Science.gov

Sample records for neurotrophic factor treatment

  1. Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans

    PubMed Central

    Bezdjian, Aren; Kraaijenga, Véronique J. C.; Ramekers, Dyan; Versnel, Huib; Thomeer, Hans G. X. M.; Klis, Sjaak F. L.; Grolman, Wilko

    2016-01-01

    Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53%) was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%). Ciliary neurotrophic factor (50%), nerve growth factor (24%) and insulin-like growth factor (21%) were most often used. Injection site reaction was a frequently occurring adverse event (61%) followed by asthenia (24%) and gastrointestinal disturbances (20%). Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising. PMID:27898033

  2. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments.

    PubMed

    Castrén, Eero; Kojima, Masami

    2017-01-01

    Levels of brain-derived neurotrophic factor (BDNF) are reduced in the brain and serum of depressed patients and at least the reduction in serum levels is reversible upon successful treatment. These data, together with a wealth of reports using different animal models with depression-like behavior or manipulation of expression of BDNF or its receptor TrkB have implicated BDNF in the pathophysiology of depression as well as in the mechanism of action of antidepressant treatments. Recent findings have shown that posttranslational processing of BDNF gene product can yield different molecular entities that differently influence signaling through BNDF receptor TrkB and the pan-neurotrophin receptor p75(NTR). We will here review these data and discuss new insights into the possible pathophysiological roles of those new BDNF subtypes as well as recent findings on the role of BDNF mediated neuronal plasticity in mood disorders and their treatments.

  3. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    ERIC Educational Resources Information Center

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  4. Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients

    PubMed Central

    Nuernberg, G L; Aguiar, B; Bristot, G; Fleck, M P; Rocha, N S

    2016-01-01

    Meta-analytical evidence suggests that brain-derived neurotrophic factor (BDNF) is altered in various psychiatric disorders. However, meta-analyses may be hampered by the heterogeneity of BDNF assays, lack of BDNF standard values and heterogeneity among the populations included in the studies. To address these issues, our study aimed to test, in a ‘true-to-life' setting, the hypothesis that the serum BDNF level is nonspecifically reduced in acute severe mental illness (SMI) patients and increases during inpatient treatment. Consecutive samples of 236 inpatients with SMI and 100 healthy controls were recruited. SMI includes schizophrenia and severe mood disorders, and is characterized in the sample by the presence of at least 2 years of psychiatric treatment and disability. Generalized estimating equations were used to analyze BDNF serum levels at admission and upon discharge controlled by confounding factors. BDNF levels increased significantly between admission and discharge in SMI patients. BDNF levels showed significant reductions compared with controls both at admission and upon discharge. In addition, BDNF levels showed no difference among SMI patient diagnostic subgroups (unipolar depression, bipolar depression, schizophrenia and manic episode). The increase but non-restoration of BDNF levels, even with the general acute improvement of clinical scores, may reflect the progression of the disorder characteristically seen in these patients. BDNF levels could be considered as a marker for the presence of a nonspecific psychiatric disorder and possibly a transdiagnostic and nonspecific marker of disease activity. PMID:27959329

  5. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness.

    PubMed

    Khalin, Igor; Alyautdin, Renad; Kocherga, Ganna; Bakar, Muhamad Abu

    2015-01-01

    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood-retinal barrier and blood-cochlear barrier, which have a comparable structure to the blood-brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.

  6. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    PubMed Central

    Khalin, Igor; Alyautdin, Renad; Kocherga, Ganna; Bakar, Muhamad Abu

    2015-01-01

    Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. PMID:25995632

  7. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    PubMed

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  8. Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment.

    PubMed

    Castrén, Eero; Rantamäki, Tomi

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a critical mediator of activity-dependent neuronal plasticity in the cerebral cortex. Deficits in neurotrophic factors have been proposed to underlie mood disorders. However, recent evidence suggests that mood disorders may be produced by abnormalities in the adaptation of neural networks to environmental conditions. Antidepressants may act by enhancing neuronal plasticity, which allows environmental inputs to modify the neuronal networks to better fine tune the individual to the outside world. Recent observations in the visual cortex directly support this idea. According to the network hypothesis of depression, changes in the levels of neurotrophins including BDNF may not directly produce depression or an antidepressant effect, but neurotrophins may act as critical tools in the process whereby environmental conditions guide neuronal networks to better adapt to the environment. This hypothesis suggests that antidepressant drugs should not be used alone but should always be combined with rehabilitation to guide the plastic networks within the brain.

  9. Longitudinal Study of Cone Photoreceptors during Retinal Degeneration and in Response to Ciliary Neurotrophic Factor Treatment

    PubMed Central

    Talcott, Katherine E.; Ratnam, Kavitha; Sundquist, Sanna M.; Lucero, Anna S.; Lujan, Brandon J.; Tao, Weng; Porco, Travis C.; Roorda, Austin

    2011-01-01

    Purpose. To study cone photoreceptor structure and function in patients with inherited retinal degenerations treated with sustained-release ciliary neurotrophic factor (CNTF). Methods. Two patients with retinitis pigmentosa and one with Usher syndrome type 2 who participated in a phase 2 clinical trial received CNTF delivered by an encapsulated cell technology implant in one eye and sham surgery in the contralateral eye. Patients were followed longitudinally over 30 to 35 months. Adaptive optics scanning laser ophthalmoscopy (AOSLO) provided high-resolution images at baseline and at 3, 6, 12, 18, and 24 months. AOSLO measures of cone spacing and density and optical coherence tomography measures of retinal thickness were correlated with visual function, including visual acuity (VA), visual field sensitivity, and full-field electroretinography (ERG). Results. No significant changes in VA, visual field sensitivity, or ERG responses were observed in either eye of the three patients over 24 months. Outer retinal layers were significantly thicker in CNTF-treated eyes than in sham-treated eyes (P < 0.005). Cone spacing increased by 2.9% more per year in sham-treated eyes than in CNTF-treated eyes (P < 0.001, linear mixed model), and cone density decreased by 9.1%, or 223 cones/degree2 more per year in sham-treated than in CNTF-treated eyes (P = 0.002, linear mixed model). Conclusions. AOSLO images provided a sensitive measure of disease progression and treatment response in patients with inherited retinal degenerations. Larger studies of cone structure using high-resolution imaging techniques are urgently needed to evaluate the effect of CNTF treatment in patients with inherited retinal degenerations. (ClinicalTrials.gov number, NCT00447980.) PMID:21087953

  10. Cross-sex hormone treatment in male-to-female transsexual persons reduces serum brain-derived neurotrophic factor (BDNF).

    PubMed

    Fuss, Johannes; Hellweg, Rainer; Van Caenegem, Eva; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Auer, Matthias K

    2015-01-01

    Serum levels of brain-derived neurotrophic factor (BDNF) are reduced in male-to-female transsexual persons (MtF) compared to male controls. It was hypothesized before that this might reflect either an involvement of BDNF in a biomechanism of transsexualism or to be the result of persistent social stress due to the condition. Here, we demonstrate that 12 month of cross-sex hormone treatment reduces serum BDNF levels in male-to-female transsexual persons independent of anthropometric measures. Participants were acquired through the European Network for the Investigation of Gender Incongruence (ENIGI). Reduced serum BDNF in MtF thus seems to be a result of hormonal treatment rather than a consequence or risk factor of transsexualism.

  11. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis.

    PubMed

    Makar, Tapas K; Trisler, David; Sura, Karna T; Sultana, Shireen; Patel, Niraj; Bever, Christopher T

    2008-07-15

    Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) which includes a neurodegenerative component. Brain derived neurotrophic factor (BDNF) is a neuroprotective agent which might be useful in preventing neurodegeneration but its application has been limited because the blood brain barrier restricts its access to the CNS. We have developed a novel delivery system for BDNF using transformed bone marrow stem cells (BMSC) and undertook studies of EAE to determine whether the delivery of BDNF could reduce inflammation and apoptosis. Mice receiving BDNF producing BMSC had reduced clinical impairment compared to control mice receiving BMSC that did not produce BDNF. Pathological examination of brain and spinal cord showed a reduction in inflammatory infiltrating cells in treated compared to control mice. Apoptosis was reduced in brain and spinal cord based on TUNEL and cleaved Caspase-3 staining. Consistent with the known mechanism of action of BDNF on apoptosis, Bcl-2 and Akt were increased in treated mice. Further studies suggested that these increases could be mediated by inhibition of both caspase dependent and caspase independent pathways. These results suggest that the BDNF delivered by the transformed bone marrow stem cells reduced clinical severity, inflammation and apoptosis in this model.

  12. [The research advance of brain derived neurotrophic factor].

    PubMed

    Liu, Z; Chen, J

    2000-12-01

    Recent research advances in neuroscience show that neurotrophic factors are proteins that affect selectively various kinds of neurons of CNS and PNS. Brain derived neurotrophic factor (BDNF) is another neurotrophic factor that was first reported by Barde, a German chemist, thirty years later after the nerve growth factor had been found out. BDNF plays an important role in the growth, development, differentiation, maintenance and regeneration of various types of neurons in the CNS and has potential application to the treatment of brain injury and neurodegenerative diseases such as Alzheimer's disease, Parkinson's syndrome, Huntington's chorea and amyotrophic lateral sclerosis. In this paper, the structure, function and potential clinical application of BDNF were reviewed.

  13. Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment.

    PubMed

    Gururajan, A; Hill, R A; van den Buuse, M

    2015-01-22

    Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. Here we investigated whether a congenital deficit in BDNF availability in rats increases vulnerability to the long-term effects of the stress hormone, corticosterone (CORT). Compared to wildtype (WT) littermates, BDNF heterozygous (HET) rats showed higher body weights and minor developmental changes, such as reduced relative brain and pituitary weight. These animals furthermore showed deficits in short-term spatial memory in the Y-maze and in prepulse inhibition and startle, but not in object-recognition memory. CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders.

  14. Neurotrophic factor intervention restores auditory function in deafened animals

    NASA Astrophysics Data System (ADS)

    Shinohara, Takayuki; Bredberg, Göran; Ulfendahl, Mats; Pyykkö, Ilmari; Petri Olivius, N.; Kaksonen, Risto; Lindström, Bo; Altschuler, Richard; Miller, Josef M.

    2002-02-01

    A primary cause of deafness is damage of receptor cells in the inner ear. Clinically, it has been demonstrated that effective functionality can be provided by electrical stimulation of the auditory nerve, thus bypassing damaged receptor cells. However, subsequent to sensory cell loss there is a secondary degeneration of the afferent nerve fibers, resulting in reduced effectiveness of such cochlear prostheses. The effects of neurotrophic factors were tested in a guinea pig cochlear prosthesis model. After chemical deafening to mimic the clinical situation, the neurotrophic factors brain-derived neurotrophic factor and an analogue of ciliary neurotrophic factor were infused directly into the cochlea of the inner ear for 26 days by using an osmotic pump system. An electrode introduced into the cochlea was used to elicit auditory responses just as in patients implanted with cochlear prostheses. Intervention with brain-derived neurotrophic factor and the ciliary neurotrophic factor analogue not only increased the survival of auditory spiral ganglion neurons, but significantly enhanced the functional responsiveness of the auditory system as measured by using electrically evoked auditory brainstem responses. This demonstration that neurotrophin intervention enhances threshold sensitivity within the auditory system will have great clinical importance for the treatment of deaf patients with cochlear prostheses. The findings have direct implications for the enhancement of responsiveness in deafferented peripheral nerves.

  15. Neurotrophic factors and the pathophysiology of schizophrenic psychoses.

    PubMed

    Durany, Nuria; Thome, Johannes

    2004-09-01

    The aim of this review is to summarize the present state of findings on altered neurotrophic factor levels in schizophrenic psychoses, on variations in genes coding for neurotrophic factors, and on the effect of antipsychotic drugs on the expression level of neurotrophic factors. This is a conceptual paper that aims to establish the link between the neuromaldevelopment theory of schizophrenia and neurotrophic factors. An extensive literature review has been done using the Pub Med database, a service of the National Library of Medicine, which includes over 14 million citations for biomedical articles back to the 1950s. The majority of studies discussed in this review support the notion of alterations of neurotrophic factors at the protein and gene level, respectively, and support the hypothesis that these alterations could, at least partially, explain some of the morphological, cytoarchitectural and neurobiochemical abnormalities found in the brain of schizophrenic patients. However, the results are not always conclusive and the clinical significance of these alterations is not fully understood. It is, thus, important to further neurotrophic factor research in order to better understand the etiopathogenesis of schizophrenic psychoses and, thus, potentially develop new treatment strategies urgently needed for patients suffering from these devastating disorders.

  16. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  17. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration

    PubMed Central

    Zhang, Kang; Hopkins, Jill J.; Heier, Jeffrey S.; Birch, David G.; Halperin, Lawrence S.; Albini, Thomas A.; Brown, David M.; Jaffe, Glenn J.; Tao, Weng; Williams, George A.

    2011-01-01

    There is no treatment available for vision loss associated with advanced dry age-related macular degeneration (AMD) or geographic atrophy (GA). In a pilot, proof of concept phase 2 study, we evaluated ciliary neurotrophic factor (CNTF) delivered via an intraocular encapsulated cell technology implant for the treatment of GA. We designed a multicenter, 1-y, double-masked, sham-controlled dose-ranging study. Patients with GA were randomly assigned to receive a high-or low-dose implant or sham surgery. The primary endpoint was the change in best corrected visual acuity (BCVA) at 12 mo. CNTF treatment resulted in a dose-dependent increase in retinal thickness. This change was followed by visual acuity stabilization (loss of less than 15 letters) in the high-dose group (96.3%) compared with low-dose (83.3%) and sham (75%) group. A subgroup analysis of those with baseline BCVA at 20/63 or better revealed that 100% of patients in the high-dose group lost <15 letters compared with 55.6% in the combined low-dose/sham group (P = 0.033). There was a 0.8 mean letter gain in the high-dose group compared with a 9.7 mean letter loss in the combined low-dose/sham group (P = 0.0315). Both the implant and the implant procedure were well-tolerated. These findings suggest that CNTF delivered by the encapsulated cell technology implant appears to slow the progression of vision loss in GA, especially in eyes with 20/63 or better vision at baseline. PMID:21444807

  18. Repeated co-treatment with imipramine and amantadine induces hippocampal brain-derived neurotrophic factor gene expression in rats.

    PubMed

    Rogóz, Z; Skuza, G; Legutko, B

    2007-06-01

    The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT(1A)- and 5-HT(2A) receptor agonists (8-OH-DPAT and (+/-)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (+/-)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT(2A

  19. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment.

    PubMed

    De Foubert, G; Carney, S L; Robinson, C S; Destexhe, E J; Tomlinson, R; Hicks, C A; Murray, T K; Gaillard, J P; Deville, C; Xhenseval, V; Thomas, C E; O'Neill, M J; Zetterström, T S C

    2004-01-01

    Recent studies indicate that brain-derived neurotrophic factor (BDNF) may be implicated in the clinical action of antidepressant drugs. Repeated (2-3 weeks) administration of antidepressant drugs increases BDNF gene expression. The onset of this response as well as concomitant effects on the corresponding BDNF protein is however, unclear. The present study investigated the effects of acute and chronic administration of the selective serotonin reuptake inhibitor, fluoxetine (10mg/kg p.o.), upon regional rat brain levels of BDNF mRNA and protein expression. To improve the clinical significance of the study, fluoxetine was administered orally and mRNA and protein levels were determined ex vivo using the techniques of in situ hybridisation histochemistry and immunocytochemistry respectively. Direct measurement of BDNF protein was also carried out using enzyme-linked immunosorbent assay (ELISA). Four days of once daily oral administration of fluoxetine induced decreases in BDNF mRNA (hippocampus, medial habenular and paraventricular thalamic nuclei). Whilst 7 days of treatment showed a non-significant increase in BDNF mRNA, there were marked and region-specific increases following 14 days of treatment. BDNF protein levels remained unaltered until 21 days of fluoxetine treatment, when the numbers of BDNF immunoreactive cells were increased, reaching significance in the pyramidal cell layer of CA1 and CA3 regions of Ammon's horn (CA1 and CA3) but not in the other sub-regions of the hippocampus. Indicative of the highly regional change within the hippocampus, the ELISA method failed to demonstrate significant up-regulation at 21 days, measuring levels of BDNF protein in the whole hippocampus. In contrast to the detected time dependent and biphasic response of the BDNF gene, activity-regulated, cytoskeletal-associated protein (Arc) mRNA showed a gradual increase during the 14-day course of treatment. The results presented here show that BDNF is expressed differentially

  20. Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage (Upregulation of neurotrophic factor expression): Upregulation of neurotrophic factor expression

    PubMed Central

    Ren, Jixiang; Zhou, Xiangyu; Wang, Jian; Zhao, Jianjun; Zhang, Pengguo

    2013-01-01

    This study established a rat model of cerebral hemorrhage by injecting autologous anticoagulated blood. Rat models were intragastrically administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Busui Decoction, supplemented with Hirudo, raw rhubarb, raw Pollen Typhae, gadfly, Fructrs Trichosanthis, Radix Notoginseng, Rhizoma Acori Talarinowii, and glue of tortoise plastron, once a day, for 14 consecutive days. Results demonstrated that brain water content significantly reduced in rats with cerebral hemorrhage, and intracerebral hematoma volume markedly reduced after treatment. Immunohistochemical staining revealed that brain-derived neurotrophic factor, tyrosine kinase B and vascular endothelial growth factor expression noticeably increased around the surrounding hematoma. Reverse transcription-PCR revealed that brain-derived neurotrophic factor and tyrosine kinase B mRNA expression significantly increased around the surrounding hematoma. Neurologic impairment obviously reduced. These results indicated that Poxue Huayu and Tianjing Busui Decoction exert therapeutic effects on cerebral hemorrhage by upregulating the expression of brain-derived neurotrophic factor. PMID:25206512

  1. Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis.

    PubMed

    Aharoni, Rina; Saada, Ravit; Eilam, Raya; Hayardeny, Liat; Sela, Michael; Arnon, Ruth

    2012-10-15

    Laquinimod is an orally active molecule that showed efficacy in clinical trials in multiple sclerosis. We studied its effects in the CNS, when administered by therapeutic regimen to mice inflicted with experimental autoimmune encephalomyelitis (EAE). Laquinimod reduced clinical and inflammatory manifestations and elevated the prevalence of T-regulatory cells in the brain. In untreated mice, in the chronic disease stage, brain derived neurotrophic factor (BDNF) expression was impaired. Laquinimod treatment restored BDNF expression to its level in healthy controls. Furthermore, CNS injury, manifested by astrogliosis, demyelination and axonal damages, was significantly reduced following laquinimod treatment, indicating its immunomodulatory and neuroprotective activity.

  2. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons.

    PubMed

    Storer, Paul D; Dolbeare, Dirk; Houle, John D

    2003-11-15

    Exogenous neurotrophic factors provided at a spinal cord injury site promote regeneration of chronically injured rubrospinal tract (RST) neurons into a peripheral nerve graft. The present study tested whether the response to neurotrophins is associated with changes in the expression of two regeneration-associated genes, betaII-tubulin and growth-associated protein (GAP)-43. Adult female rats were subjected to a right full hemisection lesion via aspiration of the C3 spinal cord. A second aspiration lesion was made 4 weeks later and gel foam saturated in brain-derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF), or phosphate-buffered saline (PBS) was applied to the lesion site for 60 min. Using in situ hybridization, RST neurons were examined for changes in mRNA levels of betaII-tubulin and GAP-43 at 1, 3, and 7 days after treatment. Based on analysis of gene expression in single cells, there was no effect of BDNF treatment on either betaII-tubulin or GAP-43 mRNA expression at any time point. betaII-Tubulin mRNA levels were enhanced significantly at 1 and 3 days in animals treated with GDNF relative to levels in animals treated with PBS. Treatment with GDNF did not affect GAP-43 mRNA levels at 1 and 3 days, but at 7 days there was a significant increase in mRNA expression. Interestingly, 7 days after GDNF treatment, the mean cell size of chronically injured RST neurons was increased significantly. Although GDNF and BDNF both promote axonal regeneration by chronically injured neurons, only GDNF treatment is associated with upregulation of betaII-tubulin or GAP-43 mRNA. It is not clear from the present study how exogenous BDNF stimulates regrowth of injured axons.

  3. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs.

    PubMed

    Bai, Ou; Chlan-Fourney, Jennifer; Bowen, Rudy; Keegan, David; Li, Xin-Min

    2003-01-01

    Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P < 0.05) and dentate gyrus (P < 0.01) regions compared with vehicle control. In contrast, the atypical antipsychotic agents clozapine (10 mg/kg) and olanzapine (2.7 mg/kg) up-regulated BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P < 0.01). These findings demonstrate that the typical and atypical antipsychotic drugs differentially regulate BDNF mRNA expression in rat hippocampus.

  4. Neurotrophic factors and female sexual development.

    PubMed

    Ojeda, S R; Dissen, G A; Junier, M P

    1992-04-01

    The concept is proposed that polypeptide neurotrophic factors contribute to the developmental regulation of ovarian and hypothalamic function in mammals. Nerve growth factor (NGF) and neurotrophin-3, two members of the neurotrophin family, have been identified in the rat ovary and one of its receptors has been localized to the innervation and thecal cells of developing follicles. Although NGF supports the sympathetic innervation of the gland, the extent to which follicles are innervated appears to be defined by the differential expression of NGF receptors in the theca of developing follicles. The presence of NGF receptors in steroid-producing cells suggests a direct involvement of neurotrophins in the regulation of gonadal endocrine function. Evidence is beginning to emerge suggesting that development of the reproductive hypothalamus is affected by insulin-like growth factor 1 secreted by peripheral tissues, and transforming growth factor alpha (TGF alpha) produced locally. In the rat hypothalamus, TGF alpha appears to be synthesized in both neurons and glial cells. In glial cells it may interact with epidermal growth factor (EGF) receptors to further enhance TGF alpha synthesis and to, perhaps, stimulate eicosanoid formation. In turn, one of these eicosanoids, prostaglandin E2, may act on luteinizing hormone-releasing hormone (LHRH) neurons to stimulate the release of LHRH in a genomic-independent manner. This provides the basis for the notion that during development LHRH secretion is regulated by a dual mechanism, one that involves transsynaptic effects exerted by neurotransmitters, the other that requires a glial-neuronal interaction and that may predominantly regulate release of the neuropeptide. An increased expression of the TGF alpha and EGF receptor genes in reactive astrocytes is postulated to contribute to the process by which hypothalamic injury causes sexual precocity. Morphological maturation of the reproductive hypothalamus is thought to occur during

  5. In vitro evaluation of gene expression changes for gonadotropin-releasing hormone 1, brain-derived neurotrophic factor and neurotrophic tyrosine kinase, receptor, type 2, in response to bisphenol A treatment.

    PubMed

    Warita, Katsuhiko; Mitsuhashi, Tomoko; Ohta, Ken-ichi; Suzuki, Shingo; Hoshi, Nobuhiko; Miki, Takanori; Takeuchi, Yoshiki

    2013-03-01

    We evaluated the effects of bisphenol A (BPA) on embryonic mouse hypothalamic cells. Real-time reverse transcription polymerase chain reaction (RT-PCR) indicated that gonadotropin-releasing hormone 1 (Gnrh1) expression in 0.02-20 μM BPA-treated cells did not differ from that in control cells but decreased significantly in 200 μMBPAtreated cells. The mRNA level for brain-derived neurotrophic factor (Bdnf), which participates in GNRH1 secretory system development, decreased significantly in 200 μM BPA-treated cells, but that for neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2), did not change. This indicates that Gnrh1 gene expression in mice fetuses is not affected by exposure to <20 μM BPA and that the adverse effects of BPA on the BDNF-NTRK2 neurotrophin system are induced by decrease in the mRNA level of the ligand, not of its receptor.

  6. Neurotrophic factor - Characterization and partial purification

    NASA Technical Reports Server (NTRS)

    Popiela, H.; Ellis, S.

    1981-01-01

    Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.

  7. D-Amphetamine withdrawal-induced decreases in brain-derived neurotrophic factor in sprague-dawley rats are reversed by treatment with ketamine.

    PubMed

    Fuller, Jasmine J L; Murray, Ryan C; Horner, Kristen A

    2015-10-01

    Withdrawal from chronic D-amphetamine (D-AMPH) can induce negative emotional states, which may contribute to relapse and the maintenance of addiction. Diminished levels of brain-derived neurotrophic factor (BDNF), particularly in the hippocampus has been observed after exposure to stress, and recent data indicate that treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine may reverse these changes. However, it is unclear whether BDNF levels in the hippocampus or other regions of the limbic system are altered following the stress of D-AMPH withdrawal and it is not currently known if treatment with ketamine has any effect on these changes. The goals of this study were to examine BDNF levels throughout the limbic system following D-AMPH withdrawal and determine whether ketamine treatment would alter D-AMPH-induced changes in BDNF. Sprague-Dawley rats were treated with D-AMPH and BDNF protein examined in the prefrontal cortex, nucleus accumbens, amygdala and hippocampus at 24 h and 4 days of withdrawal. Our data show that at 24 h post-D-AMPH, BDNF levels were increased in the nucleus accumbens and decreased in the hippocampus. At 4 d post-D-AMPH, BDNF protein levels were decreased in all areas examined, and these decreases were reversed by treatment with ketamine. These data suggest that diminished BDNF may contribute to the negative affect seen following D-AMPH withdrawal, and that ketamine treatment could offer relief from these symptoms.

  8. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment.

    PubMed

    Larsen, Marianne H; Mikkelsen, Jens D; Hay-Schmidt, Anders; Sandi, Carmen

    2010-10-01

    Chronic unpredictable stress (CUS) is a widely used animal model of depression. The present study was undertaken to investigate behavioral, physiological and molecular effects of CUS and/or chronic antidepressant treatment (venlafaxine or imipramine) in the same set of animals. Anhedonia, a core symptom of depression, was assessed by measuring consumption of a palatable solution. Exposure to CUS reduced intake of a palatable solution and this effect was prevented by chronic antidepressant treatment. Moreover, chronic antidepressant treatment decreased depressive-like behavior in a modified forced swim test in stressed rats. Present evidence suggests a role for brain-derived neurotrophic factor (BDNF) in depression. BDNF mRNA levels in the ventral and dorsal hippocampus were assessed by in situ hybridization. Exposure to CUS was not correlated with a decrease but rather with an increase in BDNF mRNA expression in both the dentate gyrus of the dorsal hippocampus and the CA3 region of the ventral hippocampus indicating that there is no simple link between depression-like behaviors per se and brain BDNF levels in rats. However, a significant increase in BDNF mRNA levels in the dentate gyrus of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity.

  9. S-adenosylmethionine Administration Attenuates Low Brain-Derived Neurotrophic Factor Expression Induced by Chronic Cerebrovascular Hypoperfusion or Beta Amyloid Treatment.

    PubMed

    Li, Qian; Cui, Jing; Fang, Chen; Zhang, Xiaowen; Li, Liang

    2016-04-01

    Chronic cerebrovascular hypoperfusion is a high-risk factor for Alzheimer's disease (AD) as it is conducive to beta amyloid (Aβ) over-production. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family widely expressed in the central nervous system. The structure of the rat BDNF gene is complex, consisting of eight non-coding exons (I-VIII) and one coding exon (IX). The BDNF gene is transcribed from multiple promoters located upstream of different 5' non-coding exons to produce a heterogeneous population of BDNF mRNAs. S-adenosylmethionine (SAM) produced in the methionine cycle is the primary methyl donor and the precursor of glutathione. In this study, a cerebrovascular hypoperfusion rat model and an Aβ intrahippocampal injection rat model were used to explore the expression profiles of all BDNF transcripts in the hippocampus with chronic cerebrovascular hypoperfusion or Aβ injection as well as with SAM treatment. We found that the BDNF mRNAs and protein were down-regulated in the hippocampus undergoing chronic cerebrovascular hypoperfusion as well as Aβ treatment, and BDNF exons IV and VI played key roles. SAM improved the low BDNF expression following these insults mainly through exons IV and VI. These results suggest that SAM plays a neuroprotective role by increasing the expression of endogenous BDNF and could be a potential target for AD therapy.

  10. Plasma Brain-Derived Neurotrophic Factor as a Biomarker for the Main Types of Mild Neurocognitive Disorders and Treatment Efficacy: A Preliminary Study.

    PubMed

    Levada, Oleg A; Cherednichenko, Nataliya V; Trailin, Andriy V; Troyan, Alexandra S

    2016-01-01

    Decreased levels of brain-derived neurotrophic factor (BDNF) are assumed to play a crucial role in the pathophysiology of mild neurocognitive disorders (MNCDs). In this study, we compared plasma BDNF levels (at baseline and after two months of treatment with escitalopram) in patients with the main types of MNCDs and normal controls. 21 patients met the DSM-5 diagnostic criteria for possible MNCD due to Alzheimer's disease (MNCD-AD); 22 patients fulfilled the diagnostic criteria for subcortical vascular MNCD (ScVMNCD) according to Frisoni et al. (2002) and neuroimaging-supported probable diagnosis of vascular MNCD according to DSM-5; 16 subjects entered control group. At baseline, we detected lower BDNF levels in both MNCD groups, which was significant only in subjects with MNCD-AD. Moreover, plasma BDNF level of 21160 pg/mL showed high sensitivity (94%) to discriminate patients with MNCD-AD. Decreased plasma BDNF highly correlated with the severity of memory impairment and total MMSE score in MNCD-AD group. Escitalopram treatment in patients with MNCD-AD or ScVMNCD led to an increase of plasma BDNF concentrations and as a result to a decrease of cognitive, depressive, and anxiety symptom severity. In conclusion, plasma BDNF might be a reliable biomarker for the validation of MNCD-AD diagnosis and treatment efficacy.

  11. Plasma Brain-Derived Neurotrophic Factor as a Biomarker for the Main Types of Mild Neurocognitive Disorders and Treatment Efficacy: A Preliminary Study

    PubMed Central

    2016-01-01

    Decreased levels of brain-derived neurotrophic factor (BDNF) are assumed to play a crucial role in the pathophysiology of mild neurocognitive disorders (MNCDs). In this study, we compared plasma BDNF levels (at baseline and after two months of treatment with escitalopram) in patients with the main types of MNCDs and normal controls. 21 patients met the DSM-5 diagnostic criteria for possible MNCD due to Alzheimer's disease (MNCD-AD); 22 patients fulfilled the diagnostic criteria for subcortical vascular MNCD (ScVMNCD) according to Frisoni et al. (2002) and neuroimaging-supported probable diagnosis of vascular MNCD according to DSM-5; 16 subjects entered control group. At baseline, we detected lower BDNF levels in both MNCD groups, which was significant only in subjects with MNCD-AD. Moreover, plasma BDNF level of 21160 pg/mL showed high sensitivity (94%) to discriminate patients with MNCD-AD. Decreased plasma BDNF highly correlated with the severity of memory impairment and total MMSE score in MNCD-AD group. Escitalopram treatment in patients with MNCD-AD or ScVMNCD led to an increase of plasma BDNF concentrations and as a result to a decrease of cognitive, depressive, and anxiety symptom severity. In conclusion, plasma BDNF might be a reliable biomarker for the validation of MNCD-AD diagnosis and treatment efficacy. PMID:27597800

  12. Novel CDNF/MANF family of neurotrophic factors.

    PubMed

    Lindholm, Päivi; Saarma, Mart

    2010-04-01

    Current therapeutic interventions for neurodegenerative diseases alleviate only disease symptoms, while treatments that could stop or reverse actual degenerative processes are not available. Parkinson's disease (PD) is a movement disorder with characteristic degeneration of dopaminergic neurons in the midbrain. Few neurotrophic factors (NTFs) that promote survival, maintenance, and differentiation of affected brain neurons are considered as potential therapeutic agents for the treatment of neurodegenerative diseases. Thus, it is important to search and study new NTFs that could also be used in therapy. In this review, we discuss novel evolutionary conserved family of NTFs consisting of two members in the vertebrates, cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF). Invertebrates, including Drosophila and Caenorhabditis have a single protein homologous to vertebrate CDNF/MANF. Characteristic feature of these proteins is eight structurally conserved cysteine residues, which determine the protein fold. The crystal structure analysis revealed that CDNF and MANF consist of two domains; an amino-terminal saposin-like domain that may interact with lipids or membranes, and a presumably unfolded carboxy-terminal domain that may protect cells against endoplasmic reticulum stress. CDNF and MANF protect midbrain dopaminergic neurons and restore motor function in 6-hydroxydopamine rat model of PD in vivo. In line, Drosophila MANF is needed for the maintenance of dopaminergic neurites and dopamine levels in the fly, suggesting that the function of CDNF/MANF proteins is evolutionary conserved. Future studies will reveal the receptors and mode of action of these novel factors, which are potential therapeutic proteins for the treatment of PD.

  13. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration.

    PubMed

    Xiao, Nan; Le, Quynh-Thu

    2016-04-01

    Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues.

  14. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration

    PubMed Central

    Le, Quynh-Thu

    2016-01-01

    Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues. PMID:26611762

  15. Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus.

    PubMed

    Cooke, J D; Grover, L M; Spangler, P R

    2009-09-15

    Antidepressant action may involve stimulation of brain-derived neurotrophic factor (BDNF). BDNF also regulates long-term potentiation (LTP). We hypothesized that the 5-HT and norepinephrine reuptake inhibitor, venlafaxine, would stimulate BDNF expression and alter LTP more effectively than the selective 5-HT reuptake inhibitor, citalopram. To test this, we administered venlafaxine or citalopram to rats for 1 or 3 weeks; control rats received vehicle only. We measured BDNF protein in hippocampal and frontal cortex homogenates, and serum. We assessed LTP in area cornu ammonis region 1 (CA1) of in vitro hippocampal brain slices. We also examined input/output function to determine if basal synaptic transmission in area CA1 was altered. Compared to vehicle control, frontal cortex BDNF protein was significantly greater after three, but not one, weeks of venlafaxine treatment. In contrast, citalopram (1 or 3 weeks) did not stimulate BDNF. The stimulatory effect of venlafaxine treatment on BDNF was superimposed on a general time-dependent decrease in expression which was seen in both vehicle control and citalopram-treated animals. LTP was significantly impaired in slices from venlafaxine-treated rats after both 1 and 3 weeks of treatment, but LTP appeared normal in slices from citalopram-treated and vehicle control rats. The LTP impairment caused by venlafaxine treatment was independent of changes in BDNF: LTP was impaired after only 1 week of treatment, prior to any effect on BDNF, and LTP magnitude was not correlated with BDNF protein concentration. Input/output function was significantly but equally reduced after 3 weeks of citalopram, venlafaxine, or control treatment. Decreased BDNF protein in citalopram and vehicle control animals, and decreased input/output function may be consequences of individual housing of animals, which we used to ensure proper dosing. Venlafaxine stimulation of BDNF and inhibition of LTP may be related to the reported effectiveness of

  16. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  17. Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants.

    PubMed

    Larsen, Marianne H; Hay-Schmidt, Anders; Rønn, Lars C B; Mikkelsen, Jens D

    2008-01-14

    Strong evidence suggests that antidepressants work by induction of neuroplastic changes mediated through regulation of brain-derived neurotrophic factor (BDNF). This study was undertaken to investigate the time-course of the effect of three antidepressants; fluoxetine, imipramine and venlafaxine, which differentially affect monoamine reuptake, on BDNF mRNA expression in the hippocampus. The consequences of increased BDNF in the hippocampus are still indefinite. Here, we also determined the effects on the expression of two other genes (synaptophysin and growth-associated protein-43 (GAP-43)) known to be involved in synapse formation and axonal growth and likely regulated by BDNF. The effects were determined in rats after sub-chronic (7 days) and chronic (14 and 21 days) treatment using semi-quantitative in situ hybridisation. BDNF mRNA levels in the dentate gyrus (DG) were increased after treatment with venlafaxine (7, 14 and 21 days) and imipramine (14 and 21 days), but not after treatment with fluoxetine, indicating that stimulation of BDNF mRNA expression is dependent on the pharmacological profile and on the time-course of drug treatment. A transient increase in synaptophysin mRNA was observed after treatment with venlafaxine and fluoxetine whereas imipramine had no effect. In the CA3 region a reduction of GAP-43 mRNA was observed after treatment with imipramine (21 days) and fluoxetine (7 and 14 days). These results suggest that venlafaxine and imipramine, but not fluoxetine, induce neuroplastic effects in the hippocampus through stimulation of BDNF mRNA expression, and that the effect on BDNF is not directly translated into regulation of synaptophysin and GAP-43 mRNA.

  18. Brain-derived Neurotrophic Factor in Megakaryocytes.

    PubMed

    Chacón-Fernández, Pedro; Säuberli, Katharina; Colzani, Maria; Moreau, Thomas; Ghevaert, Cedric; Barde, Yves-Alain

    2016-05-06

    The biosynthesis of endogenous brain-derived neurotrophic factor (BDNF) has thus far been examined in neurons where it is expressed at very low levels, in an activity-dependent fashion. In humans, BDNF has long been known to accumulate in circulating platelets, at levels far higher than in the brain. During the process of blood coagulation, BDNF is released from platelets, which has led to its extensive use as a readily accessible biomarker, under the assumption that serum levels may somehow reflect brain levels. To identify the cellular origin of BDNF in platelets, we established primary cultures of megakaryocytes, the progenitors of platelets, and we found that human and rat megakaryocytes express the BDNF gene. Surprisingly, the pattern of mRNA transcripts is similar to neurons. In the presence of thapsigargin and external calcium, the levels of the mRNA species leading to efficient BDNF translation rapidly increase. Under these conditions, pro-BDNF, the obligatory precursor of biologically active BDNF, becomes readily detectable. Megakaryocytes store BDNF in α-granules, with more than 80% of them also containing platelet factor 4. By contrast, BDNF is undetectable in mouse megakaryocytes, in line with the absence of BDNF in mouse serum. These findings suggest that alterations of BDNF levels in human serum as reported in studies dealing with depression or physical exercise may primarily reflect changes occurring in megakaryocytes and platelets, including the ability of the latter to retain and release BDNF.

  19. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment

    PubMed Central

    Molendijk, M L; Bus, B A A; Spinhoven, Ph; Penninx, B W J H; Kenis, G; Prickaerts, J; Voshaar, RC Oude; Elzinga, B M

    2011-01-01

    Recent evidence supports ‘the neurotrophin hypothesis of depression' in its prediction that brain-derived neurotrophic factor (BDNF) is involved in depression. However, some key questions remain unanswered, including whether abnormalities in BDNF persist beyond the clinical state of depression, whether BDNF levels are related to the clinical features of depression and whether distinct antidepressants affect BDNF levels equally. We addressed these questions and investigated serum BDNF levels in 962 depressed patients, 700 fully remitted persons (⩾6 months) and 382 healthy controls. We found serum BDNF levels to be low in antidepressant-free depressed patients relative to controls (P=0.007) and to depressed patients who were treated with an antidepressant (P=0.001). BDNF levels of fully remitted persons (whether unmedicated or treated with an antidepressant) were comparable to those of controls. Analyzing the sample of antidepressant-free depressed patients showed that BDNF levels were unrelated to the core clinical features of depression such as its severity or first versus a recurrent episode. The antidepressant associated upregulation of serum BDNF in depressed patients was confined to selective serotonin reuptake inhibitors (SSRIs) (P=0.003) and St John's wort (P=0.03). Our results suggest that low serum levels of BDNF are a state abnormality that is evident during depression and normalizes during remission. Increases in serum levels of BDNF during antidepressant treatment appear to be confined to some antidepressants and do not parallel clinical characteristics, such as the severity of depressive symptoms. PMID:20856249

  20. Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating "clinical proof-of-concept" for AAV-neurturin (CERE-120) in Parkinson's disease.

    PubMed

    Bartus, Raymond T; Baumann, Tiffany L; Brown, Lamar; Kruegel, Brian R; Ostrove, Jeffrey M; Herzog, Christopher D

    2013-01-01

    Neurotrophic factors have long shown promise as potential therapies for age-related neurodegenerative diseases. However, 20 years of largely disappointing clinical results have underscored the difficulties involved with safely and effectively delivering these proteins to targeted sites within the central nervous system. Recent progress establishes that gene transfer can now likely overcome the delivery issues plaguing the translation of neurotrophic factors. This may be best exemplified by adeno-associated virus serotype-2-neurturin (CERE-120), a viral-vector construct designed to deliver the neurotrophic factor, neurturin to degenerating nigrostriatal neurons in Parkinson's disease. Eighty Parkinson's subjects have been dosed with CERE-120 (some 7+ years ago), with long-term, targeted neurturin expression confirmed and no serious safety issues identified. A double-blind, controlled Phase 2a trial established clinical "proof-of-concept" via 19 of the 24 prescribed efficacy end points favoring CERE-120 at the 12-month protocol-prescribed time point and all but one favoring CERE-120 at the 18-month secondary time point (p = 0.007 and 0.001, respectively). Moreover, clinically meaningful benefit was seen with CERE-120 on several specific protocol-prescribed, pairwise, blinded, motor, and quality-of-life end points at 12 months, and an even greater number of end points at 18 months. Because the trial failed to meet the primary end point (Unified Parkinson's Disease Rating Scale motor-off, measured at 12 months), a revised multicenter Phase 1/2b protocol was designed to enhance the neurotrophic effects of CERE-120, using insight gained from the Phase 2a trial. This review summarizes the development of CERE-120 from its inception through establishing "clinical proof-of-concept" and beyond. The translational obstacles and issues confronted, and the strategies applied, are reviewed. This information should be informative to investigators interested in translational

  1. Oligodendroglia and neurotrophic factors in neurodegeneration

    PubMed Central

    Bankston, Andrew N.; Mandler, Mariana D.; Feng, Yue

    2014-01-01

    Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons, which is essential for rapid information flow in the central nervous system (CNS). Besides saltatory conduction, the myelin sheath also protects axons against inflammatory and oxidative insults, and loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders. However, accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin. More importantly, an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases, sometimes even preceding neuronal loss in pre-symptomatic episodes, suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration. This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms, including direct neuron-myelin interaction, metabolic support by OLs, and neurotrophic factors produced by and/or acting on OLs. PMID:23558590

  2. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice.

    PubMed

    Allard, Joanne S; Perez, Evelyn J; Fukui, Koji; Carpenter, Priscilla; Ingram, Donald K; de Cabo, Rafael

    2016-03-15

    Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin's effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation.

  3. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice

    PubMed Central

    Allard, Joanne S.; Perez, Evelyn J; Fukui, Koji; Carpenter, Priscilla; Ingram, Donald K.; de Cabo, Rafael

    2016-01-01

    Long-term use of anti-diabetic agents has become commonplace as rates of obesity, metabolic syndrome and diabetes continue to escalate. Metformin, a commonly used anti-diabetic drug, has been shown to have many beneficial effects outside of its therapeutic regulation of glucose metabolism and insulin sensitivity. Studies on metformin’s effects on the central nervous system are limited and predominantly consist of in vitro studies and a few in vivo studies with short-term treatment in relatively young animals; some provide support for metformin as a neuroprotective agent while others show evidence that metformin may be deleterious to neuronal survival. In this study, we examined the effect of long-term metformin treatment on brain neurotrophins and cognition in aged male C57Bl/6 mice. Mice were fed control (C), high-fat (HF) or a high-fat diet supplemented with metformin (HFM) for 6 months. Metformin decreased body fat composition and attenuated declines in motor function induced by a HF diet. Performance in the Morris water maze test of hippocampal based memory function, showed that metformin prevented impairment of spatial reference memory associated with the HF diet. Quantitative RT-PCR on brain homogenates revealed decreased transcription of BDNF, NGF and NTF3; however protein levels were not altered. Metformin treatment also decreased expression of the antioxidant pathway regulator, Nrf2. The decrease in transcription of neurotrophic factors and Nrf2 with chronic metformin intake, cautions of the possibility that extended metformin use may alter brain biochemistry in a manner that creates a vulnerable brain environment and warrants further investigation. PMID:26698400

  4. Chronic estradiol treatment decreases brain derived neurotrophic factor (BDNF) expression and monoamine levels in the amygdala--implications for behavioral disorders.

    PubMed

    Balasubramanian, Priya; Subramanian, Madhan; Nunez, Joseph L; Mohankumar, Sheba M J; Mohankumar, P S

    2014-03-15

    Changes in serum estradiol levels are associated with mood disorders in women. However, the underlying mechanisms are not clear. Because alterations in Brain-Derived Neurotrophic Factor (BDNF) and monoamine levels in the hippocampus and amygdala have been associated with anxiety disorders, we hypothesized that chronic treatment with a low dose of estradiol would cause anxiety-like disorder by altering BDNF and monoamine levels in these regions. To test this hypothesis, female rats were sham-implanted (Controls) or implanted with pellets that release estradiol-17β (E2) for 90-days at the rate of 20 ng/day. Animals underwent behavioral tests such as the open field test and elevated plus maze test at the end of treatment. Brains from these animals were frozen, sectioned and the hippocampus, central amygdala and caudate putamen were microdissected and analyzed for monoamine levels using HPLC. BDNF protein levels in these areas were measured using ELISA and BDNF mRNA levels were analyzed using RT-PCR. In the open field test, animals chronically treated with E2 displayed anxiety-like behavior that was marked by a decrease in the number of inner zone crossings and increase in the rate of defecation compared to controls. However, no behavioral changes were observed in the elevated plus maze test. Chronic E2 treatment also decreased BDNF protein and mRNA levels in the central amygdala that was accompanied by a reduction in dopamine levels. No changes were observed in the hippocampus and caudate putamen. These results suggest that BDNF and dopamine in the central amygdala might possibly mediate chronic E2-induced behavioral alterations.

  5. Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

    PubMed

    Serafini, Gianluca; Hayley, Shawn; Pompili, Maurizio; Dwivedi, Yogesh; Brahmachari, Goutam; Girardi, Paolo; Amore, Mario

    2014-01-01

    Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review.

  6. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.

  7. A novel herbal treatment reduces depressive-like behaviors and increases brain-derived neurotrophic factor levels in the brain of type 2 diabetic rats

    PubMed Central

    Luo, Chun; Ke, Yuting; Yuan, Yanyan; Zhao, Ming; Wang, Fuyan; Zhang, Yisheng; Bu, Shizhong

    2016-01-01

    Background Radix Puerariae and hawthorn fruit have been demonstrated to treat diabetes. They offer potential benefits for preventing depression in diabetes. Objective The aim of this study was to investigate whether the combination of Radix Puerariae and hawthorn fruit (CRPHF) could prevent depression in a diabetic rat model generated by feeding the rats with a high-fat diet and a low-dose streptozotocin (STZ). Methods The CRPHF was provided by the Shanghai Chinese Traditional Medical University. Twenty-four rats were randomly divided into four groups: normal control, normal-given-CRPHF (NC), diabetic control, and diabetic-given-CRPHF (DC) groups. The type 2 diabetic model was created by feeding the rats with a high-fat diet for 4 weeks followed by injection of 25 mg/kg STZ. CRPHF was given at 2 g/kg/d to the rats of NC and DC groups by intragastric gavage daily for 4 weeks after the type 2 diabetic model was successfully created. Body weight, random blood glucose (RBG), oral glucose tolerance test, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured during the study. Depressive-like behavior was evaluated at the end of the treatment by using the open field test (OFT), the elevated plus-maze test (EPMT), locomotor activity test (LAT), and forced swimming test (FST). Levels of extracellular signal-regulated protein kinase (ERK) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex were evaluated by using Western blot. Results 1) CRPHF reduced RBG and improved glucose tolerance in diabetic rats; 2) CRPHF reduced TC and TG but did not significantly change HDL-C or LDL-C in diabetic rats; 3) CRPHF reversed the loss in body weights observed in diabetic rats; 4) CRPHF reduced depressive-like behavior as measured by OFT, EPMT, LAT, and FST; 5) BDNF was upregulated, and ERK was activated in the prefrontal cortex of diabetic rats treated with CRPHF. Conclusion

  8. Chronic elevation of brain-derived neurotrophic factor by ampakines.

    PubMed

    Lauterborn, Julie C; Truong, Giang S; Baudry, Michel; Bi, Xiaoning; Lynch, Gary; Gall, Christine M

    2003-10-01

    The ampakine CX614 positively modulates alpha-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid (AMPA) receptor-gated currents and increases brain-derived neurotrophic factor (BDNF) expression. In rat hippocampal slice cultures, CX614 rapidly increases BDNF gene expression but with time, mRNA levels fall despite the continued presence of active drug. The present study examined this apparent refractory period and the possibility that spaced ampakine treatments could sustain elevated BDNF protein levels. In cultured hippocampal slices, CX614, a second ampakine CX546, and the cholinergic agonist carbachol each increased BDNF mRNA levels with acute (3-h) treatment. After 4-day pretreatment with CX614, fresh ampakine (CX614 or CX546) did not induce BDNF mRNA, whereas carbachol did. Western blots confirmed that after an extended period of ampakine treatment, AMPA receptor protein levels are indeed reduced, suggesting that with longer treatments receptor down-regulation mediates ampakine insensitivity. Finally, using a "24-h on/24-h off" CX614 treatment protocol, the ampakine refractory state was circumvented, BDNF mRNA was induced with each ampakine application, and elevated BDNF protein levels were maintained through 5 days in vitro. These results suggest that spaced ampakine treatments can be used to sustain elevated neurotrophin levels and to test the utility of this manipulation for neuroprotection by endogenous neurotrophins.

  9. [Neurotrophic factors and their importance in attention deficit hyperactivity disorde].

    PubMed

    Ramos-Quiroga, Josep A; Sánchez-Mora, Cristina; Corominas, Margarida; Martínez, Iris; Barrau, Víctor; Prats, Laura; Casas, Miguel; Ribasés, Marta

    2014-02-24

    The existing literature that reports findings linked with the involvement of neurotrophic factors in attention deficit hyperactivity disorder (ADHD) is reviewed. Neurotrophins, a family of neurotrophic factors, are a kind of proteins that are specific to the nervous system and play an essential role in neuron survival, differentiation and proliferation during the development of the central and peripheral nervous system. These molecules stimulate axonal growth and exert an influence on the connections with the target tissue in order to establish the synaptic connections. The study of neurotrophins in ADHD, a neurodevelopmental disorder, is of interest mainly due to the functions that these proteins perform in the central nervous system. Studies on animal, pharmacological and molecular genetic models yield evidence that relates neurotrophins with the disorder. This work reviews the results from the studies conducted to date on ADHD and neurotrophic factors, especially brain-derived neurotrophic factor (BDNF). Thus, although pharmacological studies suggest that the response to atomoxetine in adults with ADHD is not directly mediated by the effect on the BDNF, reductions in BDNF levels in the plasma of adult patients with ADHD have been reported. Further studies with broader samples and greater control of environmental factors that can regulate neurotrophin expression, such as diet, physical exercise and situations of social risk, are needed to be able to determine the role they play in the aetiology of ADHD.

  10. Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease

    PubMed Central

    Mattson, Mark P.

    2008-01-01

    Glutamate’s role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis and neuron survival in the developing and adult mammalian nervous system. Cell surface glutamate receptors are coupled to Ca2+ influx and release from endoplasmic reticulum stores which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF) which, in turn, modifies neuronal glutamate sensitivity, Ca2+ homeostasis and plasticity. Neurotrophic factors may modify glutamate signalling directly, by changing the expression of glutamate receptor subunits and Ca2+-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins and anti-apoptotic Bcl2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer’s disease to psychiatric disorders. By enhancing neurotrophic factor signalling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signalling and protect against neurological disorders. PMID:19076369

  11. Neurotrophic factors improve muscle reinnervation from embryonic neurons.

    PubMed

    Casella, Gizelda T B; Almeida, Vania W; Grumbles, Robert M; Liu, Yang; Thomas, Christine K

    2010-11-01

    Motoneurons die in diseases like amyotrophic lateral sclerosis and after spinal cord trauma, inducing muscle denervation. We tested whether transplantation of embryonic cells with neurotrophic factors into peripheral nerve of adult rats improves muscle reinnervation and motor unit function more than cells alone. One week after sciatic nerve section, embryonic ventral spinal cord cells were transplanted into the tibial nerve with or without glial cell line-derived neurotrophic factor, hepatocyte growth factor, and insulin-like growth factor-1. These cells represented the only neuron source for muscle reinnervation. Ten weeks after transplantation, all medial gastrocnemius muscles contracted in response to electrical stimulation of cell transplants with factors. Only 80% of muscles responded with cells alone. Factors and cells resulted in survival of more motoneurons and reinnervation of more muscle fibers for a given axon (motor unit) number. Greater reinnervation from embryonic cells may enhance muscle excitation by patterned electrical stimulation.

  12. The Effect of Repeated Electroacupuncture Analgesia on Neurotrophic and Cytokine Factors in Neuropathic Pain Rats

    PubMed Central

    Wang, Junying; Duanmu, Chenlin; Feng, Xiumei; Yan, Yaxia

    2016-01-01

    Chronic pain is a common disability influencing quality of life. Results of previous studies showed that acupuncture has a cumulative analgesic effect, but the relationship with spinal cytokines neurotrophic factors released by astrocytes remains unknown. The present study was designed to observe the effect of electroacupuncture (EA) treatment on spinal cytokines neurotrophic factors in chronic neuropathic pain rats. The chronic neuropathic pain was established by chronic constrictive injury (CCI). EA treatment was applied at Zusanli (ST36) and Yanglingquan (GB34) (both bilateral) once a day, for 30 min. IL-1β mRNA, TNF-α mRNA, and IL-1 mRNA were detected by quantitative real-time PCR, and the proteins of BDNF, NGF, and NT3/4 were detected by Western blot. The expression levels of cytokines such as IL-1β mRNA, TNF-α mRNA, IL-6 mRNA, and neurotrophic factors such as BDNF, NGF, and NT3/4 in the spinal cord were increased significantly after CCI. The astrocytes released more IL-1β and BDNF after CCI. Repeated EA treatment could suppress the elevated expression of IL-1β mRNA, TNFα mRNA, and BDNF, NGF, and NT3/4 but had no effect on IL-6 mRNA. It is suggested that cytokines and neurotrophic factors which may be closely associated with astrocytes participated in the process of EA relieving chronic pain. PMID:27800006

  13. Role of neurotrophic factors in attention deficit hyperactivity disorder.

    PubMed

    Tsai, Shih-Jen

    2016-11-30

    Neurotrophins (NTs), a family of proteins including nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4, are essential for neural growth, survival, and differentiation, and are therefore crucial for brain development. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by problems of inattention and/or hyperactivity-impulsivity. ADHD is one of the most common childhood onset psychiatric disorders. Studies have suggested that both genetic and environmental factors influence the development of the disorder, although the precise causes of ADHD have not yet been identified. In this review, we assess the role of NTs in the pathophysiology of ADHD. Preclinical evidence indicates that BDNF knockout mice are hyperactive, and an ADHD rodent model exhibited decreased cerebral BDNF levels. Several lines of evidence from clinical studies, including blood level and genetic studies, have suggested that NTs are involved in the pathogenesis of ADHD and in the mechanism of biological treatments for ADHD. Future directions for research are proposed, such as using blood NTs as ADHD biomarkers, optimizing NT genetic studies in ADHD, considering NTs as a link between ADHD and other comorbid mental disorders, and investigating methods for optimally modulating NT signaling to discover novel therapeutics for treating ADHD.

  14. Spatial learning in the Morris water maze in mice genetically different in the predisposition to catalepsy: the effect of intraventricular treatment with brain-derived neurotrophic factor.

    PubMed

    Kulikov, Alexander V; Fursenko, Daria V; Khotskin, Nikita V; Bazovkina, Daria V; Kulikov, Victor A; Naumenko, Vladimir S; Bazhenova, Ekaterina Yu; Popova, Nina K

    2014-07-01

    Hereditary catalepsy in mice is accompanied with volume reduction of some brain structures and high vulnerability to inflammatory agents. Here an association between hereditary catalepsy and spatial learning deficit in the Morris water maze (MWM) in adult mouse males of catalepsy-resistant AKR, catalepsy-prone CBA and AKR.CBA-D13Mit76 (D13) strains was studied. Recombinant D13 strain was created by means of the transfer of the CBA-derived allele of the major gene of catalepsy to the AKR genome. D13 mice showed a low MWM performance in the acquisition test and high expression of the gene coding proinflammatory interleukin-6 (Il-6) in the hippocampus and cortex compared with mice of the parental AKR and CBA strains. An acute ivc administration of 300 ng of brain derived neurotrophic factor (BDNF) normalized the performance in the MWM, but did not decrease the high Il-6 gene expression in the brain of D13 mice. These results indicated a possible association between the hereditary catalepsy, MWM performance, BDNF and level of Il-6 mRNA in the brain, although the relation between these characteristics seems to be more complex. D13 recombinant mice with deficit of spatial learning is a promising model for study of the genetic and molecular mechanisms of learning disorders as well as for screening potential cognitive enhancers.

  15. Human milk and formulae: neurotrophic and new biological factors.

    PubMed

    Serpero, Laura D; Frigiola, Alessandro; Gazzolo, Diego

    2012-03-01

    Mother milk is widely accepted to be a unique product believed to contain biological factors involved in the regulation of newborn optimal growth including brain when compared to milk-formula milks. In this setting, there is growing evidence that in milk-formula neuro-oxidative stress biomarkers, neurotrophic proteins and calcium binding proteins, known to be involved in a cascade of events leading to brain, cardiac and vascular development/damage, are to date lacking or at a lower concentration than breast milk. Therefore, this review is aimed at offering additional insights to the role in human milk of some selected biomarkers such as: i) neurotrophic factors such as Activin A; ii) Calcium binding protein such as S100B and, iii) heat shock protein known to be involved in oxidative stress response (namely hemeoxygenase-1, HO-1 or Heat shock Protein 32, HSP32).

  16. Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy.

    PubMed

    Domanskyi, Andrii; Saarma, Mart; Airavaara, Mikko

    2015-08-01

    Neurotrophic factors (NTFs) hold great potential as therapeutic agents in the treatment of neurodegenerative conditions, including Parkinson's disease (PD), in which the progressive loss of dopamine neurons in the substantia nigra pars compacta causes severe motor symptoms. There is extensive evidence that in preclinical animal models of PD NTFs are both neuroprotective and neurorestorative. In particular, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), cerebral dopamine neurotrophic factor, and mesencephalic astrocyte-derived neurotrophic factor have shown great potential to restore dopamine neurocircuitry. Although some previous clinical trials have demonstrated limited efficacy of GDNF and NRTN, there are several concerns raised with these studies. Moreover, open-label studies with GDNF as well as a study with NRTN showed clinical improvement, particularly in patients with early-stage PD. Indeed, as previous clinical trials with NTFs were associated with several technical problems, there is a great need for further investigations. In this review we discuss the emerging and existing possibilities to use NTFs as neurorestorative agents and the ways to improve their efficacy, and compare gene therapy and recombinant protein therapy approaches for restoring the dopamine circuitry in PD.

  17. Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors.

    PubMed

    Mocchetti, Italo; Bachis, Alessia; Campbell, Lee A; Avdoshina, Valeriya

    2014-03-01

    Human immunodeficiency virus type-1 (HIV) causes mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when HIV patients receive antiretroviral therapy. Thus, novel adjunctive therapies are necessary to reduce or abolish the neurotoxic effect of HIV. However, new therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity. HAND subjects are characterized by being profoundly depressed, and they experience deficits in memory, learning and movements. Experimental evidence has also shown that HIV reduces neurogenesis. These deficits resemble those occurring in premature brain aging or in a brain with impaired neural repair properties. Thus, it appears that HIV diminishes neuronal survival, along with reduced neuronal connections. These two phenomena should not occur in the adult and developing brain when synaptic plasticity is promoted by neurotrophic factors, polypeptides that are present in adult synapses. This review will outline experimental evidence as well as present emerging concepts for the use of neurotrophic factors and in particular brain-derived neurotrophic factor as an adjunct therapy to prevent HIV-mediated neuronal degeneration and restore the loss of synaptic connections.

  18. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    PubMed

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  19. Prolongation of Relaxation Time in Extraocular Muscles With Brain Derived Neurotrophic Factor in Adult Rabbit

    PubMed Central

    Nelson, Krysta R.; Stevens, Shanlee M.; McLoon, Linda K.

    2016-01-01

    Purpose We tested the hypothesis that short-term treatment with brain derived neurotrophic factor (BDNF) would alter the contractile characteristics of rabbit extraocular muscle (EOM). Methods One week after injections of BDNF in adult rabbit superior rectus muscles, twitch properties were determined in treated and control muscles in vitro. Muscles were also examined for changes in mean cross-sectional areas, neuromuscular junction size, and percent of myofibers expressing specific myosin heavy chain isoforms, and sarcoendoplasmic reticulum calcium ATPases (SERCA) 1 and 2. Results Brain derived neurotrophic factor–treated muscles had prolonged relaxation times compared with control muscles. Time to 50% relaxation, time to 100% relaxation, and maximum rate of relaxation were increased by 24%, 27%, and 25%, respectively. No significant differences were seen in time to peak force, twitch force, or maximum rate of contraction. Brain derived neurotrophic factor treatment significantly increased mean cross-sectional areas of slow twitch and tonic myofibers, with increased areas ranging from 54% to 146%. Brain derived neurotrophic factor also resulted in an increased percentage of slow twitch myofibers in the orbital layers, ranging from 54% to 77%, and slow-tonic myofibers, ranging from 44% to 62%. No significant changes were seen SERCA1 or 2 expression or in neuromuscular junction size. Conclusions Short-term treatment with BDNF significantly prolonged the duration and rate of relaxation time and increased expression of both slow-twitch and slow-tonic myosin-expressing myofibers without changes in neuromuscular junctions or SERCA expression. The changes induced by BDNF treatment might have potential therapeutic value in dampening/reducing uncontrolled eye oscillations in nystagmus. PMID:27802489

  20. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation

    PubMed Central

    Guo, Qing; Sebastian, Lois; Sopher, Bryce L.; Miller, Miles W.; Glazner, Gordon W.; Ware, Carol B.; Martin, George M.; Mattson, Mark P.

    1999-01-01

    Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer’s disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer’s disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid β-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations. PMID:10097174

  1. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease.

    PubMed

    Kazim, Syed Faraz; Iqbal, Khalid

    2016-07-11

    Alzheimer's disease (AD) is an incurable and debilitating chronic progressive neurodegenerative disorder which is the leading cause of dementia worldwide. AD is a heterogeneous and multifactorial disorder, histopathologically characterized by the presence of amyloid β (Aβ) plaques and neurofibrillary tangles composed of Aβ peptides and abnormally hyperphosphorylated tau protein, respectively. Independent of the various etiopathogenic mechanisms, neurodegeneration is a final common outcome of AD neuropathology. Synaptic loss is a better correlate of cognitive impairment in AD than Aβ or tau pathologies. Thus a highly promising therapeutic strategy for AD is to shift the balance from neurodegeneration to neuroregeneration and synaptic repair. Neurotrophic factors, by virtue of their neurogenic and neurotrophic activities, have potential for the treatment of AD. However, the clinical therapeutic usage of recombinant neurotrophic factors is limited because of the insurmountable hurdles of unfavorable pharmacokinetic properties, poor blood-brain barrier (BBB) permeability, and severe adverse effects. Neurotrophic factor small-molecule mimetics, in this context, represent a potential strategy to overcome these short comings, and have shown promise in preclinical studies. Neurotrophic factor small-molecule mimetics have been the focus of intense research in recent years for AD drug development. Here, we review the relevant literature regarding the therapeutic beneficial effect of neurotrophic factors in AD, and then discuss the recent status of research regarding the neurotrophic factor small-molecule mimetics as therapeutic candidates for AD. Lastly, we summarize the preclinical studies with a ciliary neurotrophic factor (CNTF) small-molecule peptide mimetic, Peptide 021 (P021). P021 is a neurogenic and neurotrophic compound which enhances dentate gyrus neurogenesis and memory processes via inhibiting leukemia inhibitory factor (LIF) signaling pathway and increasing

  2. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    PubMed

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF) during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  3. Brain-derived neurotrophic factor and its clinical implications.

    PubMed

    Bathina, Siresha; Das, Undurti N

    2015-12-10

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus.

  4. Delayed onset muscle soreness: Involvement of neurotrophic factors.

    PubMed

    Mizumura, Kazue; Taguchi, Toru

    2016-01-01

    Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.

  5. Brain-derived neurotrophic factor and neuropsychiatric disorders.

    PubMed

    Autry, Anita E; Monteggia, Lisa M

    2012-04-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development.

  6. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease.

    PubMed

    Akagi, Masaaki; Matsui, Nobuaki; Akae, Haruka; Hirashima, Nana; Fukuishi, Nobuyuki; Fukuyama, Yoshiyasu; Akagi, Reiko

    2015-02-01

    Developed regions, including Japan, have become "aged societies," and the number of adults with senile dementias, such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease, has also increased in such regions. Neurotrophins (NTs) may play a role in the treatment of AD because endogenous neurotrophic factors (NFs) prevent neuronal death. However, peptidyl compounds have been unable to cross the blood-brain barrier in clinical studies. Thus, small molecules, which can mimic the functions of NFs, might be promising alternatives for the treatment of neurodegenerative diseases. Natural products, such as or nutraceuticals or those used in traditional medicine, can potentially be used to develop new therapeutic agents against neurodegenerative diseases. In this review, we introduced the neurotrophic activities of polyphenols honokiol and magnolol, which are the main constituents of Magnolia obovata Thunb, and methanol extracts from Zingiber purpureum (BANGLE), which may have potential therapeutic applications in various neurodegenerative disorders.

  7. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium.

    PubMed

    Feng, Sanjiang; Zhuang, Minghua; Wu, Rui

    2012-12-25

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium-containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  8. The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders.

    PubMed

    Lanni, C; Stanga, S; Racchi, M; Govoni, S

    2010-01-01

    Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.

  9. Progesterone, brain-derived neurotrophic factor and neuroprotection.

    PubMed

    Singh, M; Su, C

    2013-06-03

    While the effects of progesterone in the CNS, like those of estrogen, have generally been considered within the context of reproductive function, growing evidence supports its importance in regulating non-reproductive functions including cognition and affect. In addition, progesterone has well-described protective effects against numerous insults in a variety of cell models, animal models and in humans. While ongoing research in several laboratories continues to shed light on the mechanism(s) by which progesterone and its related progestins exert their effects in the CNS, our understanding is still incomplete. Among the key mediators of progesterone's beneficial effects is the family of growth factors called neurotrophins. Here, we review the mechanisms by which progesterone regulates one important member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), and provides support for its pivotal role in the protective program elicited by progesterone in the brain.

  10. Brain-Derived Neurotrophic Factor: Three Ligands, Many Actions.

    PubMed

    Hempstead, Barbara L

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of a family of neurotrophins which include nerve growth factor, neurotrophin 3, and neurotrophin 4. Studies over the last three decades have identified mature BDNF as a key regulator of neuronal differentiation, structure, and function; actions mediated by the TrkB receptor. More recently identified isoforms which are translated from the bdnf gene, including the uncleaved precursor, pro-BDNF, and the cleaved prodomain, have been found to elicit opposing functions in neurons through the activation of distinct receptors. This work emphasizes the critical roles for all three isoforms of BDNF in modulating neuronal activity that impact complex human behaviors including memory, anxiety, depression, and hyperphagia.

  11. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia.

    PubMed

    Angelucci, Francesco; Mathé, Aleksander A; Aloe, Luigi

    2004-01-01

    Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are proteins involved in neuronal survival and plasticity of dopaminergic, cholinergic and serotonergic neurons in the central nervous system (CNS). Loss of neurons in specific brain regions has been found in depression and schizophrenia, and this chapter summarizes the findings of altered neurotrophins in animal models of those two disorders under baseline condition and following antidepressive and antipsychotic treatments. In a model of depression (Flinders sensitive line/Flinders resistant line; FSL/FRL rats), increased NGF and BDNF concentrations were found in frontal cortex of female, and in occipital cortex of male 'depressed' FSL compared to FRL control rats. Using the same model, the effects of electroconvulsive stimuli (ECS) and chronic lithium treatment on brain NGF, BDNF and glial cell line-derived neurotrophic factors were investigated. ECS and lithium altered the brain concentrations of neurotrophic factors in the hippocampus, frontal cortex, occipital cortex and striatum. ECS mimic the effects of electroconvulsive therapy (ECT) that is an effective treatment for depression and also schizophrenia. Since NGF and BDNF may also be changed in the CNS of animal models of schizophrenia, we investigated whether treatment with antipsychotic drugs (haloperidol, risperidone, and olanzapine) affects the constitutive levels of NGF and BDNF in the CNS. Both typical and atypical antipsychotic drugs altered the regional brain levels of NGF and BDNF. Other studies also demonstrated that these drugs differentially altered neurotrophin mRNAs. Overall, these studies indicate that alteration of brain level of NGF and BDNF could constitute part of the biochemical alterations induced by antipsychotic drugs.

  12. Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: Possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation.

    PubMed

    Kitamura, Yoshihisa; Hattori, Sayo; Yoneda, Saori; Watanabe, Saori; Kanemoto, Erika; Sugimoto, Misaki; Kawai, Toshiki; Machida, Ayumi; Kanzaki, Hirotaka; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2015-10-01

    Many patients who have received chemotherapy to treat cancer experience depressive- and anxiety-like symptoms or cognitive impairment. However, despite the evidence for this, the underlying mechanisms are still not understood. This study investigated behavioral and biochemical changes upon treatment with doxorubicin and cyclophosphamide, focusing on mental and cognitive systems, as well as neurogenesis in male rats. Doxorubicin (2 mg/kg), cyclophosphamide (50 mg/kg), and the combination of doxorubicin and cyclophosphamide were injected intraperitoneally once per week for 4 weeks. In particular, the co-administration of doxorubicin and cyclophosphamide produced anhedonia-like, anxiety-like, and spatial cognitive impairments in rats. It also reduced both the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus and their survival. Serum brain-derived neurotrophic factor (BDNF) levels were decreased along with chemotherapy-induced decreases in platelet levels. However, hippocampal BDNF levels and Bdnf mRNA levels were not decreased by this treatment. On the other hand, hippocampal cyclin D1 levels were significantly decreased by chemotherapy. These results suggest that the co-administration of doxorubicin and cyclophosphamide induces psychological and cognitive impairment, in addition to negatively affecting hippocampal neurogenesis, which may be related to hippocampal cyclin D1 levels, but not hippocampal BDNF levels.

  13. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine.

    PubMed

    Larsen, Marianne H; Rosenbrock, Holger; Sams-Dodd, Frank; Mikkelsen, Jens D

    2007-01-26

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and NeuroD-immunoreactivity. We find that chronic, but not sub-chronic treatment with Tesofensine increases BDNF mRNA in the CA3 region of the hippocampus (35%), and Arc mRNA in the CA1 of the hippocampus (65%). Furthermore, the number of Ki-67- and neuroD-positive cells increased after chronic, but not sub-chronic treatment. This study shows that Tesofensine enhances hippocampal gene expression and new cell formation indicative for an antidepressant potential of this novel drug substance.

  14. Role of brain-derived neurotrophic factor in Huntington's disease.

    PubMed

    Zuccato, Chiara; Cattaneo, Elena

    2007-04-01

    Neurotrophic factors are essential contributors to the survival of peripheral and central nervous system (CNS) neurons, and demonstration of their reduced availability in diseased brains indicates that they play a role in various neurological disorders. This paper will concentrate on the role of brain-derived neurotrophic factor (BDNF) in the survival and activity of the neurons that die in Huntington's disease (HD) by reviewing the evidence indicating that it involves profound changes in BDNF levels and that attempts to restore these levels are therapeutically interesting. BDNF is a small dimeric protein that is widely expressed in adult mammalian brain and has been shown to promote the survival of all major neuronal types affected in Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, cortical BDNF production is required for the correct activity of the corticostriatal synapse and the survival of the GABA-ergic medium-sized spiny striatal neurons that die in HD. We will highlight the available data concerning changes in BDNF levels in HD cells, mice and human postmortem samples, describe the molecular evidence underlying this alteration, and review the data concerning the impact of the experimental manipulation of BDNF levels on HD progression. Such studies have revealed a major loss of BDNF protein in the striatum of HD patients which may contribute to the clinical manifestations of the disease. They have also opened up a molecular window into the underlying pathogenic mechanism and new therapeutic perspectives by raising the possibility that one of the mechanisms triggering the reduction in BDNF in HD may also affect the activity of many other neuronal proteins.

  15. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  16. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia.

    PubMed

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-09-05

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.

  17. Neurotrophic Factors Rescue Basal Forebrain Cholinergic Neurons and Improve Performance on a Spatial Learning Test

    PubMed Central

    Lee, Yu-Shang; Danandeh, Andalib; Baratta, Janie; Lin, Ching-Yi; Yu, Jen; Robertson, Richard T.

    2013-01-01

    This study investigated whether animals sustaining experimental damage to the basal forebrain cholinergic system would benefit from treatment with exogenous neurotrophic factors. Specifically, we set out to determine whether neurotrophic factors would rescue damaged cholinergic neurons and improve behavioral performance on a spatial learning and memory task. Adult rats received bilateral injections of either saline (controls) or 192 IgG-saporin to damage basal forebrain cholinergic neurons (BFCNs). Two weeks later, animals received implants of an Alzet mini-pump connected to cannulae implanted bilaterally in the lateral ventricles. Animals received infusions of nerve growth factor (NGF), neurotrophin 3 (NT3), a combination of NGF and NT3, or a saline control over a 4-week period. Compared to saline-treated controls, animals sustaining saporin-induced damage to BFCNs took significantly more trials to learn a delayed match to position task and also performed more poorly on subsequent tests, with increasing delays between test runs. In contrast, animals infused with neurotrophins after saporin treatment performed significantly better than animals receiving saline infusions; no differences were detected for performance scores among animals infused with NGF, NT3, or a combination of NGF and NT3. Studies of ChAT immunnocytochemical labeling of BFCNs revealed a reduction in the numbers of ChAT-positive neurons in septum, nucleus of diagonal band, and nucleus basalis in animals treated with saporin followed by saline infusions, whereas animals treated with infusions of NGF, NT3 or a combination of NGF and NT3 showed only modest reductions in ChAT-positive neurons. Together, these data support the notion that administration of neurotrophic factors can rescue basal forebrain cholinergic neurons and improve learning and memory performance in rats. PMID:24017996

  18. Neurotrophic factors rescue basal forebrain cholinergic neurons and improve performance on a spatial learning test.

    PubMed

    Lee, Yu-Shang; Danandeh, Andalib; Baratta, Janie; Lin, Ching-Yi; Yu, Jen; Robertson, Richard T

    2013-11-01

    This study investigated whether animals sustaining experimental damage to the basal forebrain cholinergic system would benefit from treatment with exogenous neurotrophic factors. Specifically, we set out to determine whether neurotrophic factors would rescue damaged cholinergic neurons and improve behavioral performance on a spatial learning and memory task. Adult rats received bilateral injections of either saline (controls) or 192 IgG-saporin to damage basal forebrain cholinergic neurons (BFCNs). Two weeks later, animals received implants of an Alzet mini-pump connected to cannulae implanted bilaterally in the lateral ventricles. Animals received infusions of nerve growth factor (NGF), neurotrophin 3 (NT3), a combination of NGF and NT3, or a saline control over a 4-week period. Compared to saline-treated controls, animals sustaining saporin-induced damage to BFCNs took significantly more trials to learn a delayed match to position task and also performed more poorly on subsequent tests, with increasing delays between test runs. In contrast, animals infused with neurotrophins after saporin treatment performed significantly better than animals receiving saline infusions; no differences were detected for performance scores among animals infused with NGF, NT3, or a combination of NGF and NT3. Studies of ChAT immunnocytochemical labeling of BFCNs revealed a reduction in the numbers of ChAT-positive neurons in septum, nucleus of diagonal band, and nucleus basalis in animals treated with saporin followed by saline infusions, whereas animals treated with infusions of NGF, NT3 or a combination of NGF and NT3 showed only modest reductions in ChAT-positive neurons. Together, these data support the notion that administration of neurotrophic factors can rescue basal forebrain cholinergic neurons and improve learning and memory performance in rats.

  19. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  20. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  1. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    PubMed Central

    Zhang, Zhong-jun; Li, Ya-jun; Liu, Xiao-guang; Huang, Feng-xiao; Liu, Tie-jun; Jiang, Dong-mei; Lv, Xue-man; Luo, Min

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. PMID:26330839

  2. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    PubMed

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control.

  3. Brain-derived neurotrophic factor levels in Alzheimer's disease.

    PubMed

    O'Bryant, Sid E; Hobson, Valerie; Hall, James R; Waring, Stephen C; Chan, Wenyan; Massman, Paul; Lacritz, Laura; Cullum, C Munro; Diaz-Arrastia, Ramon

    2009-01-01

    The current search for biomarkers that are diagnostic and/or prognostic of Alzheimer's disease (AD) is of vital importance given the rapidly aging population. It was recently reported that brain-derived neurotrophic factor (BDNF) fluctuated according to AD severity, suggesting that BDNF might have utility for diagnostics and monitoring of therapeutic efficacy. The current study sought to examine whether BDNF levels varied according to AD severity, as previously reported. There were 196 participants (Probable AD, n = 98; Controls, n = 98) in the Texas Alzheimer's Research Consortium (TARC) Longitudinal Research Cohort available for analysis. BDNF levels were assayed via multiplex immunoassay. Regression analyses were utilized to examine the relation between BDNF levels, Mini-Mental Status Examination, and Clinical Dementia Rating scores adjusting for age and gender. In adjusted models, BDNF levels did not distinguish between AD patients and normal controls and did not significantly predict AD severity or global cognitive functioning. In conclusion, these findings do not support the notion that BDNF serves as a diagnostic marker for AD or disease severity. It is likely that the most accurate approach to identifying biomarkers of AD will be through an algorithmic approach that combines multiple markers reflective of various pathways.

  4. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    PubMed

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  5. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-06-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  6. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor.

    PubMed

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E

    2016-06-27

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  7. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration.

    PubMed

    Simchon-Tenenbaum, Yaarit; Weizman, Abraham; Rehavi, Moshe

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) overdiagnosis and a pharmacological attempt to increase cognitive performance, are the major causes for the frequent (ab)use of psychostimulants in non-ADHD individuals. Methylphenidate is a non-addictive psychostimulant, although its mode of action resembles that of cocaine, a well-known addictive and abused drug. Neuronal- and glial-derived growth factors play a major role in the development, maintenance and survival of neurons in the central nervous system. We hypothesized that methylphenidate and cocaine treatment affect the expression of such growth factors. Beginning on postnatal day (PND) 14, male Sprague Dawley rats were treated chronically with either cocaine or methylphenidate. The rats were examined behaviorally and biochemically at several time points (PND 35, 56, 70 and 90). On PND 56, rats treated with cocaine or methylphenidate from PND 14 through PND 35 exhibited increased hippocampal glial-cell derived neurotrophic factor (GDNF) mRNA levels, after 21 withdrawal days, compared to the saline-treated rats. We found a significant association between cocaine and methylphenidate treatments and age progression in the prefrontal protein expression of brain derived neurotrophic factor (BDNF). Neither treatments affected the behavioral parameters, although acute cocaine administration was associated with increased locomotor activity. It is possible that the increased hippocampal GDNF mRNA levels, may be relevant to the reduced rate of drug seeking behavior in ADHD adolescence that were maintained from childhood on methylphenidate. BDNF protein level increase with age, as well as following stimulant treatments at early age may be relevant to the neurobiology and pharmacotherapy of ADHD.

  8. Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery

    PubMed Central

    Lindsey, Stephan; Piatt, Joseph H.; Worthington, Peter; Sönmez, Cem; Satheye, Sameer; Schneider, Joel P.; Pochan, Darrin J.; Langhans, Sigrid A.

    2016-01-01

    There is intense interest in developing novel methods for the sustained delivery of low levels of clinical therapeutics. MAX8 is a peptide-based beta-hairpin hydrogel that has unique shear thinning properties that allow for immediate rehealing after the removal of shear forces, making MAX8 an excellent candidate for injectable drug delivery at a localized injury site. The current studies examined the feasibility of using MAX8 as a delivery system for Nerve Growth Factor (NGF) and Brain-derived neurotrophic factor (BDNF), two neurotrophic growth factors currently used in experimental treatments of spinal cord injuries. Experiments determined that encapsulation of NGF and BDNF within MAX8 did not negatively impact gel formation or rehealing and that shear thinning did not result in immediate growth factor release. We found that increased NGF/BDNF dosages increased the amount and rate of growth factor release and that NGF/BDNF release was inversely related to the concentration of MAX8, indicating that growth factor release can be tuned by adjusting MAX8 concentrations. Encapsulation within MAX8 protected NGF and BDNF from in vitro degradation for up to 28 days. Released NGF resulted in the formation of neurite-like extensions in PC12 pheochromocytoma cells, demonstrating that NGF remains biologically active after release from encapsulation. Direct physical contact of PC12 cells with NGF-containing hydrogel did not inhibit neurite-like extension formation. On a molecular level, encapsulated growth factors activated the NGF/BDNF signaling pathways. Taken together, our data show MAX8 acts as a time-release gel, continually releasing low levels of growth factor over 21 days. MAX8 allows for greater dosage control and sustained therapeutic growth factor delivery, potentially alleviating side effects and improving the efficacy of current therapies. PMID:26225909

  9. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression.

    PubMed

    Masi, Gabriele; Brovedani, Paola

    2011-11-01

    Depression is a prevalent, highly debilitating mental disorder affecting up to 15% of the population at least once in their lifetime, with huge costs for society. Neurobiological mechanisms of depression are still not well known, although there is consensus about interplay between genetic and environmental factors. Antidepressant medications are frequently used in depression, but at least 50% of patients are poor responders, even to more recently discovered medications. Furthermore, clinical response only occurs following weeks to months of treatment and only chronic treatment is effective, suggesting that actions beyond the rapidly occurring effect of enhancing monoaminergic systems, such as adaptation of these systems, are responsible for the effects of antidepressants. Recent studies indicate that an impairment of synaptic plasticity (neurogenesis, axon branching, dendritogenesis and synaptogenesis) in specific areas of the CNS, particularly the hippocampus, may be a core factor in the pathophysiology of depression. The abnormal neural plasticity may be related to alterations in the levels of neurotrophic factors, namely brain-derived neurotrophic factor (BDNF), which play a central role in plasticity. As BDNF is repressed by stress, epigenetic regulation of the BDNF gene may play an important role in depression. The hippocampus is smaller in depressed patients, although it is unclear whether smaller size is a consequence of depression or a pre-existing, vulnerability marker for depression. Environmental stressors triggering activation of the hypothalamic-pituitary-adrenal axis cause the brain to be exposed to corticosteroids, affecting neurobehavioural functions with a strong downregulation of hippocampal neurogenesis, and are a major risk factor for depression. Antidepressant treatment increases BDNF levels, stimulates neurogenesis and reverses the inhibitory effects of stress, but this effect is evident only after 3-4 weeks of administration, the time course

  10. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation.

    PubMed

    Lambert, W Marcus; Xu, Chong-Feng; Neubert, Thomas A; Chao, Moses V; Garabedian, Michael J; Jeanneteau, Freddy D

    2013-09-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.

  11. Immunohistochemical localization of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the superior olivary complex of mice after radiofrequency exposure.

    PubMed

    Maskey, Dhiraj; Kim, Myeung Ju

    2014-04-03

    Raising health concerns about the biological effects from radiofrequency exposure, even with conflicting results, has prompted calls for formulation of a guideline of the biological safety level. Given the close proximity between a mobile phone and the ear, it has been suggested that the central auditory system may be detrimentally influenced by radiofrequency exposure. In the auditory system, neurotrophins are important in the regulation of neuron survival, especially mammalian cochlear neurons. Neurotrophic factors like brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) present in the auditory system are responsible for the maintenance of auditory neurons. BDNF and GDNF may protect against acoustic trauma and prevent from hearing defect. The present study applied radiofrequency at a specific absorption rate (SAR) of 1.6W/kg (E1.6) or 0W/kg group to determine the distribution of BDNF and GDNF in the nuclei of superior olivary complex (SOC). In the E1.6 group, significant decrements of BDNF immunoreactivity (IR) were noted in the lateral superior olive, medial superior olive, superior paraolivary nucleus and medial nucleus of the trapezoid body. GDNF IR was also significantly decreased (p<0.001) in all SOC nuclei of the E1.6 group. The decrease in the IR of these neurotrophic factors in the SOC of the E1.6 group suggests a detrimental effect of RF exposure in the auditory nuclei.

  12. Effect of neurotrophic factor, MDP, on rats' nerve regeneration.

    PubMed

    Fornazari, A A; Rezende, M R de; Mattar Jr, R; Taira, R I; Santos, G B dos; Paulos, R G

    2011-04-01

    Our objective was to determine the immune-modulating effects of the neurotrophic factor N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) on median nerve regeneration in rats. We used male Wistar rats (120-140 days of age, weighing 250-332 g) and compared the results of three different techniques of nerve repair: 1) epineural neurorrhaphy using sutures alone (group S - 10 rats), 2) epineural neurorrhaphy using sutures plus fibrin tissue adhesive (FTA; group SF - 20 rats), and 3) sutures plus FTA, with MDP added to the FTA (group SFM - 20 rats). Functional assessments using the grasp test were performed weekly for 12 weeks to identify recovery of flexor muscle function in the fingers secondary to median nerve regeneration. Histological analysis was also utilized. The total number and diameter of myelinated fibers were determined in each proximal and distal nerve segment. Two indices, reported as percentage, were calculated from these parameters, namely, the regeneration index and the diameter change index. By the 8th week, superiority of group SFM over group S became apparent in the grasping test (P = 0.005). By the 12th week, rats that had received MDP were superior in the grasping test compared to both group S (P < 0.001) and group SF (P = 0.001). Moreover, group SF was better in the grasping test than group S (P = 0.014). However, no significant differences between groups were identified by histological analysis. In the present study, rats that had received MDP obtained better function, in the absence of any significant histological differences.

  13. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons.

    PubMed

    Schaller, Sébastien; Buttigieg, Dorothée; Alory, Alysson; Jacquier, Arnaud; Barad, Marc; Merchant, Mark; Gentien, David; de la Grange, Pierre; Haase, Georg

    2017-03-21

    Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.

  14. Reduced serum levels of oestradiol and brain derived neurotrophic factor in both diabetic women and HFD-feeding female mice.

    PubMed

    Zhang, Yi; Zhang, Shan-Wen; Khandekar, Neeta; Tong, Shi-Fei; Yang, He-Qin; Wang, Wan-Ru; Huang, Xu-Feng; Song, Zhi-Yuan; Lin, Shu

    2017-04-01

    The estrogen levels in the pre and post menstrual phases interact with brain-derived neurotrophic factor in a complex manner, which influences the overall state of the body. To study the role of oestradiol and brain-derived neurotrophic factor in modulating obesity related type 2 diabetes and the interactions between two factors, we enrolled 15 diabetic premenopausal women and 15 diabetic postmenopausal women respectively, the same number of healthy pre and postmenopausal women were recruited as two control groups. The fasting blood glucose, insulin, lipids, estrogen, and brain-derived neurotrophic factor levels were measured through clinical tests. Additionally, we set up obese female mouse model to mimic human trial stated above, to verify the relationship between estrogen and brain-derived neurotrophic factor. Our findings revealed that there is a moderately positive correlation between brain-derived neurotrophic factor and oestradiol in females, and decreased brain-derived neurotrophic factor may worsen impaired insulin function. The results further confirmed that high fat diet-fed mice which exhibited impaired glucose tolerance, showed lower levels of oestradiol and decreased expression of brain-derived neurotrophic factor mRNA in the ventromedial hypothalamus. The level of brain-derived neurotrophic factor reduced on condition that the level of oestradiol is sufficiently low, such as women in postmenopausal period, which aggravates diabetes through feeding-related pathways. Increasing the level of brain-derived neurotrophic factor may help to alleviate the progression of the disease in postmenopausal women with diabetes.

  15. Effect of glatiramer acetate on peripheral blood brain-derived neurotrophic factor and phosphorylated TrkB levels in relapsing-remitting multiple sclerosis.

    PubMed

    Vacaras, Vitalie; Major, Zsigmond Z; Muresanu, Dafin F; Krausz, Tibor L; Marginean, Ioan; Buzoianu, Dana A

    2014-01-01

    Glatiramer acetate (GA) is one of the most widely used disease-modifying drugs for the treatment of relapsing-remitting multiple sclerosis; is assumed to have inductor effects on neurotrophic factor expression. One of these neurotrophic factor systems is the brain-derived neurotrophic factor (BDNF)/receptor tyrosine kinase B (TrkB) pathway. Peripheral blood is thought to contain soluble BDNF, and some blood cells express TrkB. We attempted to determine whether GA treatment leads to changes in plasma BDNF levels and TrkB activation. Such a phenomenon are relapsing-remitting multiple sclerosis patients is significantly reduced; GA treatment is not influencing peripheral BDNF levels, after one year of sustained therapy, not from the point of view of total free BDNF nor the phosphorylated TrkB.

  16. Radix Bupleuri ameliorates depression by increasing nerve growth factor and brain-derived neurotrophic factor

    PubMed Central

    Wang, Xia; Feng, Qing; Xiao, Yong; Li, Ping

    2015-01-01

    Background: Chinese herb Radix Bupleuri has been regarded effective to improve treatment of depression, but the molecular mechanism remains unknown. Low levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) increase the likelihood of developing the depression. Therefore, we want to know whether Radix Bupleuri affects the levels of these factors. Methods: A total 160 hemodialysis patients were diagnosed with depression and randomly assigned to two groups: Radix Bupleuri group (received 1 g root power of Radix Bupleuri in a capsule daily Radix Bupleuri) and control group (receive placebo). Results: After three-month follow-up, the patients who received Radix Bupleuri had greater improvement in depression symptoms, anxiety symptoms and general functioning via controls after three-month follow-up (P < 0.05). Serum NGF levels were significantly higher in subjects accepted Radix Bupleuris (178.64 ± 52.18 pg/mL) when compared to a control (103.54 ± 31.23 pg/ml) (P < 0.01). Similarly, serum BDNF levels were significantly higher in subjects accepted Radix Bupleuris (1635.26 ± 121.66 pg/ml) when compared to a control (516.38 ± 44.89 pg/ml) (P < 0.01). The serum levels of NGF and BDNF were negatively related with Montgomery-Asberg Depression Rating Scale (MADRS) and positively related with scores of RAND-36 item Health Survey (RAND-36) (P < 0.01). Conclusion: Thus, Radix Bupleuri ameliorates the patients with depression by increasing serum levels of NGF and BDNF. Radix Bupleuri should be developed a new drug for the therapy of depression. PMID:26309578

  17. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  18. Are the neurotrophic factors a suitable therapeutic target for the prevention of epileptogenesis?

    PubMed

    Simonato, Michele; Zucchini, Silvia

    2010-07-01

    Neurotrophic factors are involved in the survival of neurons as well as in the proliferation and differentiation of neuronal precursors. Therefore, modulating their levels in lesion areas may exert favorable effects on seizure-induced damage. However, it is unclear if damage limitation or repair may prevent epileptogenesis; it is also uncertain which neurotrophic factor should be administered for limiting or repairing damage while avoiding possible proepileptic effects. We used viral vectors to locally supplement fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when an epileptogenic damage was already in place. These vectors were tested in the pilocarpine model of status epilepticus-induced neurodegeneration and epileptogenesis. FGF-2/BDNF expressing vectors increased neuronogenesis, limited neuronal damage, and reduced the occurrence of spontaneous seizures. These findings are discussed with consideration of the hurdles that will have to be overcome before clinical application.

  19. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF).

    PubMed

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-02-08

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.

  20. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  1. [Brain-derived neurotrophic factor: from nerve growth factor to modulator of brain plasticity in cognitive processes and psychiatric diseases].

    PubMed

    Laske, C; Eschweiler, G W

    2006-05-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and plays an important role in neuronal survival and plasticity in the CNS. The proform of BDNF (pro-BDNF) is secreted and cleaved extracellularly by the serine protease plasmin to mature BDNF, which potentiates synaptic plasticity and long-term potentiation. Recent findings in animal models suggest an involvement of BDNF and its genetic functional single nucleotide polymorphism in the pathogenesis of different psychiatric diseases including depression, mania, schizophrenia, eating disorders, dementia, and Huntington's disease. In the brain and serum, BDNF is modulated by different factors. It is downregulated by stress and upregulated by learning processes, several antidepressive treatments, physical activity, and dietary restriction. Measurement of BDNF serum concentrations may be of diagnostic value. Additionally, the influence of different strategies for BDNF allocation seems to be relevant for the treatment and prevention of the above psychiatric disorders.

  2. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus.

    PubMed

    Mou, Zongyang; Hyde, Thomas M; Lipska, Barbara K; Martinowich, Keri; Wei, Peter; Ong, Chiew-Jen; Hunter, Lindsay A; Palaguachi, Gladys I; Morgun, Eva; Teng, Rujia; Lai, Chen; Condarco, Tania A; Demidowich, Andrew P; Krause, Amanda J; Marshall, Leslie J; Haack, Karin; Voruganti, V Saroja; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G; Nalls, Michael A; Zonderman, Alan B; Singleton, Andrew B; Evans, Michele K; Martin, Bronwen; Maudsley, Stuart; Tsao, Jack W; Kleinman, Joel E; Yanovski, Jack A; Han, Joan C

    2015-11-10

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001) and greater adiposity in both adult and pediatric cohorts (p values < 0.05). We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

  3. Aerobic exercise interacts with neurotrophic factors to predict cognitive functioning in adolescents.

    PubMed

    Lee, Tatia M C; Wong, Mark Lawrence; Lau, Benson Wui-Man; Lee, Jada Chia-Di; Yau, Suk-Yu; So, Kwok-Fai

    2014-01-01

    Recent findings have suggested that aerobic exercise may have a positive effect on brain functioning, in addition to its well-recognized beneficial effects on human physiology. This study confirmed the cognitive effects of aerobic exercise on the human brain. It also examined the relationships between exercise and the serum levels of neurotrophic factors (BDNF, IGI-1, and VEGF). A total of 91 healthy teens who exercised regularly participated in this study. A between-group design was adopted to compare cognitive functioning subserved by the frontal and temporal brain regions and the serum levels of neurotrophic factors between 45 regular exercisers and 46 matched controls. The exercisers performed significantly better than the controls on the frontal and temporal functioning parameters measured. This beneficial cognitive effect was region-specific because no such positive cognitive effect on task-tapping occipital functioning was observed. With respect to the serum levels of the neurotrophic factors, a negative correlation between neurotrophic factors (BDNF and VEGF) with frontal and medial-temporal lobe function was revealed. Furthermore, the levels of BDNF and VEGF interacted with exercise status in predicting frontal and temporal lobe function. This is the first report of the interaction effects of exercise and neurotrophic factors on cognitive functioning. Herein, we report preliminary evidence of the beneficial effects of regular aerobic exercise in improving cognitive functions in teens. These beneficial effects are region-specific and are associated with the serum levels of neurotrophic factors. Our findings lay the path for future studies looking at ways to translate these beneficial effects to therapeutic strategies for adolescents.

  4. Parasite-Derived Neurotrophic Factor/trans-Sialidase of Trypanosoma cruzi Links Neurotrophic Signaling to Cardiac Innate Immune Response

    PubMed Central

    Salvador, Ryan; Aridgides, Daniel

    2014-01-01

    The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2). PMID:24935974

  5. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    PubMed

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  6. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  7. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    PubMed Central

    Lv, Xue-man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  8. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    PubMed

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  9. Antidepressant effect of electroacupuncture regulates signal targeting in the brain and increases brain-derived neurotrophic factor levels

    PubMed Central

    Duan, Dong-mei; Tu, Ya; Liu, Ping; Jiao, Shuang

    2016-01-01

    Electroacupuncture improves depressive behavior faster and with fewer adverse effects than antidepressant medication. However, the antidepressant mechanism of electroacupuncture remains poorly understood. Here, we established a rat model of chronic unpredicted mild stress, and then treated these rats with electroacupuncture at Yintang (EX-HN3) and Baihui (DU20) with sparse waves at 2 Hz and 0.6 mA for 30 minutes, once a day. We found increased horizontal and vertical activity, and decreased immobility time, at 2 and 4 weeks after treatment. Moreover, levels of neurotransmitters (5-hydroxytryptamine, glutamate, and γ-aminobutyric acid) and protein levels of brain-derived neurotrophic factor and brain-derived neurotrophic factor-related proteins (TrkB, protein kinase A, and phosphorylation of cyclic adenosine monophosphate response element binding protein) were increased in the hippocampus. Similarly, protein kinase A and TrkB mRNA levels were increased, and calcium-calmodulin-dependent protein kinase II levels decreased. These findings suggest that electroacupuncture increases phosphorylation of cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor levels by regulating multiple targets in the cyclic adenosine monophosphate response element binding protein signaling pathway, thereby promoting nerve regeneration, and exerting an antidepressive effect. PMID:27904490

  10. Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor.

    PubMed

    Qiao, X; Suri, C; Knusel, B; Noebels, J L

    2001-05-01

    Excess neuronal activity upregulates the expression of two neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in adult hippocampus. Nerve growth factor has been shown to contribute the induction of aberrant hippocampal mossy fiber sprouting in the inner molecular layer of the dentate gyrus, however the role of prolonged brain-derived neurotrophic factor exposure is uncertain. We examined the distribution and plasticity of mossy fibers in transgenic mice with developmental overexpression of brain-derived neurotrophic factor. Despite 2--3-fold elevated BDNF levels in the hippocampus sufficient to increase the intensity of neuropeptide Y immunoreactivity in interneurons, no visible changes in mossy fiber Timm staining patterns were observed in the inner molecular layer of adult mutant hippocampus compared to wild-type mice. In addition, no changes of the mRNA expression of two growth-associated proteins, GAP-43 and SCG-10 were found. These data suggest that early and persistent elevations of brain-derived neurotrophic factor in granule cells are not sufficient to elicit this pattern of axonal plasticity in the hippocampus.

  11. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  12. Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos

    PubMed Central

    Kawamura, Kazuhiro; Kawamura, Nanami; Mulders, Sabine M.; Gelpke, Maarten D. Sollewijn; Hsueh, Aaron J. W.

    2005-01-01

    Optimal development of fertilized eggs into preimplantation embryos is essential for reproduction. Although mammalian oocytes ovulated after luteinizing hormone (LH) stimulation can be fertilized and promoted into early embryos in vitro, little is known about ovarian factors important for the conditioning of eggs for early embryo development. Because LH interacts only with ovarian somatic cells, its potential regulation of oocyte functions is presumably mediated by local paracrine factors. We performed DNA microarray analyses of ovarian transcripts and identified brain-derived neurotrophic factor (BDNF) secreted by granulosa and cumulus cells as an ovarian factor stimulated by the preovulatory LH surge. Ovarian BDNF acts on TrkB receptors expressed exclusively in oocytes to enhance first polar body extrusion of oocytes and to promote the in vitro development of zygotes into preimplantation embryos. Furthermore, in vivo treatment with a Trk receptor inhibitor suppressed first polar body extrusion and the progression of zygotes into blastocysts. Thus, ovarian BDNF is important to nuclear and cytoplasmic maturation of the oocyte, which is essential for successful oocyte development into preimplantation embryos. Treatment with BDNF could condition the cultured oocytes for optimal progression into the totipotent blastocysts. PMID:15967989

  13. Interplay Between Nitric Oxide and Brain-Derived Neurotrophic Factor in Neuronal Plasticity.

    PubMed

    Biojone, Caroline; Casarotto, Plinio Cabrera; Joca, Samia Regiane; Castrén, Eero

    2015-01-01

    Nitric oxide is a gaseous neuromodulator that displays a core role in several neuronal processes. Beyond regulating the release of neurotransmitters, nitric oxide also plays a role in cell differentiation and maturation in the central nervous system. Although the mode of action of nitric oxide is not fully understood, it involves the activation of soluble guanylate cyclase as well as the nitration and S-nitrosylation of specific amino acid residues in other proteins. Brain-derived neurotrophic factor is a member of neurotrophic factor family and, acting through its receptor tropomyosinrelated kinase B, increases the production of nitric oxide, modulates neuronal differentiation and survival, and plays a crucial role in synaptic plasticity, such as long-term potentiation. Furthermore, nitric oxide is an important regulator of the production of these factors. The aim of the present review is to present a condensed view of the evidence related to the interaction between nitric oxide and brain-derived neurotrophic factor. Additionally, we conducted bioinformatics analysis based on the amino acid sequences of brain-derived neurotrophic factor and tropomyosin-related kinase receptors, and proposed that nitric oxide might nitrate/S-nitrosylate these proteins. Thus, we suggest a putative direct mode of action between these molecules to be further explored.

  14. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite.

    PubMed

    Byerly, Mardi S; Swanson, Roy D; Semsarzadeh, Nina N; McCulloh, Patrick S; Kwon, Kiwook; Aja, Susan; Moran, Timothy H; Wong, G William; Blackshaw, Seth

    2013-06-15

    Disruption of finely coordinated neuropeptide signals in the hypothalamus can result in altered food intake and body weight. We identified neuron-derived neurotrophic factor (NENF) as a novel secreted protein through a large-scale screen aimed at identifying novel secreted hypothalamic proteins that regulate food intake. We observed robust Nenf expression in hypothalamic nuclei known to regulate food intake, and its expression was altered under the diet-induced obese (DIO) condition relative to the fed state. Hypothalamic Nenf mRNA was regulated by brain-derived neurotrophic factor (BDNF) signaling, itself an important regulator of appetite. Delivery of purified recombinant BDNF into the lateral cerebral ventricle decreased hypothalamic Nenf expression, while pharmacological inhibition of trkB signaling increased Nenf mRNA expression. Furthermore, recombinant NENF administered via an intracerebroventricular cannula decreased food intake and body weight and increased hypothalamic Pomc and Mc4r mRNA expression. Importantly, the appetite-suppressing effect of NENF was abrogated in obese mice fed a high-fat diet, demonstrating a diet-dependent modulation of NENF function. We propose the existence of a regulatory circuit involving BDNF, NENF, and melanocortin signaling. Our study validates the power of using an integrated experimental and bioinformatic approach to identify novel CNS-derived proteins with appetite-modulating function and reveals NENF as an important central modulator of food intake.

  15. Neurotrophic Factors (BDNF and GDNF) and the Serotonergic System of the Brain.

    PubMed

    Popova, N K; Ilchibaeva, T V; Naumenko, V S

    2017-03-01

    Neurotrophic factors play a key role in development, differentiation, synaptogenesis, and survival of neurons in the brain as well as in the process of their adaptation to external influences. The serotonergic (5-HT) system is another major factor in the development and neuroplasticity of the brain. In the present review, the results of our own research as well as data provided in the corresponding literature on the interaction of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with the 5-HT-system of the brain are considered. Attention is given to comparison of BDNF and GDNF, the latter belonging to a different family of neurotrophic factors and being mainly considered as a dopaminergic system controller. Data cited in this review show that: (i) BDNF and GDNF interact with the 5-HT-system of the brain through feedback mechanisms engaged in autoregulation of the complex involving 5-HT-system and neurotrophic factors; (ii) GDNF, as well as BDNF, stimulates the growth of 5-HT neurons and affects the expression of key genes of the brain 5-HT-system - those coding tryptophan hydroxylase-2 and 5-HT1A and 5-HT2A receptors. In turn, 5-HT affects the expression of genes that control BDNF and GDNF in brain structures; (iii) the difference between BDNF and GDNF is manifested in different levels and relative distribution of expression of these factors in brain structures (BDNF expression is highest in hippocampus and cortex, GDNF expression in the striatum), in varying reaction of 5-HT2A receptors on BDNF and GDNF administration, and in different effects on certain types of behavior.

  16. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  17. Chronic hyperoxia alters the expression of neurotrophic factors in the carotid body of neonatal rats.

    PubMed

    Dmitrieff, Elizabeth F; Wilson, Julia T; Dunmire, Kyle B; Bavis, Ryan W

    2011-02-15

    Chronic exposure to hyperoxia alters the postnatal development and innervation of the rat carotid body. We hypothesized that this plasticity is related to changes in the expression of neurotrophic factors or related proteins. Rats were reared in 60% O(2) from 24 to 36h prior to birth until studied at 3d of age (P3). Protein levels for brain-derived neurotrophic factor (BDNF) were significantly reduced (-70%) in the P3 carotid body, while protein levels for its receptor, tyrosine kinase B, and for glial cell line-derived neurotrophic factor (GDNF) were unchanged. Transcript levels in the carotid body were downregulated for the GDNF receptor Ret (-34%) and the neuropeptide Vgf (-67%), upregulated for Cbln1 (+205%), and unchanged for Fgf2; protein levels were not quantified for these genes. Immunohistochemical analysis revealed that Vgf and Cbln1 proteins are expressed within the carotid body glomus cells. These data suggest that BDNF, and perhaps other neurotrophic factors, contribute to abnormal carotid body function following perinatal hyperoxia.

  18. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  19. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    ERIC Educational Resources Information Center

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  20. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    PubMed Central

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  1. Dynamic expression of neurotrophic factor receptors in postnatal spinal motoneurons and in mouse model of ALS.

    PubMed

    Zhang, Jiasheng; Huang, Eric J

    2006-07-01

    Neurotrophic factors support the survival of spinal motoneurons (MNs) and have been considered as strong candidates for treating motoneuron diseases. However, it is unclear if the right combination of neurotrophic factor receptors is present in postnatal spinal MNs. In this study, we show that the level of c-ret expression remains relatively stable in embryonic and postnatal spinal MNs. In contrast, the mRNA and protein of GFRalpha1 and -2 are progressively down-regulated in postnatal life. By 3 and 6 months of age, both receptors are barely detectable in spinal MNs. The down-regulation of GFRalpha1 appears accelerated in transgenic mice expressing mutant SOD1(G93A). Despite the progressive loss of GFRalpha1 and -2, phosphorylation of c-ret shows no detectable reduction on tyrosine residues or on serine 696. In addition to the GFRalpha subunits, expression of TrkB also shows a dynamic change. During embryogenesis, there is twice as much full-length TrkB as the truncated TrkB isoform. However, this ratio is reversed in postnatal spinal cord. Expression of the mutant SOD1(G93A) appears to have no effect on the TrkB receptor ratio. Taken together, our data indicate that the expression of neurotrophic factor receptors, GFRalpha1, -2, and TrkB, is not static, but undergoes dynamic changes in postnatal spinal MNs. These results provide insights into the use of neurotrophic factors as therapeutic agents for ALS.

  2. Neurotrophic factors improve motoneuron survival and function of muscle reinnervated by embryonic neurons.

    PubMed

    Grumbles, Robert M; Sesodia, Sanjay; Wood, Patrick M; Thomas, Christine K

    2009-07-01

    Motoneuron death can occur over several spinal levels with disease or trauma, resulting in muscle denervation. We tested whether cotransplantation of embryonic neurons with 1 or more neurotrophic factors into peripheral nerve improved axon regeneration, muscle fiber area, reinnervation, and function to a greater degree than cell transplantation alone. Sciatic nerves of adult Fischer rats were cut to denervate muscles; 1 week later, embryonic ventral spinal cord cells (days 14-15) were transplanted into the tibial nerve stump as the only source of neurons for muscle reinnervation. Factors that promote motoneuron survival (cardiotrophin 1; fibroblast growth factor 2; glial cell line-derived neurotrophic factor; insulin-like growth factor 1; leukemia inhibitory factor; and hepatocyte growth factor) were added to the transplant individually or in combinations. Inclusion of a single factor with the cells resulted in comparable myelinated axon counts, muscle fiber areas, and evoked electromyographic activity to cells alone 10 weeks after transplantation. Only cell transplantation with glial cell line-derived neurotrophic factor, hepatocyte growth factor, and insulin-like growth factor 1 significantly increased motoneuron survival, myelinated axon counts, muscle reinnervation, and evoked electromyographic activity compared with cells alone. Thus, immediate application of a specific combination of factors to dissociated embryonic neurons improves survival of motoneurons and the long-term function of reinnervated muscle.

  3. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  4. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    PubMed

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  5. PERIPHERAL NERVE REGENERATION: CELL THERAPY AND NEUROTROPHIC FACTORS

    PubMed Central

    Sebben, Alessandra Deise; Lichtenfels, Martina; da Silva, Jefferson Luis Braga

    2015-01-01

    Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair. PMID:27027067

  6. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    PubMed Central

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  7. Brain-derived neurotrophic factor as a drug target for CNS disorders.

    PubMed

    Pezet, Sophie; Malcangio, Marzia

    2004-10-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of trophic factors. BDNF is widely and abundantly expressed in the CNS and is available to some peripheral nervous system neurons that uptake the neurotrophin produced by peripheral tissues. BDNF promotes survival and differentiation of certain neuronal populations during development. In adulthood, BDNF can modulate neuronal synaptic strength and has been implicated in hippocampal mechanisms of learning and memory and spinal mechanisms for pain. Several CNS disorders are associated with a decrease in trophic support. As BDNF and its high affinity receptor are abundant throughout the whole CNS, and BDNF is a potent neuroprotective agent, this trophic factor is a good candidate for therapeutic treatment of some of CNS disorders. This review aims to correlate the features of some CNS disorders (Parkinson's disease, Alzheimer's disease, depression, epilepsy and chronic pain) to changes in BDNF expression in the brain. The cellular and molecular mechanism by which BDNF might be a therapeutic strategy are critically examined.

  8. Increased synaptic inhibition in dentate gyrus of mice with reduced levels of endogenous brain-derived neurotrophic factor.

    PubMed

    Olofsdotter, K; Lindvall, O; Asztély, F

    2000-01-01

    The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice. From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.

  9. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation.

    PubMed

    Linher-Melville, Katja; Li, Julang

    2013-02-01

    Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.

  10. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery.

    PubMed

    Lapchak, P A; Miller, P J; Collins, F; Jiao, S

    1997-05-01

    The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met

  11. Neuroprotective effects of brain-derived neurotrophic factor in seizures during development.

    PubMed

    Tandon, P; Yang, Y; Das, K; Holmes, G L; Stafstrom, C E

    1999-01-01

    Although the immature brain is highly susceptible to seizures, it is more resistant to seizure-induced neuronal loss than the adult brain. The developing brain contains high levels of neurotrophins which are involved in growth, differentiation and survival of neurons. To test the hypothesis that neurotrophins may protect the developing brain from seizure-induced neuronal loss, brain-derived neurotrophic factor up-regulation was blocked by intracerebroventricular infusion of an 18mer antisense oligodeoxynucleotide sequence to brain-derived neurotrophic factor in 19-day-old rats using micro-osmotic pumps. Control rats were infused with sense or missense oligodeoxynucleotide. Status epilepticus was induced by intraperitoneal administration of kainic acid 24 h after the start of oligodeoxynucleotide infusion. Seizure duration was significantly increased in the antisense oligodeoxynucleotide plus kainic acid group compared to groups that received kainic acid alone or kainic acid plus sense or missense oligodeoxynucleotide. There was no difference between groups in the latency to forelimb clonus. A twofold increase in brain-derived neurotrophic factor levels was observed in the hippocampus 20 h following kainic acid-induced seizures. This kainic acid-induced increase was absent in animals receiving infusion of antisense oligodeoxynucleotide to brain-derived neurotrophic factor at time of seizure induction. Hippocampi of rats in this group (antisense oligodeoxynucleotide plus kainic acid) showed a loss of CA1 and CA3 pyramidal cells and hilar interneurons. This neuronal loss was not dependent upon seizure duration since animals injected with diazepam to control seizure activity in the antisense plus kainic acid group also showed similar neuronal loss. Administration of kainic acid or infusion of antisense alone did not produce any cell loss in these regions. Induction of seizures at postnatal day 20, in the presence or absence of antisense oligonucleotide, did not produce

  12. Synergetic effects of ciliary neurotrophic factor and olfactory ensheathing cells on optic nerve reparation (complete translation)

    PubMed Central

    Yin, Dan-ping; Chen, Qing-ying; Liu, Lin

    2016-01-01

    At present, there is no effective treatment for the repair of the optic nerve after injury, or improvement of its microenvironment for regeneration. Intravitreally injected ciliary neurotrophic factor (CNTF) and olfactory ensheathing cells (OECs) promote the long-distance regrowth of severed optic nerve fibers after intracranial injury. Here, we examined the efficacy of these techniques alone and in combination, in a rat model of optic nerve injury. We injected condensed OEC suspension at the site of injury, or CNTF into the vitreous body, or both simultaneously. Retrograde tracing techniques showed that 4 weeks postoperatively, the number of surviving retinal ganglion cells and their axonal density in the optic nerve were greater in rats subjected to OEC injection only than in those receiving CNTF injection only. Furthermore, combined OEC + CNTF injection achieved better results than either monotherapy. These findings confirm that OECs are better than CNTF at protecting injured neurons in the eye, but that combined OEC and CNTF therapy is notably more effective than either treatment alone. PMID:27482233

  13. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures.

    PubMed

    Bolton, M M; Pittman, A J; Lo, D C

    2000-05-01

    Brain-derived neurotrophic factor (BDNF) has been postulated to be a key signaling molecule in regulating synaptic strength and overall circuit activity. In this context, we have found that BDNF dramatically increases the frequency of spontaneously initiated action potentials in hippocampal neurons in dissociated culture. Using analysis of unitary synaptic transmission and immunocytochemical methods, we determined that chronic treatment with BDNF potentiates both excitatory and inhibitory transmission, but that it does so via different mechanisms. BDNF strengthens excitation primarily by augmenting the amplitude of AMPA receptor-mediated miniature EPSCs (mEPSCs) but enhances inhibition by increasing the frequency of mIPSC and increasing the size of GABAergic synaptic terminals. In contrast to observations in other systems, BDNF-mediated increases in AMPA-receptor mediated mEPSC amplitudes did not require activity, because blocking action potentials with tetrodotoxin for the entire duration of BDNF treatment had no effect on the magnitude of this enhancement. These forms of synaptic regulations appear to be a selective action of BDNF because intrinsic excitability, synapse number, and neuronal survival are not affected in these cultures. Thus, although BDNF induces a net increase in overall circuit activity, this results from potentiation of both excitatory and inhibitory synaptic drive through distinct and selective physiological mechanisms.

  14. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    PubMed

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  15. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    PubMed

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  16. Pro- and anti-addictive neurotrophic factors and cytokines in psychostimulant addiction: mini review.

    PubMed

    Yamada, Kiyofumi; Nabeshima, Toshitaka

    2004-10-01

    Drug addiction is defined as a chronically relapsing disorder that is characterized by compulsive drug taking, inability to limit the intake, and intense drug craving. While the positive reinforcing effects of psychostimulants such as cocaine and amphetamines depend on the mesocorticolimbic dopamine system innervating nucleus accumbens, chronic drug exposure causes stable changes in the structure and function of the brain that may underlie the long-lived behavioral abnormalities in drug addiction. Recent evidence has suggested that various neurotrophic factors and cytokines are involved in the effects of psychomotor stimulants, suggesting that these factors play a role in drug addiction. In this article, a role of neurotrophic factors and cytokines in psychostimulant addiction is discussed.

  17. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts

    PubMed Central

    Boyer, Richard B.; Sexton, Kevin W.; Rodriguez-Feo, Charles L.; Nookala, Ratnam; Pollins, Alonda C.; Cardwell, Nancy L.; Tisdale, Keonna Y.; Nanney, Lillian B.; Shack, R. Bruce; Thayer, Wesley P.

    2014-01-01

    Background Acellular nerve allografts are now standard tools in peripheral nerve repair due to decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and ECM-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth following injury of the central and peripheral nervous systems. Variable results following chondroitinase ABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth post-injury in CSPG-reduced substrates and acellular nerve allografts. Materials and Methods E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC pre-treated acellular nerve allografts. Prior to implantation, nerve allografts were incubated in NGF, GDNF or sterile water. Nerve histology was evaluated at 5d and 8wk post-injury. Results The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared to ChABC alone (P < 0.01), while NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon

  18. Periocular injection of in situ hydrogels containing Leu-Ile, an inducer for neurotrophic factors, promotes retinal ganglion cell survival after optic nerve injury.

    PubMed

    Nakatani, Masayoshi; Shinohara, Yuko; Takii, Miki; Mori, Hisato; Asai, Nobuharu; Nishimura, Shigeru; Furukawa-Hibi, Yoko; Miyamoto, Yoshiaki; Nitta, Atsumi

    2011-12-01

    Intraocular administration of neurotrophic factors has been shown to delay irreversible degeneration of retinal ganglion cells (RGCs). It would be beneficial for the treatment of optic nerve (ON) injury if such neurotrophic factors could be delivered in a less-invasive manner. The dipeptide leucine-isoleucine (Leu-Ile) appears to induce the production of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), in the brain. We therefore administered Leu-Ile via periocular depot injection in rats and investigated the dipeptide's ability to induce BDNF and GDNF in the retina and to delay RGC loss in an ON injury model. Poloxamer-alginate hydrogels containing Leu-Ile were injected into the subconjunctival space of intact or ON-injured rats. BDNF and GDNF levels in the retina were determined by an enzyme immunoassay. Survival of RGCs was assessed in retinal flatmounts. Activation of extracellular signal-regulated kinases (ERK) and cAMP response element binding protein (CREB) in the retina was examined by Western blotting. At 2 h after injection of fluorescein isothiocyanate-conjugated Leu-Ile, the fluorescence intensities in the retina were 4.3-fold higher than those in the saline control. Treatment with Leu-Ile significantly increased the retinal levels of BDNF at 6 h and GDNF at 6-72 h after injection. Treatment with Leu-Ile significantly increased RGC survival to 14 days after ON injury and enhanced the activation of ERK at 72 h and CREB at 48 h after injection in the ON-injured retina. These results suggest that periocular delivery of Leu-Ile induces BDNF and GDNF production in the retina, which may eventually enhance RGC survival after ON injury.

  19. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    PubMed

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies.

  20. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    PubMed

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-07

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  1. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures.

    PubMed

    Zhou, Jin; Zhang, Huaibo; Cohen, Rochelle S; Pandey, Subhash C

    2005-01-01

    Clinical studies indicate an effect of estrogen (E2) on affect and cognition, which may be mediated by the cAMP response element-binding protein (CREB) pathway and CREB-related gene target brain-derived neurotrophic factor (BDNF). We investigated the effect of E2 on CREB expression and phosphorylation and BDNF expression in the amygdala and hippocampus, areas involved in emotional processing. Ovariectomized rats were given 10 microg 17beta-estradiol or vehicle for 14 days and expression of components of the CREB signaling pathway, i.e., CREB, phosphorylated CREB (pCREB), and BDNF in amygdala and hippocampus were investigated using immunogold labeling. Levels of BDNF mRNA were determined by in situ reverse-transcriptase polymerase chain reaction. We also examined the effect of E2 on calcium/calmodulin kinase (CaMK IV) immunolabeling in the hippocampus. E2 increased immunolabeling and mRNA levels of BDNF in the medial and basomedial amygdala and CA1 and CA3 regions of the hippocampus, but not in any other amygdaloid or hippocampal regions examined. E2 increased immunolabeling of CREB and pCREB in the medial and basomedial, but not central or basolateral amygdala. E2 also increased CaMK IV and pCREB immunolabeling in the CA1 and CA3 regions, but not CA2 region or dentate gyrus, of the hippocampus. There was no change in immunolabeling of CREB in any hippocampal region. These data identify a signaling pathway through which E2 increases BDNF expression that may underlie some actions of E2 on affective behavior and indicate neuroanatomical heterogeneity in the E2 effect within the amygdala and hippocampus.

  2. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    PubMed

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25 μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation.

  3. The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking

    PubMed Central

    Darcq, Emmanuel; Morisot, Nadege; Phamluong, Khanhky; Warnault, Vincent; Jeanblanc, Jerome; Longo, Frank M.; Massa, Stephen M.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) signaling in the dorsolateral striatum (DLS) keeps alcohol intake in moderation. For example, activation of the BDNF receptor tropomyosin receptor kinase B (TrkB) in the DLS reduces intake in rats that consume moderate amounts of alcohol. Here, we tested whether long-term excessive consumption of alcohol produces neuroadaptations in BDNF signaling in the rat DLS. We found that BDNF was no longer able to gate alcohol self-administration after a history of repeated cycles of binge alcohol drinking and withdrawal. We then elucidated the possible neuroadaptations that could block the ability of BDNF to keep consumption of alcohol in moderation. We report that intermittent access to 20% alcohol in a two-bottle choice paradigm that models excessive alcohol drinking produces a mobilization of DLS p75 neurotrophin receptor (p75NTR), whose activities oppose those of the Trk receptors, including TrkB. These neuroadaptations were not observed in the DLS of rats exposed to continuous access to 10% alcohol or in rats consuming sucrose. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of the p75NTR gene in the DLS, as well as intra-DLS infusion or systemic administration of the p75NTR modulator, LM11A-31, significantly reduced binge drinking of alcohol. Together, our results suggest that excessive alcohol consumption produces a change in BDNF signaling in the DLS, which is mediated by the recruitment of p75NTR. Our data also imply that modulators of p75NTR signaling could be developed as medications for alcohol abuse disorders. SIGNIFICANCE STATEMENT Neuroadaptations gate or drive excessive, compulsive alcohol drinking. We previously showed that brain-derived neurotrophic factor and its receptor, TrkB, in the dorsolateral striatum (DLS), are part of an endogenous system that keeps alcohol drinking in moderation. Here, we show that a history of excessive alcohol intake produces neuroadaptations in the DLS that preclude BDNF

  4. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins

    PubMed Central

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  5. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Baseri, Babak; Choi, James J.; Deffieux, Thomas; Samiotaki, Gesthimani; Tung, Yao-Sheng; Olumolade, Oluyemi; Small, Scott A.; Morrison, Barclay, III; Konofagou, Elisa E.

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) has been shown to have broad neuroprotective effects in addition to its therapeutic role in neurodegenerative disease. In this study, the efficacy of delivering exogenous BDNF to the left hippocampus is demonstrated in wild-type mice (n = 7) through the noninvasively disrupted blood-brain barrier (BBB) using focused ultrasound (FUS). The BDNF bioactivity was found to be preserved following delivery as assessed quantitatively by immunohistochemical detection of the pTrkB receptor and activated pAkt, pMAPK, and pCREB in the hippocampal neurons. It was therefore shown for the first time that systemically administered neurotrophic factors can cross the noninvasively disrupted BBB and trigger neuronal downstream signaling effects in a highly localized region in the brain. This is the first time that the administered molecule is tracked through the BBB and localized in the neuron triggering molecular effects. Additional preliminary findings are shown in wild-type mice with two additional neurotrophic factors such as the glia-derived neurotrophic factor (n = 12) and neurturin (n = 2). This further demonstrates the impact of FUS for the early treatment of CNS diseases at the cellular and molecular level and strengthens its premise for FUS-assisted drug delivery and efficacy.

  6. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders.

    PubMed

    Du, X; Hill, R A

    2015-10-01

    Neurodevelopmental disorders are a group of conditions that arises from impairments of the central nervous system during its development. The causes of the various disorders are heterogeneous and the symptoms likewise are multifarious. Most of these disorders currently have very little available treatment that is effective in combating the plethora of serious symptoms. Brain-derived neurotrophic factor (BDNF) is a fundamental neurotrophin with vital functions during brain development. Pre-clinical studies have shown that increasing BDNF signalling may be a potent way to prevent, arrest or even reverse abnormal neurodevelopmental events arising from a variety of genetic or environmental causes. However, many difficulties make BDNF problematic to administer in an efficient manner. The recent discovery of a small BDNF-mimetic, the naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF), may provide an avenue to allow efficient and safe activation of the BDNF pathway in tackling the symptoms of neurodevelopmental disorders. Here, evidence will be provided to support the potential of 7,8-DHF as a novel treatment for several neurodevelopmental disorders where the BDNF signalling pathway is implicated in the pathophysiology and where benefits are therefore most likely to be derived from its implementation.

  7. Methamphetamine self-administration attenuates hippocampal serotonergic deficits: Role of brain derived neurotrophic factor

    PubMed Central

    McFadden, Lisa M.; Vieira-Brock, Paula L.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent “binge” METH exposure. Previous work also demonstrates that brain derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered at this timepoint in rats that self-administered METH prior to the binge METH exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function. PMID:24650575

  8. Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats.

    PubMed

    Madhyastha, Sampath; Sekhar, Sudhanshu; Rao, Gayathri

    2013-11-01

    Prenatal stress induced neuronal dysfunction is multifactorial, including suppressed neurogenesis in developing brain. Resveratrol is known to exert its neuroprotective potential by enhancing neurogenesis. But the efficacy of resveratrol against prenatal stress was not addressed in detail. Hence in the present study we evaluated the neuroprotective action of resveratrol on prenatal stress-induced impaired neurogenesis. Pregnant rats were subjected to restraint stress during early or late gestational period. Another sets of rats received resveratrol during entire gestational period along with early or late gestational stress. The study parameters included neuronal assay of doublecortin positive neurons (DCX +ve) and brain derived neurotrophic factor (BDNF) estimations in 40th postnatal day rat brain. Both early and late gestational stress resulted in significant decrease in generation of new born neurons and BDNF expression in hippocampus. The decrease in number of DCX +ve neurons and hippocampal BDNF expression was more profound in the offspring who received late gestational stress compared to early gestational stress. Resveratrol treatment has improved the expression of DCX +ve neurons and BDNF expression. These data suggest the neuroprotective efficacy of resveratrol against prenatal stress induced impaired neurogenesis.

  9. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis.

    PubMed

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-08-01

    Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection.

  10. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease

    PubMed Central

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-01-01

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410

  11. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease.

    PubMed

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-10-04

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy.

  12. The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

    PubMed Central

    Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.

    2014-01-01

    This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754

  13. Brain-derived and glial cell line-derived neurotrophic factor fusion protein immobilization to laminin

    PubMed Central

    Wang, Baoxin; Yuan, Junjie; Xu, Jiafeng; Chen, Xinwei; Ying, Xinjiang; Dong, Pin

    2017-01-01

    Damage to the recurrent laryngeal nerve often causes hoarseness, dyspnea, dysphagia, and sometimes asphyxia due to vocal cord paralysis which result in a reduction of quality of life. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) play critical roles in peripheral nerve regeneration. However, methods for efficiently delivering these molecules are lacking, which limits their use in clinical applications. The present study reports an effective strategy for targeting BDNF and GDNF to laminin by fusing the N-terminal domains of these molecules with agrin (NtA). More specifically, laminin-binding efficacy was assessed and sustained release assays of the delivery of BDNF or GDNF fused with NtA (LBD-BDNF or LBD-GDNF) to laminin were conducted in vitro. In addition, the bioactivity of LBD-BDNF and LBD-GDNF on laminin in vitro was investigated. LBD-BDNF and LBD-GDNF were each able to specifically bind to laminin and maintain their activity in vitro. Moreover, neurotrophic factors with NtA retained higher concentrations and bioactivity levels compared with those without NtA. The ratio of LBD-BDNF and LBD-GDNF that produced optimal effects was 4:6. BDNF and GDNF fused with NtA were effective in specifically binding to laminin. As laminin is a major component of the extracellular matrix, LBD-BDNF and LBD-GDNF may prove useful in the repair of peripheral nerve injuries. PMID:28123487

  14. Reduced neuroplasticity in aged rats: a role for the neurotrophin brain-derived neurotrophic factor.

    PubMed

    Calabrese, Francesca; Guidotti, Gianluigi; Racagni, Giorgio; Riva, Marco A

    2013-12-01

    Aging is a physiological process characterized by a significant reduction of neuronal plasticity that might contribute to the functional defects observed in old subjects. Even if the neurobiological mechanisms that contribute to such impairment remain largely unknown, a role for neurotrophic molecules, such as the neurotrophin brain-derived neurotrophic factor (BDNF), has been postulated. On this basis, the purpose of this study was to provide a detailed investigation of the BDNF system, at transcriptional and translational levels, in the ventral and dorsal hippocampus and in the prefrontal cortex of middle-aged and old rats, compared with in adult animals. The expression of major players in BDNF regulation and response, including the transcription factors, calcium-responsive transcription factor, cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB), and neuronal Per Arnt Sim (PAS) domain protein 4, and the high-affinity receptor tropomyosin receptor kinase B (TrkB), was also analyzed. Our results demonstrate that the BDNF system is affected at different levels in aged rats with global impairment including reduced transcription, impaired protein synthesis and processing, and decreased activation of the TrkB receptors. These modifications might contribute to the cognitive deficits associated with aging and suggest that pharmacological strategies aimed at restoring reduced neurotrophism might be useful to counteract age-related cognitive decline.

  15. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease.

    PubMed

    Maswood, Navin; Young, Jennifer; Tilmont, Edward; Zhang, Zhiming; Gash, Don M; Gerhardt, Greg A; Grondin, Richard; Roth, George S; Mattison, Julie; Lane, Mark A; Carson, Richard E; Cohen, Robert M; Mouton, Peter R; Quigley, Christopher; Mattson, Mark P; Ingram, Donald K

    2004-12-28

    We report that a low-calorie diet can lessen the severity of neurochemical deficits and motor dysfunction in a primate model of Parkinson's disease. Adult male rhesus monkeys were maintained for 6 months on a reduced-calorie diet [30% caloric restriction (CR)] or an ad libitum control diet after which they were subjected to treatment with a neurotoxin to produce a hemiparkinson condition. After neurotoxin treatment, CR monkeys exhibited significantly higher levels of locomotor activity compared with control monkeys as well as higher levels of dopamine (DA) and DA metabolites in the striatal region. Increased survival of DA neurons in the substantia nigra and improved manual dexterity were noted but did not reach statistical significance. Levels of glial cell line-derived neurotrophic factor, which is known to promote the survival of DA neurons, were increased significantly in the caudate nucleus of CR monkeys, suggesting a role for glial cell line-derived neurotrophic factor in the anti-Parkinson's disease effect of the low-calorie diet.

  16. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    PubMed

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  17. Glycans and glycan-binding proteins in brain: galectin-1-induced expression of neurotrophic factors in astrocytes.

    PubMed

    Endo, Tamao

    2005-06-01

    Astrocytes are a major cell type in the central nervous system (CNS). They are considered to act in cooperation with neurons and other glial cells and to participate in the development and maintenance of functions of the CNS. Immature astrocytes possess a polygonal shape and have no processes, and continue to proliferate, while mature astrocytes have a stellate cell morphology, increased glial fibrillary acidic protein expression, and proliferate slowly. Stellate astrocytes, which immediately appear at the site of brain lesions by ischemia or other brain injuries, are thought to produce several neurotrophic factors to protect neurons from delayed post-lesion death. Previously we reported that galectin-1, a member of the family of beta-galactoside-binding proteins, induced astrocyte differentiation, and the differentiated astrocytes greatly enhanced their production of brain-derived neurotrophic factor (BDNF). BDNF is known to promote neuronal survival, guide axonal pathfinding, and participate in activity-dependent synaptic plasticity during development. The effect of galectin-1 is astrocyte-specific and does not have any effect on neurons. Prevention of neuronal loss during CNS injuries is important to maintain brain function. Induction of neuroprotective factors in astrocytes by an endogenous mammalian lectin may be a new mechanism for preventing neuronal loss after brain injury, and may be useful for the treatment of neurodegenerative disorders.

  18. Cabergoline Decreases Alcohol Drinking and Seeking Behaviors Via Glial Cell Line-Derived Neurotrophic Factor

    PubMed Central

    Carnicella, Sebastien; Ahmadiantehrani, Somayeh; He, Dao-Yao; Nielsen, Carsten K.; Bartlett, Selena E.; Janak, Patricia H.; Ron, Dorit

    2010-01-01

    Background Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Methods Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPγS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). Results We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Conclusions Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders. PMID:19232578

  19. Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons.

    PubMed

    Gill, Raminder; Chang, Philip K-Y; Prenosil, George A; Deane, Emily C; McKinney, Rebecca A

    2013-12-01

    Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.

  20. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats.

    PubMed

    Larsson, E; Nanobashvili, A; Kokaia, Z; Lindvall, O

    1999-11-01

    The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.

  1. Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia.

    PubMed

    Zhao, Hua; Cheng, Lei; Liu, Yi; Zhang, Wen; Maharjan, Sailendra; Cui, Zhaoqiang; Wang, Xingli; Tang, Dongqi; Nie, Lin

    2014-02-01

    Microglia are important resident immune cells in the central nervous system (CNS) and involved in the neuroinflammation caused by CNS disorders, including brain trauma, ischemia, stroke, infections, inflammation, and neurodegenerative diseases. Our study explores the hypothesis that conserved dopamine neurotrophic factor (CDNF), a secretory neurotrophic factor, may provide a novel therapy for associated with neuroinflammation related to the microglia. We observed that CDNF was upregulated in rat primary microglia treated with 1 μg/mL lipopolysaccharide, an inflammatory inducer, for 24 h. Thus, we hypothesize that CDNF may play a role, mediator or inhibitor, in regulating the inflammation in microglial cells induced by LPS. Finally, our data showed that CDNF significantly attenuated the production of proinflammatory cytokines (PGE2 and IL-1β) and remarkably alleviated the cytotoxicity (percentage of lactate dehydrogenase released) in the LPS-induced microglia by suppressing the phosphorylation of JNK, but not the P38 or ERK pathways. These results demonstrate the anti-inflammatory property of CDNF by inhibition of JNK signaling in LPS-induced microglia, suggesting that CDNF may be a potential novel agent for the treatment of neuroinflammation in the CNS disorders.

  2. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    PubMed

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  3. c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth

    PubMed Central

    Huang, Liangliang; Quan, Xin; Liu, Zhongyang; Ma, Teng; Wu, Yazhen; Ge, Jun; Zhu, Shu; Yang, Yafeng; Liu, Liang; Sun, Zhen

    2015-01-01

    Genetically modified Schwann cells (SCs) that overexpress neurotrophic factors (NFs), especially those that overexpress multiple NFs, hold great potential for promoting nerve regeneration. Currently, only one NF can be upregulated in most genetically modified SCs, and simultaneously upregulating multiple NFs in SCs remains challenging. In this study, we found that the overexpression of c-Jun, a component of the AP-1 transcription factor, effectively upregulated the expression and secretion of multiple NFs, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, artemin, leukemia inhibitory factor, and nerve growth factor. The c-Jun gene-modified SCs showed a normal morphology in scanning electron microscopy and fluorescent staining analysis. In addition, the c-Jun-modified SCs showed enhanced proliferation and migration abilities compared with vector control cells. We used transwell chambers to establish coculture systems imitating the in vivo conditions in which transplanted SCs might influence native SCs and neurons. We found that the c-Jun-modified SCs enhanced native SC migration and promoted the proliferation of native SCs in the presence of axons. Further analysis revealed that in the c-Jun group, the average length and the total area of neurites divided by the total area of the explant body were μm 1180±25 and 6.4±0.4, respectively, which were significantly greater compared with the other groups. These findings raise the possibility of constructing an optimal therapeutic alternative for nerve repair using c-Jun-modified SCs, which have the potential to promote axonal regeneration and functional recovery by upregulating multiple NFs. In addition, these cells exhibit enhanced migration and proliferation abilities, enhance the biological functions of native SCs, and promote neurite outgrowth. PMID:25588149

  4. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors.

    PubMed

    Gray, J D; Milner, T A; McEwen, B S

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypothesis that stress-related learning deficits resulted from suppressed hippocampal neurogenesis. However, recent evidence suggests that BDNF also plays a rapid and essential role in regulating synaptic plasticity, providing another mechanism through which BDNF can modulate learning and memory after a stressful event. Numerous reports have shown BDNF levels are highly dynamic in response to stress, and not only vary across brain regions but also fluctuate rapidly, both immediately after a stressor and over the course of a chronic stress paradigm. Yet, BDNF alone is not sufficient to effect many of the changes observed after stress. Glucocorticoids and other molecules have been shown to act in conjunction with BDNF to facilitate both the morphological and molecular changes that occur, particularly changes in spine density and gene expression. This review briefly summarizes the evidence supporting BDNF's role as a trophic factor modulating neuronal survival, and will primarily focus on the interactions between BDNF and other systems within the brain to facilitate synaptic plasticity. This growing body of evidence suggests a more nuanced role for BDNF in stress-related learning and memory, where it acts primarily as a facilitator of plasticity and is dependent upon the coactivation of glucocorticoids and other factors as the determinants of the final cellular response.

  5. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells

    PubMed Central

    2014-01-01

    Background Therapies based on mesenchymal stem cells (MSC) have been shown to have potential benefit in several clinical studies. We have shown that, using a medium-based approach, MSC can be induced to secrete elevated levels of neurotropic factors, which have been shown to have protective effects in animal models of neurodegenerative diseases. These cells, designated MSC-NTF cells (Neurotrophic factor-secreting MSC, also known as NurOwn™) derived from the patient's own bone marrow, have been recently used for Phase I/II and Phase IIa clinical studies in patients with Amyotrophic Lateral Sclerosis (ALS). In these studies, ALS patients were subjected to a single administration of autologous MSC-NTF cells. The data from these studies indicate that the single administration of MSC-NTF cells is safe and well tolerated. In a recently published case report, it was shown that repeated MSC-NTF injections in an ALS patient treated on a compassionate basis were safe and well tolerated [Muscle Nerve 49:455-457, 2014]. Methods In the current study we studied the toxicity and tolerability of three consecutive intramuscular injections (IM) of cryopreserved human MSC-NTF cells in C57BL/B6 mice to investigate the effect of repeated administration of these cells. Results Monitoring of clinical signs and immune reactions showed that repeated injections of the cells did not lead to any serious adverse events. Pathology, histology and blood biochemistry parameters tested were found to be within normal ranges with no sign of tumor formation. Conclusions Based on these results we conclude that repeated injections of human MSC-NTF are well tolerated in mice. The results of this study suggest that if the outcomes of additional clinical studies point to the need for repeated treatments, such option can be considered safe. PMID:25097724

  6. Effects of the neurotrophic factor artemin on sensory afferent development and sensitivity

    PubMed Central

    Shu-Ying, Wang; Elitt, Christopher M.; Malin, Sacha A.; Albers, Kathryn M.

    2009-01-01

    Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family. Its receptor GFRα3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia (DRG and TG). These neurons co-express the heat, capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1. To further investigate the effects of artemin on sensory neurons, we isolated transgenic mice (ART-OE mice) that overexpress artemin in keratinocytes of the skin and tongue. Enhanced levels of artemin led to a 20% increase in the total number of DRG neurons and increases in the level of mRNA encoding TRPV1 and TRPA1. Calcium imaging showed that isolated sensory neurons from ART-OE mice were hypersensitive to the TRPV1 agonist capsaicin and the TRPA1 agonist mustard oil. Behavioral testing of ART-OE mice also showed an increased sensitivity to heat, cold, capsaicin and mustard oil stimuli applied either to the skin or in the drinking water. Sensory neurons from wildtype mice also exhibited potentiated capsaicin responses following artemin addition to the media. In addition, injection of artemin into hindpaw skin produced transient thermal hyperalgesia. These findings indicate that artemin can modulate sensory function and that this regulation may occur through changes in channel gene expression. Because artemin mRNA expression is up-regulated in inflamed tissue and following nerve injury, it may have a significant role in cellular changes that underlie pain associated with pathological conditions. Manipulation of artemin expression may therefore offer a new pain treatment strategy. PMID:18958361

  7. Effects of the neurotrophic factor artemin on sensory afferent development and sensitivity.

    PubMed

    Wang, Shuying; Elitt, Christopher M; Malin, Sacha A; Albers, Kathryn M

    2008-10-25

    Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family. Its receptor GFRalpha3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia (DRG and TG). These neurons co-express the heat, capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1. To further investigate the effects of artemin on sensory neurons, we isolated transgenic mice (ARTN-OE mice) that overexpress artemin in keratinocytes of the skin and tongue. Enhanced levels of artemin led to a 20% increase in the total number of DRG neurons and increases in the level of mRNA encoding TRPV1 and TRPA1. Calcium imaging showed that isolated sensory neurons from ARTN-OE mice were hypersensitive to the TRPV1 agonist capsaicin and the TRPA1 agonist mustard oil. Behavioral testing of ARTN-OE mice also showed an increased sensitivity to heat, cold, capsaicin and mustard oil stimuli applied either to the skin or in the drinking water. Sensory neurons from wildtype mice also exhibited potentiated capsaicin responses following artemin addition to the media. In addition, injection of artemin into hindpaw skin produced transient thermal hyperalgesia. These findings indicate that artemin can modulate sensory function and that this regulation may occur through changes in channel gene expression. Because artemin mRNA expression is up-regulated in inflamed tissue and following nerve injury, it may have a significant role in cellular changes that underlie pain associated with pathological conditions. Manipulation of artemin expression may therefore offer a new pain treatment strategy.

  8. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis

    PubMed Central

    Machado-Vieira, Rodrigo; Manji, Husseini K; Zarate, Carlos A

    2009-01-01

    Lithium has been and continues to be the mainstay of bipolar disorder (BD) pharmacotherapy for acute mood episodes, switch prevention, prophylactic treatment, and suicide prevention. Lithium is also the definitive proof-of-concept agent in BD, although it has recently been studied in other psychoses as well as diverse neurodegenerative disorders. Its neurotrophic effects can be viewed as a unifying model to explain several integrated aspects of the pathophysiology of mood disorders and putative therapeutics for those disorders. Enhancing neuroprotection (which directly involves neurotrophic effects) is a therapeutic strategy intended to slow or halt the progression of neuronal loss, thus producing long-term benefits by favorably influencing outcome and preventing either the onset of disease or clinical decline. The present article: (i) reviews what has been learned regarding lithium’s neurotrophic effects since Cade’s original studies with this compound; (ii) presents human data supporting the presence of cellular atrophy and death in BD as well as neurotrophic effects associated with lithium in human studies; (iii) describes key direct targets of lithium involved in these neurotrophic effects, including neurotrophins, glycogen synthase kinase 3 (GSK-3), and mitochondrial/endoplasmic reticulum key proteins; and (iv) discusses lithium’s neurotrophic effects in models of apoptosis and excitotoxicity as well as its potential neurotrophic effects in models of neurological disorders. Taken together, the evidence reviewed here suggests that lithium’s neurotrophic effects in BD are an example of an old molecule acting as a new proof-of-concept agent. Continued work to decipher lithium’s molecular actions will likely lead to the development of not only improved therapeutics for BD, but to neurotrophic enhancers that could prove useful in the treatment of many other illnesses. PMID:19538689

  9. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  10. Brain-derived neurotrophic factor and Rett syndrome.

    PubMed

    Katz, D M

    2014-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder with autistic features caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2), a transcriptional regulatory protein. RTT has attracted widespread attention not only because of the urgent need for treatments, but also because it has become a window into basic mechanisms underlying epigenetic regulation of neuronal genes, including BDNF. In addition, work in mouse models of the disease has demonstrated the possibility of symptom reversal upon restoration of normal gene function. This latter finding has resulted in a paradigm shift in RTT research and, indeed, in the field of neurodevelopmental disorders as a whole, and spurred the search for potential therapies for RTT and related syndromes. In this context, the discovery that expression of BDNF is dysregulated in RTT and mouse models of the disease has taken on particular importance. This chapter reviews the still evolving story of how MeCP2 might regulate expression of BDNF, the functional consequences of BDNF deficits in Mecp2 mutant mice, and progress in developing BDNF-targeted therapies for the treatment of RTT.

  11. The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes.

    PubMed

    Zvonic, Sanjin; Cornelius, Peter; Stewart, William C; Mynatt, Randall L; Stephens, Jacqueline M

    2003-01-24

    Ciliary neurotrophic factor (CNTF) is primarily known for its roles as a lesion factor released by the ruptured glial cells that prevent neuronal degeneration. However, CNTF has also been shown to cause weight loss in a variety of rodent models of obesity/type II diabetes, whereas a modified form also causes weight loss in humans. CNTF administration can correct or improve hyperinsulinemia, hyperphagia, and hyperlipidemia associated with these models of obesity. In order to investigate the effects of CNTF on fat cells, we examined the expression of CNTF receptor complex proteins (LIFR, gp130, and CNTFRalpha) during adipocyte differentiation and the effects of CNTF on STAT, Akt, and MAPK activation. We also examined the ability of CNTF to regulate the expression of adipocyte transcription factors and other adipogenic proteins. Our studies clearly demonstrate that the expression of two of the three CNTF receptor complex components, CNTFRalpha and LIFR, decreases during adipocyte differentiation. In contrast, gp130 expression is relatively unaffected by differentiation. In addition, preadipocytes are more sensitive to CNTF treatment than adipocytes, as judged by both STAT 3 and Akt activation. Despite decreased levels of CNTFRalpha expression in fully differentiated 3T3-L1 adipocytes, CNTF treatment of these cells resulted in a time-dependent activation of STAT 3. Chronic treatment of adipocytes resulted in a substantial decrease in fatty-acid synthase and a notable decline in SREBP-1 levels but had no effect on the expression of peroxisome proliferator-activated receptor gamma, acrp30, adipocyte-expressed STAT proteins, or C/EBPalpha. However, CNTF resulted in a significant increase in IRS-1 expression. CNTFRalpha receptor expression was substantially induced in the fat pads of four rodent models of obesity/type II diabetes as compared with lean littermates. Moreover, we demonstrated that CNTF can activate STAT 3 in adipose tissue and skeletal muscle in vivo. In

  12. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    PubMed

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.

  13. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier.

    PubMed

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson's disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood-brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson's disease.

  14. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    PubMed Central

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease. PMID:25061293

  15. Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor.

    PubMed

    Yasuda, Seiko; Yoshida, Mitsuhiro; Yamagata, Hirotaka; Iwanaga, Yasutake; Suenaga, Hiromi; Ishikawa, Kozo; Nakano, Masako; Okuyama, Satoshi; Furukawa, Yoshiko; Furukawa, Shoei; Ishikawa, Toshizo

    2014-11-01

    Depression-like behavior is often complicated by chronic pain. Antidepressants including imipramine (IMI) are widely used to treat chronic pain, but the mechanisms are not fully understood. Brain-derived neurotrophic factor (BDNF) is a neuromodulator that reduces depression by regulating synaptic transmission. We aimed to characterize the antidepressant effects of IMI without analgesia based on BDNF (trkB)-mediated signaling and gene expression in chronic pain. A chronic constriction injury (CCI) model was constructed in Sprague-Dawley (SD) rats. IMI (5 mg/kg, i.p.) was administered from day 10 after CCI. The pain response was assessed using the paw withdrawal latency (PWL) and depression was judged from the immobility time in a forced swim test. Anti-BDNF antibody, K252a, or 5,7-dihydroxytryptamine (5,7-DHT) were used to examine the antidepressant effects of imipramine. Changes in pERK1/2 (immunohistochemistry), 5-HT and BDNF (ELISA), and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC), rostral ventromedial medulla (RVM), and spinal cord. After CCI, rats showed decreased PWL and increased immobility time. A low dose of IMI reduced the immobility time without having analgesic effects. This antidepressant effect was reversed by anti-BDNF antibody, K252a, and 5,7-DHT. IMI reduced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA, and these changes were reversed by 5,7-DHT. These results show that IMI reduces pain-related negative emotion without influencing pain and that this effect is diminished by denervation of 5-HT neurons and by anti-BDNF treatment. IMI also normalizes derangement of ERK/CREB coupling, which leads to induction of BDNF. This suggests a possible interaction between 5-HT and BDNF.

  16. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking

    PubMed Central

    Barker, Jacqueline M.; Taylor, Jane R.; De Vries, Taco J.; Peters, Jamie

    2015-01-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these “seeking” systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking-circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that “incubate” over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal–prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol “break the mold” in terms of BDNF function in extinction circuits. PMID:25451116

  17. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala.

    PubMed

    Reagan, Lawrence P; Hendry, Robert M; Reznikov, Leah R; Piroli, Gerardo G; Wood, Gwendolyn E; McEwen, Bruce S; Grillo, Claudia A

    2007-06-22

    Chronic restraint stress affects hippocampal and amygdalar synaptic plasticity as determined by electrophysiological, morphological and behavioral measures, changes that are inhibited by some but not all antidepressants. The efficacy of some classes of antidepressants is proposed to involve increased phosphorylation of cAMP response element binding protein (CREB), leading to increased expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Conversely, some studies suggest that acute and chronic stress downregulate BDNF expression and activity. Accordingly, the aim of the current study was to examine total and phosphorylated CREB (pCREB), as well as BDNF mRNA and protein levels in the hippocampus and amygdala of rats subjected to chronic restraint stress in the presence and absence of the antidepressant tianeptine. In the hippocampus, chronic restraint stress increased pCREB levels without affecting BDNF mRNA or protein expression. Tianeptine administration had no effect upon these measures in the hippocampus. In the amygdala, BDNF mRNA expression was not modulated in chronic restraint stress rats given saline in spite of increased pCREB levels. Conversely, BDNF mRNA levels were increased in the amygdala of chronic restraint stress/tianeptine rats in the absence of changes in pCREB levels when compared to non-stressed controls. Amygdalar BDNF protein increased while pCREB levels decreased in tianeptine-treated rats irrespective of stress conditions. Collectively, these results demonstrate that tianeptine concomitantly decreases pCREB while increasing BDNF expression in the rat amygdala, increases in neurotrophic factor expression that may participate in the enhancement of amygdalar synaptic plasticity mediated by tianeptine.

  18. Analysis of neurotrophic factors in limb and extraocular muscles of mouse model of amyotrophic lateral sclerosis.

    PubMed

    Harandi, Vahid M; Lindquist, Susanne; Kolan, Shrikant Shantilal; Brännström, Thomas; Liu, Jing-Xia

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3-5 years after diagnosis. Neurotrophic factors (NTFs) are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR) technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) in limb muscles and extraocular muscles (EOMs) from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients.

  19. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex

    PubMed Central

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  20. [Brain-derived neurotrophic factor gene (BDNF) polymorphism among Moscow citizens].

    PubMed

    2013-12-01

    Recent studies showed that brain-derived neurotrophic factor (BDNF) can participate in pathogenesis of various CNS disorders, being connected with proliferation, differentiation, and survival of neurons. In present study, analysis of occurrence rate was performed for three single nucleotide polymorphisms (SNPs) located in BDNF gene (rs6267 (A/G) allele A-0.265; rs2049046 (A/T) allele A-0.407; rs11030107 (A/G) allele A-0.872) in randomized selection of Moscow citizens. Linkage disequilibrium of rs6165 and rs2049046 loci was shown. Differences in allele frequencies in studied selection and populations of other re- gions were discovered.

  1. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function.

    PubMed

    Teixeira, Antonio Lucio; Barbosa, Izabela Guimarães; Diniz, Breno Satler; Kummer, Arthur

    2010-12-01

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer's disease, Huntington's disease and Parkinson's disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.

  2. Brain-derived neurotrophic factor and epilepsy--a missing link?

    PubMed

    Scharfman, Helen E

    2005-01-01

    It has been known for some time that brain-derived neurotrophic factor (BDNF) is critical to normal development of the CNS, and more recently, studies also have documented the ability of BDNF to modify adult CNS structure and function. Therefore, it is no surprise that BDNF has been linked to diseases, such as epilepsy, which may involve abnormal cortical development or altered brain structure and function after maturity. This review evaluates the evidence, particularly from recent studies, that BDNF contributes to the development of temporal lobe epilepsy (TLE).

  3. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases

    PubMed Central

    Numakawa, Tadahiro

    2014-01-01

    It has been suggested that altered levels/function of brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of neurodegenerative diseases including Alzheimer's disease. BDNF positively contributes to neural survival and synapse maintenance via stimulating its high affinity receptor TrkB, making upregulation of BDNF and/or activation of BDNF-related intracellular signaling an attractive approach to treating neurodegenerative diseases. In this short review, I briefly introduce small natural compounds such as flavonoids that successfully increase activation of the BDNF system and discuss their beneficial effects against neurodegeneration. PMID:25317165

  4. Neurotrophic factors in Parkinson's disease are regulated by exercise: Evidence-based practice.

    PubMed

    da Silva, Paula Grazielle Chaves; Domingues, Daniel Desidério; de Carvalho, Litia Alves; Allodi, Silvana; Correa, Clynton Lourenço

    2016-04-15

    We carried out a qualitative review of the literature on the influence of forced or voluntary exercise in Parkinson's Disease (PD)-induced animals, to better understand neural mechanisms and the role of neurotrophic factors (NFs) involved in the improvement of motor behavior. A few studies indicated that forced or voluntary exercise may promote neuroprotection, through upregulation of NF expression, against toxicity of drugs that simulate PD. Forced training, such as treadmill exercise and forced-limb use, adopted in most studies, in addition to voluntary exercise on a running wheel are suitable methods for NFs upregulation.

  5. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    PubMed Central

    Mpofana, Thabisile; Daniels, Willie M. U.; Mabandla, Musa V.

    2016-01-01

    Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life. PMID:26881180

  6. Vascular function and brain-derived neurotrophic factor: The functional capacity factor.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Maikano, Abubakar; Alawneh, Khaldoon

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is essential for neurocognitive function. This study aims at establishing a plausible link between level of serum BDNF, functional capacity (FC), and vascular function in 181 young (age 25.5±9.1 years old), apparently healthy adults. Fasting blood samples were drawn from participants' antecubital veins into plain glass tubes while they were in a sitting position to evaluate serum BDNF using enzyme-linked immunosorbent assay (ELISA). Mercury-in-silastic strain-gauge plethysmography was used to determine arterial function indices, blood flow and vascular resistance at rest and following 5 minutes of arterial ischemia. The 6-minute walk distance (6MWD) test was used to determine FC, according to the American Thoracic Society Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories guidelines. It was conducted in an enclosed corridor on a flat surface with a circular track 33 meters long. The walking course was demarcated with bright colored cones. The 6MWD correlated with BDNF (r=0.3, p=0.000), as well as with forearm blood inflow (r=0.5, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed that BDNF and blood inflow were greater (p<0.05) while vascular resistance was less (p<0.05) in participants who achieved a longer 6MWD. Similarly, BDNF correlated with forearm blood inflow (r=0.4, p=0.000) and vascular resistance (r = -0.4, p=0.000). Subsequent comparison showed improved vascular function (p<0.05) in the participants with greater BDNF. In conclusion, these findings might suggest that improved vascular function in individuals with greater FC is mediated, at least partially, by an enhanced serum BDNF level.

  7. Differential expression of human placental neurotrophic factors in preterm and term deliveries.

    PubMed

    Dhobale, Madhavi V; Pisal, Hemlata R; Mehendale, Savita S; Joshi, Sadhana R

    2013-12-01

    Neurotrophic factors such as brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are involved in development of the placenta and fetal brain. A series of human and animal studies in our department have shown that micronutrients (folic acid, vitamin B12) and omega 3 fatty acids like DHA are all interlinked in the one carbon cycle. Any alterations in one carbon components will lead to changes in methylation patterns that further affect the gene expression at critical periods of development resulting in complications during pregnancy. This may further contribute to risk for neurodevelopmental disorders in children born preterm. Therefore this study for the first time examines the mRNA levels from preterm and term placentae. A total number of 38 women delivering preterm (<37 weeks gestation) and 37 women delivering at term (=>37 weeks gestation) were recruited. The mRNA levels of BDNF and NGF were analyzed by real time quantitative polymerase chain reaction. Our results indicate that BDNF and NGF mRNA levels were lower in preterm group as compared to term group. There was a positive association of placental BDNF and NGF mRNA levels with cord plasma BDNF and NGF levels. The differential expression of BDNF and NGF gene in preterm placentae may also alter the vascular development in preterm deliveries. Our data suggests that the reduced mRNA levels of BDNF and NGF may possibly be a result of altered epigenetic mechanisms and may have an implication for altered fetal programming in children born preterm.

  8. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors

    PubMed Central

    Santos, Daniel; González-Pérez, Francisco; Giudetti, Guido; Micera, Silvestro; Udina, Esther; Del Valle, Jaume; Navarro, Xavier

    2016-01-01

    After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation. PMID:28036084

  9. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages

    PubMed Central

    Busanello, Anna; Bonini, Stefano; Quaranta, Luciano; Agnifili, Luca; Manni, Gianluca

    2017-01-01

    Purpose To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters. Materials and Methods 45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated. Results Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03). Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019) and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04) but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06) compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01). Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008) and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001) but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32) compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004). Conclusions BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that

  10. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    PubMed

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury.

  11. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  12. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor.

    PubMed

    Marty, S; Berninger, B; Carroll, P; Thoenen, H

    1996-03-01

    Gamma-Aminobutyric acid (GABA) switches from enhancing to repressing brain-derived neurotrophic factor (BDNF) mRNA synthesis during the maturation of hippocampal neurons in vitro. Interneurons do not produce BDNF themselves, but BDNF enhances their differentiation. Therefore, the question arose whether hippocampal interneurons regulate their phenotype by regulating BDNF expression and release from adjacent cells. The GABA(A) receptor agonist muscimol and BDNF increased the size and neuropeptide Y (NPY) immunoreactivity of hippocampal interneurons. However, GABAergic stimulation failed to increase NPY immunoreactivity in cultures from BDNF knockout embryos. At later developmental stages, when GABA represses BDNF synthesis, treatment with muscimol induced a decrease in cell size and NPY immunoreactivity of interneurons. Interneurons might thus control their phenotype through the regulation of BDNF synthesis in, and release from, their target neurons.

  13. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity.

    PubMed

    Vaynman, S; Ying, Z; Wu, A; Gomez-Pinilla, F

    2006-01-01

    Synaptic plasticity and behaviors are likely dependent on the capacity of neurons to meet the energy demands imposed by neuronal activity. We used physical activity, a paradigm intrinsically associated with energy consumption/expenditure and cognitive enhancement, to study how energy metabolism interacts with the substrates for neuroplasticity. We found that in an area critical for learning and memory, the hippocampus, exercise modified aspects of energy metabolism by decreasing oxidative stress and increasing the levels of cytochrome c oxidase-II, a specific component of mitochondrial machinery. We infused 1,25-dihydroxyvitamin D3, a modulator of energy metabolism, directly into the hippocampus during 3 days of voluntary wheel running and measured its effects on brain-derived neurotrophic factor-mediated synaptic plasticity. Brain-derived neurotrophic factor is a central player for the effects of exercise on synaptic and cognitive plasticity. We found that 25-dihydroxyvitamin D3 decreased exercise-induced brain-derived neurotrophic factor but had no significant effect on neurotrophin-3 levels, thereby suggesting a level of specificity for brain-derived neurotrophic factor in the hippocampus. 25-Dihydroxyvitamin D3 injection also abolished the effects of exercise on the consummate end-products of brain-derived neurotrophic factor action, i.e. cyclic AMP response element-binding protein and synapsin I, and modulated phosphorylated calmodulin protein kinase II, a signal transduction cascade downstream to brain-derived neurotrophic factor action that is important for learning and memory. We also found that exercise significantly increased the expression of the mitochondrial uncoupling protein 2, an energy-balancing factor concerned with ATP production and free radical management. Our results reveal a fundamental mechanism by which key elements of energy metabolism may modulate the substrates of hippocampal synaptic plasticity.

  14. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  15. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior.

    PubMed

    Peruga, Isabella; Hartwig, Silvia; Merkler, Doron; Thöne, Jan; Hovemann, Bernhard; Juckel, Georg; Gold, Ralf; Linker, Ralf A

    2012-04-15

    On a molecular level, depression is characterized by an altered monoaminergic neurotransmission as well as a modulation of cytokines and other mediators in the central nervous system. In particular, neurotrophic factors may influence affective behavior including depression and anxiety. Ciliary neurotrophic factor (CNTF) plays an important role in the regulation of neuronal development, neuroprotection and may also influence cognitive processes. Here we investigate the affective behavior in mice deficient for CNTF (CNTF -/- mice) at young age of 10-20 weeks. CNTF -/- mice displayed an increased anxiety-like behavior with a 30% reduction of the time spent in the bright compartment of the light/dark box as well as a significantly increased startle response. In the learned helplessness paradigm, CNTF -/- mice are more prone to depressive-like behavior. In the hippocampus of 20 weeks old, but not 10 weeks old, CNTF -/- mice, these changes correlated with a loss of parvalbumin immunoreactive GABAergic interneurons and a reduction of serotonin levels as well as 5-HT receptor 1A expression. Modulation of monoaminergic neurotransmitter levels via chronic application of the antidepressants amitriptyline and citalopram did not exert beneficial effects. These data imply that endogenous CNTF plays a pivotal role for the structural maintenance of hippocampal functions and thus has an important impact on the modulation of affective behavior in rodent models of anxiety and depression.

  16. Brain-derived neurotrophic factor modulates the dopaminergic network in the rat retina after axotomy.

    PubMed

    Lee, Eun-Jin; Song, Myoung-Chul; Kim, Hyun-Ju; Lim, Eun-Jin; Kim, In-Beom; Oh, Su-Ja; Moon, Jung-I L; Chun, Myung-Hoon

    2005-11-01

    Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF), which is the neurotrophic factor that influences the plasticity of synapses in the central nervous system. We sought to determine whether BDNF influences the network of dopaminergic amacrine cells in the axotomized rat retina, by immunocytochemistry with an anti-tyrosine hydroxylase (TH) antiserum. In the control retina, we found two types of TH-immunoreactive amacrine cells, type I and type II, in the inner nuclear layer adjacent to the inner plexiform layer (IPL). The type I amacrine cell varicosities formed ring-like structures in contact with AII amacrine cell somata in stratum 1 of the IPL. In the axotomized retinas, TH-labeled processes formed loose networks of fibers, unlike the dense networks in the control retina, and the ring-like structures were disrupted. In the axotomized retinas treated with BDNF, strong TH-immunoreactive varicosities were present in stratum 1 of the IPL and formed ring-like structures. Our data suggest that BDNF affects the expression of TH immunoreactivity in the axotomized rat retina and may therefore influence the retinal dopaminergic system.

  17. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3

    PubMed Central

    Lippoldt, Erika K.; Ongun, Serra; Kusaka, Geoffrey K.; McKemy, David D.

    2016-01-01

    Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin–GFRα3 signaling can be targeted to selectively treat cold pain. PMID:27051069

  18. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  19. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development.

    PubMed

    Li, Yun; Yui, Daishi; Luikart, Bryan W; McKay, Renée M; Li, Yanjiao; Rubenstein, John L; Parada, Luis F

    2012-09-18

    Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non-cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons.

  20. Effects of alcohol on brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus and hypothalamus.

    PubMed

    Tapia-Arancibia, L; Rage, F; Givalois, L; Dingeon, P; Arancibia, S; Beaugé, F

    2001-01-15

    Chronic alcohol consumption has adverse effects on the central nervous system, affecting some hippocampal and hypothalamic functions. In this study we tempted to demonstrate that some of these modifications could involve impairment of neurotrophic factors. Three experimental groups of male Sprague Dawley rats were studied: one control group, one chronically treated with alcohol vapor according to a well-established model that induces behavioral dependence, and a third group treated similarly but killed 12 hr after alcohol withdrawal. In all groups, changes in brain-derived neurotrophic factor mRNA expression occurring in the hippocampus and supraoptic nucleus were first analyzed by reverse transcription-polymerase chain reaction and then by in situ hybridization. In parallel, we used ribonuclease protection assay to measure mRNA levels encoding trkB in the two central nervous system regions. We showed that chronic alcohol intoxication decreases brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus (CA1 region and dentate gyrus) and in the supraoptic nucleus of the hypothalamus. We also showed a global up-regulation of trkB mRNA expression encoding the high-affinity brain-derived neurotrophic factor receptor (TrkB), after applying the same treatment. Following 12 hr of alcohol withdrawal, a significant increase in BDNF mRNA expression was observed in the dentate gyrus and CA3 region of hippocampus and in the hypothalamic supraoptic nucleus. These findings suggest that chronic alcohol intake may modify hippocampal and hypothalamic neuronal functions through modifications in growth factors and its receptors.

  1. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease.

    PubMed

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.

  2. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease

    PubMed Central

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V.

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693

  3. REGULATION OF BRAIN-DERIVED NEUROTROPHIC FACTOR MESSENGER RNA LEVELS IN AVIAN HYPOTHALAMIC SLICE CULTURES. (R825294)

    EPA Science Inventory

    Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in ...

  4. High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain.

    PubMed

    Yanamoto, Hiroji; Nakajo, Yukako; Kataoka, Hiroharu; Iihara, Koji

    2013-01-01

    Development of a safe method to increase brain-derived neurotrophic factor (BDNF) levels in the brain is expected to enhance learning and memory, induce tolerance to cerebral infarction or tolerance to depressive state, improve glucose metabolism, and suppress appetite and body weight. We have shown that repetitive applications of high-voltage electric potential (HELP) to the body increase BDNF levels in the brain, improving learning and memory in mice. Here, we investigated the effects of HELP treatment for a chronic period on the BDNF levels in the mouse brain, and on body weight in mice and humans. Adult mice were exposed to 3.1 or 5.4 kV HELP (on the body), 5 h a day for 24 weeks, and BDNF levels in the brain and alterations in body weight were analyzed. Humans [age, 53.2 ± 15.5 years old; BMI, 27.8 ± 5.6 (mean ± SD, n = 6)] were exposed to 3.9 kV HELP (on the body) for 1 h a day, continuing for 33 months (2.8 years) under the monitor of body weight. In mice, the HELP application elevated BDNF levels in the brain at least temporarily, affecting body weight in a voltage- and time-dependent manner. In humans, the HELP treatment reduced body weight compared to the pretreated initial values without any aversive effects (p < 0.002, one-way ANOVA with the post hoc Holm-Sidak test). The results in mice indicated that 3.1 kV HELP was considered insufficient for a continuous elevation of intracerebral BDNF, and 5.4 kV HELP was considered as excessive. HELP with an appropriate voltage can be utilized to increase BDNF levels in the brain for a prolonged period. We anticipate further investigations to clarify the effect of the optimal-leveled HELP therapy on memory disturbances, neurological deficits after stroke, depression, diabetes, obesity and metabolic syndrome.

  5. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.

    PubMed

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  6. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex.

    PubMed

    Croll, S D; Suri, C; Compton, D L; Simmons, M V; Yancopoulos, G D; Lindsay, R M; Wiegand, S J; Rudge, J S; Scharfman, H E

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.

  7. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders.

    PubMed

    Fields, Jerel; Dumaop, Wilmar; Langford, T D; Rockenstein, Edward; Masliah, E

    2014-03-01

    Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.

  8. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis.

    PubMed

    Kermani, Pouneh; Hempstead, Barbara

    2007-05-01

    Recent studies indicate that, in addition to its neuropoietic actions, brain derived neurotrophic factor (BDNF) promotes endothelial cell survival and induces neoangiogenesis in ischemic tissues. Unlike many vascular growth factors that act on many vascular beds, BDNF activity is relatively restricted to central arteries, vessels of cardiac and skeletal muscle, and skin. Studies of newly described biologic mediators that act on large-vessel and microvascular beds in these organs will help us to better understand organ-specific vascular development, as well as to develop novel therapeutic strategies to improve the condition of patients with cardiac and peripheral vascular disease. In this review, we summarize dual proangiogenic actions of BDNF, which, through local activation of TrkB receptor, expressed on a subpopulation of endothelial cells and, in addition, by recruitment of bone marrow-derived cells, contribute to neoangiogenesis.

  9. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    PubMed

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy.

  10. Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway.

    PubMed

    Miao, Jiayin; Ding, Minghui; Zhang, Aiwu; Xiao, Zijian; Qi, Weiwei; Luo, Ning; Di, Wei; Tao, Yuqian; Fang, Yannan

    2012-12-01

    Pleiotrophin (PTN) is an effective neuroprotective factor and its expression is strikingly increased in microglia after ischemia/reperfusion injury. However, whether PTN could provide neurotrophic support to neurons by regulating microglia function is not clear. In this study, we demonstrated that the expression of PTN was induced in microglia after oxygen-glucose deprivation/reperfusion. PTN promoted the proliferation of microglia by enhancing the G1 to S phase transition. PTN also stimulated the secretion of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and nerve growth factor (NGF) in microglia, but did not upregulate the expression of proinflammatory factors such as TNF-α, IL-1β and iNOS. Mechanistically, we found that PTN increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in microglia in both concentration-dependent and time-dependent manners. In addition, ERK1/2 inhibitor U0126 abolished the proliferation and G1 to S phase transition of microglia stimulated by PTN, and inhibited the production of BDNF, CNTF and NGF induced by PTN. In conclusion, our results demonstrated that PTN-ERK1/2 pathway plays important role in regulating microglia growth and secretion of neurotrophic factors. These findings provide new insight into the neuroprotective role of PTN and suggest that PTN is a new target for therapeutic intervention of stroke.

  11. Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons.

    PubMed

    Berghuis, Paul; Dobszay, Marton B; Sousa, Kyle M; Schulte, Gunnar; Mager, Peter P; Härtig, Wolfgang; Görcs, Tamás J; Zilberter, Yuri; Ernfors, Patrik; Harkany, Tibor

    2004-09-01

    GABAergic interneurons with high-frequency firing, fast-spiking (FS) cells, form synapses on perisomatic regions of principal cells in the neocortex and hippocampus to control the excitability of cortical networks. Brain-derived neurotrophic factor (BDNF) is essential for the differentiation of multiple interneuron subtypes and the formation of their synaptic contacts. Here, we examined whether BDNF, alone or in conjunction with sustained KCl-induced depolarization, drives functional FS cell differentiation and the formation of inhibitory microcircuits. Homogeneous FS cell cultures were established by target-specific isolation using the voltage-gated potassium channel 3.1b subunit as the selection marker. Isolated FS cells expressed parvalbumin, were surrounded by perineuronal nets, formed immature inhibitory connections and generated slow action potentials at 12 days in vitro. Brain-derived neurotrophic factor (BDNF) promoted FS cell differentiation by increasing the somatic diameter, dendritic branching and the frequency of action potential firing. In addition, BDNF treatment led to a significant up-regulation of synaptophysin and vesicular GABA transporter expression, components of the synaptic machinery critical for GABA release, which was paralleled by an increase in synaptic strength. Long-term membrane depolarization alone was detrimental to dendritic branching. However, we observed that BDNF and KCl exerted additive effects, as reflected by the significantly accelerated maturation of synaptic contacts and high discharge frequencies, and was required for the formation of reciprocal connections between FS cells. Our results show that BDNF, along with membrane depolarization, is critical for FS cells to establish inhibitory circuitries during corticogenesis.

  12. Design of a Conformationally Defined and Proteolytically Stable Circular Mimetic of Brain-derived Neurotrophic Factor*S⃞

    PubMed Central

    Fletcher, Jordan M.; Morton, Craig J.; Zwar, Richard A.; Murray, Simon S.; O'Leary, Paul D.; Hughes, Richard A.

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of neurotrophic factors. BDNF has long been recognized to have potential for the treatment of a variety of human neurodegenerative diseases. However, clinical trials with recombinant BDNF have yet to yield success, leading to the suggestion that alternative means of harnessing BDNF actions for therapeutic use may be required. Here we describe an approach to create low molecular weight peptides that, like BDNF, promote neuronal survival. The peptides were designed to mimic a cationic tripeptide sequence in loop 4 of BDNF shown in previous studies to contribute to the binding of BDNF to the common neurotrophin receptor p75NTR. The best of these peptides, the cyclic pentapeptide 2 (cyclo(-d-Pro-Ala-Lys-Arg-)), despite being of low molecular weight (Mr 580), was found to be an effective promoter of the survival of embryonic chick dorsal root ganglion sensory neurons in vitro (maximal survival, 68 ± 3% of neurons supported by BDNF). Pentapeptide 2 did not affect the phosphorylation of either TrkB (the receptor tyrosine kinase for BDNF) or the downstream signaling molecule MAPK, indicating that its mechanism of neuronal survival action is independent of TrkB. NMR studies reveal that pentapeptide 2 adopts a well defined backbone conformation in solution. Furthermore, pentapeptide 2 was found to be effectively resistant to proteolysis when incubated in a solution of rat plasma in vitro. These properties of pentapeptide 2 (low molecular weight, appropriate pharmacological actions, a well defined solution conformation, and proteolytic stability) render it worthy of further investigation, either as a template for the further design of neuronal survival promoting agents or as a lead compound with therapeutic potential in its own right. PMID:18809686

  13. Brain derived neurotrophic factor inhibits apoptosis in enteric glia during gut inflammation

    PubMed Central

    Steinkamp, Martin; Schulte, Nadine; Spaniol, Ulrike; Pflüger, Carolin; Hartmann, Christoph; Kirsch, Joachim; von Boyen, Georg

    2012-01-01

    Summary Background Enteric glia cells (EGCs) are essential for the integrity of the bowel. A loss of EGCs leads to a severe inflammation of the intestines. As a diminished EGC network is postulated in Crohn’s disease (CD), we aimed to investigate if EGCs could be a target of apoptosis during inflammation in CD, which can be influenced by Brain derived neurotrophic factor (BDNF). Material/Methods GFAP, BDNF and cCaspase-3 were detected in the gut of patients with CD. Primary EGC cultures were established and cultivated. Tyrosine receptor kinase (TrkB) receptors on these cells were investigated by western blot and immunofluorescence. Rate of apoptosis was induced by tumor necrosis factor (TNF-α) and interferon (IFN-γ). Apoptosis was determined by a fluorometric caspase 3/7 activation assay after preincubation of these cells with BDNF or neutralizing anti-BDNF antibodies. Results Mucosal GFAP-positive EGCs undergo apoptosis revealed by cCaspase-3 in the gut of patients with CD expressing BDNF highly. The combination of TNF-α and IFN-γ was able to induce apoptosis in primary EGCs, whereas these factors alone did not. Brain derived neurotrophic factor (BDNF) attenuate glia cell apoptosis to a small extent, but neutralizing antibodies against BDNF dramatically increased apoptosis. Conclusions Mucosal EGC apoptosis is an important finding in the gut of patients with CD. Proinflammatory cytokines, which are highly increased in CD, induce EGC apoptosis, whereas the neurotrophin BDNF might be protective for EGC. Since EGCs are implicated in the maintenance of the enteric mucosal integrity, EGC apoptosis may contribute to the pathophysiological changes in CD. PMID:22460084

  14. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal

    PubMed Central

    Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai

    2016-01-01

    Abstract Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal. 179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only). Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28 ± 490.69 vs 1241.27 ± 335.52 pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70 ± 580.59 vs 1621.41 ± 591.07 pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70 ± 580.59 vs 1241.27 ± 335.52 pg/mL; F = 2.29, P = 0.13). Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal. PMID:26844469

  15. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal.

    PubMed

    Ren, Wenwei; Tao, Jingyan; Wei, Youdan; Su, Hang; Zhang, Jie; Xie, Ying; Guo, Jun; Zhang, Xiangyang; Zhang, Hailing; He, Jincai

    2016-02-01

    Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28  ±  490.69 vs 1241.27  ±  335.52  pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70  ±  580.59 vs 1621.41  ±  591.07  pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70  ±  580.59 vs 1241.27  ±  335.52  pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal.

  16. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  17. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    PubMed

    Park, Jae-Sung; Höke, Ahmet

    2014-01-01

    Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  18. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke.

    PubMed

    Gustafsson, Elin; Andsberg, Gunnar; Darsalia, Vladimer; Mohapel, Paul; Mandel, Ronald J; Kirik, Deniz; Lindvall, Olle; Kokaia, Zaal

    2003-06-01

    To explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4-5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor-recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, gamma-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages.

  19. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination.

    PubMed

    Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel; Dreyfus, Cheryl F

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/- mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/- mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2'-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/- animals. After 4 or 5 weeks of control feed, BDNF+/- mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/- mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion.

  20. Brain-derived neurotrophic factor regulates cell motility in human colon cancer.

    PubMed

    Huang, Ssu-Ming; Lin, Chingju; Lin, Hsiao-Yun; Chiu, Chien-Ming; Fang, Chia-Wei; Liao, Kuan-Fu; Chen, Dar-Ren; Yeh, Wei-Lan

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to affect cancer cell metastasis and migration. In the present study, we investigated the mechanisms of BDNF-induced cell migration in colon cancer cells. The migratory activities of two colon cancer cell lines, HCT116 and SW480, were found to be increased in the presence of human BDNF. Heme oxygenase-1 (HO)-1 is known to be involved in the development and progression of tumors. However, the molecular mechanisms that underlie HO-1 in the regulation of colon cancer cell migration remain unclear. Expression of HO-1 protein and mRNA increased in response to BDNF stimulation. The BDNF-induced increase in cell migration was antagonized by a HO-1 inhibitor and HO-1 siRNA. Furthermore, the expression of vascular endothelial growth factor (VEGF) also increased in response to BDNF stimulation, as did VEGF mRNA expression and transcriptional activity. The increase in BDNF-induced cancer cell migration was antagonized by a VEGF-neutralizing antibody. Moreover, transfection with HO-1 siRNA effectively reduced the increased VEGF expression induced by BDNF. The BDNF-induced cell migration was regulated by the ERK, p38, and Akt signaling pathways. Furthermore, BDNF-increased HO-1 and VEGF promoter transcriptional activity were inhibited by ERK, p38, and AKT pharmacological inhibitors and dominant-negative mutants in colon cancer cells. These results indicate that BDNF increases the migration of colon cancer cells by regulating VEGF/HO-1 activation through the ERK, p38, and PI3K/Akt signaling pathways. The results of this study may provide a relevant contribution to our understanding of the molecular mechanisms by which BDNF promotes colon cancer cell motility.

  1. Parvalbumin immunoreactivity is enhanced by brain-derived neurotrophic factor in organotypic cultures of rat retina.

    PubMed

    Rickman, D W

    1999-11-15

    The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.

  2. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  3. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury.

    PubMed

    Nosrat, I V; Widenfalk, J; Olson, L; Nosrat, C A

    2001-10-01

    Interactions between ingrowing nerve fibers and their target tissues form the basis for functional connectivity with the central nervous system. Studies of the developing dental pulp innervation by nerve fibers from the trigeminal ganglion is an excellent example of nerve-target tissue interactions and will allow specific questions regarding development of the dental pulp nerve system to be addressed. Dental pulp cells (DPC) produce an array of neurotrophic factors during development, suggesting that these proteins might be involved in supporting trigeminal nerve fibers that innervate the dental pulp. We have established an in vitro culture system to study the interactions between the dental pulp cells and trigeminal neurons. We show that dental pulp cells produce several neurotrophic factors in culture. When DPC are cocultured with trigeminal neurons, they promote survival and a specific and elaborate neurite outgrowth pattern from trigeminal neurons, whereas skin fibroblasts do not provide a similar support. In addition, we show that dental pulp tissue becomes innervated when transplanted ectopically into the anterior chamber of the eye in rats, and upregulates the catecholaminergic nerve fiber density of the irises. Interestingly, grafting the dental pulp tissue into hemisected spinal cord increases the number of surviving motoneurons, indicating a functional bioactivity of the dental pulp-derived neurotrophic factors in vivo by rescuing motoneurons. Based on these findings, we propose that dental pulp-derived neurotrophic factors play an important role in orchestrating the dental pulp innervation.

  4. Basic fibroblast growth factor priming increases the responsiveness of immortalized hypothalamic luteinizing hormone releasing hormone neurones to neurotrophic factors.

    PubMed

    Gallo, F; Morale, M C; Tirolo, C; Testa, N; Farinella, Z; Avola, R; Beaudet, A; Marchetti, B

    2000-10-01

    The participation of growth factors (GFs) in the regulation of luteinizing hormone releasing hormone (LHRH) neuronal function has recently been proposed, but little is known about the role played by GFs during early LHRH neurone differentiation. In the present study, we have used combined biochemical and morphological approaches to study the ability of a number of GFs normally expressed during brain development, including basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I) to induce survival, differentiation, proliferation, and phenotypic expression of immortalized (GT1-1) LHRH neurones in vitro, at early (3-days in vitro, 3-DIV) and late (8-DIV) stages of neuronal differentiation. Comparison of GF-treated vs untreated neurones grown in serum-deprived (SD) medium demonstrated bFGF to be the most potent, and insulin the least active in promoting neuronal differentiation. Thus, at both 3-DIV and 8-DIV, but especially at 8-DIV, bFGF induced the greatest increase in the total length and number of LHRH processes/cell and in growth cone surface area. bFGF was also the most active at 3-DIV, and IGF-I at 8-DIV, in counteracting SD-induced cell death, whereas EGF was the most potent in increasing [3H]thymidine incorporation. All GFs studied decreased the spontaneous release of LHRH from GT1-1 cells when applied at 3-DIV or 8-DIV, except for insulin which was inactive at both time-points and bFGF which was inactive at 8-DIV. Pre-treatment of GT1-1 cells with a suboptimal ('priming') dose of bFGF for 12 h followed by application of the different GFs induced a sharp potentiation of the neurotrophic and proliferative effects of the latter and particularly of those of IGF-I. Moreover, bFGF priming counteracted EGF-induced decrease in LHRH release and significantly stimulated LHRH secretion following IGF-I or insulin application, suggesting that bFGF may sensitize LHRH neurones to differentiating effects of

  5. Brain-Derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity

    PubMed Central

    Cohen-Cory, Susana; Kidane, Adhanet H.; Shirkey, Nicole J.; Marshak, Sonya

    2010-01-01

    During development, neural networks are established in a highly organized manner which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons. PMID:20186709

  6. Activity-dependent expression of brain-derived neurotrophic factor in dendrites: facts and open questions.

    PubMed

    Tongiorgi, Enrico

    2008-08-01

    Long-lasting synaptic changes in transmission and morphology at the basis of memory storage, require delivery of newly synthesized proteins to affected synapses. Although many of these proteins are generated in the cell body, several key molecules for plasticity can be delivered in the form of silent mRNAs at synapses in extra somatic compartments where they are locally translated. One of such mRNAs encodes brain-derived neurotrophic factor (BDNF), a key molecule in neuronal development, learning and memory. A single BDNF protein is produced from several splice variants having a different 5' untranslated region. These mRNA variants have a different subcellular localization (soma, proximal or distal dendritic compartment) and may represent a spatial code for a local control of BDNF availability. This review will highlight current knowledge on the mechanisms of spatial and temporal regulation of activity-dependent BDNF mRNA localization in dendrites in relation with synaptic plasticity.

  7. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    PubMed

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  8. Serum concentrations of brain-derived neurotrophic factor in patients with gender identity disorder.

    PubMed

    Fontanari, Anna-Martha V; Andreazza, Tahiana; Costa, Ângelo B; Salvador, Jaqueline; Koff, Walter J; Aguiar, Bianca; Ferrari, Pamela; Massuda, Raffael; Pedrini, Mariana; Silveira, Esalba; Belmonte-de-Abreu, Paulo S; Gama, Clarissa S; Kauer-Sant'Anna, Marcia; Kapczinski, Flavio; Lobato, Maria Ines R

    2013-10-01

    Gender Identity Disorder (GID) is characterized by a strong and persistent cross-gender identification that affects different aspects of behavior. Brain-derived neurotrophic factor (BDNF) plays a critical role in neurodevelopment and neuroplasticity. Altered BDNF-signaling is thought to contribute to the pathogenesis of psychiatric disordersand is related to traumatic life events. To examine serum BDNF levels, we compared one group of DSM-IV GID patients (n = 45) and one healthy control group (n = 66). Serum BDNF levels were significantly decreased in GID patients (p = 0.013). This data support the hypothesis that the reduction found in serum BDNF levels in GID patients may be related to the psychological abuse that transsexuals are exposed during their life.

  9. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    PubMed

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  10. The brain derived neurotrophic factor and influences of stress in depression.

    PubMed

    Kimpton, Jessica

    2012-09-01

    Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is widely expressed throughout the central nervous system (CNS). BDNF is involved in proliferation, differentiation, survival and death of neuronal and non-neuronal cells in the developing and adult CNS. The BDNF hypothesis of depression postulates that a reduction in BDNF is directly involved in the pathophysiology of depression, whilst anti-depressant mediated restoration of BDNF is responsible for the alleviation of the depressive state. This hypothesis is drawn from several studies implicating BDNF in depression and has received considerable support, which will be reviewed in this paper. This review will also discuss the implications of the functional Val66Met polymorphism of the gene encoding BDNF, which may reduce BDNF expression particularly when exposed to stress and thus may play a critical role in the pathogenesis of depression.

  11. Cell-based delivery of brain-derived neurotrophic factor in experimental allergic encephalomyelitis.

    PubMed

    Makar, Tapas K; Nimmagadda, Vamshi K C; Trisler, David; Bever, Christopher T

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is a pleiotropic cytokine with neuroprotective properties that has been identified as a potential therapeutic agent for diseases of the central nervous system (CNS). The use of BDNF has been limited by a short serum half-life and poor penetration of the blood-brain barrier. To address this limitation we have explored cell-based approaches to delivery. We have used experimental allergic encephalomyelitis (EAE), an inflammatory disease of the CNS, as a model system. We engineered hematopoietic stem cells to produce BDNF to determine the feasibility and effectiveness of cell-based delivery of BDNF into the CNS in EAE. We review those studies here.

  12. Brain-derived neurotrophic factor does not improve recovery after cardiac arrest in rats.

    PubMed

    Callaway, Clifton W; Ramos, Ramiro; Logue, Eric S; Betz, Amy E; Wheeler, Matthew; Repine, Melissa J

    2008-11-07

    Increased brain-derived neurotrophic factor (BDNF) levels and extracellular-signal regulated kinase (ERK) signaling are associated with reduced brain injury after cerebral ischemia. In particular, mild hypothermia after cardiac arrest increases BDNF and ERK signaling. This study tested whether intracerebroventricular infusions (0.025 microg/h x 3 days) of BDNF also improved recovery of rats resuscitated from cardiac arrest and maintained at 37 degrees C. BDNF infusions initiated at the time of cardiac arrest did not alter survival, neurological recovery, or histological injury. Separate experiments confirmed that BDNF infusions increased tissue levels of BDNF. However, these infusions did not increase ERK activation in hippocampus. These data suggest that increased BDNF levels are not sufficient to explain the beneficial effects of mild hypothermia after cardiac arrest, and that exogenous BDNF administration does not increase extracellular ERK signaling.

  13. Aerobic Exercise Does Not Predict Brain Derived Neurotrophic Factor And Cortisol Alterations in Depressed Patients.

    PubMed

    Lamego, Murilo Khede; de Souza Moura, Antonio Marcos; Paes, Flávia; Ferreira Rocha, Nuno Barbosa; de Sá Filho, Alberto Souza; Lattari, Eduardo; Rimes, Ridson; Manochio, João; Budde, Henning; Wegner, Mirko; Mura, Gioia; Arias-Carrión, Oscar; Yuan, Ti-Fei; Nardi, Antonio Egidio; Machado, Sergio

    2015-01-01

    The pathophysiology of depression is related to neurobiological changes that occur in the monoamine system, hypothalamic-pituitary-adrenal axis, neurogenesis system and the neuroimmune system. In recent years, there has been a growing interest in the research of the effects of exercise on brain function, with a special focus on its effects on brain-derived neurotrophic factor (BDNF), cortisol and other biomarkers. Thus, the aim of this study is to present a review investigating the acute and chronic effects of aerobic exercise on BDNF and cortisol levels in individuals with depression. It was not possible to establish an interaction between aerobic exercise and concentration of BDNF and cortisol, which may actually be the result of the divergence of methods, such as type of exercises, duration of the sessions, and prescribed intensity and frequency of sessions.

  14. Rapid and Sensitive Detection of Brain-Derived Neurotrophic Factor with a Plasmonic Chip

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Satoh, Mari; Uegaki, Koichi; Hara, Tomoko; Kojima, Masami; Kumanogoh, Haruko; Aota, Hiroyuki; Yokota, Yoshiki; Nakaoki, Takahiko; Umetsu, Mitsuo; Nakazawa, Hikaru; Kumagai, Izumi

    2013-06-01

    Plasmonic chips, which are grating replicas coated with thin metal layers and overlayers such as ZnO, were applied in immunosensors to improve their detection sensitivity. Fluorescence from labeled antibodies bound to plasmonic chips can be enhanced on the basis of a grating-coupled surface plasmon resonance (GC-SPR) field. In this study, as one of the representative candidate protein markers for brain disorders, the brain-derived neurotrophic factor (BDNF) was quantitatively measured by sandwich assay on a plasmonic chip and detected on our plasmonic chip in the concentration of 5-7 ng/mL within 40 min. Furthermore, BDNF was detected in the blood sera from three types of mice: wild-type mice and two types of mutant mice. This technique is promising as a new clinical diagnosis tool for brain disorders based on scientific evidence such as blood test results.

  15. Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds.

    PubMed

    Lynam, Daniel A; Shahriari, Dena; Wolf, Kayla J; Angart, Phillip A; Koffler, Jacob; Tuszynski, Mark H; Chan, Christina; Walton, Patrick; Sakamoto, Jeffrey

    2015-05-01

    Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.

  16. Conserved Dopamine Neurotrophic Factor-Transduced Mesenchymal Stem Cells Promote Axon Regeneration and Functional Recovery of Injured Sciatic Nerve

    PubMed Central

    Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

    2014-01-01

    Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID

  17. Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

    PubMed Central

    Hassanzadeh, Kambiz; Nikzaban, Mehrnoush; Moloudi, Mohammad Raman; Izadpanah, Esmael

    2015-01-01

    Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focus on the role of neurotrophic factor gene expression. Materials and Methods: The NSCs were isolated from lateral ventricle of C57 mice brain. The cells were exposed to selegiline in nano to micromolar concentrations for 24 hr or 72 hr. In order to assay the effect of selegiline on NSCs differentiation into neurons, astrocytes and oligodendrocytes, immunocytochemical techniques were utilized. Samples were exposed to specific antibodies against neurons (β tubulin), astrocytes (GFAP) and oligodendrocytes (OSP). The expression of BDNF, NGF and NT3 genes was investigated using Real-Time PCR. Results: Our findings revealed that selegiline increased NSCs differentiation into neurons at 10-7 and 10-8 M and decreased the differentiation into astrocytes at 10-9, while oligodendrocyte did not significantly change in any of the used concentrations. In addition data analyses showed that selegiline increased BDNF, NGF and NT3 gene expression at 24 hr, but did not change them in the other time of exposure (72 hr) except 10-7 M concentration of selegiline, which increased NT3 expression. Conclusion: Our results indicate selegiline induced the differentiation of NSCs into neurons and in this context the role of neurotrophic factors is important and should be considered. PMID:26221478

  18. Effect of brain-derived neurotrophic factor on sperm function, oxidative stress and membrane integrity in human.

    PubMed

    Najafi, A; Amidi, F; Sedighi Gilani, M A; Moawad, A R; Asadi, E; Khanlarkhni, N; Fallah, P; Rezaiian, Z; Sobhani, A

    2017-03-01

    Oxidative stress has negative impacts on the clinical outcomes of assisted reproduction techniques. The brain-derived neurotrophic factor (BDNF) promotes the viability of nerve cells and is known to decrease oxidative stress and apoptosis in different cells. The aim of this study was to evaluate the effect of BDNF treatment on human sperm functions that are known to be essential for fertilisation. Our findings showed that treatment of human spermatozoa with 0.133 nM BDNF significantly increased the percentages of both total (P = 0.001) and progressive (P < 0.01) motile sperm cells compared to those observed in the nontreated (control) group. We also showed that the mean fluorescence intensity of DCFH-DA, as an indicator of intracellular reactive oxygen species, was significantly lower (P < 0.05) in spermatozoa treated with BDNF compared to the control group. Treatment of spermatozoa with BDNF significantly decreased the percentages of both dead (P = 0.001) and apoptotic-like sperm cells (P < 0.05) compared to the control group. On the other hand, BDNF treatment significantly increased the percentage of viable sperm cells compared to the control (P = 0.001). In conclusion, BDNF has protective effects against oxidative stress in spermatozoa and could improve sperm functions that are essential for sperm-egg fusion and subsequent fertilisation.

  19. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers.

    PubMed

    Angelucci, Francesco; Ricci, Valerio; Spalletta, Gianfranco; Pomponi, Massimiliano; Tonioni, Federico; Caltagirone, Carlo; Bria, Pietro

    2008-12-01

    Chronic cannabis use produces effects within the central nervous system (CNS) which include deficits in learning and attention tasks and decreased brain volume. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are proteins that serve as survival factors for CNS neurons. Deficits in the production and utilization of these proteins can lead to CNS dysfunctions including those associated with cannabis abuse. In this study we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF serum levels in two groups of subjects: cannabis-dependent patients and healthy subjects. We found that NGF serum levels were significantly reduced in cannabis abusers as compared to healthy subjects. These findings indicate that NGF may have a role in the central action of cannabis and potentially in the neurotoxicity induced by this drug. These data also suggest that chronic cannabis consumption may be a risk factor for developing psychosis among drug users.

  20. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    PubMed

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-09-02

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  1. Identification of Mesencephalic Astrocyte-Derived Neurotrophic Factor as a Novel Neuroprotective Factor for Retinal Ganglion Cells

    PubMed Central

    Gao, Feng-Juan; Wu, Ji-Hong; Li, Ting-Ting; Du, Shan-Shan; Wu, Qiang

    2017-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly discovered secreted neurotrophic factor, has been proven to not only protect dopaminergic neurons and other cell types but also regulate neuroinflammation and the immune response to promote tissue repair and regeneration. However, to date, there is no information regarding the relationship between MANF and retinal ganglion cells (RGCs) in the eye. In the current study, we first determined the expression of MANF in the retina and vitreous. Then, we examined the effect of MANF on RGCs using both in vivo and in vitro models and simultaneously explored the underlying neuroprotective mechanisms of MANF. Finally, we measured the concentrations of MANF in the vitreous of patients with different retinopathies. We demonstrated that MANF was highly expressed in RGCs and that exogenous MANF could protect RGCs from hypoxia-induced cell injury and apoptosis both in vitro and in vivo by preventing endoplasmic reticulum stress-mediated apoptosis. Furthermore, MANF can be detected in the vitreous humor, and the concentration changed under pathological conditions. Our results provide important evidence that MANF may be a potential therapeutic protein for a range of retinal pathologies in either the preclinical stage or after diagnosis to promote the survival of RGCs. Vitreous MANF may be a promising protein biomarker for the indirect assessment of retinal disorders, which could provide indirect evidence of retinal pathology. PMID:28367115

  2. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat.

    PubMed

    Jiang, Yongjun; Wei, Ning; Zhu, Juehua; Lu, Tingting; Chen, Zhaoyao; Xu, Gelin; Liu, Xinfeng

    2010-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  3. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  4. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    PubMed

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  5. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?

    PubMed

    Harvey, Alan R; Lovett, Sarah J; Majda, Bernadette T; Yoon, Jun H; Wheeler, Lachlan P G; Hodgetts, Stuart I

    2015-09-04

    A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal

  6. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects.

    PubMed

    Reyes-Izquierdo, Tania; Nemzer, Boris; Shu, Cynthia; Huynh, Lan; Argumedo, Ruby; Keller, Robert; Pietrzkowski, Zb

    2013-08-28

    The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility.

  7. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection.

    PubMed

    Fouad, Karim; Bennett, David J; Vavrek, Romana; Blesch, Armin

    2013-01-01

    We have recently reported that rats with complete thoracic spinal cord injury (SCI) that received a combinatorial treatment, including viral brain-derived neurotrophic factor (BDNF) delivery in the spinal cord, not only showed enhanced axonal regeneration, but also deterioration of hind-limb motor function. By demonstrating that BDNF over-expression can trigger spasticity-like symptoms in a rat model of sacral SCI, we proposed a causal relationship between the observed spasticity-like symptoms (i.e., resistance to passive range of motion) and the over-expression of BDNF. The current study was originally designed to evaluate a comparable combined treatment for cervical SCI in the rat to improve motor recovery. Once again we found similar signs of spasticity involving clenching of the paws and wrist flexion. This finding changed the focus of the study and, we then explored whether this spasticity-like symptom is directly related to the over-expression of BDNF by administering a BDNF antagonist. Using electromyographic measurements we showed that this treatment gradually diminished the resistance to overcome forelimb flexion in an acute experiment. Thus, we conclude that neuro-excitatory effects of chronic BDNF delivery together with diminished descending control after SCI can result in adverse effects.

  8. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice.

    PubMed

    Mao, Qing-Qiu; Huang, Zhen; Zhong, Xiao-Ming; Xian, Yan-Fang; Ip, Siu-Po

    2014-03-15

    Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like action in various mouse models of behavioral despair. This study aimed to investigate the role of brain-derived neurotrophic factor (BDNF) signalling in the antidepressant-like effect of piperine in mice exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. It was also found that BDNF protein expression in the hippocampus and frontal cortex were significantly decreased in CUMS-treated mice. Chronic treatment of piperine at the dose of 10mg/kg significantly ameliorated behavioural deficits of CUMS-treated mice in the sucrose preference test and forced swim test. Piperine treatment also significantly decreased immobility time in the forced swim test in naive mice. In parallel, chronic piperine treatment significantly increased BDNF protein expression in the hippocampus and frontal cortex of both naive and CUMS-treated mice. In addition, inhibition of BDNF signalling by injection of K252a, an inhibitor of the BDNF receptor TrkB, significantly blocked the antidepressant-like effect of piperine in the sucrose preference test and forced swim test of CUMS-treated mice. Taken together, this study suggests that BDNF signalling is an essential mediator for the antidepressant-like effect of piperine.

  9. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    PubMed

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  10. [The prognostic significance of brain-derived neurotrophic factor (BDNF) for phobic anxiety disorders, vegetative and cognitive impairments during conservative treatment including adaptol of some functional and organic diseases of nervous system].

    PubMed

    Zhivolupov, S A; Samartsev, I N; Marchenko, A A; Puliatkina, O V

    2012-01-01

    We have studied the efficacy of adaptol in the treatment of 45 patients with somatoform dysfunction of the autonomic nervous system and 30 patients with closed head injury. The condition of patients during the treatment was evaluated with clinical and neuropsychological scales. The serum level of BDNF before and after the treatment has been studied as well. Adaptol has been shown to enhance the production of BDNF, reduce significantly the intensity of anxiety, autonomic disorders and improve intellectual processes. The dose-dependent effect of the drug has been demonstrated. In conclusion, adaptol can be recommended for treatment of diseases that demand stimulation of neuroplasticity in the CNS.

  11. Growth and turning properties of adult glial cell-derived neurotrophic factor coreceptor α1 nonpeptidergic sensory neurons.

    PubMed

    Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2014-09-01

    An overlapping population of adult primary sensory neurons that innervate the skin express the glial cell-derived neurotrophic factor coreceptor α1 (GFRα1), the lectin IB4, and the "regenerative brake" phosphatase and tensin homolog deleted on chromosome 10. Using an adapted turning and growth assay, we analyzed the growth cone behavior of adult immunoselected GFRα1 sensory neurons. These neurons had less robust baseline growth and reluctant responsiveness to individual growth factors but responded to synergistic types of input from glial cell-derived neurotrophic factor, hepatocyte growth factor, a phosphatase and tensin homolog deleted on chromosome 10 inhibitor, or a downstream Rho kinase inhibitor. Hepatocyte growth factor and the phosphatase and tensin homolog deleted on chromosome 10 inhibitor were associated with growth cone turning. A gradient of protein extracted from skin samples, a primary target of GFRα1 axons, replicated the impact of synergistic support. Within the skin, glial cell-derived neurotrophic factor was expressed within epidermal axons, indicating an autocrine role accompanying local hepatocyte growth factor synthesis. Taken together, our findings identify unique growth properties and plasticity of a distinct population of epidermal axons that are relevant to neurologic repair and skin reinnervation.

  12. Synergistic effect of regenerating agent plus cord blood serum eye drops for the treatment of resistant neurotrophic keratitis: a case report and a hypothesis for pathophysiologic mechanism.

    PubMed

    Giannaccare, Giuseppe; Fresina, Michela; Vagge, Aldo; Versura, Piera

    2015-01-01

    This report describes a case of a 72-year-old Caucasian woman presenting with a large neurotrophic keratitis with a large persistent epithelial defect, with a longest linear diameter of 7 mm and greatest perpendicular width of 5 mm, affecting epithelium, Bowman membrane, and anterior stroma. Corneal disease was resistant to conventional treatment and classified as stage 2 according to Mackie classification. Patient was instructed to instill regenerating agent (RGTA) eye drops in the morning, as the first eye drop, once every 5 days in combination with daily cord blood serum (CBS) eye drops 6 times/day. The patient was asked to visit after 1 week (V1), 2 weeks (V2), 3 weeks (V3), and 4 weeks (V4) of study treatment. In V4 treatment, corneal sensitivity improved, and keratitis healed with resolution of stromal inflammation. Global treatment tolerance was very satisfactory. Patient continued the therapy for a further month after complete healing. Currently, the patient has been followed up for 3 months without any sign of keratitis recurrence. To the best of our knowledge, this case report describes for the first time the successful combined use of RGTA and CBS eye drops for the treatment of neurotrophic keratitis resistant to conventional treatment. We hypothesize that RGTA eye drops could provide an optimal migration substrate and that growth factors supplied by CBS eye drops could strengthen the repair process by promoting cell growth over the matrix. Combined RGTA and CBS eye drop therapy could be a new potential option for the successful treatment of resistant neurotrophic keratitis, particularly when each drug alone is not effective.

  13. Quantitative analysis of cerebrospinal fluid brain derived neurotrophic factor in the patients with multiple sclerosis.

    PubMed

    Mashayekhi, Farhad; Salehi, Zivar; Jamalzadeh, Hamid Reza

    2012-01-01

    Multiple sclerosis (MS) is the most common cause ofnontraumatic neurological disability in Europe and North America. Growth factor expression could participate in the repair process of the demyelinating disease. Among growth factors, brain derived neurotrophic factors (BDNF) has been demonstrated to play an important role in neuronal and axonal survival. In the central nervous system (CNS), neurons are the main source of BDNF. Another potential source are activated astrocytes, which are present in inflamed areas in the CNS as shown in MS. In this study, total protein concentration (TPC) and BDNF levels in the cerebrospinal fluid (CSF) samples from the patients with MS (n = 48) and control subjects (n = 53) were measured using a Bio-Rad protein assay and enzyme linked immunosorbent assay (ELISA). No significant change in the CSF TPC of patients with MS was seen as compared to normal CSF. The presence of BDNF in the CSF samples was shown by Western blot. Using ELISA, it was shown that the level of BDNF in the MS CSF is higher than in normal CSF. It is concluded that BDNF is a constant component of human CSF. Moreover, it could be implicated in the pathophysiology of MS.

  14. Edaravone enhances brain-derived neurotrophic factor production in the ischemic mouse brain.

    PubMed

    Okuyama, Satoshi; Morita, Mayu; Sawamoto, Atsushi; Terugo, Tsukasa; Nakajima, Mitsunari; Furukawa, Yoshiko

    2015-04-02

    Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day) for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1) accelerated increases in the production of brain-derived neurotrophic factor (BDNF) in the hippocampus; (2) increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3) suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4) induced the phosphorylation of cAMP response element-binding (CREB), a transcription factor that regulates BDNF gene expression; and (5) induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production.

  15. Central expression and anorectic effect of brain-derived neurotrophic factor are regulated by circulating estradiol levels.

    PubMed

    Zhu, Zheng; Liu, Xian; Senthil Kumar, Shiva Priya Dharshan; Zhang, Jing; Shi, Haifei

    2013-03-01

    Estrogens potently suppress food intake. Compelling evidence suggests that estradiol, the primary form of estrogens, reduces food intake by facilitating other anorectic signals. Brain-derived neurotrophic factor (BDNF), like estradiol, appears to suppress food intake by affecting meal size. We hypothesized that estradiol modulates Bdnf expression and the anorectic effect of BDNF. The first goal was to determine whether Bdnf expression was regulated by endogenous estradiol of cycling rats and by cyclic estradiol treatment using ovariectomized rats. Bdnf expression within the ventromedial nucleus of hypothalamus (VMH) was temporally elevated at estrus following the estradiol peak, which coincided with the decline in feeding at this phase of the ovarian cycle. Additionally, food intake and body weight were increased following ovariectomy with a parallel decrease in Bdnf expression in the VMH. All of these alterations were reversed by cyclic estradiol treatment, suggesting that Bdnf expression within the VMH was regulated in an estradiol-dependent manner. The second goal was to determine whether estradiol modulates the anorectic effect of BDNF. Sham-operated estrous rats and ovariectomized rats cyclically treated with estradiol responded to a lower dose of central administration of BDNF to decrease food intake than male rats and oil-treated ovariectomized rats, implying that endogenous estradiol or cyclic estradiol replacement increased the sensitivity to anorectic effect of BDNF. These data indicate that Bdnf expression within the VMH and the anorectic effect of BDNF varied depending on plasma estradiol levels, suggesting that estradiol may regulate BDNF signaling to regulate feeding.

  16. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  17. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus.

    PubMed

    Katoh-Semba, Ritsuko; Asano, Tomiko; Ueda, Hiroshi; Morishita, Rika; Takeuchi, Ikuo K; Inaguma, Yutaka; Kato, Kanefusa

    2002-08-01

    The dentate gyrus of the hippocampus, generating new cells throughout life, is essential for normal recognition memory performance. Reduction of brain-derived neurotrophic factor (BDNF) in this structure impairs its functions. To elucidate the association between BDNF levels and hippocampal neurogenesis, we first conducted a search for compounds that stimulate endogenous BDNF production in hippocampal granule neurons. Among ion channel modulators tested, riluzole, a neuroprotective agent with anticonvulsant properties that is approved for treatment of amyotrophic lateral sclerosis, was highly effective as a single dose by an intraperitoneal injection, causing a rise in BDNF localized in dentate granule neurons, the hilus, and the stratum radiatum of the CA3 region. Repeated, but not single, injections resulted in prolonged elevation of hippocampal BDNF and were associated with increased numbers of newly generated cells in the granule cell layer. This appeared due to promoted proliferation rather than survival of precursor cells, many of which differentiated into neurons. Intraventricular administration of BDNF-specific antibodies blocked such riluzole effects, suggesting that BDNF increase is necessary for the promotion of precursor proliferation. Our results suggest the basis for a new strategy for treatment of memory dysfunction.

  18. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    PubMed

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders.

  19. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke.

    PubMed

    Fouda, Abdelrahman Y; Alhusban, Ahmed; Ishrat, Tauheed; Pillai, Bindu; Eldahshan, Wael; Waller, Jennifer L; Ergul, Adviye; Fagan, Susan C

    2017-01-01

    Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.

  20. Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum.

    PubMed

    Firozan, Bita; Goudarzi, Iran; Elahdadi Salmani, Mahmoud; Lashkarbolouki, Taghi; Rezaei, Arezou; Abrari, Kataneh

    2014-06-05

    Recently it has been shown that estradiol prevents the toxicity of ethanol in developing cerebellum. The neuroprotective effect of estradiol is not due to a single phenomenon but rather encompasses a spectrum of independent proccesses. According to the specific timing of Purkinje cell vulnerability to ethanol and several protective mechanisms of estradiol, we considered the neurotrophin system, as a regulator of differentiation, maturation and survival of neurons during CNS development. Interactions between estrogen and Brain derived neurotrophic factor (BDNF, an essential factor in neuronal survival) lead us to investigate involvement of BDNF pathway in neuroprotective effects of estrogen against ethanol toxicity. In this study, 17β-estradiol (300-900μg/kg) was injected subcutaneously in postnatal day (PD) 4, 30min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Eight hours after injection of ethanol, BDNF mRNA and protein levels were assayed. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral tests in PD 23. Our results indicated that estradiol increased BDNF mRNA and protein levels in the presence of ethanol. We also observed that pretreatment with estradiol significantly attenuated ethanol-induced motoric impairment. Histological analysis also demonstrated that estradiol prevented Purkinje cell loss following ethanol treatment. These results provide evidence on the possible mechanisms of estradiol neuroprotection against ethanol toxicity.

  1. Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries.

    PubMed

    Hartog, Tessa E; Dittrich, Falk; Pieneman, Anton W; Jansen, René F; Frankl-Vilches, Carolina; Lessmann, Volkmar; Lilliehook, Christina; Goldman, Steven A; Gahr, Manfred

    2009-12-09

    Testosterone-induced singing in songbirds is thought to involve testosterone-dependent morphological changes that include angiogenesis and neuronal recruitment into the HVC, a central part of the song control circuit. Previous work showed that testosterone induces the production of vascular endothelial growth factor (VEGF) and its receptor (VEGFR2 tyrosine kinase), which in turn leads to an upregulation of brain-derived neurotrophic factor (BDNF) production in HVC endothelial cells. Here we report for the first time that systemic inhibition of the VEGFR2 tyrosine kinase is sufficient to block testosterone-induced song in adult female canaries, despite sustained androgen exposure and the persistence of the effects of testosterone on HVC morphology. Expression of exogenous BDNF in HVC, induced locally by in situ transfection, reversed the VEGFR2 inhibition-mediated blockade of song development, thereby restoring the behavioral phenotype associated with androgen-induced song. The VEGFR2-inhibited, BDNF-treated females developed elaborate male-like song that included large syllable repertoires and high syllable repetition rates, features known to attract females. Importantly, although functionally competent new neurons were recruited to HVC after testosterone treatment, the time course of neuronal addition appeared to follow BDNF-induced song development. These findings indicate that testosterone-associated VEGFR2 activity is required for androgen-induced song in adult songbirds and that the behavioral effects of VEGFR2 inhibition can be rescued by BDNF within the adult HVC.

  2. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent

    PubMed Central

    Chen, Michael J.; Russo-Neustadt, Amelia A.

    2009-01-01

    The past decade has witnessed burgeoning evidence that antidepressant medications and physical exercise increase the expression of hippocampal brain-derived neurotrophic factor (BDNF). This phenomenon has gained widespread appeal because BDNF is one of the first macromolecules observed to play a central role not only in the treatment of mood disorders, but also in neuronal survival-, growth-, and plasticity-related signaling cascades. Thus, it has become critical to understand how BDNF synthesis is regulated. Much evidence exists that changes in BDNF expression result from the activation/phosphorylation of the transcription factor, cAMP-response-element binding protein (CREB) following the administration of antidepressant medications. Utilizing a mouse model genetically engineered with an inducible CREB repressor, our current study provides evidence that increases in BDNF expression and cellular survival signaling resulting from physical exercise are also dependent upon activation of this central transcription factor. The transcription and expression of hippocampal BDNF, as well as the activation of Akt, a key survival signaling molecule, were measured following acute exercise, and also following short-term treatment with the norepinephrine re-uptake inhibitor, reboxetine. We found that both interventions led to a marked increase in hippocampal BDNF mRNA, BDNF protein and Akt phosphorylation (as well as CREB phosphorylation) in wild-type mice. As expected, activation of the CREB repressor in mutant mice sharply decreased CREB phosphorylation. In addition, all measures noted above remained at baseline levels when mutant mice exercised or received reboxetine. Increases in BDNF and phospho-Akt were also prevented when mutant mice received a combination of exercise and antidepressant treatment. The results are discussed in the context of what is currently known about BDNF signaling. PMID:19294650

  3. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    PubMed Central

    Zembron-Lacny, A.; Dziubek, W.; Rynkiewicz, M.; Morawin, B.; Woźniewski, M.

    2016-01-01

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  4. [Hematopoietic growth factor EPO has neuro-protective and neuro-trophic effects--review].

    PubMed

    Zhou, Zhuo-Yan; Yang, Mo; Fok, Tai-Fai

    2005-04-01

    Erythropoietin (EPO) is an acidic glycoprotein that was first detected as a hematopoietic factor and its synthesis is triggered in response to cellular hypoxia-sensing. EPO binds to type I cytokine receptors, which associate with the non-receptor tyrosine kinase Jak2, and thereby activate Stat 5a/5b, Ras/MAPK, and PI3-K/Akt signaling pathways. The recent discovery shows that there is a specific EPO/EPO-receptor system in the central nervous system (CNS), independently of the haematopoietic system. Hypoxia and anemia can up-regulate EPO/EPOR expressions in the CNS. Further studies demonstrate that EPO has substantial neuro-protective effects and acts as a neurotrophic factor on central cholinergic neurons, influencing their differentiation and regeneration. EPO also exerts neuro-protective activities in different models of brain damage in vivo and in vitro, such as hypoxia, cerebral ischaemia and sub-arachnoid haemorrhage. EPO may also be involved in synaptic plasticity via the inhibition or stimulation of various neurotransmitters. Therefore, human recombinant EPO that activate its receptors in the central nervous system might be utilized in the future clinical practice involving neuroprotection and brain repair.

  5. Plasma brain-derived neurotrophic factor levels in patients suffering from post-traumatic stress disorder.

    PubMed

    Su, Shanshan; Xiao, Zeping; Lin, Zhiguang; Qiu, Yongming; Jin, Yichao; Wang, Zhen

    2015-09-30

    A number of studies have been done to investigate the role of brain-derived neurotrophic factor (BDNF) in patients with post-traumatic stress disorder (PTSD). In this study we aimed to test the relationship between plasma BDNF levels and PTSD. We solicited 65 subjects having recently experienced road traffic accidents (RTA) conforming to screening criteria. They were given follow-up examinations after one month, three months, and six months. PTSD was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-R-TR, American Psychiatric Association, 2000) using the Mini International Neuropsychiatric Interview (MINI). All participants were divided into two groups: a group with PTSD and a group without PTSD. There were no significant differences in plasma BDNF levels between the two groups at either the 48h or six-month examination. Within the PTSD group, no significant differences were found in plasma BDNF levels between the two examinations. BDNF levels in those without PTSD showed a higher trend over time after trauma. Higher BDNF levels may be an important protective factor for the prevention of traumatized subjects from developing PTSD.

  6. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    PubMed

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  7. Novel systems for tailored neurotrophic factor release based on hydrogel and resorbable glass hollow fibers.

    PubMed

    Novajra, G; Tonda-Turo, C; Vitale-Brovarone, C; Ciardelli, G; Geuna, S; Raimondo, S

    2014-03-01

    A novel system for the release of neurotrophic factor into a nerve guidance channel (NGC) based on resorbable phosphate glass hollow fibers (50P2O5-30CaO-9Na2O-3SiO2-3MgO-2.5K2O-2.5TiO2 mol%) in combination with a genipin-crosslinked agar/gelatin hydrogel (A/G_GP) is proposed. No negative effect on the growth of neonatal olfactory bulb ensheathing cell line (NOBEC) as well as on the expression of pro- and anti-apoptotic proteins was measured in vitro in the presence of fiber dissolution products in the culture medium. For the release studies, fluorescein isothiocyanate-dextran (FD-20), taken as growth factor model molecule, was solubilized in different media and introduced into the fiber lumen exploiting the capillary action. The fibers were filled with i) FD-20/phosphate buffered saline (PBS) solution, ii) FD-20/hydrogel solution before gelation and iii) hydrogel before gelation, subsequently lyophilized and then filled with the FD-20/PBS solution. The different strategies used for the loading of the FD-20 into the fibers resulted in different release kinetics. A slower release was observed with the use of A/G_GP hydrogel. At last, poly(ε-caprolactone) (PCL) nerve guides containing the hollow fibers and the hydrogel have been fabricated.

  8. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice.

    PubMed

    Gudasheva, T A; Povarnina, P Yu; Seredenin, S B

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

  9. Val66Met polymorphism of brain-derived neurotrophic factor is associated with idiopathic dystonia.

    PubMed

    Sako, Wataru; Murakami, Nagahisa; Izumi, Yuishin; Kaji, Ryuji

    2015-03-01

    The Val66Met (G196A; rs6265) single nucleotide polymorphism of brain-derived neurotrophic factor (BDNF) affects morphology and neuronal activity, and is expected to be associated with central nervous system disorders. However, it remains controversial whether Val66Met polymorphism is a risk factor for idiopathic dystonia. We aimed to clarify the impact of BDNF polymorphism on idiopathic dystonia. A literature search of PubMed was carried out. A random-effects model was employed for the meta-analysis. A pooled odds ratio (OR) was calculated along with 95% confidence intervals (CI) to reflect the risk of idiopathic dystonia in each genotype (GG, AG, AA) or minor allele. The proportion of variation due to heterogeneity was computed and expressed as I(2). Five case-control studies, comprising a total sample size of 1804 subjects (784 idiopathic dystonia patients, 1020 normal controls), were included in this meta-analysis. AA genotype was significantly more frequent in patients with idiopathic dystonia (OR=1.47, 95% CI 1.09-1.99, p=0.01, four studies, n=1716). This finding was derived from homogeneous studies (p=0.97, I(2)=0%). Our meta-analysis has revealed a significant overall effect of the AA genotype on the development of idiopathic dystonia.

  10. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord.

    PubMed

    Johnson, R A; Okragly, A J; Haak-Frendscho, M; Mitchell, G S

    2000-05-15

    Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neurotrophic factors change in a manner consistent with an involvement in this model of spinal plasticity. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor-beta(1) (TGF-beta(1)) concentrations were measured (ELISA) in three regions of interest to respiratory control: (1) ventral cervical spinal segments associated with the phrenic motor nucleus (C3-C6), (2) ventral thoracic spinal segments associated with inspiratory intercostal motor output (T3-T6) and (3) the diaphragm. Tissues were harvested from rats 7 d after bilateral CDR and compared with sham-operated and unoperated control rats. CDR increased BDNF (110%; p = 0.002) and NT-3 (100%; p = 0.002) in the cervical and NT-3 in the thoracic spinal cord (98%; p = 0.009). GDNF and TGF-beta(1) were not altered by CDR in any tissue. Immunohistochemistry localized BDNF and NT-3 to motoneurons and interneurons of the ventral spinal cord. These studies provide novel, suggestive evidence that BDNF and NT-3, possibly through their trophic effects on serotonergic neurons and/or motoneurons, may underlie serotonin-dependent plasticity in (spinal) respiratory motor control after CDR.

  11. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  12. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis

    PubMed Central

    Naghashpour, Mahshid; Amani, Reza; Sarkaki, Alireza; Ghadiri, Ata; Samarbafzadeh, Alireza; Jafarirad, Sima; Malehi, Amal Saki

    2016-01-01

    Objective(s): In the present study, C57BL/6 female mice (n=56) were used to explore the neuroprotective effects of riboflavin in motor disability of experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis. Materials and Methods: The animals were assigned into 7 groups: sham-operated 1 (SO1), healthy mice receiving PBS (phosphate buffer saline); sham-operated 2 (SO2), healthy mice receiving PBS and riboflavin; sham treatment 1 (ST1), EAE mice receiving water; sham treatment 2 (ST2), EAE mice receiving sodium acetate buffer; treatment 1 (T1), EAE mice receiving interferon beta-1a (INFβ-1a); treatment 2 (T2), EAE mice receiving riboflavin; treatment 3 (T3), EAE mice receiving INFβ-1a and riboflavin. After EAE induction, scoring was performed based on clinical signs. Upon detecting score 0.5, riboflavin at 10 mg/kg of body weight and/or INFβ-1a at 150 IU/g of body weight administration was started for two weeks. The brain and spinal cord levels of brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and interleukin-17A (IL-17A) were studied using real-time PCR and ELISA methods. Results: BDNF expression and protein levels were increased in the brain and spinal cord of the T3 group compared with the other groups (P<0.01). IL-6 and IL-17A expressions were increased in the brains of the T3 and T1 groups, respectively, compared to the other groups (P<0.01). The daily clinical score was reduced significantly by riboflavin in both effector and chronic phases of the disease compared with that of the controls (P<0.05). Conclusion: Our findings showed that riboflavin is capable of suppressing the neurological disability mediated by BDNF and IL-6. PMID:27279989

  13. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models

    PubMed Central

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  14. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi

    2013-11-20

    Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF.

  15. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis.

    PubMed

    Schulz, Karl-Heinz; Gold, Stefan M; Witte, Jan; Bartsch, Katharina; Lang, Undine E; Hellweg, Rainer; Reer, Rüdiger; Braumann, Klaus-Michael; Heesen, Christoph

    2004-10-15

    In recent years it has become clear that multiple sclerosis (MS) patients benefit from physical exercise as performed in aerobic training but little is known about the effect on functional domains and physiological factors mediating these effects. We studied immunological, endocrine and neurotrophic factors as well as coordinative function and quality of life during an 8-week aerobic bicycle training in a waitlist control design. In the immune-endocrine study (1) 28 patients were included, the coordinative extension study (2) included 39 patients. Training was performed at 60% VO(2)max after determining individual exertion levels through step-by-step ergometry. Metabolic (lactate), endocrine (cortisol, adrendocortico-releasing hormone, epinephrine, norepinephrine), immune (IL-6, soluble IL-6 receptor), and neurotrophic (brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF)) parameters were compared from a prestudy and a poststudy endurance test at 60% VO(2)max for 30 min. In study (1), lowered lactate levels despite higher workload levels indicated a training effect. Disease-specific quality of life (as measured by the Hamburg Quality of Life Questionnaire for Multiple Sclerosis, HAQUAMS) significantly increased in the training group. No significant training effects were seen for endocrine and immune parameters or neurotrophins. In study (2), two out of three coordinative parameters of the lower extremities were significantly improved. In summary, low-level aerobic training in MS improves not only quality of life but also coordinative function and physical fitness.

  16. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons.

    PubMed

    Cui, Qi; Yip, Henry K; Zhao, Robert C H; So, Kwok-Fai; Harvey, Alan R

    2003-01-01

    In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cAMP analogue (CPT-cAMP) on the regeneration of axotomized rat retinal ganglion cell (RGC) axons into peripheral nerve autografts. Elevation of cAMP alone did not significantly increase RGC survival or the number of regenerating RGCs. Ciliary neurotrophic factor increased RGC viability and axonal regrowth, the latter effect substantially enhanced by coapplication with CPT-cAMP. Under these conditions over 60% of surviving RGCs regenerated their axons. Neurotrophin-4/5 injections also increased RGC viability, but there was reduced long-distance axonal regrowth into grafts, an effect partially ameliorated by cAMP elevation. Thus, cAMP can act cooperatively with appropriate neurotrophic factors to promote axonal regeneration in the injured adult mammalian central nervous system.

  17. Kai-Xin-San, a Chinese Herbal Decoction Containing Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria, Stimulates the Expression and Secretion of Neurotrophic Factors in Cultured Astrocytes

    PubMed Central

    Zhu, Kevin Yue; Xu, Sherry Li; Choi, Roy Chi-Yan; Yan, Artemis Lu; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2013-01-01

    Kai-xin-san (KXS), a Chinese herbal decoction prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria. In China, KXS has been used to treat stress-related psychiatric diseases with the symptoms of depression and forgetfulness. Although animal study has supported the antidepression function of KXS, the mechanism in cellular level is still unknown. Here, a chemically standardized water extract of KXS was applied onto cultured astrocytes in exploring the action mechanisms of KXS treatment, which significantly stimulated the expression and secretion of neurotrophic factors, including NGF, BDNF, and GDNF, in a dose-dependent manner: the stimulation was both in mRNA and protein levels. In addition, the water extracts of four individual herbs did not significantly stimulate the expression of neurotrophic factors, which could explain the optimized effect of KXS in a herbal decoction. The KXS-induced expression of neurotrophic factors did not depend on signaling mediated by estrogen receptor or protein kinase. The results suggested that the antidepressant-like action of KXS might be mediated by an increase of expression of neurotrophic factors in astrocytes, which fully supported the clinical usage of this decoction. PMID:24222781

  18. Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons.

    PubMed

    Burkhalter, Julia; Fiumelli, Hubert; Allaman, Igor; Chatton, Jean-Yves; Martin, Jean-Luc

    2003-09-10

    Brain-derived neurotrophic factor (BDNF) promotes the biochemical and morphological differentiation of selective populations of neurons during development. In this study we examined the energy requirements associated with the effects of BDNF on neuronal differentiation. Because glucose is the preferred energy substrate in the brain, the effect of BDNF on glucose utilization was investigated in developing cortical neurons via biochemical and imaging studies. Results revealed that BDNF increases glucose utilization and the expression of the neuronal glucose transporter GLUT3. Stimulation of glucose utilization by BDNF was shown to result from the activation of Na+/K+-ATPase via an increase in Na+ influx that is mediated, at least in part, by the stimulation of Na+-dependent amino acid transport. The increased Na+-dependent amino acid uptake by BDNF is followed by an enhancement of overall protein synthesis associated with the differentiation of cortical neurons. Together, these data demonstrate the ability of BDNF to stimulate glucose utilization in response to an enhanced energy demand resulting from increases in amino acid uptake and protein synthesis associated with the promotion of neuronal differentiation by BDNF.

  19. Transgenic Brain-Derived Neurotrophic Factor Modulates a Developing Cerebellar Inhibitory Synapse

    PubMed Central

    Bao, Shaowen; Chen, Lu; Qiao, Xiaoxi; Thompson, Richard F.

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to promote synapse formation and maturation in neurons of many brain regions, including inhibitory synapses. In the cerebellum, the Golgi cell-granule cell GABAergic synaptic responses undergo developmental transition from slow-decaying to fast-decaying kinetics, which parallels a developmental increase of GABAA receptor α6 subunit expression in the cerebellar granule cells. In culture, BDNF accelerates the expression of GABAA receptor α6 subunit expression in granule cells. Here we examined synaptic GABAA response kinetics in BDNF transgenic mice. The mutant mouse, which carries a BDNF transgene driven by a β-actin promoter, overexpresses BDNF (two- to fivefold increase compared with wild types) in all brain regions. Recordings of the spontaneous GABAA responses indicate that the decay time constant of the GABAergic responses decreases during early postnatal development; this transition is accelerated in the BDNF transgenic mouse. The amplitude of the spontaneous GABAA responses was also larger in the transgenic mouse than in the wild-type mouse. However, the frequency of the spontaneous GABAA responses were not different between the two groups. Our results suggest that BDNF may modulate GABAergic synapse maturation in the cerebellum. PMID:10492009

  20. Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression.

    PubMed

    Blurton-Jones, M; Kuan, P N; Tuszynski, M H

    2004-01-12

    Several studies have demonstrated that estrogen modulates brain-derived neurotrophic factor (BDNF) mRNA and protein within the adult hippocampus and cortex. However, mechanisms underlying this regulation are unknown. Although an estrogen response element (ERE)-like sequence has been identified within the BDNF gene, such a classical mechanism of estrogen-induced transcriptional activation requires the colocalized expression of estrogen receptors within cells that produce BDNF. Developmental studies have demonstrated such a relationship, but to date no studies have examined colocalization of estrogen receptors and BDNF within the adult brain. By utilizing double-label immunohistochemistry for BDNF, estrogen receptor-alpha (ER-alpha), and estrogen receptor-beta (ER-beta), we found only sparse colocalization between ER-alpha and BDNF in the hypothalamus, amygdala, prelimbic cortex, and ventral hippocampus. Furthermore, ER-beta and BDNF do not colocalize in any brain region. Given the recent finding that cortical ER-beta is almost exclusively localized to parvalbumin-immunoreactive GABAergic neurons, we performed BDNF/parvalbumin double labeling and discovered that axons from cortical ER-beta-expressing inhibitory neurons terminate on BDNF-immunoreactive pyramidal cells. Collectively, these findings support a potential transsynaptic relationship between estrogen state and cortical BDNF: By directly modulating GABAergic interneurons, estrogen may indirectly influence the activity and expression of BDNF-producing cortical neurons.

  1. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  2. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression.

    PubMed

    Chen, Hao-Hao; Zhang, Ning; Li, Wei-Yun; Fang, Ma-Rong; Zhang, Hui; Fang, Yuan-Shu; Ding, Ming-Xing; Fu, Xiao-Yan

    2015-09-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippocampus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  3. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    PubMed Central

    Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. PMID:27405617

  4. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO2max, Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  5. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  6. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor

    PubMed Central

    Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.

    2014-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510

  7. Genetic variation in brain-derived neurotrophic factor and human fear conditioning.

    PubMed

    Hajcak, G; Castille, C; Olvet, D M; Dunning, J P; Roohi, J; Hatchwell, E

    2009-02-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in hippocampal-dependent learning processes, and carriers of the Met allele of the Val66Met BDNF genotype are characterized by reduced hippocampal structure and function. Recent nonhuman animal work suggests that BDNF is also crucial for amygdala-dependent associative learning. The present study sought to examine fear conditioning as a function of the BDNF polymorphism. Fifty-seven participants were genotyped for the BDNF polymorphism and took part in a differential-conditioning paradigm. Participants were shocked following a particular conditioned stimulus (CS+) and were also presented with stimuli that ranged in perceptual similarity to the CS+ (20, 40 or 60% smaller or larger than the CS+). The eye blink component of the startle response was measured to quantify fear conditioning; post-task shock likelihood ratings for each stimulus were also obtained. All participants reported that shock likelihood varied with perceptual similarity to the CS+ and showed potentiated startle in response to CS +/- 20% stimuli. However, only the Val/Val group had potentiated startle responses to the CS+. Met allele carrying individuals were characterized by deficient fear conditioning--evidenced by an attenuated startle response to CS+ stimuli. Variation in the BDNF genotype appears related to abnormal fear conditioning, consistent with nonhuman animal work on the importance of BDNF in amygdala-dependent associative learning. The relation between genetic variation in BDNF and amygdala-dependent associative learning deficits is discussed in terms of potential mechanisms of risk for psychopathology.

  8. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    PubMed

    Carbone, D L; Handa, R J

    2013-06-03

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS.

  9. Brain-derived neurotrophic factor and the course of experimental cerebral malaria.

    PubMed

    Linares, María; Marín-García, Patricia; Pérez-Benavente, Susana; Sánchez-Nogueiro, Jesús; Puyet, Antonio; Bautista, José M; Diez, Amalia

    2013-01-15

    The role of neurotrophic factors on the integrity of the central nervous system (CNS) during cerebral malaria (CM) infection remains obscure, but the long-standing neurocognitive sequelae often observed in rescued children can be attributed in part to the modulation of neuronal survival and synaptic plasticity. To discriminate the contribution of key responses in the time-sequence of the pathogenic events that trigger the development of neurocognitive malaria syndrome we defined four stages (I-IV) of the neurological progression of CM in C57BL/6 mice infected with Plasmodium berghei ANKA. Upregulation of ICAM-1, VCAM-1, e-selectin and p-selectin expression was detected in all cerebral regions before parasitized red blood cells (pRBC) accumulation. As the severity of symptoms increased, BDNF mRNA progressively diminished in several brain regions, earliest in the thalamus-hypothalamus, cerebellum, brainstem and cortex, and correlated with a four-stage disease sequence. Immunohistochemical confocal microscopy revealed changes in the BDNF distribution pattern, suggesting altered axonal transport. During CM progression, molecular markers of neurological infection and inflammation in the parasite and the host, respectively, were accompanied by a switch in the brain constitutive proteasome to the immunoproteasome, which could impede normal protein turnover. In parallel with BDNF downregulation, NCAM expression also diminished with increased CM severity. Together, these data suggest that changes in BDNF availability could be involved in the pathogenesis of CM.

  10. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation.

    PubMed

    Guo, Wei; Robbins, Meredith T; Wei, Feng; Zou, Shiping; Dubner, Ronald; Ren, Ke

    2006-01-04

    In the adult mammalian brain, brain-derived neurotrophic factor (BDNF) is critically involved in long-term synaptic plasticity. Here, we show that supraspinal BDNF-tyrosine kinase receptor B (TrkB) signaling contributes to pain facilitation. We show that BDNF-containing neurons in the periaqueductal gray (PAG), the central structure for pain modulation, project to and release BDNF in the rostral ventromedial medulla (RVM), a relay between the PAG and spinal cord. BDNF in PAG and TrkB phosphorylation in RVM neurons are upregulated after inflammation. Intra-RVM sequestration of BDNF and knockdown of TrkB by RNA interference attenuate inflammatory pain. Microinjection of BDNF (10-100 fmol) into the RVM facilitates nociception, which is dependent on NMDA receptors (NMDARs). In vitro studies with RVM slices show that BDNF induces tyrosine phosphorylation of the NMDAR NR2A subunit in RVM via a signal transduction cascade involving IP(3), PKC, and Src. The supraspinal BDNF-TrkB signaling represents a previously unknown mechanism underlying the development of persistent pain. Our findings also caution that application of BDNF for recovery from CNS disorders could lead to undesirable central pain.

  11. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    PubMed

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  12. Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system.

    PubMed

    Numakawa, T; Adachi, N; Richards, M; Chiba, S; Kunugi, H

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) has multiple roles in the central nervous system (CNS), including maintaining cell survival and regulation of synaptic function. In CNS neurons, BDNF triggers activation of phospholipase Cγ (PLCγ), mitogen-activated protein/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide 3-kinase (PI3K)/Akt pathways, influencing neuronal cells beneficially through these intracellular signaling cascades. There is evidence to suggest that decreased BDNF expression or function is related to the pathophysiology of brain diseases including psychiatric disorders. Additionally, glucocorticoids, which are critical stress hormones, also influence neuronal function in the CNS, and are putatively involved in the onset of depression when levels are abnormally high. In animal models of depression, changes in glucocorticoid levels, expression of glucocorticoid receptor (GR), and alterations in BDNF signaling are observed. Interestingly, several studies using in vivo and in vitro systems suggest that glucocorticoids interact with BDNF to ultimately affect CNS function. In the present review, we provide an overview of recent evidence concerning the interaction between BDNF and glucocorticoids.

  13. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    PubMed

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  14. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    PubMed

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms.

  15. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  16. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats.

    PubMed

    Morel, G R; Sosa, Y E; Bellini, M J; Carri, N G; Rodriguez, S S; Bohn, M C; Goya, R G

    2010-05-19

    Progressive dysfunction of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons during normal aging is associated in the female rat with chronic hyperprolactinemia. We assessed the effectiveness of glial cell line-derived neurotrophic factor (GDNF) gene therapy to restore TIDA neuron function in senile female rats and reverse their chronic hyperprolactinemia. Young (2.5 months) and senile (29 months) rats received a bilateral intrahypothalamic injection (10(10) pfu) of either an adenoviral vector expressing the gene for beta-galactosidase; (Y-betagal and S-betagal, respectively) or a vector expressing rat GDNF (Y-GDNF and S-GDNF, respectively). Transgenic GDNF levels in supernatants of GDNF adenovector-transduced N2a neuronal cell cultures were 25+/-4 ng/ml, as determined by bioassay. In the rats, serum prolactin (PRL) was measured at regular intervals. On day 17 animals were sacrificed and neuronal nuclear antigen (NeuN) and tyrosine hydroxylase (TH) immunoreactive cells counted in the arcuate-periventricular hypothalamic region. The S-GDNF but not the S-betagal rats, showed a significant reduction in body weight. The chronic hyperprolactinemia of the senile females was significantly ameliorated in the S-GDNF rats (P<0.05) but not in the S-betagal rats. Neither age nor GDNF induced significant changes in the number of NeuN and TH neurons. We conclude that transgenic GDNF ameliorates chronic hyperprolactinemia in aging female rats, probably by restoring TIDA neuron function.

  17. Involvement of brain-derived neurotrophic factor (BDNF) in MP4-induced autoimmune encephalomyelitis.

    PubMed

    Javeri, Sita; Rodi, Michael; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus; Kuerten, Stefanie

    2010-11-01

    The role of brain-derived neurotrophic factor (BDNF) in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still unclear. Here we investigate the clinical course, CNS histopathology and peripheral antigen-specific immunity in MP4-induced EAE of BDNF (-/+) mice. We demonstrate that these mice displayed less severe disease compared to BDNF (+/+) mice, reflected by decreased inflammation and demyelination. In correspondence to diminished frequencies of T and B cells in CNS infiltrates, the peripheral MP4-specific T(H)1/T(H)17 response was attenuated in BDNF (-/+), but not in wild-type animals. In contrast, immunization with ovalbumin triggered similar frequencies of IFN-γ- and IL-17-secreting T cells in both groups. The cytokine secretion and proliferative activity upon mitogen stimulation did not reveal any global defect of T cell function in BDNF (-/+) mice. By influencing the antigen-specific immune response in autoimmune encephalomyelitis, BDNF may support and maintain the disease in ways that go beyond its alleged neuroprotective role.

  18. Abundant Production of Brain-Derived Neurotrophic Factor by Adult Visceral Epithelia

    PubMed Central

    Lommatzsch, Marek; Braun, Armin; Mannsfeldt, Anne; Botchkarev, Vladimir A.; Botchkareva, Natalia V.; Paus, Ralf; Fischer, Axel; Lewin, Gary R.; Renz, Harald

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) plays a crucial role for the survival of visceral sensory neurons during development. However, the physiological sources and the function of BDNF in the adult viscera are poorly described. We have investigated the cellular sources and the potential role of BDNF in adult murine viscera. We found markedly different amounts of BDNF protein in different organs. Surprisingly, BDNF levels in the urinary bladder, lung, and colon were higher than those found in the brain or skin. In situ hybridization experiments revealed that BDNF mRNA was made by visceral epithelial cells, several types of smooth muscle, and neurons of the myenteric plexus. Epithelia that expressed BDNF lacked both the high- and low-affinity receptors for BDNF, trkB and p75NTR. In contrast, both receptors were present on neurons of the peripheral nervous system. Studies with BDNF−/−mice demonstrated that epithelial and smooth muscle cells developed normally in the absence of BDNF. These data provide evidence that visceral epithelia are a major source, but not a target, of BDNF in the adult viscera. The abundance of BDNF protein in certain internal organs suggests that this neurotrophin may regulate the function of adult visceral sensory and motor neurons. PMID:10514401

  19. Peripheral Brain Derived Neurotrophic Factor Precursor Regulates Pain as an Inflammatory Mediator

    PubMed Central

    Luo, Cong; Zhong, Xiao-Lin; Zhou, Fiona H.; Li, Jia-yi; Zhou, Pei; Xu, Jun-Mei; Song, Bo; Li, Chang-Qi; Zhou, Xin-Fu; Dai, Ru-Ping

    2016-01-01

    The precursor of brain derived neurotrophic factor (proBDNF), the unprocessed BDNF gene product, binds to its receptors and exerts the opposing biologic functions of mature BDNF. proBDNF is expressed in the peripheral tissues but the functions of peripheral proBDNF remain elusive. Here we showed that proBDNF and its predominant receptor, p75 pan-neurotrophin receptor were upregulated in the nerve fibers and inflammatory cells in the local tissue in inflammatory pain. Neutralization of proBDNF by polyclonal antibody attenuated pain in different models of inflammatory pain. Unilateral intra-plantar supplementation of proBDNF by injecting exogenous proBDNF or ectopic overexpression resulted in pain hypersensitivity and induced spinal phosphorylated extracellular signal-regulated kinase activation. Exogenous proBDNF injection induced the infiltration of inflammatory cells and the activation of proinflammatory cytokines, suggesting that inflammatory reaction contributed to the pro-algesic effect of proBDNF. Finally, we generated monoclonal anti-proBDNF antibody that could biologically block proBDNF. Administration of monoclonal Ab-proBDNF attenuated various types of inflammatory pain and surgical pain. Thus, peripheral proBDNF is a potential pain mediator and anti-proBDNF pretreatment may alleviate the development of inflammatory pain. PMID:27251195

  20. Brain-derived neurotrophic factor Val66Met polymorphism, human memory, and synaptic neuroplasticity.

    PubMed

    Lamb, Yvette N; McKay, Nicole S; Thompson, Christopher S; Hamm, Jeffrey P; Waldie, Karen E; Kirk, Ian J

    2015-01-01

    Some people have much better memory than others, and there is compelling evidence that a considerable proportion of this variation in memory ability is genetically inherited. A form of synaptic plasticity known as long-term potentiation (LTP) is the principal candidate mechanism underlying memory formation in neural circuits, and it might be expected, therefore, that a genetic influence on the degree of LTP might in turn influence memory abilities. Of the genetic variations thought to significantly influence mnemonic ability in humans, the most likely to have its effect via LTP is a single nucleotide polymorphism affecting brain-derived neurotrophic factor [BDNF (Val66Met)]. However, although it is likely that BDNF influences memory via a modulation of acute plasticity (i.e., LTP), BDNF also has considerable influence on structural development of neural systems. Thus, the influence of BDNF (Val66Met) on mnemonic performance via influences of brain structure as well as function must also be considered. In this brief review, we will describe the phenomenon of LTP and its study in non-human animals. We will discuss the relatively recent attempts to translate this work to studies in humans. We will describe how this has enabled investigation of the effect of the BDNF polymorphism on LTP, on brain structure, and on memory performance.

  1. Serum brain-derived neurotrophic factor levels were reduced during methamphetamine early withdrawal.

    PubMed

    Chen, Pao-Huan; Huang, Ming-Chi; Lai, Ying-Ching; Chen, Po-Yu; Liu, Hsing-Cheng

    2014-05-01

    Methamphetamine (METH) abuse is an increasing public health problem worldwide. Many of the METH-induced physical and mental problems are associated with the neurotoxic effects of METH. Animal studies have shown that brain-derived neurotrophic factor (BDNF) decreased after repeated amphetamine administration and increased at 30 and 90 days from psychostimulant withdrawal, suggesting that there might be a psychostimulant-induced neuroprotective dysfunction followed by a neuroadaptive process in the brain. However, current research on the role of BDNF in human METH addiction is limited, particularly during early withdrawal. The aim of this study was to assess the serum BDNF levels in METH abusers during the early withdrawal stage. Two groups of subjects were enrolled: (1) 59 DSM-IV METH abusers confirmed by board-certified psychiatrists during the first 3 weeks of withdrawal; (2) 59 age- and sex-matched healthy controls. We found that serum BDNF levels were significantly and constantly lower in the METH abusers during early withdrawal than those of the healthy controls. This indicates that METH abusers might have severe BDNF dysfunction and an impaired neuroprotective function after repetitive METH misuse.

  2. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  3. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace.

  4. Directed evolution of brain-derived neurotrophic factor for improved folding and expression in Saccharomyces cerevisiae.

    PubMed

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Hackel, Benjamin J; Chan, Jonah R; Shusta, Eric V

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF.

  5. TrkB-Mediated Neuroprotective and Antihypoxic Properties of Brain-Derived Neurotrophic Factor.

    PubMed

    Vedunova, Maria V; Mishchenko, Tatiana A; Mitroshina, Elena V; Mukhina, Irina V

    2015-01-01

    The neuroprotective and antihypoxic effects of brain-derived neurotrophic factor (BDNF) on dissociated hippocampal cultures in a hypoxia model were investigated. These experiments demonstrate that 10 minutes of normobaric hypoxia increased the number of dead cells in primary culture, whereas a preventive application of BDNF increased the number of viable cells. Spontaneous bioelectrical and calcium activity in neural networks was analyzed using multielectrode arrays and functional intravital calcium imaging. The results indicate that BDNF affects the functional parameters of neuronal networks in dissociated hippocampal cultures over the 7-day posthypoxic period. In addition, the effects of k252a, an antagonist of tropomyosin-related kinase B (TrkB), on functional bioelectrical activity during and after acute hypoxia were investigated. It was shown that the protective effects of BDNF are associated with binding to the TrkB receptor. Finally, intravital fluorescent mRNA probes were used to study the role of NF-κB1 in the protective effects of BDNF. Our experiments revealed that BDNF application stimulates NF-κB1 mRNA synthesis in primary dissociated hippocampal cells under normal conditions but not in hypoxic state.

  6. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    PubMed

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  7. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  8. Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder.

    PubMed

    Ströhle, Andreas; Stoy, Meline; Graetz, Barbara; Scheel, Michael; Wittmann, André; Gallinat, Jürgen; Lang, Undine E; Dimeo, Fernando; Hellweg, Rainer

    2010-04-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in depression and anxiety. Antidepressants and exercise increase BDNF expression, and both have an antidepressant and anxiolytic activity. To further characterize the association of anxiety, BDNF and exercise, we studied panic disorder patients (n=12) and individually matched healthy control subjects (n=12) in a standardized exercise paradigm. Serum samples for BDNF analyses were taken before and after 30min of exercise (70 VO(2max)) or quiet rest. The two conditions were separated by 1 week and the order was randomized. Non-parametric statistical analyses were performed. There was a negative correlation of BDNF concentrations and subjective arousal at baseline (r=-0.42, p=0.006). Compared to healthy control subjects, patients with panic disorder had significantly reduced BDNF concentrations at baseline and 30min of exercise significantly increased BDNF concentrations only in these patients. Our results suggest that acute exercise ameliorates reduced BDNF concentrations in panic disorder patients and raise the question whether this is also found after long-term exercise training and if it is related to the therapeutic outcome.

  9. Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype.

    PubMed

    Guiard, Bruno P; David, Denis J P; Deltheil, Thierry; Chenu, Franck; Le Maître, Erwan; Renoir, Thibault; Leroux-Nicollet, Isabelle; Sokoloff, Pierre; Lanfumey, Laurence; Hamon, Michel; Andrews, Anne M; Hen, René; Gardier, Alain M

    2008-02-01

    Growing evidence supports the involvement of brain-derived neurotrophic factor (BDNF) in mood disorders and the mechanism of action of antidepressant drugs. However, the relationship between BDNF and serotonergic signalling is poorly understood. Heterozygous mutants BDNF +/- mice were utilized to investigate the influence of BDNF on the serotonin (5-HT) system and the activity of the serotonin transporter (SERT) in the hippocampus. The zero net flux method of quantitative microdialysis revealed that BDNF +/- heterozygous mice have increased basal extracellular 5-HT levels in the hippocampus and decreased 5-HT reuptake capacity. In keeping with these results, the selective serotonin reuptake inhibitor paroxetine failed to increase hippocampal extracellular 5-HT levels in BDNF +/- mice while it produced robust effects in wild-type littermates. Using in-vitro autoradiography and synaptosome techniques, we investigated the causes of attenuated 5-HT reuptake in BDNF +/- mice. A significant decrease in [3H]citalopram-binding-site density in the CA3 subregion of the ventral hippocampus and a significant reduction in [3H]5-HT uptake in hippocampal synaptosomes, revealed mainly a decrease in SERT function. However, 5-HT1A autoreceptors were not desensitized in BDNF +/- mice. These results provide evidence that constitutive reductions in BDNF modulate SERT function reuptake in the hippocampus.

  10. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  11. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.

    PubMed

    Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W

    2015-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males.

  12. Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ

    PubMed Central

    Hu, Xue-Ming; Cao, Shou-Bin; Zhang, Hai-Long; Lyu, Dong-Mei; Chen, Li-Ping; Xu, Heng; Pan, Zhi-Qiang

    2016-01-01

    Background Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. Results MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. Conclusions These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression. PMID:27599867

  13. Effect of Training Exercise on Urinary Brain-derived Neurotrophic Factor Levels and Cognitive Performances in Overweight and Obese Subjects: A Pilot Study.

    PubMed

    Russo, Angelo; Buratta, Livia; Pippi, Roberto; Aiello, Cristina; Ranucci, Claudia; Reginato, Elisa; Santangelo, Valerio; DeFeo, Pierpaolo; Mazzeschi, Claudia

    2016-11-21

    Exercise-mediated, brain-derived neurotrophic factor induction benefits health and cognitive functions. The multifaceted interplay between physical activity, urinary brain-derived neurotrophic factor levels and cognitive functioning has been largely neglected in previous literature. In this pilot study, two bouts of training exercise (65% and 70% of heart rate reserve) influenced urinary brain-derived neurotrophic factor levels and cognitive performances in 12 overweight and obese participants. Percent heart rate reserve, expenditure energy, brain-derived neurotrophic factor urinary levels and cognitive performances were measured before and after the exercise. No significant variations in energy expenditure were observed, while differences of heart rate reserve between two groups were maintained. Both bouts of training exercise induced a similar reduction in urinary brain-derived neurotrophic factor levels. Only visuo-spatial working memory capacity at 65% of heart rate reserve showed a significant increase. These findings indicate a consistent effect of training exercise on urinary brain-derived neurotrophic factor levels and cognitive factors in overweight and obese participants.

  14. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model.

    PubMed

    Jeong, Chang Hyun; Kim, Seong Muk; Lim, Jung Yeon; Ryu, Chung Heon; Jun, Jin Ae; Jeun, Sin-Soo

    2014-01-01

    Numerous studies have reported that mesenchymal stem cells (MSCs) can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs), we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF) gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF) contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO). Transplantation of MSCs induced the proliferation of 5-bromo-2'-deoxyuridine (BrdU-) positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX-) positive neuroblasts and Neuronal Nuclei (NeuN-) positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS) or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  15. Brain-derived neurotrophic factor (BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice.

    PubMed

    Makar, T K; Trisler, D; Eglitis, M A; Mouradian, M M; Dhib-Jalbut, S

    2004-02-19

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is protective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the CNS when delivered peripherally is limited due to the blood-brain barrier. In the present study, bone marrow cells were used as vehicles to deliver the BDNF gene into the CNS. Marrow cells obtained from 6 to 8 week-old SJL/J mice were transduced with BDNF expressing pro-virus. RT-PCR analysis revealed that BDNF mRNA was expressed in transduced but not in non-transduced marrow cells. Additionally, virus transduced marrow cells expressed the BDNF protein (296+/-1.2 unit/ml). BDNF-transduced marrow cells were then transplanted into irradiated mice through the tail vein. Three months post-transplantation, significant increases in BDNF as well as glutamic acid decarboxylase (GAD(67)) mRNA were detected in the brains of BDNF transplanted mice compared to untransplanted animals, indicating biological activity of the BDNF transgene. Thus, bone marrow cells can be used as vehicles to deliver the BDNF gene into the brain with implications for the treatment of neurological diseases.

  16. Ciliary Neurotrophic Factor (CNTF) for Macular Telangiectasia Type 2 (MacTel): Results from a phase I safety trial

    PubMed Central

    Chew, Emily Y.; Clemons, Traci E.; Peto, Tunde; Sallo, Ferenc B.; Ingerman, Avner; Tao, Weng; Singerman, Lawrence; Schwartz, Steven D.; Peachey, Neal S.; Bird, Alan C.

    2015-01-01

    PURPOSE To evaluate the safety and tolerability of intraocular delivery of ciliary neurotrophic factor (CNTF) using an encapsulated cell implant for the treatment of macular telangiectasia type 2. DESIGN An open-labeled safety trial conducted in 2 centers enrolling 7 participants with macular telangiectasia type 2. METHODS The participant’s more severely affected eye (worse baseline visual acuity) received the high dose implant of CNTF. Patients were followed for a period of 36 months. The primary safety outcome was a change in the parameters of the electroretinogram (ERG). Secondary efficacy outcomes were changes in visual acuity, en face measurements of the optical coherence tomography of the disruption in the ellipsoid zone, and microperimetry when compared with baseline. RESULTS The ERG findings demonstrated a reduction in the amplitude of the scotopic b-wave in 4 participants 3 months after implantation (month 3). All parameters returned to baseline values by month 12 and remained so at month 36 with no clinical impact on dark adaptation. There was no change in visual acuity compared with baseline. The area of the defect as measured functionally by microperimetry and structurally by the en face OCT imaging of the ellipsoid zone loss appeared unchanged from baseline. CONCLUSIONS The intraocular delivery of CNTF in the encapsulated cell implant appeared to be safe and well tolerated in eyes with macular telangiectasia type 2. Further evaluation in a randomized controlled clinical trial is warranted to test for efficacy. PMID:25528956

  17. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  18. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats

    PubMed Central

    Zhang, Jie; Liu, Li-Ming; Ni, Jin-Feng

    2017-01-01

    The number of children suffered from autism spectrum disorder (ASD) is increasing dramatically. However, the etiology of ASD is not well known. This study employed mammalian target of rapamycin inhibitor rapamycin to explore its effect on ASD and provided new therapeutic strategies for ASD. ASD rat model was constructed and valproic acid (VPA) was injected intraperitoneally into rats on pregnancy day 12.5. Offspring from VPA group were divided into ASD group and ASD + rapamycin (ASD + RAPA) group. Compared with normal group, the frequency and duration of social behavior and straight times of ASD group were shortened, but the grooming times were extended. Meanwhile, in ASD group, the average escape latency and the frequency of crossing plates were decreased, the apoptotic index (AI) detected by TUNEL assay was increased, and the expression of brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) analyzed was decreased with great difference compared with normal group (P<0.01). However, rapamycin treatment in ASD rats mitigated the ASD-like social behavior, such as the frequencies of straight and grooming. Furthermore, rapamycin shortened the average escape latency, but increased the frequency of crossing plates of ASD rats. In hippocampus, rapamycin decreased the AI, but increased the levels of BDNF and Bcl-2 (P<0.01) of ASD rats. These findings revealed that rapamycin significantly mitigated the social behavior by enhancing the expression of BDNF and Bcl-2 to suppress the hippocampus apoptosis in VPA-induced ASD rats. PMID:28360521

  19. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    PubMed

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment.

  20. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism interacts with gender to influence cortisol responses to mental stress.

    PubMed

    Jiang, Rong; Babyak, Michael A; Brummett, Beverly H; Siegler, Ilene C; Kuhn, Cynthia M; Williams, Redford B

    2017-02-13

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with cortisol responses to stress with gender differences reported, although the findings are not entirely consistent. To evaluate the role of Val66Met genotype and gender on cortisol responses to stress, we conducted a 45-min mental stress protocol including four tasks and four rest periods. Blood cortisol was collected for assay immediately before and after each task and rest period. A significant two-way interaction of Val66Met genotype×gender (P=0.022) was observed on the total area under the curve (AUC), a total cortisol response over time, such that the Val/Val genotype was associated with a larger cortisol response to stress as compared to the Met group in women but not in men. Further contrast analyses between the Val/Val and Met group for each stress task showed a similar increased cortisol pattern among women Val/Val genotype but not among men. The present findings indicate the gender differences in the effect of Val66Met genotype on the cortisol responses to stress protocol, and extend the evidence for the importance of gender and the role of Val66Met in the modulation of stress reactivity and subsequent depression prevalence. Further studies and the underlying mechanism need to be investigated, which may provide an insight for prevention, intervention, and treatment strategies that target those at high risk.

  1. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    PubMed Central

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo exercise training comprised an aerobic exercise (20min) mode and a dynamic exercise (65min) mode. All data were analyzed by repeated measures two-way ANOVA. [Results] There were no significant differences in the physical characteristics of the subjects. Although weight and BMI showed a tendency to decreased in the exercise group (EG). Also, neurotrophic factors (BDNF, NGF, IGF-1) were not significantly different after 8 weeks in the two groups. However, BDNF and IGF-1 showed a tendency to increase in the exercise group (EG). Finally, the Stroop test (word, color) results were significantly different(p < .05) in the exercise group (EG). [Conclusion] These finding suggest that 8 weeks of regular Taekwondo exercise training may increase cognitive functions (Stroop test). However the training did not statistically affect neurotrophic factors (BDNF, NGF, IGF-1) in undergraduate students. PMID:26244125

  2. A novel cysteine-rich neurotrophic factor in Aplysia facilitates growth, MAPK activation, and long-term synaptic facilitation.

    PubMed

    Pu, Lu; Kopec, Ashley M; Boyle, Heather D; Carew, Thomas J

    2014-04-01

    Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in Aplysia showed that a TrkB ligand is required for MAPK activation, long-term synaptic facilitation (LTF), and long-term memory (LTM) for sensitization. These studies indicate that neurotrophin-like molecules in Aplysia can act as key elements in a functionally conserved TrkB signaling pathway. Here we report that we have cloned and characterized a novel neurotrophic factor, Aplysia cysteine-rich neurotrophic factor (apCRNF), which shares classical structural and functional characteristics with mammalian neurotrophins. We show that apCRNF (1) is highly enriched in the CNS, (2) enhances neurite elongation and branching, (3) interacts with mammalian TrkB and p75(NTR), (4) is released from Aplysia CNS in an activity-dependent fashion, (5) facilitates MAPK activation in a tyrosine kinase dependent manner in response to sensitizing stimuli, and (6) facilitates the induction of LTF. These results show that apCRNF is a native neurotrophic factor in Aplysia that can engage the molecular and synaptic mechanisms underlying memory formation.

  3. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men.

    PubMed

    Cho, Su Youn; Roh, Hee Tae

    2016-04-01

    [Purpose] The aim of the present study was to investigate the effects of aerobic exercise training on the levels of peripheral brain-derived neurotrophic factor and eotaxin-1 in obese young men. [Subjects and Methods] The subjects included sixteen obese young men with a body mass index greater than 25 kg/m(2). They were randomly divided between control and exercise groups (n = 8 in each group). The exercise group performed treadmill exercise for 40 min, 3 times a week for 8 weeks at the intensity of 70% heart rate reserve. Blood collection was performed to examine the levels of serum glucose, plasma malonaldehyde, serum brain-derived neurotrophic factor, and plasma eotaxin-1 before and after the intervention (aerobic exercise training). [Results] Following the intervention, serum BDNF levels were significantly higher, while serum glucose, plasma MDA, and plasma eotaxin-1 levels were significantly lower than those prior to the intervention in the exercise group. [Conclusion] Aerobic exercise training can induce neurogenesis in obese individuals by increasing the levels of brain-derived neurotrophic factor and reducing the levels of eotaxin-1. Alleviation of oxidative stress is possibly responsible for such changes.

  4. Cholinergic neurons regulate secretion of glial cell line-derived neurotrophic factor by skeletal muscle cells in culture.

    PubMed

    Vianney, John-Mary; Spitsbergen, John M

    2011-05-16

    Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known about factors regulating normal production of endogenous GDNF in skeletal muscle. This study aimed to examine the role that motor neurons play in regulating GDNF secretion by skeletal muscle. A co-culture of skeletal muscle cells (C2C12) and cholinergic neurons, glioma×neuroblastoma hybrid cells (NG108-15) were used to create nerve-muscle interactions in vitro. Acetylcholine receptors (AChRs) on nerve-myotube co-cultures were blocked with alpha-bungarotoxin (α-BTX). GDNF protein content in cells and in culture medium was analyzed by enzyme-linked immunosorbant assay (ELISA) and western blotting. GDNF localization was examined by immunocytochemistry. The nerve-muscle co-culture study indicated that the addition of motor neurons to skeletal muscle cells reduced the secretion of GDNF by skeletal muscle. The results also showed that blocking AChRs with α-BTX reversed the action of neural cells on GDNF secretion by skeletal muscle. Although ELISA results showed no GDNF in differentiated NG108-15 cells grown alone, immunocytochemical analysis showed that GDNF was localized in NG108-15 cells co-cultured with C2C12 myotubes. These results suggest that motor neurons may be regulating their own supply of GDNF secreted by skeletal muscle and that activation of AChRs may be involved in this process.

  5. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    PubMed

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-02

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.

  6. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    PubMed

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  7. Brain-derived neurotrophic factor promotes neurite growth and survival of antennal lobe neurons in brain from the silk moth, Bombyx mori in vitro.

    PubMed

    Kim, Jin Hee; Sung, Dong Kyung; Park, Chan Woo; Park, Hun Hee; Park, Cheolin; Jeon, Soung-Hoo; Kang, Pil Don; Kwon, O-Yu; Lee, Bong Hee

    2005-03-01

    This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.

  8. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    PubMed Central

    Tomotsuka, Naoto; Kaku, Ryuji; Obata, Norihiko; Matsuoka, Yoshikazu; Kanzaki, Hirotaka; Taniguchi, Arata; Muto, Noriko; Omiya, Hiroki; Itano, Yoshitaro; Sato, Tadasu; Ichikawa, Hiroyuki; Mizobuchi, Satoshi; Morimatsu, Hiroshi

    2014-01-01

    Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF), known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid) and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons) but not in medium or large neurons (non-nociceptive neurons). Further, expression of nerve growth factor (NGF), which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. PMID:25050075

  9. Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications.

    PubMed

    Tsai, Shih-Jen

    2007-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a common childhood psychiatric disorder. Despite intensive research efforts, the aetiology of ADHD remains unknown. Current evidence suggests that the aetiology of ADHD is heterogeneous, comprising of multiple factors. Recently, it has been proposed that brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, may be implicated in the pathogenesis of ADHD. This hypothesis is supported by recent genetic studies in ADHD. Drawing on findings from studies into the drugs for ADHD relating to central BDNF expression, hyperactivity in BDNF knockout mice, BDNF effects in midbrain dopaminergic function and the close association between BDNF and the dopamine transporter (an important molecule for ADHD pathogenesis), it is proposed here that decreased central BDNF, particularly in the midbrain region, may play an important role in the pathogenesis ADHD. This hypothesis may have some implications for clinical findings in ADHD (for example, the co-morbidity between ADHD and major depression), and provide a new direction for the development of medication for ADHD treatment.

  10. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    PubMed Central

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5′-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117–2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140–2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk

  11. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus.

    PubMed

    Solum, Derek T; Handa, Robert J

    2002-04-01

    During development, estrogen has a variety of effects on morphological and electrophysiological properties of hippocampal neurons. Brain-derived neurotrophic factor (BDNF) also plays an important role in the survival and differentiation of neurons during development. We examined the effects of gonadectomy with and without estrogen replacement on the mRNA and protein of BDNF and its receptor, trkB, during early postnatal development of the rat hippocampus. We used immunocytochemistry to demonstrate that estrogen receptor alpha (ERalpha) and BDNF were localized to the same cells within the developing hippocampus. BDNF and ERalpha were colocalized in pyramidal cells of the CA3 subregion and to a lesser extent in CA1. To determine whether BDNF mRNA was regulated by estrogen during development, we gonadectomized male rat pups at postnatal day 0 (P0) and examined mRNA and protein levels from P0 to P25 using real-time reverse transcription-PCR and Western blot analysis. After gonadectomy, BDNF mRNA levels are significantly reduced on P7, but after treatment of gonadectomized animals with estradiol benzoate on P0, levels at all ages were similar to those in intact animals. BDNF mRNA changes after gonadectomy are accompanied by an increase in the levels of BDNF protein, which were reduced by estrogen treatment at P0. We also examined the effect of postnatal estrogen treatment on trkB. There were no significant changes in trkB mRNA or protein in gonadectomized or estrogen-replaced animals. These results suggest that a direct interaction may exist between ERalpha and BDNF to alter hippocampal physiology during development in the rat.

  12. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats.

    PubMed

    Boyce, Vanessa S; Park, Jihye; Gage, Fred H; Mendell, Lorne M

    2012-01-01

    We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV-BDNF was significantly more effective than AAV-NT-3 in eliciting locomotion. In fact, AAV-BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV-NT-3 or AAV-GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV-NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV-BDNF-treated rats were sensitized to noxious heat, whereas AAV-NT-3-treated and AAV-GFP-treated rats were not. Notably, AAV-BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV-BDNF significantly reduced motoneuron rheobase, suggesting that AAV-BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV-BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV-NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.

  13. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain.

    PubMed

    Trang, Tuan; Beggs, Simon; Salter, Michael W

    2011-02-01

    One of the most significant advances in pain research is the realization that neurons are not the only cell type involved in the etiology of chronic pain. This realization has caused a radical shift from the previous dogma that neuronal dysfunction alone accounts for pain pathologies to the current framework of thinking that takes into account all cell types within the central nervous system (CNS). This shift in thinking stems from growing evidence that glia can modulate the function and directly shape the cellular architecture of nociceptive networks in the CNS. Microglia, in particular, are increasingly recognized as active principal players that respond to changes in physiological homeostasis by extending their processes toward the site of neural damage, and by releasing specific factors that have profound consequences on neuronal function and that contribute to CNS pathologies caused by disease or injury. A key molecule that modulates microglia activity is ATP, an endogenous ligand of the P2 receptor family. Microglia expresses several P2 receptor subtypes, and of these the P2X4 receptor subtype has emerged as a core microglia-neuron signaling pathway: activation of this receptor drives the release of brain-derived neurotrophic factor (BDNF), a cellular substrate that causes disinhibition of pain-transmitting spinal lamina I neurons. Converging evidence points to BDNF from spinal microglia as being a critical microglia-neuron signaling molecule that gates aberrant nociceptive processing in the spinal cord. The present review highlights recent advances in our understanding of P2X4 receptor-mediated signaling and regulation of BDNF in microglia, as well as the implications for microglia-neuron interactions in the pathobiology of neuropathic pain.

  14. Neither cortisol nor brain-derived neurotrophic factor is associated with serotonin transporter in bipolar disorder.

    PubMed

    Chou, Yuan-Hwa; Lirng, Jiing-Feng; Hsieh, Wen-Chi; Chiu, Yen-Chen; Tu, Yi-An; Wang, Shyh-Jen

    2016-02-01

    Converging evidence indicates the hypothalamus-pituitary-adrenal axis and serotonergic neurons exert reciprocal modulatory actions. Likewise, brain-derived neurotrophic factor (BDNF) has been implicated as a growth and differentiation factor in the development of serotonergic neurons. The aim of this study was to examine the interaction of cortisol and BDNF on serotonin transporter (SERT) in bipolar disorder (BD). Twenty-eight BD and 28 age- and gender-matched healthy controls (HCs) were recruited. (123)I-ADAM with single-photon emission computed tomography (SPECT) was applied for measurement of SERT availability in the brain, which included the midbrain, thalamus, putamen and caudate. Ten milliliters of venous blood was withdrawn, when the subject underwent SPECT, for the measurement of the plasma concentration of cortisol and BDNF. SERT availability was significantly decreased in the midbrain and caudate of BD compared with HCs, whereas plasma concentration of cortisol and BDNF did not show a significant difference. The linear mixed-effect model revealed that there was a significant interaction of group and cortisol on SERT availability of the midbrain, but not BDNF. Linear regression analyses by groups revealed that cortisol was associated with SERT availability in the midbrain in the HCs, but not in BD. Considering previous studies, which showed a significant association of cortisol with SERT availability in the HCs and major depressive disorder (MDD), our result replicated a similar finding in HCs. However, the negative finding of the association of cortisol and SERT availability in BD, which was different from MDD, suggests a different role for cortisol in the pathophysiology of mood disorder.

  15. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain

    PubMed Central

    Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda WJH

    2016-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val66met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Methods Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val66met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Results Compared to val66val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. Conclusions This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. PMID:27145806

  16. cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle.

    PubMed

    Thompson, Michael A; Britt, Rodney D; Kuipers, Ine; Stewart, Alecia; Thu, James; Pandya, Hitesh C; MacFarlane, Peter; Pabelick, Christina M; Martin, Richard J; Prakash, Y S

    2015-10-01

    Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.

  17. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures.

    PubMed

    Rutherford, L C; DeWan, A; Lauer, H M; Turrigiano, G G

    1997-06-15

    The excitability of cortical circuits is modulated by interneurons that release the inhibitory neurotransmitter GABA. In primate and rodent visual cortex, activity deprivation leads to a decrease in the expression of GABA. This suggests that activity is able to adjust the strength of cortical inhibition, but this has not been demonstrated directly. In addition, the nature of the signal linking activity to GABA expression has not been determined. Activity is known to regulate the expression of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF has been shown to influence the phenotype of GABAergic interneurons. We use a culture system from postnatal rat visual cortex to test the hypothesis that activity is regulating the strength of cortical inhibition through the regulation of BDNF. Cultures were double-labeled against GABA and the neuronal marker MAP2, and the percentage of neurons that were GABA-positive was determined. Blocking spontaneous activity in these cultures reversibly decreased the number of GABA-positive neurons without affecting neuronal survival. Voltage-clamp analysis of inhibitory currents demonstrated that activity blockade also decreased GABA-mediated inhibition onto pyramidal neurons and raised pyramidal neuron firing rates. All of these effects were prevented by incubation with BDNF during activity blockade, but not by neurotrophin 3 or nerve growth factor. Additionally, blockade of neurotrophin signaling mimicked the effects of activity blockade on GABA expression. These data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.

  18. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    PubMed

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  19. Activated microglia provide a neuroprotective role by balancing glial cell-line derived neurotrophic factor and tumor necrosis factor-α secretion after subacute cerebral ischemia.

    PubMed

    Wang, Jianping; Yang, Zhitang; Liu, Cong; Zhao, Yuanzheng; Chen, Yibing

    2013-01-01

    Microglia are the major immune cells in the central nervous system and play a key role in brain injury pathology. However, the role of activated microglia after subacute cerebral ischemia (SCI) remains unknown. To address this issue, we established a permanent middle cerebral artery occlusion (pMCAO) rat model and treated pMCAO rats with N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (an inhibitor of microglial activation), or with vehicle alone. Finally, we determined the differences between the PJ34-and vehicle-treated rats with respect to neurological deficits, infarct volume, neuronal loss and the expression of CD11b (a marker of microglial activation), glial cell line-derived neurotrophic factor (GDNF) and tumor necrosis factor-α (TNF-α) at 1, 3 and 7 days after treatment. We found that the PJ34-treated rats had more severe neurological deficits and a larger infarct volume and exhibited a decreased CD11b expression, more neuronal loss, decreased expression of GDNF mRNA and protein but increased expression of TNF-α mRNA and protein compared with the vehicle-treated rats at 3 and 7 days after treatment. These results indicate that activated microglia provide a neuroprotective role through balancing GDNF and TNF-α expression following SCI.

  20. Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling.

    PubMed

    Mizui, Toshiyuki; Ishikawa, Yasuyuki; Kumanogoh, Haruko; Kojima, Masami

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) is one of the most active members of the neurotrophin family. BDNF not only regulates neuronal survival and differentiation, but also functions in activity-dependent plasticity processes such as long-term potentiation (LTP), long-term depression (LTD), learning, and memory. Like other growth factors, BDNF is produced by molecular and cellular mechanisms including transcription and translation, and functions as a bioactive molecule in the nervous system. Among these mechanisms, a particular post-translational mechanism, namely the conversion of precursor BDNF into mature BDNF by proteolytic cleavage, was not fully understood. In this review, we discuss the manner through which this post-translational mechanism alters the biological actions of BDNF protein. In addition to the initially elucidated findings on BDNF, the biological roles of precursor BDNF and the BDNF pro-peptide, especially synaptic plasticity, will be extensively discussed. Recent findings on the BDNF pro-peptide will provide new insights for understanding the mechanisms of action of the pro-peptides of growth factors.

  1. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury.

    PubMed

    Takemoto, Takuya; Ishihara, Yasuhiro; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-07-01

    The protective roles of astrocytes in neurotoxicity induced by environmental chemicals, such as methylmercury (MeHg), are largely unknown. We found that conditioned medium of MeHg-treated astrocytes (MCM) attenuated neuronal cell death induced by MeHg, suggesting that astrocytes-released factors can protect neuronal cells. The increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was observed in MeHg-treated astrocytes. NGF and BDNF were detected in culture media as homodimers, which are able to bind specific tyrosine kinase receptors, tropomyosin related kinase (Trk) A and TrkB, respectively. The TrkA antagonist and TrkB antagonist abolished the protective effects of MCM in neuronal cell death induced by MeHg. Taken together, astrocytes synthesize and release NGF and BDNF in response to MeHg to protect neurons from MeHg toxicity. This study is considered to show a novel defense mechanism against MeHg-induced neurotoxicity.

  2. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression

    PubMed Central

    Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R

    2016-01-01

    Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1

  3. Psychoactive drugs influence brain-derived neurotrophic factor and neurotrophin 4/5 levels in the serum of colorectal cancer patients

    PubMed Central

    Sarabi, Matthieu; Perraud, Aurélie; Mazouffre, Clément; Nouaille, Michelle; Jauberteau, Marie-Odile; Mathonnet, Muriel

    2017-01-01

    Previous studies have reported the association between brain-derived neurotrophic factor (BDNF) and tumor development in numerous cancers. However, the accurate implication of the two specific ligands of tropomyosin kinase B receptor, BDNF and neurotrophic factor 4 (NT4/5), has not been studied in colorectal cancer (CRC) patients. The present study investigated the significance of serum BDNF and the NT4/5 in association with the intake of psychoactive drugs in CRC patients. Soluble BDNF and NT4 in the serum were assessed by ELISA. Although no correlation of BDNF and NT4 with the CRC stage was identified, a positive correlation was found between NT4 and the intake of psychoactive drugs (P=0.0457). For BDNF, a correlation was found in particular with the intake of benzodiazepine (P=0.0221). As BDNF and NT4/5 are implicated in the response of psychoactive treatments applied to manage depression, which frequently occurs in cancer patients, they cannot be used as prognostic or diagnostic markers for CRC in these patients. However, high expression of BDNF and NT4 was significantly associated with better survival. Therefore, these NTs may be used as markers for monitoring depression or predicting survival in CRC patients. PMID:28123714

  4. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF).

    PubMed

    Salio, Chiara; Ferrini, Francesco; Muthuraju, Sangu; Merighi, Adalberto

    2014-10-08

    The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.

  5. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients.

    PubMed

    Kotlęga, Dariusz; Peda, Barbara; Zembroń-Łacny, Agnieszka; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2017-03-06

    Stroke is the main cause of motoric and neuropsychological disability in adults. Recent advances in research into the role of the brain-derived neurotrophic factor in neuroplasticity, neuroprotection and neurogenesis might provide important information for the development of new poststroke-rehabilitation strategies. It plays a role as a mediator in motor learning and rehabilitation after stroke. Concentrations of BDNF are lower in acute ischemic-stroke patients compared to controls. Lower levels of BDNF are correlated with an increased risk of stroke, worse functional outcomes and higher mortality. BDNF signalling is dependent on the genetic variation which could affect an individual's response to recovery after stroke. Several single nucleotide polymorphisms of the BDNF gene have been studied with regard to stroke patients, but most papers analyse the rs6265 which results in a change from valine to methionine in the precursor protein. Subsequently a reduction in BDNF activity is observed. There are studies indicating the role of this polymorphism in brain plasticity, functional and morphological changes in the brain. It may affect the risk of ischemic stroke, post-stroke outcomes and the efficacy of the rehabilitation process within physical exercise and transcranial magnetic stimulation. There is a consistent trend of Met alleles' being connected with worse outcomes and prognoses after stroke. However, there is no satisfactory data confirming the importance of Met allele in stroke epidemiology and the post-stroke rehabilitation process. We present the current data on the role of BDNF and polymorphisms of the BDNF gene in stroke patients, concentrating on human studies.

  6. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    PubMed Central

    Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2007-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  7. Emotional Fronto-Cingulate Cortex Activation and Brain Derived Neurotrophic Factor Polymorphism in Premenstrual Dysphoric Disorder

    PubMed Central

    Erika, Comasco; Andreas, Hahn; Sebastian, Ganger; Malin, Gingnell; Elin, Bannbers; Lars, Oreland; Johan, Wikström; Neill, Epperson C.; Rupert, Lanzenberger; Inger, Sundström-Poromaa

    2014-01-01

    Premenstrual dysphoric disorder (PMDD) is the prototypical sex-specific disorder in which symptom onset and offset require a particular hormonal milieu and for which there is moderate heritability. The present study investigated brain emotion processing in PMDD and healthy controls, as well as functional polymorphisms in two candidate genes for PMDD, the serotonin transporter (5-HTT) and brain derived neurotrophic factor (BDNF). The 5-HTT linked polymorphic region (5-HTTLPR) and BDNF Val66Met polymorphisms were genotyped in 31 patients with PMDD and 31 healthy controls. A subset of 16 patients and 15 controls participated in two functional magnetic resonance imaging-sessions performing an emotion processing task; once in the mid-follicular, and once in the late luteal phase which corresponds with maximum severity of mood symptoms. Genotypes were not directly associated with PMDD. A main effect of group was found in the whole brain analysis, with patients having lower activation of the pre-genual anterior cingulate and ventro-medial prefrontal cortex, independent of menstrual cycle phase. Post-hoc functional ROI analyses in the fronto-cingulate cluster showed no effect of 5-HTTLPR genotype but a genotype-by-group-by-phase interaction effect of BDNF Val66Met. Women with PMDD who were carriers of the Met-allele had lower fronto-cingulate cortex activation in the luteal phase compared to Met-allele carrying controls. The results provide suggestive evidence of impaired emotion-induced fronto-cingulate cortex activation in PMDD patients. Although limited by a small sample, the potential influence of BDNF Val66Met in PMDD is in line with preclinical research. PMID:24615932

  8. Serum Brain-derived Neurotrophic Factor Levels among Euthymic Adolescents with Bipolar Disorder Type I

    PubMed Central

    CEVHER BİNİCİ, Nagihan; İNAL EMİROĞLU, Fatma Neslihan; RESMİ, Halil; ELLİDOKUZ, Hülya

    2016-01-01

    Introduction Bipolar disorder (BD) has been increasingly associated with abnormalities in neuroplasticity and cellular resilience in brain regions that are involved in mood and that affect regulation. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that regulates neuroplasticity. The aims of the current study were to compare serum BDNF levels in euthymic adolescents with BD type I with those in controls and to investigate the relationship between clinical variables and serum BDNF levels in adolescents with BD type I. Methods Twenty-five adolescents diagnosed with BD type I and 17 healthy control subjects within the age range of 15–19 years were recruited. Diagnoses were made by two experienced research clinicians using the Kiddie and Young Adult Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version and the affective module of Washington University in St. Louis Kiddie and Young Adult Schedule for Affective Disorders and Schizophrenia-Present State and Lifetime. Blood samples were taken during euthymia, which was defined as Young Mania Rating Scale and Hamilton Depression Rating Scale scores below 7. Results The comparison of BDNF serum levels between the case and healthy control groups revealed no significant differences. In the case group, BDNF levels were significantly lower in patients being currently treated with lithium. Conclusion Similar to normal BDNF levels in adult patients with BD, the normal BDNF serum levels that we found in the euthymic state in adolescents and early adulthood may be related to the developmental brain stage in our study group. It may also show a common neurobiological basis of pediatric and adult BD. Further investigations evaluating BDNF levels in different mood states could help identify the role of BDNF in the underlying pathophysiology of BD. PMID:28373806

  9. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  10. Brain-derived neurotrophic factor controls cannabinoid CB1 receptor function in the striatum.

    PubMed

    De Chiara, Valentina; Angelucci, Francesco; Rossi, Silvia; Musella, Alessandra; Cavasinni, Francesca; Cantarella, Cristina; Mataluni, Giorgia; Sacchetti, Lucia; Napolitano, Francesco; Castelli, Maura; Caltagirone, Carlo; Bernardi, Giorgio; Maccarrone, Mauro; Usiello, Alessandro; Centonze, Diego

    2010-06-16

    The role of brain-derived neurotrophic factor (BDNF) in emotional processes suggests an interaction with the endocannabinoid system. Here, we addressed the functional interplay between BDNF and cannabinoid CB(1) receptors (CB(1)Rs) in the striatum, a brain area in which both BDNF and CB(1)s play a role in the emotional consequences of stress and of rewarding experiences. BDNF potently inhibited CB(1)R function in the striatum, through a mechanism mediated by altered cholesterol metabolism and membrane lipid raft function. The effect of BDNF was restricted to CB(1)Rs controlling GABA-mediated IPSCs (CB(1)R(GABA)), whereas CB(1)Rs modulating glutamate transmission and GABA(B) receptors were not affected. The action of BDNF on CB(1)R(GABA) function was tyrosine kinase dependent and was complete even after receptor sensitization with cocaine or environmental manipulations activating the dopamine (DA)-dependent reward system. In mice lacking one copy of the BDNF gene (BDNF(+/-)), CB(1)R(GABA) responses were potentiated and were preserved from the action of haloperidol, a DA D(2) receptor (D(2)R) antagonist able to fully abolish CB(1)R(GABA) function in rewarded animals. Haloperidol also enhanced BDNF levels in the striatum, suggesting that this neurotrophin may act as a downstream effector of D(2)Rs in the modulation of cannabinoid signaling. Accordingly, 5 d cocaine exposure both reduced striatal BDNF levels and increased CB(1)R(GABA) activity, through a mechanism dependent on D(2)Rs. The present study identifies a novel mechanism of CB(1)R regulation mediated by BDNF and cholesterol metabolism and provides some evidence that DA D(2)R-dependent modulation of striatal CB(1)R activity is mediated by this neurotrophin.

  11. The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia.

    PubMed

    Nurjono, Milawaty; Tay, Yi Hang; Lee, Jimmy

    2014-08-01

    Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.

  12. Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors.

    PubMed

    Zhu, Juehua; Jiang, Yongjun; Xu, Gelin; Liu, Xinfeng

    2012-05-01

    Neurotrophic factors (NTFs) are endogenous polypeptides that regulate the growth, survival, differentiation, and functioning of neurons. The neuroprotective effects of NTFs in experimental animals give strong rationale for developing therapies for neurological disorders. However, when NTFs are applied in clinical trials, great expectation leads to equal disappointment. NTFs are large molecular-weighted and hydrophilic proteins, which limits their access to the central nervous system (CNS) after systemic administration, principally due to poor blood-brain barrier (BBB) permeability and unfavorable pharmacokinetic profiles. Although intracerebral infusion may transport NTFs into the CNS, the invasiveness limits its clinical application. Intranasal administration has been under research for decades and presents promising outcomes in preclinical studies for brain delivering of NTFs. After intranasal delivery, NTFs gain direct and quick access into the CNS at concentrations high enough to elicit their biological effects, bypassing the BBB and minimizing systemic exposure. Due to its invasiveness and convenience, intranasal delivery is feasible for NTFs administration. Although direct evidence of nose-to-brain pathway in human is lacking due to ethical problems, the existence of the nose-to-cerebral spinal fluid pathway has been verified in men. Furthermore, there is abundant indirect evidence for the nose-to-brain pathway as determined by the efficacy of intranasally administered neuroproteins, such as insulin, oxytocin, and vasopressin in clinical trials. Based on the solid preclinical research supporting the efficacy of intranasal NTFs, and the successful clinical application of neuroproteins (not NTFs), it is time to evaluate clinical application of NTFs in treating both acute and chronic CNS diseases.

  13. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF).

    PubMed

    Macbeth, Abbe H; Scharfman, Helen E; Maclusky, Neil J; Gautreaux, Claris; Luine, Victoria N

    2008-06-01

    Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.

  14. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory.

    PubMed

    Nakajo, Yukako; Miyamoto, Susumu; Nakano, Yoshikazu; Xue, Jing-Hui; Hori, Takuya; Yanamoto, Hiroji

    2008-11-19

    Brain-derived neurotrophic factor (BDNF), a neurotrophin, is known to promote neuronal differentiation stimulating neurite outgrowth in the developing CNS, and is also known to modulate synaptic plasticity, thereby contributing to learning and memory in the mature brain. Here, we investigated the role of increased levels of intracerebral BDNF in learning and memory function. Using genetically engineered transgenic BDNF overexpressing mice (RTG-BDNF), young adult, homozygous (+/+), heterozygous (+/-), or wild-type (-/-) littermates, we analyzed escape latency to a hidden-platform and swimming velocity in the Morris Water Maze test (MWM) with modifications for the mice. The MWM comprised 4 trials per day over 5 consecutive days (sessions) without prior or subsequent training. In a separate set of animals, BDNF protein levels in the cortex, thalamostriatum and the hippocampus were measured quantitatively using ELISA. In the BDNF (+/-) mice, the BDNF levels in the cortex, the thalamostriatum and the hippocampus were significantly high, compared to the wild-type littermates; 238%, 158%, and 171%, respectively (P<0.01, one-way ANOVA and a post-hoc test in each region). The BDNF levels in the BDNF (+/+) mice were not elevated. The BDNF (+/-), but not the (+/+) mice, demonstrated significantly shorter escape latency, shorter total path length in the MWM, and more frequent arrivals at the location where the platform had been placed previously in the probe trial, compared with the wild-type littermates (P<0.05, at each time pint). Because the maximum swimming velocity was not affected in the BDNF-transgenic mice, increased BDNF levels in the brain were found to enhance spatial learning and memory function. Although it has been postulated that excessive BDNF is deteriorating for neuronal survival or neurite outgrowth, further investigations are needed to clarify the mechanism of paradoxical lack of increase in BDNF levels in the (+/+) mouse brain.

  15. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation.

    PubMed

    Szeszko, P R; Lipsky, R; Mentschel, C; Robinson, D; Gunduz-Bruce, H; Sevy, S; Ashtari, M; Napolitano, B; Bilder, R M; Kane, J M; Goldman, D; Malhotra, A K

    2005-07-01

    Magnetic resonance (MR) imaging studies have identified hippocampal structural alterations in the pathogenesis of schizophrenia. Brain-derived neurotrophic factor (BDNF) is one of the neurotrophins that is widely expressed in the hippocampal formation and has been implicated in the neurobiology of schizophrenia. Polymorphisms in the BDNF gene may therefore confer risk for schizophrenia through hippocampal pathogenesis and/or making the hippocampus more susceptible to environmental insults. In this study, we investigated whether val66met, a functional and abundant missense polymorphism in the coding region of the BDNF gene, was associated with the volume of the hippocampal formation in 19 patients with first-episode schizophrenia and 25 healthy volunteers. A total of 124 contiguous T1-weighted coronal MR images (slice thickness=1.5 mm) were acquired through the whole head using a 3D Fast SPGR IR Prep sequence on a 1.5 T GE imaging system. Volumes of the right and left hippocampal formation were measured manually by an operator blind to group status and genotype. All participants were genotyped for the BDNF val66met locus. Mixed model analyses revealed a main effect of BDNF val66met genotype such that in the combined sample of patients and healthy volunteers, val/val homozygotes (N=27) had larger volumes of the hippocampal formation compared to val/met heterozygotes (N=17). In separate analyses by group, however, val66met genotype accounted for a greater proportion of the variance in the volume of the hippocampal formation in patients compared to healthy volunteers. These findings implicate genetic involvement of BDNF in variation of human hippocampal volume and suggest that this effect may be greater among patients compared to healthy volunteers.

  16. Serum and plasma brain-derived neurotrophic factor (BDNF) in abstinent alcoholics and social drinkers.

    PubMed

    D'Sa, Carrol; Dileone, Ralph J; Anderson, George M; Sinha, Rajita

    2012-05-01

    Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse.

  17. Expression and Distribution of Mesencephalic Astrocyte-Derived Neurotrophic Factor in the Retina and Optic Nerve

    PubMed Central

    Gao, Feng-Juan; Zhang, Sheng-Hai; Li, Ting-Ting; Wu, Ji-Hong; Wu, Qiang

    2017-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF), otherwise named Arginine-Rich, Mutated in Early-stage Tumors (ARMET), is a secretory endoplasmic reticulum stress (ERS) protein that is widely expressed in mammalian tissues. To date, little is known about the distribution and expression of MANF in the retina and optic nerve (ON). Therefore, we studied the expression and distribution of MANF in the ON and retina by real-time PCR, immunofluorescence staining and western blotting. Results from rat and mouse were highly consistent in the retina. MANF was detected in both tissues in rat, wherein it was principally localized to the ganglion cell layer (GCL), followed by the inner nuclear layer (INL). The MANF protein levels in the rat retina were 3.33-fold higher than in the rat ON. Additionally, MANF was robustly expressed by retinal ganglion cells (RGCs) in the human retina. In human ON, MANF was partially co-localized with glial fibrillary acidic protein (GFAP), suggesting that it was not restricted to astrocytes. In vitro studies confirmed that MANF could be robustly expressed in RGCs and was found principally within the cytoplasm. Hypoxia can stimulate up-regulation by of MANF expression over time, suggesting that MANF may play a vital role in the functional regulation of RGCs both in health and disease. We believe that the present study improves our understanding of the distribution and expression of MANF in the retina and ON and could help in further analysis of its interact and correlate with the relevant ophthalmic diseases. PMID:28154531

  18. Brain-Derived Neurotrophic Factor Expression in Asthma. Association with Severity and Type 2 Inflammatory Processes.

    PubMed

    Watanabe, Tetsuya; Fajt, Merritt L; Trudeau, John B; Voraphani, Nipasiri; Hu, Haizhen; Zhou, Xiuxia; Holguin, Fernando; Wenzel, Sally E

    2015-12-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, exists in several isoforms, which differentially impacts neuronal and immune cell survival and differentiation. The role of BDNF and its isoforms in asthma remains unclear. The objectives of this study were to compare the BDNF protein isoforms and specific splice variant expression in sputum and bronchoscopic samples from healthy control subjects and participants with asthma, and to relate these changes to findings in IL-13-stimulated human airway epithelial cells. Sputum and bronchoscopic samples from healthy control subjects and participants with asthma were evaluated for BDNF protein (ELISA and Western blot) and BDNF mRNA (gel and quantitative real-time PCR) in relation to asthma severity and type 2 inflammatory processes. BDNF mRNA was measured in cultured primary human airway epithelial cells after IL-13 stimulation. Total BDNF protein differed among the groups, and its mature isoform was significantly higher in sputum from subjects with severe asthma compared with healthy control subjects (overall P = 0.008, P = 0.027, respectively). Total BDNF was higher in those with elevated fractional exhaled nitric oxide and sputum eosinophilia. In vitro, IL-13 increased BDNF exon VIb splice variant and the ratio to BDNF common exon IX mRNA (P < 0.001, P = 0.003, respectively). Epithelial brushing exon VIb mRNA and total BDNF protein differed among the groups and were higher in subjects with severe asthma than in healthy control subjects (overall P = 0.01, P = 0.02, respectively). The mature BDNF isoform and the exon VIb splice variant are increased in human asthmatic airways. The in vitro increase in response to IL-13 suggests that type 2 cytokines regulate BDNF levels and activity in asthma.

  19. Inflammation and activity augment brain-derived neurotrophic factor peripheral release.

    PubMed

    Qiao, L Y; Shen, S; Liu, M; Xia, C; Kay, J C; Zhang, Q L

    2016-03-24

    Brain-derived neurotrophic factor (BDNF) release to nerve terminals in the central nervous system is crucial in synaptic transmission and neuronal plasticity. However, BDNF release peripherally from primary afferent neurons has not been investigated. In the present study, we show that BDNF is synthesized by primary afferent neurons located in the dorsal root ganglia (DRG) in rat, and releases to spinal nerve terminals in response to depolarization or visceral inflammation. In two-compartmented culture that separates DRG neuronal cell bodies and spinal nerve terminals, application of 50mM K(+) to either the nerve terminal or the cell body evokes BDNF release to the terminal compartment. Inflammatory stimulation of the visceral organ (e.g. the urinary bladder) also facilitates an increase in spontaneous BDNF release from the primary afferent neurons to the axonal terminals. In the inflamed viscera, we show that BDNF immunoreactivity is increased in nerve fibers that are immuno-positive to the neuronal marker PGP9.5. Both BDNF and pro-BDNF levels are increased, however, pro-BDNF immunoreactivity is not expressed in PGP9.5-positive nerve-fiber-like structures. Determination of receptor profiles in the inflamed bladder demonstrates that BDNF high affinity receptor TrkB and general receptor p75 expression levels are elevated, with an increased level of TrkB tyrosine phosphorylation/activity. These results suggest a possibility of pro-proliferative effect in the inflamed bladder. Consistently we show that the proliferation marker Ki67 expression levels are enhanced in the inflamed organ. Our results imply that in vivo BDNF release to the peripheral organ is an important event in neurogenic inflammatory state.

  20. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine.

    PubMed

    Jeanblanc, Jérôme; Coune, Fabien; Botia, Béatrice; Naassila, Mickaël

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) within the striatum is part of a homeostatic pathway regulating alcohol consumption. Memantine, a non-competitive antagonist of N-methyl-D-aspartate receptors, induces expression of BDNF in several brain regions including the striatum. We hypothesized that memantine could decrease ethanol (EtOH) consumption via activation of the BNDF signalling pathway. Effects of memantine were evaluated in Long-Evans rats self-administering moderate or high amounts of EtOH 6, 30 and 54 hours after an acute injection (12.5 and 25 mg/kg). Motivation to consume alcohol was investigated through a progressive ratio paradigm. The possible role for BDNF in the memantine effect was tested by blockade of the TrkB receptor using the pharmacological agent K252a and by the BDNF scavenger TrkB-Fc. Candidate genes expression was also assessed by polymerase chain reaction array 4 and 28 hours after memantine injection. We found that memantine decreased EtOH self-administration and motivation to consume EtOH 6 and 30 hours post-injection. In addition, we found that inhibition or blockade of the BDNF signalling pathway prevented the early, but not the delayed decrease in EtOH consumption induced by memantine. Finally, Bdnf expression was differentially regulated between the early and delayed timepoints. These results demonstrate that an acute injection of memantine specifically reduces EtOH self-administration and motivation to consume EtOH for at least 30 hours. Moreover, we showed that BDNF was responsible for the early effect, but that the delayed effect was BDNF-independent.

  1. Brain-derived neurotrophic factor regulates expression of vasoactive intestinal polypeptide in retinal amacrine cells.

    PubMed

    Cellerino, Alessandro; Arango-González, Blanca; Pinzón-Duarte, Germán; Kohler, Konrad

    2003-12-01

    Brain-derived neurotrophic-factor (BDNF) is expressed in the retina and controls the development of subtypes of amacrine cells. In the present study we investigated the effects of BDNF on amacrine cells expressing vasoactive intestinal polypeptide (VIP). Rats received three intraocular injections of BDNF on postnatal days (P) 16, 18, and 20. The animals were sacrificed on P22, P40, P60, P80, and P120, and VIP expression in their retinas was detected by immunohistochemistry (P22, P40) and by radioimmunoassay (RIA; P22, P40, P60, P80, P120) to assess the time course of BDNF effects on VIP. A significant increase in the density of VIP-positive amacrine cells was detected in BDNF-treated retinas, and VIP concentration was up-regulated by 150% both at P22 and at P40 with respect to untreated controls. VIP concentration then slowly declined in the treated retinas over a period of 3 months; however, a statistically significant increase of 50% was still detectable on P120. The impact of endogenous BDNF on the regulation of VIP expression in the retina was analyzed in mice homozygous for a targeted deletion of the BDNF gene locus (bdnf-/-). VIP immunohistochemistry revealed a marked reduction of VIP-positive amacrine cells and of VIP-immunopositive processes in the inner plexiform layer of the BDNF knockout mice. Mice lacking BDNF expressed only 5% of the VIP protein in their retinas compared with the retinas of wild-type mice as measured by RIA. Our data show that BDNF is a major regulator of VIP expression in retinal amacrine cells and exerts long-lasting effects on VIP content.

  2. Brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cells

    PubMed Central

    HAN, ZHONG-MIN; HUANG, HE-MEI; WANG, FEI-FEI

    2015-01-01

    The present study aimed to investigate the effects of human brain-derived neurotrophic factor (hBDNF) on the differentiation of bone marrow mesenchymal stem cells (MSCs) into neuron-like cells. Lentiviral vectors carrying the hBDNF gene were used to modify the bone marrow stromal cells (BMSCs) of Sprague-Dawley (SD) rats. The rat BMSCs were isolated, cultured and identified. A lentivirus bearing hBDNF and enhanced green fluorescent protein (eGFP) genes was subcultured and used to infect the SD rat BMSCs. The expression of eGFP was observed under a fluorescence microscope to determine the infection rate and growth of the transfected cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect the proliferation rate of cells following transfection. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression levels of hBDNF. Differentiation of neuron-like cells was induced in vitro and the differentiation rate of the induced neural-like cells was compared with that in control groups and analyzed statistically. In the cultured cells, flow cytometry demonstrated positive expression of cluster of differentiation (CD)90 and CD44, and negative expression of CD34 and CD45. The proliferation rate of the rat BMSCs increased following gene transfection. The expression of hBDNF-eGFP was detected in the BMSCs of the experimental group. The differentiation rate of hBDNF-modified cells into neuron-like cells in the experimental group was higher compared with that in empty plasmid and untransfected negative control groups. The difference was statistically significant (P<0.05). Thus, BDNF gene transfection is able to promote the differentiation of BMSCs into neuron-like cells. BDNF may play an important role in the differentiation of MSCs into neuron-like cells. PMID:25574226

  3. Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.

    PubMed

    Danzer, S C; Pan, E; Nef, S; Parada, L F; McNamara, J O

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. To address this concern, BDNF immunoreactivity was examined in rodent slices using two different methods of slice preparation. Rapid and anatomically selective regulation of BDNF content followed slice preparation using both methodologies; however, different patterns of altered BDNF immunoreactivity were observed. First, in cultured slices, BDNF content decreased in the dentate molecular layer and increased in the CA3 pyramidal cell layer and the mossy fiber pathway of the hippocampus after 30 min. Furthermore, an initially "punctate" pattern of BDNF labeling observed in the mossy fiber pathway of control sections changed to homogenous labeling of the pathway in vitro. In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.

  4. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    PubMed

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P < 0.001). These findings suggest that acute exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  5. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  6. Angelica injection reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor and nerve growth factor.

    PubMed

    Zheng, Ping; Zhang, Junjian; Liu, Hanxing; Xu, Xiaojuan; Zhang, Xiaolian

    2008-02-01

    The current study investigated whether chronic cerebral hypoperfusion produced by permanent bilateral common carotid artery occlusion (2-vessel occlusion (2-VO)) induced cognitive impairment and whether angelica injections alleviated the impairment. Furthermore, the study examined whether 2-VO altered the expression patterns of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of rats and whether angelica injections attenuated the alteration. Rats were divided into four groups to receive either 2-VO surgery or sham surgery followed by either angelica injections or saline injections for eight weeks. Spatial learning in Morris water maze and the expression patterns of BDNF and NGF in the hippocampus of all rats were examined. The results showed that 2-VO significantly impaired spatial learning and memory, and angelica injections significantly reversed the learning and memory impairment. Furthermore, 2-VO resulted in significantly decreased BDNF protein, NGF protein, and NGF mRNA expression in the hippocampus. Angelica injections significantly attenuated the decreased expression. Moreover, spatial learning in Morris water maze was positively correlated to the expression of BDNF and NGF in the hippocampus. Thus, angelica injections might alleviate cognitive impairment during chronic cerebral hypoperfusion through BDNF and NGF.

  7. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

  8. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration.

    PubMed

    Requejo, C; Ruiz-Ortega, J A; Bengoetxea, H; Garcia-Blanco, A; Herrán, E; Aristieta, A; Igartua, M; Ugedo, L; Pedraz, J L; Hernández, R M; Lafuente, J V

    2015-10-01

    Administration of various neurotrophic factors is a promising strategy against Parkinson's disease (PD). An intrastriatal infusion of 6-hydroxidopamine (6-OHDA) in rats is a suitable model to study PD. This work aims to describe stereological parameters regarding rostro-caudal gradient, in order to characterize the model and verify its suitability for elucidating the benefits of therapeutic strategies. Administration of 6-OHDA induced a reduction in tyrosine hidroxylase (TH) reactivity in the dorsolateral part of the striatum, being higher in the caudal section than in the rostral one. Loss of TH-positive neurons and axodendritic network was highly significant in the external third of substantia nigra (e-SN) in the 6-OHDA group versus the saline one. After the administration of nanospheres loaded with neurotrophic factors (NTF: vascular endothelial growth factor (VEGF) + glial cell line-derived neurotrophic factor (GDNF)), parkinsonized rats showed more TH-positive fibers than those of control groups; this recovery taking place chiefly in the rostral sections. Neuronal density and axodendritic network in e-SN was more significant than in the entire SN; the topographical analysis showed that the highest difference between NTF versus control group was attained in the middle section. A high number of bromodeoxyuridine (BrdU)-positive cells were found in sub- and periventricular areas in the group receiving NTF, where most of them co-expressed doublecortin. Measurements on the e-SN achieved more specific and significant results than in the entire SN. This difference in rostro-caudal gradients underpins the usefulness of a topological approach to the assessment of the lesion and therapeutic strategies. Findings confirmed the neurorestorative, neurogenic, and synergistic effects of VEGF+GDNF administration.

  9. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress

    PubMed Central

    Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Levandowski, Mateus Luz; Pezzi, Júlio Carlos; Bauer, Moisés Evandro; Teixeira, Antonio Lúcio; Grassi-Oliveira, Rodrigo

    2014-01-01

    Background Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. Methods We conducted a follow-up study that aimed to assess the plasma levels of glial cell line–derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA−) a history of childhood sexual abuse) and a group of nonuser control participants. Results Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA− group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA− group at the end of detoxification. Limitations Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. Conclusion This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were

  10. Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish. Neuritogenic and binding activities for growth factors and neurotrophic factors.

    PubMed

    Nandini, Chilkunda D; Mikami, Tadahisa; Ohta, Mitsuhiro; Itoh, Nobuyuki; Akiyama-Nambu, Fumiko; Sugahara, Kazuyuki

    2004-12-03

    Oversulfated chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains were purified from the notochord of hagfish. The chains (previously named CS-H for hagfish) have an average molecular mass of 18 kDa. Composition analysis using various chondroitinases demonstrated a variety of D-glucuronic acid (GlcUA)- and L-iduronic acid (IdoUA)-containing disaccharides variably sulfated with a higher proportion of GlcUA/IdoUA-GalNAc 4,6-O-disulfate, revealing complex CS/DS hybrid features. The hybrid chains showed neurite outgrowth-promoting activity of an axonic nature, which resembled the activity of squid cartilage CS-E and which was abolished fully by chondroitinase ABC digestion and partially by chondroitinase AC-I or B digestion, suggesting the involvement of both GlcUA and IdoUA in neuritogenic activity. Purified CS-H exhibited interactions in a BIAcore system with various heparin-binding proteins and neurotrophic factors (viz. fibroblast growth factor-2, -10, -16, and -18; midkine; pleiotrophin; heparin-binding epidermal growth factor-like growth factor; vascular endothelial growth factor; brain-derived neurotrophic factor; and glial cell line-derived neurotrophic factor), most of which are expressed in the brain, although fibroblast growth factor-1 and ciliary neurotrophic factor showed no binding. Kinetic analysis revealed high affinity binding of these growth factors and, for the first time, of the neurotrophic factors. Competitive inhibition revealed the involvement of both IdoUA and GlcUA in the binding of these growth factors, suggesting the importance of the hybrid nature of CS-H for the efficient binding of these growth factors. These findings, together with those from the recent analysis of brain CS/DS chains from neonatal mouse and embryonic pig (Bao, X., Nishimura, S., Mikami, T., Yamada, S., Itoh, N., and Sugahara, K. (2004) J. Biol. Chem. 279, 9765-9776), suggest physiological roles of the hybrid chains in the development of the brain.

  11. Smoking Habits and Neuropeptides: Adiponectin, Brain-derived Neurotrophic Factor, and Leptin Levels

    PubMed Central

    Won, Yong Lim; Ko, Kyung Sun; Roh, Ji won

    2014-01-01

    This study aimed to identify changes in the level of neuropeptides among current smokers, former smokers, and individuals who had never smoked, and how smoking habits affect obesity and metabolic syndrome (MetS). Neuropeptide levels, anthropometric parameters, and metabolic syndrome diagnostic indices were determined among male workers; 117 of these had never smoked, whereas 58 and 198 were former and current smokers, respectively. The total sample comprised 373 male workers. The results obtained from anthropometric measurements showed that current smokers attained significantly lower body weight, body mass index, waist circumference, and abdominal fat thickness values than former smokers and those who had never smoked. Current smokers’ eating habits proved worse than those of non-smokers and individuals who had never smoked. The level of brain-derived neurotrophic factor (BDNF) in the neuropeptides in the case of former smokers was 23.6 ± 9.2 pg/ml, higher than that of current smokers (20.4 ± 6.1) and individuals who had never smoked (22.4 ± 5.8) (F = 6.520, p = 0.002). The level of adiponectin among former smokers was somewhat lower than that of current smokers, whereas leptin levels were higher among former smokers than current smokers; these results were not statistically significant. A relationship was found between adiponectin and triglyceride among non-smokers (odds ratio = 0.660, β value = −0.416, p < 0.01) and smokers (odds ratio = 0.827, β value = −0.190, p < 0.05). Further, waist circumference among non-smokers (odds ratio = 1.622, β value = 0.483, p < 0.001) and smokers (odds ratio = 1.895, β value = 0.639, p < 0.001) was associated with leptin. It was concluded that cigarette smoking leads to an imbalance of energy expenditure and appetite by changing the concentration of neuropeptides such as adiponectin, BDNF, leptin, and hsCRP, and influences food intake, body weight, the body mass index, blood pressure, and abdominal fat, which are

  12. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients.

    PubMed

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel; Vinberg, Maj

    2014-09-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3 were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder patients during a 6-12 months period and compared with repeated measurements in healthy control subjects. Careful attention was given to standardization of all procedures and adjustment for potential confounders of BDNF and NT-3. In linear mixed models, adjusting for demographical and lifestyle factors, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (p<0.05), depressed- (p<0.005) and manic/hypomanic (p<0.005) states compared with healthy control subjects. Within bipolar disorder patients, adjusting for medication, there was no significant difference in BDNF levels between affective states, with equally elevated levels present in euthymic-, depressive- and manic/hypomanic patients. Levels of BDNF were higher in patients with longer duration of illness compared with patients with shorter duration of illness. We found no difference in NT-3 levels between bipolar disorder patients in any affective state compared with healthy control subjects and no difference in NT-3 levels between affective states in bipolar disorder patients. The results suggest that

  13. Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats.

    PubMed

    Pietranera, L; Lima, A; Roig, P; De Nicola, A F

    2010-10-01

    The hippocampus of spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)-salt hypertensive rats shows decreased cell proliferation and astrogliosis as well as a reduced number of hilar cells. These defects are corrected after administration of 17β-oestradiol (E(2) ) for 2 weeks. The present work investigated whether E(2) treatment of SHR and of hypertensive DOCA-salt male rats modulated the expression of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in hippocampal neurogenesis. The neurogenic response to E(2) was simultaneously determined by counting the number of doublecortin-immunopositive immature neurones in the subgranular zone of the dentate gyrus. Both hypertensive models showed decreased expression of BDNF mRNA in the granular zone of the dentate gyrus, without changes in CA1 or CA3 pyramidal cell layers, decreased BDNF protein levels in whole hippocampal tissue, low density of doublecortin (DCX)-positive immature neurones in the subgranule zone and decreased length of DCX+ neurites in the dentate gyrus. After s.c. implantation of a single E(2) pellet for 2 weeks, BDNF mRNA in the dentate gyrus, BDNF protein in whole hippocampus, DCX immunopositive cells and the length of DCX+ neurites were significantly raised in both SHR and DOCA-salt-treated rats. These results indicate that: (i) low BDNF expression and deficient neurogenesis distinguished the hippocampus of SHR and DOCA-salt hypertensive rats and (ii) E(2) was able to normalise these biologically important functions in the hippocampus of hypertensive animals.

  14. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Musazzi, Laura; Popoli, Maurizio

    2015-11-01

    Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.

  15. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats

    PubMed Central

    Backes, Iara; McCowan, Michael L.; Hayward, Linda F.; Scheuer, Deborah A.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 μg·0.5 μl−1·h−1). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN. PMID:25576628

  16. Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation.

    PubMed

    Wan, Qun; Ma, Xue; Zhang, Zhi-Jun; Sun, Ting; Xia, Feng; Zhao, Gang; Wu, Yu-Mei

    2016-03-28

    Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of some drugs under chronic cerebral hypoperfusion (CCH) condition. Ginsenoside Rd (GSRd), one of the main active ingredients in Panax ginseng, is widely used for brain protection. However, it is poorly understood whether epigenetic mechanisms implied in the BDNF modulation after GSRd treatment for CCH remain elusive. Here, we investigated the neuroprotective effects of GSRd and the involved mechanisms. We demonstrated that GSRd administration ameliorated CCH-induced impairment of learning and memory behaviors, evidenced by decreased escape latency and increased number of crossing the platform in Morris water maze test. This improvement was associated with promoted neuron survival and increased BDNF expression in the hippocampus and prefrontal cortex of CCH mice. GSRd improved neuron survival and decreased neuron apoptosis and the level of caspase-3 under oxygen-glucose deprivation/reoxygenation (OGD/R) by upregulation of BDNF as well as in vitro. The levels of acetylated histone H3 (Ac-H3) and histone deacetylase (histone deacetylase 2 (HDAC2)) were altered under OGD/R in a time-dependent manner, and GSRd reestablished the balance between Ac-H3 and HDAC2 which resulted in upregulation of BDNF and increased neuron survival. MS-275, an inhibitor of class I HDACs, abolished the levels of Ac-H3 at the bdnf promoters and enhanced upregulation of BDNF after GSRd administration, suggesting a synergistic effect between GSRd and MS-275. All the data suggested that GSRd provided neuroprotection by epigenetic modulation which accounted for the regulation of BDNF in CCH mice.

  17. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia.

    PubMed

    Sakr, H F; Khalil, K I; Hussein, A M; Zaki, M S A; Eid, R A; Alkhateeb, M

    2014-02-01

    The effect of dehydroepiandrosterone (DHEA) on memory and cognition in experimental animals is well known, but its efficacy in clinical dementia is unproven. So, the aim of the present study was to investigate the effect of DHEA on learning and memory activities in a rat model of vascular dementia (VD). Forty-eight male rats that positively passed the holeboard memory test were chosen for the study before bilateral permanent occlusion of the common carotid artery. They were divided into four groups (n=12, each) as follows (i) untreated control, (ii) rats exposed to surgical permanent bilateral occlusion of the common carotid arteries (BCCAO) leading to chronic cerebral hypoperfusion, (iii) rats exposed to BCCAO then received DHEA (BCCAO + DHEA) and (i.v.) rats exposed to BCCAO then received donepezil (BCCAO + DON). Holeboard memory test was used to assess the time, latency, working memory and reference memory. Central level of acetylcholine, norepinephrine and dopamine in the hippocampus were measured. Furthermore, the expression of brain derived neurotrophic factor (BDNF) in the hippocampus was determined. Histopathological studies of the cerebral cortex and transmission electron microscope of the hippocampus were performed. BCCAO decreased the learning and memory activities in the holeboard memory. Also, it decreased the expression of BDNF as well as the central level of acetylcholine, noradrenaline and dopamine as compared to control rats. Treatment with DHEA and donepezil increased the working and reference memories, BDNF expression as well as the central acetylcholine in the hippocampus as compared to BCCAO rats. DHEA produced neuroprotective effects through increasing the expression of BDNF as well as increasing the central level of acetylcholine and catecholamines which are non-comparable to donepezil effects.

  18. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis.

    PubMed

    Xuan, Weijun; Agrawal, Tanupriya; Huang, Liyi; Gupta, Gaurav K; Hamblin, Michael R

    2015-06-01

    Transcranial low-level laser (light) therapy (LLLT) is a new non-invasive approach to treating a range of brain disorders including traumatic brain injury (TBI). We (and others) have shown that applying near-infrared light to the head of animals that have suffered TBI produces improvement in neurological functioning, lessens the size of the brain lesion, reduces neuroinflammation, and stimulates the formation of new neurons. In the present study we used a controlled cortical impact TBI in mice and treated the mice either once (4 h post-TBI, 1-laser), or three daily applications (3-laser) with 810 nm CW laser 36 J/cm(2) at 50 mW/cm(2). Similar to previous studies, the neurological severity score improved in laser-treated mice compared to untreated TBI mice at day 14 and continued to further improve at days 21 and 28 with 3-laser being better than 1-laser. Mice were sacrificed at days 7 and 28 and brains removed for immunofluorescence analysis. Brain-derived neurotrophic factor (BDNF) was significantly upregulated by laser treatment in the dentate gyrus of the hippocampus (DG) and the subventricular zone (SVZ) but not in the perilesional cortex (lesion) at day 7 but not at day 28. Synapsin-1 (a marker for synaptogenesis, the formation of new connections between existing neurons) was significantly upregulated in lesion and SVZ but not DG, at 28 days but not 7 days. The data suggest that the benefit of LLLT to the brain is partly mediated by stimulation of BDNF production, which may in turn encourage synaptogenesis. Moreover the pleiotropic benefits of BDNF in the brain suggest LLLT may have wider applications to neurodegenerative and psychiatric disorders. Neurological Severity Score (NSS) for TBI mice.

  19. Brain-derived neurotrophic factor but not neurotrophin-3 enhances differentiation of somatostatin neurons in hypothalamic cultures.

    PubMed

    Loudes, C; Petit, F; Kordon, C; Faivre-Bauman, A

    2000-09-01

    The present work investigated whether neurotrophins could differentially affect in vitro growth and maturation of two related subsets of hypothalamic neurons, hypophysiotropic somatostatin (SRIH) neurons projecting from the periventricular area and arcuate SRIH interneurons. For this purpose, the hypothalamus of 17-day-old rat fetuses was sampled and separated into a ventral and a dorsal fragment containing respectively periventricular and arcuate regions. Each fragment was dissociated and seeded separately in defined medium. Brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), two important members of the neurotrophin family involved in neuronal differentiation and plasticity, were added to the cultures at seeding time. After 6 or 11 days in vitro, neurons were labeled with an anti-SRIH antiserum and submitted to morphometric analysis. In parallel, SRIH mRNA was estimated by semiquantitative reverse-transcriptase-polymerase chain reaction, and neuronal SRIH content, basal and depolarisation-stimulated releases measured by radioimmunoassay. The response of control, non-labeled neurons was estimated by neuronal counts and by assaying glutamic acid decarboxylase, a marker of a large majority of hypothalamic neurons. BDNF markedly increased the size and the branching number of SRIH periventricular cell bodies. Expression of SRIH mRNA, as well as SRIH content and release into the culture medium, were also stimulated by the neurotrophin. Non-SRIH neurons were not affected by the treatment. Under the same conditions, arcuate neurons exhibited a weak, mostly transient response to BDNF. NT-3 was ineffective on either neuronal subset. Immunoneutralization of Trk receptors provided further evidence for BDNF effect specificity. The results indicate that BDNF is a selective activator of the differentiation of hypophysiotropic SRIH neurons in the periventricular area of the hypothalamus.

  20. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    PubMed

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process.

  1. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  2. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease.

    PubMed

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu

    2012-07-01

    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  3. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles☆

    PubMed Central

    Tan, Junming; Shi, Jiangang; Shi, Guodong; Liu, Yanling; Liu, Xiaohong; Wang, Chaoyang; Chen, Dechun; Xing, Shunming; Shen, Lianbing; Jia, Lianshun; Ye, Xiaojian; He, Hailong; Li, Jiashun

    2013-01-01

    This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. PMID:25206593

  4. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression.

    PubMed

    Adlard, P A; Cotman, C W

    2004-01-01

    Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise

  5. Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury

    PubMed Central

    Diaz-Arrastia, Ramon; Wu, Alan H. B.; Yue, John K.; Manley, Geoffrey T.; Sair, Haris I.; Van Eyk, Jennifer; Everett, Allen D.; Okonkwo, David O.; Valadka, Alex B.; Gordon, Wayne A.; Maas, Andrew I.R.; Mukherjee, Pratik; Yuh, Esther L.; Lingsma, Hester F.; Puccio, Ava M.; Schnyer, David M.

    2016-01-01

    Abstract Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n = 159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p = 0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p = 0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e.,

  6. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

    PubMed Central

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C.; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K.; Lok, Josephine; Ihara, Masafumi

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white

  7. Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury.

    PubMed

    Korley, Frederick K; Diaz-Arrastia, Ramon; Wu, Alan H B; Yue, John K; Manley, Geoffrey T; Sair, Haris I; Van Eyk, Jennifer; Everett, Allen D; Okonkwo, David O; Valadka, Alex B; Gordon, Wayne A; Maas, Andrew I R; Mukherjee, Pratik; Yuh, Esther L; Lingsma, Hester F; Puccio, Ava M; Schnyer, David M

    2016-01-15

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n = 159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p = 0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p = 0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e.,

  8. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway

    PubMed Central

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B.; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F.

    2017-01-01

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. PMID:28212323

  9. Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway.

    PubMed

    Wang, Bohan; Ning, Hongxiu; Reed-Maldonado, Amanda B; Zhou, Jun; Ruan, Yajun; Zhou, Tie; Wang, Hsun Shuan; Oh, Byung Seok; Banie, Lia; Lin, Guiting; Lue, Tom F

    2017-02-16

    Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157-an inhibitor of PERK-effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy.

  10. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats.

    PubMed

    Wisniewski, Miriam S W; Carvalho-Silva, Milena; Gomes, Lara M; Zapelini, Hugo G; Schuck, Patrícia F; Ferreira, Gustavo C; Scaini, Giselli; Streck, Emilio L

    2016-04-01

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD.

  11. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  12. Brain-Derived Neurotrophic Factor and Suicide in Schizophrenia: Critical Role of Neuroprotective Mechanisms as an Emerging Hypothesis

    PubMed Central

    Shrivastava, Amresh; De Sousa, Avinash; Rao, G. Prasad

    2016-01-01

    Suicide is a common occurrence in psychiatric disorders and is a cause of increased healthcare utilization worldwide. Schizophrenia is one of the most common psychiatric disorders worldwide and posited to be seen in 1% of the population worldwide. Suicide is a common occurrence in schizophrenia with 25%–30% patients with schizophrenia attempting suicide and 8%–10% completing it. There is a need for valid biological markers to help clinicians identify patients with schizophrenia that may be at a risk of suicide and thus help in them receiving better care and interventions at the earliest even before a suicide attempt occurring. There are clear neurobiological changes at a genetic, neuroimaging, and neurochemical level that occurs in patients with schizophrenia that attempt suicide. There is a new theory that postulates neuronal plasticity and neuroprotection to have a role in the biological changes that ensue when suicidal thoughts and feelings occur in patients with schizophrenia. Neurotrophic growth factors like brain-derived neurotrophic factor (BDNF) have been documented to play a role in the protection of neurons and in the prevention of neurobiological changes that may lead to suicide both in schizophrenia and depression. The present paper presents a commentary that looks at the role of BDNF as a protective factor and neurobiological marker for suicide in schizophrenia. PMID:28031582

  13. Association study of 37 genes related to serotonin and dopamine neurotransmission and neurotrophic factors in cocaine dependence.

    PubMed

    Fernàndez-Castillo, N; Roncero, C; Grau-Lopez, L; Barral, C; Prat, G; Rodriguez-Cintas, L; Sánchez-Mora, C; Gratacòs, M; Ramos-Quiroga, J A; Casas, M; Ribasés, M; Cormand, B

    2013-02-01

    Cocaine dependence is a neuropsychiatric disorder in which both environmental and genetic factors are involved. Several processes, that include reward and neuroadaptations, mediate the transition from use to dependence. In this regard, dopamine and serotonin neurotransmission systems are clearly involved in reward and other cocaine-related effects, whereas neurotrophic factors may be responsible for neuroadaptations associated with cocaine dependence. We examined the contribution to cocaine dependence of 37 genes related to the dopaminergic and serotoninergic systems, neurotrophic factors and their receptors through a case-control association study with 319 single nucleotide polymorphisms selected according to genetic coverage criteria in 432 cocaine-dependent patients and 482 sex-matched unrelated controls. Single marker analyses provided evidence for association of the serotonin receptor HTR2A with cocaine dependence [rs6561333; nominal P-value adjusted for age = 1.9e-04, odds ratio = 1.72 (1.29-2.30)]. When patients were subdivided according to the presence or absence of psychotic symptoms, we confirmed the association between cocaine dependence and HTR2A in both subgroups of patients. Our data show additional evidence for the involvement of the serotoninergic system in the genetic susceptibility to cocaine dependence.

  14. Higher levels of brain derived neurotrophic factor but similar nerve growth factor in human milk in women with preeclampsia.

    PubMed

    Dangat, Kamini; Kilari, Anitha; Mehendale, Savita; Lalwani, Sanjay; Joshi, Sadhana

    2013-05-01

    Children born to mothers with preeclampsia have consistently been suggested to be at risk for cognitive and behavioral disorders in later life. Breastfeeding is said to be associated with better neurodevelopment outcomes. Our earlier studies indicated higher levels of docosahexaenoic acid (DHA) in human milk in women with preeclampsia. DHA is known to regulate the expression of neurotrophins and together they play a vital role in neurodevelopment and cognitive performance. The present study examines the levels of maternal plasma and milk neurotrophins [(nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF)] in women with preeclampsia and compares them with normotensive women who served as controls. Singleton pregnant women diagnosed with preeclampsia (n=72) and controls (n=102) were recruited for this study from Bharati Hospital, Pune. Plasma and milk samples were analyzed for NGF and BDNF levels using the Emax Immuno Assay System using promega kits. Maternal plasma NGF and BDNF levels were lower (p<0.01 for both) in women with preeclampsia as compared to the control women. Milk NGF levels were similar while milk BDNF levels were higher (p<0.05) in the preeclampsia group as compared to controls. Plasma NGF levels were positively correlated with milk NGF levels in the control group. Our results indicate the differential regulation of milk NGF and BDNF levels in women with preeclampsia. The present study suggests a role for both NGF and BDNF in human milk for postnatal brain development. Further studies need to examine the associations of DHA and BDNF in human milk with cognition at later ages.

  15. Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors.

    PubMed

    Requejo, C; Ruiz-Ortega, J A; Bengoetxea, H; García-Blanco, A; Herrán, E; Aristieta, A; Igartua, M; Pedraz, J L; Ugedo, L; Hernández, R M; Lafuente, J V

    2016-11-14

    The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson's disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.

  16. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    PubMed

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders.

  17. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer's disease as well as in wild-type mice.

    PubMed

    Kemppainen, Susanna; Lindholm, Päivi; Galli, Emilia; Lahtinen, Hanna-Maija; Koivisto, Henna; Hämäläinen, Elina; Saarma, Mart; Tanila, Heikki

    2015-09-15

    Cerebral dopamine neurotrophic factor (CDNF) protects and repairs dopamine neurons in animal models of Parkinson's disease, which motivated us to investigate its therapeutic effect in an animal model of Alzheimer's disease (AD). We employed an established APP/PS1 mouse model of AD and gave intrahippocampal injections of CDNF protein or CDNF transgene in an AAV2 viral vector to 1-year-old animals. We performed a behavioral test battery 2 weeks after the injections and collected tissue samples after the 3-week test period. Intrahippocampal CDNF-therapy improved long-term memory in both APP/PS1 mice and wild-type controls, but did not affect spontaneous exploration, object neophobia or early stages of spatial learning. The memory improvement was not associated with decreased brain amyloid load or enhanced hippocampal neurogenesis. Intracranial CDNF treatment has beneficial effects on long-term memory and is well tolerated. The CDNF molecular mechanisms of action on memory await further studies.

  18. Neuroprotection of brain-derived neurotrophic factor against hypoxic injury in vitro requires activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.

    PubMed

    Sun, Xiaomei; Zhou, Hui; Luo, Xiaoli; Li, Shengfu; Yu, Dan; Hua, Jiping; Mu, Dezhi; Mao, Meng

    2008-01-01

    Intrauterine asphyxia is one of the major contributors for perinatal death, mental and physical disorders of surviving children. Brain-derived neurotrophic factor (BDNF) provides a promising solution to hypoxic injury due to its survival-promoting effects. In an attempt to identify possible molecular mechanisms underlying the neuroprotective role of BDNF, we studied extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI-3-K) and p38 mitogen-activated protein kinase (MAPK) pathways. We demonstrated that BDNF protected cortical neurons against hypoxic injury in vitro via activation of both the ERK and PI-3-K pathways but not the p38 MAPK pathway. We also showed that both hypoxic stimuli and exogenous BDNF treatment phosphorylated the cyclic AMP response element-binding protein (CREB) and that CREB phosphorylation induced by BDNF was mediated via the ERK pathway in cultured cortical neurons.

  19. Short-term ethanol exposure causes imbalanced neurotrophic factor allocation in the basal forebrain cholinergic system: a novel insight into understanding the initial processes of alcohol addiction.

    PubMed

    Miki, Takanori; Kusaka, Takashi; Yokoyama, Toshifumi; Ohta, Ken-ichi; Suzuki, Shingo; Warita, Katsuhiko; Jamal, Mostofa; Wang, Zhi-Yu; Ueki, Masaaki; Liu, Jun-Qian; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2014-02-01

    Alcohol ingestion affects both motor and cognitive functions. One brain system that is influenced by ethanol is the basal forebrain (BF) cholinergic projection system, which projects to diverse neocortical and limbic areas. The BF is associated with memory and cognitive function. Our primary interest is the examination of how regions that receive BF cholinergic projections are influenced by short-term ethanol exposure through alterations in the mRNA levels of neurotrophic factors [nerve growth factor/TrkA, brain-derived neurotrophic factor/TrkB, and glial-derived neurotrophic factor (GDNF)/GDNF family receptor α1]. Male BALB/C mice were fed a liquid diet containing 5 % (v/v) ethanol. Pair-fed control mice were maintained on an identical liquid diet, except that the ethanol was isocalorically substituted with sucrose. Mice exhibiting signs of ethanol intoxication (stages 1-2) were used for real-time reverse transcription-polymerase chain reaction analyses. Among the BF cholinergic projection regions, decreased levels of GDNF mRNA and increased levels of TrkB mRNA were observed in the basal nucleus, and increased levels of TrkB mRNA were observed in the cerebral cortex. There were no significant alterations in the levels of expression of relevant neurotrophic factors in the septal nucleus and hippocampus. Given that neurotrophic factors function in retrograde/anterograde or autocrine/paracrine mechanisms and that BF cholinergic projection regions are neuroanatomically connected, these findings suggested that an imbalanced allocation of neurotrophic factor ligands and receptors is an initial phenomenon in alcohol addiction. The exact mechanisms underlying this phenomenon in the BF cholinergic system are unknown. However, our results provide a novel notion for the understanding of the initial processes in alcohol addiction.

  20. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia.

    PubMed

    Chen, Gang; Fu, Qiang; Cao, Jiangbei; Mi, Weidong

    2012-07-25

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  1. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury.

    PubMed

    Liu, Guomin; Wang, Xukai; Shao, Guoxi; Liu, Qinyi

    2014-04-01

    Schwann cells (SCs) are the major cells constituting the peripheral nerve structure and function, and also secret a variety of neurotrophic factors. Schwann cell (SC) transplantation has recently emerged as a promising therapeutic strategy for spinal cord injury (SCI). In the present study, the ability of genetically modified SCs producing high levels of glial cell line‑derived neurotrophic factor (GDNF) to promote spinal cord repair was assessed. The GDNF gene was transduced into SCs. The engineered SCs were characterized by their ability to express and secrete biologically active GDNF, which was shown to inhibit apoptosis of primary rat neurons induced by radiation, and upregulate the expression of B‑cell lymphoma 2 (Bcl‑2) and downregulate the expression of Bcl‑2 associated X protein (Bax) in vitro. Following SC implantation into the spinal cord of adult rats with SCI induced by weight‑drop impact, the survival of rats with transplanted SCs, histology of the spinal cord and expression levels of Bcl‑2 and Bax were examined. Transplantation of unmodified and genetically modified SCs producing GDNF attenuated SCI by inhibiting apoptosis via the Bcl‑2/Bax pathways. The genetically modified SCs demonstrated markedly improved recovery of SCI as compared with unmodified SCs. The present study combined the outgrowth‑promoting property of SCs with the neuroprotective effects of overexpressed GDNF and identified this as a potential novel therapeutic strategy for SCI.

  2. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  3. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia.

    PubMed

    Ploughman, M; Granter-Button, S; Chernenko, G; Tucker, B A; Mearow, K M; Corbett, D

    2005-01-01

    The optimal amount of endurance exercise required to elevate proteins involved in neuroplasticity during stroke rehabilitation is not known. This study compared the effects of varying intensities and durations of endurance exercise using both motorized and voluntary running wheels after endothelin-I-induced focal ischemia in rats. Hippocampal levels of brain-derived neurotrophic factor, insulin-like growth factor I and synapsin-I were elevated in the ischemic hemisphere even in sedentary animals suggesting an intrinsic restorative response 2 weeks after ischemia. In the sensorimotor cortex and the hippocampus of the intact hemisphere, one episode of moderate walking exercise, but not more intense running, resulted in the greatest increases in levels of brain-derived neurotrophic factor and synapsin-I. Exercise did not increase brain-derived neurotrophic factor, insulin-like growth factor I or synapsin-I in the ischemic hemisphere. In voluntary running animals, both brain and serum insulin-like growth factor I appeared to be intensity dependent and were associated with decreasing serum levels of insulin-like growth factor I and increasing hippocampal levels of insulin-like growth factor I in the ischemic hemisphere. This supports the notion that exercise facilitates the movement of insulin-like growth factor I across the blood-brain barrier. Serum corticosterone levels were elevated by all exercise regimens and were highest in rats exposed to motorized running of greater speed or duration. The elevation of corticosterone did not seem to alter the expression of the proteins measured, however, graduated exercise protocols may be indicated early after stroke. These findings suggest that relatively modest exercise intervention can increase proteins involved in synaptic plasticity in areas of the brain that likely subserve motor relearning after stroke.

  4. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models.

    PubMed

    Lühder, Fred; Gold, Ralf; Flügel, Alexander; Linker, Ralf A

    2013-04-01

    The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.

  5. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    ERIC Educational Resources Information Center

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  6. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats

    PubMed Central

    Antonio-Santos, José; Ferreira, Diórginis José S.; Gomes Costa, Gizelle L.; Matos, Rhowena Jane B.; Toscano, Ana E.; Manhães-de-Castro, Raul

    2016-01-01

    Abstract Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531–3538, 2016—Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors. PMID:27870699

  7. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    PubMed Central

    Hacioglu, Gulay; Senturk, Ayse; Ince, Imran; Alver, Ahmet

    2016-01-01

    Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain. PMID:27279982

  8. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis.

    PubMed

    Taliaz, D; Stall, N; Dar, D E; Zangen, A

    2010-01-01

    Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, animal studies suggest an association between reduced hippocampal neurogenesis and depressive-like behavior. These associations were predominantly established based on responses to antidepressant drugs and alterations in BDNF levels and neurogenesis in depressive patients or animal models for depressive behavior. Nevertheless, there is no direct evidence that the actual reduction of the BDNF protein in specific brain sites can induce depressive-like behaviors or affect neurogenesis in vivo. Using BDNF knockdown by RNA interference and lentiviral vectors injected into specific subregions of the hippocampus we show that a reduction in BDNF expression in the dentate gyrus, but not the CA3, reduces neurogenesis and affects behaviors associated with depression. Moreover, we show that BDNF has a critical function in neuronal differentiation, but not proliferation in vivo. Finally, we found that a specific BDNF knockdown in the ventral subiculum induces anhedonic-like behavior. These findings provide substantial support for the neurotrophic hypothesis of depression and specify anatomical and neurochemical targets for potential antidepressant interventions. Moreover, the specific effect of BDNF reduction on neuronal differentiation has broader implications for the study of neurodevelopment and neurodegenerative diseases.

  9. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment.

    PubMed

    Arango-Lievano, Margarita; Lambert, W Marcus; Bath, Kevin G; Garabedian, Michael J; Chao, Moses V; Jeanneteau, Freddy

    2015-12-22

    Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.

  10. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin.

    PubMed

    Hidaka, Takanori; Ogawa, Eisaku; Kobayashi, Eri H; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Fujimura, Taku; Aiba, Setsuya; Nakayama, Keiko; Okuyama, Ryuhei; Yamamoto, Masayuki

    2017-01-01

    Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.

  11. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.

  12. Hypothyroidism in the Adult Rat Causes Incremental Changes in Brain-Derived Neurotrophic Factor, Neuronal and Astrocyte Apoptosis, Gliosis, and Deterioration of Postsynaptic Density

    PubMed Central

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J.; Bueno, Susan M.; Gonzalez, Pablo A.; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P.; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M.

    2012-01-01

    Background Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T4) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Methods Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-d-aspartate receptor (NMDAr) were analyzed by immunoblot. Results : We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Conclusions Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF. PMID:22870949

  13. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene.

    PubMed

    Liu, Qianxu; Cheng, Guangui; Wang, Zhiwei; Zhan, Shujie; Xiong, Binbin; Zhao, Xiaoming

    2015-03-01

    Bone marrow-derived mesenchymal stem cells can differentiate into a variety of adult cells. Brain-derived neurotrophic factor (BDNF) is briefly active during differentiation and induces mesenchymal stem cells to differentiate into nerve cells. In this study, we cloned human BDNF to generate a recombinant pcDNA3.1(-)-BDNF vector and transfected the vector into bone marrow-derived mesenchymal stem cells. We selected these cells with Geneticin-418 to obtain BDNF-BMSCs, which were induced with retinoic acid to obtain induced BDNF-BMSCs. The transfected cells displayed the typical morphology and surface antigen profile of fibroblasts and were observed to express clusters of differentiation 29, 44, and 90 (observed in matrix and stromal cells), but not clusters of differentiation 31, 34, and 45 (observed in red blood cells and endothelial cells), via flow cytometry. Enzyme-linked immunosorbent assays showed that transfected bone marrow-derived mesenchymal stem cells secreted more BDNF than non-transfected bone marrow-derived mesenchymal stem cells. Immunocytochemistry and real-time reverse transcription polymerase chain reaction analysis showed that non-induced BDNF-BMSCs maintained a higher proliferative capacity and expressed higher amounts of brain-derived neurotrophic factor, nestin, neuron-specific enolase, and glial fibrillary acid protein than non-transfected bone marrow-derived mesenchymal stem cells. An additional increase was observed in the induced BDNF-BMSCs compared to the non-induced BDNF-BMSCs. This expression profile is characteristic of neurocytes. Our data demonstrate that bone marrow-derived mesenchymal stem cells transfected with the BDNF gene can differentiate into nerve-like cells in vitro, which may enable the generation of sufficient quantities of nerve-like cells for treatment of neuronal diseases.

  14. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors.

    PubMed

    Wetmore, C; Olson, L; Bean, A J

    1994-03-01

    We have examined the influence of glutamate on cortical brain-derived neurotrophic factor (BDNF) expression using in situ hybridization and immunohistochemistry. Kainic acid (KA) produced an upregulation of hippocampal and neocortical BDNF mRNA as well as BDNF protein that was blocked by a non-NMDA antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), but was not affected by the NMDA antagonist 2-amino-7-phosphonoheptanoic acid (AP7). Basal levels of BDNF mRNA were not affected by NMDA, DNQX, or AP7 treatment. BDNF protein was also increased after kainate exposure with a spatial and temporal course distinct from that seen for the expression of BDNF mRNA. A dramatic shift in BDNF immunoreactivity (-IR) was observed from intracellular compartments to the neuropil surrounding CA3 pyramidal cells 2-3 hr after KA exposure. This shift in localization of BDNF-IR suggests a constitutive release of BDNF at the level of the cell body and dendrites. Moreover, we have localized mRNAs for full-length and truncated trkB, to a co-incident population of neurons and glia. These data suggest the neurons that produce BDNF also express components necessary for a biological response to the same neurotrophic factor. The present study also demonstrates increased BDNF-IR in the mossy fiber terminal zone of hippocampus after exposure to KA, as well as an increase in trkB mRNA, and provides evidence of local release of this neurotrophin into the surrounding neuropil where it would be available for local utilization. The synthesis and putative release of BDNF from somatic and/or dendritic sites within the hippocampus provide evidence of a potential autocrine or paracrine role for BDNF, and establish a local source of trophic support for the maintenance of synaptic plasticity and anatomic reorganization in the mature nervous system.

  15. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats.

    PubMed

    Li, Ruilin; Zhang, Junjian; Zhang, Lei; Cui, Qin; Liu, Hui

    2010-08-01

    Several nervous system injury models, such as sciatic crush and chronic cerebral hypoperfusion have been well studied in terms of neuroprotective effect of angelica injection. However, definitive experimental studies are lacking on diabetic peripheral neuropathy (DPN). This study sought to investigate the effects of angelica injection on DPN in type 1 diabetic rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). To examine whether DPN model succeeded, tail-flick latency (TFL) and motor nerve conduction velocity (MNCV) were measured at 6 weeks after diabetes induction. Then, diabetic rats were treated with high- and low-dose angelica injection for 4 weeks. TFL, MNCV, morphology of sciatic nerve, myelinated nerve fiber density and the expressions of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in soleus and sciatic nerve were measured at 10 weeks after diabetes induction. The results showed the TFL was significantly shortened (p<0.001) and the MNCV was reduced (p<0.01) in diabetic rats compared with normal control rats at 6 weeks after diabetes induction. The TFL was obviously prolonged and the MNCV was further reduced in diabetic control group at 10 weeks after diabetes induction. TFL, MNCV and morphology of sciatic nerve were remarkably ameliorated and myelinated nerve fiber density and the expressions of NGF and BDNF in soleus and sciatic nerve were increased in the angelica treatment groups. This study suggests angelica injection has potential therapeutic effects on DPN, and the mechanism might be related to direct increase in NGF expression and direct or indirect increase in BDNF expression.

  16. Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum.

    PubMed

    Chase, T; Carrey, N; Soo, E; Wilkinson, M

    2007-02-09

    Methylphenidate (MPH) is a psychostimulant drug used to treat attention deficit hyperactivity disorder in children. To explore the central effects of chronic MPH, we investigated the expression of an effector immediate early gene, activity regulated cytoskeletal associated (arc), and the neurotrophin, brain-derived neurotrophic factor (bdnf) in the brain of immature and adult rats following repeated MPH. Prepubertal (postnatal day (PD) 25-38) and adult (PD 53-66) male rats were injected once daily for: a) 14 days with saline or MPH (2 or 10 mg/kg; s.c.) or b) 13 days with saline followed by a single dose of MPH (2 or 10 mg/kg; s.c.). To determine possible long-term effects of MPH, prepubertal rats were allowed a drug-free period of 4 weeks following the 14 days of treatment, and then were given a challenge dose of MPH. We demonstrated, for the first time, that an acute injection of MPH increased levels of activity-regulated cytoskeletal protein (ARC) and arc mRNA in the prepubertal rat striatum and cingulate/frontal cortex. This response was significantly attenuated by chronic MPH. The desensitization in arc expression observed in prepubertal rats persisted in the adult striatum following a later MPH challenge. In contrast to these data we observed little effect of MPH on bdnf expression. We also developed an effective, non-stressful technique to treat freely moving immature rats with oral MPH. Consistent with the results described above, we observed that oral MPH (7.5 and 10 mg/kg) also increased arc expression in the prepubertal rat striatum. However, unlike the effects of injected MPH, repeated oral MPH (7.5 mg/kg) did not alter the normal arc response. This result raises the important possibility that oral doses of MPH that reproduce clinically relevant blood levels of MPH may not down-regulate gene expression, at least in the short term (14 days). We confirmed, using mass spectrometry, that the oral doses of MPH used in our experiments yielded blood levels

  17. Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome.

    PubMed

    Kadowaki, Shinpei; Shishido, Tetsuro; Honda, Yuki; Narumi, Taro; Otaki, Yoichiro; Kinoshita, Daisuke; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Miyamoto, Takuya; Watanabe, Tetsu; Kubota, Isao

    2016-04-01

    The importance of the central nervous system in cardiovascular events has been recognized. Recently, brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is involved in depression mechanisms and also in stress and anxiety. Because BDNF is reported about cardioprotective role, we elucidated whether BDNF is associated with cardiovascular events in patients with chronic heart failure (CHF). We examined serum BDNF levels in 134 patients with CHF and 23 control subjects. The patients were followed to register cardiac events for a median of 426 days. BDNF was significantly lower in CHF patients than in control subjects (25.8 ± 8.4 vs 14.7 ± 8.4, P < 0.0001). Serum BDNF was also lower in patients with cardiac events than in event-free patients (16.1 ± 8.0 vs 12.5 ± 8.5, P < 0.0001). The cutoff value of BDNF was determined by performing receiver operating characteristic curve analysis. Kaplan-Meier analysis demonstrated that patients with low levels of BDNF experienced higher rates of cardiac events than those with high levels of BDNF. Multivariate Cox hazard analysis demonstrated that low BDNF levels (≤12.4 ng/mL) were an independent prognostic factor for cardiac events (hazard ratio 2.932, 95 % confidence interval 1.622-5.301; P = 0.0004). Adding levels of BDNF to the model with BNP levels, age, and eGFR for the prediction of cardiac events yielded significant net reclassification improvement of 0.429 (P < 0.001) and an integrated discrimination improvement of 0.101 (P < 0.001). Low serum BDNF levels were found in patients with CHF, and these levels were found to be independently associated with an increased risk of cardiac events.

  18. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy

    SciTech Connect

    Lee, D.A.; Gross, L.; Wittrock, D.A.; Windebank, A.J.

    1996-08-01

    Ciliary neurotrophic factor (CNTF) is thought to play an important role in the maintenance of the mature motor system. The factor is found most abundantly in myelinating Schwann cells in the adult sciatic nerve. Lack of neuronal growth factors has been proposed as one possible etiology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Growth factor replacement therapies are currently being evaluated as a treatment for motor neuron disease. In this report we determined whether the expression of CNTF in sciatic nerve differed in patients with motor neuron disease compared to controls or patients with another form of axonopathy. We identified 8 patients (7 with ALS and 1 with SMA) with motor neuron disease and 6 patients with diabetic motor neuropathy who had autopsy material available. Immunoperoxidase staining showed reduced CNTF expression in nerves of patients with motor neuron disease but not in patients with diabetic motor neuropathy. Decreased CNTF appears be associated with primary motor neuron disease rather than a generalized process of axon loss. This result supports suggestions that CNTF deficiency may be an important factor in the development of motor neuron disease. 20 refs., 4 figs., 1 tab.

  19. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  20. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: effects on neurotrophic factors and neuronal density.

    PubMed

    Tasset, I; Medina, F J; Jimena, I; Agüera, E; Gascón, F; Feijóo, M; Sánchez-López, F; Luque, E; Peña, J; Drucker-Colín, R; Túnez, I

    2012-05-03

    There is evidence to suggest that the neuroprotective effect of exposure of extremely low-frequency electromagnetic fields (ELF-EMF) may be due, at least in part, to the effect of these fields on neurotrophic factors levels and cell survival, leading to an improvement in behavior. This study was undertaken to investigate the neuroprotective effects of ELFEF in a rat model of 3-nitropropionic acid (3NP)-induced Huntington's disease. Behavior patterns were evaluated, and changes in neurotrophic factor, cell damage, and oxidative stress biomarker levels were monitored in Wistar rats. Rats were given 3NP over four consecutive days (20 mg/kg body weight), whereas ELFEF (60 Hz and 0.7 mT) was applied over 21 days, starting after the last injection of 3NP. Rats treated with 3NP exhibited significantly different behavior in the open field test (OFT) and the forced swim test (FST), and displayed significant differences in neurotrophic factor levels and oxidative stress biomarkers levels, together with a neuronal damage and diminished neuronal density, with respect neuronal controls. ELFEF improved neurological scores, enhanced neurotrophic factor levels, and reduced both oxidative damage and neuronal loss in 3NP-treated rats. ELFEF alleviates 3NP-induced brain injury and prevents loss of neurons in rat striatum, thus showing considerable potential as a therapeutic tool.

  1. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.

    PubMed

    Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming; Wu, Ling-Gang

    2015-03-18

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions.

  2. Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population.

    PubMed

    Xu, Jie; Liu, Yun; Wang, Peng; Li, Sheng; Wang, Yabing; Li, Jun; Zhou, Daizhan; Chen, Zhuo; Zhao, Teng; Wang, Ting; Xu, He; Yang, Yifeng; Feng, Guoyin; He, Lin; Yu, Lan

    2010-01-05

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system (CNS), and services many biological functions such as neural survival, differentiation, and plasticity. Previous studies have suggested that the Val66Met (also known as rs6265 or G196A) variant of BDNF is associated with bipolar disorder (BPD), but the results have been inconclusive. We therefore genotyped the Val66Met polymorphism in a Han Chinese population sample (498 cases and 501 control subjects). We found that the BDNF genotype is associated with BPD in this population (chi(2) = 9.4666, df = 2, P = 0.00884). Furthermore, our data suggested that the Met allele rather than the Val allele increased the risk for BPD in our Han population (OR = 1.44; 95% CI = 1.070-1.950; P = 0.016). Further studies are necessary to elucidate the involvement of the BDNF gene in the pathophysiology of BPD.

  3. No association of the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) to multiple sclerosis.

    PubMed

    Blanco, Y; Gómez-Choco, M; Arostegui, J L; Casanova, B; Martínez-Rodríguez, J E; Boscá, I; Munteis, E; Yagüe, J; Graus, F; Saiz, A

    2006-04-03

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by neurons and immune cells, promotes neuronal survival and repair during development and after CNS injury. The BDNF-Val66Met polymorphism is functional and induces abnormal intracellular trafficking and decreased BDNF release. Therefore, we investigated the impact of the BDNF-Val66Met polymorphism on the susceptibility and clinical course in a case-control study of 224 multiple sclerosis (MS) Spanish patients and 177 healthy controls. We found no evidence for association to susceptibility or severity of the disease in our population. Moreover, we did not observe, in a subgroup of 12 MS patients, that the methionine substitution at position 66 in the prodomain had negative impact in the capacity to produce BDNF by peripheral blood mononuclear cells (PBMC).

  4. Infusion of brain-derived neurotrophic factor into the ventral tegmental area switches the substrates mediating ethanol motivation.

    PubMed

    Ting-A-Kee, Ryan; Vargas-Perez, Hector; Bufalino, Mary-Rose; Bahi, Amine; Dreyer, Jean-Luc; Tyndale, Rachel F; van der Kooy, Derek

    2013-03-01

    Recent work has shown that infusion of brain-derived neurotrophic factor (BDNF) into the ventral tegmental area (VTA) promotes a switch in the mechanisms mediating morphine motivation, from a dopamine-independent to a dopamine-dependent pathway. Here we showed that a single infusion of intra-VTA BDNF also promoted a switch in the mechanisms mediating ethanol motivation, from a dopamine-dependent to a dopamine-independent pathway (exactly opposite to that seen with morphine). We suggest that intra-VTA BDNF, via its actions on TrkB receptors, precipitates a switch similar to that which occurs naturally when mice transit from a drug-naive, non-deprived state to a drug-deprived state. The opposite switching of the mechanisms underlying morphine and ethanol motivation by BDNF in previously non-deprived animals is consistent with their proposed actions on VTA GABAA receptors.

  5. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    PubMed Central

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  6. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster.

    PubMed

    Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro

    2016-10-30

    Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories.

  7. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review.

    PubMed

    Huang, T; Larsen, K T; Ried-Larsen, M; Møller, N C; Andersen, L B

    2014-02-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies.

  8. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases

    PubMed Central

    Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265

  9. [EVALUATED SERUM LEVELS OF BRAIN-DERIVED NEUROTROPHIC FACTOR IN MEN AND WOMEN WITH CHRONIC BRAIN ISCHEMIA].

    PubMed

    Abramenko, Iu V; Sliusar', T A; Iakovlev, N A

    2015-01-01

    We measured serum levels of brain-deri