Science.gov

Sample records for neutral atmospheric boundary

  1. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  2. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn's moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  3. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    2008-08-01

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  4. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  5. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Jacob, Chinthaka; Anderson, William

    2016-06-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1 . This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  6. Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-06-01

    Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

  7. Investigation and validation of wake model combinations for large wind farm modelling in neutral atmospheric boundary layers

    NASA Astrophysics Data System (ADS)

    Tromeur, E.; Puygrenier, S.; Sanquer, S.

    2016-09-01

    This study is focused on assessing the ability of two refined large wind farm models to describe the disturbance of the neutral atmospheric flow caused by large offshore wind farms. Sensitivity studies of internal boundary layer parameters are carried out. An optimum large wind farm correction is then proposed and combined with two different standard single wake models, the Park and EVM models. The large wind farm wake effect is evaluated and validated against measurements of two offshore wind farms at Horns Rev and Nysted and four standard wake models by computing velocity deficit and normalized power. All large wind farm models proposed were able to capture wake width to some degree and the decrease of power output moving through the wind farm. Despite some uncertainties, this very promising model combinations allows us to take into account the slowdown in large wind farms.

  8. RAMS sensitivity to mesh resolution in large eddy simulation of the neutral and convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ercolani, Giulia; Gorlé, Catherine; Corbari, Chiara; Mancini, Marco

    2014-05-01

    Large Eddy Simulation (LES) is a computational fluid dynamic technique that has been extensively used to reproduce turbulence in the Atmospheric Boundary Layer (ABL). Most LES applications to ABL modelling deal with idealized regimes, particularly suited for the verification of simulation results and consisting in homogeneous surface properties, prescribed fluxes at the surface and periodic lateral boundary conditions. In recent years interest has grown around the possibility of using LES as a tool to study ABL turbulence in more realistic situations, i.e. avoiding periodic lateral boundary conditions and coupling LES with a land surface model that dynamically computes heat and moisture fluxes at the surface. One appealing alternative to periodic lateral boundary conditions seems to be grid nesting, that should make LES a suitable tool to reproduce real meteorological flows over complex terrain at the microscale. In this framework Numerical Weather Prediction Limited Area Models (NWP-LAMs) appear to be particularly suitable to perform LES of the ABL in realistic conditions because of both i) their capability of nesting, ii) the presence of one or more land surface model coupled with the equations of motion. The use of NWP-LAMs at the microscale is increasing, but the fact that NWP-LAMs are built to work at the mesoscale has to be taken into account. Consequently the evaluation of their performances at the microscale in idealized regimes should be the first step for their use in more complex simulations. The Regional Atmospheric Modelling System (RAMS) is one of the most popular and used NWP-LAMs, and its performances in LES of a ABL in both real and idealized conditions have been evaluated in several studies. This work aims at assessing the impact of mesh resolution on the performances of RAMS-LES in the two opposite idealized regimes of neutral and convective atmospheric boundary layer, for which the turbulent statistics and flow structures are well known. For

  9. Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fang, Jiannong; Porté-Agel, Fernando

    2015-06-01

    Large-eddy simulation is used to investigate very-large-scale motions (VLSMs) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number, . The vertical height of the computational domain is m, which corresponds to the thickness of the boundary layer. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be and , which is much larger than the standard domain size, especially in the streamwise direction (i.e., the direction of elongation of the flow structures). It is shown that the contributions to the resolved turbulent kinetic energy and the resolved shear stress from streamwise wavelengths larger than are up to 27 and 31 % respectively. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to in the streamwise direction and in the spanwise direction. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the

  10. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  11. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  12. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers

    SciTech Connect

    Muñoz-Esparza, D.; Kosović, B.; Beeck, J. van; Mirocha, J.

    2015-03-15

    Despite the variety of existing methods, efficient generation of turbulent inflow conditions for large-eddy simulation (LES) models remains a challenging and active research area. Herein, we extend our previous research on the cell perturbation method, which uses a novel stochastic approach based upon finite amplitude perturbations of the potential temperature field applied within a region near the inflow boundaries of the LES domain [Muñoz-Esparza et al., “Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models,” Boundary-Layer Meteorol., 153, 409–440 (2014)]. The objective was twofold: (i) to identify the governing parameters of the method and their optimum values and (ii) to generalize the results over a broad range of atmospheric large-scale forcing conditions, U{sub g} = 5 − 25 m s{sup −1}, where U{sub g} is the geostrophic wind. We identified the perturbation Eckert number, Ec=U{sub g}{sup 2}/ρc{sub p}θ{sup ~}{sub pm}, to be the parameter governing the flow transition to turbulence in neutrally stratified boundary layers. Here, θ{sup ~}{sub pm} is the maximum perturbation amplitude applied, c{sub p} is the specific heat capacity at constant pressure, and ρ is the density. The optimal Eckert number was found for nonlinear perturbations allowed by Ec ≈ 0.16, which instigate formation of hairpin-like vortices that most rapidly transition to a developed turbulent state. Larger Ec numbers (linear small-amplitude perturbations) result in streaky structures requiring larger fetches to reach the quasi-equilibrium solution, while smaller Ec numbers lead to buoyancy dominated perturbations exhibiting difficulties for hairpin-like vortices to emerge. Cell perturbations with wavelengths within the inertial range of three-dimensional turbulence achieved identical quasi-equilibrium values of resolved turbulent kinetic energy, q, and Reynolds-shear stress, . In contrast, large-scale perturbations

  13. Diffusion in the vicinity of standard-design nuclear power plants--I. Wind-tunnel evaluation of diffusive characteristics of a simulated suburban neutral atmospheric boundary layer.

    PubMed

    Payne, A W; Snyder, W H; Binkowski, F S; Watson, J E

    1982-12-01

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated release points over surfaces of comparable roughness length. This information should prove useful in a variety of transport and diffusion studies over short to moderate downwind distances. It will be used in Part II as the baseline data set with which to compare diffusion downwind of standard-design nuclear power plants.

  14. OGO-6 neutral atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Taeusch, D. R.

    1973-01-01

    The continued analysis of data obtained from the neutral atmospheric composition experiment flown on OGO-V6 is discussed. The effort was directed toward the study of five specific areas of interest for which the OGO-V6 data were especially useful.

  15. Neutral atmospheric waves determined from Atmospheric Explorer measurements

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wharton, L. E.; Spencer, N. W.; Dyson, P. L.

    1979-01-01

    A description is presented of the first observations of neutral gravity waves in which a sufficient number of wave parameters are detected to allow a specification of the neutral wave characteristics. In situ measurements of neutral wind, temperature, and composition from Atmospheric Explorer are used to obtain wave amplitudes and phases for N2 temperature and wind, and N2, O, and He densities. These amplitudes and phases along with the Doppler shifted wave frequency provide sufficient information to evaluate the wave frequency and the wave vector.

  16. Temperature structure in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi

    2010-05-01

    Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter

  17. Neutral atmospheric escape at Venus and Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Leblanc, F.

    2013-12-01

    Neutral escape is referring to neutral particles leaving a planetary object and never reimpacting it. Such particles can ultimately get ionized or simply reach the Hill sphere. The Jeans and/or hydrodynamic fluxes represent the thermal component of the neutral escape, that is, that portion of the velocity distribution at the external boundary of that object that can evaporate with enough energy to definitively escape. A second component is also usually introduced to describe the products of several energetic mechanisms that could lead also to planetary erosion. This second component, called supra-thermal, is particularly important at Mars since it is thought to be one of the possible driver of Mars' atmospheric erosion during the last 4 Gyr. Because Venus and Mars are so similar in terms of interaction with the solar wind, there are many reasons to believe that these energetic mechanisms occur at both planets. In this presentation, I will present what is understood on the possible past and present channels of neutral escape at both Mars and Venus. The respective importance of the thermal and supra-thermal components along Mars and Venus histories, the main signatures of these components in the present atmosphere and what should be learned from the forthcoming space missions will be discussed.

  18. Amplitude-dependent neutral modes in compressible boundary layer flows

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1990-01-01

    The ideas of Benney and Bergeron (1969) and Davies (1970) on nonlinear critical layers are extended, and some new nonlinear neutral modes are computed for compressible boundary layer flow. A special case of the work is when the generalized inflexion point criterion holds. Neutral modes are found for a range of phase-speeds, dependent on the Mach number, and the properties of these are discussed. As in the linear case when the flow is relatively supersonic, multiple neutral modes exist. The behavior of the neutral amplitude in some limiting cases is also considered, and it is found that the results are significantly different from that in incompressible flow when the flow is locally supersonic.

  19. Atmospheric boundary layers in storms: advanced theory and modelling applications

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  20. The San Marco 3 neutral atmosphere composition experiment

    NASA Technical Reports Server (NTRS)

    Pelz, D. T.; Newton, G. P.; Kasprzak, W. T.; Clem, T. D.

    1973-01-01

    The experimental instrumentation of the San Marco 3 satellite is described along with the calibration and operation. The instrumentation for the following experiments was included: an air density experiment for measuring the instantaneous drag force, and thus the neutral particle total mass density; a neutral atmosphere composition experiment for measuring the densities of helium, atomic and molecular oxygen, molecular nitrogen and argon; and a neutral atmosphere temperature experiment to determine the gas kinetic temperature by measuring molecular nitrogen density variations in an orificed spherical chamber as a function of angle of attack.

  1. Estimating the Neutral Atmospheric Forcing Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ward, J.; Swenson, C.; Carlson, C.; Minter, C. F.; Fuller-Rowell, T. J.; Codrescu, M. V.

    2003-12-01

    Based on data assimilation techniques developed in meteorology and oceanography, a data assimilation system has been developed to provide a time-dependent estimate of the thermospheric density, temperature, and composition. Through its application, distinct characteristics of the neutral atmosphere have become apparent. It has been long realized that, unlike the troposphere, the neutral atmosphere is more strongly driven by external forcing, which includes Joule, particle, and solar heating. It has also been understood that knowing the forcing alone, over a period of days, can allow for a fairly accurate modeling of the neutral atmospheric conditions: density, temperature, and composition. Unfortunately, the magnitude and the distribution of the forcing are difficult to observe since scalar values are typically used to describe complicated processes. The research presented here attempts to better estimate the forcing and its effect on the neutral atmosphere from observing the neutral atmospheric conditions and the changes in these conditions spatially and temporally. Since the magnitude and distribution of the forcing cannot be observed directly, a statistical approach is used to provide the `best' description for this process through data assimilation.

  2. Internal boundary-layer height formulae — A comparison with atmospheric data

    NASA Astrophysics Data System (ADS)

    Walmsley, John L.

    1989-04-01

    The height of the internal boundary layer (IBL) downwind of a step change in surface roughness is computed using formulae of Elliott (1958), Jackson (1976) and Panofsky and Dutton (1984). The results are compared with neutral-stratification atmospheric data extracted from the set of wind-tunnel and atmospheric data summarized by Jackson (1976) as well as neutral-stratification data presented by Peterson et al. (1979) and new data measured at Cherrywood, Ontario. It is found that the Panofsky-Dutton formulation gives the least root-mean-square (RMS) absolute errors for atmospheric applications.

  3. Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.

    2005-12-01

    The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An

  4. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    SciTech Connect

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  5. A Coupled Ion-Neutral Photochemical Model for the Titan Atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique; Yelle, Roger V.; Klippenstein, Stephen J.; Hörst, Sarah M.; Lavvas, Panayotis

    2014-11-01

    Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The calculated vertical profiles of neutral and ion species generally agree with the existing observational data; some differences are highlighted. We discuss the chemical and physical processes responsible for the production and loss of some key species. We find that the production of neutral species in the upper atmosphere from electron-ion recombination reactions and neutral-neutral radiative association reactions is significant. In the stratosphere, the vertical profile of (cyano)polyynes is extremely sensitive to their heterogeneous loss on aerosols, a process that remains to be

  6. Ionospheric E-region electron density and neutral atmosphere variations

    NASA Technical Reports Server (NTRS)

    Stick, T. L.

    1976-01-01

    Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.

  7. The Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Haeusler, Bernd; Paetzold, Martin; Bird, Michael; Tyler, G. L.; Andert, Thomas; Remus, Stefan

    The Venus Express Radio Science Experiment VeRa performs regular radio-sounding experi-ments in the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the one-way radio mode at X-band (8.4 GHz) and S-band (2.3 GHz). An Ultra-Stable Oscilla-tor (USO) provides a high quality on-board frequency reference for refractivity measurements, from which electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere are derived. Radial profiles of neutral number density from the atmospheric-induced Doppler shift during the occultations cover the altitude range 40-90 km. These are then used to derive vertical profiles of temperature and pressure. The polar orbit of Venus Express provides the opportunity to study the troposphere and meso-sphere at all planetocentric latitudes under varying illumination conditions. Seven occultation seasons have occurred thus far during the Venus Express mission, resulting in a data set with more than 320 neutral atmospheric profiles. The thermal structure is investigated with regard to the latitudinal and temporal variability. The Venus mesosphere shows a high variability resulting from atmospheric waves and turbulence. Profiles of atmospheric static stability are found to be latitude dependent and nearly adiabatic in the middle cloud region. Abrupt changes in the static stability can occur at the boundaries of the middle cloud layer, the vertical dis-tribution of which shows a distinct latitudinal dependence. Correlations of wave activity with the static stability profile will be investigated

  8. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    PubMed

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

  9. A magnetospheric energy principle extended to include neutral atmosphere

    SciTech Connect

    Miura, Akira

    2011-03-15

    The problem of ideal magnetohydrodynamic stability of plasmas in a magnetosphere-atmosphere system, in which the unperturbed magnetic field is assumed to be perpendicular to the plasma-atmosphere interface (ionospheric surface), is investigated by means of an extended magnetospheric energy principle. The derivation of the principle and conditions under which it applies to a real terrestrial magnetosphere is given. In the principle, the atmosphere is considered to be a very heavy and compressible gas with finite pressure. A thin ionospheric layer is taken into account as boundary conditions, but energetics within it are neglected. The solid-earth surface is assumed to be a perfectly conducting wall for perturbations. For a perturbation that satisfies either rigid or horizontally free boundary conditions at the plasma-atmosphere interface, the self-adjointness of the force operator is satisfied and an extended magnetospheric energy principle can be developed on the basis of the extended energy principle for fusion plasmas. These two boundary conditions are shown to be realized in the magnetosphere when the ionospheric conductivity is either very large or very small. Whereas in fusion plasmas the perturbed magnetic energy in the vacuum makes a stabilizing contribution to the potential energy, in the magnetosphere the perturbed magnetic energy in the atmosphere makes no such stabilizing contribution. This is due to the difference of the assumed field configurations of the magnetospheric and fusion plasmas. The ionospheric surface makes a destabilizing negative contribution to the potential energy owing to a horizontal plasma displacement on the spherical ionospheric surface. The method is applied to magnetospheric ballooning and interchange instabilities. The existence of a new type of magnetospheric interchange instability is shown and its structure in the magnetosphere-atmosphere system is clarified. Possible consequences of the instabilities and their relevance to

  10. A coupled ion-neutral photochemical model for the Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Horst, S. M.; Lavvas, P.

    2013-12-01

    Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The production of minor nitrogen-bearing species and hydrocarbons is initiated by the dissociation and ionization of N2 and CH4 by solar VUV/EUV photons and associated photoelectrons in the upper atmosphere. We incorporate new high-resolution isotopic photoabsorption and photodissociation cross sections for N2 as well as new photodissociation branching ratios for CH4 and C2H2. The photodissociation of hydrocarbon radicals is taken into account and its impact on the chemistry is discussed for the first time. The presence of oxygen-bearing species is explained by an influx of oxygen originating

  11. Empirical corrections for atmospheric neutral density derived from thermospheric models

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Börger, Klaus; Henze, Christina; Löcher, Anno; Eickmans, Marius; Agena, Jens

    2016-04-01

    Accurately predicting satellite positions is a prerequisite for various applications from space situational awareness to precise orbit determination (POD). Given the fact that atmospheric drag represents a dominant influence on the position of low-Earth orbit objects, an accurate evaluation of thermospheric mass density is of great importance to low Earth orbital prediction. Over decades, various empirical atmospheric models have been developed to support computation of density changes within the atmosphere. The quality of these models is, however, restricted mainly due to the complexity of atmospheric density changes and the limited resolution of indices used to account for atmospheric temperature and neutral density changes caused by solar and geomagnetic activity. Satellite missions, such as Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE), provide a direct measurement of non-conservative accelerations, acting on the surface of satellites. These measurements provide valuable data for improving our knowledge of thermosphere density and winds. In this paper we present two empirical frameworks to correct model-derived neutral density simulations by the along-track thermospheric density measurements of CHAMP and GRACE. First, empirical scale factors are estimated by analyzing daily CHAMP and GRACE acceleration measurements and are used to correct the density simulation of Jacchia and MSIS (Mass-Spectrometer-Incoherent-Scatter) thermospheric models. The evolution of daily scale factors is then related to solar and magnetic activity enabling their prediction in time. In the second approach, principal component analysis (PCA) is applied to extract the dominant modes of differences between CHAMP/GRACE observations and thermospheric model simulations. Afterwards an adaptive correction procedure is used to account for long-term and high-frequency differences. We conclude the study by providing recommendations on possible

  12. The neutral atmosphere of Mars at ionospheric heights: A method to derive neutral atmospheric parameters from MaRS electron density profiles

    NASA Astrophysics Data System (ADS)

    Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; Tellmann, Silvia; Häusler, Bernd; Bird, Michael

    2015-04-01

    The radio-science experiment MaRS (Mars Radio Science) on the Mars Express spacecraft sounds the atmosphere and ionosphere of Mars since 2004. More than 600 vertical profiles of the Mars ionospheric electron density and lower atmosphere neutral density and temperature have been aquired. These simultaneous soundings of the ionosphere and the lower neutral atmosphere make it possible to get information on the behavior of the Mars neutral atmosphere at ionospheric heights, which is directly not accessible by radio sounding but indirectly from the observed ionospheric electron density profiles. A simple 1D neutral atmospheric model is combined with a 1D ionospheric model for altitude ranges from 80 km to 160 km. The start-scenario of the model neutral atmosphere depends on the observed neutral atmospheric density at lower altitudes. The modelled neutral atmosphere profile as input for the ionospheric model is iterated until an agreement with the true observed electron density has been achieved. Information on the state of the upper neutral atmosphere are derived from the agreement between the modeled and observed electron density profiles.

  13. Temperature Variations in the Martian Upper Atmosphere from the MAVEN Neutral Gas and Ion Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Stone, Shane W.; Yelle, Roger; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith K.; Bougher, Stephen W.; MAVEN

    2016-10-01

    The MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) measures composition and variability of neutral and ionic species in the Martian upper atmosphere, allowing us to calculate neutral temperatures from roughly 130 km to 300 km above the surface. Over the past two years at Mars, NGIMS has collected an extensive and useful data set that covers much of the Martian thermosphere and exosphere. We use new, improved algorithms for the most accurate determination of densities from the NGIMS data. We use the densities of inert species (specifically CO2, Ar, and N2) along with a hydrostatic equilibrium model to infer the temperature profile and its uncertainty. Uncertainties include the errors in the density measurements, unknown upper boundary conditions, and horizontal variations in the atmosphere. Our calculations reveal diurnal temperature variations of up to 90 K and maximum latitudinal temperature variations of 130 K. These fluctuations in temperature in the upper atmosphere are surprising because they are significantly larger than those predicted by the latest 3D general circulation models for Mars.

  14. Europa's Neutral Clouds: Probing the Atmosphere, Surface, and Subsurface

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Johnson, R. E.

    2004-05-01

    The existence of a sub-surface ocean at Europa and the possibility of its sustaining life is one of the most exciting scientific questions of our time. Unfortunately, the remoteness of the satellite makes it difficult to study this ocean directly. Studies of the atmosphere and atmospheric escape can provide clues needed for understanding Europa's icy shell and sub-surface ocean. The composition and energy distribution of material escaping from Europa are indicative of the interaction between its surface and the local plasma. Observations of this material made from Earth can provide insight into Europa's surface composition and interior and will help determine the capabilities needed for future Europa missions. The discovery of Europa's molecular oxygen atmosphere (Hall et al. 1995) was quickly followed by ground based observations of a sodium exosphere extending more than ten satellite radii above Europa's surface (Brown and Hill 1996). Modeling of this exosphere by Leblanc et al. (2002) indicates that roughly 40% of the material sputtered from Europa's surface escapes forming an extended neutral cloud in orbit around Jupiter. Recent Cassini and Galileo spacecraft observations are suggestive of water products lost from Europa (Mauk et al. 2003, Lagg et al. 2003) and constitute the first observations of Europa's extended cloud. We consider models of the large scale morphology of this cloud which suggest significant morphological differences from the extensively studied Io neutral cloud. We also discuss strategies for confirming these predictions by observing the sodium and oxygen components of the neutral cloud as they extend along Europa's orbit. References: Brown, M. E. and R. E. Hill, Nature, 380, 229-231, 1996. Hall, D. T., D. F. Strobel, P. D. Feldman, M. A. McGrath, and H. A. Weaver, Nature 373, 677, 1995. Lagg, A., N. Krupp, J. Woch, and D. J. Williams, GRL, 30, 10-1, 2003. Leblanc, F., R. E. Johnson, and M. E. Brown, Icarus 159, 132-144, 2002. Mauk, B. H., D

  15. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Cui, J.; Yelle, R. V.; Vuitton, V.; Waite, J. H.; Kasprzak, W. T.; Gell, D. A.; Niemann, H. B.; Müller-Wodarg, I. C. F.; Borggren, N.; Fletcher, G. G.; Patrick, E. L.; Raaen, E.; Magee, B. A.

    2009-04-01

    In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N 2, CH 4, H 2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N 2, CH 4, H 2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C 2H 2, C 2H 4, C 2H 6, CH 3C 2H, C 4H 2, C 6H 6, CH 3CN, HC 3N, C 2N 2 and NH 3 in Titan's upper atmosphere. Upper limits are given for other minor species. The globally averaged distributions of N 2, CH 4 and H 2 are each modeled with the diffusion approximation. The N 2 profile suggests an average thermospheric temperature of 151 K. The CH 4 and H 2 profiles constrain their fluxes to be 2.6×10 cms and 1.1×10 cms, referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion

  16. Physical modeling of the atmospheric boundary layer for wind energy and wind engineering studies

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Turner, John; Wosnik, Martin

    2015-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W6.0m, H2.7m, L=72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL): the stable, unstable, and neutral ABL. The neutral ABL is characterized by a zero potential temperature gradient, which is readily achieved in the FPF by operating when air and floor temperatures are close to equal. The stable and unstable ABLs have positive and negative vertical temperature gradients, respectively, which are more difficult to simulate without direct control of air or test section floor temperature. The test section floor is a 10 inch thick concrete cement slab and has significant thermal mass. When combined with the diurnal temperature variation of the ambient air, it is possible to achieve vertical temperature gradients in the test section, and produce weakly stable or weakly unstable boundary layer. Achievable Richardson numbers and Obukhov lengths are estimated. The different boundary layer profiles were measured, and compared to theoretical atmospheric models. Supported by UNH Hamel Center for Undergraduate Research SURF.

  17. Regional scale evaporation and the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Parlange, Marc B.; Eichinger, William E.; Albertson, John D.

    1995-01-01

    In this review we briefly summarize some current models of evaporation and the atmospheric boundary layer (ABL) and discuss new experimental and computational oppurtunities that may aid our understanding of evaporation at these larger scales. In particular, consideration is given to remote sensing of the atmosphere, computational fluid dynamics and the role numerical models can play in understanding land-atmosphere interactions. These powerful modeling and measurement tools are allowing us to visualize and study spatial and temporal scales previously untouched, thereby increasing the oppurtunities to improve our understanding of land-atmosphere interaction.

  18. Probing neutral atmospheric collision complexes with anion photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Jarrold, Caroline

    Photodetachment of anionic precursors of neutral collision complexes offers a way to probe the effects of symmetry-breaking collision events on the electronic structure of normally transparent molecules. We have measured the anion photoelectron imaging (PEI) spectra of a series of O2- X complexes, where X is a volatile organic molecule with atmospheric relevance, to determine how the electronic properties of various X molecules affect the low-lying electronic structure of neutral O2 undergoing O2 - X collisons. The study was motivated by the catalog of vibrational and electronic absorption lines induced by O2 - O2, O2 - N2, and other collisions. The energies of electronic features observed in the anion PEI spectra of O2- X (X = hexane, hexene, isoprene and benzene) relative to O2- PEI spectroscopic features indicate that photodetachment of the anion does indeed access a repulsive part of the O2 - X potential. In addition, the spectra of the various complexes show an interesting variation in the intensities of transitions to the excited O2(1Δg) . X and O2(1Σg+) . X states relative to the ground O2(3Σg-) . X state. With X = non-polar species such as hexane, the relative intensities of transitions to the triplet and singlet states of O2 . X are very similar to those of isolated O2, while the relative intensity of the singlet band decreases and becomes lower in energy relative to the triplet band for X = polar molecules. A significant enhancement in the intensities of the singlet bands is observed for complexes with X = isoprene and benzene, both of which have low-lying triplet states. The role of the triplet states in isoprene and benzene, and the implications for induced electronic absorption in O2 undergoing collisions with these molecules, are explored. National Science Foundation NSF CHE 1265991.

  19. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  20. Airborne validation of ground-object detection from polarized neutral-point atmosphere.

    PubMed

    Yang, Shang-qiang; Guan, Gui-xia; Zhao, Hai-meng; Zhao, Hong-ying; Yang, Bin; Zhang, Wen-kai; Tan, Xiang; Wu, Tai-xia; Yan, Lei

    2013-09-01

    Based on the object's polarization effects, polarization is a newly emerging method in the field of remote sensing. Both objects and atmosphere have polarization effects, however, the atmosphere's polarization effects are much stronger than that of objects'. Consequently, atmosphere polarization effects will interfere or even cover objects' when observing with sensors. How to maximally eliminate the polarized effects generated by the atmosphere is a crucial problem in polarization remote sensing. Atmospheric neutral point is an area where the degree of atmosphere polarization is near to zero; therefore, if sensors are set up in this area, atmosphere polarization would be greatly eliminated, which is the main content of separating the effects between objects and atmosphere by its neutral point method. In this paper, after processing and analyzing the experimental data got from the first polarization remote sensing flight experiment with atmosphere neutral point, the degree of polarization images captured in neutral and non-neutral point area were obtained, and it can be seen that the main value of polarized degree of images got in neutral point area was obviously smaller than that in non-neutral point area. The results showed that the theory mentioned above was logical and practical. An innovation in our study is that the requirements needed in polarization remote sensing flight with neutral point were clarified. In the meantime, a qualitative conclusion was drawn that observing with longer wavelength is more applicable to polarization remote sensing. PMID:24369665

  1. Distribution and escape of the major neutral species from Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, Valeriy; Tucker, Orenthal; Borovikov, Dmitry; Combi, Michael R.

    2016-10-01

    Titan possesses the most significant atmosphere among all satellites in the Solar system, and is an important source of material for the Saturn's magnetosphere. Understanding of the neutral species distribution and escape is important for further understanding of the Titan's atmosphere evolution and loss.The first in situ observations of the Titan's atmosphere were performed by Voyager and continued by Cassini, which measured the atmospheric composition, velocity and temperature, as well as the energy spectra of neutral species, ions and electrons. Analysis and interpretation of the acquired data involves coupled modeling of the Saturn magnetosphere and Titan's atmosphere.Having that in mind we have undertaken numerical modeling of the major neutral species (N2 and CH4) in Titan's upper atmosphere to investigate the effect of the solar EUV and magnetospheric ion energy deposition on the neutral species atmospheric distribution and escape. This modeling combines MHD simulation of the Saturn's magnetosphere plasma interacting with Titan's atmosphere, fluid type simulation of the neutral species in Titan's lower atmosphere, and kinetic modeling of the upper atmosphere and exosphere. Here we present estimations of the neutral species escape rate, and discuss the effect of the magnetospheric ion energy deposition on the atmospheric escape concluded from the results of our modeling.This work was supported by NASA Outer Planet Research grant NNX13AL04G.

  2. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  3. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  4. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    SciTech Connect

    Lundquist, K A

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  5. Problems in the simulation of atmospheric boundary layer flows. [natural wind environment in atmospheric boundary layer for aerospace and aeronautical applications

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1973-01-01

    The realistic simulation of flow in the atmospheric boundary layers at heights greater than two kilometers is discussed. Information concerning horizontally homogeneous and statistically stationary atmospheric boundary layer flows is presented. The problems related to the incorporation of the information into atmospheric wind simulation programs are analyzed. The information which the meteorologist must acquire in order to provide a basis for improving the simulation of atmospheric boundary flows is explained.

  6. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  7. Atmospheric tides on Venus. III - The planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    1983-10-01

    Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.

  8. Effects of mesoscale surface inhomogeneities on atmospheric boundary layer transfer

    SciTech Connect

    Shaw, W.J.; Doran, J.C.; Hubbe, J.M.

    1992-09-01

    Defining the nature of turbulent transfer over horizontally inhomogeneous surfaces remains one of the challenges in meteorology. Because the transfer of energy and momentum through the atmospheric boundary layer forms part of the lower boundary condition for global climate models (GCMs), the problem is important. Over the last two decades, advances in sensor and computer technology wave made good point measurements of turbulent fluxes fairly routine. A fundamental question with respect to climate models, however, is how such point measurements are related to average fluxes over the area of a GCM grid box. In this paper we will use data from the field program to depict the evolution of the boundary layer over adjacent, sharply contrasting surface types on two separate occasions. We will then use simple scaling based on the observations to argue that sub-gridscale motions would often be likely to significantly alter the estimates and resulting parameterizations of GCM-scale surface fluxes in the region.

  9. On Parameterizing Turbulence in the Stably Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.; Venayagamoorthy, Subhas K.

    2014-11-01

    Parameterizing turbulent mixing in the stably stratified atmospheric boundary layer remains an active area of research connecting available field measurements with appropriate model parameters. The research presented studies the pertinent mixing lengths for shear- and buoyancy-dominated (or weakly stable and very stable) regimes in the stable atmospheric boundary layer (SABL). Incorporating shear and buoyancy effects, two length scales can be constructed, LkS =k 1 / 2 / S and LkN =k 1 / 2 / N , respectively. Extending the conceptual framework of Mater & Venayagamoorthy (2014), LkS and LkN are shown to be accurate representations of large-scale motions from which relevant model parameters are developed using observations from three field campaigns. An a priori analysis of large-eddy simulation (LES) data evaluates the efficacy of parameterizations applied to the vertical structure of the SABL. The results of this study provide a thorough evaluation of the pertinent mixing lengths in stably stratified turbulence through applications to atmospheric observations and numerical models for the boundary layer extendable to larger-scale weather prediction or global circulation models. S.K.V. gratefully acknowledges the support of the National Science Foundation under Grant No. OCE-1151838.

  10. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  11. Atmospheric Boundary-Layer Dynamics with Constant Bowen Ratio

    NASA Astrophysics Data System (ADS)

    Porporato, Amilcare

    2009-08-01

    Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model. Neglecting the early morning transition, the potential temperature and specific humidity of the mixed layer are found to be linearly related to the ABL height. Similar behaviour is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.

  12. A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars

    NASA Astrophysics Data System (ADS)

    Zou, Hong; Ye, Yu Guang; Wang, Jin Song; Nielsen, Erling; Cui, Jun; Wang, Xiao Dong

    2016-04-01

    A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars is introduced in this study. The neutral densities at 130 km can be derived from the ionospheric and atmospheric measurements of the Radio Science experiment on board Mars Global Surveyor (MGS). The derived neutral densities cover a large longitude range in northern high latitudes from summer to late autumn during 3 Martian years, which fills the gap of the previous observations for the upper atmosphere of Mars. The simulations of the Laboratoire de Météorologie Dynamique Mars global circulation model can be corrected with a simple linear equation to fit the neutral densities derived from the first MGS/RS (Radio Science) data sets (EDS1). The corrected simulations with the same correction parameters as for EDS1 match the derived neutral densities from two other MGS/RS data sets (EDS2 and EDS3) very well. The derived neutral density from EDS3 shows a dust storm effect, which is in accord with the Mars Express (MEX) Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars measurement. The neutral density derived from the MGS/RS measurements can be used to validate the Martian atmospheric models. The method presented in this study can be applied to other radio occultation measurements, such as the result of the Radio Science experiment on board MEX.

  13. Study of the morning transition of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Sastre, M.; Yagüe, C.; Maqueda, G.; Viana, S.

    2009-04-01

    In this work it will be analyzed the main physical processes related to the transition of the Atmospheric Boundary Layer (ABL) that takes place from the last hours of the night until the first hours of the morning. In order to achieve that, it will be used data from field campaigns which took place in the Research Centre for the Lower Atmosphere (CIBA), especially those gathered in the campaign carried out in June, 2008 where information was obtained from a 10m height mast provided with temperature, wind speed and direction, and moisture sensors at several levels. Also a sonic anemometer (20 Hz sampling rate) at 10m was available. The database is complemented by a triangle of microbarometers installed next to the surface, and another two microbarometers placed in a 100m meteorological tower at 50 and 100m respectively. A GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was also available to evaluate the degree of mixing taking place near the surface. The thermodynamic characteristics of the first hundreds of meters remain registered from information obtained with a tethered balloon and with a RASS-SODAR. The main turbulent and stability parameters, as well as coherent structures present in the Nocturnal Boundary Layer are studied in connection to their influence in the developing of the next Convective Boundary Layer.

  14. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved

  15. Linking atmospheric composition data across data types and national boundaries

    NASA Astrophysics Data System (ADS)

    Schultz, Martin; Lyapina, Olga; Schröder, Sabine; Stein, Olaf; Mallmann, Daniel

    2016-04-01

    The field of atmospheric composition research involves the management of data sources from various disciplines such as meteorology, chemistry, (radiation) physics, emission inventories, etc. The output from global and regional chemistry climate models, chemistry transport models, and air quality models presents considerable challenges due to the manifold variables of interest and the multitude of diagnostics needed in order to interpret the results. Furthermore, many observations of atmospheric composition exist from different platforms involving different geometries, time resolutions, size spectra, etc. Due to the fact that few observation networks are globally coordinated, various representations of data formats and metadata definitions exist. For example, there is no unique agreement on chemical species names and in many networks, national languages are used to document the data. We will present a summary of the issues involving global interoperability of atmospheric composition data including the aspects of data volume, data compexity and metadata standardisation, and we will demonstrate various activities carried out in Jülich and internationally to overcome these challenges. Specifically, we will describe the current implementation and plans for the Copernicus Atmosphere Monitoring Service boundary condition service (http://ows-server.iek.fz-juelich.de), the design of the JOIN web interface (https://join.fz-juelich.de), and the activities for building an ontology of atmospheric composition vocabulary (https://ontology.geodab.eu/).

  16. Aerosol Variations in Boundary Atmospheres: Review and Prospect

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Shi, Guangyu

    Atmospheric aerosols play important roles in climate and atmospheric chemistry: They scatter sunlight, provide condensation nuclei for cloud droplets, and participate in heterogeneous chemical reactions. To enable better understanding of the vertical physical, chemical and optical feathers of the aerosols in East Asia, using some atmospheric and aerosol measurement instruments on board a kind of tethered-balloon system, a series of measurements were operated in some typical areas of East Asia, including Dunhuang, which is located in the source origin district of Asian dust and Beijing, which is the representative of large inland city during the years of 2002-2011. Mineral compositions carried by the airborne particles were analyzed as well as the microbial components, meanwhile the Lidar data were compared to the direct measurements in order to get the correlation between the optical properties of the particles and their physical and chemical variations in the boundary atmosphere. Moreover, the simultaneous observations over the districts of China, Japan and Korea, and even Pakistan supported by an international cooperative project are highly expected, in order to know the changes of the chemical, physical and even optical and radiation properties of the atmospheric aerosols during their long-range transport.

  17. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  18. Eulerian dispersion modeling with WRF-LES of plume impingement in neutrally and stably stratified turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; Kosović, Branko; Bieringer, Paul E.

    2014-12-01

    The vast range of space-time scales associated with turbulent flow adjacent to rugged terrain is especially problematic to predictive dispersion modeling in atmospheric boundary layers (ABLs) partly due to the presence of non-linear flow features (e.g., recirculation zones, diffusion enhancement, etc.). It has been suggested that in such ABLs, explicitly modeling large turbulent eddies, through large-eddy simulation (LES), may help to curtail predicted concentration errors. In this work, passive scalars were introduced into the Weather Research and Forecasting (WRF) LES model for the purpose of simulating scalar plume interaction with an isolated terrain feature. Using measurements from the Cinder Cone Butte (CCB) field campaign, we evaluate the ability of WRF-LES to realistically simulate the impingement of Sulfur Hexafluoride (SF6) plumes onto CCB in both neutrally and stably stratified environments. Simulations reveal relatively accurate scalar trajectories with respect to thermal stability, including complex patterns such as plume splitting below the hill dividing streamline. Statistical accuracy varied with case study, but for the neutral case we recorded greater than 50% of predicted 1 h averaged surface concentrations within a factor of 2 of the observations. This metric, along with several others, indicates a performance accuracy similar to, or slightly better than, alternative Reynolds Averaged Navier-Stokes models. For the stably stratified case, the spatial distribution of surface concentrations was captured well; however, a positive concentration bias was observed which degraded quantitative accuracy scores. The variable accuracy of the WRF-LES model with respect to thermal stability is similar to what has been observed in regulatory analytical models (i.e., concentration under predictions in neutral environments and concentration over predictions in stable environments). Possible sources of error and uncertainty included the omission of mesoscale wind

  19. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  20. Segregation in the Atmospheric Boundary Layer - A Discussion

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  1. Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    NASA Technical Reports Server (NTRS)

    Combi, M. R.

    1985-01-01

    Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed.

  2. Experimental Investigation of Turbulent Momentum Transfer in a Neutral Boundary Layer over a Rough Surface

    NASA Astrophysics Data System (ADS)

    Tomas, Severine; Eiff, Olivier; Masson, Valery

    2011-03-01

    The turbulent characteristics of the neutral boundary layer developing over rough surfaces are not well predicted with operational weather-forecasting models. The problem is attributed to inadequate mixing-length models, to the anisotropy of the flow and to a lack of controlled experimental data against which to validate numerical studies. Therefore, in order to address directly the modelling difficulties for the development of a neutral boundary layer over rough surfaces, and to investigate the turbulent momentum transfer of such a layer, a set of hydraulic flume experiments were carried out. In the experiments, the mean and turbulent quantities were measured by a particle image velocimetry (PIV) technique. The measured velocity variances and fluxes {(overline{{ui^'{uj^')} in longitudinal vertical planes allowed the vertical and longitudinal gradients (∂/∂ z and ∂/∂ x) of the mean and turbulent quantities (fluxes, variances and third-order moments) to be evaluated and the terms of the evolution equations for ∂ e/∂ t, {partial overline{u^' 2}}/partial t}, {partial overline{w^' 2}}/partial t} and {partial overline{{u^'{w^'/partial t} to be quantified, where e is the turbulent kinetic energy. The results show that the pressure-correlation terms allow the turbulent energy to be transferred equitably from {overline{{u^'2}} to {overline{{w^'2}}. It appears that the repartition between the constitutive terms of the budget of e, {overline{{u^'2}}, {overline{{w^'2}} and {overline{{u^'{w^' is not significantly affected by the development of the rough neutral boundary layer. For the whole evolution, the transfers of energy are governed by the same terms that are also very similar to the smooth-wall case. The PIV measurements also allowed the spatial integral scales to be computed directly and to be compared with the dissipative and mixing length scales, which were also computed from the data.

  3. High resolution properties of the marine atmospheric boundary layer

    SciTech Connect

    Cooper, D.; Cottingame, W.; Eichinger, W.; Forman, P.; Lebeda, C.; Poling, D.; Thorton, R.

    1994-02-01

    Los Alamos National Laboratory (LANL) participated in the Central Equatorial Pacific Experiment (CEPEX) by fielding a water-vapor Raman lidar on board the Research Vessel Vickers. The lidar measured water vapor concentration from the surface to lower tropospheric altitudes in order to support the CEPEX goal of evaluating a hypothesis regarding feedback mechanisms for global circulation models. This report describes some of the features observed within the marine Atmospheric Boundary Layer (ABL) and the lower troposphere. Data was collected continuously 24 hours per day over the equatorial Pacific from March 8th to March 2 1st of 1993 while in route between Guadalcanal and Christmas Island (the transect was at approximately 2{degree} south latitude). The lidar collected vertical transects of water vapor concentration up to 10 km during night operations and 4 km in the day. The vertical lidar profiles of water vapor were produced by summing the data over a period up to 600 seconds. The water-vapor Raman lidar measured the properties of the marine ABL as well as the lower and mid-troposphere. From the lidar water vapor profiles, ``images`` of water vapor concentration versus altitude and date or sea surface temperature will be produced along with other products such as latent heat fluxes. The Raman water vapor lidar data will be used to better understand the role of transport and exchange at the ocean-atmosphere interface and throughout the marine atmosphere.

  4. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2004-01-01

    The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.

  5. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2005-01-01

    The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment.

  6. Modeling Plasmas with Strong Anisotropy, Neutral Fluid Effects, and Open Boundaries

    NASA Astrophysics Data System (ADS)

    Meier, Eric T.

    Three computational plasma science topics are addressed in this research: the challenge of modeling strongly anisotropic thermal conduction, capturing neutral fluid effects in collisional plasmas, and modeling open boundaries in dissipative plasmas. The research efforts on these three topics contribute to a common objective: the improvement and extension of existing magnetohydrodynamic modeling capability. Modeling magnetically confined fusion-related plasmas is the focus of the research, but broader relevance is recognized and discussed. Code development is central to this work, and has been carried out within the flexible physics framework of the highly parallel HiFi implicit spectral element code. In magnetic plasma confinement, heat conduction perpendicular to the magnetic field is extremely slow compared to conduction parallel to the field. The anisotropy in heat conduction can be many orders of magnitude, and the inaccuracy of low-order representations can allow parallel heat transport to "leak" into the perpendicular direction, resulting in numerical perpendicular transport. If the computational grid is aligned to the magnetic field, this numerical error can be eliminated, even for low-order representations. However, grid alignment is possible only in idealized problems. In realistic applications, magnetic topology is chaotic. A general approach for accurately modeling the extreme anisotropy of fusion plasmas is to use high-order representations which do not require grid alignment for sufficient resolution. This research provides a comprehensive assessment of spectral element representation of anisotropy, in terms of dependence of accuracy on grid alignment, polynomial degree, and grid cell size, and gives results for two- and three-dimensional cases. Truncating large physical domains to concentrate computational resources is often necessary or desirable in simulating natural and man-made plasmas. A novel open boundary condition (BC) treatment for such

  7. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  8. Neutral atmosphere near the icy surface of Jupiter's moon Ganymede

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.

    2016-07-01

    The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter's moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon's icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon's gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

  9. The Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Haeusler, B.; Paetzold, M.; Bird, M. K.; Tyler, G. L.

    2008-12-01

    The Venus Express Radio Science Experiment VeRa is sounding the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the oneway radio link mode at X-band (8.4 GHz) and S- band (2.3 GHz). An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for the derivation of electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere. Radial profiles of neutral number density derived from the occultations cover the altitude range 40 to 90 km, which are converted to vertical profiles of temperature and pressure. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Five occultation seasons could be covered so far during the Venus Express mission resulting in a data set of more than 150 profiles of the neutral atmosphere. The thermal structure is investigated with regard to the latitudinal and temporal variability. A distinct cold collar region could be observed on both hemispheres. The tropopause altitude increases in this latitude region while the tropopause temperature shows a strong decrease. Profiles of static stability are found to be latitude-dependent and nearly adiabatic in the middle cloud region.

  10. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  11. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  12. Neutral points in an atmosphere-ocean system. 1: Upwelling light field.

    PubMed

    Adams, J T; Kattawar, G W

    1997-03-20

    We have developed a Monte Carlo code that utilizes the complete Stokes vector to examine the structure of the degree of linear polarization in the complete observable solid angle at any level in an atmosphere-ocean system. By performing these calculations we are able to compute the positions of neutral points in the upwelling light above and beneath the ocean surface. The locations of these points in a single-scatter calculation and a Monte Carlo treatment are shown for various conditions. The presence of aerosols in the atmosphere and hydrosols in the ocean was found to have an effect on the location of these neutral points.

  13. Neutral points in an atmosphere ocean system. 1: Upwelling light field

    NASA Astrophysics Data System (ADS)

    Adams, James T.; Kattawar, George W.

    1997-03-01

    We have developed a Monte Carlo code that utilizes the complete Stokes vector to examine the structure of the degree of linear polarization in the complete observable solid angle at any level in an atmosphere ocean system. By performing these calculations we are able to compute the positions of neutral points in the upwelling light above and beneath the ocean surface. The locations of these points in a single-scatter calculation and a Monte Carlo treatment are shown for various conditions. The presence of aerosols in the atmosphere and hydrosols in the ocean was found to have an effect on the location of these neutral points.

  14. Coherent structures in the Es layer and neutral middle atmosphere

    NASA Astrophysics Data System (ADS)

    Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina

    2015-12-01

    The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.

  15. Equivalence-point electromigration acid-base titration via moving neutralization boundary electrophoresis.

    PubMed

    Yang, Qing; Fan, Liu-Yin; Huang, Shan-Sheng; Zhang, Wei; Cao, Cheng-Xi

    2011-04-01

    In this paper, we developed a novel method of acid-base titration, viz. the electromigration acid-base titration (EABT), via a moving neutralization boundary (MNR). With HCl and NaOH as the model strong acid and base, respectively, we conducted the experiments on the EABT via the method of moving neutralization boundary for the first time. The experiments revealed that (i) the concentration of agarose gel, the voltage used and the content of background electrolyte (KCl) had evident influence on the boundary movement; (ii) the movement length was a function of the running time under the constant acid and base concentrations; and (iii) there was a good linearity between the length and natural logarithmic concentration of HCl under the optimized conditions, and the linearity could be used to detect the concentration of acid. The experiments further manifested that (i) the RSD values of intra-day and inter-day runs were less than 1.59 and 3.76%, respectively, indicating similar precision and stability in capillary electrophoresis or HPLC; (ii) the indicators with different pK(a) values had no obvious effect on EABT, distinguishing strong influence on the judgment of equivalence-point titration in the classic one; and (iii) the constant equivalence-point titration always existed in the EABT, rather than the classic volumetric analysis. Additionally, the EABT could be put to good use for the determination of actual acid concentrations. The experimental results achieved herein showed a new general guidance for the development of classic volumetric analysis and element (e.g. nitrogen) content analysis in protein chemistry.

  16. The vertical turbulence structure of the coastal marine atmospheric boundary layer

    SciTech Connect

    Tjernstroem, M.; Smedman, A.S. )

    1993-03-15

    The vertical turbulence structure in the marine atmosphere along a shoreline has been investigated using data from tower and aircraft measurements performed along the Baltic coast in the southeast of Sweden. Two properties make the Baltic Sea particularly interesting. It is surrounded by land in all directions within moderate advection distances, and it features a significant annual lag in sea surface temperature as compared with inland surface temperature. The present data were collected mostly during spring or early summer, when the water is cool, i.e., with a stably or neutrally stratified marine boundary layer usually capped by an inversion. Substantial daytime heating over the land area results in a considerable horizontal thermal contrast. Measurements were made on a small island, on a tower with a good sea fetch, and with an airborne instrument package. The profile data from the aircraft is from 25 slant soundings performed in connection to low level boundary layer flights. The results from the profiles are extracted through filtering techniques on individual time (space) series (individual profiles), applying different normalization and finally averaging over all or over groups of profiles. The land-based data are from a low tower situated on the shoreline of a small island with a wide sector of unobstructed sea fetch. Several factors are found that add to the apparent complexity of the coastal marine environment: the state of the sea appears to have a major impact on the turbulence structure of the surface layer, jet-shaped wind speed profiles were very common at the top of the boundary layer (in about 50% of the cases) and distinct layers with increased turbulence were frequently found well above the boundary layer (in about 80% of the cases). The present paper will concentrate on a description of the experiment, the analysis methods, and a general description of the boundary layer turbulence structure over the Baltic Sea. 40 refs., 16 figs., 2 tabs.

  17. Neutral atmosphere composition from SOIR measurements on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high

  18. Large-eddy simulation of very-large-scale motions in atmospheric boundary-layer flows

    NASA Astrophysics Data System (ADS)

    Fang, Jiannong; Porté-Agel, Fernando

    2015-04-01

    In the last few decades, laboratory experiments and direct numerical simulations of turbulent boundary layers, performed at low to moderate Reynolds numbers, have found very-large-scale motions (VLSMs) in the logarithmic and outer regions. The size of VLSMs was found to be 10-20 times as large as the boundary-layer thickness. Recently, few studies based on field experiments examined the presence of VLSMs in neutral atmospheric boundary-layer flows, which are invariably at very high Reynolds numbers. Very large scale structures similar to those observed in laboratory-scale experiments have been found and characterized. However, it is known that field measurements are more challenging than laboratory-based measurements, and can lack resolution and statistical convergence. Such challenges have implications on the robustness of the analysis, which may be further adversely affected by the use of Taylor's hypothesis to convert time series to spatial data. We use large-eddy simulation (LES) to investigate VLSMs in atmospheric boundary-layer flows. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be much larger than the standard domain size. It is shown that the contributions to the resolved turbulent kinetic energy and shear stress from VLSMs are significant. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large. These features

  19. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation

    PubMed Central

    Benna, M.; Elrod, M.; Yelle, R. V.; Bougher, S. W.; Stone, S. W.; Jakosky, B. M.

    2015-01-01

    Abstract The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures. The scale height temperatures are mapped over the course of the first few months of the mission from high down to midlatitudes. NGIMS measurements near the homopause of 40Ar/N2 ratios agree with those reported by the Sample Analysis at Mars investigation and allow the altitude of the homopause for the most abundant gases to be established. PMID:27667873

  20. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation

    PubMed Central

    Benna, M.; Elrod, M.; Yelle, R. V.; Bougher, S. W.; Stone, S. W.; Jakosky, B. M.

    2015-01-01

    Abstract The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures. The scale height temperatures are mapped over the course of the first few months of the mission from high down to midlatitudes. NGIMS measurements near the homopause of 40Ar/N2 ratios agree with those reported by the Sample Analysis at Mars investigation and allow the altitude of the homopause for the most abundant gases to be established.

  1. Turbulence in a convective marine atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.; Yeh, E.-N.

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found during the Air Mass Transformation Experiment (AMTEX). This implies that for a given surface heating the present case is dynamically more active. The difference is mainly due to the greater importance of wind shear in the present case. This case is closer to the roll vortex regime, whereas AMTEX observed mesoscale cellular convection which is closer to free convection. Shear generation is found to provide a significant energy source, in addition to buoyancy production, to maintain a larger normalized turbulent kinetic energy and to balance a larger normalized dissipation. The interaction between turbulent pressure and divergence (i.e., pressure scrambling) is also found to transfer energy from the vertical to the horizontal components, and is expected to be stronger in roll vortices than in m esoscale cells. The sensible heat flux is found to fit well with a linear vertical profile in a clear or subcloud planetary boundary layer (PBL), in good agreement with the results of Lenschow et al., (1980). The heat flux ratio between the PBL top and the surface, derived from the linear fitted curve, is approximately -0.14, in good agreement with that derived from the lidar data for the same case. Near the PBL top, the heat flux profiles are consistent with those of Deardoff (1979) and Deardorff et al. (1980).

  2. Structure and Composition of the Neutral Upper Atmosphere of Mars from the MAVEN NGIMS Investigation

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Benna, M.; Yelle, R. V.; Stone, S. W.; Elrod, M. K.; Fox, J. L.

    2015-12-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the MAVEN mission is designed to characterize the state of the upper atmosphere and its response to perturbations from the sun and from lower atmosphere. These measurements complement other instruments on the MAVEN spacecraft and support the MAVEN science goal [Jakosky et al., 2015] of understanding atmospheric escape and over the course of martian history. We report NGIMS measurements of the neutral composition of multiple atomic and molecular species over hundreds of orbits since the science phase of this mission began late in 2014. Ion measurements from NGIMS are reported separately in other contributions to this session. The wide dynamic range, the high temporal resolution, and the use of two different ion source configurations of the NGIMS instrument [Mahaffy et al., 2014] allows neutral density structure and its variability to be characterized in detail. Large amplitude wave structure is observed on the lowest altitude portion of many orbits that dissipates at higher altitudes. Although this structure puts scatter in the retrieval of scale height temperatures these are nevertheless robustly secured by averaging over several orbits. The variability of the upper atmosphere temperature with latitude and local solar time is reported. The deep dip campaign approach to the homopause allows the mixing ratio of the major gases in the lower atmosphere to be measured. We compare these mixing ratios with those reported by the Sample Analysis at Mars investigation and previous Viking measurements. Jakosky, B. M., et al. (2015), The Mars Atmosphere and Volatile Evolution (MAVEN) Mission, Space Sci Rev, 21. Mahaffy, P. R., et al. (2014), The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission, Space Sci Rev, 185, DOI: 10.1007/s11214-11014-10091-11211.

  3. Heavy-Particle Deposition in the Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Liao, Yingcheng

    A set of experiments of heavy-particle deposition on the ground in a wind-tunnel simulated atmospheric boundary layer has been conducted. Different particle fall velocities and different wind speeds were used. In order to analyze inertial, continuity, and crossing-trajectories effects of heavy particles, a new random-walk model has been developed in which vertical velocity variance is a function of height. For calibration of the numerical model, a set of tracer-gas concentration measurements was also carried out. The analysis of experimental results reveals that, in the atmospheric surface layer, for most of the practical situations, the crossing-trajectories and the inertia of heavy particles have a very limited effect on heavy-particle dispersion and deposition. However, the continuity effect greatly affects the lateral dispersion and deposition of heavy particles. The continuity effect is strongly height dependent. Influences of different factors on heavy-particle deposition are discussed. This includes the fall-velocity distribution of heavy particles, the integral-time scales of turbulent flow, longitudinal turbulent velocity components, release height, etc. Comparisons between the theoretical prediction and the calculated results from both the model used in this study and the model of Legg and Raupach (1982) support the author's approach in which vertical velocity variance is taken to be height dependent. For practical purposes, the new random-walk model has greatly improved the accuracy of predicting longitudinal deposition of heavy particles compared to that of the traditional Gaussian model. Experiments with more release heights and larger differences of particle fall velocity are suggested in order to further confirm the findings of this dissertation.

  4. Heavy-particle deposition in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Liao, Yingcheng

    A set of experiments of heavy-particle deposition on the ground in a wind-tunnel simulated atmospheric boundary layer was conducted. Different particle fall velocities and different wind speeds were used. In order to analyze inertial, continuity, and crossing-trajectories effects of heavy particles, a new random-walk model was developed in which vertical velocity variance is a function of height. For calibration of the numerical model, a set of tracer-gas concentration measurements was also carried out. The analysis of experimental results reveals that, in the atmospheric surface layer, for most of the practical situations, the crossing-trajectories and the inertia of heavy particles have a very limited effect on heavy-particle dispersion and deposition. However, the continuity effect greatly affects the lateral dispersion and deposition of heavy particles. The continuity effect is strongly height dependent. Influences of different factors on heavy-particle deposition are discussed. This includes the fall-velocity distribution of heavy particles, the integral-time scales of turbulent flow, longitudinal turbulent velocity components, release height, etc. Comparisons between the theoretical prediction and the calculated results from both the model used in this study and the model of Legg and Raupach (1982) support the author's approach in which vertical velocity variance is taken to be height dependent. For practical purposes, the new random-walk model has greatly improved the accuracy of predicting longitudinal deposition of heavy particles compared to that of the traditional Gaussian model. Experiments with more release heights and larger differences of particle fall velocity are suggested in order to further confirm the findings.

  5. Energetic neutral atoms measured by the interstellar boundary explorer (IBEX): Evidence for multiple heliosheath populations

    SciTech Connect

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Kubiak, M. A.; Sokół, J. M.; Funsten, H.; Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.; Zirnstein, E. J.; Schwadron, N. A.

    2014-01-01

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. and Fuselier et al. and combine and compare ENA spectra from the first 3 yr of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sight (LOSs) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the three-dimensional heliosphere and its constituent ion populations. Our results show that (1) IBEX ENA fluxes and spectra above ∼0.7 keV measured along the LOSs of the Voyagers are consistent with several models in which the parent pickup ion (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower energy ENAs between ∼0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. These results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.

  6. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Dobrijevic, M.; Loison, J. C.; Hickson, K. M.; Gronoff, G.

    2016-04-01

    Many models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model. We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model. We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities. Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play

  7. Scaling laws of turbulence intermittency in the atmospheric boundary layer: the role of stability

    NASA Astrophysics Data System (ADS)

    Paradisi, Paolo; Cesari, Rita; Allegrini, Paolo

    2015-09-01

    Bursting and intermittent behavior is a fundamental feature of turbulence, especially in the vicinity of solid obstacles. This is associated with the dynamics of turbulent energy production and dissipation, which can be described in terms of coherent motion structures. These structures are generated at random times and remain stable for long times, after which they become suddenly unstable and undergo a rapid decay event. This intermittent behavior is described as a birth-death point process of self-organization, i.e., a sequence of critical events. The Inter-Event Time (IET) distribution, associated with intermittent self-organization, is typically a power-law decay, whose power exponent is known as complexity index and characterizes the complexity of the system, i.e., the ability to develop self-organized, metastable motion structures. We use a method, based on diffusion scaling, for the estimation of system's complexity. The method is applied to turbulence velocity data in the atmospheric boundary layer. A neutral condition is compared with a stable one, finding that the complexity index is lower in the neutral case with respect to the stable one. As a consequence, the crucial birth-death events are more rare in the stable case, and this could be associated with a less efficient transport dynamics.

  8. A Wind-Tunnel Artificially-Thickened Simulated Weakly Unstable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Zhang, S.; Hayden, P.

    2013-12-01

    A wind-tunnel simulation of an atmospheric boundary layer, artificially thickened as is often used in neutral flow wind-loading studies, has been investigated for weakly unstable stratification, including the effect of an overlying inversion. Rather than using a uniform inlet temperature profile, the inlet profile was adjusted iteratively by using measured downstream profiles. It was found that three cycles are sufficient for there to be no significant further change in profiles of temperature and other quantities. Development to nearly horizontally-homogeneous flow took a longer distance than in the neutral case because the simulated layer was deeper and therefore the length scales larger. Comparisons show first-order and second-order moments quantities are substantially larger than given by `standard forms' in the mixed layer but are close in the surface layer. Modified functions, obtained by matching one to the other, are suggested that amount to an interpolation in the mixed layer between the strongly unstable and the weakly unstable cases.

  9. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  10. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  11. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-04-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system. So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models. Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV called Small Unmanned Meteorological Observer (SUMO) has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO will be used under Arctic conditions in March/April 2009. This time the special purpose will be to send two SUMOs simultaneously on mission; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This will be the first step of future multiple UAV operations in so called "swarms" or "flocks". With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs.

  12. The Atmospheric Boundary Layer Over Baltic Sea Ice

    NASA Astrophysics Data System (ADS)

    Brümmer, Burghard; Kirchgäßner, Amèlie; Müller, Gerd

    2005-10-01

    The temporal and spatial variability of the atmospheric boundary layer (ABL) over Baltic Sea ice is presented. The focus is on the properties of the underlying surface (temperature and albedo), the heat fluxes at the air ice/water interface and the vertical ABL structure (inversion layer and low-level jet). The study uses data from two field campaigns, BASIS 1998 and BASIS 2001, applying ice stations, a ship and aircraft over various surface types (land-fast ice, drift ice, and open water). Sensible heat flux ranges from -100 W m-2 under warm-air advection conditions to 300 W m-2 under cold-air advection conditions. On average, it is negative over land-fast ice and positive over open water. An ABL inversion is almost permanently present. It is surface-based 2/3 of the time and extends to 165 m on average. The average base of the elevated inversion is 343 m. The mean temperature increase across all inversions is 2.1 K and is clearly smaller than for Arctic sea-ice inversions. A low-level jet occurs about 86% of the time with an average height of 245 m and speed of 13.3 m s-1, which is 7 m s-1 higher than the surface-layer wind. On average, the low-level jet is located near the top of the surface-based inversion or near the base of the elevated inversion.

  13. BIOGENIC HYDROCARBONS IN THE ATMOSPHERIC BOUNDARY LAYER: A REVIEW

    EPA Science Inventory

    Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science ...

  14. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation

  15. First steps of neutral hydrocarbon cluster formation in Titan's atmosphere: a laboratory kinetics approach

    NASA Astrophysics Data System (ADS)

    Bourgalais, J.

    2015-10-01

    Titan's dense atmosphere is the siege of a complex photo-chemistry initiated by the dissociation of its two most abundant components, nitrogen N2 and methane CH4. This cold chemistry generates a plethora of hydrocarbons and nitriles and takes part in the production of a thick orange haze. The detection of heavy neutrals and positive ions in Titan's upper atmosphere by the Ion and Neutral Mass Spectrometer (INMS) embarked onboard Cassini [1] and measurements of significant amounts of negative ions with masses up to 13 000 amu with the Cassini Plasma and Electron Spectrometer (CAPS/ELS) [2] suggest that low temperature chemical reactions and physical processes occurring at high altitudes near 1000 km could be the haze source. This haze material could act as a nucleus for the condensation of organic vapors in Titan's stratosphere and troposphere.

  16. Incorporation of the planetary boundary layer in atmospheric models

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve

    1993-01-01

    The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.

  17. Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms

    NASA Technical Reports Server (NTRS)

    Balachandran, N. K.

    1983-01-01

    Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.

  18. Trends In Modelling Neutral-Atmospheric Electromagnetic Delays in a 'Big Data' World

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Nikolaidou, T.

    2015-12-01

    Modelling the delay suffered by electromagnetic waves while they cross the neutral-atmosphere is of fundamental importance for several applications that help enhancing our understanding of the Earth system. Initially, this modelling was based on climatological models derived from sparse data sets. An improvement in models followed as more observing techniques became available, and denser networks started to be developed. Somehow in parallel, and more recently, investigation efforts started to be concentrated on the use of numerical weather prediction (NWP) models, from where neutral-atmospheric delay parameters can derived through ray-tracing. There are a few limitations in both approaches. Models based on climatology are based on sparse data covering a certain period of time, whereas NWP models although based on more realistic data, are provided on intervals that range several hours. A third way is about to be engaged, and it can be seen as a natural development due to an increase in the number of sensors and an enhancement of their geographical distribution, generating a continuous flow of data, being them both satellite-based and ground-based. The question that is posed ahead of us is on how to make use of these huge data sets, which will provide the best possible representation of the neutral-atmosphere at any given time, as readily and as accurately as possible. This situation fits well within what today is known as big data. This paper will explore and discuss scenarios that have potential to open new trends in modeling the neutral-atmospheric delay. They include near real-time empirical model updates, sequential improvement of Marini mapping function coefficients (e.g., within a VMF) and a self-feeding. The discussion and simulations that will be shown cover the whole planet. The pros and cons of each approach will be discussed in comparison with what is done today. Simulations show potential improvement of up to 25% under certain circumstances.

  19. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea.

    PubMed

    Lai, Senchao; Song, Junwei; Song, Tianli; Huang, Zhijiong; Zhang, Yingyi; Zhao, Yan; Liu, Guicheng; Zheng, Junyu; Mi, Wenying; Tang, Jianhui; Zou, Shichun; Ebinghaus, Ralf; Xie, Zhiyong

    2016-07-01

    Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2-99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m(-3) with an average of 54.5 pg m(-3). The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered.

  20. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea.

    PubMed

    Lai, Senchao; Song, Junwei; Song, Tianli; Huang, Zhijiong; Zhang, Yingyi; Zhao, Yan; Liu, Guicheng; Zheng, Junyu; Mi, Wenying; Tang, Jianhui; Zou, Shichun; Ebinghaus, Ralf; Xie, Zhiyong

    2016-07-01

    Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2-99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m(-3) with an average of 54.5 pg m(-3). The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered. PMID:27112727

  1. CIRCULARITY OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM (ENA) FLUX

    SciTech Connect

    Funsten, H. O.; Higdon, D. M.; Larsen, B. A.; Möbius, E. E-mail: dhigdon@lanl.gov; and others

    2013-10-10

    As a sharp feature in the sky, the ribbon of enhanced energetic neutral atom (ENA) flux observed by the Interstellar Boundary Explorer (IBEX) mission is a key signature for understanding the interaction of the heliosphere and the interstellar medium through which we are moving. Over five nominal IBEX energy passbands (0.7, 1.1, 1.7, 2.7, and 4.3 keV), the ribbon is extraordinarily circular, with a peak location centered at ecliptic (λ{sub RC}, β{sub RC}) = (219.°2 ± 1.°3, 39.°9 ± 2.°3) and a half cone angle of φ{sub C} = 74.°5 ± 2.°0. A slight elongation of the ribbon, generally perpendicular to the ribbon center-heliospheric nose vector and with eccentricity ∼0.3, is observed over all energies. At 4.3 keV, the ribbon is slightly larger and displaced relative to lower energies. For all ENA energies, a slice of the ribbon flux peak perpendicular to the circular arc is asymmetric and systematically skewed toward the ribbon center. We derive a spatial coherence parameter δ{sub C} ≤ 0.014 that characterizes the spatial uniformity of the ribbon over its extent in the sky and is a key constraint for understanding the underlying processes and structure governing the ribbon ENA emission.

  2. Total Solar Eclipses and Atmospheric Boundary Layer Response

    NASA Astrophysics Data System (ADS)

    Stoev, A.; Stoeva, P.; Kuzin, S.

    2012-11-01

    The effect of three total solar eclipses on meteorological parameters is discussed in the paper. Measurements were conducted at the village of Ravnets,General Toshevo municipality, Bulgaria, 1999,in Manavgat, near Antalya, Turkey, 2006 and in Tian Huang Ping, China, 2009. The observed decrease of the sky illumination (incoming solar radiation) during the eclipses was proportional to the percentage of solar coverage. The after eclipse sky illumination level is due to the effect of the natural change of the solar elevation angle. For the 1999 TSE it did not regain its pre eclipse value, it has exactly the same value for the 2006 TSE, and, It is three times larger than the pre eclipse value for the 2009 TSE. This fact can be easily explained by the Local Time of the maximum of the eclipses: LT 13:12, LT 12:58, and LT 09:34, respectively. Measurements showed significant changes in the surface air temperature. The minimum of the air temperature during the 2009 TSE (Tmin=4.5°C) was measured 6 min after the end of the total phase. This minimal temperature drop and larger time lag can be explained with the huge artificial lake near the place of observation, which minimizes the temperature response due to its larger heat capacity. During the 1999 TSE, minimal temperature (Tmin=6.4°C) is measured 7 min 30 s after the total phase, and for the 2006 TSE (Tmin=5°C) - 5 min. It is in accordance with the fact that the temperature minima at residential/commercial stations occurred in general, before the minima at stations in agricultural terrains. In 2006 we were at the yard of the hotel, and in 1999 in the countryside. The wind velocity drops during the total phase as a result of the cooling and stabilization of the atmospheric boundary layer. The wind direction during the total phase changes and the wind begins to blow in the same direction as the direction of motion of the lunar shadow on the earth. Cirrus and cirrostratus clouds were observed during the 2006 total solar

  3. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  4. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    SciTech Connect

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  5. Large eddy simultations of the atmospheric boundary layer east of the Colorado Rockies

    SciTech Connect

    Costigan, K.R.; Cotton, W.R.

    1992-10-22

    Large eddy simulation, LES, has often been carried out for the idealized situation of a simple convective boundary layer. Studies of dual Doppler radar and aircraft data from the Phoenix II experiment indicate that the boundary layer of the Colorado High Plains is not a purely convective boundary layer and it is influenced by the mountains to the west. The purpose of this study is to investigate the atmospheric boundary layer on one particular day on the Colorado High Plains. This research applies a LES nested within larger grids, which contain realistic topography and can simulate the larger-scale circulations initiated by the presence of the mountain barrier. How and to what extent the atmospheric boundary layer of the Colorado High Plains is influenced by larger scale circulations and other phenomena associated with the mountain barrier to the west is investigated. The nested grid LES reproduces the characteristics of the atmosphere for the case study day reasonably well. The mountains influence the atmospheric boundary layer over the plains to the east in several ways. The mountains contribute to the vertical shear of the horizontal winds through the thermally-induced mountain-plains circulation. As a consequence of the wind shear, the boundary layer that develops over the mountains is advected eastward over the top of the plains boundary layer, which is developing separately. This layer is marked by a mixture of gravity waves and turbulence and is atypical of a purely convective boundary layer. Just below this layer, the capping inversion of the plains boundary layer is weak and poorly defined compared to the inversions capping purely convective boundary layers. Gravity waves, triggered by the obstacle of the Rocky Mountains and by convection in the mountain boundary layer, also influence the atmosphere above the Colorado High Plains. These influences are found to have significant effects on the turbulence statistics and the energy spectra.

  6. Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism.

    PubMed

    Davis, Eric J; Siems, William F; Hill, Herbert H

    2012-06-01

    All atmospheric pressure ion detectors, including photo ionization detectors, flame ionization detectors, electron capture detectors, and ion mobility spectrometers, utilize Faraday plate designs in which ionic charge is collected and amplified. The sensitivity of these Faraday plate ion detectors are limited by thermal (Johnson) noise in the associated electronics. Thus approximately 10(6) ions per second are required for a minimal detection. This is not the case for ion detection under vacuum conditions where secondary electron multipliers (SEMs) can be used. SEMs produce a cascade of approximately 10(6) electrons per ion impinging on the conversion dynode. Similarly, photomultiplier tubes (PMTs) can generate approximately 10(6) electrons per photon. Unlike SEMs, however, PMTs are evacuated and sealed so that they are commonly used under atmospheric pressure conditions. This paper describes an atmospheric pressure ion detector based on coupling a PMT with light emitted from ion-ion neutralization reactions. The normal Faraday plate collector electrode was replaced with an electrode "needle" used to concentrate the anions as they were drawn to the tip of the needle by a strong focusing electric field. Light was emitted near the surface of the electrode when analyte ions were neutralized with cations produced from the anode. Although radiative-ion-ion recombination has been previously reported, this is the first time ions from separate ionization sources have been combined to produce light. The light from this radiative-ion-ion-neutralization (RIIN) was detected using a photon multiplier such that an ion mobility spectrum was obtained by monitoring the light emitted from mobility separated ions. An IMS spectrum of nitroglycerin (NG) was obtained utilizing RIIN for tranducing the mobility separated ions into an analytical signal. The implications of this novel ion transduction method are the potential for counting ions at atmospheric pressure and for obtaining ion

  7. Vertical structure of the ionosphere and upper neutral atmosphere of saturn from the pioneer radio occultation.

    PubMed

    Kliore, A J; Lindal, G F; Patel, I R; Sweetnam, D N; Hotz, H B; McDonough, T R

    1980-01-25

    Radio occultation measurements at S band (2.293 gigahertz) of the ionosphere and upper neutral atmosphere of Saturn were obtained during the flyby of the Pioneer 11 Saturn spacecraft on 5 September 1979. Preliminary analysis of the occultation exit data taken at a latitude of 9.5 degrees S and a solar zenith angle of 90.6 degrees revealed the presence of a rather thin ionosphere, having a main peak electron density of about 9.4 x 10/(3) per cubic centimeter at an altitude of about 2800 above the level of a neutral number density of 10(19) per cubic centimeter and a lower peak of about 7 x 10(3) per cubic centimeter at 2200 kilometers. Data in the neutral atmosphere were obtained to a pressure level of about 120 millibars. The temperature structure derived from these data is consistent with the results of the Pioneer 11 Saturn infrared radiometer experiment (for a helium fraction of 15 percent) and with models derived from Earth-based observations for a helium fraction by number of about 4 to 10 percent. The helium fraction will be further defined by mutual iteration with the infrared radiometer team.

  8. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  9. VARIATIONS IN THE HELIOSPHERIC POLAR ENERGETIC NEUTRAL ATOM FLUX OBSERVED BY THE INTERSTELLAR BOUNDARY EXPLORER

    SciTech Connect

    Reisenfeld, D. B.; Janzen, P. H.; Allegrini, F.; McComas, D. J. E-mail: paul.janzen@umontana.edu E-mail: dmccomas@swri.org; and others

    2012-03-10

    The ecliptic poles are observed continuously by the Interstellar Boundary Explorer (IBEX); thus, it is possible to discern temporal variations in the energetic neutral atoms (ENAs) from the outer heliosphere on timescales much shorter than the time it takes for IBEX to generate a full sky map (six months). Observations indicate that the ENA flux from the polar directions incident at Earth has been steadily decreasing for the two-year period from 2008 December through 2011 February. Over the IBEX-Hi energy range, the decrease in flux is energy dependent, varying at the south ecliptic pole from no drop at 0.71 keV, to 70% at 1.1 keV. At higher energies the drop ranges between 10% and 50%. The decline observed at the north ecliptic pole is as high as 48%, also at 1.1 keV. The trend correlates with the steady decline in solar wind dynamic pressure observed at 1 AU between 2005 and 2009, the likely period when solar wind protons that provide the source for ENAs observed by IBEX would have been outbound from the Sun. We propose a method by which the correlation between the 1 AU solar wind dynamic pressure and the ENA-derived pressure within the inner heliosheath (IHS) can be used to estimate the distance to the termination shock and the thickness of the IHS in the direction of the ecliptic poles. Our new analysis based on IBEX data shows the TS distances to be 110 AU and 134 AU at the south and north poles, respectively, and the corresponding IHS thicknesses to be 55 AU and 82 AU. Our analysis is consistent with the notion that the observed ENA fluxes originate in the IHS and their variations are driven by the solar wind as it evolves through the solar cycle.

  10. Latitudinal and Energy Dependence of Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-04-01

    We investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ ={{a}0}+{{a}1}cos ({{a}2}θ ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. Our results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. While earlier studies showed that the ˜0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. This dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  11. SEPARATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX

    SciTech Connect

    Schwadron, N. A.; Kucharek, H.; Moebius, E. E-mail: harald.kucharek@unh.edu

    2011-04-10

    The Interstellar Boundary Explorer (IBEX) observes a remarkable feature, the IBEX ribbon, which has energetic neutral atom (ENA) flux over a narrow region {approx}20{sup 0} wide, a factor of 2-3 higher than the more globally distributed ENA flux. Here, we separate ENA emissions in the ribbon from the distributed flux by applying a transparency mask over the ribbon and regions of high emissions, and then solve for the distributed flux using an interpolation scheme. Our analysis shows that the energy spectrum and spatial distribution of the ribbon are distinct from the surrounding globally distributed flux. The ribbon energy spectrum shows a knee between {approx}1 and 4 keV, and the angular distribution is approximately independent of energy. In contrast, the distributed flux does not show a clear knee and more closely conforms to a power law over much of the sky. Consistent with previous analyses, the slope of the power law steepens from the nose to tail, suggesting a weaker termination shock toward the tail as compared to the nose. The knee in the energy spectrum of the ribbon suggests that its source plasma population is generated via a distinct physical process. Both the slope in the energy distribution of the distributed flux and the knee in the energy distribution of the ribbon are ordered by latitude. The heliotail may be identified in maps of globally distributed flux as a broad region of low flux centered {approx}44{sup 0}W of the interstellar downwind direction, suggesting heliotail deflection by the interstellar magnetic field.

  12. Wind sensing in an atmospheric boundary layer by means of micropulse coherent Doppler lidars

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Smalikho, I. N.

    2016-07-01

    An algorithm is developed and computer simulation of wind sensing by means of micropulse coherent Doppler lidars (CDLs) in the atmospheric boundary layer is conducted for low values of the signalto- noise (SNR) ratio. The accuracy of lidar wind measurements is studied numerically for parameters of micropulse Stream Line CDLs. Optimal parameters of the measurements and processing data obtained at low SNR, which allow reconstructing vertical profiles of the wind velocity vector with required accuracy within an entire atmospheric boundary layer, are determined.

  13. Neutral and charged clusters in the atmosphere - Their importance and potential role in heterogeneous catalysis

    NASA Technical Reports Server (NTRS)

    Castleman, A. W., Jr.

    1982-01-01

    An assessment is presented of current knowledge concerning the role and importance of neutral and charged clusters in atmospheric heterogeneous catalysis, with a view to the recommendation of future studies needed for progress in the quantification of aerosol formation and catalytic reactivity. It is established that nucleation from the gaseous to the aerosol state commences via the formation of clusters among molecules participating in the phase-transformation process. Nucleation may proceed in some cases by way of the formation of prenucleation embryos, which then evolve through the energy barrier and undergo phase transformation. In other cases, cluster-cluster interaction among neutral particles or stagewise building of alternate-sign ion clusters may be important in the gas-to-particle conversion process.

  14. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  15. One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers

    NASA Technical Reports Server (NTRS)

    Bornstein, R. D.; Santhanam, K.

    1981-01-01

    Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.

  16. Mass spectrometers for studying the ionic and neutral composition of the upper layers of the atmosphere

    NASA Astrophysics Data System (ADS)

    Shutov, M. D.

    1984-04-01

    The investigation of the ionic and neutral composition of the upper layers of the atmosphere and outer space which is of interest for solving theoretical and applied problems of astrophysics, geophysics, space biology, and other closely-tied areas of science is discussed. The upper layers of the atmosphere are of practical significance for launching rockets and artificial satellites, for which the nature of movement depends on the structure and composition of the atmosphere. The study of the chemical composition of the ionosphere, the degree of ionization of the upper layers of the atmosphere at different latitudes and different times of day, and the dependence of ionization on the action of ultraviolet and corpuscular radiation is necessary to study the processes of the propagation of radio waves, and to explain the chemical and photochemical reaction which cause the ionosphere to exist. The most modern methods of study the composition of the mass spectral method which is a direct method and is especially valuable at great altitudes to study the composition of the upper atmosphere is considered. The mass spectrometric method is the only one to analyze the composition of ionizing gases.

  17. FLUID MODELING OF ATMOSPHERIC DISPERSION IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    Study of convective boundary layer (CBL) processes has depended largely upon laboratory analogs for many years. The pioneering work of Willis and Deardorff (1974) and some 35 subsequent papers by the same authors showed that much useful research could be accomplished with a re...

  18. Trends in modelling neutral-atmospheric electromagnetic delays in a `big data' world

    NASA Astrophysics Data System (ADS)

    Santos, Marcelo

    Modelling the delay suffered by electromagnetic waves while they cross the neutral-atmosphere is of fundamental importance for several applications that help enhancing our understanding of the Earth system. Initially, this modelling was based on climatological models derived from sparse data sets. An improvement in models followed as more observing techniques became available, and denser networks started to be developed. In this category, for example, we can include models and mapping functions due to Saastamoinen, Hopfield, as well as empirical models such as UNB3. Somehow in parallel, and more recently, investigation efforts started to be concentrated on the use of numerical weather prediction (NWP) models, from where neutral-atmospheric delay parameters can derived through ray-tracing. Computationally more expensive this approach has led to the development of the Vienna Mapping Functions (VMF), which are provided based on several NWP models such as the ECMWF, NOAA and CMC. VMF services have been developed and can be used in support to the Global Geodetic Observing System (GGOS), which is a component of the Global Earth Observation System of Systems (GEOSS). The use of NWPs changed the paradigm from the use of simple model equations to the derivation of the delay directly from a huge amount of data. There are a few limitations in both approaches. Models based on climatology are based on sparse data covering a certain period of time, whereas NWP models although based on more realistic data, are provided on intervals that range several hours. A third way is about to be engaged, and it can be seen as a natural development due to an increase in the number of sensors and an enhancement of their geographical distribution, generating a continuous flow of data, being them both satellite-based and ground-based. The question that is posed ahead of us is on how to make use of these huge data sets, which will provide the best possible representation of the neutral-atmosphere

  19. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul R.; Richard Hodges, R.; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; Holmes, Vincent; Johnson, Christopher S.; Kellogg, James; Kimvilakani, Patrick; Lefavor, Matthew; Hengemihle, Jerome; Jaeger, Ferzan; Lyness, Eric; Maurer, John; Nguyen, Daniel; Nolan, Thomas J.; Noreiga, Felix; Noriega, Marvin; Patel, Kiran; Prats, Benito; Quinones, Omar; Raaen, Eric; Tan, Florence; Weidner, Edwin; Woronowicz, Michael; Gundersen, Cynthia; Battel, Steven; Block, Bruce P.; Arnett, Ken; Miller, Ryan; Cooper, Curt; Edmonson, Charles

    2014-12-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  20. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; Holmes, Vincent; Johnson, Christopher S.; Kellogg, James; Kimvilakani, Patrick; Lefavor, Matthew; Hengemihle, Jerome; Jaeger, Ferzan; Lyness, Eric; Maurer, John; Nguyen, Daniel; Nolan, Thomas; Noreiga, Felix; Noreiga, Marvin; Patel, Kiran; Prats, Benito; Quinones, Omar; Raaen, Eric; Tan, Florence; Weidner, Edwin; Woronowicz, Michael; Gundersen, Cynthia (Inventor); Battel, Steven; Block, Bruce P.; Arnett, Ken; Miller, Ryan

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  1. Titan's atmospheric sputtering and neutral torus produced by magnetospheric and pick-up ions

    NASA Astrophysics Data System (ADS)

    Michael, M.; Smith, H. T.; Johnson, R. E.; Shematovich, V.; Leblanc, F.; Ledvina, S.; Luhmann, J. H.

    As Titan does not possess an intrinsic magnetic field, Kronian magnetospheric ions can penetrate Titan's exobase as can locally produced pick-up ions (e.g. Shematovich et al. 2003). This can cause atmospheric loss and heating of the exobase region. Penetration by slowed and deflected magnetospheric ions and by the pick-up ions is described here using a 3-D Monte Carlo model (Michael et al. 2004). The incident ions can lead to the production of fast neutrals that collide with other atmospheric neutrals producing the ejection of both atomic and molecular nitrogen and heating. The recently calculated dissociation cross sections of N2 are used in the present model (Tully and Johnson 2002). The incident flux of slowed magnetospheric N+ ions and pick-up C2H5+ ions is estimated from the work of Brecht et al. (2000). These ions, which have energies less than 1.2 keV, were shown to be more efficient in ejecting material from Titan's atmosphere than the non-deflected co-rotating ions used earlier (Lammer et al. 1993). The loss rates are comparable or larger than those produced by photo-dissociation. Exobse heating rates are given and the loss rates of N and N2 are then used as a source of nitrogen for the Titan neutral torus. If atmospheric sputtering is important this torus will contain both atomic and molecular nitrogen and, therefore, will provide a distributed source of both atomic and molecular nitrogen ions that will be readily detected by Cassini (Smith et al. 2004) Acknowledgment: This work is supported by NASA's Planetary Atmospheres Program and by the CAPS-Cassini Instrument. Brecht, S.H., J.G. Luhmann, and D.J. Larson, J. Geophys. Res., 105, 13119, 2000. Lammer, H., and S.J. Bauer,. Planet. Space Sci., 41, 657, 1993. Shematovich, V.I.,et al, J. Geophys. Res., 108, 5086, 10.1029/2003JE002096, 2003. Michael, M. et al., submitted, Icarus, 2004. Smith, H.T., et al., Titan Aeronomy Workshop, Paris, January 7-9, 2004. Tully, C., R.E. Johnson, J. Chem. Phys. 117, 6556

  2. Turbulence structure of the marine atmospheric boundary layer observed during the SEMAPHORE experiment

    SciTech Connect

    Durand, P.; Benech, B.; Druilhet, A.; Ferret, B.

    1994-12-31

    The SEMAPHORE experiment was conducted in the Azores region in 1993 and was devoted to mesoscale studies of oceanic and atmospheric circulations, as well as interactions between oceanic and atmospheric boundary layers. From October 4 to November 17, two instrumented aircraft gathered data. One of the major objectives of SEMAPHORE was to study the coupling between the atmospheric and oceanic boundary layers in the vicinity of an oceanic temperature front. This front, associated with the Azores current, was located south of the Santa Maria Island where the aircraft were based. The aim of this paper is to document the turbulent structure of the atmospheric boundary layer, analyzed from aircraft measurements, for two different meteorological situations.

  3. Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard

    2011-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.

  4. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    SciTech Connect

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines creates the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.

  5. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  6. Observations of Mars Neutral Atmosphere during the Polar Night by the Mars Express Radio Science Experiment

    NASA Astrophysics Data System (ADS)

    Tyler, G. L.; Pätzold, M.; Tellmann, S.; Häusler, B.; Hinson, D. P.

    2006-09-01

    The Radio Science Experiment on Mars Express (MaRS) sounds the Martian atmophere and ionosphere making use of spacecraft radio signals at 3.6 and 13 cm-wavelength and an Earth-Mars occultation geometry. Vertical profiles of pressure, temperature, and density in the neutral atmosphere are obtained with an altitude resolution of only a few hundred meters. The elliptical orbit of Mars Express permits examination of a large range of local times and locations and therefore can be used to investigate latitudinal, diurnal, and seasonal variations of Mars atmosphere. Daytime atmospheric profiles collected from both hemispheres since March 2004 allow us to study the development of the atmosphere in the early morning and the polar night. The second occultation season, December 2004, produced 32 profiles located in the southern polar latitudes at an average solar longitude of about 130°. Approximately 30 profiles obtained during the fourth occultation season, July 2005-April 2006, provide data on the north polar region at latitudes above 70° and a solar longitude of about 271°. The polar night at 75° north shows a 142-145 K isothermal atmosphere up to an altitude of 40 km, which is at or close to the condensation line of CO2. A similar behavior is observed during the southern polar night at 80° south, but with a significant warming at longitudes passing through Hellas. Model calculations of a Martian General Circulation Model (GCM) developed by the Laboratoire de Météorologie Dynamique de C.N.R.S. (LMD) support the interpretation of the observed atmospheric phenomena. The MaRS investigation is funded by the DLR Grant 50QP9909 and by the NASA Mars Program.

  7. Retrieval and Distribution of Neutral and Ionic Species in the Martian Upper Atmosphere as Measured by MAVEN NGIMS

    NASA Astrophysics Data System (ADS)

    Stone, S. W.; Yelle, R. V.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.

    2015-12-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, having arrived at Mars in September 2014, aims to determine the importance of atmospheric loss to space in the evolution of the planet's atmosphere, climate, and potential for habitability throughout its history. The Neutral Gas and Ion Mass Spectrometer (NGIMS) aboard MAVEN measures the composition, structure, and variability of neutral and ionic species in the Martian upper atmosphere from approximately 125 to 500 km. Since September 2014 NGIMS has directly measured the Martian atmosphere over more than 500 MAVEN science orbits, covering large swaths of latitude, longitude, solar zenith angle, and local solar time. The careful development of retrieval methods is necessary to accurately and precisely investigate the neutral and ionic composition of the Martian upper atmosphere, as well as the distribution of these component species. These retrieval methods must include the determination of fragmentation patterns for all relevant species, exacting subtraction of instrument background, and determination of the instrument's sensitivity to neutrals and ions in its three operating modes. In this talk, we will describe the methodology for determining NGIMS neutral densities and present some preliminary results on the spatial distribution of active species.

  8. Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Zickler, G. A.; Kozeschnik, E.; Fischer, F. D.

    2015-09-01

    Trapping of interstitial (e.g. carbon) atoms is driven by the reduction in energy in the system. Diffusion of interstitials, together with their trapping in dislocation cores and/or grain boundaries, is studied by the thermodynamic extremal principle. In addition to the total Gibbs energy, a well-established formulation of the total dissipation is applied. Dimension-free evolution equations are derived, whose solution is well approximated by an easy to handle kinetic equation. Cottrell's power law can be verified in the initial stage.

  9. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  10. Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Gegout, P.; Biancale, R.; Soudarin, L.

    2011-10-01

    The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range

  11. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications.

    NASA Astrophysics Data System (ADS)

    van Ulden, A. P.; Holtslag, A. A. M.

    1985-11-01

    This paper gives the outline of a `meteorological preprocessor' for air pollution modeling. It is shown how significantly more information can be extracted from routinely available measurements than the traditional Pasquil stability classes and power law wind speed profiles. Also it is shown how additional special measurements-if available-can be accommodated. The methods are primarily intended for application in generally level, but not necessarily homogeneous terrain. The improved characterization of the state of the planetary boundary layer allows a more modern and probably more accurate description of diffusion. The paper is an extended version of an introductory paper presented during the `Workshop on Updating Applied Diffusion Models' Clearwater, Florida, January 1984.

  12. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  13. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  14. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    NASA Astrophysics Data System (ADS)

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.; Veron, Fabrice; Sienkiewicz, Matthew J.

    2016-08-01

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003-2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013-2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with new instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s-1 all year round, highest winds in winter (10.1 m s-1) and lowest in summer (7.1 m s-1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.

  15. Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.

    2004-01-01

    Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.

  16. Temporal Dynamics of Bacterial and Fungal Community Composition in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Fierer, N.

    2014-12-01

    There is increasing evidence for significant microbial influences on atmospheric chemistry, cloud condensation, and ice nuclei concentrations, with known health impacts, yet we have a limited understanding of the types, abundances, and spatiotemporal dynamics of bacteria and fungi in the atmosphere. Here we use culture-independent molecular approaches, including targeted gene sequencing and quantitative PCR, to characterize bacterial and fungal community composition and abundance in the atmospheric boundary layer. We present results from 32 air samples, collected via vacuum filtration at 10 m and 250 m on the Boulder Atmospheric Observatory tower (Erie, CO) between November 2013 and April 2014. Samples were collected at night, and each sample was integrated over consecutive nights for approximately two weeks. Significant temporal shifts in bacterial and fungal community composition were observed over the course of the study, corresponding to changing bacterial and fungal concentrations. Within the same sampling time periods, bacterial and fungal communities from the near-surface atmosphere (10 m) were generally similar to those aloft (250 m), although coupled temporal and altitudinal effects were observed in some cases, particularly for fungi. Overall, our results indicate that bacterial and fungal communities exhibit minimal vertical stratification throughout the nocturnal atmospheric boundary layer but show a high degree of variability on two-week timescales. This study paves the way for further research into the connections between boundary layer microbiology, atmospheric dynamics, emissions, and local meteorology.

  17. Horton, pipe hydraulics, and the atmospheric boundary layer (The Robert E. Horton Memorial Lecture)

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried

    1993-01-01

    The early stages of Horton's scientific career which provided the opportunity and stimulus to delve into the origins of some contemporary concepts on the atmospheric boundary layer are reviewed. The study of Saph and Schoder provided basis for the experimental verification and validation of similarity by Blasius, Staton and Pannel, and for the subsequent developments that led to the present understanding of the turbulent boundary layer. Particular attention is given to incorporation of similarity and scaling in the analysis of turbulent flow.

  18. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  19. The groundwater land-surface atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Chow, Fotini Katopodes; Kollet, Stefan J.

    2007-12-01

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can simulate spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-h period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land-surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  20. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    SciTech Connect

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  1. Characterizations of strip-line microwave micro atmospheric plasma and its application to neutralization

    SciTech Connect

    Ogata, Ken; Terashima, Kazuo

    2009-07-15

    In this work, we estimate the plasma parameters of strip-line microwave micro atmospheric plasma (SMMAP) such as rotational temperature (T{sub r}) both from OH and N{sub 2} rotational transitions (610-770 and 770-980 K in Ar, respectively), electron density (N{sub e}) from Stark broadening (about 10{sup 13}/cm{sup 3} in mixture of Ar and H{sub 2}), and the distribution of electric field before ignition of SMMAP (5x10{sup 4} V/m at maximum, and applied voltage less than 5 V). Since the lower applied voltage of SMMAP might enable us to conduct efficient processing without electrostatic damage (ESD), we applied jet-type SMMAP to neutralization. The result of neutralization showed that it can reduce surface charge from +-1000 to +-100 V for 0.2 s at 10 W with Ar gas flow within 4 V offset voltage, which provides efficient plasma processing without ESD.

  2. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  3. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  4. Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability.

    PubMed

    Xie, Dong; Wang, Hanqing; Kearfott, Kimberlee J; Liu, Zehua; Mo, Shunquan

    2014-03-01

    In the present study, the roles of atmospheric wind profiles in the neutral atmosphere and surface roughness parameters in a complex terrain were examined to determine their impacts on radon ((222)Rn) dispersion from an actual uranium mine ventilation shaft. Simulations were completed on (222)Rn dispersion extending from the shaft to a vulnerable distance, near the location of an occupied farmhouse. The eight dispersion scenarios for the ventilation shaft source included four downwind velocities (0.5, 1.0, 2.0 and 4.0 m s(-1)) and two underlying surface roughness characteristics (0.1 m and 1.0 m). (222)Rn distributions and elevated pollution regions were identified. Effective dose estimation methods involving a historical weighting of wind speeds in the direction of interest coupled to the complex dispersion model were proposed. Using this approach, the radiation effects on the residents assumed to be outside at the location of the farm house 250 m downwind from the ventilation shaft outlet were computed. The maximum effective dose rate calculated for the residents at the outside of the farm house was 2.2 mSv y(-1), which is less than the low limit action level of 3-10 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP) occupational exposure action level for radon.

  5. The structure of the Venus neutral atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Bird, Mike; Verweyen, Alice; Haeusler, Bernd; Paetzold, Martin; Tyler, G. L.

    The Venus Express Radio Science Experiment VeRa uses one-way radio signals at X-band and S-band for the sounding of the Venus neutral atmosphere and ionosphere. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for this one-way radio link. Simultaneous, coherent measurements at two wavelengths allow separation of dispersive media effects from the classical Doppler shift. Electron density profiles of the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere can be derived via an Abel transform with an altitude resolution of only a few hundred metres in the altitude range between about 40 and 100 km. Three occultation seasons could be covered during the nominal mission of Venus Express resulting in a data set of about 140 profiles of the neutral atmosphere. Another three occultation seasons are planned during the extended mission. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Day-night and latitudinal variations of the thermal structure, the high variability of the atmosphere above the troposphere and signal absorption effects caused by the H2SO4 vapour can be investigated with the resulting data set.

  6. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  7. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary.

    PubMed

    Tanner, L H; Hubert, J F; Coffey, B P; McInerney, D P

    2001-06-01

    The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000-4,000 p.p.m. increase. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects-such as the release of atmospheric aerosols or tectonically driven sea-level change-may have been responsible for this event. PMID:11395765

  8. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary.

    PubMed

    Tanner, L H; Hubert, J F; Coffey, B P; McInerney, D P

    2001-06-01

    The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000-4,000 p.p.m. increase. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects-such as the release of atmospheric aerosols or tectonically driven sea-level change-may have been responsible for this event.

  9. Two Wide-Angle Imaging Neutral-Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Buzulukova, N.; Connors, M. G.; Dayeh, M. A.; Goldstein, J.; Funsten, H. O.; Fuselier, S.; Schwadron, N. A.; Valek, P.

    2012-03-01

    This study is the first to combine energetic neutral atom (ENA) observations from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) and Interstellar Boundary Explorer (IBEX). Here we examine the arrival of an interplanetary shock and the subsequent geomagnetically effective substorm on 5 April 2010, which was associated with the Galaxy 15 communications satellite anomaly. IBEX shows sharply enhanced ENA emissions immediately upon compression of the dayside magnetosphere at 08:26:17+/-9 s UT. The compression drove a markedly different spectral shape for the dayside emissions, with a strong enhancement at energies >1 keV, which persisted for hours after the shock arrival, consistent with the higher solar wind speed, density, and dynamic pressure (˜10 nPa) after the shock. TWINS ENA observations indicate a slower response of the ring current and precipitation of ring current ions as low-altitude emissions ˜15 min later, with the >50 keV ion precipitation leading the <10 keV precipitation by ˜20 min. These observations suggest internal magnetospheric processes are occurring after compression of the magnetosphere and before the ring current ions end up in the loss cone and precipitate into the ionosphere. We also compare MHD simulation results with both the TWINS and IBEX ENA observations; while the overall fluxes and distributions of emissions were generally similar, there were significant quantitative differences. Such differences emphasize the complexity of the magnetospheric system and importance of the global perspective for macroscopic magnetospheric studies. Finally, Appendix A documents important details of the TWINS data processing, including improved binning procedures, smoothing of images to a given level of statistical accuracy, and differential background subtraction.

  10. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  11. Study of the Mechanism of Nucleation in the Polluted Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi

    Atmospheric aerosols can affect human health and earth's radiation balance. The formation of these aerosols has been shown to cast high uncertainty in current global climate modeling. Most observed nucleation events in the boundary layers are correlated with high sulfuric acid concentration. Nucleation rates are usually proportional to sulfuric acid concentration up to the third power. After atmospheric aerosol particles are formed, they often grow at a speed faster than can be explained by sulfuric acid condensation, suggesting that other chemical species also participate in this process. The detailed mechanisms of how these particles are formed and their subsequent growth are still unclear. This work is focused on furthering our understanding of atmospheric nucleation. My contribution is mainly on the following three topics: (1) characterizing condensation particle counters (CPCs) for accurate particle measurements down to 1 nm, the size close to the smallest stable sulfuric acid clusters; (2) developing a method of estimating time and size resolved particle growth rates and atmospheric nucleation rates based on data from both atmospheric and laboratory studies; (3) deriving of a simple semi-empirical acid-base reaction model for atmospheric nucleation in the polluted atmospheric boundary layer.

  12. Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.

    2013-12-01

    It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.

  13. Measurements and Parametrizations of the Atmospheric Boundary-Layer Height at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Pietroni, Ilaria; Argentini, Stefania; Petenko, Igor; Sozzi, Roberto

    2012-04-01

    An experimental campaign, Study of the Atmospheric Boundary Layer Environmental at Dome C, was held during 2005 at the French-Italian station of Concordia at Dome C. Ground-based remote sensors, as well as in situ instrumentation, were used during the experimental campaign. The measurements allowed the direct estimation of the polar atmospheric boundary-layer height and the test of several parametrizations for the unstable and stable boundary layers. During the months of January and February, weak convection was observed while, during the polar night, a long-lived stable boundary layer occurred continuously. Under unstable stratification the mixing-layer height was determined using the sodar backscattered echoes and potential temperature profiles. The two estimations are highly correlated, with the mixing height ranging between 30 and 350 m. A simple prognostic one-dimensional model was used to estimate the convective mixing-layer height, with the correlation coefficient between observations and model results being 0.66. The boundary-layer height under stable conditions was estimated from radiosounding profiles as the height where the critical Richardson number is reached; values between 10 and 150 m were found. A visual inspection of potential temperature profiles was also used as further confirmation of the experimental height; the results of the two methods are in good agreement. Six parametrizations from the literature for the stable boundary-layer height were tested. Only the parametrization that considers the long-lived stable boundary layer and takes into account the interaction of the stable layer with the free atmosphere is in agreement with the observations.

  14. Efficiency of eddy mixing in a stable stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kurbatskiy, A. F.; Kurbatskaya, L. I.

    2011-12-01

    Based on a mesoscale RANS model of turbulence, the behavior of turbulent eddy mixing parameters is found to agree with the latest data of laboratory and atmospheric measurements. Some problems of the description of turbulent eddy mixing in the atmospheric boundary layer are studied. When the flow transforms to an extremely stable state, in particular, it is found the flux Richardson number Ri f can change nonmonotonically: it increases with increasing gradient Richardson number Rig until the state of saturation is reached at Ri g ≃ 1 and then decreases. The behavior of the coefficients of eddy diffusion of momentum and heat agrees with the concept of momentum (but not heat) transfer by internal waves propagating in an extremely stable atmospheric boundary layer.

  15. Laser beam propagation through an atmospheric transitional and turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Katz, Richard A.; Manzur, Tariq

    2015-05-01

    This study investigates laser beam propagation through an atmospheric boundary layer near the ocean surface. Objectives of this research are to ascertain feasibility limits for achieving maximum energy efficiency at extended ranges in the face of atmospheric and other distortions as the laser beam penetrates through transitional (anisotropic) and turbulent (isotropic) boundary layer regimes. Various aspects of turbulence modeling of laser beam propagation near the ocean surface are discussed including: Kolmogorov's model of atmospheric turbulence, parameterized structure functions (e.g., velocity and temperature gradients, gradients in refractive index) and other important factors affecting near surface propagation such as humidity, aerosols, and wave slap. Various preliminary modeled propagation results are shown, and a new methodology is proposed for improving existing model estimates with new time domain measurement procedures.

  16. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  17. Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Goodman, Michael

    2015-04-01

    Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the

  18. The Structure of the Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S. A.; Häusler, B.; Pätzold, M.; Bird, M. K.; Tyler, G. L.

    2007-12-01

    The Venus Express Radio Science Experiment VeRa is sounding the Venus neutral atmosphere and ionosphere using the spacecraft radio subsystem in the oneway radio link mode. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for the derivation of electron density profiles in the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere. The measurement configuration allows an altitude resolution of only a few hundred metres from the cloud deck at about 40 km to approximately 100 km. Three occultation seasons could be covered in the first two years of the Venus Express mission resulting in a data set of about 140 profiles of the neutral atmosphere. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Special attention will be given to day-night variations of the thermal structure and the temperature distribution at high polar latitudes on both hemispheres ("cold collar region") and signal absorption effects caused by the H2SO4 vapour.

  19. LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment

    SciTech Connect

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, Sonia; Newsom, Rob K.

    2015-10-23

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  20. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  1. COMSOL Modeling of Transport of Neutral Radicals to Substrate Surfaces Located Downstream from an Atmospheric Pressure Weakly Ionized Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Islam, Rokibul; Lekobou, William; Wemlinger, Erik; Pedrow, Patrick

    2012-10-01

    An Atmospheric Pressure Weakly Ionized Plasma (APWIP) Reactor generates a significant number of charged particles and neutral radicals. In our work the carrier gas is argon and the precursor molecule is acetylene. The APWIP is generated by corona discharges associated with an array of high voltage metal needles facing a grounded metal screen. Neutral radical transport downstream from the grounded screen to the substrate via diffusion and convection will be modeled with COMSOL, a finite element software package. Substrates will include objects with various shapes and characteristic dimensions that range from nanometers to centimeters. After the model is validated against canonical problems with known solutions, thin film deposition rates will be compared with experimentally measured results. Substrate geometries will include discs, spheres, fibers and highly porous surfaces such as those found on asphalt road surfaces. A single generic neutral radical will be used to represent the entire family of neutral radicals resulting from acetylene bond scission by free electron impact.

  2. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    NASA Astrophysics Data System (ADS)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  3. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  4. Neutral Atmospheric Influences of the Solar Proton Events in October-November 2003

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; DeLand, Matthew T.; Labow, Gordon J.; Fleming, Eric L.; Weisenstein, Debra K.; Ko, Malcolm K. W.; Sinnhuber, Miriam; Russell, James M.

    2005-01-01

    The large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the middle atmospheric polar cap regions. Although occurring near the end of the maximum of solar cycle 23, the fourth largest period of SPES measured in the past 40 years happened 28-31 October 2003. The highly energetic protons associated with the SPEs produced ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which led to the production of odd hydrogen (HO(sub x)) and odd nitrogen (NO(sub y)). NO(sub x) (NO + NO2) was observed by the UARS HALOE instrument to increase over 20 ppbv throughout the Southern Hemisphere polar lower mesosphere. The NOAA 16 SBUV/2 instrument measured a short-term ozone depletion of 40% in the Southern Hemisphere polar lower mesosphere, probably a result of the HO(sub x) increases. SBUV/2 observations showed ozone depletions of 5-8% in the southern polar upper stratosphere lasting days beyond the events, most likely a result of the NO(sub y) enhancements. Longer-term Northern Hemisphere polar total ozone decreases of >0.5% were predicted to last for over 8 months past the events with the Goddard Space Flight Center two-dimensional model. Although the production of NO(sub y) constituents is the same in both hemispheres, the NO(sub y) constituents have a much larger impact in the northern than the southern polar latitudes because of the seasonal differences between the two hemispheres. These observations and model computations illustrate the substantial impact of solar protons on the polar neutral middle atmosphere.

  5. Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Shah, Stimit; Bou-Zeid, Elie

    2014-12-01

    Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the -, - and -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the -plane of about 0 to 30 due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by

  6. The DROPPS/MIDAS Campaign Neutral Atmosphere Measurements and the Occurrence of PMSE and NLC

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Schauer, A. G.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Measurements of the neutral atmosphere and their relationship to electrodynamic conditions in the mesosphere have been of interest for many years. Inflatable falling sphere measurements along with electrodynamic measurements were obtained in conjunction with the occurrence of PMSE and NLC during the DROPPS/MIDAS Campaign conducted in July 1999 from Andenes Rocket Range, Norway. The inflatable failing sphere measurements in conjunction with a PMSE event on 5-6 July and with a NLC event on 14 July are used to infer thermal advection and its influence on the clouds' maintenance. Hodograph analysis, an early tropospheric tool used by analyst and forecasters, will be used to determine the magnitude and direction of thermal advection from measured wind data. Analysis of the wind structure through the use of hodographs and some assumptions can determine thermal advection, wind shear, and possible vertical motion. Changes in the temperature structure between allied observations were subtle which may be explained by advection. Because of meteorological instabilities in the mesosphere it is possible that hodograph analysis may not fully work. It is our intention to show that such analysis has value and has a place in the mesosphere.

  7. Perspective ground-based method for diagnostics of the lower ionosphere and the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Grigoriev, G. I.; Tolmacheva, A. V.

    We present a new perspective ground-based method for diagnostics of the ionosphere and atmosphere parameters. The method uses one of the numerous physical phenomena observed in the ionosphere illuminated by high-power radio waves. It is a generation of the artificial periodic irregularities (APIs) in the ionospheric plasma. The APIs were found while studying the effects of ionospheric high-power HF modification. It was established that the APIs are formed by a standing wave that occurs due to interference between the upwardly radiated radio wave and its reflection off the ionosphere. The API studies are based upon observation of the Bragg backscatter of the pulsed probe radio wave from the artificial periodic structure. Bragg backscatter occurs if the spatial period of the irregularities is equal to half a wavelength of the probe signal. The API techniques makes it possible to obtain the following information: the profiles of electron density from the lower D-region up to the maximum of the F-layer; the irregular structure of the ionosphere including split of the regular E-layer, the sporadic layers; the vertical velocities in the D- and E-regions of the ionosphere; the turbulent velocities, turbulent diffusion coefficients and the turbopause altitude; the neutral temperatures and densities at the E-region altitudes; the parameters of the internal gravity waves and their spectral characteristics; the relative concentration of negative oxygen ions in the D-region. Some new results obtained by the API technique are discussed .

  8. Calibration of the Neutral Mass Spectrometer for the Lunar Atmosphere and Dust Environment Explorer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Hodges, R. R.; Harpold, D. N.; King, T. T.; Jaeger, F.; Raaen, E.; Lyness, E.; Collier, M.; Benna, M.

    2012-01-01

    Science objectives of the LADEE Mission are to (1) determine the composition, and time variability of the tenuous lunar atmosphere and (2) to characterize the dust environment and its variability. These studies will extend the in-situ characterization of the environment that were carried out decades ago with the Apollo missions and a variety of ground based studies. The focused LADEE measurements will enable a more complete understanding of dust and gas sources and sinks. Sources of gas include UV photo-stimulated desorption, sputtering by plasma and micrometeorites, as well as thermal release of species such as argon from the cold service or venting from the lunar interior. Sinks include recondensation on the surface and escape through a variety of mechanisms. The LADEE science payload consists of an Ultraviolet Spectrometer, a Neutral Mass Spectrometer, and a Dust Detector. The LADEE orbit will include multiple passes at or below 50 km altitude and will target repeated sampling at the sunrise terminator where exospheric density will be highest for some thermally released species. The science mission will be implemented in approximately three months to allow measurements to be made over a period of one or more lunations In addition to the science mission NASA will use this mission to demonstrate optical communication technology away from low Earth orbit.

  9. Some characteristics of electric field momentum coupling with the neutral atmosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1978-01-01

    A three-dimensional model has been developed to describe momentum coupling between high-latitude electric fields, neutral winds, temperature, and composition. The Hall drag is found to be the main source for atmospheric winds and the small divergence component of winds is due to the Pedersen drag and the Hall drag. Adiabatic heat transfer is responsible for the back pressure which damps the divergence field and for the reversal in circulation of the divergence field at higher altitudes. Back pressure causes a decrease in total wind velocity of about 10% at exospheric heights and by a factor of about 2 at 120 km. The wind field with the pressure feedback may be simulated by neglecting pressure variations and the Coriolis force. Density variations of Ar, N2, O, and He, induced by the momentum source, are in phase above 120 km and out of phase with the temperature amplitude above 150 km. The electrostatic field momentum source is ineffective for directly inducing density and temperature variations in the upper thermosphere.

  10. Wind velocity measurements in the neutral boundary layer above hilly prairie

    NASA Technical Reports Server (NTRS)

    Sugita, Michiaki; Brutsaert, Wilfried

    1990-01-01

    The Flint Hills region in eastern Kansas is characterized by a strongly dissected rolling to hilly terrain with an average about 25 m of relief between steep ridges and valleys, and with ridges typically separated by distances of the order of 600 m. Intensive radiosonde observations during summer and fall of 1987 allowed the determination of some aspects of the wind regime in the region. For an assumed ground-surface reference of 330 m above sea level (asl), analysis of neutral profiles yielded a value z(0) of about 1.05 m, approximately. Good agreement was obtained between the values of friction velocity derived from wind profiles and values determined independently from the corresponding humidity profiles.

  11. Neutrally Stratified Turbulent Ekman Boundary Layer: Universal Similarity for a Transitional Rough Surface

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2009-08-01

    The geostrophic Ekman boundary layer for large Rossby number ( Ro) has been investigated by exploring the role played by the mesolayer (intermediate layer) lying between the traditional inner and outer layers. It is shown that the velocity and Reynolds shear stress components in the inner layer (including the overlap region) are universal relations, explicitly independent of surface roughness. This universality of predictions has been supported by observations from experiment, field and direct numerical simulation (DNS) data for fully smooth, transitionally rough and fully rough surfaces. The maxima of Reynolds shear stresses have been shown to be located in the mesolayer of the Ekman boundary layer, whose scale corresponds to the inverse square root of the friction Rossby number. The composite wall-wake universal relations for geostrophic velocity profiles have been proposed, and the two wake functions of the outer layer have been estimated by an eddy viscosity closure model. The geostrophic drag and cross-isobaric angle predictions yield universal relations, which are also supported by extensive field, laboratory and DNS data. The proposed predictions for the geostrophic drag and the cross-isobaric angle compare well with data for Rossby number Ro ≥ 105. The data show low Rossby number effects for Ro < 105 and higher-order effects due to the mesolayer compare well with the data for Ro ≥ 103.

  12. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    NASA Astrophysics Data System (ADS)

    Vila-Guerau Arellano, J.; Vanheerwaarden, C.; Lelieveld, J.

    2013-12-01

    We will present and discuss a conceptual modelling framework that can facilitate the understanding of the interactions between land processes and atmospheric boundary layer dynamics/chemistry at diurnal scales. This framework has been successful applied to the interpretation of field experiments, but also to identify the non-linear relations that occur at larger spatial and temporal scales. We will then discuss in depth the link between shallow cumulus and vegetation exchange of water and carbon dioxide. Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms, and in modulating the Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle is poorly understood. It is expected that as a consequence of rising atmospheric CO2 the plant stomata will close leading to lower latent heat fluxes and higher sensible heat fluxes. During the presentation, we will show that this causes a decline in boundary layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization. Our results are based on a new soil-water-atmosphere-plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection

  13. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    NASA Astrophysics Data System (ADS)

    de Arellano, Jordi Vilà-Guerau; van Heerwaarden, Chiel C.; Lelieveld, Jos

    2012-10-01

    Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms and in modulating Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle are poorly understood. It is expected that as a consequence of rising atmospheric CO2 concentrations the plant stomata will close, leading to lower latent heat fluxes and higher sensible heat fluxes. Here we show that this causes a decline in boundary-layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization. Our results are based on a new soil-water-atmosphere-plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection.

  14. Complex measurements of aerosol and ion characteristics in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kikas, Iu. E.; Kolomiets, S. M.; Kornienko, V. I.; Mirme, A. A.; Sal'm, Ia. I.; Sergeev, I. Ia.; Tammet, Kh. F.

    Results of a comprehensive study of the characteristics of atmospheric ions and aerosols in the boundary layer during the summer season are reported. A study is also made of the kinetics of aerosol formation under conditions of high artificial ionization of the air by alpha and UV radiation. A high degree of correlation is shown to exist between atmospheric concentrations of medium ions and fine (less than 0.01 micron) aerosol. The results obtained support the radiation-chemical mechanism of aerosol formation.

  15. The effect of new interstellar medium parameters on the heliosphere and energetic neutral atoms from the interstellar boundary

    SciTech Connect

    Heerikhuisen, J.; Zirnstein, E. J.; Pogorelov, N. V.; Zank, G. P.; Funsten, H. O.

    2014-03-20

    We present new results from three-dimensional simulations of the solar wind interaction with the local interstellar medium (LISM) using recent observations by NASA's Interstellar Boundary EXplorer (IBEX) mission estimates of the velocity and temperature of the LISM. We investigate four strengths of the LISM magnetic field, from 1 to 4 μG, and adjust the LISM proton and hydrogen densities so that the distance to the termination shock (TS) in the directions of the Voyager spacecraft is just below 90 AU, and the density of hydrogen at the TS is close to 0.09 cm{sup –3} in the nose direction. The orientation of the magnetic field is chosen to point toward the center of the ribbon of enhanced energetic neutral atom (ENA) flux seen in the IBEX data. Our simulations show that the plasma and neutral properties in the outer heliosheath vary considerably as a function of the LISM magnetic field strength. We also show that the heliotail points downwind in all cases, though its structure is strongly affected by the external magnetic field. Comparison and consistency between the simulated ENA flux and the circularity of the ribbon as measured by IBEX are most consistent with a LISM magnetic field strength aligned with the center of the ribbon and a magnitude in the range 2.5-3 μG.

  16. Evolution of energetic neutral atom spectra as measured by the Interstellar Boundary Explorer during its first seven years

    NASA Astrophysics Data System (ADS)

    Dayeh, Maher A.; Heerikhuisen, Jacob; McComas, David; Schwadron, Nathan; Desai, Mihir; Zirnstein, Eric J.

    2016-07-01

    The Interstellar Boundary Explorer (IBEX) mission continues to provide remote Energetic Neutral Atom (ENA) measurements produced by charge exchange between energetic protons and interstellar neutrals at the edge of our heliosphere. Using the first seven years of IBEX-Hi ENA measurements (January 2009 through December 2015), we examine the evolution of the spectral slopes in four different energy bands, namely, ˜0.7-1.1 keV, ˜1.1-1.7 keV, ˜1.7-2.7 keV, and ˜2.7-4.3 keV, across different regions of the sky. Results show that spectral slopes at each energy band are characterized with unique distribution properties (e.g., width, shape, and mode), which vary in time at different rates and in both directions (distribution modes increase or decrease). We attempt to explain these results in context of ENA source regions, solar wind temporal variations, and changes in the heliosheath thickness and its plasma properties. These results provide insights into ENA production mechanisms, properties of their plasma progenitors, and how they relate to changes in the solar wind.

  17. Observed Changes in Atmospheric Boundary Layer Properties at Memphis International Airport During August 1995

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    As part of the NASA Terminal Area Productivity Program, Langley Research Center embarked on a series of field measurements of wake vortex characteristics and associated atmospheric boundary layer properties. One measurement period was at the Memphis International Airport in August 1995. Atmospheric temperature, humidity, winds, turbulence, radiation, and soil properties were measured from a variety of sensor systems and platforms including sodars, profilers, aircraft and towers. This research focused on: (1) changes that occurred in tower data during sunrise and sunset transitions, (2) vertical variation of temperature and cross-head winds at selected times utilizing combinations of sensors, and (3) changes measured by an OV-10 aircraft during approaches and level flights. Significant but not unusual changes are documented and discussed in terms of expected boundary layer behavior. Questions on measurement and prediction of these changes from existing and near-term capabilities are discussed in the context of a future Aircraft Vortex Spacing System.

  18. The Structure of the Venus Neutral Atmosphere from the Radio Science Experiment VeRa on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Pätzold, M.; Bird, M.; Tyler, G. L.

    2007-08-01

    The Venus Express Radio Science Experiment VeRa uses one-way radio signals at X-band and S-band for the sounding of the Venus neutral atmosphere and ionosphere. An Ultrastable Oscillator (USO) provides a high quality onboard frequency reference source for this dual-frequency one-way radio link. Simultaneous, coherent measurements at two wavelengths allow separation of dispersive media effects from the classical Doppler shift. Electron density profiles of the ionosphere and profiles of pressure, temperature and neutral number density of the neutral atmosphere can be derived via an Abel transform with an altitude resolution of only a few hundred metres from the cloud deck to ~ 100 km. Two occultation seasons took place in the first year of observation. A total number of 42 profiles occultation experiments were conducted. The polar orbit of Venus Express provides the opportunity to study the atmosphere at all planetocentric latitudes under varying illumination conditions. Special attention will be given to day-night variations of the atmospheric structure and the temperature distribution at high polar latitudes on both hemispheres ("cold collar region") and signal absorption effects caused by the H2SO4 vapour.

  19. Implementation of a convective atmospheric boundary layer scheme in a tropospheric chemistry transport model

    NASA Astrophysics Data System (ADS)

    Wang, K.-Y.; Pyle, J. A.; Sanderson, M. G.; Bridgeman, C.

    1999-10-01

    A convective atmospheric boundary layer (ABL) scheme for the transport of trace gases in the lower troposphere has been implemented from the Community Climate Model, Version 2 [Hack et al., 1993] into a tropospheric chemistry transport model [Wang, 1998]. The atmospheric boundary layer scheme includes the calculation of atmospheric radiative transfer, surface energy balance, and land surface temperature and has a specified annual variation of sea surface temperature. The calculated diurnal variation of the height of the boundary layer is similar to the results of Troen and Mahrt [1986] and is in a good agreement with Holtslag and Boville [1993]. The modeled height of the boundary layer shows a seasonal shift between land and sea in the Northern Hemisphere. In summer (June-July-August), the height of the boundary layer is deeper over land (850-2250 m) and shallower over sea (50-850 m); while in winter (December-January-February), it is shallower over land (50-850 m) and deeper over sea (850-2850 m). The coupled ABL-chemical transport model is verified against measurements of radon 222 and methane. Comparison of the coupled model with a non-ABL model indicates significant differences between these model simulations and a better agreement between the coupled model and measurements. There is a significant effect on the trace gas distribution when the ABL model is compared with the non-ABL schemes. For example, the ABL scheme shows more O3 transported from the middle troposphere down to the surface, while more CO is pumped up from the surface into the middle troposphere. The seasonal cycle of modeled CH4 is significantly improved with the inclusion of the new ABL scheme, especially in regions which are not remote from methane sources.

  20. Modelling the atmospheric boundary layer for remotely sensed estimates of daily evaporation

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Blyth, K.; Camillo, P. J.

    1984-01-01

    An energy and moisture balance model of the soil surface was used to estimate daily evaporation from wheat and barley fields in West Germany. The model was calibrated using remotely sensed surface temperature estimates. Complete atmospheric boundary layer models are difficult to use because of the number of parameters involved and a simplified model was used here. The resultant evaporation estimates were compared to eddy correlation evaporation estimates and good agreement was found.

  1. The structure of the convective atmospheric boundary layer as revealed by lidar and Doppler radars

    NASA Technical Reports Server (NTRS)

    Eilts, M. D.; Sundara-Rajan, A.; Doviak, R. J.

    1985-01-01

    Results on the structure of the convective atmospheric boundary layer based on the analyses of data from the instrumented NSSL-KTVY tower, airborne Doppler lidar, and ground-based Doppler radars are presented. The vertically averaged wind over the boundary layer was found to be insensitive to baroclinicity, supporting the hypothesis of Arya and Wyngaard (1975). The computed momentum flux profiles were affected by baroclinicity. Horizontal wind spectra from lidar, radar, and tower data compared well with each other both in shape and magnitude. A consistent peak found near 4 km in all the computed spectra might have been caused by horizontally symmetric cells with horizontal wavelength 4 times the boundary-layer height as shown in Kuettner (1971) for the case of weak wind shear.

  2. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm-3 between 180 and 220 m altitude and 14 000 ± 2800 cm-3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm-3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm-3 to a minimum of 4000 ± 800 cm-3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL.

  3. Representation of the grey zone of turbulence in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Honnert, Rachel

    2016-04-01

    Numerical weather prediction model forecasts at horizontal grid lengths in the range of 100 to 1 km are now possible. This range of scales is the "grey zone of turbulence". Previous studies, based on large-eddy simulation (LES) analysis from the MésoNH model, showed that some assumptions of some turbulence schemes on boundary-layer structures are not valid. Indeed, boundary-layer thermals are now partly resolved, and the subgrid remaining part of the thermals is possibly largely or completely absent from the model columns. First, some modifications of the equations of the shallow convection scheme have been tested in the MésoNH model and in an idealized version of the operational AROME model at resolutions coarser than 500 m. Secondly, although the turbulence is mainly vertical at mesoscale (> 2 km resolution), it is isotropic in LES (< 100 m resolution). It has been proved by LES analysis that, in convective boundary layers, the horizontal production of turbulence cannot be neglected at resolutions finer than half of the boundary-layer height. Thus, in the grey zone, fully unidirectional turbulence scheme should become tridirectional around 500 m resolution. At Météo-France, the dynamical turbulence is modelled by a K-gradient in LES as well as at mesoscale in both MésoNH and AROME, which needs mixing lengths in the formulation. Vertical and horizontal mixing lengths have been calculated from LES of neutral and convective cases at resolutions in the grey zone.

  4. A Lagrangian Stochastic Model for Sea-Spray Evaporation in the Atmospheric Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mueller, James; Veron, Fabrice

    2010-10-01

    The dispersion of heavy particles subjected to a turbulent forcing is often simulated with Lagrangian stochastic models. Although these models have been employed successfully over land, the implementation of traditional LS models in the marine boundary layer is significantly more challenging. We present an adaptation of traditional Lagrangian stochastic models to the atmospheric marine boundary layer with a particular focus on the representation of the scalar turbulence for temperature and humidity. In this new model, the atmosphere can be stratified and the bottom boundary is represented by a realistic wavy surface that moves and deforms. Hence, the correlation function for the turbulent flow following a particle is extended to the inhomogenous, anisotropic case. The results reproduce behaviour for scalar Lagrangian turbulence in a stratified airflow that departs only slightly from the expected behaviour in isotropic turbulence. When solving for the surface temperature and the radius of evaporating heavy water droplets in the airflow, the modelled turbulent forcing on the particle also behaves remarkably well. We anticipate that this model will prove especially useful in the context of sea-spray dispersion and its associated sensible heat, latent heat, and gas fluxes between spray droplets and the atmosphere.

  5. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  6. Towards Improved Turbulence Model Parameterizations of the Stably Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Venayagamoorthy, S. K.

    2014-12-01

    Connecting available field measurements with appropriate model parameters of turbulent mixing in the stably stratified atmospheric boundary layer remains an active research area. The research presented in this study extends the theoretical framework of Mater & Venayagamoorthy (textit{Phys. Fluids}, vol. 26, no. 3, 2014, 036601) on shear- and buoyancy-dominated regimes to the stable atmospheric boundary layer (SABL). Two pertinent length scales can be constructed to directly include the effects of shear and buoyancy, LkS=k1/2/SL_{kS} = k^{1/2} /S and LkN=k1/2/NL_{kN} = k^{1/2}/N, respectively, that are representative of large-scale motions in these two regimes. Model parameters are developed using observations from three field campaigns and further evaluated with an textit{a priori} analysis of large-eddy simulation (LES) data of the SABL vertical structure. Results of this study thoroughly evaluate the pertinent mixing lengths applied to stably stratified turbulence in atmospheric observations and boundary layer models extendable to large-scale numerical weather prediction or global circulation models. *S.K.V. gratefully acknowledges the support of the National Science Foundation under Grant No. OCE-1151838

  7. Ammonia Surface-Atmosphere Exchange in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Wentworth, G.; Tremblay, J. E.; Gagnon, J.; Côté, J. S.; Courchesne, I.

    2014-12-01

    The net flux of ammonia between the ocean and the atmosphere is poorly known on global and regional scales. Data from high-latitude research cruises suggest that deposition from the atmosphere to the surface dominates, but the magnitude and drivers of this flux are not well understood. In the polar marine boundary layer, the surface may be composed of not only open ocean, but also first-year or multi-year sea ice which may be covered with meltponds. To characterize the air-sea exchange of ammonia in the polar marine boundary layer, data were collected aboard the Canadian Coast Guard Ship Amundsen between July 10 and Aug 14, 2014 in the Eastern Canadian Arctic. The Ambient Ion Monitor Ion Chromatograph was used to make hourly measurements of the mixing ratio of gas phase ammonia, and the water-soluble constituents of fine particle matter (PM2.5). Fluorometry was used to measure dissolved ammonium concentrations in the ocean between 0 and 20 m, and in low-salinity melt ponds encountered in regions of extensive sea ice. Observations indicate that the atmosphere contains higher levels of ammonia than are calculated to be in equilibrium with surface reservoirs, implying net deposition of ammonia from the atmosphere. While ammonium levels tended to be higher in melt ponds, the lower water temperatures still mean that these are unlikely to be sources of NH3 to the atmosphere. The disequilibrium between atmospheric and surface reservoirs of ammonia imply relatively large sources to the atmosphere (possibly nearby bird colonies) or high consumption rates in surface waters.

  8. Recent advances of harmonic delay models for the neutral atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Schindelegger, M.; Böhm, J.; Pain, G.

    2013-12-01

    The path delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of positioning products from the analysis of space geodetic observations, like those from GNSS (Global Navigation Satellite Systems). For a precise account of this effect, the slant path delays are typically separated into a hydrostatic part and a wet part with each of them being the product of the zenith delay and a mapping function. If available, the analyst is advised to determine the zenith hydrostatic delay from pressure values recorded at the site, to derive the mapping functions from operational analysis fields of numerical weather models, and to estimate the zenith wet delay within the least-squares adjustment. If neither local pressure values nor operational mapping functions can be accessed, it is recommended to use so-called blind models which are based on harmonic functions and do not need any parameters other than approximate position and date. We outline the recent advances made in this field of empirical models for tropospheric slant delays by reference to GPT2, an improved version of the Global Pressure and Temperature (GPT) model and the Global Mapping Functions (GMF). Characterized by an increased horizontal resolution of 5 degrees, a temporal variability down to semi-annual periodicities, and an extended set of meteorological parameters, the model's excellent usability for GNSS applications is demonstrated by validation against in-situ pressure and temperature observations as well as ray-traced delays. In addition, real time positioning and navigation applications profit from another, currently developed augmentation of GPT2 in terms of accurate a priori estimates for zenith wet delays. We discuss the subtleties of this extension and assess its performance by comparing to zenith total delays from GNSS solutions in 2011-2012.

  9. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    NASA Astrophysics Data System (ADS)

    Rodger, C. J.; Enell, C.-F.; Turunen, E.; Clilverd, M. A.; Thomson, N. R.; Verronen, P. T.

    2007-08-01

    Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP). Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR) and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC) model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  10. Atmospheric Boundary-Layer Dynamics and the Constancy of the Bowen Ratio (Invited)

    NASA Astrophysics Data System (ADS)

    Porporato, A.

    2009-12-01

    The diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, at least for the central part of the day. Using the solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model, we find that neglecting the early morning transition the potential temperature and specific humidity of the mixed layer tend to be linearly related to the ABL height. Similar behavior is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behavior of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.

  11. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  12. Model simulations of the Arctic atmospheric boundary-layer from the SHEBA year.

    PubMed

    Tjernström, Michael; Zagar, Mark; Svensson, Gunilla

    2004-06-01

    We present Arctic atmospheric boundary-layer modeling with a regional model COAMPS, for the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Model results are compared to soundings, near-surface measurements and forecasts from the ECMWF model. The near-surface temperature is often too high in winter, except in shorter periods when the boundary layer was cloud-capped and well-mixed due to cloud-top cooling. Temperatures are slightly too high also during the summer melt season. Effects are too high boundary-layer moisture and formation of too dense stratocumulus, generating a too deep well-mixed boundary layer with a cold bias at the simulated boundary-layer top. Errors in temperature and therefore moisture are responsible for large errors in heat flux, in particular in solar radiation, by forming these clouds. We conclude that the main problems lie in the surface energy balance and the treatment of the heat conduction through the ice and snow and in how low-level clouds are treated.

  13. Effects of artificial sea film slick upon the atmospheric boundary layer structure

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Artamonov, Arseniy; Malinovsky, Vladimir; Chechin, Dmitriy

    2010-05-01

    Organic surface-active compounds accumulate at the ocean-atmosphere boundary, influencing several air-sea interaction processes. In coastal areas with high biological activity this accumulation frequently becomes visible as mirrorlike patches ("slicks") on the sea surface. The artificial surface films of oleyl alcohol and vegetable oil were produced in the Black Sea coastal zone (one site was located near Gelendjik and another was near Crimea coast) to investigate its influence on energy and gas exchange between atmosphere and sea surface under different meteorological conditions. The atmospheric turbulence measurements during the passage of an artificial sea slick are compared with similar measurements without a sea slick. The effects of the slick are modifications of roughness length z0, and a possible increase in mean wind speed. In the mean, during the passage of the slick, the roughness length decreased while the mean wind speed appeared to increase. For the spectral comparison we compared the wind field over the sea during the time the film slick was in the vicinity of the measurement site with the wind field observed after the slick had passed. The cross-spectral density was computed between horizontal velocity and vertical velocity (Reynolds stress) and between atmospheric temperature and vertical velocity (heat flux). The introduction of the sea film slick, with its damping and suppression of capillary waves, appears to completely destroy the atmospheric turbulence generation. When a slick is present, the U-W phase angle and Reynolds stress spectrum for the atmosphere appear to be completely unaffected by undulating sea surface directly below the sensors. Spectral and wavelet analysis of the atmospheric surface layer characteristics showed a significant correlation between the processes on the sea surface and the atmospheric boundary layer. An intensification of change processes in the vicinity of the windward slick boundary are detected. It may be

  14. Atmospheric response in aurora experiment: Observations of E and F region neutral winds in a region of postmidnight diffuse aurora

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Marshall, T. R.; Mikkelsen, I. S.; Emery, B. A.; Christensen, A.; Kayser, D.; Hecht, J.; Lyons, L.; Walterscheid, R.

    1995-01-01

    The goal of the Atmospheric Response in Aurora (ARIA) experiment carried out at Poker Flat, Alaska, on March 3, 1992, was to determine the response of the neutral atmosphere to the long-lived, large-scale forcing that is characteristic of the diffuse aurora in the post midnight sector. A combination of chemical release rocket wind measurements, instrumented rocket composition measurements, and ground-based optical measurements were used to characterize the response of the neutral atmosphere. The rocket measurements were made at the end of a 90-min period of strong Joule heating. We focus on the neutral wind measurements made with the rocket. The forcing was determined by running the assimilated mapping of ionospheric electrodynamics (AMIE) analysis procedure developed at the National Center for Atmospheric Research. The winds expected at the latitude and longitude of the experiment were calculated using the spectral thermospheric general circulation model developed at the Danish Meteorological Institute. Comparisons of the observations and the model suggest that the neutral winds responded strongly in two height ranges. An eastward wind perturbation of approximately 100 m/s developed between 140 and 200 km altitude with a peak near 160 km. A southwestward wind with peak magnitude of approximately 150 m/s developed near 115 km altitude. The large amplitude winds at the lower altitude are particularly surprising. They appear to be associated with the upward propagating semidiurnal tide. However, the amplitude is much larger than predicted by any of the tidal models, and the shear found just below the peak in the winds was nominally unstable with a Richardson number of approximately 0.08.

  15. The impact of vegetation on the atmospheric boundary layer and convective storms

    SciTech Connect

    Lee, T.J.

    1992-01-01

    The impact of vegetation on atmospheric boundary layer and convective storms is examined through the construction and testing of a soil-vegetation-atmospheric transfer (SVAT) model. The Land Ecosystem-Atmospheric (LEAF) model is developed using an elevated canopy structure, an above-canopy aerodynamic resistance, two in-canopy aerodynamic resistances, and one stomatal conductance functions. The air temperature and humidity are assumed to be constant in the canopy whereas the wind and radiation follow a specified vertical profile. A simple dump-bucket method is used to parameterize the interception of precipitation and a multi-layer soil model is utilized to handle the vertical transfer of soil water. Evaporation from soil and wet leaves and transpiration from dry leaves are evaluated separately. The solid water uptake is based on soil water potential rather than on length of roots. Separate energy budgets for vegetation and for soil are used in order to remove unnecessary assumptions on energy partition between the vegetation and the substrate. Primary parameters are LAI, maximum stomatal conductance, and albedo. Secondary parameters include displacement height and environmental controls on stomatal resistance function. The Multi-response Randomized Bock Permutation (MRBP) procedure is used to help choose the model parameter values. The Fourier Amplitude Sensitivity Test (FAST) is applied to understand the model behavior in response to changes in model parameters. LEAF is used to study growth of boundary layer and local thermal circulations generated by surface inhomogeneities. Results show that atmospheric boundary layer is cooler and more moist over unstressed vegetation than over bare dry soil. Thermally forced circulation can result from the juxtaposition of two vegetation types due to different biophysical characteristics. Simulations show that the surface spatial heterogeneities made by vegetation play an important role in generating local convective storms.

  16. Study of the evening transition to the nocturnal atmospheric boundary layer: statistical analysis and case studies

    NASA Astrophysics Data System (ADS)

    Sastre, Mariano; Viana, Samuel; Maqueda, Gregorio; Yagüe, Carlos

    2010-05-01

    Turbulence is probably the most important feature dealing with the diffusion of contaminants in the planetary boundary layer. The main characteristics of turbulence are governed, apart from synoptic conditions, by the daily cycle of the Earth surface heating and cooling, so that, simplifying, two configurations are often found: convective and stable. The transition from a diurnal convective boundary layer to a typically stable nocturnal one is not still well understood (Edwards, 2009). Different micrometeorological conditions at sunset or a few hours previously may be critical for the establishment of a strong surface-based stability or a weak one, even for similar synoptic conditions. This work focuses on the characterization of the evening transition which takes place at the atmospheric boundary layer, considering the temporal interval 17.00-23.00 GMT. The methodology includes looking for some relations between meteorological variables, turbulent parameters and particulate matter (PM10, PM2.5 and PM1) concentrations measured by a GRIMM particle monitor (MODEL 365). Observational data (Summer 2009) is provided from permanent instrumentation at the Research Centre for the Lower Atmosphere (CIBA) in Valladolid (Spain), which is on a quite flat terrain (Cuxart et al., 2000). A 10m height mast equipped with temperature, wind speed and direction, and moisture sensors at several levels are available. Also two sonic anemometers (20 Hz sampling rate) at 1.5 and 10m were deployed in the mast. The database is complemented by a triangle of microbarometers installed next to the surface, and another three microbarometers placed in a 100m meteorological tower at 20, 50 and 100m respectively, which are ideal to study coherent structures present in the boundary layer. Statistical parameters of meteorological variables have been calculated and studied in order to find out connections with the most relevant physical processes. Moreover different cases studies will be analyzed

  17. Atmospheric boundary layer characteristics and land-atmosphere energy transfer in the Third Pole area

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhu, Z.; Amatya, P. M.; Chen, X.; Hu, Z.; Zhang, L.; Li, M.; Ma, W.

    2015-05-01

    The Tibetan Plateau and nearby surrounding area (the Third Pole area) dramatically impacts the world's environment and especially controls climatic and environmental changes in China, Asia and even in the Northern Hemisphere. Supported by the Chinese Academy of Sciences (CAS) and some international organizations, the Third Pole Environment (TPE) Programme is now under way. First, the background of the establishment of the TPE, the establishment and monitoring plans on long-term for the TPE and six comprehensive observation and study stations are introduced. Then the preliminary observational analysis results on atmosphere-land interaction are presented. The study on the regional distribution of land surface heat fluxes is of paramount importance over the heterogeneous landscape of the Third Pole area. A parameterization methodology based on satellite and in situ data is described and tested for deriving the regional surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) over the heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau area. Eight images of MODIS data and four images of AVHRR data were used for the comparison among winter, spring, summer and autumn, and the annual variation analyses. The derived results were also validated by using the ``ground truth'' measured in the stations of the TPE. The results show that the derived surface heat fluxes in the four different seasons over the Tibetan Plateau area are in good agreement with the ground measurements. The results from AVHRR were also in agreement with MODIS. It is therefore concluded that the proposed methodology is successful for the retrieval of surface heat fluxes using the MODIS data, AVHRR data and in situ data over the Tibetan Plateau area.

  18. Charting the Interstellar Magnetic Field causing the Interstellar Boundary Explorer (IBEX) Ribbon of Energetic Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Berdyugin, A.; Piirola, V.; Magalhaes, A. M.; Seriacopi, D. B.; Wiktorowicz, S. J.; Andersson, B.-G.; Funsten, H. O.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Hanson, A. J.; Fu, C.-W.

    2015-12-01

    .8}-27.6+23.5 between {B}{POL} and the bulk LSR velocity the local interstellar material indicates a geometry that is consistent with an expanding superbubble. The efficiency of grain alignment in the local interstellar medium has been assessed using stars where both polarization data and hydrogen column density data are available. Nearby stars appear to have larger polarizations than expected based on reddened sightlines, which is consistent with previous results, but uncertainties are large. Optical polarization and color excess E(B - V) data indicate the presence of nearby interstellar dust in the BICEP2 field. Color excess E(B - V) indicates an optical extinction of AV > 0.6 in the BICEP2 field, while the polarization data indicate that AV > 0.09 mag. The IBEX Ribbon ISMF extends to the boundaries of the BICEP2 region.

  19. Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru

    SciTech Connect

    Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.; Hare, Jeffrey; Long, Charles N.; Reynolds, R. M.

    2007-03-01

    Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than the marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.

  20. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  1. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-08-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  2. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  3. Atmosphere-Ocean Interactions in Mid-latitude Western Boundary Currents

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.

    2008-12-01

    Strong mid-latitude western boundary currents (WBC) in the Northern Atlantic and North Pacific transport heat from the warm tropical regions to the mid-latitudes, where much of the heat is fluxed to the atmosphere. Anomalously large heat transport in the WBC causes an accumulation of heat south of the current core, which in turn drives interannual variations in the fluxes of heat to the atmosphere. The accumulation of heat in this region also inhibits the formation of Subtropical Mode Water (STMW). Changes in the WBCs can be characterized by variations in the latitude and stability of the path and in the intensity of the current. These variations are associated with anomalies in STMW volume, mixing across the current core, and air-sea fluxes. There is increasing evidence that interannual WBC variability is forced by the winds. The effect of the WBCs can be seen in the atmosphere, both in the boundary layer and well into the troposphere. Extratropical storms intensify greatly over the WBCs, particularly in the regions of large air-sea fluxes. Thus, the ocean circulation variability has important implications both for weather and for climate in this region. The WBC variability and air-sea interaction, which are shown clearly in high-resolution satellite observations, are poorly represented in climate models, a problem that has motivated two major field programs: KESS in the Pacific and CLIMODE in the Atlantic. Measurements and analyses from these programs have revealed a wealth of detail on scales not resolved by climate models, in particular the propagation of the smaller ocean scales into the atmosphere over the WBCs. North Pacific and North Atlantic WBC variability and its implications for atmosphere-ocean interaction will be reviewed primarily using high- resolution observations with an emphasis on interannual to decadal time scales.

  4. Effects of solar wind speed on the secondary energetic neutral source of the Interstellar Boundary Explorer ribbon

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Funsten, H. O.; Heerikhuisen, J.; McComas, D. J.

    2016-02-01

    The Interstellar Boundary EXplorer (IBEX) ribbon is an intense energetic neutral atom (ENA) emission feature encircling the sky, spanning energies ≤0.5-6 keV. The ribbon may be produced by the "secondary ENA" mechanism, where ENAs emitted from a source plasma population inside the heliosphere propagate outside the heliopause, undergo two charge-exchange events, and become secondary ENAs that may be directed back toward Earth and detected by IBEX. In this scenario, the source plasma population is governed by the interaction of the solar wind (SW) with the interstellar medium and is thus sensitive to the global SW properties. Moreover, this scenario predicts that the distance to the source of secondary ENAs depends on the ENA energy and SW speed, which in turn may affect the shape of the ribbon. In this paper, we use a computational model of the heliosphere with simplified SW boundary conditions to analyze the influence of ENA energy and SW speed, independent of time and latitude, on the global spatial and geometric properties of the ribbon. We find a strong dependence of the simulated ribbon energy spectrum and spatial symmetry on SW speed and ENA energy, and only a slight dependence on ribbon geometry. Our results suggest a significant number of primary ENAs from the inner heliosheath may contribute to the pickup ion source population outside the heliopause, depending on the ENA energy and SW speed. The lack of variation in the simulated ribbon center as a function of ENA energy and SW speed, in contrast to the observations, implies that the asymmetry of the SW plays an important role in determining the position of the ribbon. Comparisons to the IBEX data also signify the ribbon's dependence on the properties of the local interstellar medium, particularly the interstellar magnetic field.

  5. Preliminary analysis of the Nocturnal Atmospheric Boundary Layer during the experimental campaign CIBA 2008

    NASA Astrophysics Data System (ADS)

    Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.

    2009-04-01

    An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.

  6. [Measurement of atmospheric boundary layer pollutants by mobile lidar in Beijing].

    PubMed

    Wang, Shao-Lin; Xie, Pin-Hua; Hu, Shun-Xing; Wei, He-Li; Hu, Huan-Ling; Xie, Jun; Cao, Kai-Fa; Fang, Xin

    2008-03-01

    The parameters of AML-2 mobile lidar were introduced, which was based on differential absorption principle and designed by our institute. In Yufa of Beijing, the pollutants including O3, NO2, SO2 in atmospheric boundary layer were monitored in August and September of 2006 under different weather conditions. Vertical profile and diurnal variation of concentrations of these pollutants were analyzed. If without the influence of pollution air transport from south region, the concentrations of these pollutants are low under the overcast weather condition. The concentrations of O3 and NO2 decrease with altitude, and this characteristic is not obvious for SO2, but there is a high concentration layer of SO2 near ground (about 0.6km). The quality of atmosphere Beijing is influenced significantly by air transportation from south region, and the altitude of the severe pollution air transport is about 1km to 1.5km in August 23rd to 25th. As a result, the characteristics of vertical profile and daily variation of the pollutants are changed, and the concentrations of O3, NO2, SO2 in atmospheric boundary layer of Yufa area increased obviously.

  7. Disturbance of the Boundary Layer at Summit Station, Greenland by an Atmospheric River

    NASA Astrophysics Data System (ADS)

    Neff, William; Shupe, Mathew; Ralph, Marty

    2014-05-01

    On 11 July 2012, a rare melt episode occurred at Summit Station Greenland. As described by Neff et al. 2014 (Submitted JGR), a major factor in this melt event was an Atmospheric River (AR), a narrow corridor of high water-vapor content. This AR transited the western Atlantic and theen moved up the west coast of Greenland and thence over Greenland. Back trajectories also indicated significant warm air advection from mid-North America during a major heat wave. We present here the boundary layer changes during this event using sodar to distinguish well-mixed from stable periods and relate these to changes in synoptic forcing and resulting changes in radiative forcing by low-level, shallow, warm clouds. A second near-melt episode also occurred on 29 July which provides an opportunity to compare and contrast boundary layer responses in the two cases.

  8. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    PubMed

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  9. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    PubMed Central

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  10. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Esau, Igor

    2016-05-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  11. The atmospheric boundary layer evening transitions: an observational and numerical study from two different datasets

    NASA Astrophysics Data System (ADS)

    Sastre, Mariano; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio; Ander Arrillaga, Jon

    2015-04-01

    In this work we study the temporal evolution of the Atmospheric Boundary Layer (ABL) along the transition period from a diurnal typical convection to a nocturnal more frequently stable situation. This period is known as late afternoon or evening transition, depending on the specific definitions employed by different authors [1]. In order to obtain a proper characterization, we try to learn whether or not the behaviour of these transitional boundary layers is strongly dependent on local conditions. To do so, two sets of evening transitions are studied from data collected at two different experimental sites. These locations correspond to research facilities named CIBA (Spain) and CRA (France), which are the places where atmospheric field campaigns have been conducted during the last years, such as CIBA2008 and BLLAST 2011, respectively. In order to get comparable situations, we focus especially on transitions with weak synoptic forcing, and consider daily astronomical sunset as a reference time. A statistical analysis on main parameters related to the transition is carried out for both locations, and the average behaviour is shown as well as extreme values according to the timing. A similar pattern in the qualitative evolution of many variables is found. Nevertheless, several relevant differences in the progress of key variables are obtained too. Moisture, both from the soil and the air, is thought to have great relevance in explaining many of the differences found between the two sites. Some case studies are explored, focusing on the role played by the atmospheric turbulence. Complementary, numerical experiments are also performed using the Weather Research and Forecast (WRF) mesoscale model, in order to test the role of humidity, by artificially varying it in some of the simulations. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10931-10960.

  12. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  13. Atmospheric dispersion in the Arctic: Winter-time boundary-layer measurements

    SciTech Connect

    Guenther, A.; Lamb, B.

    1989-01-01

    In the paper, the authors present measurements of turbulence and boundary-layer structure over open winter-time tundra with an emphasis upon the implications of these observations for pollutant dispersion modeling. Vertical profiles of mean wind speed, wind direction and temperature are described, in addition to fluctuations in these quantities. Dispersion coefficients are estimated and compared with the open terrain tracer plume measurements. The work is part of an arctic dispersion modeling program supported by the EPA Cold Climate Research Program. In other aspects of the program, they have investigated plume downwash and dispersion at an arctic industrial site using wind-tunnel model studies and atmospheric tracer field studies.

  14. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  15. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  16. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  17. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    PubMed

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  18. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    PubMed Central

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  19. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.

  20. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  1. The detection of clouds, aerosols and marine atmospheric boundary layer characteristics from simulated GLAS data

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Spinhirne, James D.

    1998-01-01

    Scheduled for launch in 2001 as part of NASA's Earth Observing System (EOS), the Geoscience Laser Altimeter System (GLAS) will provide continuous laser sounding of the earth's atmosphere from space for the first time. From its polar orbit about 600 km above the surface, GLAS will employ a 40 Hz solid state laser operating at 1064 nm to measure topography to an accuracy of 10 cm. Simultaneously, the atmospheric channels (1064 and 532 nm) of GLAS will provide profiles of atmospheric backscatter from 40 km to the ground with 75 meter vertical resolution (Spinhirne and Palm, 1996). These measurements will give scientists an unprecedented global data set on the vertical structure of clouds and aerosols which will greatly aid research efforts aimed at understanding their effects on climate and their role in climate change (Hartman, 1994). To better understand and predict the performance of the GLAS atmospheric channels, a computer model was developed to simulate the type of signal that the instrument would likely produce. The model uses aircraft lidar data and provides realistic simulated GLAS data sets over large areas spanning a wide range of atmospheric conditions. These simulated GLAS datasets are invaluable for designing and testing algorithms for the retrieval of parameters such as cloud and aerosol layer height, optical depth and extinction cross section. This work is currently proceeding and in this paper we will present results of the cloud and aerosol detection algorithm with emphasis on the detection of Marine Atmospheric Boundary Layer (MABL) aerosol. In addition, we use a recently developed technique to ascertain the feasability of estimating MABL moisture and temperature structure from spaceborne systems such as GLAS.

  2. The atmospheric neutral density experiment (ANDE) and modulating retroreflector in space (MODRAS): combined flight experiments for the space test program

    NASA Astrophysics Data System (ADS)

    Nicholas, Andrew C.; Gilbreath, G. Charmaine; Thonnard, Stefan E.; Kessel, R. A.; Lucke, Robert; Sillman, C. P.

    2003-03-01

    The Atmospheric Neutral Density Experiment (ANDE) is a low cost mission proposed by the Naval Research Laboratory to demonstrate a method to monitor the thermospheric neutral density at an altitude of 400 km. The primary mission objective is to provide total neutral density along the orbit for improved orbit determination of resident space objects. The ANDE mission also serves as a test platform for a new space-to-ground optical communications technique, the Modulating Retro-reflector Array in Space (MODRAS) experiment. Both are sponsored in part by the Department of Defense Space Test Program. The mission consists of two spherical spacecraft fitted with retro-reflectors for satellite laser ranging (SLR). One spacecraft is completely passive; the other carries three active instruments; a miniature Wind And Temperature Spectrometer (WATS) to measure atmospheric composition, cross-track winds and neutral temperature; a Global Positioning Sensor (GPS); and a Thermal Monitoring System (TMS) to monitor the temperature of the sphere. A design requirement of the active satellite is to telemeter the data to the ground without external protrusions from the spherical spacecraft (i.e. an antenna). The active satellite will be fitted with the MODRAS system, which is an enabling technology for the ANDE mission. The MODRAS system consists of a set of multiple quantum well (MQW) modulating retro-reflectors coupled with an electronics package, which will telemeter data to the ground by modulating the reflected light from laser interrogation beam. This paper presents a mission overview and emphasis will be placed on the design, optical layout, performance, ground station, and science capabilities of the combined missions.

  3. Spectral and cospectral characteristics of atmospheric turbulence in the marine boundary layer

    SciTech Connect

    Volkov, Yu.A.; Grachev, A.A.; Elagina, L.G.; Matveev, D.T.

    1994-12-31

    The behavior of frequency spectra and cospectra of atmospheric turbulence over the sea surface is described through analysis of data obtained from shipboard in a number of marine expeditions in Atlantic. These data sets have a wide variety of weather conditions. Many cases have demonstrated similarity between spectra of velocity, temperature and humidity fluctuations as well as momentum, heat and water vapor flux cospectra. These cases are characterized by strongly unstable stratification of surface layer, which observed during expedition in winter/spring 1988 in North Atlantic near Newfoundland Island. However, in weak unstable conditions typical for Subtropical (Pre-ASTEX-91 experiment) and Equatorial Atlantic, spectra of temperature and humidity and heat and moisture flux cospectra were often dissimilar. Spectral dissimilarity of turbulent quantities are also related with unsteady cases. For these cases heat flux cospectra often change sign at low frequency and the net sensible heat flux may be close to zero. The turbulent measurements are accompanied by simultaneous remote sensing of sea surface temperature and cloud low boundary. The obtained results indicate that the anomalous behavior of low-frequency cospectra is related to large-scale circulations (coherent structures) in the atmospheric boundary layer (ABL) and oceanic subsurface layer.

  4. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2016-02-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface.

  5. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    SciTech Connect

    Pu, Zhaoxia

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  6. Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    McClure, Sarah; Lee, Sang-Joon; Zhang, Wei

    2015-11-01

    Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.

  7. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  8. Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Menut, L.; Carissimo, B.; Pelon, J.; Flamant, P.

    The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25-65 W m -2, corresponding to relative differences of 20-60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.

  9. Complex turbulent flow in the atmospheric boundary layer: Lab and field measurements of embedded canopy wakes

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Carbajo Fuertes, F.; Porte-Agel, F.

    2015-12-01

    Natural and anthropogenic fragmented landscapes are pervasive and this complexity significantly affects the structure of the atmospheric boundary layer, causing classic similarity theories to break down. This is especially true in areas affected by wake turbulence. Steep topography and canopy patches can lead to separation of the boundary layer and delay in the adjustment of turbulence to an adjacent underlying surface. Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the mean and turbulence profiles compared to classic rough to smooth transitions (Markfort et al. 2014, Env. Fluid Mech.). The added turbulence due to wakes delay the development of a new boundary layer and turbulent flux measurements and models that rely on similarity theory to determine surface fluxes exhibit significant errors. Here we compare lab-scale experimental measurements using PIV to field-scale measurements using scanning Doppler wind LiDARs. The measurements provide information on how the wake evolves in space and varies over time. Results from the lab and field show a time-varying recirculation zone downwind of the canopy, enhanced turbulence extending far downwind of the transition and reduced surface fluxes in the wake region. The field measurements show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. The implications of canopy wakes for measurements and modeling of surface fluxes will be discussed.

  10. Atmospheric Boundary Layer of a pasture site in Amazônia

    NASA Astrophysics Data System (ADS)

    Trindade de Araújo Tiburtino Neves, Theomar; Fisch, Gilberto; Raasch, Siegfried

    2013-04-01

    A great effort has been made by the community of micrometeorology and planetary boundary layer for a better description of the properties of the Atmospheric Boundary Layer (ABL), such as its height, thermodynamics characteristics and its time evolution. This work aims to give a review of the main characteristics of Atmospheric Boundary Layer over a pasture site in Amazonia. The measurements dataset was carried out from 3 different LBA field campaigns: RBLE 3 (during the dry season from 1993), RaCCI (during the dry-to-wet transition season from 2002) and WetAMC (during the wet season from 1999), collected with tethered balloon, radiosondes and eddy correlation method in a pasture site in the southwestern Amazonia. Different techniques and instruments were used to estimate the ABĹs properties. During the daytime, it was possible to observe that there is an abrupt growth of the Convective Boundary Layer (CBL) between 08 and 11 LT, with a stationary pattern between 14 and 17 LT. The maximum heights at late afternoon were around 1600 m during the dry season, whilst the wet season it only reached 1000 m. This is due to the lower surface turbulent sensible heat flux as the soil is wetter and the partition of energy is completely different between wet to the dry season. For the transition period (RaCCI 2002), it was possible to analyze and compare several estimates from different instruments and methods. It showed that the parcel method overestimates the heights of all measurements (mainly at 14 LT) due to the high incidence of solar radiation and superadiabatic gradients. The profile and Richardson number methods gave results very similar to estimate the height of the CBL. The onset of the Nocturnal Boundary Layer (NBL) occurs before the sunset (18 LT) and its height is reasonable stable during the night (typical values around 180-250 m). An alternative method (Vmax) which used the height of the maximum windspeed derived from a SODAR instrument during RaCCI 2002 was

  11. Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface

    NASA Astrophysics Data System (ADS)

    Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.

    2012-04-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and

  12. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  13. Analytical Solutions to the Near-Neutral Atmospheric Surface Energy Balance with and without Heat Storage for Urban Climatological Studies.

    NASA Astrophysics Data System (ADS)

    Tso, C. P.; Chan, B. K.; Hashim, M. A.

    1991-04-01

    Analytical solutions are presented to the near-neutral atmospheric surface energy balance with the new approach of including the participation of heat storage in the building substrate. Analytical solutions are also presented for the first time for the case without heat storage effect. By a linearization process, the governing equations are simplified to a set of time-dependent, linear, first-order equations from which explicit solutions are readily obtainable. The results compare well with those obtained by numerical solutions upon the set without linearization when applied to the tropical city of Kuala Lumpur, Malaysia.

  14. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II - Odd hydrogen

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Rusch, D. W.; Gerard, J.-C.; Reid, G. C.; Crutzen, P. J.

    1981-01-01

    A one dimensional time-dependent model of the neutral and ion chemistry of the middle atmosphere has been used to examine the production of odd hydrogen (H, OH, and HO2) during charged particle precipitation. At altitudes above about 65 km, odd hydrogen production depends on the ionization rate, and the atomic oxygen and water vapor densities. Odd hydrogen production is shown to exhibit diurnal and other time dependent variations during such an event at these altitudes, and the assumption that two odd hydrogen particles are always produced per ionization is reexamined.

  15. Observation of the atmospheric boundary layer in the Western and Central Gulf of Mexico. First annual report

    SciTech Connect

    1998-12-01

    For the Gulf of Mexico, present data sets poorly represent how temperature, winds, and mixing height vary vertically over the atmospheric boundary layer and free troposphere. Under this project, the MMS shall obtain field observations describing the vertical structure of the marine boundary layer over the Western and Central Gulf of Mexico for ongoing and future applications. The agency will accomplish this goal by establishing two (2) boundary layer profiler systems on offshore platforms for approximately three (3) years of data collection. This project will provide a valuable source of information to the National Weather Service (NWS) operations as the boundary layer observations are collected in real time and distributed.

  16. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  17. Atmospheric new particle formation as source of CCN in the Eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-04-01

    While Cloud Condensation Nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the Eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (0.2-0.4 lower κ between the 60 and 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in afternoon, which was very likely due to the higher sulfate to organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneously to the formation of new particles during daytime, particles formed in the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range transported particles.

  18. Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-08-01

    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of κ was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

  19. A simple formula for estimating Stark widths of neutral lines. [of stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Freudenstein, S. A.; Cooper, J.

    1978-01-01

    A simple formula for the prediction of Stark widths of neutral lines similar to the semiempirical method of Griem (1968) for ion lines is presented. This formula is a simplification of the quantum-mechanical classical path impact theory and can be used for complicated atoms for which detailed calculations are not readily available, provided that the effective position of the closest interacting level is known. The expression does not require the use of a computer. The formula has been applied to a limited number of neutral lines of interest, and the width obtained is compared with the much more complete calculations of Bennett and Griem (1971). The agreement generally is well within 50% of the published value for the lines investigated. Comparisons with other formulas are also made. In addition, a simple estimate for the ion-broadening parameter is given.

  20. The Wind and Temperature Spectrometer (WTS) in the Atmospheric Neutral Density Experiment (ANDE) Satellite

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Vancil, B.; Nicholas, A.; Zaruba, C.; Beasley, L.

    2004-01-01

    Miniaturization efforts in new spectrometers for ionosphere/thermosphere investigations of the ion-drifts and neutral winds and corresponding temperatures make possible very light (about 250 g) packages consuming less than 0.4 W. Previously described, our approach measures the angular and energy distributions of neutral atoms and molecules (or ions) in two perpendicular planes; using those distributions to determine the full wind vector, the temperature and the relative densities of O and N2, as required for the ANDE mission. The measurements require two separate electron impact ion sources each with its own electron beam cathode. We have developed a low-temperature thermionic emission cathode that delivers 1 mA electron current at 80 mW power, making it possible to operate neutral wind-temperature experiments for the first time with powers less than 0.5 W. Advances in the ion optics of the energy-angle spectrometer enhance the energy resolution-aperture product more than a factor of 3 to enable energy resolutions of a few percent with large apertures. With these technology improvements it is now possible to obtain the full neutral wind vector, temperature and O/N2, density ratio once per second in a 250g/0.4W package with sensitivity up to about 500 km altitude in the thermosphere. We will describe the WTS as deployed in ANDE and show simulated data with the non-linear least squares analysis to illustrate expected performance of the WTS in the estimated errors in the three components of the wind, the temperature, and the relative densities.

  1. A nonsteady one-dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km

    SciTech Connect

    Rodrigo, R.; Garcia-Alvarez, E.; Lopez-Gonzalez, M.J.; Lopez-Moreno, J.J. )

    1990-08-30

    There has been a big advance in the knowledge of the composition of the atmosphere of the planet Mars since its exploration by different missions in the 1970s, and this will be deeply increased in the following years as the upcoming programs to Mars develop. In this context, the authors have elaborated a model of the Mars' neutral atmosphere including the following compounds: O({sup 3}P), O({sup 1}D), O{sub 2}, O{sub 3}, H, H{sub 2}, OH, H{sub 2}O, HO{sub 2}, H{sub 2}O{sub 2}, CO, and CO{sub 2}, between 30 and 200 km of altitude. The model is carried out for middle latitudes in equinox conditions and with moderate solar activity and provides the day-to-night evolution of the atmosphere. The scarcity of observations corresponding to the nightside of the planet has made it necessary to calculate the atmospheric temperature profile based on the available observations and on theoretical estimations. The model includes a detailed treatment of both the photochemical and the dynamical processes. In this sense, the most recent values of the reaction rates and photodissociation cross sections have been used, and a new height profile of the eddy diffusion coefficient has been computed which is able to explain the vertical distribution of carbon monoxide. The concentration profiles obtained show, in general, a very good agreement with the available experimental measurements.

  2. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils.

    PubMed

    Beerling, D J; Lomax, B H; Royer, D L; Upchurch, G R; Kump, L R

    2002-06-11

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO(2) injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO(2) and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO(2) concentration (pCO(2)) levels with special emphasis on providing a pCO(2) estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO(2) levels of 350-500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO(2) outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO(2) increase. Instead, we calculate that the postboundary pCO(2) rise is most consistent with the instantaneous transfer of approximately 4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W.m(-2) would have been sufficient to warm the Earth's surface by approximately 7.5 degrees C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB.

  3. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  4. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils

    PubMed Central

    Beerling, D. J.; Lomax, B. H.; Royer, D. L.; Upchurch, G. R.; Kump, L. R.

    2002-01-01

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO2 injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO2 and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO2 concentration (pCO2) levels with special emphasis on providing a pCO2 estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO2 levels of 350–500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO2 outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO2 increase. Instead, we calculate that the postboundary pCO2 rise is most consistent with the instantaneous transfer of ≈4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W⋅m−2 would have been sufficient to warm the Earth's surface by ≈7.5°C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB. PMID:12060729

  5. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  6. Modified shape of the Eiffel Tower determined for an atmospheric boundary-layer wind profile

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.

    2009-06-01

    The design and construction of the Eiffel Tower was based, in part, on a uniform horizontal wind model giving 300 kg m-2 kinematic pressure acting on the surface of the tower. Eiffel received a patent for his method of construction that eliminates the need for diagonal trellis bars used to resist the moment of an oncoming wind. At the end of the 19th century boundary-layer theory, laminar or turbulent, was nonexistent. Now, however, models for atmospheric flow over rough landscapes are available, the simplest being a power-law distribution of velocity with height. In this paper we deduce the shape of the tower had Eiffel incorporated this information into the design and construction of his world famous tower. Moreover, we prove Eiffel's observation that the tower profile conforms to the moment distribution wrought by the wind.

  7. Turbulence structure of a cloud-capped marine atmospheric boundary layer analyzed from ASTEX field data

    SciTech Connect

    Tjernstroem, M.

    1994-12-31

    The cloud-capped marine atmospheric boundary layer has gained attention for several reasons, one being the impact marine stratocumulus is believed to have on the climate system. To really understand the sensitivity of the climate system to marine low level clouds, let alone to predict their effect on climate for decades to come, require numerical modeling. Furthermore, in addition to there being several other important processes, e.g., radiative transfer, turbulent mixing and transport, etc., many of these interact in a way not fully understood. Parameterization of such processes in models on all scales is fundamental and cannot be performed without sound knowledge of important scaling and structures. Concerning in-cloud turbulence, such knowledge can today essentially only be gained from analysis of in-situ experimental data. Furthermore, if model parameterizations are successful, models can also be used to increase the understanding of the physics behind observed motion systems and how they interact with the PBL dynamics.

  8. Radiation Exchanges at the Atmosphere-Vegetation Canopy Boundary Layer Based on Unmanned Aerial Vehicle Observations

    NASA Astrophysics Data System (ADS)

    Dim, J. R.; Kajiwara, K.; Honda, Y.

    2007-12-01

    Radiation exchanges at the vegetation boundary layer, regulating the amount of energy received by the vegetation canopy are examined through remote sensing observations carried out by an unmanned helicopter, flying according to pre-programmed plans, above a forested area. Information obtained from the laser scanning system, radiometric measurements and aerial photographs are combined to ambient meteorological parameters in order to examine interactions between leaf characteristics, elements of vegetation structure, and the surrounding atmosphere. A vegetation mass transfer model showing variable dependencies of leaf water content, leaf temperature, leaf-air vapor-pressure differences and solar radiation intensity as well as canopy structure is used to discuss transpiration mechanisms of the studied forest.

  9. Isotope discrimination and partitioning exercises at the scale of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Berry, J.; Helliker, B.; Bakwin, P.; Davis, K.; Torn, M.

    2003-12-01

    During the daytime the atmospheric boundary layer (ABL) is typically well mixed by convection up to about 1.5 km and moves across the land about 500 km per day. Underlying ecosystems modify carbon dioxide in the ABL through photosynthesis and respiration, and ABL air is ultimately replaced by air from the overlying free troposphere. Hence, measurements of carbon dioxide and isotopes in the ABL and the free troposphere offer the potential for regionally integrated estimates of isotope discrimination. We use tall-tower and airplane measurements of carbon dioxide and carbon and oxygen isotopes to develop estimates of ABL-scale isotope discrimination. We then utilize ecosystem-level measurements of the isotope ratio of respiration and land surface model estimates of photosynthetic discrimination to deconvolve net carbon dioxide fluxes into the gross components of photosynthesis and respiration at the regional scale.

  10. The influence of Nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Stenmark, Aurora; Hole, Lars Robert; Voss, Paul; Reuder, Joachim; Jonassen, Marius O.

    2014-06-01

    The effects of nunataks on temperature profiles and wind patterns are studied using simulations from the Weather Research and Forecasting model. Simulations are compared to hourly observations from an automatic weather station located at the Troll Research Station in Dronning Maud Land. Areas of bare ground have been implemented in the model, and the simulations correspond well with meteorological measurements acquired during the 4 day simulation period. The nunataks are radiatively heated during daytime, and free convection occurs in the overlying atmospheric boundary layer. The inflow below the updraft forces strong horizontal convergence at the surface, whereas weaker divergence appears aloft. In a control run with a completely ice-covered surface, the convection is absent. In situ observations carried out by a remotely controlled balloon and a small model airplane compare well with model temperature profiles, but these are only available over the ice field upwind to the nunatak.

  11. Non-equilibrium model of spray-stratified atmospheric boundary layer under high wind conditions

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii; Suslov, Sergey

    2014-11-01

    Tropical cyclone is a complex meteorological phenomenon which dynamics is defined by a wide variety of factors including exchange of momentum, heat and moisture between the atmosphere and the ocean. Ocean spray plays an important role in this air-sea interaction. Here we developed a two-temperature non-equilibrium variable density (non-Bousinessq) turbulence closure model to describe the ocean spray-stratified hurricane boundary layer structure and dynamics. The model consistently describes a two-way coupling between mechanical and thermodynamic influences of the ocean spray. The obtained results confirm that the impact of non-equilibrium effects is significant over the complete range of possible spray concentration values, therefore has to be included into a consistent parameterization of moisture, heat and momentum transfer process over the ocean under high wind condition of a hurricane. NSF HRD-1036563.

  12. An analytic model of the neutral cloud evolution in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bruskin, L. G.; Khazanov, G. V.

    1992-01-01

    An analytic model for the expansion of a chemically reacting gas in the upper atmosphere is discussed. The spatial-temporal distribution of released particles in the initial regime is described on the basis of self-similar solutions of Euler's equations. In the case of transition to the diffusion regime an approximate solution of the kinetic equation with the collision integral in the form of BGK is performed. Gravitation and the atmospheric inhomogeneity are taken into account, The diffusion regime is described by an analytic solution of the diffusion equation in an exponential atmosphere taking account of possible losses of the gas due to chemical reactions. Some peculiarities of the expansion of various gases as well as the possibility of applying the model for describing ionospheric 'holes' are discussed.

  13. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  14. Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rutishauser, David (Technical Monitor)

    2003-01-01

    Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.

  15. Paleocene/Eocene boundary changes in atmospheric and oceanic circulation: A Southern Hemisphere record

    SciTech Connect

    Hovan, S.A.; Rea, D.K. )

    1992-01-01

    Deep Sea Drilling Project (DSDP) Site 215 provides an expanded section across the Paleocene/Eocene boundary, the most complete mid-latitude sequence from a Southern Hemisphere location in the Indo-Pacific area. The events of this transition occurred during a span of about 1.2 m.y. Oxygen isotope values derived from benthic foraminiferal calcite decrease by about 1.0{per thousand}, a decrease most likely related to warming of deep ocean waters. Turnovers of benthic foraminifera accompany {delta}{sup 18}O changes and culminate in the predominant extinction event at the end of the Paleocene Epoch. Carbon isotope ratios also shift dramatically toward lighter values near the end of the Paleocene, beginning about 0.45 m.y. after oxygen isotope values start to change. The intensity of Southern Hemisphere atmospheric circulation as recorded by grain sizes of eolian particles shows a large and rapid reduction beginning another 0.45 m.y. later. A significant reduction of zonal wind strength at the Paleocene/Eocene boundary, until now observed only at Northern Hemisphere locations, appears to have been a global phenomenon related to decreased latitudinal thermal gradients occasioned by more effective poleward heat transport via the deep ocean.

  16. Western boundary currents regulated by interaction between ocean eddies and the atmosphere.

    PubMed

    Ma, Xiaohui; Jing, Zhao; Chang, Ping; Liu, Xue; Montuoro, Raffaele; Small, R Justin; Bryan, Frank O; Greatbatch, Richard J; Brandt, Peter; Wu, Dexing; Lin, Xiaopei; Wu, Lixin

    2016-07-28

    Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean's western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies-energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents-the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air-sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20-40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models' representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change. PMID:27466126

  17. Western boundary currents regulated by interaction between ocean eddies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Jing, Zhao; Chang, Ping; Liu, Xue; Montuoro, Raffaele; Small, R. Justin; Bryan, Frank O.; Greatbatch, Richard J.; Brandt, Peter; Wu, Dexing; Lin, Xiaopei; Wu, Lixin

    2016-07-01

    Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean’s western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies—energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents—the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air-sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20-40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models’ representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change.

  18. Applications of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Platis, Andreas; Tupman, David-James; Bange, Jens

    2015-04-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40~m and a total weight of 5-8~kg, depending on the battery- and payload. The standard meteorological payload consists of two temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. The sensors were optimized for the resolution of small-scale turbulence down to length scales in the sub-meter range. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Only take-off and landing are carried out by a human RC pilot. Since 2012, the system is operational and has since then been deployed in more than ten measurement campaigns, with more than 100 measurement flights. The fields of research that were tackled in these campaigns include sensor validation, fundamental boundary-layer research and wind-energy research. In 2014, for the first time, two MASC have been operated at the same time within a distance of a few kilometres, in order to investigate the wind field over an escarpment in the Swabian Alb. Furthermore, MASC was first deployed off-shore in October 2014, starting from the German island Heligoland in the North Sea, for the purpose of characterization of the marine boundary layer for offshore wind parks. Detailed descriptions of the experimental setup and first preliminary results will be presented.

  19. Western boundary currents regulated by interaction between ocean eddies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Jing, Zhao; Chang, Ping; Liu, Xue; Montuoro, Raffaele; Small, R. Justin; Bryan, Frank O.; Greatbatch, Richard J.; Brandt, Peter; Wu, Dexing; Lin, Xiaopei; Wu, Lixin

    2016-07-01

    Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean’s western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies—energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents—the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air–sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20–40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models’ representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change.

  20. Dissolved inorganic carbon and stable carbon isotopic evolution of neutral mine drainage interacting with atmospheric CO2(g).

    PubMed

    Abongwa, Pride Tamasang; Atekwana, Eliot Anong; Puckette, James

    2016-03-01

    We investigated the spatial variations in the concentrations of dissolved inorganic carbon (DIC), the stable carbon isotopic composition (δ(13)C) of DIC and the δ(13)C of carbonate precipitated from neutral mine drainage interacting with the atmospheric CO2(g). We assessed the chemical, DIC and δ(13)CDIC evolution of the mine drainage and the δ(13)C evolution of carbonate precipitates for a distance of 562 m from the end of an 8 km tunnel that drains a mine. Our results show that as the mine drainage interacts with atmospheric CO2(g) the outgassing of CO2 due to the high initial partial pressure of CO2 (pCO2) causes the DIC to evolve under kinetic conditions followed by equilibration and then under equilibrium conditions. The carbonate evolution was characterized by spatial increases in pH, decreasing concentrations of Ca(2+) and DIC and by the precipitation of carbonate. The δ(13)CDIC showed a larger enrichment from the tunnel exit to 38 m, moderate continuous enrichment to 318 m and almost no enrichment to 562 m. On the other hand, the δ(13)C of the carbonate precipitates also showed large enrichment from the tunnel exit to 38 m, moderate enrichment to 318 m after which the δ(13)C remained nearly constant. The enrichment in the δ(13)C of the DIC and the carbonate precipitates from 0 to 38 m from kinetic fractionation caused by CO2(g) outgassing was followed by a mix of kinetic fractionation and equilibrium fractionation controlled by carbon exchange between DIC and atmospheric CO2(g) to 318 m and then by equilibrium fractionation from 318 to 562 m. From the carbonate evolution in this neutral mine drainage, we estimated that 20% of the carbon was lost via CO2 outgassing, 12% was sequestered in sediments in the drainage ponds from calcite precipitation and the remainder 68% was exported to the local stream.

  1. Interaction of the atmospheric boundary layer with large-scale processes over the Bay of Bengal during MONEX79

    SciTech Connect

    SethuRaman, S.

    1981-01-01

    This paper discusses the role of the atmospheric boundary layer in the Bay of Bengal cyclogenesis processes. The boundary layer experiment at Digha consisted of three main components: (1) a 10 m micrometeorological tower at the beach with instruments to observe turbulent fluxes of heat and momentum over the ocean; (2) a weather station that continuously recorded mean parameters; and (3) pilot balloon observations to a height of about 1000 m.

  2. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2016-08-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  3. Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations

    SciTech Connect

    Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

    2012-01-01

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  4. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  5. Ocean front-atmosphere interactions in the marine boundary layer and beyond

    NASA Astrophysics Data System (ADS)

    Xie, S.; Xu, H.; Minobe, S.; Zhang, S.; Liu, J.

    2012-12-01

    A bottle neck for extratropical climate prediction is insufficient understanding of how the atmosphere responds to oceanic changes. On the basin scale, interannual variability tends to be negatively correlated between sea surface temperature (SST) and wind speed, indicative of the atmosphere forcing ocean. Recent satellite observations reveal ubiquitous positive correlations between SST and wind on the ocean mesoscale (1,000km or less), indicating that ocean forces the atmosphere near SST fronts and over ocean eddies. Such ocean frontal effects are recorded in high-wind (>20 m/s) occurrence along the Gulf Stream and Southern Ocean circumpolar current. The SST effect is also evident in low cloud occurrence and type (fog vs. stratocumulus) across ocean fronts. An important question is whether such ocean frontal effects are confined to the marine boundary layer (MBL) or extend into the troposphere. Deep response has been observed along the Gulf Stream, Kuroshio and its extension. The second half of the paper focuses on the East China Sea, which the Kuroshio flows through. Meiyu-Baiu is an elongated rain band that extends from eastern China through Japan. Bringing much needed rain to the region, it is the single most important climate phenomenon of East Asia. Evidence is emerging that the warm Kuroshio anchors active convection and heavy rainfall during late spring to summer, presumably through surface wind convergence and locally enhanced evaporation. Fog frequents the East China Sea and its coasts during the Meiyu-Baiu season as the broad southerly monsoon embrace East Asia. Sea fog visualizes suppressed surface evaporation, which in turn modulates the regional rainfall distribution. Several field experiments are ongoing/planned to explore the rich interactions between the Kuroshio, MBL, and troposphere.

  6. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  7. Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan; Guo, Jia

    2016-04-01

    The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m-3, 2.5 pg m-3, and 8.2 pg m-3 in spring, and 2.09 ng m-3, 4.3 pg m-3, and 8.3 pg m-3 in fall. Reactive mercury (RGM + HgP2.5) represented < 1% of total atmospheric mercury (GEM + RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.

  8. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  9. Research study on neutral thermodynamic atmospheric model. [for space shuttle mission and abort trajectory

    NASA Technical Reports Server (NTRS)

    Hargraves, W. R.; Delulio, E. B.; Justus, C. G.

    1977-01-01

    The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables.

  10. The Martian Neutral Atmosphere from the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Pätzold, M.; Häusler, B.; Tyler, G. L.; Hinson, D. P.

    2008-09-01

    The Radio Science Experiment MaRS on Mars Express is sounding the Martian atmosphere and ionosphere using the spacecraft radio signals at Xband and S-band in Earth occultation geometry. MaRS relies on the observation of the phase, amplitude, polarisation and propagation times of radio signals transmitted from the spacecraft and received on Earth. The signals are affected by the different dispersive media through which they propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by gravitational influences of planets and by the classical Doppler shift resulting from the relative motion of spacecraft, Earth and Mars. A simultaneous and coherent dual-frequency downlink at X- and S-band via the Spacecraft's High Gain Antenna (HGA) is required to separate effects of dispersive media from the classical Doppler shift. The bending of the radio carrier ray paths in the Martian atmosphere prior to the occultation of the spacecraft by the planetary disc as seen from the Earth is used to derive vertical profiles of density, pressure and temperature. The bending is caused by atmospheric refractivity and vertical density and temperature profiles can be retrieved assuming hydrostatic equilibrium and ideal gas law. The elliptical orbit of Mars Express allows to investigate a large range of local times and locations and can therefore be used to study latitudinal, diurnal and seasonal variations. The data set retrieved since March 2004 is quite complementary to the Mars Global Surveyor profiles with regard to the local times and the geographical distribution of the measurements. This presentation will compare the MaRS results with model data and data from other Mars missions.

  11. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  12. Rough-to-smooth transition of an equilibrium neutral constant stress layer. [atmospheric flow over rough terrain

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Fichtl, G. H.

    1975-01-01

    A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.

  13. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  14. Neutral atmosphere temperature trends and variability at 90 km, 70 °N, 19 °E, 2003-2014

    NASA Astrophysics Data System (ADS)

    Eriksen Holmen, Silje; Hall, Chris M.; Tsutsumi, Masaki

    2016-06-01

    Neutral temperatures at 90 km height above Tromsø, Norway, have been determined using ambipolar diffusion coefficients calculated from meteor echo fading times using the Nippon/Norway Tromsø Meteor Radar (NTMR). Daily temperature averages have been calculated from November 2003 to October 2014 and calibrated against temperature measurements from the Microwave Limb Sounder (MLS) on board Aura. Large-scale periodic oscillations ranging from ˜ 9 days to a year were found in the data using Lomb-Scargle periodogram analysis, and these components were used to seasonally detrend the daily temperature values before assessing trends. Harmonic oscillations found are associated with the large-scale circulation in the middle atmosphere together with planetary and gravity wave activity. The overall temperature change from 2003 to 2014 is -2.2 K ± 1.0 K decade-1, while in summer (May-June-July) and winter (November-December-January) the change is -0.3 K ± 3.1 K decade-1 and -11.6 K ± 4.1 K decade-1, respectively. The temperature record is at this point too short for incorporating a response to solar variability in the trend. How well suited a meteor radar is for estimating neutral temperatures at 90 km using meteor trail echoes is discussed, and physical explanations behind a cooling trend are proposed.

  15. Dust and neutral gas modeling of the inner atmospheres of comets

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Nagy, A. F.; Cravens, T. E.

    1986-01-01

    This paper summarizes the present, preencounter understanding of the physical and chemical processes controlling the inner (r less than 1000 km) region of cometary atmospheres. Special emphasis was attached to compiling a self-consistent set of governing equations. This review is aimed at readers who want to understand the present status of the mantle and coma regions and/or who want to develop new, next generation models which will be needed as the large volume of new observational data will become available in the near future.

  16. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  17. Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan F.; Chow, Fotini K.; Maxwell, Reed M.

    2015-06-01

    The effects of terrain, soil moisture heterogeneity, subsurface properties, and water table dynamics on the development and behavior of the atmospheric boundary layer are studied through a set of idealized numerical experiments. The mesoscale atmospheric model Advanced Regional Prediction System (ARPS) is used to isolate the effects of subsurface heterogeneity, terrain, and soil moisture initialization. The simulations are initialized with detailed soil moisture distributions obtained from offline spin-ups using a coupled surface-subsurface model (ParFlow-CLM). In these idealized simulations, we observe that terrain effects dominate the planetary boundary layer (PBL) development during early morning hours, while the soil moisture signature overcomes that of terrain during the afternoon. Water table and subsurface properties produce a similar effect as that of soil moisture as their signatures (reflected in soil moisture profiles, energy fluxes, and evaporation at the land surface) can also overcome that of terrain during afternoon hours. This is mostly clear for land surface energy fluxes and evaporation at the land surface. We also observe the coupling between water table depth and planetary boundary layer depth in our cases is strongest within wet-to-dry transition zones. This extends the findings of previous studies which demonstrate the subsurface connection to surface energy fluxes is strongest in such transition zones. We investigate how this connection extends into the atmosphere and can affect the structure and development of the convective boundary layer.

  18. A Climatology of Atmospheric Rivers Potentially Impacting the Boundary Layer over Greenland: 1871-2012

    NASA Astrophysics Data System (ADS)

    Neff, William; Compo, Gilbert P.

    2016-04-01

    Recently, (Neff et al. 2014) examined the 2012 Greenland melt episode and compared it to the last episode in 1889 using the Twentieth Century Reanalysis (Compo et al. 2011), finding similar factors at work. A key factor in 2012 was the presence of an Atmospheric River (AR) that transported warm air from a mid-continent heat wave over the Atlantic Ocean and thence to the west coast of Greenland and then over the Greenland ice sheet (GIS) with a confirming water vapor isotopic signature (Bonne et al. 2015). ARs are thin filaments of high-moisture air occurring at frontal boundaries and represent an efficient poleward transport mechanism for warm moist air (Newell et al. 1992) to the Arctic (Bonne et al. 2015; Neff et al. 2014) and the Antarctic (Gorodetskaya et al. 2014). Some common characteristics of the events in 1889 and 2012, in addition to the expression of poleward transport as an AR, included continental heat anomalies in the trajectory source regions as well as a trough-ridge pattern that focused transport along the west coast of Greenland. The latter consisted of a trough of low-pressure situated to the west, generally over Baffin Island, and a high-pressure ridge to the southeast of Greenland. This type trough-ridge pattern was also implicated in a major rain event in 2011 along the western margin of the Greenland ice sheet in late summer that accelerated the flow of ice into the ocean (Doyle et al. 2015). Although the events of 2012 and 1889 were extreme, the question remains of how frequent are the near-misses of ARs that are likely to have affected lower elevations and/or included increases in moisture over the GIS that would have modified the boundary layer over the high elevations of the GIS. In this presentation we will show an example of the boundary layer modification lifecycle during the 2012 event and then the climatology of events that reveal an increase in such AR events along the west coast of Greenland over the last three decades.

  19. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; General, S.; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-03-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase radical chemistry, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr, with a concomitant, decreased net O3 loss rate. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  20. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-09-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  1. Imposing land-surface fluxes at an immersed boundary for improved simulations of atmospheric flow over complex terrain

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2008-06-05

    Boundary layer flows are greatly complicated by the presence of complex terrain which redirects mean flow and alters the structure of turbulence. Surface fluxes of heat and moisture provide additional forcing which induce secondary flows, or can dominate flow dynamics in cases with weak mean flows. Mesoscale models are increasingly being used for numerical simulations of boundary layer flows over complex terrain. These models typically use a terrain-following coordinate transformation, but these introduce numerical errors over steep terrain. An alternative is to use an immersed boundary method which alleviates errors associated with the coordinate transformation by allowing the terrain to be represented as a surface which arbitrarily passes through a Cartesian grid. This paper describes coupling atmospheric physics models to an immersed boundary method implemented in the Weather Research and Forecasting (WRF) model in previous work [Lundquist et al., 2007]. When the immersed boundary method is used, boundary conditions must be imposed on the immersed surface for velocity and scalar surface fluxes. Previous algorithms, such as those used by Tseng and Ferziger [2003] and Balaras [2004], impose no-slip boundary conditions on the velocity field at the immersed surface by adding a body force to the Navier-Stokes equations. Flux boundary conditions for the advection-diffusion equation have not been adequately addressed. A new algorithm is developed here which allows scalar surface fluxes to be imposed on the flow solution at an immersed boundary. With this extension of the immersed boundary method, land-surface models can be coupled to the immersed boundary to provide realistic surface forcing. Validation is provided in the context of idealized valley simulations with both specified and parameterized surface fluxes using the WRF code. Applicability to real terrain is illustrated with a fully coupled two-dimensional simulation of the Owens Valley in California.

  2. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Sinnhuber, Miriam; Anderson, John; McPeters, Richard D.; FLeming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral middle atmosphere. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, and October 2003. Smaller, but still substantial, proton fluxes impacted the Earth during other months from year 2000 to 2003. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of the SPEs. The impact of these extremely large SPEs was calculated to be especially large in the upper stratosphere and mesosphere. The results of the GSFC 2D Model will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  3. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  4. Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona

    NASA Astrophysics Data System (ADS)

    de La Haye, V.; Waite, J. H.; Johnson, R. E.; Yelle, R. V.; Cravens, T. E.; Luhmann, J. G.; Kasprzak, W. T.; Gell, D. A.; Magee, B.; Leblanc, F.; Michael, M.; Jurac, S.; Robertson, I. P.

    2007-07-01

    The neutral nitrogen and methane measurements made by Ion and Neutral Mass Spectrometer during Cassini flybys TA, TB, and T5 in Titan's upper atmosphere and exosphere are presented. Large horizontal variations are observed in the total density, recorded to be twice as large during TA as during T5. Comparison between the atmospheric and exospheric data show evidence for the presence of a significant population of suprathermal molecules. Using a diffusion model to simultaneously fit the N2 and CH4 density profiles below 1500 km, the atmospheric structure parameters are determined, taking into account recent changes in the calibration parameters. The best fits are obtained for isothermal profiles with values 152.8 ± 4.6 K for TA, 149.0 ± 9.2 K for TB, and 157.4 ± 4.9 K for T5, suggesting a temperature ≃5 K warmer at night than at dusk, a trend opposite to that determined by solar-driven models. Using standard exospheric theory and a Maxwellian exobase distribution, a temperature of 20 to 70 K higher would be necessary to fit the TA, TB, and egress-T5 data above 1500 km. The suprathermal component of the corona was fit with various exobase energy distributions, using a method based on the Liouville theorem. This gave a density of suprathermals at the exobase of 4.4 ± 5.1 × 105 cm-3 and 1.1 ± 0.9 × 105 cm-3, and an energy deposition rate at the exobase of 1.1 ± 0.9 × 102 eV cm-3 s-1 and 3.9 ± 3.5 × 101 eV cm-3 s-1 for the hot N2 and CH4 populations, respectively. The energy deposition rate allowed us to roughly estimate escape rates for nitrogen of ≃7.7 ± 7.1 × 107 N cm-2 s-1 and for methane of ≃2.8 ± 2.1 × 107 CH4 cm-2 s-1. Interestingly, no suprathermal component was observed in the ingress-T5 data.

  5. The atmospheric boundary layer and its effect on NO concentrations during ANTCI-2003

    NASA Astrophysics Data System (ADS)

    Neff, W.; Helmig, D.; Davis, D.; Buhr, M.; Gottas, D.; Grachev, A.; Oncley, S.; Warshawsky, M.

    2004-12-01

    The Antarctic Tropospheric Chemistry Investigation (ANTCI) field program, during November and December 2003 at the South Pole, deployed a number of measurement systems to document the behavior of the atmospheric boundary layer (ABL) and the associated chemical processes that lead to high values of NO. These measurements included an acoustic sounder to provide continuous measurements of the ABL through the entire experimental period. During a special observing period from December 13 to 30, a sonic anemometer was used to measure the surface fluxes of momentum and heat together with a tethered balloon that profiled NO, O3 and meteorological variables (see Helmig et al., this conference). Our analysis has focused on developing a comprehensive picture of the ABL and the meteorological processes that control its behavior. We used both meteorological and chemical data to trace the evolution of the ABL through transitions between well-mixed states (deeper than 200m) and ones with very shallow mixing layers (20 to 30 m) characterized by strongly suppressed turbulence and low-level jets (30 to 40 m above the surface).

  6. Atmospheric Aerosol and Thermal Structure in the Boundary Layer Over the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Johnson, Warren B.

    1973-01-01

    A field study using a mobile lidar was recently conducted in the L. A. Basin, California, to (1) examine the relationship between the vertical aerosol and the thermal structure, and (2) map the vertical aerosol structure in the atmospheric boundary layer over the basin. These data are needed for use in the development of a mixing-depth submodel required for photochemical air Quality simulation models. Toward these ends, a series of lidar aerosol measurements in conjunction with balloon and aircraft temperature soundings were taken at a site in El Monte, and in a mobile mode along a 90-mile freeway loop between El Monte, Santa Monica, and Long Beach. The lidar data are presented in the form of time-height and distance-height cross sections. The results indicate that, although aerosol concentrations are frequently present above the base of the marine inversion, these are generally in stratified layers in contrast to the more uniform nature of the lower convective layer, permitting the mixing depth to be distinguished on this basis. The lidar-derived mixing depths are well correlated (within 100 m) with daytime temperature inversions. Other significant features shown by the lidar data include large Basin-wide mixing-depth variations, waves with amplitudes of 200-300 m and wavelengths of 1000-1500 m on the lower aerosol layer, and apparent aerosol "chimneys" with overrunning in the vicinity of convergence zones.

  7. Atmospheric mercury over the marine boundary layer observed during the third China Arctic Research Expedition.

    PubMed

    Kang, Hui; Xie, Zhouqing

    2011-01-01

    TGM measurements on board ships have proved to provide valuable complementary information to measurements by a ground based monitoring network. During the third China Arctic Research Expedition (from July 11 to September 24, 2008), TGM concentrations over the marine boundary layer along the cruise path were in-situ measured using an automatic mercury vapor analyzer. Here we firstly reported the results in Japan Sea, North Western Pacific Ocean and Bering Sea, where there are rare reports. The value ranged between 0.30 and 6.02 ng/m3 with an average of (1.52 +/- 0.68) ng/m3, being slightly lower than the background value of Northern Hemisphere (1.7 ng/m3). Notably TGM showed considerably spatial and temporal variation. Geographically, the average value of TGM in Bering Sea was higher than those observed in Japan Sea and North Western Pacific Ocean. In the north of Japan Sea TGM levels were found to be lower than 0.5 ng/m3 during forward cruise and displayed obviously diurnal cycle, indicating potential oxidation of gaseous mercury in the atmosphere. The pronounced episode was recorded as well. Enhanced levels of TGM were observed in the coastal regions of southern Japan Sea during backward cruise due primarily to air masses transported from the adjacent mainland reflecting the contribution from anthropogenic sources. When ship returned back and passed through Kamchatka Peninsula TGM increased by the potential contamination from volcano emissions.

  8. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    PubMed

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  9. Atmospheric Feedback of Urban Boundary Layer with Implications for Climate Adaptation.

    PubMed

    Liang, Marissa S; Keener, Timothy C

    2015-09-01

    Atmospheric structure changes in response to the urban form, land use, and the type of land cover (LULC). This interaction controls thermal and air pollutant transport and distribution. The interrelationships among LULC, ambient temperature, and air quality were analyzed and found to be significant in a case study in Cincinnati, Ohio, U.S.A. Within the urban canopy layer (UCL), traffic-origin PM2.5 and black carbon followed Gaussian dispersion in the near road area in the daytime, while higher concentrations, over 1 order of magnitude, were correlated to the lapse rate under nocturnal inversions. In the overlying urban boundary layer (UBL), ambient temperature and PM2.5 variations were correlated among urban-wide locations indicating effective thermal and mass communications. Beyond the spatial correlation, LULC-related local urban heat island effects are noteworthy. The high-density urbanized zone along a narrow highway-following corridor is marked by higher nighttime temperature by ∼1.6 °C with a long-term increase by 2.0 °C/decade, and by a higher PM2.5 concentration, than in the low-density residential LULC. These results indicate that the urban LULC may have contributed to the nocturnal thermal inversion affecting urban air circulation and air quality in UCL and UBL. Such relationships point to the potentials of climate adaptation through urban planning.

  10. Reduced-order FSI simulation of NREL 5 MW wind turbine in atmospheric boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Motta-Mena, Javier; Campbell, Robert; Lavely, Adam; Jha, Pankaj

    2015-11-01

    A partitioned fluid-structure interaction (FSI) solver based on an actuator-line method solver and a finite-element modal-dynamic structural solver is used to evaluate the effect of blade deformation in the presence of a day-time, moderately convective atmospheric boundary layer (ABL). The solver components were validated separately and the integrated solver was partially validated against FAST. An overview of the solver is provided in addition to results of the validation study. A finite element model of the NREL 5 MW rotor was developed for use in the present simulations. The effect of blade pitching moment and the inherent bend/twist coupling of the rotor blades are assessed for both uniform inflow and the ABL turbulence cases. The results suggest that blade twisting in response to pitching moment and the bend/twist coupling can have a significant impact on rotor out-of-plane bending moment and power generated for both the uniform inflow and the ABL turbulence cases.

  11. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  12. Adjustment of the summertime marine atmospheric boundary layer to the western Iberia coastal morphology

    NASA Astrophysics Data System (ADS)

    Monteiro, Isabel T.; Santos, Aires J.; Belo-Pereira, Margarida; Oliveira, Paulo B.

    2016-04-01

    During summer (June, July, and August), northerly winds driven by the Azores anticyclone are prevalent over western Iberia. The Quick Scatterometer Satellite 2000 to 2009 summertime estimates reveal a broad high wind speed (≥7 ms-1) area extending about 300 km from shore and along the entire Iberian west coast. Nested in this large high-speed region, preferred maximum regions anchored in the Iberian major capes, Finisterre, Roca, and S. Vicente, are found. Composite analyses of wind maxima were performed to diagnose the typical summertime synoptic-scale pressure distribution associated with these smaller size high-speed regions. The flow low-level structure was further studied with a mesoscale numerical prediction model for three northerly events characterized by typical summertime synoptic conditions. A low-level coastal jet, setting the background conditions to the marine atmospheric boundary layer (MABL) response to topography, was found in the three cases. The causes for wind maximum downwind capes were investigated, focusing on the hypothesis that western Iberia MABL responds to hydraulic forcing. For the three events supercritical and transcritical flow conditions were identified and expansion fan signatures were found downwind each cape. Aircraft measurements, performed during one of the events, gave additional evidence of the expansion fan leeward Cape Roca. The importance of other forcing mechanisms was also assessed by considering the hypothesis of downslope wind acceleration and found to be in direct conflict with soundings and surface observations.

  13. Atmospheric mercury over the marine boundary layer observed during the third China Arctic Research Expedition.

    PubMed

    Kang, Hui; Xie, Zhouqing

    2011-01-01

    TGM measurements on board ships have proved to provide valuable complementary information to measurements by a ground based monitoring network. During the third China Arctic Research Expedition (from July 11 to September 24, 2008), TGM concentrations over the marine boundary layer along the cruise path were in-situ measured using an automatic mercury vapor analyzer. Here we firstly reported the results in Japan Sea, North Western Pacific Ocean and Bering Sea, where there are rare reports. The value ranged between 0.30 and 6.02 ng/m3 with an average of (1.52 +/- 0.68) ng/m3, being slightly lower than the background value of Northern Hemisphere (1.7 ng/m3). Notably TGM showed considerably spatial and temporal variation. Geographically, the average value of TGM in Bering Sea was higher than those observed in Japan Sea and North Western Pacific Ocean. In the north of Japan Sea TGM levels were found to be lower than 0.5 ng/m3 during forward cruise and displayed obviously diurnal cycle, indicating potential oxidation of gaseous mercury in the atmosphere. The pronounced episode was recorded as well. Enhanced levels of TGM were observed in the coastal regions of southern Japan Sea during backward cruise due primarily to air masses transported from the adjacent mainland reflecting the contribution from anthropogenic sources. When ship returned back and passed through Kamchatka Peninsula TGM increased by the potential contamination from volcano emissions. PMID:22432276

  14. Comparing modeled isoprene with aircraft-based measurements in the atmospheric boundary layer.

    SciTech Connect

    Doskey, P.; Gao, W.

    1997-12-12

    Nonmethane hydrocarbons (NMHCs) are involved in a complex series of reactions that regulate the levels of oxidants in the troposphere. Isoprene (C{sub 5}H{sub 8}), the primary NMHC emitted from deciduous trees, is one of the most important reactive hydrocarbons in the troposphere. The amount of isoprene entering the free troposphere is regulated by the compound's rate of emission from leaves and by chemical and physical processes in the forest canopy and the atmospheric boundary layer (ABL). This study uses a coupled canopy-ABL model to simulate these complex processes and compares calculated isoprene concentration profiles with those measured during aircraft flights above a forested region in the northeastern US. Land use information is coupled with satellite remote sensing data to describe spatial changes in canopy density during the field measurements. The high-resolution transport-chemistry model of Gao et al. (1993) for the ABL and the forest canopy layer is used to simulate vertical changes in isoprene concentration due to turbulent mixing and chemical reactions. The one-dimensional (1-D) ABL model includes detailed radiation transfer, turbulent diffusion, biogenic emissions, dry deposition, and chemical processes within the forest canopy and the ABL. The measured profiles are compared with the model simulations to investigate the biological, physical, and chemical processes that regulate the levels of isoprene within the ABL.

  15. Neutrally stable atmospheric flow over a two-dimensional rectangular block

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Frost, W.; Bitte, J.

    1977-01-01

    The phenomena of atmospheric flow over a two dimensional surface obstruction such as a building modeled as a rectangular block are analyzed by an approach using the Navier-Stokes equations with a two equation model of turbulence. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale are solved by a finite difference technique. The predicted results are in agreement with the limited experimental data available. Current computed results show that the separation bubble originates from the upper front corner of the block and extends approximately 11.5 block heights behind the block. The decay of the mean velocity along the wake center line coincides almost perfectly with the experimental data. The vertical profiles of the mean velocity defect are also in reasonable agreement with wind tunnel results. Velocity profiles in the mixing region are shown to agree with the error function profile typically found in the shear layer. Details of the behavior of the turbulence kinetic energy and the turbulence length scale are also discussed.

  16. Nonlinear acoustic wave propagation in atmosphere. Absorbing boundary conditions for exterior problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary conditions at infinity and be accurate with respect to the interior numerical scheme. The treatment of these boundary conditions for wave-like equations is discussed.

  17. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2006-09-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that 222Rn short-lived daughters, e.g. 218Po and 214Pb, have relevant radioactive decaying contributions acting as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a discrepancy in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations collapse due to the rapid growth

  18. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2007-02-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that the relevant radioactive decaying contributions of 222Rn short-lived daughters (218Po and 214Pb) act as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a variation in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations decrease due to the rapid growth of the

  19. Analysis of temporal variability in land-atmosphere interactions, boundary layer dynamics and chemistry during the 2012 PEGASOS field campaigns

    NASA Astrophysics Data System (ADS)

    Ganzeveld, Laurens; Krol, Maarten; Bosveld, Fred; Hofzumahaus, Andreas; Kiendler-Scharr, Astrid; Rohrer, Franz; Wahner, Andreas; Descari, Stefano

    2014-05-01

    Surface and airborne measurements collected during the 2012 PEGASOS intensive field campaign over the Netherlands and the Po valley, Italy, offer an optimal source of information to further improve our knowledge on the role boundary layer exchange processes in atmospheric chemistry. The use of a zeppelin, sampling close to the surface ( ~50m) up to ~600m altitude and measuring in the early morning, provided detailed measurements of vertical gradients as well as the temporal evolution in chemical composition and relevant meteorological parameters. This allows more detailed analysis of the role of the morning transition and entrainment of residual air masses previously being identified to be essential to daytime chemical processing in the boundary layer. Analysis of these measurements is supported by the use of a number of modelling systems including a selection of 1-D model approaches. In addition, these 1-D models are applied to directly link the observations to the representation of these processes in the 3-D atmospheric chemistry models used to address the overall PEGASOS research goals. In this presentation, results of simulations with an 1-D chemistry-climate model system covering the full measurement period will be presented. Assimilation of meteorological and chemical composition re-analysis data as well as a detailed representation of atmosphere-biosphere and boundary layer exchange processes in this 1-D system allow to assess the role of local scale land-atmosphere interactions versus long-range transport during the PESOSAS field campaigns. In this presentation we will focus on an assessment to what extent daytime boundary layer dynamics and chemistry depends on the short- and more long-term history of the system, e.g., residual layer processing and the role of changes in soil moisture status on land-atmosphere interactions.

  20. [Measurements of atmospheric boundary layer O3, NOx and CO in summer with Beijing 325 m meteorological tower].

    PubMed

    An, Junlin; Li, Xin; Wang, Yuesi; Shi, Liqing; Hu, Fei; Xu, Yongfu

    2003-11-01

    Based on the Beijing 325 m meteorological tower, O3, NOx and CO concentrations and meteorological parameters in urban atmospheric boundary layer were measured in July 2002. The variations of O3 concentration were remarkably different among the five levels. Contrasted with the higher levels, the daily variations were clear and the difference values between day and night were large in the lower levels. It was also found that the photochemistry reaction was an important source in boundary layer in daytime and precipitation process could arouse marked change of O3 concentration.

  1. Boundary conditions for the neutral and ionospheric transport equations at the base of the equatorial F region

    SciTech Connect

    Duhau, S.; Louro, A.A.

    1987-12-01

    In previous works, the authors used a simple model of the equatorial E and F regions to predict simultaneously zonal neutral and ion velocities and vertical currents at the base of the F region. In this work, the model is extended to include effects not considered previously: ion-neutral drag at the F region base, the E region dynamo electric field, and the F region zonal electric field. The model is used to predict the variables mentioned above as functions of time and latitude. The results of the calculations show first that the ion velocity is quite sensitive to the combination of the three effects, and a substantial improvement over previous results is found upon comparison with meaured values. The calculated zonal neutral wind also reveals the influence of ion drag through its latitudinal variations. Finally, the current density perpendicular to the geomagnetic field exhibits two pronounced peaks of the order of 10/sup -7/ A m/sup -2/ sunrise and sunset at the dip equator. copyright American Geophysical Union 1987

  2. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  3. Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary

    NASA Astrophysics Data System (ADS)

    Elliott, S.; Burrows, S. M.; Deal, C.; Liu, X.; Long, M.; Ogunro, O.; Russell, L. M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  4. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  5. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  6. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research

    NASA Astrophysics Data System (ADS)

    Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur

    2012-10-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.

  7. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith; Bougher, Stephen; Benna, Mehdi; Yelle, Roger; Jakosky, Bruce; Bell, Jared; Mahaffy, Paul; Stone, Shane

    2016-07-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  8. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Stone, S. W.; Elrod, M. K.; Mahaffy, P. R.; Benna, M.; Bell, J. M.; Bougher, S. W.; Yelle, R. V.; Jakosky, B. M.

    2015-12-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  9. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith K.; Mahaffy, Paul R.; Yelle, Roger; Stone, Shane; Benna, Mehdi; Jakowski, Bruce

    2015-11-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He ‘bulge’ in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  10. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Deland, Matthew T.; Labow, Gordon J.; Fleming, Eric L.; Weisenstein, Debra K.; Ko, Malcolm K. W.; Sinnhuber, Miriam; Anderson, John; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's polar neutral middle atmosphere. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, and October 2003. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the polar mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. Large mesospheric ozone depletions (>70%) due to the HOx enhancements were observed and modeled as a result of the very large July 2000 SPE. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. Polar total ozone depletions >1% were simulated in both hemispheres for extended periods of time (several months) as a result of the NOy enhancements due to the very large SPEs.

  11. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    PubMed

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  12. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    PubMed

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550762

  13. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  14. Analysis of the correlations between atmospheric boundary-layer and free-tropospheric temperatures in the tropics

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Dessler, Andrew E.; North, Gerald R.

    2006-10-01

    We investigate the vertical correlations between temperature variations at 925 hPa, in the atmospheric boundary layer, and temperature variations in the free troposphere and lower stratosphere in the Tropics in daily and monthly averaged satellite and radiosonde measurements and in six General Circulation Models (GCMs). The results show generally positive correlations between the boundary layer temperatures and temperatures in the rest of the troposphere, with negative correlations occurring around the tropopause and in the lower stratosphere. In typically non-convective regions, the variations at the surface show little connection to mid and upper tropospheric temperature variations. In the convective Western Pacific, the correlations are low in the mid troposphere and much larger around 200 hPa. GCMs generally capture the temperature correlations, although as a group they tend to overpredict the coupling between the boundary layer and the rest of the troposphere. The basic correlation patterns of monthly temperature are found similar to the daily results.

  15. On the charge neutrality level and the electronic properties of interphase boundaries in the layered ε-GaSe semiconductor

    SciTech Connect

    Brudnyi, V. N. Sarkisov, S. Yu.; Kosobutsky, A. V.

    2015-10-15

    The height of the (Au, Pd, Pt, Cu, Ag, Sn, In, Al, Mg, Ca, Li, Cs)/GaSe(0001) Schottky barrier as a function of the metal work function and the energy-band offsets in InSe(0001)/GaSe(0001) and GaSe(0001)/Si(111) heteropairs are analyzed within the context of the concept of the charge neutrality level, CNL{sub vb}(GaSe) = E{sub v} + 0.83 eV, with consideration for partial screening of the interface electrostatic dipole by metal- or semiconductor-induced tunneling states at the GaSe(0001) surface.

  16. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  17. Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Ballenegger, V.; Arnold, A.; Cerdà, J. J.

    2009-09-01

    We introduce a regularization procedure to define electrostatic energies and forces in a slab system of thickness h that is periodic in two dimensions and carries a net charge. The regularization corresponds to a neutralization of the system by two charged walls and can be viewed as the extension to the two-dimensional (2D)+h geometry of the neutralization by a homogeneous background in the standard three-dimensional Ewald method. The energies and forces can be computed efficiently by using advanced methods for systems with 2D periodicity, such as MMM2D or P3M/ELC, or by introducing a simple background-charge correction to the Yeh-Berkowitz approach of slab systems. The results are checked against direct lattice sum calculations on simple systems. We show, in particular, that the Madelung energy of a 2D square charge lattice in a uniform compensating background is correctly reproduced to high accuracy. A molecular dynamics simulation of a sodium ion close to an air/water interface is performed to demonstrate that the method does indeed provide consistent long-range electrostatics. The mean force on the ion reduces at large distances to the image-charge interaction predicted by macroscopic electrostatics. This result is used to determine precisely the position of the macroscopic dielectric interface with respect to the true molecular surface.

  18. Frequency of collisions between ion and neutral particles from the cloning characteristics of filamentary currents in an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Zhang, Mengdie; Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2015-02-01

    In this paper, a cold He atmospheric pressure plasma jet that is generated using a dielectric barrier discharge configuration device is presented. This device is equipped with double-grounded ring electrodes that are driven by a sinusoidal excitation voltage. The properties of the cloning of filamentous current are studied. The frequency of the collisions between the ion and the neutral particles is calculated by measuring the current phase difference between the filamentous current and its corresponding clone. The frequency of the collisions between the ion and the neutral particles is of the order of 108 Hz.

  19. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  20. Intercomparison of different subgrid-scale models for the Large Eddy Simulation of the diurnal evolution of the atmospheric boundary layer during the Wangara experiment

    NASA Astrophysics Data System (ADS)

    Dall'Ozzo, C.; Carissimo, B.; Musson-Genon, L.; Dupont, E.; Milliez, M.

    2012-04-01

    The study of a whole diurnal cycle of the atmospheric boundary layer evolving through unstable, neutral and stable states is essential to test a model applicable to the dispersion of pollutants. Consequently a LES of a diurnal cycle is performed and compared to observations from the Wangara experiment (Day 33-34). All simulations are done with Code_Saturne [1] an open source CFD code. The synthetic eddy method (SEM) [2] is implemented to initialize turbulence at the beginning of the simulation. Two different subgrid-scale (SGS) models are tested: the Smagorinsky model [3],[4] and the dynamical Wong and Lilly model [5]. The first one, the most classical, uses a Smagorinsky constant Cs to parameterize the dynamical turbulent viscosity while the second one relies on a variable C. Cs remains insensitive to the atmospheric stability level in contrary to the parameter C determined by the Wong and Lilly model. It is based on the error minimization of the difference between the tensors of the resolved turbulent stress (Lij) and the difference of the SGS stress tensors at two different filter scales (Mij). Furthermore, the thermal eddy diffusivity, as opposed to the Smagorinsky model, is calculated with a dynamical Prandtl number determination. The results are confronted to previous simulations from Basu et al. (2008) [6], using a locally averaged scale-dependent dynamic (LASDD) SGS model, and to previous RANS simulations. The accuracy in reproducing the experimental atmospheric conditions is discussed, especially regarding the night time low-level jet formation. In addition, the benefit of the utilization of a coupled radiative model is discussed.

  1. Characterization of Summertime Oceanic Boundary Conditions for Coastal and Regional Atmospheric Chemistry Modeling in California

    NASA Astrophysics Data System (ADS)

    Hübler, G.; Parrish, D. D.; Aikin, K. C.; Oltmans, S. J.; Johnson, B. J.; Ives, M.; Thouret, V.; Nédélec, P.; Cammas, J.; Team, A.

    2009-12-01

    Most detailed photochemical modeling must be carried out at regional or air basin scales in order to achieve the spatial resolution and detailed treatment of the chemical mechanisms required for realistic treatment of local air quality. Consequently these models must define upwind boundary conditions at the edge of the model domain. Uncertainty in the appropriate boundary conditions contributes significantly to the overall uncertainty of the photochemical modeling in California. Here we will investigate the available data sets to define to the extent possible the average summertime oceanic boundary conditions, the variability about that average, and the horizontal and vertical variability of the boundary conditions. The data sets considered will include ozone sondes launched from Trinidad Head CA, ozone and carbon monoxide profiles measured by MOZAIC aircraft flights into 4 west coast US cities, and the many chemical species measured on four aircraft flights conducted during the CARB-ARCTAS campaign during summer 2008

  2. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  3. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    NASA Astrophysics Data System (ADS)

    Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (~0.4 μs) CO2 Doppler lidar (λ=10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertically velocity from the vertical pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to +/-0.7 ms-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the ``raw'' measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  4. Detecting surface roughness effects on the atmospheric boundary layer via AIRSAR data: A field experiment in Death Valley, California

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1992-01-01

    The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.

  5. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  6. Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop

    NASA Astrophysics Data System (ADS)

    Weidlich, O.; Kiessling, W.; Flügel, E.

    2003-11-01

    Ecological traits of reefs across the Permian-Triassic boundary interval coincide with a modeled decline of atmospheric oxygen throughout the Permian Period. Selective extinction and recovery patterns within the reef system are observed both at the end of the middle Permian (end-Guadalupian) and at the Permian-Triassic boundary. The end-Guadalupian event selectively affected corals and broke down the cool-water carbonate factory. Sponges, however, were largely unaffected and bloomed in reefs toward the end of the Permian. The end-Permian total destruction of the metazoan reef system only left behind poorly diverse microbial communities. The temporal reef patterns are thus similar to spatial patterns of modern benthic communities approaching oxygen minimum zones. This observation suggests that a decline in oxygen concentrations was at least partly involved in the destruction of reefs, even where there is no direct evidence of oceanic anoxia.

  7. Simulation of the atmospheric boundary layer in the wind tunnel for modeling of wind loads on low-rise structures

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Reinhold, T. A.; Marshall, R. D.

    1976-01-01

    The lower part of the atmospheric boundary layer (strong wind conditions) was simulated in low speed wind tunnel for the modeling of wind loads on low-rise structures. The turbulence characteristics of the turbulent boundary layer in the wind tunnel are compared with full scale measurements and with measurements made at NASA Wallops Flight Center. Wind pressures measured on roofs of a 1:70 scale model of a small single family dwelling were compared with results obtained from full scale measurements. The results indicate a favorable comparison between full scale and model pressure data as far as mean, r.m.s. and peak pressures are concerned. In addition, results also indicate that proper modeling of the turbulence is essential for proper simulation of the wind pressures.

  8. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a Micro-UAS for atmospheric boundary layer research

    NASA Astrophysics Data System (ADS)

    Reuder, J.; Jonassen, M. O.; Ólafsson, H.

    2012-04-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a new and flexible tool for atmospheric boundary layer (ABL) research to be operated as controllable and recoverable atmospheric sounding system for the lowest 4 km above the Earth's surface. In the year 2011 two main technical improvements of the system have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation to now even allowing incloud flights. In the field of sensor technology the implementation of a 5-hole probe for the determination of the 3 dimensional flow vector impinging the aircraft with a 100 Hz resolution and of a faster Pt1000 based temperature sensor have distinctly enhanced the meteorological measurement capabilities. The extended SUMO version has recently been operated during two field campaigns. The first one in a wind farm close to Vindeby on Lolland, Denmark, was dedicated to the investigation of the effects of wind turbines on boundary layer turbulence. In spite of a few pitfalls related to configuration and synchronisation of the corresponding data logging systems, this campaign provided promising results indicating the capability and future potential of small UAS for turbulence characterization in and around wind farms. The second one, the international BLLAST (Boundary Layer Late Afternoon and Sunset Transition) field campaign at the foothills of the Pyrenees in Lannemezan, France was focussing on processes related to the afternoon transition of the convective boundary layer. On a calm sunny day during this experiment, the SUMO soundings revealed an unexpected 2°C cooling in the ABL during morning hours. By a comparison with model simulations this cooling can be associated with thermally-driven upslope winds and the subsequent advection of relatively cool air from the lowlands north of the Pyrenees.

  9. Increased atmospheric SO₂ detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland.

    PubMed

    Bacon, Karen L; Belcher, Claire M; Haworth, Matthew; McElwain, Jennifer C

    2013-01-01

    The Triassic-Jurassic boundary (Tr-J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr-J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr-J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr-J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy.

  10. Increased Atmospheric SO2 Detected from Changes in Leaf Physiognomy across the Triassic–Jurassic Boundary Interval of East Greenland

    PubMed Central

    Bacon, Karen L.; Belcher, Claire M.; Haworth, Matthew; McElwain, Jennifer C.

    2013-01-01

    The Triassic–Jurassic boundary (Tr–J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr–J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr–J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr–J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy. PMID:23593262

  11. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; van Eijk, Alexander M.; Fedorovich, Evgeni

    2013-09-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple realizations of the CBL flow field reproduced by a large-eddy simulation (LES) of the atmosphere. The Cn2 values yielded by LES-based approach agree fairly well with Cn2 values predicted by the Monin-Obukhov similarity theory. In this respect, the Cn2 retrieval from the LES data is promising for evaluating the vertical profile of Cn2 throughout the entire CBL. Under the considered CBL conditions and for the selected optical wavelength of 0.55 μm the value of Cn2 was found to be dominated by the CT2 contribution in the first few hundred meters above the surface, whereas the CTq contribution became significant aloft.

  12. Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere.

    PubMed

    Gómez-López, Vicente M; Ragaert, Peter; Ryckeboer, Jaak; Jeyachchandran, Visvalingam; Debevere, Johan; Devlieghere, Frank

    2007-06-10

    Minimally processed vegetables (MPV) have a short shelf-life. Neutral electrolysed oxidising water (NEW) is a novel decontamination method. The objective of this study was to test the potential of NEW to extend the shelf-life of a MPV, namely shredded cabbage. Samples of shredded cabbage were immersed in NEW containing 40 mg/L of free chlorine or tap water (control) up to 5 min, and then stored under equilibrium modified atmosphere at 4 degrees C and 7 degrees C. Proliferation of aerobic mesophilic bacteria, psychrotrophic bacteria, lactic acid bacteria and yeasts were studied during the shelf-life. Also pH and sensorial quality of the samples as well as O(2) and CO(2) composition of the headspace of the bags was evaluated. From the microbial groups, only psychrotrophic counts decreased significantly (P<0.05) due to the effect of NEW, but the counts in treated samples and controls were similar after 3 days of storage at 4 degrees C and 7 degrees C. Packaging configurations kept O(2) concentration around 5% and prevented CO(2) accumulation. pH increased from 6.1-6.2 to 6.4 during the shelf-life. No microbial parameter reached unacceptable counts after 14 days at 4 degrees C and 8 days of storage at 7 degrees C. The shelf-life of controls stored at 4 degrees C was limited to 9 days by overall visual quality (OVQ), while samples treated with NEW remained acceptable during the 14 days of the experiment. The shelf-life of controls stored at 7 degrees C was limited to 6 days by OVQ and browning, while that of samples treated with NEW were limited to 9 days by OVQ, browning and dryness. According to these results, a shelf-life extension of at least 5 days and 3 days in samples stored respectively at 4 degrees C and 7 degrees C can be achieved by treating shredded cabbage with NEW. NEW seems to be a promising method to prolong the shelf-life of MPV.

  13. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  14. Planetary Boundary Layer Simulation Using TASS

    NASA Technical Reports Server (NTRS)

    Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael

    1996-01-01

    Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.

  15. Simulation of CO2 dispersion in the atmospheric boundary layer using a mesoscale model

    NASA Astrophysics Data System (ADS)

    Granvold, P. W.; Chow, F. K.; Oldenburg, C. M.

    2007-12-01

    The consequences of unexpected releases of CO2 from underground carbon sequestration sites must be understood before large-scale carbon capture and storage projects are implemented. Carbon dioxide gas can migrate through faults, fractures, or abandoned wells that penetrate the subsurface storage site and provide a pathway to the ground surface. Though such leakage is typically slow and in small amounts, CO2 can accumulate at the ground surface because it is denser than the surrounding atmosphere. Such accumulation presents health risks for humans and animals in the vicinity, and can cause damage to crops, trees, and other vegetation. Because atmospheric dispersion of CO2 is driven by gravity and ambient wind conditions, the danger from CO2 is greatest in regions with topographic depressions where the dense gas can pool, or under stably- stratified background atmospheric conditions which further inhibit mixing and dilution of the gas. We are developing a simulation tool for predictions of CO2 releases from underground storage sites in a mesoscale atmospheric model. The model solves the compressible fluid flow equations, and has been modified to account for transport of dense gases. Example simulations from sources of different release strengths over various topography and background atmospheric conditions illustrate the behavior of the model and its utility for risk assessment and certification of carbon sequestration sites.

  16. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    PubMed

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere. PMID:21302546

  17. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    PubMed

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.

  18. Description of the atmospheric circulation in the boundary layer over a tropical island: Case study of Guadeloupe Archipelago

    NASA Astrophysics Data System (ADS)

    Plocoste, Thomas; Dorville, Jean-François; Jacoby-Koaly, Sandra; Roussas, André

    2016-04-01

    Over past two decades the use of atmospheric sounding methods as Sodars, Lidar equipped drones increased sharply. Compare to weather balloon, these modern methods allow measure of profile at constant heights during long period. There are few studies using this type of equipment in tropical climates and lesser on small island. Wind regime on island of diameter less than 50 km are mostly considered as oceanic. Many author consider that thermal effect are negligible in land. But recent observations and simulations show importance of the thermal circulation at small- and meso- scales particularly in atmospheric pollution process. Up to 2009 no wind profile data were available continuously to study atmospheric circulation in Guadeloupe Archipelago (GA) which is one of the islands of the Lesser Antilles Arc. In first approximation wind was evaluated based on measures done at the most upwind island of the GA for many application as wind power and atmospheric pollution. From 2009 to 2012 a measurement campaign of the Atmospheric Boundary Layer (ABL) have been performed by the University of Antilles (UA) in GA. To assess effects of dynamic of ABL on air quality in sub urban area, particularly during the sunset and sunrise, UA monitored two sites with a weather station and a doppler sodar (REMTECH PAO). Both sites are close to the sea with one in a coastal area and the other in an open landfill surrounded by densely populated building and a mangrove swamp. Thermal and chemical measurements with a portable mass spectrometer were made in the vicinity of the landfill and showed the existence of urban heat islands. This study presents the first Doppler Sodar long measurements campaign in GA. Statistical analysis of the three year of doppler sodar data (i.e. wind components and its fluctuations) allow to identified and characterized the complex circulations on the two sites in the ABL between 25 and 500m above the sea level. Orographic and thermal effects due to urban area were

  19. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  20. The Interactive Evolution of the Oceanic and Atmospheric Boundary Layers in the Source Regions of the Trades.

    NASA Astrophysics Data System (ADS)

    Kraus, Eric B.; Leslie, Lynn D.

    1982-12-01

    Subtropical status tends to form over relatively cold water, its presence then keeps the water cold. We have investigated the resultant downstream development in the framework of an interactive, two-dimensional, steady-state model of the oceanic and atmospheric mixed layers. Upstream boundary and interior conditions in both media, and irradiance and advection velocities are specified; mixed-layer temperature salinity, heat and moisture content are evolving dependent variables. The integration is continued downstream until convective instability develops or, failing that, for a distance of 2000 km.Sensitivity tests show this development to be strongly affected by the upstream boundary conditions, implying an effect of coastal upwelling processes upon oceanic and atmospheric temperature profiles for a long distance downstream. The dependence on the advection velocity is very nonlinear. The amplitude of temperature changes is of the same order in both media, despite the greater oceanic heat capacity. This is due to the unequal advection rate, which causes a water column to remain in the affected area some fifty times longer than the air above.

  1. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  2. Ion and neutral mass spectrometry of the isotopic composition of Titan's upper atmosphere: Implications for the atmospheric dynamics and photochemistry, and the evolution of the major species over geological time scales

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.

    The atmosphere of Titan, Saturn's largest moon, is an analog for the Earth's atmosphere in the distant past when life first emerged, and may also be used to study the distant future when the abundance of water in the atmosphere may be reduced by photochemical loss processes associated with climate change. This Dissertation investigates the evolution of Titan's atmosphere utilizing measurements of the stable isotope ratios in molecular nitrogen and methane. The Cassini Ion Neutral Mass Spectrometer (INMS) measures the composition of the ionosphere and neutral atmosphere as it flies through the atmosphere, approaching altitudes as low as 950 km above the surface. INMS measurements of the 14N/15N in N2 as a function of altitude for 30 Titan flybys are compared, using a basic diffusion model, to the Huygens Gas Chromatograph Mass Spectrometer (GCMS) measurement of the 14N/15N in N2 on the surface. This comparison provides the input parameters needed to extrapolate the INMS measurements of 12C/13C in CH4 from the upper atmosphere to the surface where the ratio is within the range of expected primordial values. Although the 12C/13C at Titan is close to the primordial value, escape and photochemistry fractionate the isotope ratio over time. This suggests that methane has been present in Titan's atmosphere for no more than one billion years. A cross-calibration of INMS ion densities with the electron densities measured by the Cassini Radio Plasma Wave Spectrometer (RPWS) constrains the energy response of INMS and provides a new approach for determining the densities of ions in Titan's ionosphere. These ion densities validate an updated coupled Ion-Neutral-Thermal model that constrains the fractionation of the nitrogen isotopes due to photochemistry. Modeling the evolution of the nitrogen isotopes over geological times scales based on chemistry and escape limits the initial 14N/15N to a heavier ratio than the 14N/ 15N observed in the Earth's atmosphere. The methodologies

  3. Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to a mesoscale model

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.

    2015-10-01

    Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled

  4. Simulations of a Dynamic Solar Cycle and Its Effects on the Interstellar Boundary Explorer Ribbon and Globally Distributed Energetic Neutral Atom Flux

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; Pogorelov, N. V.; McComas, D. J.; Dayeh, M. A.

    2015-05-01

    Since 2009, observations by the Interstellar Boundary Explorer (IBEX) have vastly improved our understanding of the interaction between the solar wind (SW) and local interstellar medium through direct measurements of energetic neutral atoms (ENAs), which inform us about the heliospheric conditions that produced them. An enhanced feature of flux in the sky, the so-called IBEX ribbon, was not predicted by any global models before the first IBEX observations. A dominating theory of the origin of the ribbon, although still under debate, is a secondary charge-exchange process involving secondary ENAs originating from outside the heliopause. According to this mechanism, the evolution of the solar cycle should be visible in the ribbon flux. Therefore, in this paper we simulate a fully time-dependent ribbon flux, as well as globally distributed flux from the inner heliosheath (IHS), using time-dependent SW parameters from Sokół et al. as boundary conditions for our time-dependent heliosphere simulation. After post-processing the results to compute H ENA fluxes, our results show that the secondary ENA ribbon indeed should be time dependent, evolving with a period of approximately 11 yr, with differences depending on the energy and direction. Our results for the IHS flux show little periodic change with the 11 yr solar cycle, but rather with short-term fluctuations in the background plasma. While the secondary ENA mechanism appears to emulate several key characteristics of the observed IBEX ribbon, it appears that our simulation does not yet include all of the relevant physics that produces the observed ribbon.

  5. SIMULATIONS OF A DYNAMIC SOLAR CYCLE AND ITS EFFECTS ON THE INTERSTELLAR BOUNDARY EXPLORER RIBBON AND GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX

    SciTech Connect

    Zirnstein, E. J.; Heerikhuisen, J.; Pogorelov, N. V.; McComas, D. J.; Dayeh, M. A.

    2015-05-01

    Since 2009, observations by the Interstellar Boundary Explorer (IBEX) have vastly improved our understanding of the interaction between the solar wind (SW) and local interstellar medium through direct measurements of energetic neutral atoms (ENAs), which inform us about the heliospheric conditions that produced them. An enhanced feature of flux in the sky, the so-called IBEX ribbon, was not predicted by any global models before the first IBEX observations. A dominating theory of the origin of the ribbon, although still under debate, is a secondary charge-exchange process involving secondary ENAs originating from outside the heliopause. According to this mechanism, the evolution of the solar cycle should be visible in the ribbon flux. Therefore, in this paper we simulate a fully time-dependent ribbon flux, as well as globally distributed flux from the inner heliosheath (IHS), using time-dependent SW parameters from Sokół et al. as boundary conditions for our time-dependent heliosphere simulation. After post-processing the results to compute H ENA fluxes, our results show that the secondary ENA ribbon indeed should be time dependent, evolving with a period of approximately 11 yr, with differences depending on the energy and direction. Our results for the IHS flux show little periodic change with the 11 yr solar cycle, but rather with short-term fluctuations in the background plasma. While the secondary ENA mechanism appears to emulate several key characteristics of the observed IBEX ribbon, it appears that our simulation does not yet include all of the relevant physics that produces the observed ribbon.

  6. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  7. Variability of Atmospheric Boundary Layer height over the tropical oceans - A study using atmospheric refractivity profiles from multi campaign in-situ and satellite radio occultation data.

    NASA Astrophysics Data System (ADS)

    Santosh, M.

    2016-07-01

    Atmospheric Boundary Layer (ABL) over the tropical oceans controls and regulates the influx of water vapour into the free atmosphere due to evaporation. The availability of in situ data for determining the ABL characteristics over tropical oceans are limited to different ship based campaigns and hence restricted in spatial and temporal coverage. For ABL studies the Radio Occultation (RO) based satellite data over tropical oceans have good temporal and spatial coverage but limited in temporal and spatial resolution. Atmospheric refractivity profiles are extensively used in many studies to determine the ABL height from both platforms. The present study attempts to use the advantages in both in-situ and satellite (RO) based data to quantify the variability in the ABL height over the tropical oceans. All studies done so far to identify the ABL height from RO derived refractivity profiles rely extensively on the detection of the minimum refractivity gradient (MRG) below ~6 km along with additional threshold criteria. This leads to an over estimation of ABL heights especially in presence of strong subsidence inversion caused by local/ mesoscale/ synoptic scale processes where the MRG lies significantly above the ABL. The present study attempts to quantify this over estimation using atmospheric refractivity profiles derived from thermo-dynamical parameters from radiosonde ascents over the tropical ocean, suggests an improved method of ABL detection and quantifies the variability so deduced. Over 1000 radiosonde ascents from four ship cruises conducted during DYNAMO 2011 field campaign over the tropical Indian Ocean are used for the purpose. ABL heights determined from radiosonde data using traditional methods (using virtual potential temperature and specific humidity) are compared with those identified from simulated atmospheric refractivity profiles from same data (using prevalent methods for RO) to quantify the over estimation. A new method of ABL detection from

  8. Massive-scale aircraft observations of giant sea-salt aerosol particle size distributions in atmospheric marine boundary layers

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.

    2015-12-01

    iant sea-salt aerosol particles (dry radius, rd > 0.5 μm) occur nearly everywhere in the marine boundary layer and frequently above. This study presents observations of atmospheric sea-salt size distributions in the range 0.7 < rd < 14 μm based on external impaction of sea-spray aerosol particles onto microscope polycarbonate microscope slides. The slides have very large sample volumes, typically about 250 L over a 10-second sampling period. This provides unprecedented sampling of giant sea-salt particles for flights in marine boundary layer air. The slides were subsequently analyzed in a humidified chamber using dual optical digital microscopy. At a relative humidity of 90% the sea-salt aerosol particles form spherical cap drops. Based on measurement the volume of the spherical cap drop and assuming NaCl composition, the Kohler equation is used to derive the dry salt mass of tens of thousands of individual aerosol particles on each slide. Size distributions are given with a 0.2 μm resolution. The slides were exposed from the NSF/NCAR C-130 research aircraft during the 2008 VOCALS project off the coast of northern Chile and the 2011 ICE-T in the Caribbean. In each deployment, size distributions using hundreds of slides are used to relate fitted log-normal size distributions parameters to wind speed, altitude and other atmospheric conditions. The size distributions provide a unique observational set for initializing cloud models with coarse-mode aerosol particle observations for marine atmospheres.

  9. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  10. Some observational and modeling studies of the atmospheric boundary layer at Mississippi gulf coast for air pollution dispersion assessment.

    PubMed

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D; Hardy, Mark G; Swanier, Shelton

    2008-12-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  11. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  12. [Trace analysis of heavy metal ions in electroplate waste water by capillary electrophoresis with visual offline sample stacking via moving neutralization boundary].

    PubMed

    Fan, Yinping; Li, Shan; Fan, Liuyin; Cao, Chengxi

    2012-08-01

    A moving neutralization boundary (MNB) was developed as a novel model of visual offline sample stacking for the trace analysis of heavy metal ions (HMIs) by capillary zone electrophoresis (CZE). In the stacking system, the motion direction of MNB to cathode was used with 2.1 mmol/L HCl-98 mmol/L KCl-trace metal ions in the anodic solution and 4.0 mmol/L NaOH-96 mmol/L KCl in the cathodic solution. The voltage was constant at 180 V and the flow rate of the anolyte and catholyte was 1 mL/min. The metal ions in the gel after stacking were detected by capillary electrophoresis. The calibration curves showed good linear relationship (r > or = 0.998 5) in the concentration range used in the experiments. The pre-concentration factors were up to 80 - 150 and the limits of detection (LODs) were 0.163, 0.256, 0.077, 0.153, 0.203, 0.062 and 0.142 mg/L for Cu(II), Zn(II), Ni(II), Mg(II), Ca(II), Cr(III) and Fe(III), respectively, obviously lower than the national standards. The intra-day and inter-day assay precisions were good (the relative standard deviations (RSDs) less than 7.42%). Finally, the developed method has been successfully used for the stacking and the detection of heavy metal ions in electroplate waste water.

  13. Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Andreas, Edgar; Fairall, Christopher; Guest, Peter; Persson, P.

    2008-03-01

    This paper surveys results of the comprehensive turbulent measurements in the stable boundary layer (SBL) made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) in the Beaufort Gyre from October 1997 through September 1998. Turbulent fluxes and mean meteorological data were continuously measured and reported hourly at five levels on a 20-m main SHEBA tower. Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification, and allow studying the SBL in detail. A brief overview of the SBL regimes, the flux-profile relationships, the turbulent Prandtl number, and other parameters obtained during SHEBA is given. The traditional Monin—Obukhov approach, z-less scaling, and gradient-based scaling are evaluated and discussed based on the data from SHEBA.

  14. A study of turbulence in an evolving stable atmospheric boundary layer using large-eddy simulation

    SciTech Connect

    Cederwall, R; Street, R L

    1999-05-01

    A study is made of the effects of stable stratification on the fine-scale features of the flow in an evolving stable boundary layer (SBL). Large-eddy simulation (LES) techniques are used so that spatially and temporally varying and intermittent features of the turbulence can be resolved; traditional Reynolds-averaging approaches are not well suited to this. The LES model employs a subgrid turbulence model that allows upscale energy transfer (backscatter) and incorporates the effects of buoyancy. The afternoon, evening transition, and nighttime periods are simulated. Highly anisotropic turbulence is found in the developed SBL, with occasional periods of enhanced turbulence. Energy backscatter occurs in a fashion similar to that found in DNS, and is an important capability in LES of the SBL. Coherent structures are dominant in the SBL, as the damping of turbulent energy occurs more at the smaller, less organized scales.

  15. Long-term measurements of refractive index structure constant in atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Jicha, Otakar; Pechac, Pavel; Zvanovec, Stanislav; Grabner, Martin; Kvicera, Vaclav

    2012-10-01

    Results of long-term measurements of the refractive index structure constant in the boundary layer are introduced. The measurements were made on a 150-meter-high lattice mast equipped by nineteen meteorological sensors and one pressure sensor at the bottom of the mast. The Kolmogorov statistical theory of turbulence was used to calculate the refractive index structure constant C2n, allowing us to present annual cumulative distribution functions (CDFs) and seasonal quantiles. The quantiles of measured height dependence of the refractive index structure constant are also shown and compared with existing models (Hufnagel/Andrews/Phillips, SLC Day and Gurvich). Parameters of a linear model were calculated to fit the measured median height profile of the refractive index structure constant with the uncertainty of measurements also being addressed.

  16. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  17. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    NASA Astrophysics Data System (ADS)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  18. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  19. High-resolution properties of the Equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations

    SciTech Connect

    Cooper, D.I.; Eichinger, W.E.; Barr, S.

    1996-07-15

    A {open_quotes}thermostat{close_quotes} mechanism for cooling the Equatorial Pacific is being tested with data collected during the Central Equatorial Pacific Experiment. The Los Alamos National Laboratory participated by fielding two shipboard lidars that collected nearly continuous data over the Pacific from 10 to 21 March 1993 as the ship sailed from Guadalcanal to Christmas Island. A Raman lidar measured water vapor mixing ratio in the lower troposphere, especially in the marine atmosphere boundary layer (ABL), and an aerosol backscatter lidar measured height and thickness of clouds to an altitude of 20 km. The data collected from these two lidars were used to determine ocean-atmosphere phenomonology, which in turn, affects the climatology of the Central Pacific. Agreement between coincident radiosonde and the Raman water vapor lidar measurements was typically within {plus_minus} 0.25 g kg{sup {minus}1} of water. Divergence between the two instruments occurred at transitions between distinct layers in the lower marine atmosphere. Reasons for this divergence will be discussed. Above the ABL the lidar and radiosonde are in excellent agreement. A wealth of detail is apparent in the lidar-derived profiles. For example, there are large variations in water vapor mixing ratio-the expression of the inherent low-frequency, intermittent, atmospheric turbulence that produces spatially discrete features such as convective plumes. These features define the structure and extent of the ABL. Using the ABL structural characteristics, an analysis of the relationship between entrainment zone (EZ) height and observed sea surface temperature (SST) revealed counterintuitive behavior - that the height of the EZ decreases as SST increases in the range between 27{degrees} and 30{degrees}C. 56 refs., 14 figs.

  20. Ocean-Atmosphere-Land interactions and their consequences on the biogeochemical variability in Eastern Boundary Upwelling System

    NASA Astrophysics Data System (ADS)

    Renault, L.; McWilliams, J. C.; Deutsch, C.; Molemaker, M. J.

    2015-12-01

    Coastal winds and upwelling of deep water along Eastern Boundary Upwelling System (EBUS) yield some of the ocean's most productive ecosystems, but the effect of coastal wind shape and ocean-atmosphere interactions on regional Net Primary Production (NPP) is not well known. Here, we first show how the spatial and temporal variability of nearshore winds in EBUS is affected by orography, coastline shape, and air-sea interaction. Using regional atmospheric simulations over the US West Coast, we determine monthly characteristics of the wind drop-off, and show that when the mountain orography is combined with the coastline shape of a cape, it has the biggest influence on wind drop-off. Then, using a realistic ocean model of the California Current System, we show that the slackening of the winds near the coast has little effect on near-shore phytoplankton productivity, despite a large reduction in upwelling velocity. On a regional scale, the wind drop-off leads to a substantially higher NPP, especially when it occurs over a broad swath, even when the total upwelling rate remains the same. This partial decoupling of NPP from upwelling is effected by alongshore currents and the eddies they generate. When peak winds extend all the way to the coast, alongshore current shear is stronger, and a more energetic eddy field subducts nutrients offshore and out of the photic zone, reducing overall productivity. This causal sequence is supported by satellite remote sensing. Finally, using a interanual coupled simulation over the US West Coast, we show the ocean-atmosphere interactions can also reduce the eddy activity by pumping energy out from the eddies, reducing their amplitude and rotation speed, and leading to more realistic eddies characteristics. This may also reduce the eddy quenching and therefore increase the NPP. This complex ocean-atmosphere-land interactions imply that simple wind indices are incomplete predictors of productivity in EBUS.

  1. Titan's Complex Neutral Composition as Measured by Cassini INMS

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Magee, B. A.; Gell, D. A.; Kasprzak, W. T.; Cravens, T.; Vuitton, V. S.; Yelle, R. V.

    2006-12-01

    The composition of Titan's complex neutral atmosphere above 1000 km as observed by the Cassini Ion Neutral Mass Spectrometer on recent flybys of Titan are presented. A rich mixture of hydrocarbons and nitriles are found with mixing ratios that vary from 10-4 to 10-7: acetylene, ethylene, ethane, benzene, toluene, cyanogen, propyne, propene, propane, and various nitriles. The calibration and mass deconvolution processes are presented in order to establish clear boundaries on the systematic errors that can occur in the mass deconvolution process. The role of ion neutral chemistry in forming these compounds will also be discussed.

  2. Impact of uncertainties in atmospheric boundary conditions on ocean model solutions

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ayan H.; Ponte, Rui M.; Forget, Gael

    2016-04-01

    We quantify differences in ocean model simulations derived solely from atmospheric uncertainties and investigate how they relate to overall model errors as inferred from comparisons with data. For this purpose, we use a global configuration of the MITgcm to simulate 4 ocean solutions for 2000-2009 using 4 reanalysis products (JRA-25, MERRA, CFSR and ERA-Interim) as atmospheric forcing. The simulations are compared against observations and against each other for selected variables (temperature, sea-level, sea-ice, streamfunctions, meridional heat and freshwater transports). Forcing-induced differences are comparable in magnitude to model-observation misfits for most near-surface variables in the tropics and sub-tropics, but typically smaller at higher latitudes and polar regions. Forcing-derived differences are expectedly largest near the surface and mostly limited to the upper 1000 m but can also be seen as deep as 4000 m, especially in regions of deep water formation. Errors are not necessarily local in nature and can be advected to different basins. Results indicate that while forcing adjustments might suffice in optimization procedures of near-surface fields and at low-to-mid latitudes, other control parameters are likely needed elsewhere. Forcing-induced differences can be dominated by large spatial scales and specific time scales (e.g. annual), and thus appropriate error covariances in space and time need to be considered in optimization methodologies.

  3. Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific

    NASA Astrophysics Data System (ADS)

    Fetzer, Eric J.; Teixeira, Joao; Olsen, Edward T.; Fishbein, Evan F.

    2004-09-01

    We describe atmospheric temperature inversions and height-resolved water vapor fields over the wintertime subtropical northeastern Pacific Ocean in observations by the satellite-borne Atmospheric Infrared Sounder (AIRS) experiment. A comparison with model analyses shows good agreement in temperature. Water vapor comparisons with operational radiosondes at four sites in California and Hawaii during December 2002-January 2003 have low biases in the 1000-700 and 700-500 hPa layers. Maps of inversion frequency, and, water vapor at 1000-700 and 700-500 hPa over the subtropical northeast Pacific during 1-16 January 2003-when high pressure and clear conditions prevail-show inversions occurring at a local minimum in water vapor at 1000-700 hPa. Water vapor at 700-500 hPa has a broad minimum extending from Baja California to Hawaii, with inversions found on its eastern half. These observations illustrate the potential of the AIRS data for describing a climatology of temperature and water vapor in subtropical oceanic regions.

  4. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2013-05-01

    Measurements of aerosol number distributions down to one molecule have provided information that we've used to develop a new approach for modeling atmospheric nucleation rates. Measurements were carried out with the Cluster Chemical Ionization Mass Spectrometer (Cluster CIMS), the scanning mobility spectrometer using a diethylene glycol condensation particle counter as detector (DEG SMPS), and an ambient pressure proton transfer mass spectrometer for ammonia and amines (AmPMS). The model explains nucleation as a result of cluster evolution due to a sequence of acid-base reactions. We conclude that the smallest stable cluster contains four sulfuric acid molecules. The model leads to a simple analytic expression for nucleation rates that is reasonably consistent (i.e., ± 10x) with atmospheric observations. The model predicts that nucleation rates are equal to a prefactor, P<1, times the sulfuric acid vapor collision rate, (i.e., J=Pṡ0.5ṡk11 *[H2SO4]2).

  5. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand 13 deg N, 100 deg E

    NASA Astrophysics Data System (ADS)

    Lerkvaranyu, Somkiat; Dejhan, Kobchai; Cheevasuvit, Fusak; Itabe, Toshikasu; Mizutani, Kohei; Aoki, Tetsuo; Yasui, Motoaki

    2001-02-01

    Tropospheric aerosols effects on climate in directly through various cloud formation, the lidar has been used to study the composition of many particles mixing in the atmosphere including to study the aerosol and cloud. Currently, it has many types of lidar systems depending on the purpose of measurements. In this report, the ground-based lidar system was established at King Mongkut's Institute of Technology Ladkrabang (KMITL), THAILAND to study and measure the aerosol in boundary layer and cirrus clouds in the tropopause region. The aerosol measurement is in the form of scattering ratio whereas the signal depolarization has been applied to identify layers of cirrus clouds. The lidar system consists of laser source (Nd:YAG) with second harmonic wavelength, 28 cm Schmidt-Cassegrain telescope, photomultiplier tube (PMT) and data acquisition system.

  6. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  7. Low-frequency variability of Western Boundary Currents in the turbulent ocean: intrinsic modes and atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Sérazin, Guillaume; Penduff, Thierry; Terray, Laurent; Grégorio, Sandy; Barnier, Bernard; Molines, Jean-Marc

    2015-04-01

    Ocean-atmosphere heat fluxes are particularly strong in Western Boundary Current (WBC) regions where SST front variations influence basin-scale climate variability. Observed low-frequency fluctuations in latitude and strength of these oceanic jets are classically thought to be essentially atmospherically-driven by wind stress curl variability via the oceanic Rossby wave adjustment. Yet academic eddy-resolving process-oriented models with double-gyre configurations have revealed that an idealized WBC may exhibit low-frequency intrinsic fluctuations without low-frequency external forcing (e.g. Berloff et al., 2007, Dijkstra and Ghil, 2005, etc). Experiments with eddying Ocean General Circulation Models (OGCMs) have also shown that the amount of low-frequency Sea Level Anomaly (SLA) variability is largely intrinsic in WBCs (Penduff et al. 2011; Sérazin et al 2014) and that the frontal-scale (<10°) pattern of the Kuroshio Extension (KE) variability is similar to intrinsic modes (Taguchi et al. 2010). Based on a pair of atmospherically-forced 1/12° OGCM experiments that simulate with accuracy either the intrinsic variability (seasonally-forced) or the observed total variability (forced with the full range of atmospheric timescales), Empirical Orthogonal Function analysis is performed on zonally-averaged SLA fields of four main WBCs (e.g. Gulf Stream, Kuroshio Extension, Agulhas Current and East Australian Current). The first two modes of the KE and GS exhibit a similar spatial structure that is shaped by oceanic intrinsic processes. The frequency content is however different between the intrinsic and total Principal Components, the former containing a wide range of timescales similar to a red noise and the latter being more autocorrelated at interannual-to-decadal timescales. These modes are compared with those obtained from the 20 years of altimetry observation and relationships with low-frequency westward propagative features in the respective oceanic basin are

  8. Inactivation effects of neutral reactive-oxygen species on Penicillium digitatum spores using non-equilibrium atmospheric-pressure oxygen radical source

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Fengdong, Jia; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2013-10-01

    The effectiveness of atomic and excited molecular oxygen species at inactivating Penicillium digitatum spores was quantitatively investigated by measuring these species and evaluating the spore inactivation rate. To avoid the effects of ultraviolet light and charged species, a non-equilibrium atmospheric-pressure radical source, which supplies only neutral radicals, was employed. Ground-state atomic oxygen (O(3Pj)) and excited molecular oxygen (O2(1Δg)) species were measured using vacuum ultraviolet absorption spectroscopy. The inactivation rate of spores was evaluated using the colony count method. The lifetimes of O(3Pj) and O2(1Δg) in an argon gas ambient at atmospheric pressure were found to be about 0.5 ms and much more than tens of ms, and their spore inactivation rates were about 10-17 cm3 s-1 and much lower than 10-21 cm3 s-1, respectively.

  9. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  10. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2014-11-01

    The temperature measurements of the Rotational Raman Lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2 Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, respectively, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a significant advance during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field-of-view in the near range. We present an example of a low-level temperature measurement which resolves the temperature gradient at the top of the stable nighttime boundary layer a hundred meters above the ground.

  11. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2007-10-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  12. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  13. A Numerical Study of Sea Breeze and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Huang, Qian-Qian; Cai, Xu-Hui; Song, Yu; Kang, Ling

    2016-06-01

    Numerical simulations of sea breezes and the coastal atmospheric boundary layer (ABL) at Hainan Island, China during summer and winter are discussed. The different behaviour of sea breezes and the ABL on the leeward and windward sides of the island are examined, and it is found that offshore flows are more likely to create a strong sea-breeze signature, whereas the process of sea-breeze development under onshore flows is difficult to capture. At the location where the sea-breeze signal is remarkable, the height of the coastal ABL displays an abnormal decrease, corresponding to a transitional point from a continental ABL to a thermal internal boundary layer (TIBL) formed under sea-breeze conditions. This is corroborated by the sudden increase in the water vapour mixing ratio and/or wind speed, indicating the arrival of the sea breeze. Regarding the spatial distribution, the TIBL height decreases abruptly just ahead of the sea-breeze front, and above the cold air mass. When the sea-breeze front occurs with a raised head, a cold air mass is separated from the sea-breeze flow and penetrates inland. This separation is attributed to the interaction between the sea breeze and valley breeze, while the dry airflow entraining to the sea-breeze flow may also partially contribute to this air mass separation.

  14. Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework

    SciTech Connect

    Fedorovich, E.

    1995-09-01

    The paper presents an extended theoretical background for applied modeling of the atmospheric convective boundary layer within the so-called zero-order jump approach, which implies vertical homogeneity of meteorological fields in the bulk of convective boundary layer (CBL) and zero-order discontinuities of variables at the interfaces of the layer. The zero-order jump model equations for the most typical cases of CBL are derived. The models of nonsteady, horizontally homogeneous CBL with and without shear, extensively studied in the past with the aid of zero-order jump models, are shown to be particular cases of the general zero-order jump theoretical framework. The integral budgets of momentum and heat are considered for different types of dry CBL. The profiles of vertical turbulent fluxes are presented and analyzed. The general version of the equation of CBL depth growth rate (entrainment rate equation) is obtained by the integration of the turbulence kinetic energy balance equation, invoking basic assumptions of the zero-order parameterizations of the CBL vertical structure. The problems of parameterizing the turbulence vertical structure and closure of the entrainment rate equation for specific cases of CBL are discussed. A parameterization scheme for the horizontal turbulent exchange in zero-order jump models of CBL is proposed. The developed theory is generalized for the case of CBL over irregular terrain. 28 refs., 2 figs.

  15. Large-eddy Simulation of Atmospheric Boundary-layer Flow through a Wind Farm Sited on Complex Terrain

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2015-04-01

    In this work, the performance of a wind farm situated on a hilly terrain is studied using large-eddy simulation and especial attention is paid to the effect of the topography on the wake flow characteristics. To this end, first, boundary-layer flow is simulated over a two-dimensional hill and the corresponding mean and instantaneous flow-field is captured. Subsequently, flow simulation through a wind farm, consisting of five horizontal-axis wind turbines, sited over the same hill in an aligned layout is performed and the resulting flow characteristics are compared with the former case, i.e., the case without wind turbines. To assess the validity of the simulations, the calculated results are compared with the measurements carried out by Tian et al. (2013) in the aerodynamic/atmospheric boundary layer wind tunnel of Iowa State University. The agreement between the simulation and experimental results is good in terms of mean velocity and turbulence intensity profiles at different streamwise positions.

  16. The mean velocity profile in a sheared and thermally stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Katul, G. G.; Porporato, A. M.

    2011-12-01

    A universal stability correction function φ that accounts for distortions caused by thermal stratification to the logarithmic mean velocity profile (MVP) in the lower atmosphere was proposed by Monin and Obukhov in the 1950s using dimensional analysis. However, theories that predict the canonical shape of φ currently lag behind field experiments and numerical simulation. A recently proposed phenomenological theory that links the spectrum of turbulence to the MVP is expanded here by including the effects of thermal stratification on the turbulent kinetic energy dissipation rate and eddy-size anisotropy. The resulting theory explains all the canonical features of φ reported in field experiments, including the onset of power-laws and their concomitant exponents reported for mildly stable, mildly unstable, and the near-convective limit.

  17. Evaluation of the atmospheric boundary layer schemes in the mesoscale models WRF and RAMS using scintillometry and in situ observations at Cabauw

    NASA Astrophysics Data System (ADS)

    Steeneveld, Gj; Tolk, Lf

    2009-09-01

    Limited area models are widely used for high resolution weather forecasting and atmospheric research. These models also provide the meteorological input for air quality forecasting and for inverse modeling studies, e.g. for identification of CO2 sources and sinks. The success of these applications depends on the accuracy of the provided meteorology, especially in the atmospheric boundary layer and close to the surface. We evaluate the atmospheric boundary layer schemes in the mesoscale models WRF and RAMS for two contrasting apparent golden days (i.e. calm and windy) in The Netherlands, for both grassland and forest sites. The windy case is exclusive because of a large humidity jump between the boundary layer and the free atmosphere, and is therefore particularly interesting to study the representation of entrainment. Also, the influence of different boundary conditions will be assessed. The model intercomparison reveals that radiation components are estimated reasonably well by both models. Both models forecast the latent heat flux correctly, but relatively large differences occur for sensible heat flux and boundary layer height. Observations of the PBL potential temperature and humidity suggest other optimal settings for the energy flux model than the surface flux observations. Standard RAMS energy fluxes return a cold bias in the PBL. WRF and RAMS with increased Bowen ratios, capture the atmospheric temperature correctly but overestimate the Bowen ratio. The uncertainty in the surface energy fluxes is reflected in height of the PBL, which also differs substantially between the two models. Note that our model results appear insensitive to the choice of the initial and boundary conditions (ECMWF or NCEP). Thus, we find that the observed surface sensible heat flux cannot explain the boundary layer growth and energy content during the day. Therefore, a further discussion of both the observed and modeled terms of the heat budget equation is required to understand the

  18. Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse

    NASA Astrophysics Data System (ADS)

    Gray, Suzanne L.; Harrison, R. Giles

    2016-04-01

    The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.

  19. Multiscale aeroelastic simulations of large wind farms in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vitsas, Athanasios; Meyers, Johan

    2016-09-01

    In large wind farms, the turbulence induced by each turbine results in high overall turbulence levels that can be detrimental for downstream wind turbine components. In the current study, we scrutinize structural loads and dynamics, and their correlation to turbulent flow structures by conducting aeroelastic simulations in wind farms. To this end, a pseudospectral large-eddy simulation solver is coupled with a multibody dynamics module in a multiscale framework. The multirate approach leads us naturally to the development of an aeroelastic actuator sector model that represents the wind turbine forces on the flow. This makes it computationally feasible to simulate long time horizons of the two-way coupled aeroelastic system. Hence, it allows us to look at the interaction of the turbine structure with the turbulent boundary layer and the wakes of multiple turbine arrays, and to get estimates of damage equivalent loads and structural loading statistics, as longer time series are available. Results are shown for two typical wind farm layouts, i.e. aligned and staggered, for above-rated flow regimes.

  20. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  1. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    SciTech Connect

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.; McComas, D. J.; Schwadron, N. A.; De Majistre, B.; Funsten, H.; Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show that (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.

  2. A Study of the Internal Boundary Layer due to a Roughness Change in Neutral Conditions Observed During the LINEX Field Campaigns

    NASA Astrophysics Data System (ADS)

    Jegede, O. O.; Foken, T.

    As an aspect of the LINEX field studies (1996-1997 Lindenberg near Beeskow, Germany), the characteristics of the internal boundary layer (IBL) that is associated with a step change of the surface roughnesses in neutral constant stress layers was investigated and is reported in this paper. Both smooth to rough (in 1996) and rough to smooth (in 1997) types of flow, have been studied based upon the profiles of mean wind and temperature realised from a 10-m mast and eddy correlation measurements taken at two levels (2m and 5m). Depending upon wind direction, the fetch at the site varied between 140m and 315m within the wind sector (200° to 340°) used for the field investigations. The height of the IBL, δ, had been determined from the intersect of the logarithmic wind-profiles below (<2m) and above (>6) the interface. Values of δ obtained at the experimental site compared fairly well to the existing theoretical/empirical fetch-height relationships of the form: δ=aċxb, where a, b, are empirical constants. The ratio for the friction velocities below and above the IBL as measured directly by the eddy correlation techniques showed that for fetches less than 250m there was an increase (decrease) of about 20% of the momentum flux arising from the smooth to rough (rough to smooth) transitions. Influences of distant obstructions (e.g., bushes, pockets of trees) on the surface flow were markedly important on the examined wind profiles and such can be indicative as multiple IBLs.

  3. The Tturbulent Structure of the Atmospheric Boundary Layer over Small Northern Lakes

    NASA Astrophysics Data System (ADS)

    Repina, I.; Stepanenko, V.; Artamonov, A.; Barskov, K.; Polukhov, A.

    2015-12-01

    Wetland and freshwater ecosystems of the Northern Europe are an important natural source of atmospheric methane. Adequate calculation of gas emission from the northern territories requires calculation of balances of heat, moisture, and gases at the surface of water bodies on the sub-grid scale in the climate models. We carried out measurements in North Karelia on the lake Verkhneye (White Sea Biological Station of Moscow State University). The purpose of the study is evaluation of turbulent transport in the system "lake water- near-surface air - surrounding forest" in the winter season. We used an array of acoustic anemometers mounted at different distances from the lake shore. Measurements were taken at two heights in the center of the lake. It was revealed that the intensity of the turbulent transfer essentially depends on the height and location of sensors, and the wind direction. Stratification in the near-to-surface air probably does not play significant role. Besides, there is no constant-flux layer. The later makes Monin and Obukhov similarity theory (which is used in most of the parameterizations for calculating turbulent flows) inapplicable in this case. The work was sponsored by RFBR 14-05-91752, 14-05-91764, 15-35-20958.

  4. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda S.; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer C.

    2016-02-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results suggest that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oligocene transition and that when a certain threshold of pCO2 change was crossed, the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  5. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, M.; Porter, A. S.; Holohan, A.; Kunzmann, L.; Collinson, M.; McElwain, J. C.

    2015-10-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results show that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene transition. This may be related to the "hysteresis effect" previously proposed - where a certain threshold of pCO2 change was crossed before the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  6. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean

    PubMed Central

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-01-01

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m3 to 4.58 ng/m3), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m3. The highest frequency range was 1.0–1.5 ng/m3, lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss. PMID:25125264

  7. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original

  8. Characteristics of second-order residual ionospheric error in GNSS radio occultation and its impact on inversion of neutral atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Qu, Xiaochuan; Li, Zhenghang; An, Jiachun; Ding, Wenwu

    2015-08-01

    In Global Navigation Satellite Systems (GNSS) radio occultation (RO), one of the most significant error sources is the ionospheric error, which is largely eliminated by dual-frequency linear combination. However, second-order residual ionospheric error (RIE) in excess phase still remains and affects the retrievals of neutral atmospheric parameters in RO. Second-order RIE varies with RO azimuth in a sinusoidal pattern for a set of simulated RO events occurring in the same location at different azimuths. The amplitude of the sinusoidal curve below 60 km is at the order of sub-centimeter under moderate solar activity level. The retrieval biases of the neutral atmospheric parameters induced by second-order RIE also have sinusoidal features with RO azimuth, but have opposite variation trends to that of the second-order RIE. The RO azimuths of the maximum positive and negative retrieval biases correspond approximately to the azimuths of maximum negative and positive second-order RIEs, respectively. The order of the maximum bending angle bias induced by the second-order RIE is about 10-8 rad under moderate solar activity level. However, the retrieval errors at low latitude are larger than those at high and middle latitudes, and the maximum temperature bias at low latitude could be 0.35 K at 40 km. Based on the sinusoidal variation of second-order RIE, it is shown that even at the same RO point and under the same solar activity level, the second-order RIEs at different RO azimuths still have different effects on the retrieval precision of atmospheric parameters. This should be considered carefully when many RO profiles are averaged for climate trend detection, especially at low latitude.

  9. Studies of the airglow, the aurora, the ion and neutral composition, and the chemistry of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Zipf, E. C., Jr.

    1974-01-01

    Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.

  10. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral

  11. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.

  12. Direct method for solving transfer equation by expansion in spherical harmonics: Scattering in atmosphere with Lambertian lower boundary and thermal radiation transfer

    NASA Technical Reports Server (NTRS)

    Ustinov, Y. A.

    1978-01-01

    The direct method for the solution of the spherical harmonics approximation to the equation of transfer of radiation is applied to the cases of (1) scattering of the solar radiation in the atmosphere with the Lambertian boundary and (2) thermal radiation transfer.

  13. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    DOE PAGES

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; Kosovic, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z0 in DART. Using DART to estimate z0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z0 ensembles by 4%–22%. Finally, however, parameter estimation of z0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  14. Response of the Tropical Atmospheric Circulation to Glacial Boundary Conditions Simulated by an Ensemble of Coupled Climate Models

    NASA Astrophysics Data System (ADS)

    di Nezio, P. N.; Clement, A. C.; Vecchi, G. A.

    2009-12-01

    The response of the tropical atmospheric circulation to Last Glacial Maximum (LGM) boundary conditions is analyzed using an ensemble of coordinated climate model experiments performed for the Paleoclimate Modelling Intercomparison Project Phase II. The multi-model changes in the surface circulation of the Tropical Pacific are dominated by cross-equatorial winds flowing from the Northern hemisphere (NH) to the Southern hemisphere (SH) along with a strengthening of the easterlies over the equatorial Pacific. The anomalous cross-equatorial winds have been typically associated with an anomalous Hadley cell with the ascending branch in the SH and the descending branch in the NH compensating changes in atmospheric heat transport. However, in this ensemble of coupled General Circulation Models (GCMs) the changes in the tropical circulation result from different forcing in each hemisphere. In the NH hemisphere the changes are dominated by the topography of the ice sheets, while in the SH the changes result from cooling due to decreased CO2. The changes in circulation due to the topography of the icesheets are diagnosed using a steady s-coordinate primitive equation model linearized about a zonally symmetric basic state that solves for the eddy component of the circulation. The solutions from this model for each GCM indicate that differences in the simulation of the mean climate result in differences in the response to LGM topography. The multi-model atmospheric response in the NH is analogous to the expansion of the Aleutian low during boreal winter in the present climate, when the NH subtropical high is squeezed southeastward by an expanded Aleutian low. In the SH the models simulate an eastward expansion of the South Pacific Convergence Zone and contraction of the eastern Pacific dry zone consistent with reduced subsidence associated with a slowing down of the SH Hadley cell. This eastward shift in the mean climatology results in weakened trade winds. In addition to the

  15. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late.

  16. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  17. Test of a new near-wall SFS model in large-eddy simulations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Brasseur, James

    2000-11-01

    In previous work we have proposed a new ¡°resolvable subfilter-scale¡± (RSFS) model (Zhou, Brasseur, and Juneja, submitted to Phys. Fluids) specific to near-surface high Reynolds number turbulence where serious deficiencies exist in algebraic closures (Juneja and Brasseur, 1999, Phys. Fluids, 11, 3054) associated with necessary under-resolution of integral scales when the viscous layer cannot be resolved. It has been shown in anisotropic homogeneous turbulence that our RSFS model greatly improved model predictions of the anisotropic structure of subfilter-scale (SFS) acceleration and resolved velocity fields when integral scales are under-resolved. Here we test our RSFS model in LES of the inhomogeneous rough-wall atmospheric boundary layer, in which the horizontal integral scale of vertical velocity is necessarily under-resolved at the first few grid levels. It is known that mean velocity, variance and vertical velocity skewness are in error near the surface. We will compare the RSFS model with other model predictions and against field data. The partition of SFS acceleration between SFS stress divergence and SFS pressure force will be discussed.

  18. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late. PMID:25305325

  19. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  20. Organised Coherent Motion in Atmospheric Boundary Layer Flow in the Proximity to Tall Plant Canopies as Detected in Acoustic Doppler Profiler and Tower-based Observations

    NASA Astrophysics Data System (ADS)

    Foken, T.; Thomas, C. K.

    2007-12-01

    We investigated coherent structures above and in a tall plant canopy during a field campaign at a mountainous site in Germany (WALDATEM-2003). Data from a remote sensing acoustic Doppler system in concert with in-situ point measurements of turbulence in flow velocity and scalars deployed on towers yielded continuous observations from the forest ground to 200 m above the ground with a vertical resolution of 10 m at a sampling frequency of 0.4 and 20 Hz respectively. Coherent structures were extracted from time series utilizing wavelet transform techniques allowing for single structure analysis and averaged statistics of detected events. In addition to their spatiotemporal scales, we focused on the identification of generating mechanisms and surface parameters affecting coherent structures. Time scales were on the order of 20 to 36 s depending on the upstream topography and canopy morphology. Lateral transport dominated scalar coherent exchange. Vertical profiles of time scales in longitudinal and vertical velocities were mirror images showing an increase/ decrease, respectively, with height. Time scales in scalars were nearly height-constant. The ratio of the contribution of coherent structures to total vertical exchange was 0.2 for momentum and 0.25 to 0.4 for sensible heat. Analysis of power spectra confirmed an interaction between inactive eddies of atmospheric boundary layer scale and the horizontal flow in 4 % of all studied cases only, mainly under near-neutral stratification. Evaluation of the Mixing-Layer Analogy suggested that vertical shear caused by the immense canopy drag was the dominant generating mechanism. However, daytime coherent structures were found to be a superposition of shear generated events and convectional eddies. The latter led to an increase of vertical coherency in the flow around noon. At night, terrain induced linear gravity waves showed similar time scales as coherent structures emphasizing the need to differentiate between these two

  1. Partitioning the variation within the acid neutralizing capacity of surface waters in Scotland in relation to land cover, soil and atmospheric depositional factors.

    PubMed

    Kernan, M R; Helliwell, R C

    2001-01-29

    A method of decomposing the variation in the acid neutralizing capacity (ANC) of surface waters in Scotland is described. Using national datasets, a series of variables relating to 703 catchments across Scotland is divided into three components representing (i) land cover, (ii) soil and (iii) atmospheric deposition/altitude. Redundancy analysis (RDA) and (partial) redundancy analysis are used to quantify the amount of variation in ANC uniquely attributable to each of these components, independent of the effects of the others. The variation accounted for by covarying combinations of these components is also determined. Approximately 55% of the total variation in ANC across the 703 sites is explained by the variables representing catchment characteristics and atmospheric deposition. Of this, 8.5%, 2.4% and 6.9% are uniquely attributable to the land cover, soil and deposition/altitude components, respectively. A further 38% of ANC variation is associated with the covariation between components, with 18% accounted for by the combination of all three. Approximately 45% of the variation in ANC remains unexplained. The results reflect the integrated nature of catchment processes and demonstrate, for these data, that it is a combination of land cover, soil and deposition and altitude factors which most explain variation in freshwater ANC level. The approach offers a tool with which to assess the sensitivity of surface waters to acid deposition at a regional scale and provides a way of identifying regional differences in catchment response to acid loading.

  2. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind

  3. A large-eddy simulation study of the impact of different land-atmosphere coupling schemes on the dynamics of the nocturnal boundary layer (Invited)

    NASA Astrophysics Data System (ADS)

    Stoll, J. R.; Shingleton, N. D.; Bosveld, F.

    2010-12-01

    Accurately reproducing the dynamic two-way interaction between the land surface and the atmosphere in the stable boundary layer (SBL) requires detailed treatment of the governing physical processes. Increasingly, large-eddy simulation (LES) is used for this purpose. In many studies, the dominant treatment of surface boundary conditions is to specify a known state or flux. This results in one-way or weak two-way coupling between the land surface and the boundary layer. The impact of how this coupling is modeled on atmospheric boundary layer (ABL) dynamics is still not fully understood, especially under transitional and weakly turbulent conditions. Here, LES that is fully coupled to a land-surface model (LSM) is used to investigate the nocturnal and the transitional periods of the diurnal cycle. The LSM explicitly solves for the transport of heat and water in a one-dimensional column of the upper soil and is coupled to the atmosphere through a surface energy budget. The fully coupled LES-LSM is used to simulate the third GEWEX (Global Energy and Water Cycle Experiment) ABL (GABLS3) LES intercomparison case. Turbulent boundary layer profiles and surface fluxes are compared to field data and results from simulations using three different levels of physical description as lower boundary conditions. These include simulations with prescribed temperature and moisture state, with a LSM that uses a bare-soil approximation and a LSM that include a skin layer. Overall, simulations with all three types of boundary conditions compare fairly well with the general trends observed in the field data for surface fluxes and boundary layer turbulence statistical profiles during the intercomparison time period (night to early morning) with a few differences. The LES-LSM model under-predicts the latent heat flux during the night and over-predicts the ground heat and moisture fluxes. The addition of a skin layer improves flux predictions during the night and early morning. Surface fluxes

  4. Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere.

    PubMed

    Kurosawa, Kosuke; Sugita, Seiji; Ishibashi, Ko; Hasegawa, Sunao; Sekine, Yasuhito; Ogawa, Nanako O; Kadono, Toshihiko; Ohno, Sohsuke; Ohkouchi, Naohiko; Nagaoka, Yoichi; Matsui, Takafumi

    2013-06-01

    Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m(2) over ~10(2) km(2) under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life. PMID:23877440

  5. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert

    2016-03-01

    Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.

  6. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation

  7. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    NASA Astrophysics Data System (ADS)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  8. Simulation and modeling of the turbulent katabatic flow along a hyperbolic tangent slope for stably stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Brun, Ch.; Chollet, J. P.

    2009-04-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow (Doran and Horst 1983, Monti et al. 2002). This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered (Baines 2005). A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Smith and Skyllingstad 2005) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a hyperbolic tangent slope with stable stratification. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations with a Boussinesq approximation. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the surface, with a special refinement in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency N=0.013. At the surface two sets of boundary conditions have been considered, first a rough surface condition, second an ideal case with slip conditions. A constant surface cooling q_w=-30 W/m2 is applied on the stably stratified fluid initially at rest

  9. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  10. Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.; Gell, David A.; Perry, Mark; Hunter Waite, J., Jr.; Crary, Frank A.; Young, David; Magee, Brian A.; Westlake, Joseph H.; Cravens, Thomas; Kasprzak, Wayne; Miller, Greg; Wahlund, Jan-Erik; Ågren, Karin; Edberg, Niklas J. T.; Heays, Alan N.; Lewis, Brenton R.; Gibson, Stephen T.; de la Haye, V.; Liang, Mao-Chang

    2012-10-01

    The Cassini Ion Neutral Mass Spectrometer (INMS) has measured both neutral and ion species in Titan's upper atmosphere and ionosphere and the Enceladus plumes. Ion densities derived from INMS measurements are essential data for constraining photochemical models of Titan's ionosphere. The objective of this paper is to present an optimized method for converting raw data measured by INMS to ion densities. To do this, we conduct a detailed analysis of ground and in-flight calibration to constrain the instrument response to ion energy, the critical parameter on which the calibration is based. Data taken by the Cassini Radio Plasma Wave Science Langmuir Probe and the Cassini Plasma Spectrometer Ion Beam Spectrometer are used as independent measurement constraints in this analysis. Total ion densities derived with this method show good agreement with these data sets in the altitude region (˜1100-1400 km) where ion drift velocities are low and the mass of the ions is within the measurement range of the INMS (1-99 Daltons). Although ion densities calculated by the method presented here differ slightly from those presented in previous INMS publications, we find that the implications for the science presented in previous publications is mostly negligible. We demonstrate the role of the INMS ion densities in constraining photochemical models and find that (1) cross sections having high resolution as a function of wavelength are necessary for calculating the initial photoionization products and (2) there are disagreements between the measured ion densities representative of the initial steps in Titan photochemistry that require further investigation.

  11. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  12. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    NASA Astrophysics Data System (ADS)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  13. Study of the Effect of Wind Speed on Evaporation from Soil Through Integrated Modeling of Atmospheric Boundary Layer and Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Davarzani, H.; Illangasekare, T. H.

    2012-12-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change and the movement of green house gases such as possible leaking of sequestered CO2. Soil moisture distribution in the shallow subsurface becomes a critical factor in these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary conditions at the porous medium-free flow medium interface include

  14. An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low-Wind Speed (Diffusion) Conditions

    SciTech Connect

    Veronica E. Wannberg, Gustavious Williams, Patrick Sawyer, and Richard Venedam

    2010-09-01

    Aunique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h21. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current stateof- the-practice models, Aerial locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.

  15. Implementation of the Immersed Boundary Method in the Weather Research and Forecasting model

    SciTech Connect

    Lundquist, Katherine Ann

    2006-01-01

    Accurate simulations of atmospheric boundary layer flow are vital for predicting dispersion of contaminant releases, particularly in densely populated urban regions where first responders must react within minutes and the consequences of forecast errors are potentially disastrous. Current mesoscale models do not account for urban effects, and conversely urban scale models do not account for mesoscale weather features or atmospheric physics. The ultimate goal of this research is to develop and implement an immersed boundary method (IBM) along with a surface roughness parameterization into the mesoscale Weather Research and Forecasting (WRF) model. IBM will be used in WRF to represent the complex boundary conditions imposed by urban landscapes, while still including forcing from regional weather patterns and atmospheric physics. This document details preliminary results of this research, including the details of three distinct implementations of the immersed boundary method. Results for the three methods are presented for the case of a rotation influenced neutral atmospheric boundary layer over flat terrain.

  16. Atmospheric Boundary Layer wind profile at a flat coastal site - wind speed lidar measurements and mesoscale modeling results during a summer period

    NASA Astrophysics Data System (ADS)

    Batchvarova, E.; Gryning, S.-E.; Hahmann, A.; Peña, A.; Mikkelsen, T.

    2010-09-01

    The wind profile above the surface layer up to 1 kilometer is presently a challenge for wind energy assessment studies and air pollution applications, as instruments for high resolution (in time and space) measurements were rarely available until recently and mesoscale meteorological models have difficulties to predict it, due to complex phenomena taking place in nature and not accounted for in the ABL parameterizations currently used. Worldwide an effort is going on to emphasize the important role of boundary layer research in various direct applications (as wind energy and air pollution) and in weather forecast models. Contributing to this effort are the Danish Research Agency Strategic Research Council (Sagsnr. 2104-08-0025) "Tall wind project" and the EU FP7-People-IEF VSABLA (PIEF-GA-2009-237471). The data analyzed here are presenting a summer period of wind lidar (WSL70) measurements at a site at the West coast of Jutland, Denmark, situated approximately 2 km inland. Therefore over water conditions are defining the structure of the boundary layer at westerly winds, while the land surface is felt only within the internal boundary layer estimated in previous studies as about 80 - 100 m deep at the site. Patterns of the wind field and wind profiles over the North Sea up to 1 km height are studied based on observations and mesoscale modelling results. Simultaneously, the height of the atmospheric boundary layer is estimated from aerosol lidars backscatter analysis and thus providing a rich data set for testing and development of new parametrizations for the wind profile within the entire atmospheric boundary layer over different surfaces.

  17. Neutralizer optimization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Mohajeri, Kayhan

    1991-01-01

    The preliminary results of a test program to optimize a neutralizer design for 30 cm xenon ion thrusters are discussed. The impact of neutralizer geometry, neutralizer axial location, and local magnetic fields on neutralizer performance is discussed. The effect of neutralizer performance on overall thruster performance is quantified, for thruster operation in the 0.5-3.2 kW power range. Additionally, these data are compared to data published for other north-south stationkeeping (NSSK) and primary propulsion xenon ion thruster neutralizers.

  18. Comparison of experimental and fossil leaf morphospace occupation suggests a role for atmospheric composition in driving morphospace change across a mass extinction boundary

    NASA Astrophysics Data System (ADS)

    Bacon, Karen; McElwain, Jennifer

    2016-04-01

    The Triassic-Jurassic boundary (~201 mya) marks a period of intense climate change associated with a mass extinction event and major volcanism. The impact of these environmental stresses has been well-documented; however, a detailed analysis of the morphospace response of plants across the boundary has not been conducted. In order to determine the impact of changing atmospheric composition on leaf morphospace occupation, we compared a fossil flora to controlled environment experiments. We analysed morphometric data for over 2,000 well-preserved leaf fossils from nine plant beds across the TJ of Astartekløft, East Greenland. Data including leaf length, width, area, and shape were used to determine morphospace occupation for each bed at the site. In the lower Triassic beds, morphospace occupation is high compared to a severe reduction at and across the boundary, contemporaneous with peak reconstructed CO2 and hypothesised elevated SO2 and other volcanic gases. These findings were compared to controlled environment experiments, where the same measurements were made on leaves from nearest living equivalent taxa grown in simulated palaeoatmospheric conditions. These experiments revealed that exposure to SO2, but not to variations in either CO2 or O2, produced a similar sever reduction in morphospace occupation. These findings together suggest that atmospheric composition change across the TJ, and particularly an elevation in SO2, had a role in heavily disrupting the plant community morphospace of East Greenland.

  19. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  20. Transient ion neutralization by electrons.

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The nonlinear initial-boundary-value problems describing the lateral neutralization of ion beams for the cases that (1) an auxiliary electric field accelerates the electrons into the ion space, and (2) the electrons are injected into the ion space at a prescribed current density are treated. Analytical solutions are derived which give the position and speed of the neutralization front as a function of time, and the temporal development of the electron density, velocity, and electric fields during the neutralization process.

  1. Vertical displacement of the mid-tropospheric water vapor boundary in the tropics derived from the VISSR Atmospheric Sounder (VAS) 6.7-micron channel

    NASA Technical Reports Server (NTRS)

    Stout, J.; Steranka, J.; Petersen, R. A.

    1984-01-01

    A technique for locating areas of upward or downward motion of the upper boundary of the midtropospheric water-vapor envelope over tropical oceans on the basis of GOES Visible/IR Spin-Scan Radiometer (VISSR) Atmospheric Sounder (VAS) 6.7-micron brightness temperatures is developed and demonstrated. The technique employs an analogy to the method developed by Schoeberl and Krueger (1983) for the bottom of the ozone layer and depends on the relationship investigated by Chesters and Uccellini (1982) between 6.7-micron brightness temperature and the pressure of the water-vapor upper boundary. The results of analysis of VAS data for the North Atlantic (20-40 deg N and 35-75 deg W) on September 5-7, 1982, are presented in maps which are shown to be physically consistent and in agreement with conventional upper-air measurements. Refinement of the method to account for horizontal advection and diffusion is suggested.

  2. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  3. SCIENTIFIC UNCERTAINTIES IN ATMOSPHERIC MERCURY MODELS III: BOUNDARY AND INITIAL CONDITIONS, MODEL GRID RESOLUTION, AND HG(II) REDUCTION MECHANISMS

    EPA Science Inventory

    In this study we investigate the CMAQ model response in terms of simulated mercury concentration and deposition to boundary/initial conditions (BC/IC), model grid resolution (12- versus 36-km), and two alternative Hg(II) reduction mechanisms. The model response to the change of g...

  4. The Variability of Refractivity in the Atmospheric Boundary Layer of a Tropical Island Volcano Measured by Ground-Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Costa, A.; Pascal, K.; Werner, C.; Webb, T.

    2016-11-01

    For 24 h we measured continuously the variability of atmospheric refractivity over a volcano on the tropical island of Montserrat using a ground-based radar interferometer. We observed variations in phase that we interpret as due to changing water vapour on the propagation path between the radar and the volcano and we present them here in the context of the behaviour of the atmospheric boundary layer over the island. The water vapour behaviour was forced by diurnal processes, the passage of a synoptic-scale system and the presence of a plume of volcanic gas. The interferometer collected images of amplitude and phase every minute. From pairs of phase images, interferograms were calculated and analyzed every minute and averaged hourly, together with contemporaneous measurements of zenith delays estimated from a network of 14 GPS receivers. The standard deviation of phase at two sites on the volcano surface spanned a range of about 1-5 radians, the lowest values occurring at night on the lower slopes and the highest values during the day on the upper slopes. This was also reflected in spatial patterns of variability. Two-dimensional profiles of radar-measured delays were modelled using an atmosphere with water vapour content decreasing upwards and water vapour variability increasing upwards. Estimates of the effect of changing water vapour flux from the volcanic plume indicate that it should contribute only a few percent to this atmospheric variability. A diurnal cycle within the lower boundary layer producing a turbulence-dominated mixed layer during the day and stable layers at night is consistent with the observed refractivity.

  5. The Variability of Refractivity in the Atmospheric Boundary Layer of a Tropical Island Volcano Measured by Ground-Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Costa, A.; Pascal, K.; Werner, C.; Webb, T.

    2016-06-01

    For 24 h we measured continuously the variability of atmospheric refractivity over a volcano on the tropical island of Montserrat using a ground-based radar interferometer. We observed variations in phase that we interpret as due to changing water vapour on the propagation path between the radar and the volcano and we present them here in the context of the behaviour of the atmospheric boundary layer over the island. The water vapour behaviour was forced by diurnal processes, the passage of a synoptic-scale system and the presence of a plume of volcanic gas. The interferometer collected images of amplitude and phase every minute. From pairs of phase images, interferograms were calculated and analyzed every minute and averaged hourly, together with contemporaneous measurements of zenith delays estimated from a network of 14 GPS receivers. The standard deviation of phase at two sites on the volcano surface spanned a range of about 1-5 radians, the lowest values occurring at night on the lower slopes and the highest values during the day on the upper slopes. This was also reflected in spatial patterns of variability. Two-dimensional profiles of radar-measured delays were modelled using an atmosphere with water vapour content decreasing upwards and water vapour variability increasing upwards. Estimates of the effect of changing water vapour flux from the volcanic plume indicate that it should contribute only a few percent to this atmospheric variability. A diurnal cycle within the lower boundary layer producing a turbulence-dominated mixed layer during the day and stable layers at night is consistent with the observed refractivity.

  6. Southern Hemisphere Sea Ice and the Atmospheric Boundary Layer in a High-Resolution Simulation of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Ordóñez, A.; Bitz, C. M.

    2015-12-01

    Increasing the horizontal resolution of the sea ice and ocean components in a global climate model has been shown to affect the extent of sea ice and the strength of atmosphere/ocean fluxes. Since existing high-resolution (0.1°) coupled simulations include a dynamical ocean, it is difficult to pinpoint how these results are influenced by the resolution of the sea ice. This project takes a closer look at the impact of sea ice resolution on ocean/atmosphere interactions in the Southern Hemisphere using the Community Earth System Model (CESM1-CAM5) in a slab ocean configuration. In this set-up, sea ice and mixed layer ocean models on a 0.1° grid (high resolution) or 1° grid (standard resolution) are coupled with atmosphere and land models run at the same 0.5° resolution. The high resolution model can produce fine scale, open water areas within the ice pack that facilitate air/sea flux exchanges and reduce the stability of the lower atmosphere in the model. Correlations between sea ice concentration and boundary layer variables will be described at different spatial scales to understand the effects of resolving small scale features. Finally, a kernel feedback analysis will be shown on a 0.1°, double CO2 run to look at the impact of sea ice resolution on the regional lapse rate feedback.

  7. The equilibrium atmospheric response to North Atlantic SST anomalies in GCMs with idealized and realistic boundary conditions

    SciTech Connect

    Kushnir, Y.; Held, I.M.

    1994-12-31

    The authors examine the equilibrium response of a general circulation model (GCM) to North Atlantic sea surface temperature (SST) anomalies during winter. The study is motivated by recent findings suggesting that a time dependence exists in the relationship between SST anomalies and anomalies in the atmospheric circulation. On interdecadal time scales the relationship between ocean and atmosphere anomalies appears to be consistent with quasi-geostrophic theory. It is proposed that long integrations of a GCM with fixed SST anomalies (equilibrium runs) are relevant to the study of North Atlantic interdecadal variability.

  8. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  9. The solar wind interaction with Mars: Consideration of Phobos 2 mission observation of an ion composition boundary on the dayside

    SciTech Connect

    Breus, T.K.; Dubinin, E.M.; Barabash, S.V. Mitnitskii, V.Ya.; Pissarenko, N.F. ); Krymskii, A.M. ); Lundin, R. ); Luhmann, J.G. ); Yeroshenko, Ye.G.

    1991-07-01

    This paper describes the features of the boundary in the plasma ion composition near Mars which separates the region dominated by the solar wind protons from the plasma of planetary origin. This boundary was detected by the ASPERA experiment on Phobos 2. It is argued that the features of this boundary seem to be similar to those of other composition boundaries detected elsewhere: the cometopause near comet Halley, and a boundary in the ion composition which appears near Venus during periods of high solar wind dynamic pressure. Numerical modeling of the solar wind interaction with Mars supports the idea that during solar maximum the interaction of the Martian neutral atmosphere with the solar wind can result in a composition transition from solar wind to planetary ions in the low-altitude magnetosheath. This transition occurs because of charge exchange of solar wind protons with the neutral atmosphere and photoionization.

  10. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  11. Quantifying the Boundary-Layer Dynamics of Carbon Dioxide from A Built Environment Using A Coupled Urban Land-Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Song, J.; Wang, Z.

    2015-12-01

    Urban areas are significant carbon contributors in the global carbon cycle due to intense carbon emissions from traffic and other human activities and lack of vegetation for carbon absorption. A better understanding on urban carbon variations is important to quantify urban contributions to regional and global carbon budgets under the challenge of climate changes. In this study, we applied a coupled urban land-atmospheric model to simulate the diurnal and seasonal variations of carbon dioxide (CO2) fluxes in the urban boundary layer (UBL) for the Phoenix Metropolitan area, Arizona. The lower boundary conditions of this model are provided by the CO2 fluxes measured using an eddy covariance tower. By analyzing the tower measurements in the urban canopy layer, the highest concentrations of CO2 in a typical weekday coincide with the busiest traffic. Besides, there are more CO2 emissions in winter than in summer possibly due to additional natural gas consumptions for heating. Based on the coupled model, we simulated the diurnal and seasonal evolutions of the mean CO2 concentration as well as the vertical profiles of CO2 concentration in the UBL. It was found that the anthropogenic CO2 sources in a built terrain effectively altered the carbon dynamics in the overlying atmosphere in contrast to its rural surroundings. We also changed the urban landscape characteristics including vegetation fraction, surface roughness, and building density to study their impacts on the CO2 dynamics in the UBL. Overall, the coupled urban land-atmospheric model provides a useful stand-alone tool for quantifying the urban carbon cycle, and can be extended to more general applications such as urban air quality problems.

  12. Climatology of diurnal trends and vertical distribution of ozone in the atmospheric boundary layer in urban North Carolina.

    PubMed

    Aneja, V P; Arya, S P; Li, Y; Murray, G C; Manuszak, T L

    2000-01-01

    Vertical measurements of ozone were made on a 610-m-tall tower located about 15 km southeast of Raleigh, NC, as part of an effort by the state of North Carolina to develop a state implementation plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. During summer 1993, 1994, and 1995, ozone was monitored at ground level, 250 m, and 433 m. Boundary layer wind, temperature, and other meteorological variable profiles were determined from balloon soundings. During summer 1996 and 1997, ozone was monitored at ground level, 76 m, 128 m, and 433 m. This paper presents the analysis and discussion of the five-year data. The evolutions of the convective boundary layer during daytime and the stable nocturnal boundary layer (NBL) were found to have marked impacts on ozone concentrations. A strong diurnal pattern, with an afternoon maximum and an early morning minimum, was dominant at ground level, but it was much weaker at elevated levels and insignificant above the NBL at night. Ozone deposition velocities at night during the measurement periods were estimated to range from 0.09 to 0.64 cm/sec. We found evidence of regional transport of ozone and/or its precursors from northwest and north of the site, which may play a role in high ozone events in the Raleigh-Durham area. Ozone concentrations between the various elevated levels were well correlated, while correlations between the ground and upper levels were much weaker. However, a strong correlation was found between the nighttime and early morning ozone concentrations (CR) in the residual layer above the NBL and the maximum ground level concentration (Co max) the following afternoon. Based on this correlation, the latter may be predicted by an observational model Co max = 27.76e 0.016 CR.

  13. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. D.; Yang, S.; Zhao, T. L.

    2012-02-01

    The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significantly impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over this region, particularly from a climatological perspective, remains an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August) from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) Global Forecast System, all TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i) 38% from the region between tropical Western Pacific region and South China Seas (WP), (ii) 21% from Bay of Bengal and South Asian subcontinent (BOB), and (iii) 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB). Controlled by the different patterns of atmospheric circulation, the air masses originating from these three source regions are transported along the different tracks into the TL. The spatial distributions of these three source regions remain similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents range from 1 to 7 weeks, contributing up to 60-70% of the overall TST; whereas the transport governed by the deep convection overshooting becomes faster, with timescales of 1-2 days and contributions of 20-30%. These results provide

  14. Large-eddy simulation of the diurnal cycle of the atmospheric boundary layer and influence of the radiative forcing during the Wangara experiment.

    NASA Astrophysics Data System (ADS)

    Dall'Ozzo, Cédric; Carissimo, Bertrand; Milliez, Maya; Musson-Genon, Luc; Dupont, Eric

    2013-04-01

    The ability to simulate the whole diurnal cycle of the atmospheric boundary layer in order to study the complex turbulent structures remains a difficult topic. Consequently large-eddy simulations (LES) are performed with the open source CFD code Code_Saturne [Archambeau et al., 2004]. First the code is validated on an atmospheric convective case [Schmidt and Schumann, 1989] where different subgrid-scale (SGS) models are compared: two non-dynamical SGS models [Smagorinsky, 1963] [Nicoud and Ducros, 1999] and two dynamical SGS models [Germano et al., 1991 ; Lilly, 1992] [Wong and Lilly, 1994]. Then LES are performed to simulate the whole diurnal cycle of the Wangara experiment (Day 33-34). The results are compared to measurements , RANS "k-ɛ" model and other LES performed by [Basu et al., 2008] using a locally averaged scale-dependent dynamic (LASDD) SGS model. Thereafter the influence of the radiative forcing on the atmosphere is studied testing several SGS models. The results are especially discussed on nocturnal low level jet and potential temperature gradient in the stable boundary layer. References: [Archambeau et al., 2004] Archambeau F., Mehitoua N., Sakiz M. (2004). Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. International Journal on Finite Volumes 1(1). [Basu et al., 2008] Basu S., Vinuesa J. F., and Swift A. (2008). Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology, 47 :1156-1174. [Germano et al., 1991] Germano M., Piomelli U., Moin P., and Cabot W. H. (1991). A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids, A3 :1760-1765. [Lilly, 1992] Lilly D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, A 4 :633-635. [Schmidt and Schumann, 1989] Schmidt H. and Schumann U. (1989). Coherent structure of the convective boundary layer derived from lage-eddy simulation. Journal of Fluid Mechanics, 200 :511-562. [Smagorinsky

  15. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhang, Meigen; Liu, Zirui; Wang, Lili; Wang, Pucai; Xia, Xiangao; Tao, Minghui; Zhu, Lingyun

    2016-04-01

    The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model(WRF-Chem). The numerical experiments are performed for the period of 2-26 January 2013, during which a severe fog-haze event (10-15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 μg m-3, minimum atmospheric visibility of ~0.3 km, and 10-100 hours of simulated hourly surface PM2.5 concentration above 300 μg m-3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog-haze event aerosols lead to a significant negative radiative forcing of ~20 to ~140 W m-2 at the surface and a large positive radiative forcing of 20-120 W m-2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00-18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8-2.8 °C at the surface and increases by 0.1-0.5 °C at around 925 hPa, while RH increases by about 4-12% at the surface and decreases by 1-6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s-1 (10 %) and the atmosphere boundary layer height decreases by 40-200 m (5-30 %) during the daytime of this severe fog-haze event. Owing to this more stable atmosphere during 09:00-18:00, 10-15 January, compared to the surface PM2

  16. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhang, M.; Liu, Z.; Wang, L.; Wang, P.; Xia, X.; Tao, M.; Zhu, L.

    2015-04-01

    The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model (WRF-Chem). The numerical experiments are performed for the period of 2-26 January 2013, during which a severe fog-haze event (10-15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 ug m-3, minimum atmospheric visibility of ~0.3 km, and 10-100 hours of simulated hourly surface PM2.5 concentration above 300 ug m-3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog-haze event aerosols lead to a significant negative radiative forcing of -20 to -140 W m-2 at the surface and a large positive radiative forcing of 20-120 W m-2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00-18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8-2.8 °C at the surface and increases by 0.1-0.5 °C at around 925 hPa, while RH increases by about 4-12% at the surface and decreases by 1-6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s-1 (10%) and the atmosphere boundary layer height decreases by 40-200 m (5-30%) during the daytime of this severe fog-haze event. Owing to this more stable atmosphere during 09:00-18:00, 10-15~January, compared to the surface PM2

  17. Minnesota 1973 atmospheric boundary layer experiment: Micrometeorological and tracer data archive. Set 1 (revision 2) documentation report

    NASA Astrophysics Data System (ADS)

    Woodruff, R. K.; Droppo, J. G.; Glantz, C. S.

    1987-03-01

    An archive for micrometeorological and tracer dispersion data was developed by Battelle, Pacific Northwest Labs. for the U.S. Environmental Protection Agency. The archive was designed to make the results of extensive field tests readily accessible to EPA for model testing, development, and verification efforts. Documentation was provided for one of the archived data sets, The Minnesota 1973 Boundary Layer Experiment. The aim of the effort was to archive invaluable data sets in a timely fashion before the necessary supporting information about the data becomes lost forever. The entries are as follows: data set fact summary, a narrative description of experimental and data, special information, references, a description of archive data files, contacts (names, addresses, and phone numbers) and standard experiment summary table. Revision 2 includes previously unpublished rawinsonde profile data.

  18. Atmosphere-Ice-Ocean Interactions During Early Autumn Freeze-up: Boundary-Layer and Surface Observations from the ACSE Field Program

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Brooks, Barbara; Tjernström, Michael; Sedlar, Joseph; Brooks, Ian; Shupe, Matthew; Björck, Göran; Prytherch, John; Salisbury, Dominic; Achtert, Peggy; Sotiropoulou, Georgia; Johnston, Paul; Wolfe, Daniel

    2015-04-01

    Surface energy fluxes are key to the annual summer melt and autumn freeze-up of Arctic sea ice, but are strongly modulated by atmospheric, ocean, and sea-ice processes. This paper will examine direct observations of energy fluxes during the onset of autumn freeze-up from the Arctic Clouds in Summer Experiment (ACSE), and place them in context of those from other observational campaigns. The ACSE field program obtained measurements of surface energy fluxes, boundary-layer structure, cloud macro- and microphysical structure, and upper-ocean thermal and salinity structure from pack-ice and open-water regions in the eastern Arctic from early July to early October 2014. Late August and September measurements showed periods of energy flux deficits, leading to freeze-up of sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean appear key to producing a temporal difference between the freeze-up of the sea ice and adjacent open water. While synoptic conditions, atmospheric advection, and the annual solar cycle have primary influence determining when energy fluxes are conducive for melt or freeze, mesoscale atmospheric phenomena unique to the ice edge region appear to also play a role. For instance, low-level jets were often observed near the ice edge during the latter part of ACSE, and may have enhanced the turbulent energy loss. In conjunction with observations of summer melt, these observations of the onset of freeze-up suggest scenarios of key atmospheric processes, including thermal advection on various scales, that are important for the annual evolution of melt and freeze-up.

  19. A Wind-tunnel Study of Atmospheric Boundary-Layer Flow over Vegetated Surfaces to Suppress PM10 Emission on Owens (dry) Lake

    NASA Astrophysics Data System (ADS)

    Kim, Dae Seong; Cho, Greg H.; White, Bruce R.

    Dust storms on Owens (dry) Lake located 200 milesnortheast of Los Angeles, California, U.S.A., havecaused serious PM10 emission problems. Alaboratory-based experimental study was conducted toinvestigate the efficiency of ''vegetation cover'' onthe playa to suppress dust emission rates as part ofa mitigation plan.Erodible lakebed material and field vegetation (saltgrass) taken from Owens (dry) Lake were placed in awind tunnel to simulate near-surface wind flow in theatmospheric boundary layer. Vertical wind-speedprofiles and vertical PM10-concentration profileswere measured over six different levels of surfacevegetation cover. In order to understand the mechanismof aeolian particle transport and dust injection intothe atmosphere, the roughness parameter, z0, thefriction velocity, u*, and the surface dragcoefficient, CD, were carefully determined.

  20. Climatic Variations In The Moisture and Instability Patterns Of The Atmospheric Boundary Layer On The East Mediterranean Coastal Plain Of Israel

    NASA Astrophysics Data System (ADS)

    Ben-Gai, T.; Bitan, A.; Manes, A.; Alpert, P.

    A long-term record (1964-1995) of radiosonde data observed atthe Bet-Dagan aerological station of the Israel Meteorological Service was analyzed to detect possible temporal trends in moisture content and instability of the atmospheric boundary layer. Bet-Dagan issituated in the central part of the south-east Mediterranean coastal plain. During this period surface characteristics in this region have changed drastically due to changes in land use, i.e., urbanization, development of irrigated agriculture and afforestation. The analysis of the radiosonde data reveals a clearly defined, statistically significant, increasing trend in the moisture content, mainly during summer. The stability of the surface layer, characterized by the bulk Richardson Number, shows adecreasing trend since the early 1960s. Relationships between these trends, land-use modifications and possible influence of large-scale influence are discussed.

  1. Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.

    2016-09-01

    Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  2. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality.

  3. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. PMID:25105753

  4. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Zhang, M.; Liu, Z.; Wang, L.; Wang, P.; Xia, X.; Tao, M.

    2015-01-01

    The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model (WRF-Chem). The numerical experiments are performed for the period 2-26 January 2013, during which a severe fog-haze event (10-15 January 2013) occurred. Comparison of the model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth. Comparison of modeling results in the presence and absence of aerosol feedback during the fog-haze event shows that aerosols lead to a significant negative radiative forcing of -20 to -140 W m-2 at the surface and a large positive radiative forcing of 20-120 W m-2 in the atmosphere and induce significant changes in meteorological variables of which the maximum changes occur during 09:00-18:00 LT over urban Beijing and Tianjin, and south Hebei Province: the temperature decreases by 0.8-2.8 °C at the surface and increases by 0.1-0.5 °C at around 925 hPa while the RH increases by about 4-12% at the surface and decreases by 1-6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s-1 (10%) and the atmosphere boundary layer height decreases by 40-200 m (5-30%) during the daytime of this severe fog-haze event. Owing to this more stable atmosphere, during 09:00-18:00, 10-15 January, compared to the surface PM2.5 concentration from the model results without aerosol feedback, the average surface PM2.5 concentration increases by 10-50 μg m-3 (2-30%) over Beijing, Tianjin, and south Hebei province and the maximum increase of

  5. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.

  6. Fossil plants indicate that the most significant decrease in atmospheric CO2 happened prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer

    2016-04-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany was utilized to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the stomatal proxy, which relies on the inverse relationship between pCO2 and leaf stomatal density, we show that a ~40% decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene-Oligocene climate change, and a 'tipping point' was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.

  7. Development of a balloon-borne stabilized platform for measuring radiative flux profiles in the atmospheric boundary layer

    SciTech Connect

    Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.

    1993-03-01

    A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform's operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.

  8. Development of a balloon-borne stabilized platform for measuring radiative flux profiles in the atmospheric boundary layer

    SciTech Connect

    Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.

    1993-03-01

    A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform`s operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.

  9. An Experimental and Modeling Study of Evaporation from Bare Soils Subjected to Natural Boundary Conditions at the Land-Atmospheric Interface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits

    2011-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the

  10. The high oxygen atmosphere toward the end-Cretaceous; a possible contributing factor to the K/T boundary extinctions and to the emergence of C(4) species.

    PubMed

    Gale, J; Rachmilevitch, S; Reuveni, J; Volokita, M

    2001-04-01

    Angiosperm plants were grown under either the present day 21 kPa O(2) atmosphere or 28 kPa, as estimated for the end-Cretaceous (100-65 MyBP). CO(2) was held at different levels, within the 24-60 Pa range, as also estimated for the same period. In C(3) Xanthium strumarium and Atriplex prostrata, leaf area and net photosynthesis per unit leaf area, were reduced by the high O(2), while the whole-plant respiration/photosynthesis ratio increased. The high O(2) effects were strongest under 24 Pa, but still significant under 60 Pa CO(2). Growth was reduced by high O(2) in these C(3) species, but not in Flaveria sp., whether C(3), C(4), or intermediary grown under light intensities <350 micromol m(-2) s(-1) PPF. Photosynthesis of C(3) Flaveria sp. was reduced by high O(2), but only at light intensities >350 micromol m(-2) s(-1) PPF. It is concluded that the high O(2) atmosphere at the end-Cretaceous would have reduced growth of at least some of the vegetation, thus adversely affecting dependent fauna. The weakened biota would have been predisposed to the consequences of volcanism and the K/T boundary bolide impact. Conversely, photosynthesis and growth of C(4) Zea mays and Atriplex halimus were little affected by high, 28 kPa, O(2). This suggests an environmental driver for the evolution of C(4) physiology.

  11. Ground-Based Cloud and Atmospheric Boundary Layer Observations for the Project: High Definition Clouds and Precipitation for Advancing Climate Prediction, HD(CP)2

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; Ebell, K.; Ulrich, U.; Schween, J. H.; Bohn, B.; Görsdorf, U.; Leinweber, R.; Päschke, E.; Baars, H.; Seifert, P.; Klein Baltink, H.

    2014-12-01

    The German research initiative ''High Definition Clouds and Precipitation for advancing Climate Prediction, HD(CP)2'' aims for an improved representation of clouds and precipitation in climate models. Model development and its evaluation require comprehensive observational datasets. A specific work package was established to create uniform and documented observational datasets for the HD(CP)2 data base. Datasets included ground-based remote-sensing (Doppler lidars, ceilometers, microwave radiometers, and cloud radars) and in-situ (meteorological and radiation sensors) measurements. Four supersites (Jülich ObservatorY for Cloud Evolution (JOYCE), Lindenberg Meteorological Observatory - Richard Assmann Observatory (RAO), and Leipzig Aerosol and Cloud Remote Observations System (LACROS) in Germany, and Cabauw experimental site for atmospheric research (Cesar) in the Netherlands) are finalizing the operational procedures to provide quality controlled (and calibrated if possible) remote-sensing and in-situ observations, retrievals on atmospheric boundary layer state (e.g. winds, mixing layer height, humidity and temperature), and cloud macro and micro physical properties with uncertainty estimations or at least quality flags. During the project new processing and retrieval methods were developed if no commonly agreed or satisfying methods were available. Especially, large progress was made concerning uncertainty estimation and automated quality control. Additionally, the data from JOYCE are used in a radiative closure studies under cloudy conditions to evaluate retrievals of cloud properties. The current status of work progress will be presented.

  12. Large Amplitude Spatial and Temporal Gradients in Atmospheric Boundary Layer CO2 Mole Fractions Detected With a Tower-Based Network in the U.S. Upper Midwest

    SciTech Connect

    Miles, Natasha; Richardson, S. J.; Davis, Kenneth J.; Lauvaux, Thomas; Andrews, A.; West, Tristram O.; Bandaru, Varaprasad; Crosson, Eric R.

    2012-02-21

    This study presents observations of atmospheric CO{sub 2} mole fraction from a nine-tower, regional network deployed during the North American Carbon Program's Mid-Continent Intensive during 2007-2009. Within this network in a largely agricultural area, mean atmospheric CO{sub 2} gradients were strongly correlated with both ground-based inventory data and estimates from satellite remote sensing. The average seasonal drawdown for corn-dominated sites (35 ppm) is significantly larger than has been observed at other continental boundary layer sites. Observed growing-season median CO{sub 2} gradients are strongly dependent on local flux. The gradients between cross-vegetation site-pairs, for example, average 2.0 ppm/100 km, four times larger than the similar-vegetation site-pair average. Daily-timescale gradients are as large as 5.5 ppm/100 km, but dominated by advection rather than local flux. Flooding in 2008 led to a region-wide 23 week delay in growing-season minima. The observations show that regional-scale CO{sub 2} mole fraction networks yield large, coherent signals governed largely by regional sources and sinks of CO{sub 2}.

  13. The distribution of atmospheric black carbon in the marine boundary layer over the North Atlantic and the Russian Arctic Seas in July - October 2015

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Kopeikin, Vladimir M.; Evangeliou, Nikolaos; Novigatsky, Alexander N.; Pankratova, Natalia V.; Starodymova, Dina P.; Stohl, Andreas; Thompson, Rona

    2016-04-01

    Black carbon (BC) particles are highly efficient at absorbing visible light, which has a large potential impact on Arctic climate. However, measurement data on the distribution of BC in the atmosphere over the North Atlantic and the Russian Arctic Seas are scarce. We present measurement data on the distribution of atmospheric BC in the marine boundary layer of the North Atlantic and Baltic, North, Norwegian, Barents, White, Kara and Laptev Seas from research cruises during July 23 to October 6, 2015. During the 62nd and 63rd cruises of the RV "Akademik Mstislav Keldysh" air was filtered through Hahnemuhle fineart quarz-microfibre filters. The mass of BC on the filter was determined by measurement of the attenuation of a beam of light transmitted through the filter. Source areas were estimated by backwards trajectories of air masses calculated using NOAA's HYSPLIT model (http://www.arl.noaa.gov/ready.html) and FLEXPART model (http://www.flexpart.eu). During some parts of the cruises, air masses arrived from background areas of high latitudes, and the measured BC concentrations were low. During other parts of the cruise, air masses arrived from industrially developed areas with strong BC sources, and this led to substantially enhanced measured BC concentrations. Model-supported analyses are currently performed to use the measurement data for constraining the emission strength in these areas.

  14. Dynamic of the atmospheric boundary layer from the isotopic composition of surface water vapor at the Maïdo Observatory (La Réunion, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Guilpart, Etienne; Vimeux, Francoise; Metzger, Jean-Marc; Evan, Stephanie; Brioude, Jerome; Cattani, Olivier

    2016-04-01

    Projections of tropical and subtropical precipitation strongly differ from one climate model to another, both in sign and in amplitude. This is the case for example in some parts of the West Indian Ocean. The causes of those uncertainties are numerous and a better understanding of humid processes in the tropical atmosphere is needed. We propose to address this burning question by using water stables isotopes. We have been measuring the isotopic composition of surface water vapor at the atmospheric Observatory of Maïdo located at La Reunion Island (21°S, 55°E, 2200m a.s.l) since November 2014. Our results exhibit a strong diurnal cycle all over the year (except during cyclonic activity), with almost constant isotopic values during the day (around -13.5±0.6‰ for oxygen 18 from November 2014 to November 2015) and variable and very depleted isotopic values during the night (down to -35‰ for oxygen 18 over the same period) associated with low humidity levels. We will show in this presentation that the diurnal isotopic variations are associated to a strong air masses mixing. During the day, the isotopic composition of the vapor is typical of marine boundary layer (BL) moisture transported from the close Ocean and lifted up to the Maïdo station. During the night, the depleted values and the low humidity could trace free troposphere moisture, which is consistent with previous studies suggesting that the Maïdo Observatory is above the BL during the night. We will explore the influence of the daily BL development on our observations, using a set of atmospheric vertical profiles done on site in May 2015 during the BIOMAIDO campaign. At last, we will discuss the most isotopic depleted values recorded in our observations during the night as a possible consequence of regional strong subsidences.

  15. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    NASA Astrophysics Data System (ADS)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  16. Evidence for a short-lived increase in atmospheric CO2 at the Oligocene/Miocene boundary

    NASA Astrophysics Data System (ADS)

    Reichgelt, T.; D'Andrea, W. J.; Fox, B.

    2015-12-01

    In the earliest Miocene the Antarctic ice sheet retreated substantially following the Mi-1 glaciation event. The relationship between pCO2 and orbital scale climate variations at this time is poorly understood, due to the paucity of pCO2 reconstructions with sufficient temporal resolution. Here, we report a pCO2 reconstruction based on fossil leaf micromorphological properties and supported by δ13C measurements, that indicates that pCO2 increased following the Mi-1 event and remained elevated for approximately 24 kyrs. The fossil leaves analyzed (Lauraceae) and δ13C measurements come from a drill core of annually laminated sediments recovered from a maar lake deposit in southern New Zealand spanning ~100 kyr across the Oligocene/Miocene boundary. The lake had a large and stable anoxic zone, allowing for remarkable preservation of organic material, including exquisitely preserved fossil leaves. The leaf stomatal/epidermal cell ratio (stomatal index) decreased for ~24 kyr during this time period, suggesting increased pCO2. δ13C values of primarily terrestrially sourced lake organic matter decreased by ~4‰ across the same interval, providing further support for an abrupt 24kyr-long increase in pCO2 at this time. By comparison with stomatal conductance and pCO2-induced carbon isotope fractionation in modern land plants, we estimate that the magnitude of the pCO2 increase was between 140 and 220 ppm. These results imply that dynamic variations in pCO2 occurred at precessional timescales during the early Miocene. We are further constraining the magnitude of pCO2 change and quantifying the pCO2 levels by: 1) Analyzing micromorphology and δ13C of close ecological and taxonomical modern analogues to early Miocene New Zealand Lauraceae, to better quantify changes in gas conductance and carbon isotope fractionation in response to recent pCO2 changes; 2) Directly measuring δ13C values and stomatal geometry of fossil leaves, to quantify pCO2 values using a recently

  17. 15 CFR 923.34 - Interstate boundary.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Boundaries § 923.34 Interstate boundary. States...

  18. 15 CFR 923.34 - Interstate boundary.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Boundaries § 923.34 Interstate boundary. States...

  19. 15 CFR 923.34 - Interstate boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Boundaries § 923.34 Interstate boundary. States...

  20. 15 CFR 923.34 - Interstate boundary.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Boundaries § 923.34 Interstate boundary. States...

  1. 15 CFR 923.34 - Interstate boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Boundaries § 923.34 Interstate boundary. States...

  2. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  3. Atmospheric Planetary Boundary Layer response to sea surface temperature gradients in Tropical Instability Waves: Simulation with a high resolution climate model.

    NASA Astrophysics Data System (ADS)

    Small, R. J.; Xie, S.; Wang, Y.

    2002-12-01

    Tropical instability waves (TIWs) are 1000 km long waves which appear along the sea surface temperature (SST) front north of the cold equatorial tongue in the Eastern Pacific. The aim of this study is to investigate the atmospheric Planetary Boundary Layer (PBL) response to the TIWs using a high resolution regional climate model. The model responds to a prescribed SST distribution which is derived from daily Tropical Microwave Imager SST (from the Tropical Rainfall Measuring Mission), and the results are compared against observations from the QuikSCAT scatterometer and in situ data. The model predictions of the magnitude of perturbations of wind speed, column integrated water vapour and liquid water due to TIWs are similar to those observed. Further, the phase relationship between these quantities and the SST is well simulated. An investigation is made of the relative importance of vertical mixing, which is parameterized in the model by a 1.5 level turbulence closure, and pressure gradients induced by changes in air temperature and moisture. The model demonstrates how the mixing is initiated by surface instability over warm SST, and then extends throughout the boundary layer. Over cold SST a stable regime exists and mixing is suppressed. Turbulent fluxes of sensible and latent heat lead to changes in the hydrostatic pressure and in the height and structure of the PBL. The pressure change leads to the appearance of a secondary circulation cell. Clouds are formed in the ascending region of the cell. The model results are then used to suggest whether the secondary cell or the direct effect of vertical mixing is most important to the observed in-phase relationship between SST and wind speed.

  4. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  5. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-01

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex in