured by radiotracer methodology. After supplementation with estradiol, the increases in both systolic and diastolic blood pressure in response to mental stress were reduced, and cortisol, ACTH, plasma epinephrine and norepinephrine, and total body norepinephrine spillover responses to stress were significantly attenuated (P < 0.05 in each case). Forearm norepinephrine spillover was unchanged by estrogen, and there was no change in any of the responses after placebo. We conclude that estrogen supplementation in perimenopausal women attenuates blood pressure, glucocorticoid, and catecholamine responses to psychological stress.

  9. Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity*

    PubMed Central

    Birk, Alexandra; Rinne, Andreas; Bünemann, Moritz

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane-located proteins and, therefore, are exposed to changes in membrane potential (VM) in excitable tissues. These changes have been shown to alter receptor activation of certain Gi-and Gq-coupled GPCRs. By means of a combination of whole-cell patch-clamp and Förster resonance energy transfer (FRET) in single cells, we demonstrate that the activation of the Gs-coupled β1-adrenoreceptor (β1-AR) by the catecholamines isoprenaline (Iso) and adrenaline (Adr) is regulated by VM. This voltage-dependence is also transmitted to G protein and arrestin 3 signaling. Voltage-dependence of β2-AR activation, however, was weak compared with β1-AR voltage-dependence. Drug efficacy is a major target of β1-AR voltage-dependence as depolarization attenuated receptor activation, even under saturating concentrations of agonists, with significantly faster kinetics than the deactivation upon agonist withdrawal. Also the efficacy of the endogenous full agonist adrenaline was reduced by depolarization. This is a unique finding since reports of natural full agonists at other voltage-dependent GPCRs only show alterations in affinity during depolarization. Based on a Boltzmann function fit to the relationship of VM and receptor-arrestin 3 interaction we determined the voltage-dependence with highest sensitivity in the physiological range of membrane potential. Our data suggest that under physiological conditions voltage regulates the activity of agonist-occupied β1-adrenoceptors on a very fast time scale. PMID:26408198

  10. Do alterations in prostanoid or catecholamine release influence the antiarrhythmic activity of nicergoline?

    PubMed

    Williams, F M; Coker, S J; Dean, H G; Kane, K A; Parratt, J R

    1986-01-01

    We examined the effects of nicergoline, an alpha-adrenoceptor blocking drug and an inhibitor of platelet phospholipase, on haemodynamics, blood gases, cardiac arrhythmias, and prostanoid and catecholamine release in anaesthetised greyhounds before, during, and after a 40-min occlusion of the left anterior descending coronary artery. Twenty-five minutes after commencing the intravenous infusion of nicergoline (50 micrograms kg-1 min-1) there were significant reductions in heart rate, arterial blood pressure, left ventricular dP/dtmax, and cardiac output. Nicergoline also increased the 0(2) extraction by the myocardium both before and during coronary artery occlusion. In contrast to control animals, heart rate decreased but there were no further reductions in arterial blood pressure during the occlusion period. Nicergoline improved survival (from 17 in control dogs to 50%) following the combined period of myocardial ischaemia and reperfusion and appeared to suppress the phase 1b occlusion-induced arrhythmias. The release of thromboxane B2 from the ischaemic myocardium was partially suppressed by nicergoline, and the ratio of 6-keto PGF1 alpha/thromboxane B2 (the stable breakdown products of prostacyclin and thromboxane A2, respectively) was increased. The washout of noradrenaline and adrenaline from the ischaemic myocardium following release of the occlusion was slightly enhanced by nicergoline. It is concluded that the beneficial metabolic and prostacyclin-promoting properties of nicergoline may be opposed by its action on noradrenaline washout, thus limiting its antiarrhythmic effectiveness.

  11. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate

    SciTech Connect

    Schellenberger, Mario T.; Grova, Nathalie; Farinelle, Sophie

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P–diphtheria toxoid (B[a]P–DT) conjugate vaccine were sub-acutely exposed to 2 mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured inmore » 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P–DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. - Highlights: • B[a]P-antibodies attenuated B[a]P induced NMDA expression in several brain regions. • B[a]P had measurable consequences on anxiety, short term learning and memory. • B[a]P immunization attenuated the pharmacological and neurotoxic effects of B[a]P. • Vaccination may also provide some protection against chemical carcinogenesis.« less

  12. Hydrocortisone Therapy in Catecholamine-Resistant Pediatric Septic Shock: A Pragmatic Analysis of Clinician Practice and Association With Outcomes.

    PubMed

    Nichols, Blake; Kubis, Sherri; Hewlett, Jennifer; Yehya, Nadir; Srinivasan, Vijay

    2017-09-01

    The 2012 Surviving Sepsis Campaign pediatric guidelines recommend stress dose hydrocortisone in children experiencing catecholamine-dependent septic shock with suspected or proven absolute adrenal insufficiency. We evaluated whether stress dose hydrocortisone therapy in children with catecholamine dependent septic shock correlated with random serum total cortisol levels and was associated with improved outcomes. Retrospective cohort study. Non-cardiac PICU. Critically ill children (1 mo to 18 yr) admitted between January 1, 2013, and December 31, 2013, with catecholamine dependent septic shock who had random serum total cortisol levels measured prior to potential stress dose hydrocortisone therapy. None. The cohort was dichotomized to random serum total cortisol less than 18 mcg/dL and greater than or equal to 18 mcg/dL. Associations of stress dose hydrocortisone with outcomes: PICU mortality, PICU and hospital length of stay, ventilator-free days, and vasopressor-free days were examined. Seventy children with catecholamine-dependent septic shock and measured random serum total cortisol levels were eligible (16% PICU mortality). Although 43% (30/70) had random serum total cortisol less than 18 μg/dL, 60% (42/70) received stress dose hydrocortisone. Children with random serum total cortisol less than 18 μg/dL had lower severity of illness and lower Vasopressor Inotrope Scores than those with random serum total cortisol greater than or equal to 18 μg/dL (all p < 0.05). Children with stress dose hydrocortisone had higher severity of illness and PICU mortality than those without stress dose hydrocortisone (all p < 0.05). Mean random serum total cortisol levels were similar in children with and without stress dose hydrocortisone (21.1 vs 18.7 μg/dL; p = 0.69). In children with random serum total cortisol less than 18 μg/dL, stress dose hydrocortisone was associated with greater PICU and hospital length of stay and fewer ventilator-free days (all p < 0.05). In

  13. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells

    USDA-ARS?s Scientific Manuscript database

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defenses in brain is a critical factor in the declining neural function and cognitive deficit accompanying age. Previous studies from our laboratory have reported that walnuts, rich in poly...

  14. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    USDA-ARS?s Scientific Manuscript database

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  15. Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P-diphtheria toxoid conjugate.

    PubMed

    Schellenberger, Mario T; Grova, Nathalie; Farinelle, Sophie; Willième, Stéphanie; Schroeder, Henri; Muller, Claude P

    2013-09-01

    Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P-DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Δ9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Castelli, M. Paola; Casu, Angelo; Casti, Paola; Scherma, Maria; Fattore, Liana; Fadda, Paola; Ennas, M. Grazia

    2014-01-01

    Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the

  17. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

    PubMed

    Castelli, M Paola; Madeddu, Camilla; Casti, Alberto; Casu, Angelo; Casti, Paola; Scherma, Maria; Fattore, Liana; Fadda, Paola; Ennas, M Grazia

    2014-01-01

    Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our

  18. Evaluation of the effects of zilpateral hydrochloride supplementation on catecholamine response and other blood metabolites following a combined corticotropin releasing hormone and vasopressin challenge

    USDA-ARS?s Scientific Manuscript database

    Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...

  19. PCB 28 metabolites elimination kinetics in human plasma on a real case scenario: Study of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites of PCB 28 in a highly exposed German Cohort.

    PubMed

    Quinete, Natalia; Esser, André; Kraus, Thomas; Schettgen, Thomas

    2017-07-05

    Polychlorinated biphenyls (PCBs) are suspected of carcinogenic, neurotoxic and immunotoxic effects in animals and humans. Although background levels of PCBs have been slowly decreased after their ban, they are still among the most persistent and ubiquitous pollutants in the environment, remaining the subject of great concern. PCB 28 is a trichlorinated PCB found in high concentrations not only in human plasma but also in indoor air in Europe, yet little is known about its metabolic pathway and potential metabolites in humans. The present study aims to elucidate the kinetics of metabolite formation and elimination by analyzing four hydroxylated PCBs (OH-PCBs) in human plasma as potential metabolites of the PCB 28 congener. For this purpose, the study was conducted in plasma samples of highly PCB-exposed individuals (N=268), collected from 2010 to 2014 as a representation of a real case scenario with longitudinal data. OH-PCBs have been predicted, synthesized in the course of this study and further identified and quantitated in human plasma. This is the first time that previously unknown PCB 28 metabolites have been measured in human plasma and half-lives have been estimated for PCB metabolites, which could then provide further understanding in the toxicological consequences of exposure to PCBs in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    PubMed

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  1. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    PubMed Central

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  2. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-02-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.

  3. Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies.

    PubMed

    Bosnjak, Zeljko J; Logan, Sarah; Liu, Yanan; Bai, Xiaowen

    2016-11-01

    Mounting evidence has demonstrated that general anesthetics could induce developmental neurotoxicity, including acute widespread neuronal cell death, followed by long-term memory and learning abnormalities. Propofol is a commonly used intravenous anesthetic agent for the induction and maintenance of anesthesia and procedural and critical care sedation in children. Compared with other anesthetic drugs, little information is available on its potential contributions to neurotoxicity. Growing evidence from multiple experimental models showed a similar neurotoxic effect of propofol as observed in other anesthetic drugs, raising serious concerns regarding pediatric propofol anesthesia. The aim of this review is to summarize the current findings of propofol-induced developmental neurotoxicity. We first present the evidence of neurotoxicity from animal models, animal cell culture, and human stem cell-derived neuron culture studies. We then discuss the mechanism of propofol-induced developmental neurotoxicity, such as increased cell death in neurons and oligodendrocytes, dysregulation of neurogenesis, abnormal dendritic development, and decreases in neurotrophic factor expression. Recent findings of complex mechanisms of propofol action, including alterations in microRNAs and mitochondrial fission, are discussed as well. An understanding of the toxic effect of propofol and the underlying mechanisms may help to develop effective novel protective or therapeutic strategies for avoiding the neurotoxicity in the developing human brain.

  4. [Studies on the relationship between beta-adrenergic receptor density on cell wall lymphocytes, total serum catecholamine level and heart rate in patients with hyperthyroidism].

    PubMed

    Gajek, J; Zieba, I; Zyśko, D

    2000-08-01

    Hyperthyreosis mimics the hyperadrenergic state and its symptoms were though to be dependent on increased level of catecholamines. Another reason for the symptoms could be the increased density or affinity of beta-adrenergic receptors to catecholamines. The aim of the study was to examine the elements of sympathetic nervous system, thyroid hormones level and their influence on heart rate control in patients with hyperthyreosis. The study was carried out in 18 women, mean age 48.9 +/- 8.7 yrs and 6 men, mean age 54.2 +/- 8.7 yrs. The control group consisted of 30 healthy persons matched for age and sex. We examined the density of beta-adrenergic receptors using radioligand labelling method with 125I-cyanopindolol, serum total catecholamines level with radioenzymatic assay kit, the levels of free thyroid hormones using radioimmunoassays and thyreotropine level with immunoradiometric assay. Maximal, minimal and mean heart rate were studied using Holter monitoring system. The density of beta-adrenergic receptors in hyperthyreosis was 37.3 +/- 21.7 vs 37.2 +/- 18.1 fmol/mg in the control group (p = NS). Total catecholamines level was significantly decreased in hyperthyreosis group: 1.5 +/- 0.89 vs 1.9 +/- 0.73 pmol/ml (p < 0.05). There was significantly higher minimal, maximal and mean heart rate in hyperthyreosis group (p < 0.0001, p < 0.0001 and p < 0.05 respectively). There was a weak inverse correlation between minimum heart rate and triiodothyronine level (r = -0.38, p < 0.05). An inverse correlation between triiodothyronine and catecholamines level (r = -0.49, p < 0.05) was observed. Beta-adrenergic receptors density is unchanged and catecholamines level is decreased in hyperthyreosis when compared to normal subjects. There is no correlation between minimal heart rate and adrenergic receptors density or catecholamines level in hyperthyreosis.

  5. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-05-01

    The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.

  6. Assessment of Adolescent Neurotoxicity: Rationale and Methodological Considerations

    PubMed Central

    Spear, Linda Patia

    2007-01-01

    This introduction to the special issue of Neurotoxicology and Teratology on “Risk of neurobehavioral toxicity in adolescence” begins by broadly considering the ontogeny and phylogeny of adolescence, and the potential value of animal models of adolescence. Major findings from the emerging neuroscience of adolescence are then highlighted to establish the importance of studies of adolescent neurotoxicity. A variety of methodological issues that are of particular relevance to adolescent exposures are then discussed. These include consideration of pharmacokinetic factors, inclusion of other-aged comparison group(s), and issues involving timing, route of administration, and exposure-induced alterations in growth rate. Despite such methodological challenges, research to determine whether adolescence is a time of increased vulnerability (or greater resiliency) to specific drugs and environmental toxicants is progressing rapidly, as exemplified by the work presented in the articles of this special issue. PMID:17222532

  7. A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats☆

    PubMed Central

    Jin, Minghua; Song, Peilin; Li, Na; Li, Xuejun; Chen, Jiajun

    2012-01-01

    Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride. In this study, experimental rats were intragastrically administered 5, 10, or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning. After exposure, our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue, while the malondialdehyde and nitric oxide content, as well as nitric oxide synthase activity in rat brain tissue increased. The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased. DNA damage was aggravated in the cerebral cortex, and the ultrastructure of the right parietal cortex tissues was altered. The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate. Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues, and demonstrated that the poisoning was dose-dependent. PMID:25538742

  8. [Reversible neurotoxicity secondary to metronidazole: report of one case].

    PubMed

    Retamal-Riquelme, Eva; Soto-San Martín, Hernán; Vallejos-Castro, José; Galdames-Poblete, Daniel

    2014-03-01

    Metronidazole can cause adverse effects both in the central and peripheral nervous system. We report a 34-year-old female who presented a reversible cerebellar syndrome and peripheral neuropathy as an adverse effect associated with the use of metronidazole. Brain magnetic resonance imaging (MRI) showed hyperintense T2 and FLAIR bilateral symmetrical cerebellar lesions, without contrast enhancement or mass effect, isointense in diffusion-weighted imaging and hypointense in apparent diffusion coefficient sequences. Also, electrophysiological evaluation was consistent with axonal polyneuropathy. She had received metronidazole for a liver abscess during 49 days. After discontinuation of metronidazole, she had rapid regression of cerebellar symptoms and normalization of MRI, with subsequent disappearance of peripheral symptoms. The brain MRI, electromyography and nerve conduction studies performed at 35 months later showed complete resolution of the lesions. Although metronidazole neurotoxicity is a rare event, it must be borne in mind because the prognosis is usually favorable after stopping the drug.

  9. Role of microglia in methamphetamine-induced neurotoxicity

    PubMed Central

    Xu, Enquan; Liu, Jianuo; Liu, Han; Wang, Xiaobei; Xiong, Huangui

    2017-01-01

    Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury. However, the mechanisms underlying Meth-induced microglial activation remain to be determined. In this review, we attempt to address the effects of Meth on human immunodeficiency virus (HIV)-associated microglia activation both in vitro and in-vivo. Meth abuse not only increases HIV transmission but also exacerbates progression of HIV-associated neurocognitive disorders (HAND) through activation of microglia. In addition, the therapeutic potential of anti-inflammatory drugs on ameliorating Meth-induced microglia activation and resultant neuronal injury is discussed. PMID:28694920

  10. Influence of immobilization and forced swim stress on the neurotoxicity of lambda-cyhalothrin in rats: Effect on brain biogenic amines and BBB permeability.

    PubMed

    Shukla, Rajendra K; Dhuriya, Yogesh K; Chandravanshi, Lalit P; Gupta, Richa; Srivastava, Pranay; Pant, Aditya B; Kumar, Ajay; Pandey, Chandra M; Siddiqui, M Haris; Khanna, Vinay K

    2017-05-01

    Experimental studies have been carried out on rats to understand the influence of immobilization stress (IMS), a psychological stressor and forced swim stress (FSS), a physical stressor in the neurotoxicity of lambda-cyhalothrin (LCT), a new generation type II synthetic pyrethroid with extensive applications. No significant change in plasma corticosterone levels and blood brain barrier (BBB) permeability was observed in rats subjected to IMS (one session of 15min/day), FSS (one session of 3min/day) for 28days or LCT treatment (3.0mg/kg body weight, p.o. suspended in groundnut oil) for 3days (26th, 27th and 28th day) as compared to controls. Marginal changes in the levels of biogenic amines and their metabolites (NE, EPN, DA, HVA, DOPAC, 5-HT) in hypothalamus, frontal cortex, hippocampus, and corpus striatum were observed in rats subjected to IMS or FSS or LCT alone as compared to controls. It was interesting to note that pre-exposure to IMS or FSS followed by LCT treatment for 3days caused a marked increase in plasma corticosterone levels associated with disruption in the BBB permeability as compared to rats exposed to IMS or FSS or LCT alone. Pre-exposure to IMS or FSS followed by LCT treatment for 3days resulted to alter the levels of biogenic amines and their metabolites in hypothalamus, frontal cortex, hippocampus, and corpus striatum as compared to rats exposed to IMS or FSS or LCT alone. Although neurochemical changes were more intense in rats pre-exposed to IMS as compared to those subjected to FSS on LCT treatment, the results indicate that both psychological and physical stress could be important influencing factors in the neurotoxicity of LCT. Copyright © 2016. Published by Elsevier B.V.

  11. Rechallenging With Intrathecal Methotrexate After Developing Subacute Neurotoxicity in Children With Hematologic Malignancies.

    PubMed

    Badke, Colleen; Fleming, Amy; Iqbal, Asneha; Khilji, Ohmed; Parhas, Sophia; Weinstein, Joanna; Morgan, Elaine; Hijiya, Nobuko

    2016-04-01

    Methotrexate is associated with neurologic side effects. It is recommended that patients who developed neurotoxicity be rechallenged with methotrexate, but little is known about the safety of this approach. We performed a chart review to identify patients who received high-dose or intrathecal (IT) methotrexate. Twenty-one of 298 patients (7%) experienced neurologic symptoms attributed to methotrexate treatment in the premaintenance phase. Seventeen of these patients were rechallenged with IT methotrexate and 13 (76%) had no further neurotoxic events. No patients rechallenged during maintenance (n = 9) experienced recurrence of neurotoxic events. It is safe to rechallenge with IT methotrexate in maintenance. © 2015 Wiley Periodicals, Inc.

  12. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    PubMed Central

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  13. Particulate matter neurotoxicity in culture is size-dependent.

    PubMed

    Gillespie, Patricia; Tajuba, Julianne; Lippmann, Morton; Chen, Lung-Chi; Veronesi, Bellina

    2013-05-01

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Rodent neurotoxicity bioassays for screening contaminated Great Lakes fish

    SciTech Connect

    Beattie, M.K.; Hoffman, R.; Gerstenberger, S.

    1996-03-01

    Standard laboratory rat neurotoxicity protocols were used to study the consequences resulting from the consumption of walleye (Stizostedion vitreum), whitefish (Coregonus clupeaformis), and lake trout (Salvelinus namaycush) from Lake Superior (LS) and the consumption of carp (Cyprinus carpio) from Little Lake Butte des Morte (LLBM) near Oshkosh, Wisconsin, USA. Two 90-d subchronic studies are described, including a 45-d exposure to fish diets using male Sprague-Dawley hooded rats, and a 90-d exposure to fish diets using female rats of the same species. Behavioral alterations were tested using a battery of behavioral tests. In addition, pharmacologic challenges using apomorphine and D-amphetamine weremore » administered to the rats to reveal latent neurotoxic effects. Cumulative fish consumption data were recorded daily, weight gain recorded weekly, and behavior data collected prior to exposure, and on days 7, 14, 55 {+-} 2, 85 {+-} 2. Motor activity data were collected on days 30 {+-} 2, 60 {+-} 2, and 90 {+-} 2 of the feeding protocols. Brain tissue from rodents fed these fish were subsequently analyzed for either mercury (Hg) or polychlorinated biphenyls (PCB). Mercury concentrations were increased in the brains of the walleye-fed rats, and PCB concentrations ranged from 0.5 nl/L to 10 nl/L in the brains of rats fed carp from LLBM, a Lake Michigan tributary. Adult male rats fed LLBM carp for 45 d exhibited the greatest behavior responses to the dopaminergic agonist apomorphine on the accelerating rotarod, although these differences were not significant. The 90-d exposure of LS walleye or Hg-spiked LS walleye resulted in behavior alterations on tactile startle response and second footsplay. D-Amphetamine challenge caused changes in tactile startle response, second footsplay, and accelerating rotarod performance after consuming walleye diets. Rats fed LLBM carp had altered behavioral responses to apomorphine on the accelerating rotarod.« less

  15. Oxidative stress in MeHg-induced neurotoxicity

    SciTech Connect

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  16. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity1

    PubMed Central

    Zheng, Wei; Ren, Sean; Graziano, Joseph H.

    2014-01-01

    The symptoms of Mn-induced neurotoxicity resemble those of Parkinson’s diseases. Since iron (Fe) appears to play a pivotal role in pathophysiology of Parkinson’s disease, we set out to test the hypothesis that alterations in Fe-requiring enzymes such as aconitase contribute to Mn-induced neurotoxicity. Mitochondrial fractions prepared from rat brain were preincubated with MnCl2 in vitro, followed by the enzyme assay. Mn treatment significantly inhibited mitochondrial aconitase activity (24% inhibition at 625 μM to 81% at 2.5 mM, p < 0.05). The inhibitory effect was reversible and Mn-concentration dependent, and was reversed by the addition of Fe (0.05–1 mM) to the reaction mixture. In an in vivo chronic Mn exposure model, rats received intraperitoneal injection of 6 mg/kg Mn as MnCl2 once daily for 30 consecutive days. Mn exposure led to a region-specific alteration in total aconitase (i.e., mitochondrial + cytoplasmic): 48.5% reduction of the enzyme activity in frontal cortex (p < 0.01), 33.7% in striatum (p < 0.0963), and 20.6% in substantia nigra (p < 0.139). Chronic Mn exposure increased Mn concentrations in serum, CSF, and brain tissues. The elevation of Mn in all selected brain regions (range between 3.1 and 3.9 fold) was similar in magnitude to that in CSF (3.1 fold) rather than serum (6.1 fold). The present results suggest that Mn alters brain aconitase activity, which may lead to the disruption of mitochondrial energy production and cellular Fe metabolism in the brain. PMID:9675333

  17. A review on potential neurotoxicity of titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  18. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    PubMed Central

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  19. [Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord].

    PubMed

    Abut, Yesim Cokay; Turkmen, Asli Zengin; Midi, Ahmet; Eren, Burak; Yener, Nese; Nurten, Asiye

    2015-01-01

    The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. In experiment, there were four groups with medication and a control group. Rats were injected 15μL saline or fentanyl 0.0005μg/15μL, levobupivacaine 0.25%/15μL and fentanyl 0.0005μg+levobupivacaine 0.25%/15μL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups. In neuropathologic investment, the fentanyl and fentanyl+levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion.

    PubMed

    Kim, K M; Kawada, T; Ishihara, K; Inoue, K; Fushiki, T

    1997-10-01

    Increase in endurance swimming capacity caused by capsaicin (CAP), a pungent component of red pepper, -induced increase of fat metabolism in mice was investigated using an adjustable-current water pool. The mice administered CAP via a stomach tube, showed longer swimming time until exhaustion than the control group of mice, in a dose-dependent manner. The maximal effect was observed at a dose of 10 mg/kg while more than 15 mg/kg had no effect. The increase of endurance was observed only when CAP was administered two hours before swimming. After the administration of CAP, the serum glucose concentration rapidly increased and then decreased within 60 min, while the concentration of serum-free fatty acids gradually increased through 3 hours. The residual glycogen concentration of the gastrocnemius muscle after 30 min of swimming was significantly higher in the CAP-administered mice than in control mice, suggesting that use of the serum free fatty acids spared muscle glycogen consumption. The serum adrenaline concentration significantly increased with twin peaks at 30 min and two hours after administration of CAP. An experiment using adrenalectomized mice was done to confirm that the effect of CAP is due to increased energy metabolism through the secretion of adrenaline from the adrenal gland. The swimming endurance capacity of the adrenalectomized mice was not increased by CAP administration, although adrenaline injection induced a 58% increase in the endurance time. These results suggest that the increase of swimming endurance induced by CAP in mice is caused by an increase in fatty acid utilization due to CAP-induced adrenal catecholamine secretion.

  1. Group dynamics and catecholamines during long-duration confinement in an isolated environment

    NASA Technical Reports Server (NTRS)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    INTRODUCTION: The objectives of this study were to investigate possible relationships between catecholamine excretion and long-duration confinement in an isolated environment. METHODS: Stays of long duration were made by Group I (n = 4, all Russian, weeks 1-34), Group II (n = 4, mixed nationality, weeks 3-18), and Group III (n = 4, mixed nationality, weeks 22-38); other groups joined the residents for 1-wk intervals at weeks #13, #19, and #33. Data were collected from Groups I and III. RESULTS: In both Group I and Group III, the daily epinephrine excretion was significantly elevated during and after confinement compared with the pre-isolation baseline (p < 0.05), but remained mostly within normal limits during the experiment. During isolation, epinephrine excretion was significantly higher, compared with other weeks in isolation, during weeks #19 and #27 for Group I, and during week #30 for Group III. In both Group I and Group II, norepinephrine excretion increased significantly during and after isolation (p < 0.05) and was above the normal range. The daily norepinephrine excretion was significantly higher (p < 0.05) in Group I during weeks #12, #13, and #27, and during week #30 for Group III. DISCUSSION: Epinephrine excretion generally remained in the normal range. However, occasional elevations occurred due to psychological stress, which apparently correlate with changes in group dynamics. Norepinephrine excretion was above the normal range and was correlated with social events. These results suggest that to ensure optimum crew performance, entire crews along with their visiting crews should be selected collectively, rather than individually.

  2. Potential of Sulphur-containing Amino Acids in the Prevention of Catecholamine-induced Arrhythmias.

    PubMed

    Adameova, Adriana; Tappia, Paramjit S; Hatala, Robert; Dhalla, Naranjan S

    2018-01-30

    Various physiological and pathological stimuli can hypersensitize the sympathetic nervous system resulting in a substantial release of catecholamines (CA) and consequent alterations in excitation-contraction coupling and excitation-transcription coupling. It has been shown that oxidation products of CA, rather than CA themselves, are responsible for such adaptation to a new equilibrium. While chronic, sustained accumulation of CA and their toxic products are associated with the depression in cardiac contractile force and remodeling, acute excessive release of CA can result in brief oxidative bursts and serious damage leading in lethal arrhythmias. In response to such oxidative stress, dysregulation of ion homeostasis, activation of neurohumoral system, immune and inflammatory responses, are augmented. These events are inter-related, and as a complex promote electrical instability. Likewise, remodeling occurring after the loss of cardiomyocytes, induces the development of a proarrhythmogenic environment. Thus, CA oxidation products may be involved in triggering arrhythmias as a result of both changes in cardiac cell automaticity and conduction velocity. In contrast, sulphur-containing amino acids (S-AA), in particular taurine and its precursor cysteine have been shown to modulate redox state of the heart. However, the multiple anti-oxidant properties of S-AA are unlikely to be exclusively responsible for their anti-arrhythmic action. They also possess additional cytoprotective effects which can stabilize electrical activity of the heart. It is concluded that specific S-AA may attenuate deleterious effects of supraphysiological levels of CA and this could serve as an important mechanism for the treatment and/or prevention of arrhythmogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A Raman and UV-Vis study of catecholamines oxidized with Mn(III)

    NASA Astrophysics Data System (ADS)

    Barreto, W. J.; Ponzoni, S.; Sassi, P.

    1998-12-01

    A UV-Vis and Raman spectroscopy study of three aminochromes generated through Mn 3+ oxidation of the dopamine, L-dopa and adrenaline molecules at physiological pH was performed. The UV-Vis spectra of the catecholamines oxidized using Mn 3+ in buffer solution at pH 7.2 show a band at ca. 300 nm, formed by two transitions at 280 nm and 300 nm assigned to an La and Lb transition respectively, and other at ca. 470 nm assigned to an n- π* transition localized in the carbonyl group. This assignment is suggested by the UV-Vis and Raman spectra of ortho-aminoquinone generated by MnO 2 oxidation of a dopamine aqueous acidic solution. The resonance Raman spectra of the three chromes at buffer pH 7.2 show a very similar feature and the most intense bands are observed in the spectral range 1100-1800 cm -1. The band around 1680 cm -1 for the three compounds is assigned to a ν(CO) stretching vibration, 1630 cm -1 to the ν(CC) ring mode, two bands at 1423, 1439 cm -1; 1427, 1438 cm -1 and 1456, 1475 cm -1 are assigned to a ν(CN +) vibration, for aminochrome, dopachrome and adrenochrome, respectively. The excitation profiles for the most intense bands for aminochrome and adrenochrome were obtained. The band assigned to the ν(CN +) present a red shift with respect to the visible band peak, however the band in adrenochrome at 1475 cm -1 shows a profile similar to ν(CO) and ν(CC) modes that reflects the methyl group effect on mixing this mode more effectively with the ν(CC) ring mode.

  4. The cardiovascular and cardiac actions of ecstasy and its metabolites.

    PubMed

    Shenouda, S K; Carvalho, F; Varner, K J

    2010-08-01

    The recreational use of 3, 4 methylenedioxymethamphetamine (ecstasy or MDMA) has increased dramatically over the past thirty years due to its ability to increase stamina and produce feelings of emotional closeness and wellbeing. In spite of the popular perception that MDMA is a safe drug, there is a large literature documenting that the drug can produce significant neurotoxicity, especially in serotonergic and catecholaminergic systems. There are also experimental and clinical data which document that MDMA can alter cardiovascular function and produce cardiac toxicity, including rhythm disturbances, infarction and sudden death. This manuscript will review the literature documenting the cardiovascular responses elicited by MDMA in humans and experimental animals and will examine the underlying mechanisms mediating these responses. We will also review the available clinical, autopsy and experimental data linking MDMA with cardiac toxicity. Most available data indicate that oxidative stress plays an important role in the cardiotoxic actions of MDMA. Moreover, new data indicates that redox active metabolites of MDMA may play especially important roles in MDMA induced toxicity.

  5. Commentary to Krishna et al. (2014): brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    PubMed

    Kumasaka, Mayuko Y; Yajima, Ichiro; Ohgami, Nobutaka; Naito, Hisao; Omata, Yasuhiro; Kato, Masashi

    2014-05-01

    Krishna et al. (Arch Toxicol 88(1):47-64, 2014) recently published the results of a study in which adult C57BL/6 mice were subchronically exposed to 400,000 μg/L manganese (Mn) using manganese chloride via drinking water for 8 weeks and examined the neurotoxic effects. After 5 weeks of Mn exposure, significant deposition of Mn in all of the brain regions examined by magnetic resonance imaging was detected. After 6 weeks of Mn exposure, neurobehavioral deficits in an open field test, a grip strength test, and a forced swim test were observed. Eight weeks of Mn exposure increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, but did not alter the levels of striatal dopamine, its metabolites and serotonin. Krishna et al. also reported significant increases in mRNA levels of GFAP (an astrocyte activation marker), HO-1 (an oxidative stress marker) and NOS2 (a nitrosative stress marker), and in protein expression level of GFAP in the substantia nigra pars reticulata after 8 weeks of Mn exposure. These results suggest that 400,000 μg/L Mn exposure via drinking water in mice induces neurobehavioral deficits, serotonergic imbalance, and glial activation accompanied by an increase in brain Mn deposition. The report by Krishna et al. is interesting because the studies on the neurobehavioral effect of Mn exposure by drinking water in mice are very limited. However, Mn concentrations previously reported in well drinking water (Agusa et al. in Vietnam Environ Pollut 139(1):95-106, 2006; Buschmann et al. in Environ Int 34(6):756-764, 2008; Hafeman et al. in Environ Health Perspect 115(7):1107-1112, 2007; Wasserman et al. in Bangladesh Environ Health Perspect 114(1):124-129, 2006) were lower than 400,000 μg/L.

  6. Consideration of the degree of increase in urine metadrenalines provides superior specificity in the diagnosis of phaeochromocytoma than additional urine catecholamine measurement.

    PubMed

    Scargill, J J; Reed, P; Kane, J

    2013-01-01

    Measurement of fractionated plasma or urine metadrenalines is the recommended screening test in the diagnosis of phaeochromocytoma, with clinical cut-offs geared towards diagnostic sensitivity. Current practice at Salford Royal Hospital is to add urine catecholamines onto samples with raised urine metadrenalines, with the aim of adding specificity to a diagnosis of phaeochromocytoma. This practice was reviewed by identifying a series of patients with raised urine metadrenalines who had catecholamines reflectively added. A total of 358 samples were identified from 242 patients, of which 228 had urine catecholamines measured. A diagnosis of 'phaeochromocytoma' (n = 41) or 'no phaeochromocytoma' (n = 90) was obtained in 131 of 228 patients, giving raised urine metadrenalines a positive predictive value for phaeochromocytoma of 31%. The finding of increased urine catecholamines in samples with raised urine metadrenalines increased specificity for phaeochromocytoma to 70%. However, 95% diagnostic specificity for phaeochromocytoma could be achieved by the introduction of a second cut-off for urine metadrenalines geared towards maximizing specificity. Consideration of the degree of increase in urine metadrenalines is a superior method of determining the likelihood of phaeochromocytoma than measurement of urine catecholamines.

  7. Catecholamine-Induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression.

    PubMed

    Shi, Ming; Yang, Zhengyan; Hu, Meiru; Liu, Dan; Hu, Yabin; Qian, Lu; Zhang, Wei; Chen, Hongyu; Guo, Liang; Yu, Ming; Song, Lun; Ma, Yuanfang; Guo, Ning

    2013-06-01

    Trastuzumab is currently used for patients with Her2(+) advanced gastric cancer. However, the response rate to trastuzumab among the patients is low. The molecular mechanisms underlying trastuzumab resistance in gastric cancer are unknown. Our in vitro data show that activation of β2-adrenergic receptor (β2-AR) triggered by catecholamine caused "targeting failure" of trastuzumab in gastric cancer cells. The antitumor activities of trastuzumab were significantly impeded by chronic catecholamine stimulation in gastric cancer cells and in the mice bearing human gastric cancer xenografts. Mechanistically, catecholamine induced upregulation of the MUC4 expression at both transcription and protein levels via activating STAT3 and ERK. The effects of catecholamine could be effectively blocked by β2-AR antagonist ICI-118,551, indicating that β2-AR-mediated signaling pathway plays a key role in upregulation of MUC4, which was previously demonstrated to interfere with the recognition and physical binding of trastuzumab to Her2 molecules. Moreover, a significant elevation of the MUC4 level was observed in the xenograft tissues in nude mice chronically treated with isoproterenol. Knockdown of MUC4 restored the binding activities of trastuzumab to Her2-overexpressing gastric cancer cells. In addition, coexpression of β2-AR and MUC4 were observed in gastric cancer tissues. Our data indicated a novel trastuzumab resistance mechanism, by which catecholamine-induced β2-AR activation mediates desensitization of gastric cancer cells to trastuzumab through upregulating the MUC4 expression.

  8. Inhibitory effects of pine nodule extract and its component, SJ-2, on acetylcholine-induced catecholamine secretion and synthesis in bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Horishita, Takafumi; Toyohira, Yumiko; Shao, Hui; Bai, Jie; Bo, Haixia; Song, Xinbo; Ishikane, Shin; Yoshinaga, Yukari; Satoh, Noriaki; Tsutsui, Masato; Yanagihara, Nobuyuki

    2017-04-01

    Extract of pine nodules (matsufushi) formed by bark proliferation on the surface of trees of Pinus tabulaeformis or Pinus massoniana has been used as an analgesic for joint pain, rheumatism, neuralgia, dysmenorrhea and other complaints in Chinese traditional medicine. Here we report the effects of matsufushi extract and its components on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that matsufushi extract (0.0003-0.005%) and its component, SJ-2 (5-hydroxy-3-methoxy-trans-stilbene) (0.3-100 μM), but not the other three, concentration-dependently inhibited catecholamine secretion induced by acetylcholine, a physiological secretagogue. Matsufushi extract (0.0003-0.005%) and SJ-2 (0.3-100 μM) also inhibited 45 Ca 2+ influx induced by acetylcholine in a concentration-dependent manner, similar to its effect on catecholamine secretion. They also suppressed 14 C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, matsufushi extract (0.00003-0.001%) and SJ-2 (1-100 μM) directly inhibited the current evoked by acetylcholine. The present findings suggest that SJ-2, as well as matsufushi extract, inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Determination of selected neurotoxic insecticides in small amounts of animal tissue utilizing a newly constructed mini-extractor.

    PubMed

    Seifertová, Marta; Čechová, Eliška; Llansola, Marta; Felipo, Vicente; Vykoukalová, Martina; Kočan, Anton

    2017-10-01

    We developed a simple analytical method for the simultaneous determination of representatives of various groups of neurotoxic insecticides (carbaryl, chlorpyrifos, cypermethrin, and α-endosulfan and β-endosulfan and their metabolite endosulfan sulfate) in limited amounts of animal tissues containing different amounts of lipids. Selected tissues (rodent fat, liver, and brain) were extracted in a special in-house-designed mini-extractor constructed on the basis of the Soxhlet and Twisselmann extractors. A dried tissue sample placed in a small cartridge was extracted, while the nascent extract was simultaneously filtered through a layer of sodium sulfate. The extraction was followed by combined clean-up, including gel permeation chromatography (in case of high lipid content), ultrasonication, and solid-phase extraction chromatography using C 18 on silica and aluminum oxide. Gas chromatography coupled with high-resolution mass spectrometry was used for analyte separation, detection, and quantification. Average recoveries for individual insecticides ranged from 82 to 111%. Expanded measurement uncertainties were generally lower than 35%. The developed method was successfully applied to rat tissue samples obtained from an animal model dealing with insecticide exposure during brain development. This method may also be applied to the analytical treatment of small amounts of various types of animal and human tissue samples. A significant advantage achieved using this method is high sample throughput due to the simultaneous treatment of many samples. Graphical abstract Optimized workflow for the determination of selected insecticides in small amounts of animal tissue including newly developed mini-extractor.

  10. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line.

    PubMed

    Kurt, O; Özdal-Kurt, F; Akçora, C M; Özkut, M; Tuğlu, M I

    2018-01-01

    Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC 50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.

  11. Caffeine alters the behavioural and body temperature responses to mephedrone without causing long-term neurotoxicity in rats.

    PubMed

    Shortall, Sinead E; Green, A Richard; Fone, Kevin Cf; King, Madeleine V

    2016-07-01

    Administration of caffeine with 3,4-methylenedioxymethamphetamine (MDMA) alters the pharmacological properties of MDMA in rats. The current study examined whether caffeine alters the behavioural and neurochemical effects of mephedrone, which has similar psychoactive effects to MDMA. Rats received either saline, mephedrone (10 mg/kg), caffeine (10 mg/kg) or combined caffeine and mephedrone intraperitoneally twice weekly on consecutive days for three weeks. Locomotor activity (days 1 and 16), novel object discrimination (NOD, day 2), elevated plus maze (EPM) exploration (day 8), rectal temperature changes (day 9) and pre-pulse inhibition (PPI) of acoustic startle response (day 15) were assessed. Seven days after the final injection, brain regions were collected for the measurement of 5-hydroxytryptamine (5-HT), dopamine and their metabolites. Combined caffeine and mephedrone further enhanced the locomotor response observed following either drug administered alone, and converted mephedrone-induced hypothermia to hyperthermia. Co-administration also abolished mephedrone-induced anxiogenic response on the EPM, but had no effect on NOD or PPI. Importantly, no long-term neurotoxicity was detected following repeated mephedrone alone or when co-administered with caffeine. In conclusion, the study suggests a potentially dangerous effect of concomitant caffeine and mephedrone, and highlights the importance of taking polydrug use into consideration when investigating the acute adverse effect profile of popular recreational drugs. © The Author(s) 2016.

  12. Disruption of the Axonal Trafficking of Tyrosine Hydroxylase mRNA Impairs Catecholamine Biosynthesis in the Axons of Sympathetic Neurons

    PubMed Central

    Gioio, Anthony E.

    2017-01-01

    Abstract Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3′untranslated region (3’UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal. PMID:28630892

  13. The effect of adaptive servo-ventilation on dyspnoea, haemodynamic parameters and plasma catecholamine concentrations in acute cardiogenic pulmonary oedema.

    PubMed

    Nakano, Shintaro; Kasai, Takatoshi; Tanno, Jun; Sugi, Keiki; Sekine, Yasumasa; Muramatsu, Toshihiro; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2015-08-01

    Adaptive servo-ventilation has a potential sympathoinhibitory effect in acute cardiogenic pulmonary oedema (ACPO). To evaluate the acute effects of adaptive servo-ventilation in patients with ACPO. Fifty-eight consecutive patients with ACPO were divided into those who underwent adaptive servo-ventilation and those who received oxygen therapy alone as part of their immediate care. Visual analogue scale, vital signs, blood gas data and plasma catecholamine concentrations at baseline and 1 h during emergency care, and subsequent clinical events (death within 30 days, intubation within seven days or between seven and 30 days, and length of hospital stay) were assessed. Pre-matched and post-propensity score (PS)-matched datasets were analysed. During the first hour of adaptive servo-ventilation, plasma catecholamine concentrations fell significantly (baseline versus 1 h: epinephrine p = 0.003, norepinephrine p < 0.001, dopamine p < 0.001), with falls in blood pressure, heart rate, respiratory rate and pCO2, and rise in HCO3 and pH. In the PS-matched model, visual analogue scale (p = 0.036), systolic blood pressure (from 153.8 ± 30.7 to 133.1 ± 16.3 mmHg; p = 0.025) and plasma dopamine concentration (p = 0.034) fell significantly in the adaptive servo-ventilation group compared with the oxygen therapy alone group. The clinical outcomes between the groups were comparable. In patients with ACPO, emergency care using adaptive servo-ventilation attenuated plasma catecholamine concentrations and led to the improvement of dyspnoea, vital signs and acid-base balance, without adversely influencing clinical outcomes. Using adaptive servo-ventilation, rather than standard oxygen alone, may relieve dyspnoea and improve haemodynamic status, possibly by modulating sympathetic nerve activity. © The European Society of Cardiology 2014.

  14. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    PubMed

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserv