ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics
NASA Astrophysics Data System (ADS)
Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.
2012-03-01
ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from the ion source by high voltage applied to the extraction and accelerating grids. The current distribution of a single beamlet emitted from a single pore of IOS depends on the shape of the plasma boundary in the emission region. Total beam extracted by IOS is calculated at every point of 3D mesh as sum of all contributions from each grid pore. The code effectively unifies the ion beam formation, extraction and neutralization processes with neutral beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. Running time: 10 min for a standard run.
Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.
Zou, G Q; Lei, G J; Cao, J Y; Duan, X R
2012-07-01
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
NASA Astrophysics Data System (ADS)
Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.
2018-05-01
An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-04-20
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Pace, D. C.; Collins, C. S.; Crowley, B.; ...
2016-09-28
A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, D. C.; Collins, C. S.; Crowley, B.
A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less
NASA Astrophysics Data System (ADS)
Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team
2017-01-01
A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.
Microwave plasma source for neutral-beam injection systems
NASA Astrophysics Data System (ADS)
1981-08-01
The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. The general characteristics of plasma sources in the parameter regime of interest for neutral beam applications are considered. The operational characteristics, advantages and potential problems of RFI and ECH sources are discussed.
NASA Astrophysics Data System (ADS)
Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim
2017-10-01
The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
Neutral particle beam intensity controller
Dagenhart, William K.
1986-01-01
A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less
Neutral particle beam intensity controller
Dagenhart, W.K.
1984-05-29
The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.
Indian Test Facility (INTF) and its updates
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Chakraborty, A.; Rotti, C.; Joshi, J.; Patel, H.; Yadav, A.; Shah, S.; Tyagi, H.; Parmar, D.; Sudhir, Dass; Gahlaut, A.; Bansal, G.; Soni, J.; Pandya, K.; Pandey, R.; Yadav, R.; Nagaraju, M. V.; Mahesh, V.; Pillai, S.; Sharma, D.; Singh, D.; Bhuyan, M.; Mistry, H.; Parmar, K.; Patel, M.; Patel, K.; Prajapati, B.; Shishangiya, H.; Vishnudev, M.; Bhagora, J.
2017-04-01
To characterize ITER Diagnostic Neutral Beam (DNB) system with full specification and to support IPR’s negative ion beam based neutral beam injector (NBI) system development program, a R&D facility, named INTF is under commissioning phase. Implementation of a successful DNB at ITER requires several challenges need to be overcome. These issues are related to the negative ion production, its neutralization and corresponding neutral beam transport over the path lengths of ∼ 20.67 m to reach ITER plasma. DNB is a procurement package for INDIA, as an in-kind contribution to ITER. Since ITER is considered as a nuclear facility, minimum diagnostic systems, linked with safe operation of the machine are planned to be incorporated in it and so there is difficulty to characterize DNB after onsite commissioning. Therefore, the delivery of DNB to ITER will be benefited if DNB is operated and characterized prior to onsite commissioning. INTF has been envisaged to be operational with the large size ion source activities in the similar timeline, as with the SPIDER (RFX, Padova) facility. This paper describes some of the development updates of the facility.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less
GTA (ground test accelerator) Phase 1: Baseline design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedulesmore » and resource requirements are provided. (LEW)« less
Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device
NASA Astrophysics Data System (ADS)
Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro
2015-11-01
Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.
2015-12-15
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less
NASA Astrophysics Data System (ADS)
Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.
2015-12-01
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.
Fink, Joel H.
1981-08-18
Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.
Plasma/Neutral-Beam Etching Apparatus
NASA Technical Reports Server (NTRS)
Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert
1989-01-01
Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less
NASA Astrophysics Data System (ADS)
Liu, D.; Medley, S. S.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2014-10-01
A cloud of halo neutrals is created in the vicinity of beam footprint during the neutral beam injection and the halo neutral density can be comparable with beam neutral density. Proper modeling of halo neutrals is critical to correctly interpret neutral particle analyzers (NPA) and fast ion D-alpha (FIDA) signals since these signals strongly depend on local beam and halo neutral density. A 3D halo neutral model has been recently developed and implemented inside TRANSP code. The 3D halo neutral code uses a ``beam-in-a-box'' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce thermal halo neutrals that are tracked through successive halo neutral generations until an ionization event occurs or a descendant halo exits the box. A benchmark between 3D halo neural model in TRANSP and in FIDA/NPA synthetic diagnostic code FIDASIM is carried out. Detailed comparison of halo neutral density profiles from two codes will be shown. The NPA and FIDA simulations with and without 3D halos are applied to projections of plasma performance for the National Spherical Tours eXperiment-Upgrade (NSTX-U) and the effects of halo neutral density on NPA and FIDA signal amplitude and profile will be presented. Work supported by US DOE.
Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission
Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...
2015-10-20
Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in-situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination diagnostic (CER) at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain informationmore » about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. Lastly, the methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.« less
Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission
NASA Astrophysics Data System (ADS)
Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Pace, D. C.
2015-10-01
Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Neutral beam dump with cathodic arc titanium gettering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A.; Korepanov, S. A.; Putvinski, S.
An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less
Commissioning the GTA accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sander, O.R.; Atkins, W.H.; Bolme, G.O.
1992-09-01
The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -}more » beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.« less
Commissioning the GTA accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sander, O.R.; Atkins, W.H.; Bolme, G.O.
1992-01-01
The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -}more » beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.« less
NASA Astrophysics Data System (ADS)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.
2016-02-01
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S. S.; Liu, D.; Gorelenkova, M. V.
2016-01-12
A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components producemore » first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.« less
Magnetically operated beam dump for dumping high power beams in a neutral beamline
Dagenhart, W.K.
1984-01-27
It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.
Neutral Beam Development for the Lockheed Martin Compact Fusion Reactor
NASA Astrophysics Data System (ADS)
Ebersohn, Frans; Sullivan, Regina
2017-10-01
The Compact Fusion Reactor project at Lockheed Martin Skunk Works is developing a neutral beam injection system for plasma heating. The neutral beam plasma source consists of a high current lanthanum hexaboride (LaB6) hollow cathode which drives an azimuthal cusp discharge similar to gridded ion thrusters. The beam is extracted with a set of focusing grids and is then neutralized in a chamber pumped with Titanium gettering. The design, testing, and analyses of individual components are presented along with the most current full system results. The goal of this project is to advance in-house neutral beam expertise at Lockheed Martin to aid in operation, procurement, and development of neutral beam technology. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Neutral beam dose and sputtering characteristics in an ion implantation system
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.
1973-01-01
A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.
A design methodology for neutral buoyancy simulation of space operations
NASA Technical Reports Server (NTRS)
Akin, David L.
1988-01-01
Neutral buoyancy has often been used in the past for EVA development activities, but little has been done to provide an analytical understanding of the environment and its correlation with space. This paper covers a set of related research topics at the MIT Space Systems Laboratory, dealing with the modeling of the space and underwater environments, validation of the models through testing in neutral buoyancy, parabolic flight, and space flight experiments, and applications of the models to gain a better design methodology for creating meaningful neutral buoyancy simulations. Examples covered include simulation validation criteria for human body dynamics, and for applied torques in a beam rotation task, which is the pacing crew operation for EVA structural assembly. Extensions of the dynamics models are presented for powered vehicles in the underwater environment, and examples given from the MIT Space Telerobotics Research Program, including the Beam Assembly Teleoperator and the Multimode Proximity Operations Device. Future expansions of the modeling theory are also presented, leading to remote vehicles which behave in neutral buoyancy exactly as the modeled system would in space.
Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S
2008-10-01
Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourrezaei, K.
1982-01-01
A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade wasmore » designed.« less
NASA Astrophysics Data System (ADS)
Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.
2012-02-01
DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.
Yamada, Masaaki
2016-01-01
This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
NASA Astrophysics Data System (ADS)
Yamada, Masaaki
2016-03-01
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Masaaki
2016-03-25
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
A ground-based experimental test program to duplicate and study the spacecraft glow phenomenon
NASA Technical Reports Server (NTRS)
Langer, W. D.; Cohen, S. A.; Manos, D. M.; Mcneill, D. H.; Motley, R. W.; Ono, M.; Paul, S.
1985-01-01
The use of a plasma device, the Advanced Concepts Torus-I, for producing atoms and molecules to study spacecraft glow mechanisms is discussed. A biased metal plate, located in the plasma edge, is used to accelerate and neutralize plasma ions, thus generating a neutral beam with a flux approx. 5 x 10 to the 14th power/sq cm/sec at the end of a drift tube. Our initial experiments are to produce a 10 eV molecular and atomic nitrogen beam directed onto material targets. Photon emission in the spectral range 2000 to 9000 A from excited species formed on the target surface will be investigated.
Physics design of the injector source for ITER neutral beam injector (invited).
Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P
2014-02-01
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.
Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST
NASA Astrophysics Data System (ADS)
Zheng, Ting; Wu, Bin; Xu, Liqing; Hu, Chundong; Zang, Qing; Ding, Siye; Li, Yingying; Wu, Xingquan; Wang, Jinfang; Shen, Biao; Zhong, Guoqiang; Li, Hao; Shi, Tonghui; EAST Team
2016-06-01
This paper describes the fishbone mode phenomena during the injection of high-power neutral beams in EAST (Experimental Advanced Superconducting Tokamak). The features of the fishbone mode are presented. The change in frequency of the mode during a fishbone burst is from 1 kHz to 6 kHz. The nonlinear behavior of the fishbone mode is analyzed by using a prey-predator model, which is consistent with the experimental results. This model indicates that the periodic oscillations of the fishbone mode always occur near the critical value of fast ion beta. Furthermore, the neutral beam analysis for the discharge is done by using the NUBEAM module of the TRANSP code. According to the numerical simulation results and theoretical calculation, it can be concluded that the fishbone mode is driven by the deeply trapped energetic beam ions in EAST. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001, 2014DFG61950 and 2013GB112003) and National Natural Science Foundation of China (Nos. 11175211 and 11275233)
Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.
2013-10-01
Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.
Space experiments with particle accelerators
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Roberts, W. T.; Chappell, C. R.; Reasoner, D. L.; Garriott, O. K.;
1984-01-01
Electron and plasma beams and neutral gas plumes were injected into the space environment by instruuments on Spacelab 1, and various diagnostic measurements including television camera observations were performed. The results yield information on vehicle charging and neutralization, beam-plasma interactions, and ionization enhancement by neutral beam injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, Lionel; Carneiro, Jean-Paul; Shemyakin, Alexander
In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam's own space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT thatmore » contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report discusses the experimental realization of such a scheme at Fermilab's PXIE, where low beam emittance dilution was demonstrated« less
Dynamics of ion beam charge neutralization by ferroelectric plasma sources
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...
2016-04-27
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar + beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3more » V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less
ION SOURCE WITH SPACE CHARGE NEUTRALIZATION
Flowers, J.W.; Luce, J.S.; Stirling, W.L.
1963-01-22
This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)
Method and apparatus for laser-controlled proton beam radiology
Johnstone, Carol J.
1998-01-01
A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.
Method and apparatus for laser-controlled proton beam radiology
Johnstone, C.J.
1998-06-02
A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.
Preliminary measurements of plasma fluctuations in an 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Nakanishi, S.
1975-01-01
The rms magnitude, spectra, and cross correlations for the fluctuations in the beam current, the neutralizer keeper current, and the discharge current and voltage were measured for an 8-cm diameter, dished grid ion thruster for a beam current of 72 milliamps. The ratio of the rms magnitude of the fluctuations to the time-mean neutralizer keeper current was found to depend significantly on the neutralizer time-mean keeper current, the flow rate, and keeper hold diameter. The maxima of the spectra of the beam current fluctuations did not depend on the discharge fluctuations. It was found that: (1) the discharge current fluctuations do not directly contribute to the beam current fluctuations; and (2) the neutralizer contributions to the beam fluctuations are small (for good neutralizer-to-beam coupling) but not negligible and appear mostly in the higher frequency range measured.
Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls
NASA Astrophysics Data System (ADS)
Sivaneshan, P.; Harishankar, S.
2017-07-01
The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.
2017-08-01
The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.
Analysis of activation and shutdown contact dose rate for EAST neutral beam port
NASA Astrophysics Data System (ADS)
Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong
2017-12-01
For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.
NASA Astrophysics Data System (ADS)
Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.
2012-02-01
Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.
Optimization of a constrained linear monochromator design for neutral atom beams.
Kaltenbacher, Thomas
2016-04-01
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft
NASA Technical Reports Server (NTRS)
Winglee, R. M.
1990-01-01
The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.
Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna
Pace, D. C.; Van Zeeland, M. A.; Fishler, B.; ...
2016-08-02
Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracymore » of these calculations. Initial experiments con rm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.« less
Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, D. C.; Van Zeeland, M. A.; Fishler, B.
Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracymore » of these calculations. Initial experiments con rm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.« less
NASA Astrophysics Data System (ADS)
Sulyman, Alex; Chrystal, Colin; Haskey, Shaun; Burrell, Keith; Grierson, Brian
2017-10-01
The possible observation of non-Maxwellian ion distribution functions in the pedestal of DIII-D will be investigated with a synthetic diagnostic that accounts for the effect of finite neutral beam size. Ion distribution functions in tokamak plasmas are typically assumed to be Maxwellian, however non-Gaussian features observed in impurity charge exchange spectra have challenged this concept. Two possible explanations for these observations are spatial averaging over a finite beam size and a local ion distribution that is non-Maxwellian. Non-Maxwellian ion distribution functions could be driven by orbit loss effects in the edge of the plasma, and this has implications for momentum transport and intrinsic rotation. To investigate the potential effect of finite beam size on the observed spectra, a synthetic diagnostic has been created that uses FIDAsim to model beam and halo neutral density. Finite beam size effects are investigated for vertical and tangential views in the core and pedestal region with varying gradient scale lengths. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program, DE-FC02-04ER54698, and DE-AC02-09CH11466.
Electron effects in the Neutralized Transport Experiment (NTX)
NASA Astrophysics Data System (ADS)
Eylon, S.; Henestroza, E.; Roy, P. K.; Yu, S. S.
2005-05-01
The Neutralized Transport Experiment (NTX) at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high-perveance heavy ion beams. To focus a high-intensity beam to a small spot requires a high-brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce-type diode. At the diode exit, an aperture with variable opening provides the capability to vary the beam perveance. The beam is transported through four quadrupole magnets to a distance of 2.5 m. The beam can be neutralized and focused using a MEVVA plasma plug and a RF plasma source. We shall report on the measurement of the electron effects and the ways to mitigate the effects. Furthermore, we shall present the results of EGUN calculations consistent with the measurements effects of the electrons.
Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas
2016-10-01
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).
Monte Carlo simulation of neutral-beam injection for mirror fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Ronald Lee
1979-01-01
Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less
Workshop on Physics with Neutral Kaon Beam at JLab (KL2016) Mini-Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strakovsky, Igor I.; Amaryan, Moskov; Chudakov, Eugene A.
2016-05-01
The KL2016 Workshop is following the Letter of Intent LoI12-15-001 "Physics Opportunities with Secondary KL beam at JLab" submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal.
Photodetachment process for beam neutralization
Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA
1979-02-20
A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
Ions beams and ferroelectric plasma sources
NASA Astrophysics Data System (ADS)
Stepanov, Anton
Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5 mus after the fast-rising high voltage pulse is applied and lasts for tens of mus. The value of the series resistance in the pulser circuit was varied to change the rise time of the voltage pulse; plasma density was expected to decrease with increasing values of resistance. However, the data showed that changing the resistance had no significant effect. The average charge emitted per shot depends strongly on the value of the storage capacitance. Lowering the capacitance from 141 nF to 47 nF resulted in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse was as high, and rise time as short, as when high-density plasma was produced. Increasing the capacitance from 141 nF to 235 nF increased the average charge emitted per shot by a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, A. L.; Chen, J. E.; State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871
Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Montemore » Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.« less
Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.
Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P
2012-02-01
The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.
Development of a He- and He0 beam source for alpha particle measurement in a burning plasma.
Tanaka, N; Sasao, M; Terai, K; Okamoto, A; Kitajima, S; Yamaoka, H; Wada, M
2012-02-01
Proof of principle experiments of neutral helium beam production for alpha particle diagnostics was carried out on a test stand. Negative helium ions were produced in the Li charge exchange cell, in which stable and long time operation was possible. He(-) beam was accelerated to 157 keV. Finally, He(0) beam was successfully produced after the flight in the drift-tube through the auto-electron-detachment process from He(-) to He(0). A neutral beam detector using a pyroelectric device was also developed to measure He(0) beam intensity. The metastable component in the neutral helium beam was found to be less than 2%.
Efficient acceleration of neutral atoms in laser produced plasma
Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...
2017-06-20
Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less
Photodetachment process for beam neutralization
Fink, J.H.; Frank, A.M.
1979-02-20
A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.
Long-pulse power-supply system for EAST neutral-beam injectors
NASA Astrophysics Data System (ADS)
Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team
2017-05-01
The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.
Spectroscopic investigations of beam-plasma interactions in an ion plume
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.
1993-01-01
We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.
2014-02-15
In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beammore » plasma model as well as simulations.« less
Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).
McAdams, R
2014-02-01
In the development of magnetically confined fusion as an economically sustainable power source, International Tokamak Experimental Reactor (ITER) is currently under construction. Beyond ITER is the demonstration fusion reactor (DEMO) programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.
NASA Astrophysics Data System (ADS)
Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun
1994-04-01
A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, L.; Carneiro, J.-P.; Shemyakin, A.
In a Low Energy Beam Transport line (LEBT), the emittance growth due to the beam’s space charge is typically suppressed by way of neutralization from either electrons or ions, which originate from ionization of the background gas. In cases where the beam is chopped, the neutralization pattern usually changes throughout the beginning of the pulse, causing the Twiss parameters to differ significantly from their steady state values, which, in turn, may result in beam losses downstream. For a modest beam perveance, there is an alternative solution, in which the beam is kept un-neutralized in the portion of the LEBT thatmore » contains the chopper. The emittance can be nearly preserved if the transition to the un-neutralized section occurs where the beam exhibits low transverse tails. This report introduces the rationale for the proposed scheme and formulates the physical arguments for it as well as its limitations. An experimental realization of the scheme was carried out at Fermilab’s PIP2IT where low beam emittance dilution was demonstrated for a 5 mA, 30 keV H- beam.« less
Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; ...
2012-05-31
In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less
Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
NASA Astrophysics Data System (ADS)
Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
Neutron measurements from beam-target reactions at the ELISE neutral beam test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.
2014-11-15
Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less
Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer
NASA Astrophysics Data System (ADS)
Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.
2015-11-01
The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.
Hershcovitch, Ady
1987-01-01
A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasyev, V. I.; Goncharov, P. R., E-mail: p.goncharov@spbstu.ru; Mironov, M. I.
2015-12-15
Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energymore » range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.« less
Ion related problems for the XLS ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozoki, E.; Halama, H.
1989-07-11
The electron beam in the XLS will collide with the residual gas in the vacuum chamber. The positive ions will be trapped in the potential well of the electron beam. They will perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions will lead to partial or total neutralization of the beam, causing both, a decrease of life-time and a change in the vertical tunes as well as an increase in the tune-spread. They can also cause coherent transverse instabilities. The degree of neutralization {theta} that one canmore » tolerate, is primarily determined by the allowable tune shift, which of the XLS is between 1 and 5 10{sup {minus}3}. Electrostatic clearing electrodes will be used to keep the neutralization below the desired limit. In order to determine their location and the necessary clearing-rate and voltage, we examine the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles to see what distance the ions can travel without clearing before the neutralization of the beam reaches the prescribed limit, beam potential to see the locations of the potential wells, voltage requirements for ion clearing, critical mass for ion capture in the bunched beam, tune shift caused by neutralization of the beam, pressure rise due to the trapped ions and power dissipation due to beam image current. 13 refs., 3 figs., 4 tabs.« less
ATF neutral beam injection: optimization of beam alignment and aperturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.N.; Fowler, R.H.; Rome, J.A.
1985-12-01
The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.
1981-01-01
The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs.
Plasma-formed hyperthermal atomic beams for use in thin film fabrication
NASA Astrophysics Data System (ADS)
Gilson, E. P.; Cohen, S. A.; Berlinger, B.; Chan, W.
2013-10-01
Enhancing the surface mobility of adsorbents during thin-film growth processes is important for creating certain high-quality thin films. Under the auspices of a DARPA program to develop methods for supplying momentum to adsorbates during thin-film formation without using bulk heating, a hyperthermal atomic beam (HAB) was generated and directed at silicon surfaces with patterned coatings of pentacene, gold, and other surrogates for adsorbents relevant to various thin-film coatings. The HAB was created when the plasma from a helicon plasma source struck a tungsten neutralizer plate and was reflected as neutrals. Time averaged HAB fluxes 100 times greater than in previous PPPL HAB sources have been generated. The effect of the HAB on the patterned coatings was measured using atomic force microscopy (AFM). Results are presented on the flux and energy of the HAB for various system pressures, magnetic fields, and neutralizer biases. AFM measurements of the surface topology demonstrate that the HAB energy, species, and integrated flux are all important factors in altering surface mobility. This research is supported by the U.S. Defense Advanced Research Projects Agency.
Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities
NASA Technical Reports Server (NTRS)
Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.
2007-01-01
The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator. We review EPIC S overall capabilities and recent modifications, and discuss directions for future enhancements.
Theoretical investigations on plasma processes in the Kaufman thruster
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1973-01-01
The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
NASA Technical Reports Server (NTRS)
Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.
1986-01-01
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.
Investigations of large area electron beam diodes for excimer lasers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less
Hershcovitch, A.
1984-02-13
A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are
Inductively generated streaming plasma ion source
Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.
2006-07-25
A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
A review of studies on ion thruster beam and charge-exchange plasmas
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1982-01-01
Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.
Accelerator and Fusion Research Division. Annual report, October 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)
High brilliance negative ion and neutral beam source
Compton, Robert N.
1991-01-01
A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.
Neutral beamline with ion energy recovery based on magnetic blocking of electrons
Stirling, William L.
1982-01-01
A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.
ISE structural dynamic experiments
NASA Technical Reports Server (NTRS)
Lock, Malcolm H.; Clark, S. Y.
1988-01-01
The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.
The Development of High-Intensity Negative Ion Sources and Beams in the USSR
1981-09-01
ion beams as the basis for creating neutral beams for injection into mirror traps and tokamaks, for inertial confinement fusion, and possibly for...create intense neutral beams for injection systems for mirror traps and tokamaks and for inertial confinement fusion. These applications require high...Scient. Instr., Vol. 44, 1973, p. 145. 46. Gabovich, M. D., Yu. N. Kozyrev , A. P. Nayda, L. S. Simonenko, I. A. Soloshenko, "H- Ion Beam Limit from a
Development of a negative ion-based neutral beam injector in Novosibirsk.
Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L
2014-02-01
A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.
In-vacuum sensors for the beamline components of the ITER neutral beam test facility.
Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P
2016-11-01
Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.
NASA Astrophysics Data System (ADS)
Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.
2018-03-01
We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
NASA Astrophysics Data System (ADS)
Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.
2016-10-01
We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.
Sensitivity of MSE measurements on the beam atomic level population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.
The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less
Benchmark testing of DIII-D neutral beam modeling with water flow calorimetry
Rauch, J. M.; Crowley, B. J.; Scoville, J. T.; ...
2016-06-02
Power loading on beamline components in the DIII-D neutral beam system is measured in this paper using water flow calorimetry. The results are used to benchmark beam transport models. Finally, anomalously high heat loads in the magnet region are investigated and a speculative hypothesis as to their origin is presented.
High-flux source of low-energy neutral beams using reflection of ions from metals
NASA Technical Reports Server (NTRS)
Cuthbertson, John W.; Motley, Robert W.; Langer, William D.
1992-01-01
Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.
Neutral beamline with ion energy recovery based on magnetic blocking of electrons
Stirling, W.L.
1980-07-01
A neutral beamline generator with energy recovery of the full-energy ion component of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the elecrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
NASA Astrophysics Data System (ADS)
Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong
2017-02-01
Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
Wu, Bin; Hao, Baolong; White, Roscoe; ...
2016-12-09
Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin; Hao, Baolong; White, Roscoe
Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
TFTR neutral beam control and monitoring for DT operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Connor, T.; Kamperschroer, J.; Chu, J.
1995-12-31
Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were alsomore » added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions.« less
Fast imaging measurements and modeling of neutral and impurity density on C-2U
NASA Astrophysics Data System (ADS)
Granstedt, Erik; Deng, B.; Dettrick, S.; Gupta, D. K.; Osin, D.; Roche, T.; Zhai, K.; TAE Team
2016-10-01
The C-2U device employed neutral beam injection and end-biasing to sustain an advanced beam-driven Field-Reversed Configuration plasma for 5+ ms, beyond characteristic transport time-scales. Three high-speed, filtered cameras observed visible light emission from neutral hydrogen and impurities, as well as deuterium pellet ablation and compact-toroid injection which were used for auxiliary particle fueling. Careful vacuum practices and titanium gettering successfully reduced neutral recycling from the confinement vessel wall. As a result, a large fraction of the remaining neutrals originate from charge-exchange between the neutral beams and plasma ions. Measured H/D- α emission is used with DEGAS2 neutral particle modeling to reconstruct the strongly non-axissymmetric neutral distribution. This is then used in fast-ion modeling to more accurately estimate their charge-exchange loss rate. Oxygen emission due to electron-impact excitation and charge-exchange recombination has also been measured using fast imaging. Reconstructed emissivity of O4+ is localized on the outboard side of the core plasma near the estimated location of the separatrix inferred by external magnetic measurements. Tri Alpha Energy.
In-vacuum sensors for the beamline components of the ITER neutral beam test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.
2016-11-15
Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less
Progress of beam diagnosis system for EAST neutral beam injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y. J., E-mail: yjxu@ipp.ac.cn; Hu, C. D.; Yu, L.
Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (NBI) were built and operational in 2014. The paper presents the development of beam diagnosis system for EAST NBI and the latest experiment results obtained on the test-stand and EAST-NBI-1 and 2. The results show that the optimal divergence angle is (0.62°, 1.57°) and the full energy particle is up to 77%. They indicate that EAST NBI work properly and all targets reach or almost reach the designmore » targets. All these lay a solid foundation for the achievement of high quality plasma heating for EAST.« less
Advanced control of neutral beam injected power in DIII-D
Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...
2017-03-23
In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.D.
1994-12-31
Technical developments on the neutral particle beam (NPB) program over a period of 18 years led to significant developments in accelerator technology. Many of these state-of-the-art technologies were integrated into the Ground Test Accelerator (GTA). GTA beam experiments were completed on components and systems that included the ion source through low-energy DTL modules. Provisions for beam funneling, matching, cryogenic (20 K) operation, detailed transverse and longitudinal beam characterization, combined with state-of-the-art accelerator and rf controls made this GTA system unique. The authors will summarize the types and magnitudes of these technology advances that culminated in the fabrication of the 24more » MeV front end of the GTA. A number of highly instrumented beam experiments at several stages validated the innovative designs. Applications of GTA-developed technology to several new accelerators will highlight the practical benefits of the GTA technology integration.« less
Semiconductor etching by hyperthermal neutral beams
NASA Technical Reports Server (NTRS)
Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)
1999-01-01
An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.
Neutral beamline with improved ion energy recovery
Kim, Jinchoon
1984-01-01
A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.
The Basics of Electric Weapons and Pulsed-Power Technologies
2012-01-01
launchers. DEWs send energy, instead of matter, toward a target, and can be separated into three types: laser weapons, particle -beam weapons, and high...beam’s energy de- position, target material, and flight dynamics is needed. Particle Beams A particle -beam weapon is a directed flow of atomic or sub...atomic particles . These parti- cles can be neutral or electrically charged. Neutral beams need to be used outside the atmosphere (in space), where
Characterization of a 5-eV neutral atomic oxygen beam facility
NASA Technical Reports Server (NTRS)
Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.
1991-01-01
An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.
Back-streaming ion emission and beam focusing on high power linear induction accelerator
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui
2011-08-01
Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Klyushnikov, G. N.; Chernov, S. V.
2017-06-01
The influence of the current neutralization process, the phase mixing of the trajectories of electrons and multiple Coulomb scattering of electrons beam on the atoms of the background medium on the spatial increment of the growth of sausage instability of a relativistic electron beam propagating in ohmic plasma channel has been considered. It has been shown that the amplification of the current neutralization leads to a significant increase in this instability, and phase mixing and the process of multiple scattering of electrons beam on the atoms of the background medium are the stabilizing factor.
A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)
NASA Astrophysics Data System (ADS)
Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem
2015-11-01
Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrow, Douglas
Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function
Conceptual design of the neutral beamline for TPX long pulse operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, K.E.; Dahlgren, F.; Fan, H.M.
The Tokamak Physics Experiment (TPX) will require a minimum of 8.0 megawatts of Neutral Beam beating power to be injected into the plasma for pulse lengths up to one thousand (1000) seconds to meet the experimental objectives. The Neutral Beam Injection System (NBIS) for initial operation on TPX will consist of one neutral beamline (NBL) with three Ion sources. Provisions will be made for a total of three NBLs. The NBIS will provide S.S MW of 120 keV D{sup 0} and 2.S MW of partial-energy D{sup 0} at 60 keV and 40 keV. The system also provides for measuring themore » neutral beam power, limits excess cold gas from entering the torus, and provides independent power, control, and protection for each individual ion source and accelerating structure. The Neutral Beam/Torus Connecting Duct (NB/TCD) includes a vacuum valve, an electrical insulating break, alignment bellows, vacuum seals, internal energy absorbing protective elements, beam diagnostics and bakeout capability. The NBL support structure will support the NBL, which will weigh approximately 80 tons at the proper elevation and withstand a seismic event. The NBIS currently operational on the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL) is restricted to injection pulse lengths of two (2) seconds by the limited capability of various energy absorbers. This paper describes the modifications and improvements which will be implemented for the TFTR Neutral Beamlines and the NB/TCD to satisfy the TPX requirements.« less
NASA Astrophysics Data System (ADS)
Sparks, Nathan Andrew
The CBELSA/TAPS experiment at the electron accelerator ELSA, in Bonn, Germany, was used in order to study the photoproduction of neutral pions off the proton with a linearly polarized photon beam; Neutral pions were reconstructed through their dominant decay mode into two photons. The photons were detected in a barrel/forward electromagnetic calorimeter system which covered 99% of the 4pi solid angle. The Crystal Barrel CsI(Tl) calorimeter detected photons at polar angles from 30° to 168°, while TAPS, a BaF2 spectrometer, covered forward polar angles from 5.8° to 30° and served as a fast trigger; Both calorimeters had complete azimuthal angular coverage. Coherent bremsstrahlung of electrons in a diamond radiator was used to produce a linearly polarized beam of photons with a coherent peak at 1305 or 1610 MeV. The analysis of these two datasets allowed for the measurement of the photon beam asymmetry in the beam photon energy range of 920 to 1680 MeV. For the first time, these results cover the very forward polar angles of the neutral pion. The measurements are compared to the SAID, MAID, and BnGa models and to previous measurements. These new measurements of the photon beam asymmetry contribute to the ongoing experimentally-driven exploration of the N and Delta resonances. The study of strange baryons provides a link between the strong interaction physics of the excited nucleons and the heavy flavor baryons. The upcoming GlueX experiment at Jefferson Lab is expected to provide an opportunity to examine strange baryons in much greater detail than ever before. GEANT-based Monte Carlo simulations of Cascade baryons at the GlueX experiment were conducted in order to better understand the capabilities of this experiment. A proposal, "An initial study of mesons and baryons containing strange quarks with GlueX", was submitted to the 40th Jefferson Lab Program Advisory Committee (PAC), in part, supported by these Cascade baryon simulations. 200 days of additional beam time were approved, with the proposal receiving an A scientific rating.
Planned Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2010-11-01
The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.L.; Hanson, D.L.; Poukey, J.W.
Space charge neutralization for intense beams for inertial confinement fusion is usually assumed to be perfect. However, small charge clumps in the beam will not be totally charge neutralized, and the residual net minimum potential set by electron trapping (e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}, where m{sub e} is the electron mass and v{sub i} is the ion velocity) may lead to a substantial microdivergence. Experiments on the SABRE accelerator and simulations with the IPROP computer code are being performed to assess this mechanism. The authors have successfully created a 5 mrad beam on the SABRE accelerator, by expanding themore » beam (a process consistent with Liouville`s theorem) and, by passing the beam through a plate with pinholes, they have created low divergence beamlets to study this mechanism. Results clearly show: (1) at low pressures, trapping does neutralize the beamlets, but only down to e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}; and (2) at higher pressures ({approx} 0.1-1 Torr), plasma shielding does remove the effect.« less
Ferroelectric Plasma Sources for Ion Beam Neutralization
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L. R.; Davidson, R. C.
2014-10-01
A 40 keV Ar+ beam with a dimensionless perveance of 4 ×10-4 is propagated through a Ferroelectric Plasma Source (FEPS) to determine the effects of charge neutralization on the transverse beam profile. Neutralization is established 5 μs after the FEPS is triggered, and lasts between 10 and 35 μs. When the beam is fully neutralized, the profile has a Gaussian shape with a half-angle divergence of 0.87°, which is attributed to ion optics. The effects of the resistance and capacitance in the pulser circuit on the FEPS discharge are studied. The electron current emitted by the FEPS is calculated from measurements of the forward and return currents in the circuit. Electron emission typically begins 0.5 μs after the driving pulse, lasting for tens of μs, which is similar to the duration of ion beam neutralization. The total emitted charge does not depend significantly on the resistance, but depends strongly on the storage capacitance. Lowering the capacitance from 141 nF to 47 nF results in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse is as high as when high-density plasma is produced. Overall, the data suggest that ferroelectric effects are significant in the physics of the FEPS discharge.
Photoproduction of Mesons on Quasi-Free Nucleons
NASA Astrophysics Data System (ADS)
Keshelashvili, I.
2014-11-01
The investigation of excited baryon states is important to understand the underling nature/symmetries of hadronic matter. Historically, the first nucleon excitation experiments have been done using charged pion and kaon secondary beams. Later the antiproton-proton scattering has also been involved. However, since the beginning of the 90's meson photoproduction reactions have been considered as a powerful tool in baryon spectroscopy. In this contribution, we overview our experimental programs conducted at the bremsstrahlung photon beams of the MAMI accelerator in Mainz and the ELSA accelerator in Bonn. The results are differential and total cross sections for photoproduction of light neutral mesons and of meson pairs off quasi-free nucleons bound in the deuteron (and sometimes other light nuclei). The scientific programs of this experiments also include single and double polarization measurements as well.
Overview of the negative ion based neutral beam injectors for ITER.
Schunke, B; Boilson, D; Chareyre, J; Choi, C-H; Decamps, H; El-Ouazzani, A; Geli, F; Graceffa, J; Hemsworth, R; Kushwah, M; Roux, K; Shah, D; Singh, M; Svensson, L; Urbani, M
2016-02-01
The ITER baseline foresees 2 Heating Neutral Beams (HNB's) based on 1 MeV 40 A D(-) negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H(0) at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds-for the prototype route chosen-will soon be ready to start.
Drag coefficients for spheres in free molecular flow in O at satellite velocities
NASA Technical Reports Server (NTRS)
Boring, J. W.; Humphris, R. R.
1973-01-01
The drag coefficients for the Echo 1 and Explorer 24 spherical surfaces in an O environment were experimentally determined over an energy range of 4 to 200 eV. The experiment was performed by generating a beam of atomic oxygen ions of the proper energy, neutralizing a portion of the beam, and then allowing only the neutral O particles to strike a very sensitive torsion balance. The momentum transferred to the surface was determined from the deflection of the torsion balance. At the lower energies, the more intense ion beam had to be used instead of the neutral beam. The drag coefficients are found to be slightly greater than 2 at energies corresponding to satellite velocities.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, W. T.
1985-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, B.
1986-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
Adli, Erik; Lindstrom, C. A.; Allen, J.; ...
2016-10-12
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adli, Erik; Lindstrom, C. A.; Allen, J.
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less
Telescope-based cavity for negative ion beam neutralization in future fusion reactors.
Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid
2018-03-01
In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5 m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
The GOL-NB program: further steps in multiple-mirror confinement research
NASA Astrophysics Data System (ADS)
Postupaev, V. V.; Batkin, V. I.; Beklemishev, A. D.; Burdakov, A. V.; Burmasov, V. S.; Chernoshtanov, I. S.; Gorbovsky, A. I.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.; Sidorov, E. N.; Yurov, D. V.
2017-03-01
Physical and technical details of the GOL-NB project are presented. GOL-NB is a medium-scale multiple-mirror trap that is under development in the Budker Institute, Novosibirsk, Russia. This device will be created in several years as a deep conversion of the existing GOL-3 facility. It will consist of a central trap with two 0.75 MW neutral beams, two multiple-mirror solenoids, two expander tanks and a plasma gun that creates the start plasma. The central trap with the neutral beam injection-heated plasma is a compact gas-dynamic system. The multiple-mirror sections should decrease the power and particle losses along the magnetic field. The confinement improvement factor depends on plasma parameters and on the magnetic configuration in the multiple mirrors. The main physical task of GOL-NB is direct demonstration of the performance of multiple-mirror sections that will change equilibrium plasma parameters in the central trap. In this paper we discuss results of the scenario modeling and progress in the hardware.
The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
NASA Astrophysics Data System (ADS)
Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.
2017-08-01
The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.
Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model
NASA Astrophysics Data System (ADS)
Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji
2018-04-01
In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.
Improved Beam Diagnostic Spatial Calibration Using In-Situ Measurements of Beam Emission
NASA Astrophysics Data System (ADS)
Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.; Pablant, N. A.
2014-10-01
A new technique has been developed for determining the measurement geometry of the charge exchange recombination spectroscopy diagnostic (CER) on DIII-D. This technique removes uncertainty in the measurement geometry related to the position of the neutral beams when they are injecting power. This has been accomplished by combining standard measurements that use in-vessel calibration targets with spectroscopic measurements of Doppler shifted and Stark split beam emission to fully describe the neutral beam positions and CER views. A least squares fitting routine determines the measurement geometry consistent with all the calibration data. The use of beam emission measurements allows the position of the neutral beams to be determined in-situ by the same views that makeup the CER diagnostic. Results indicate that changes in the measurement geometry are required to create a consistent set of calibration measurements. However, changes in quantities derived from the geometry, e.g. ion temperature gradient and poloidal rotation, are small. Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC02-09H11466.
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.
Overview of the negative ion based neutral beam injectors for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunke, B., E-mail: email@none.edu; Boilson, D.; Chareyre, J.
2016-02-15
The ITER baseline foresees 2 Heating Neutral Beams (HNB’s) based on 1 MeV 40 A D{sup −} negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H{sup 0} at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started,more » and the essential test beds—for the prototype route chosen—will soon be ready to start.« less
Development of the TFTR neutral beam injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Jr., B. A.
1977-01-01
The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed formore » separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982.« less
The Neutralization of Ion-Rocket Beams
NASA Technical Reports Server (NTRS)
Kaufman, Harold R.
1961-01-01
The experimental ion-beam behavior obtained without neutralizers is compared with both simple collision theory and plasma-wave theory. This comparison indicates that plasma waves play an important part in beam behavior, although the present state of plasma-wave theory does not permit more than a qualitative comparison. The theories of immersed-emitter and electron-trap neutralizer operation are discussed; and, to the extent permitted by experimental data, the theory is compared with experimental results. Experimental data are lacking completely at the present time for operation in space. The results that might be expected in space and the means of simulating such operation in Earth-bound facilities, however, are discussed.
Neutralization of beam-emitting spacecraft by plasma injection
NASA Technical Reports Server (NTRS)
Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.
1987-01-01
An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
Low energy, high power hydrogen neutral beam for plasma heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su
A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less
Filamentation instability of a fast electron beam in a dielectric target.
Debayle, A; Tikhonchuk, V T
2008-12-01
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.
Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV
NASA Technical Reports Server (NTRS)
Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.
1985-01-01
The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.
Neutral particle beam sensing and steering
Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.
1991-01-01
The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.
NASA Technical Reports Server (NTRS)
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
ECR plasma source for heavy ion beam charge neutralization
NASA Astrophysics Data System (ADS)
Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant
2003-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.
Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaniol, B.; Pasqualotto, R.; Barbisan, M.
2012-04-15
A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, accordingmore » to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.« less
NASA Astrophysics Data System (ADS)
Wehner, William; Schuster, Eugenio; Poli, Francesca
2016-10-01
Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.
Groundbased studies of spacecraft glow and erosion caused by impact of oxygen and nitrogen beams
NASA Technical Reports Server (NTRS)
Langer, W. D.; Cohen, S. A.; Manos, D. M.; Motley, R. W.; Paul, S. F.
1987-01-01
To simulate surface reactions in the space environment a ground-based facility was developed that produces a very high flux 10(14) to 10(16)/sq cm/s of low energy (2 to 20 eV) neutral atoms and molecules. The neutral beams are created using a method involving neutralization and reflection of ions from a biased limiter, where the ions are extracted from a toroidal plasma source. The spectra of emission due to beam-solid interactions on targets of Chemglaze Z-306 optical paint and Kapton are presented. Erosion yields for carbon and Kapton targets with low energy (approx. 10 eV) nitrogen and oxygen beams were measured. The reaction rates and surface morphology for the erosion of Kapton are similar to those measured in experiments on STS-5.
Neutral Beam Injection in the JET Trace Tritium Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surrey, E.; Ciric, D.; Cox, S. J.
Operation of the JET Neutral Beam Injectors with tritium is described. Supplying the tritium feed via the special electrically grounded gas feed compromised the performance of the up-graded high current triode Positive Ion Neutral Injectors (PINI) due to gas starvation of the source and the methods adopted to ameliorate this effect are described. A total of 362 PINI beam pulses were requested, circulating a total of 4.73g tritium, of which 9.3mg was injected into the torus. Safety considerations required a continuous, cumulative total to be maintained of the mass of tritium adsorbed onto the cryo-pumping panel; a daily limit ofmore » 0.5g was adopted for the Trace Tritium Experiment (TTE). A subsequent clean up phase using 115keV deuterium beams completed the isotopic exchange of components in the beamline.« less
Focused beams of fast neutral atoms in glow discharge plasma
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.
2017-06-01
Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
3D-Printed Beam Splitter for Polar Neutral Molecules
NASA Astrophysics Data System (ADS)
Gordon, Sean D. S.; Osterwalder, Andreas
2017-04-01
We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.
NASA Technical Reports Server (NTRS)
Neubert, Torsten; Banks, Peter M.
1990-01-01
Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.
Optical beams with embedded vortices: building blocks for atom optics and quantum information
NASA Astrophysics Data System (ADS)
Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III
2006-05-01
Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.
Apparatus for neutralization of accelerated ions
Fink, Joel H.; Frank, Alan M.
1979-01-01
Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.
High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.
2004-11-01
Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).
Diagnostics of the ITER neutral beam test facility.
Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B
2012-02-01
The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.
Study of a high power hydrogen beam diagnostic based on secondary electron emission.
Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R
2016-11-01
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.
Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).
Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A
2012-10-01
The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.
The ITER Neutral Beam Test Facility towards SPIDER operation
NASA Astrophysics Data System (ADS)
Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.
2017-08-01
SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.
Production of Neutral Beams from Negative Ion Beam Systems in the USSR
1982-12-01
research is to produce long-pulse and CW high-energy neutral beams. The Oak Ridge National Laboratory ( ORNL ) has been concentrating on the direct extraction...next generation of mirror devices [1II. ORNL is using a cesium converter to produce negative ions from low-energy positive ions from a duopigatron ion...with Formation of Highly Excited Hydrogen Atoms," ZhTF, Vol. 36, No. 7, 1966, p. 1241 . 107. Kartashev, K. B., V. I. Pistunovich, V. V. Platonov, V. D
NASA Astrophysics Data System (ADS)
Walker, Jonathan; Heinrich, Jonathon; Font, Gabriel; Ebersohn, Frans; Garrett, Michael
2017-10-01
A 100 kW class lanthanum-hexaboride plasma source is under continuing development for the Lockheed Martin Compact Fusion Reactor program. The current experiment, T4B, has become a test bed for plasma source operation with the goal of creating a high density plasma target for neutral beam heating. We present operation and performance of different plasma source geometries, results of plasma source coupling, and future plasma source development plans. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
A Non-Neutral Plasma Device: Electron Beam Penning Trap
NASA Astrophysics Data System (ADS)
Zhuang, Ge; Liu, Wan-dong; Zheng, Jian; Fu, Cheng-jiang; Bai, Bo; Chi, Ji; Zhao, Kai; Xie, Jin-lin; Liang, Xiao-ping; Yu, Chang-xuan
1999-12-01
An electron beam Penning trap (EBPT) non- neutral plasma system, built to investigate the formation of a dense electron core with the density beyond Brillouin limit and possible application to fusion research, has been described. The density in the center of the EBPT has been verified to be up to 10 times of Brillouin density limit.
Relative and absolute level populations in beam-foil-excited neutral helium
NASA Technical Reports Server (NTRS)
Davidson, J.
1975-01-01
Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Using polarized positrons to probe physics beyond the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furletova, Yulia; Mantry, Sonny
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-25
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less
Using polarized positrons to probe physics beyond the standard model
NASA Astrophysics Data System (ADS)
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.
2018-05-01
Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.
Positive and negative ion beam merging system for neutral beam production
Leung, Ka-Ngo; Reijonen, Jani
2005-12-13
The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.
Invited review article: the electrostatic plasma lens.
Goncharov, Alexey
2013-02-01
The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.
High-flux beam source of fast neutral helium.
Fahey, D W; Schearer, L D; Parks, W F
1978-04-01
A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.
NASA Astrophysics Data System (ADS)
Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.
2016-12-01
In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.
Investigation of ion-beam machining methods for replicated x-ray optics
NASA Technical Reports Server (NTRS)
Drueding, Thomas W.
1996-01-01
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.
NASA Technical Reports Server (NTRS)
Cousins, D.; Akin, D. L.
1989-01-01
Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.
A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation
NASA Astrophysics Data System (ADS)
Fassina, A.; Pretato, F.; Barbisan, M.; Giudicotti, L.; Pasqualotto, R.
2016-02-01
The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.
Development of a 1-m plasma source for heavy ion beam charge neutralization
NASA Astrophysics Data System (ADS)
Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.
2005-05-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.
Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X.; Nornberg, M. D., E-mail: mdnornberg@wisc.edu; Den Hartog, D. J.
2016-11-15
A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened H{sub β} emission and the spectrum of Doppler-shifted H{sub α} emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.
Development of the JT-60SA Neutral Beam Injectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanada, M.; Kojima, A.; Inoue, T.
2011-09-26
This paper describes the development of the neutral beam (NB) systems on JT-60SA, where 30-34 MW D{sup 0} beams are required to be injected for 100 s. A 30 s operation of the NB injectors suggests that existing beamline components and positive ion sources on JT-60U can be reused without the modifications on JT-60 SA. The JT-60 negative ion source was modified to improve the voltage holding capability, which leads to a successful acceleration of 2.8 A H{sup -} ion beam up to 500 keV of the rated acceleration energy for JT-60SA.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source.
Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source
NASA Astrophysics Data System (ADS)
Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drueding, T.W.
The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less
Atomic oxygen beam source for erosion simulation
NASA Technical Reports Server (NTRS)
Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.; Vaughn, J. A.
1991-01-01
A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle.
Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieland, R.M.; Houlberg, W.A.
1982-02-01
A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Depositionmore » profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10/sup 13/ - 2 x 10/sup 14/ cm/sup -3/, and beam orientation ranging from perpendicular to tangential to the inside wall.« less
United States Air Force Summer Faculty Research Program. 1985 Technical Report. Volume 2.
1985-12-01
Voluntary Hand Grip Torque for Dr. Samuel Adams Circular Electrical Connectors 3 Properties and Processing of a Dr. Vernon R. Allen Perfluorinated ...Neutral Particle Beam at Low Energies in the Mark I Aerospace Chamber 126 Preparation of Non-Flammable Model Dr. Terrill D. Smith Compounds 127 Studies on...Synthesis of Azo Compounds F xi 140 A Comparison of Measured and Calculated Dr. Larry Vardiman Attenuation of 28 GHZ Beacon Signals in Three California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, M.A.
1988-01-01
There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such asmore » INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.« less
Design study of a 120-keV, He-3 neutral beam injector
NASA Astrophysics Data System (ADS)
Blum, A. S.; Barr, W. L.; Dexter, W. L.; Moir, R. W.; Wilcox, T. P.; Fink, J. H.
1981-01-01
A design for a 120-keV, 2.3-MW, He-3 neutral beam injector for use on a D-(He-3) fusion reactor is described. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. The vacuum system is also briefly described, and the use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer is also analyzed. Of crucial importance to the technical feasibility of the (He-3)-burning reactor are the injector efficiency and cost; these are 53% and $5.5 million, respectively, when power supplies are included.
Design study of a 120-keV,3He neutral beam injector
NASA Astrophysics Data System (ADS)
Blum, A. S.; Barr, W. L.; Dexter, W. L.; Fink, J. H.; Moir, R. W.; Wilcox, T. P.
1981-01-01
We describe a design for a 120-keV, 2.3-MW,3He neutral beam injector for use on a D-3He fusion reactor. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. We also briefly describe the vacuum system and analyze use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer. Of crucial importance to the technical feasibility of the3He-burning reactor are the injector efficiency and cost; these are 53% and 5.5 million, respectively, when power supplies are included.
Overview of the TCV tokamak program: scientific progress and facility upgrades
NASA Astrophysics Data System (ADS)
Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.; Bin, W.; Blanchard, P.; Blanken, T. C.; Boedo, J. A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F. H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I. T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B. P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J. P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.-Ph.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D. L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H. B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I. G.; Molina Cabrera, P. A.; Moret, J.-M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A. H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M. Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vijvers, W. A. J.; Vlahos, L.; Vu, N. M. T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.; the EUROfusion MST1 Team
2017-10-01
The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
Study of a high power hydrogen beam diagnostic based on secondary electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.
2016-11-15
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Progress on the Implementation of a Neutral Beam for the Lithium Tokamak eXperiment-Beta
NASA Astrophysics Data System (ADS)
Merino, Enrique; Kozub, Thomas; Boyle, Dennis; Majeski, Richard; Kaita, Robert; Smirnov, Artem; Catalano, Ryan
2016-10-01
In the Lithium Tokamak eXperiment (LTX), good performance discharges have been achieved with reduced-recycling lithium walls. Two hydrogen neutral beams (NB) have been loaned to the LTX project by Tri-Alpha Energy, Inc. To further improve plasma parameters, one of these neutral beams is being installed as part of an upgrade to LTX (LTX-Beta). Current ohmic input power in LTX is less than 100 kW. The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports on the vessel, and their designs have been finalized. Progress has also been made on the NB power supplies, including the preparation of a new room to accommodate them. A description of these activities and the status of other improvements to LTX for LTX-Beta will be presented. Work supported by US DOE contracts DE-AC02- 09CH11466 and DE-AC05- 00OR22725.
NASA Astrophysics Data System (ADS)
Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.
1991-11-01
The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.
Quantum Error Correction with a Globally-Coupled Array of Neutral Atom Qubits
2013-02-01
magneto - optical trap ) located at the center of the science cell. Fluorescence...Bottle beam trap GBA Gaussian beam array EMCCD electron multiplying charge coupled device microsec. microsecond MOT Magneto - optical trap QEC quantum error correction qubit quantum bit ...developed and implemented an array of neutral atom qubits in optical traps for studies of quantum error correction. At the end of the three year
Characterization of plasma parameters in shaped PBX-M discharges
NASA Astrophysics Data System (ADS)
England, A. C.; Bell, R. E.; Hirshman, S. P.; Kaita, R.; Kugel, H. W.; LeBlanc, B. L.; Lee, D. K.; Okabayashi, M.; Sun, Y.-C.; Takahashi, H.
1997-09-01
The Princeton Beta Experiment-Modification (PBX-M) was run both with elliptical and with bean-shaped plasmas during the 1992 and 1993 operating periods. Two deuterium-fed neutral beams were used for auxiliary heating, and during 1992 the average power was 0741-3335/39/9/008/img13. This will be referred to as the lower neutral-beam power (LNBP) period. As many as four deuterium-fed neutral beams were used during 1993, and the average power was 0741-3335/39/9/008/img14. This will be referred to as the medium neutral-beam power (MNBP) period. The neutron source strength, Sn, showed a scaling with injected power 0741-3335/39/9/008/img15, 0741-3335/39/9/008/img16 for both the LMBP and MNBP periods. A much wider range of shaping parameters was studied during the MNBP as compared with the LNBP period. A weak positive dependence on bean shaping was observed for the LNBP, and a stronger positive dependence on shaping was observed for MNBP, viz 0741-3335/39/9/008/img17. High values of Sn were obtained in bean-shaped plasmas for the highest values of 0741-3335/39/9/008/img18 at 0741-3335/39/9/008/img19 for the LNBP. For the MNBP the highest values of Sn and stored energy were obtained at 0741-3335/39/9/008/img19, and the highest values of 0741-3335/39/9/008/img18 were obtained at 0741-3335/39/9/008/img22. The achievement of high Sn is aided by high neutral-beam power, high toroidal field, strong shaping, high electron temperature, and broad profiles. The achievement of high 0741-3335/39/9/008/img18 is aided by low toroidal field, high density, less shaping, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img24. The achievement of high 0741-3335/39/9/008/img25 is aided by strong shaping, high density, broad profiles, and access to the H-mode, viz 0741-3335/39/9/008/img26. Some comparisons with the previous higher neutral-beam (HNBP) period in 1989 are also made.
Development of ion source with a washer gun for pulsed neutral beam injection.
Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N
2008-06-01
A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.
Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.
2011-10-01
The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.
Charge-free method of forming nanostructures on a substrate
Hoffbauer; Mark , Akhadov; Elshan
2010-07-20
A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.
NASA Astrophysics Data System (ADS)
Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca
2015-11-01
One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.
2016-02-01
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.
Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E
2016-02-01
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Li, Xi; Glisic, Branko
2016-04-01
By definition, the neutral axis of a loaded composite beam structure is the curve along which the section experiences zero bending strain. When no axial loading is present, the location of the neutral axis passes through the centroid of stiffness of the beam cross-section. In the presence of damage, the centroid of stiffness, as well as the neutral axis, shift from the healthy position. The concept of neutral axis can be widely applied to all beam-like structures. According to literature, a change in location of the neutral axis can be associated with damage in the corresponding cross-section. In this paper, the movement of neutral axis near locations of minute damage in a composite bridge structure was studied using finite element analysis and experimental results. The finite element model was developed based on a physical scale model of a composite simply-supported structure with controlled minute damage in the reinforced concrete deck. The structure was equipped with long-gauge fiber optic strain and temperature sensors at a healthy reference location as well as two locations of damage. A total of 12 strain sensors were installed during construction and used to monitor the structure during various loading events. This paper aims to explain previous experimental results which showed that the observed positions of neutral axis near damage locations were higher than the predicted healthy locations in some loading events. Analysis has shown that finite element analysis has potential to simulate and explain the physical behavior of the test structure.
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
NASA Astrophysics Data System (ADS)
Gillen-Christandl, Katharina; Frazer, Travis D.
2017-04-01
The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
NASA Astrophysics Data System (ADS)
Zeng, Qiusun; Chen, Dehong; Wang, Minghuang
2017-12-01
In order to improve the fusion energy gain (Q) of a gas dynamic trap (GDT)-based fusion neutron source, a method in which the neutral beam is obliquely injected at a higher magnetic field position rather than at the mid-plane of the GDT is proposed. This method is beneficial for confining a higher density of fast ions at the turning point in the zone with a higher magnetic field, as well as obtaining a higher mirror ratio by reducing the mid-plane field rather than increasing the mirror field. In this situation, collision scattering loss of fast ions with higher density will occur and change the confinement time, power balance and particle balance. Using an updated calculation model with high-field neutral beam injection for a GDT-based fusion neutron source conceptual design, we got four optimal design schemes for a GDT-based fusion neutron source in which Q was improved to two- to three-fold compared with a conventional design scheme and considering the limitation for avoiding plasma instabilities, especially the fire-hose instability. The distribution of fast ions could be optimized by building a proper magnetic field configuration with enough space for neutron shielding and by multi-beam neutral particle injection at different axial points.
Investigation of beam- and wave-plasma interactions in spherical tokamak Globus-M
NASA Astrophysics Data System (ADS)
Gusev, V. K.; Aminov, R. M.; Berezutskiy, A. A.; Bulanin, V. V.; Chernyshev, F. V.; Chugunov, I. N.; Dech, A. V.; Dyachenko, V. V.; Ivanov, A. E.; Khitrov, S. A.; Khromov, N. A.; Kurskiev, G. S.; Larionov, M. M.; Melnik, A. D.; Minaev, V. B.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Novokhatsky, A. N.; Panasenkov, A. A.; Patrov, M. I.; Petrov, A. V.; Petrov, Yu. V.; Podushnikova, K. A.; Rozhansky, V. A.; Rozhdestvensky, V. V.; Sakharov, N. V.; Shevelev, A. E.; Senichenkov, I. Yu.; Shcherbinin, O. N.; Stepanov, A. Yu.; Tolstyakov, S. Yu.; Varfolomeev, V. I.; Voronin, A. V.; Yagnov, V. A.; Yashin, A. Yu.; Zhilin, E. G.
2011-10-01
The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m-3 and a high velocity up to 250 km s-1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5-30 kHz and toroidal Alfvén eigenmodes in the range 50-300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfvén eigenmodes behaviour are discussed. The toroidal Alfvén eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W-1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.
Neutral beamline with improved ion energy recovery
Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.
1984-01-01
A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.
Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; ...
2016-04-08
High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less
Measurement and simulation of passive fast-ion D-alpha emission from the DIII-D tokamak
Bolte, Nathan G.; Heidbrink, William W.; Pace, David; ...
2016-09-14
Spectra of passive fast-ion D-alpha (FIDA) light from beam ions that charge exchange with background neutrals are measured and simulated. The fast ions come from three sources: ions that pass through the diagnostic sightlines on their first full orbit, an axisymmetric confined population, and ions that are expelled into the edge region by instabilities. A passive FIDA simulation (P-FIDASIM) is developed as a forward model for the spectra of the first-orbit fast ions and consists of an experimentally-validated beam deposition model, an ion orbit-following code, a collisional-radiative model, and a synthetic spectrometer. Model validation consists of the simulation of 86more » experimental spectra that are obtained using 6 different neutral beam fast-ion sources and 13 different lines of sight. Calibrated spectra are used to estimate the neutral density throughout the cross-section of the tokamak. The resulting 2D neutral density shows the expected increase toward each X-point with average neutral densities of 8 X 10 9 cm -3 at the plasma boundary and 1 X 10 11 cm -3 near the wall. Here, fast ions that are on passing orbits are expelled by the sawtooth instability more readily than trapped ions. In a sample discharge, approximately 1% of the fast-ion population is ejected into the high neutral density region per sawtooth crash.« less
Plasma effects of active ion beam injections in the ionosphere at rocket altitudes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.
1992-01-01
Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.
NASA Astrophysics Data System (ADS)
Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W.; McWilliams, R.; Zimmerman, D.; Leneman, D.
2003-10-01
To study fast-ion transport, a 3-cm diameter, 17 MHZ, ˜80W, ˜3 mA argon source launches ˜500 eV ions in the LArge Plasma Device (LAPD). The beam is diagnosed with a gridded analyzer and, on a test stand at Irvine, laser-induced fluorescence (LIF). Neutral scattering is important near the source. The measured beam energy can be more than 100 eV larger than the accelerating voltage applied to the extraction grids. In LAPD the profile of the pulsed ion beam is measured at various axial locations between z=0.3-6.0 m from the source. When the beam velocity is parallel to the solenoidal field (0^o) evidence of peristaltic focusing, beam attenuation, and radial scattering is observed. At an angle of 22^o with respect to the field the beam follows the expected helical trajectory. Three meters axially from the source strong attenuation and elongation of the beam in the direction of the gyro-angle are observed. The data are compared with classical Coulomb and neutral scattering theory.
Time-implicit fluid/particle hybrid simulations of the anode plasma dynamics in ion diodes
NASA Astrophysics Data System (ADS)
Pointon, T. D.; Boine-Frankenheim, O.; Mehlhorn, T. A.
1997-04-01
Applied-B ion diode experiments with Li+1 ion sources on the PBFA II and SABRE ion accelerators show that early in the pulse the beam is essentially pure Li+1, but is rapidly overwhelmed by impurity ions, called the `parasitic load'. Furthermore, the increasing parasitic current rapidly drops the diode voltage, limiting the accelerator power that can be coupled into the beam. This `impedance collapse' is believed to arise from the desorption of impurity neutrals from the anode surface. These neutrals charge-exchange with the ions, rapidly expanding into the anode-cathode gap where they are ionized by beam ions or secondary electrons. In order to model these processes we are developing a 1 1/2 D electrostatic multifluid/PIC (hybrid) code, designed to self-consistently simulate collisional plasma/neutral systems with an arbitrary number of interacting species, over greatly varying density regimes and together with applied electric and magnetic fields.
Ion beam plume and efflux characterization flight experiment study. [space shuttle payload
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.
1977-01-01
A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.
NASA Astrophysics Data System (ADS)
Grisham, L. R.
2001-05-01
Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams, which could reduce plasma complications far from the target, but which would impose more stringent limitations upon chamber pressure and repetition rate.
Engineering of beam direct conversion for a 120-kV, 1-MW ion beam
NASA Technical Reports Server (NTRS)
Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.
1977-01-01
Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.
Results from E ∥B Neutral Particle Analyzer and Calibration Ion Beam System on C-2U
NASA Astrophysics Data System (ADS)
Clary, Ryan; Roquemore, A.; Kolmogorov, A.; Ivanov, A.; Korepanov, S.; Magee, R.; Medley, S.; Smirnov, A.; Tiunov, M.; TAE Team
2015-11-01
C-2U is a a high-confinement, advanced beam driven FRC which aims to sustain the configuration for > 5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors, an electrostatic neutral particle analyzer, and neutral particle bolometers. To increase our understanding of fast particle behavior and supplement existing diagnostics an E ∥B NPA was acquired from PPPL which simultaneously measures H0 and D0 flux between 2 and 22 keV with high energy resolution. In addition, a small, high purity, ion beam system has been constructed and tested to calibrate absolutely fast particle detectors. Here we report results of measurements from the E ∥B analyzer on C-2U and inferred fast particle behavior, as well as the status of the calibration ion beam system.
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.
A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BSmore » to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.« less
A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak
NASA Astrophysics Data System (ADS)
Carnevali, Antonino
An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.
Neutron detection using a crystal ball calorimeter
NASA Astrophysics Data System (ADS)
Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.
2015-12-01
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Yahong; Hu Chundong; Liu Sheng
2012-01-15
Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen
2012-01-01
Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.
Holographic beam mapping of the CHIME pathfinder array
NASA Astrophysics Data System (ADS)
Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-François; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Johnson, Andre M.; Landecker, Tom L.; Masui, Kiyoshi W.; Mena Parra, Juan; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Recnik, Andre; Robishaw, Timothy; Shaw, J. Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald
2016-08-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between z 0.8-2.5 CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.
NASA Astrophysics Data System (ADS)
Samukawa, S.; Noda, Shuichi; Higo, Akio; Yasuda, Manabu; Wada, Kazumi
2016-11-01
We have developed an innovated fabrication technology of Si, GaAs, and Ge nano-structures, i.e., we called defect-free neutral beam etching. The technology has been successfully applied to prototype the quantum nano-disks and nano-wires with ferritin based bio-templates. SEM observation verifies that the designed structures are prototyped. Photoluminescence measurements demonstrates high optical quality of nano-structures based on the technology.
The Supervisory Control System for the HL-2A Neutral Beam Injector
NASA Astrophysics Data System (ADS)
Li, Bo; Li, Li; Feng, Kun; Wang, Xueyun; Yang, Jiaxing; Huang, Zhihui; Kang, Zihua; Wang, Mingwei; Zhang, Guoqing; Lei, Guangjiu; Rao, Jun
2009-06-01
Supervisory control and protection system of the neutral beam injector (NBI) in the HL-2A tokamak is presented. The system is used for a safe coordination of all the main NBI subsystems. Because the system is based on computer networks with its transmission medium of optical fiber, its advantages in high operational stability, reliability, security and flexible functional expandability are clearly shown during the NBI commissioning and heating experiment in HL-2A.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
The Beam Forming Numerical Simulation for High Power Neutral Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.; Deichuli, P.; Ivanov, A.
2005-01-15
High power neutral beam injector START-4 for plasma heating has been described. The distinctive features of the injector are comparatively large initial beam aperture (200 mm) and multi holes grids with the large numbers of the holes (more than 3000). A significant focusing is realized to a beam diameter 50 mm at a length 1.2 m. The disadvantage of the multi holes optic is low transparency, which decreases the efficiency of plasma source and makes worse vacuum conditions in the source. The possible decisions of these problems are using ion-optical systems (IOS) with enlarged diameter of holes and, also, applicationmore » IOS with the azimuthal-slit holes structure. Numerical simulation and test experiments have been carried out for investigation of the ability such IOS geometries.« less
Thermal analysis of EAST neutral beam injectors for long-pulse beam operation
NASA Astrophysics Data System (ADS)
Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team
2018-04-01
Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.
NASA Astrophysics Data System (ADS)
Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.
2017-08-01
The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.
Barbisan, M; Zaniol, B; Pasqualotto, R
2014-11-01
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.
Ion related problems for the XLS ring
NASA Astrophysics Data System (ADS)
Bozoki, Eva S.; Halama, Henry
1991-10-01
The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.
METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM
Aaland, K.; Kuenning, R.W.; Harmon, R.K.
1961-05-01
A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.
Use of particle beams for lunar prospecting
NASA Technical Reports Server (NTRS)
Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.
1993-01-01
A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the spot irradiated by the beam is less than 1 km wide along the ground track of the satellite, resulting in the potential for high resolution. The fact that the probe could be placed in polar orbit would result in global coverage of the lunar surface. The orbital particle beam probe could provide the basis for selection of sites for more detailed prospecting by surface rovers.
Nitriding of Polymer by Low Energy Nitrogen Neutral Beam Source
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Takeda, Keigo; Yamakawa, Koji; Den, Shoji; Toyoda, Hirotaka; Sekine, Makoto; Hori, Masaru
2012-03-01
Nitriding of polyethylene naphthalate (PEN) has been carried out at room temperature using a nitrogen neutral beam with kinetic energy of less than 100 eV. The surface hardness of nitrided samples increased to two times that of the untreated sample, when the acceleration voltage was between 30 and 50 V. The thickness of the hardened polymer layer was estimated to be 1 µm. It was concluded that the hardness enhancement was caused by the diffusion of nitrogen atoms into the polymer.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
Space Experiments with Particle Accelerators (SEPAC)
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.
1982-01-01
Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.
Beam ion susceptibility to loss in NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; Liu, Deyong; White, Roscoe
2016-10-01
NSTX-U has operated with three additional neutral beam sources whose tangency radii of 1.1, 1.2, and 1.3 m are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams have also be retained for NSTX-U. Here, we present an estimate of the susceptibility of the beam ions from all the various sources to loss under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since losses are often observed at the injection energy, a simple measure of loss susceptibility is the change in canonical toroidal momentum required to move beam ions from their deposition point to the loss boundary, as a function of magnetic moment. To augment this simple estimate, we intend to report some associated transport coefficients of beam ions due to AE activity. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.
Dawson, John M.; Furth, Harold P.; Tenney, Fred H.
1988-12-06
Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.
Investigation of radiofrequency plasma sources for space travel
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Takahashi, K.
2012-12-01
Optimization of radiofrequency (RF) plasma sources for the development of space thrusters differs from other applications such as plasma processing of materials since power efficiency, propellant usage, particle acceleration or heating become driving parameters. The development of two RF (13.56 MHz) plasma sources, the high-pressure (˜1 Torr) capacitively coupled ‘pocket rocket’ plasma micro-thruster and the low-pressure (˜1 mTorr) inductively coupled helicon double layer thruster (HDLT), is discussed within the context of mature and emerging electric propulsion devices. The density gradient in low-pressure expanding RF plasmas creates an electric field that accelerates positive ions out of the plasma. Generally, the total potential drop is similar to that of a wall sheath allowing the plasma electrons to neutralize the ion beam. A high-pressure expansion with no applied magnetic field can result in large dissociation rates and/or a collimated beam of ions of small area and a flowing heated neutral beam (‘pocket rocket’). A low-pressure expansion dominated by a magnetic field can result in the formation of electric double layers which produce a very directed neutralized beam of ions of large area (HDLT).
Gutser, R; Wimmer, C; Fantz, U
2011-02-01
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.
2016-05-01
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].
Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.
2017-05-01
The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.
Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage
Albi, Elisabetta; Perrella, Giuseppina; Lazzarini, Andrea; Cataldi, Samuela; Lazzarini, Remo; Floridi, Alessandro; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco
2014-01-01
Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein. PMID:24979136
Optical remote diagnostics of atmospheric propagating beams of ionizing radiation
Karl JR., Robert R.
1990-03-06
Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.
Optical remote diagnostics of atmospheric propagating beams of ionizing radiation
Karl, Jr., Robert R.
1990-01-01
Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.
Neutron detection using a crystal ball calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martem’yanov, M. A., E-mail: mmartemi@gmail.com; Kulikov, V. V.; Krutenkova, A. P.
2015-12-15
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describemore » the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.« less
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
2003-01-01
The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.
Sartori, E; Pavei, M; Marcuzzi, D; Zaccaria, P
2014-02-01
The beam formation and acceleration of the ITER neutral beam injector will be studied in the full-scale ion source, Source for Production of Ions of Deuterium Extracted from a RF plasma (SPIDER). It will be able to sustain 40 A deuterium ion beam during 1-h pulses. The operating conditions of its multi-aperture electrodes will diverge from ideality, as a consequence of inhomogeneous heating and thermally induced deformations in the support structure of the extraction and acceleration grids, which operate at different temperatures. Meeting the requirements on the aperture alignment and distance between the grids with such a large number of apertures (1280) and the huge support structures constitute a challenge. Examination of the structure thermal deformation in transient and steady conditions has been carried out, evaluating their effect on the beam performance: the paper describes the analyses and the solutions proposed to mitigate detrimental effects.
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
Buckling of beams supported by Pasternak foundation.
NASA Technical Reports Server (NTRS)
Murthy, G. K. N.
1973-01-01
The determination of buckling loads for infinitely long beams resting on a Pasternak (1954) foundation is considered. It is assumed that the onset of buckling takes place at neutral equilibrium. The effect of extending the foundation beyond the width of the beam is determined by comparing the results obtained for two- and three-dimensional foundations.
Ion beam modification of biological materials in nanoscale
NASA Astrophysics Data System (ADS)
Yu, L. D.; Anuntalabhochai, S.
2012-07-01
Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.
Control system for 5 MW neutral beam ion source for SST1
NASA Astrophysics Data System (ADS)
Patel, G. B.; Onali, Raja; Sharma, Vivek; Suresh, S.; Tripathi, V.; Bandyopadhyay, M.; Singh, N. P.; Thakkar, Dipal; Gupta, L. N.; Singh, M. J.; Patel, P. J.; Chakraborty, A. K.; Baruah, U. K.; Mattoo, S. K.
2006-01-01
This article describes the control system for a 5MW ion source of the NBI (neutral beam injector) for steady-state superconducting tokamak-1 (SST-1). The system uses both hardware and software solutions. It comprises a DAS (data acquisition system) and a control system. The DAS is used to read the voltage and current signals from eight filament heater power supplies and 24 discharge power supplies. The control system is used to adjust the filament heater current in order to achieve an effective control on the discharge current in the plasma box. The system consists of a VME (Verse Module Eurocard) system and C application program running on a VxWorks™ real-time operating system. A PID (proportional, integral, and differential) algorithm is used to control the filament heater current. Experiments using this system have shown that the discharge current can be controlled within 1% accuracy for a PID loop time of 20ms. Response of the control system to the pressure variation of the gas in the chamber has also been studied and compared with the results obtained from those of an uncontrolled system. The present approach increases the flexibility of the control system. It not only eases the control of the plasma but also allows an easy changeover to various operation scenarios.
Deuterium-tritium experiments on the Tokamak Fusion Test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J.; Adler, J.H.; Alling, P.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Analysis Tools for the Ion Cyclotron Emission Diagnostic on DIII-D
NASA Astrophysics Data System (ADS)
Del Castillo, C. A.; Thome, K. E.; Pinsker, R. I.; Meneghini, O.; Pace, D. C.
2017-10-01
Ion cyclotron emission (ICE) waves are excited by suprathermal particles such as neutral beam particles and fusion products. An ICE diagnostic is in consideration for use at ITER, where it could provide important passive measurement of fast ions location and losses, which are otherwise difficult to determine. Simple ICE data analysis codes had previously been developed, but more sophisticated codes are required to facilitate data analysis. Several terabytes of ICE data were collected on DIII-D during the 2015-2017 campaign. The ICE diagnostic consists of antenna straps and dedicated magnetic probes that are both digitized at 200 MHz. A suite of Python spectral analysis tools within the OMFIT framework is under development to perform the memory-intensive analysis of this data. A fast and optimized analysis allows ready access to data visualizations as spectrograms and as plots of both frequency and time cuts of the data. A database of processed ICE data is being constructed to understand the relationship between the frequency and intensity of ICE and a variety of experimental parameters including neutral beam power and geometry, local and global plasma parameters, magnetic fields, and many others. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
DIII-D Upgrade to Prepare the Basis for Steady-State Burning Plasmas
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Guo, H. Y.; Taylor, T. S.; Wade, M. R.; Hill, D. N.
2014-10-01
Future steady-state burning plasma facilities will access new physics regimes and modes of plasma behavior. It is vital to prepare for this both experimentally using existing facilities, and theoretically in order to develop the tools to project to and optimize these devices. An upgrade to DIII-D is proposed to address the three critical aspects where research must go beyond what we can do now: (i) torque free electron heating to address the energy, particle and momentum transport mechanisms of burning plasmas using electron cyclotron (EC) heating and full power balanced neutral beams; (ii) off-axis heating and current drive to develop the path to true fusion steady state by reorienting neutral beams and deploying EC and helicon current drive; (iii) a new divertor with hot walls and reactor relevant materials to develop the basis for benign detached divertor operation compatible with wall materials and a high performance fusion core. These elements with modest incremental cost and enacted as a user facility for the whole US program will enable the US to lead on ITER and take a decision to proceed with a Fusion Nuclear Science Facility. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.
MEMS-based, RF-driven, compact accelerators
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.
2017-10-01
Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.
Evidence for the Production of Neutral Mesons by Photons
DOE R&D Accomplishments Database
Steinberger, J.; Panofsky, W. K. H.; Steller, J.
1950-04-01
Evidence in favor of the existence of a gamma unstable neutral meson; report on the detection of the coincidences between the two gamma rays produced by the bombardment of various nuclei in the x-ray beam of the Berkeley synchrotron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.
2014-11-15
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
Kinetic description of electron beams in the solar chromosphere
NASA Technical Reports Server (NTRS)
Gomez, Daniel O.; Mauas, Pablo J.
1992-01-01
We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.
NASA Astrophysics Data System (ADS)
Maehlum, B. N.; Denig, W. F.; Egeland, A. A.; Friedrich, M.; Hansen, T.; Holmgren, G. K.; Maaseide, K.; Maynard, N. C.; Narheim, B. T.; Svenes, K.
1987-08-01
Two payloads (mother-daughter) connected by a tether were launched by sounding rocket to study the interactions between the electron beam and the environment for various boundary conditions and to study the physical processes associated with the neutralization of electrically charged vehicles in an ionospheric plasma. The daughter payload carried an accelerator which emitted pulses of electrons of 8 keV energies. The rocket instruments and results related to vehicle charging and neutralization are summarized. Results indicate extremely high charging of the daughter (several kV) for beam current greater than or = 80 mA. The reason may be the low plasma density (10 billion/cu m) in the F region during the experiment.
Anderson, C.E.; Ehlers, K.W.
1958-06-17
An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.
Charge Exchange Recombination Spectroscopy Based on Diagnostic Neutral Beam in HT-7 Tokamak
NASA Astrophysics Data System (ADS)
Shi, Yuejiang; Fu, Jia; Li, Yingying; William, Rowan; Huang, He; Wang, Fudi; Gao, Huixian; Huang, Juann; Zhou, Qian; Liu, Sheng; Zhang, Jian; Li, Jun; Xie, Yuanlai; Liu, Zhimin; Huang, Yiyun; Hu, Chundong; Wan, Baonian
2010-02-01
Charge exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam (DNB) installed in the HT-7 tokamak is introduced. DNB can provide a 6 A extracted current at 50 kV for 0.1 s in hydrogen. It can penetrate into the core plasma in HT-7. The CXRS system is designed to observe charge exchange (CX) transitions in the visible spectrum. CX light from the beam is focused onto 10 optical fibers, which view the plasma from -5 cm to 20 cm. The CXRS system can measure the ion temperature as low as 0.1 keV. With CXRS, the local ion temperature profile in HT-7 was obtained for the first time.
An electrostatic elliptical mirror for neutral polar molecules.
González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard
2011-11-14
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.
Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam
NASA Astrophysics Data System (ADS)
Mel'nikov, I. V.; Haus, J. W.; Kazansky, P. G.
2003-05-01
We use a Fokker-Planck equation to study the phenomenon of accelerating a neutral atom bunch by a chirped optical beam. This method enables us to obtain a semi-analytical solution to the problem in which a wide range of parameters can be studied. In addition it provides a simple physical interpretation where the problem is reduced to an analogous problem of charged particles accelerators, that is, the Vecksler-Macmillan principle of phase stability. A possible experimental scenario is suggested, which uses a photonic crystal fiber as the guiding medium.
NASA Technical Reports Server (NTRS)
Burch, J. L.
1994-01-01
The Space Experiments with Particle Accelerators (SEPAC) is a joint endeavor between NASA and the Institute of Space and Aeronautical Sciences (ISAS) in Japan. Its objectives are to use energetic electron beams to investigate beam-atmosphere interactions and beam-plasma interactions in the earth's upper atmosphere and ionosphere using the shuttle Spacelab. Two flights of SEPAC have occurred to date (Spacelab 1 on STS-9 in Nov.-Dec. 1983 and ATLAS 1 on STS-45 in Mar.-Apr. 1992). The SEPAC instrumentation is available for future missions, and the scientific results of the first two missions justify further investigations; however, at present there are no identifiable future flight opportunities. As specified in the contract, the primary purpose of this report is to review the scientific accomplishments of the ATLAS 1 SEPAC experiments, which have been documented in the published literature, with only a brief review of the earlier Spacelab 1 results. One of the main results of the Spacelab 1 SEPAC experiments was that the ejection of plasma from the magnetoplasmadynamic (MPD) arcjet was effective in maintaining vehicle charge neutralization during electron beam firings, but only for a brief period of 10 ms or so. Therefore, a xenon plasma contactor, which can provide continuous vehicle charge neutralization, was developed for the ATLAS 1 SEPAC experiments. Because of the successful operation of the plasma contactor on ATLAS 1, it was possible to perform experiments on beam-plasma interactions and beam-atmosphere interactions at the highest beam power levels of SEPAC. In addition, the ability of the plasma contactor to eject neutral xenon led to a successful experiment on the critical ionization velocity (CIV) phenomena on ATLAS 1.
The VEPP-2000 electron-positron collider: First experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkaev, D. E., E-mail: D.E.Berkaev@inp.nsk.su; Shwartz, D. B.; Shatunov, P. Yu.
2011-08-15
In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes.more » Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.« less
Synthetic NPA diagnostic for energetic particles in JET plasmas
NASA Astrophysics Data System (ADS)
Varje, J.; Sirén, P.; Weisen, H.; Kurki-Suonio, T.; Äkäslompolo, S.; contributors, JET
2017-11-01
Neutral particle analysis (NPA) is one of the few methods for diagnosing fast ions inside a plasma by measuring neutral atom fluxes emitted due to charge exchange reactions. The JET tokamak features an NPA diagnostic which measures neutral atom fluxes and energy spectra simultaneously for hydrogen, deuterium and tritium species. A synthetic NPA diagnostic has been developed and used to interpret these measurements to diagnose energetic particles in JET plasmas with neutral beam injection (NBI) heating. The synthetic NPA diagnostic performs a Monte Carlo calculation of the neutral atom fluxes in a realistic geometry. The 4D fast ion distributions, representing NBI ions, were simulated using the Monte Carlo orbit-following code ASCOT. Neutral atom density profiles were calculated using the FRANTIC neutral code in the JINTRAC modelling suite. Additionally, for rapid analysis, a scan of neutral profiles was precalculated with FRANTIC for a range of typical plasma parameters. These were taken from the JETPEAK database, which includes a comprehensive set of data from the flat-top phases of nearly all discharges in recent JET campaigns. The synthetic diagnostic was applied to various JET plasmas in the recent hydrogen campaign where different hydrogen/deuterium mixtures and NBI configurations were used. The simulated neutral fluxes from the fast ion distributions were found to agree with the measured fluxes, reproducing the slowing-down profiles for different beam isotopes and energies and quantitatively estimating the fraction of hydrogen and deuterium fast ions.
Real Time Computer Control of Neutral Beam Energy and Current During a DIII-D Tokamak Shot
NASA Astrophysics Data System (ADS)
Pawley, C. J.; Pace, D. C.; Rauch, J. M.; Scoville, J. T.
2017-10-01
A new control system has been implemented on DIII-D neutral beams which has been used during the 2016 and 2017 experimental campaign to directly change the beam acceleration voltage (V) and beam current (I) by the Plasma Control System (PCS) during a shot. Small changes in the beam voltage of 1-2 kV can be made in 1 msec or larger changes of up to 20kV in 0.5 seconds. The beam current can be modified by as much as +/-20% at a fixed beam voltage. Since both can be independently and simultaneously changed it is possible to change beam power (IV) at fixed voltage, keep constant power while sweeping beam voltage, or to maintain minimum beam divergence during a beam voltage sweep by changing I simultaneously to keep a constant beam perveance. The limitations of the variability will be presented with required changes in equipment to extend either the speed or range of the controls. Some of the effects on fast ion plasma instabilities or other plasma mode changes made possible by this control will also be presented (see also D.C. Pace, this conference). Design and changes to the control system was performed under General Atomics Internal Research and Development support, while plasma experiments on DIII-D were supported in part by the US Department of Energy under Award No. DE-FC02-04ER54698.
Alaverdashvili, Mariam; Paterson, Phyllis G.; Bradley, Michael P.
2015-01-01
Background The rat photothrombotic stroke model can induce brain infarcts with reasonable biological variability. Nevertheless, we observed unexplained high inter-individual variability despite using a rigorous protocol. Of the three major determinants of infarct volume, photosensitive dye concentration and illumination period were strictly controlled, whereas undetected fluctuation in laser power output was suspected to account for the variability. New method The frequently utilized Diode Pumped Solid State (DPSS) lasers emitting 532 nm (green) light can exhibit fluctuations in output power due to temperature and input power alterations. The polarization properties of the Nd:YAG and Nd:YVO4 crystals commonly used in these lasers are another potential source of fluctuation, since one means of controlling output power uses a polarizer with a variable transmission axis. Thus, the properties of DPSS lasers and the relationship between power output and infarct size were explored. Results DPSS laser beam intensity showed considerable variation. Either a polarizer or a variable neutral density filter allowed adjustment of a polarized laser beam to the desired intensity. When the beam was unpolarized, the experimenter was restricted to using a variable neutral density filter. Comparison with existing method(s) Our refined approach includes continuous monitoring of DPSS laser intensity via beam sampling using a pellicle beamsplitter and photodiode sensor. This guarantees the desired beam intensity at the targeted brain area during stroke induction, with the intensity controlled either through a polarizer or variable neutral density filter. Conclusions Continuous monitoring and control of laser beam intensity is critical for ensuring consistent infarct size. PMID:25840363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J.J.; Briggs, R.J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
NASA Astrophysics Data System (ADS)
Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.
2005-12-01
A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-ENG-38, and by NASA under Work Orders W-19,895 and W-10,091.
A high flux source of swift oxygen atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.
Ekdahl, Jr., Carl A.; Frost, Charles A.
1986-01-01
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Ekdahl, C.A. Jr.; Frost, C.A.
1984-11-13
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Modeling activities on the negative-ion-based Neutral Beam Injectors of the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agostinetti, P.; Antoni, V.; Chitarin, G.
2011-09-26
At the National Institute for Fusion Science (NIFS) large-scaled negative ion sources have been widely used for the Neutral Beam Injectors (NBIs) mounted on the Large Helical Device (LHD), which is the world-largest superconducting helical system. These injectors have achieved outstanding performances in terms of beam energy, negative-ion current and optics, and represent a reference for the development of heating and current drive NBIs for ITER.In the framework of the support activities for the ITER NBIs, the PRIMA test facility, which includes a RF-drive ion source with 100 keV accelerator (SPIDER) and a complete 1 MeV Neutral Beam system (MITICA)more » is under construction at Consorzio RFX in Padova.An experimental validation of the codes has been undertaken in order to prove the accuracy of the simulations and the soundness of the SPIDER and MITICA design. To this purpose, the whole set of codes have been applied to the LHD NBIs in a joint activity between Consorzio RFX and NIFS, with the goal of comparing and benchmarking the codes with the experimental data. A description of these modeling activities and a discussion of the main results obtained are reported in this paper.« less
Sputtering erosion in ion and plasma thrusters
NASA Technical Reports Server (NTRS)
Ray, Pradosh K.
1995-01-01
An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.
NASA Astrophysics Data System (ADS)
Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team
2018-02-01
This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.
NASA Technical Reports Server (NTRS)
Perel, J.
1971-01-01
A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
Long-lived neutral-kaon flux measurement for the KOTO experiment
Masuda, T.; Ahn, J. K.; Banno, S.; ...
2016-01-24
The KOTO(K 0 at Tokai) experiment aims to observe the CP-violating rare decay K L → π 0νν¯ over bar by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The K L flux is an essential parameter for the measurement of the branching fraction. Three K L neutral decay modes, K L → 3 π 0, K L → 2 π 0, and K L → 2γ, were used to measure the K L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulationmore » was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4% level. Here, the K L flux was measured as (4.183 ± 0.017 stat. ± 0.059 sys.) x 10 7 K L per 2 x 10 14 protons on a 66-mm-long Au target.« less
NASA Astrophysics Data System (ADS)
Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji
2009-04-01
A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.
Neutralization of space charge forces using ionized background gas
NASA Astrophysics Data System (ADS)
Steski, D. B.; Zarcone, M. J.; Smith, K. S.; Thieberger, P.
1996-03-01
The Tandem Van de Graaff at Brookhaven National Laboratory has delivered pulsed gold beam to the Alternating Gradient Synchrotron (AGS) and AGS Booster since 1992 for relativistic heavy ion physics. There is an ongoing effort to improve the quality and intensity of the negative ion beam delivered to the Tandem from the present Cs sputter sources. Because the beam energy is low (approximately 30 keV) and the current high, there are significant losses due to space charge forces. One of the ways being explored to overcome these losses is to neutralize the space charge forces with ionized background gas. On an ion source test bench, using three different gases (Ar, N2, and Xe), the percentage of current transported from the source to a downstream Faraday cup was increased from 10% to 40% by bleeding in gas. Bleeding in Xe resulted in the best transmission. The time dependence of the neutralization as a function of gas pressure was also observed. This system is presently being transferred to the Negative Ion Injector of the Tandem for use in upcoming heavy ion experiments.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, E.; Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706; Anderson, J. K.
2016-05-15
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm withmore » neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].« less
NASA Astrophysics Data System (ADS)
Karim, Rezwanul
1999-10-01
This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.
Development progresses of radio frequency ion source for neutral beam injector in fusion devices.
Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R
2014-02-01
A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nakao, Y.
2007-05-01
An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, α-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.
Millimeter-Wave Time Resolved Studies of the Formation and Decay of CO^+
NASA Astrophysics Data System (ADS)
Oesterling, Lee; Herbst, Eric; de Lucia, Frank
1998-04-01
Since the rate constants for ion-molecule interactions are typically much larger than neutral-neutral interactions, understanding ion-molecule interactions is essential to interpreting radio astronomical spectra from interstellar clouds and modeling the processes which lead to the formation of stars in these regions. We have developed a cell which allows us to study ion-molecule interactions in gases at low temperatures and pressures by using an electron gun technique to create ions. By centering our millimeter-wave source on a rotational resonance and gating the electron beam on and off, we are able to study the time-dependent rotational state distribution of the ion during its formation and decay, and so learn about excitation and relaxation processes as functions of temperature, pressure, electron beam energy, and electron beam current.
Simulation of beam-induced plasma in gas-filled rf cavities
Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...
2017-03-07
Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less
NASA Astrophysics Data System (ADS)
Fredrickson, E. D.
2001-10-01
Multiple, coherent modes at frequencies up to the deuterium ion cyclotron frequency are observed during neutral beam injection heating of the National Spherical Torus Experiment (NSTX). NSTX plasmas are heated with up to 5 MW of deuterium neutral beam injection (NBI) power at a full energy of 80 kV. This gives a neutral beam ion velocity of ≈ 2.8 x 10^6 m/s, which is ≈ 3 V_Alfvén. The modes are seen in the frequency range of ≈ 0.4 MHz to ≈ 2.5 MHz. They are the first experimental observation of compressional Alfvén eigenmodes (CAE). The modes are excited by a resonant interaction with the non-Maxwellian, anisotropic ion distribution of the energetic beam ions and localized in an effective potential well of the form (m/r)^2 - (ω/V_Alfvén)^2. The resonance condition for the beam ions is approximately ω \\cal L ω_ci k_allel V_fast = 0, and the ``bump-on-tail" is in the perpendicular energy distribution resulting from the injection geometry (R_tan=50-70 cm, R_0=85 cm) and large orbit size (B_T=0.3-0.45 T, a=68 cm) for the beam ions. The modes are predicted to be localized on the low field side of the plasma, towards the plasma edge.(S.M. Mahajon , D.W. Ross, Phys. Fluids 26 (1983) 2561.)(B. Coppi, S. Cowley, R. Kulsrud, P. Detragiache, and F. Pegoraro, Phys. Fluids 29, (1986) 4060.)(Gorelenkov N.N., Cheng C.Z., Nucl. Fusion 35, (1995), pp 1743-1752.) The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvénic modes. The complex structure of the multiple frequency peaks is qualitatively consistent with predictions of CAE mode theories, although to date the modeling has been done in a simple geometry. There has been no observation of enhanced beam ion loss associated with the mode activity. Rather the presence of the modes is suspected to enhance the transfer of energy from the fast ions to the thermal ions or electrons. The drive for the mode is relatively strong, γ/ω ≈ 0.1 - 0.5 %, and the wave damping is thought to be electron Landau damping or stochastic damping on the thermal ions.(D. Gates, R. White, (submitted to Phys. Rev. Lett. May 2001).)
On neutral-beam injection counter to the plasma current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helander, P.; Akers, R.J.; Eriksson, L.-G.
2005-11-15
It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C.more » Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.« less
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Recent developments in the structural design and optimization of ITER neutral beam manifold
NASA Astrophysics Data System (ADS)
Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI
2018-02-01
This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.
Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.
Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J
2008-11-07
We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.
Toroidal rotation in neutral beam heated discharges in DIII-D
NASA Astrophysics Data System (ADS)
de Grassie, J. S.; Baker, D. R.; Burrell, K. H.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Thomas, D. M.
2003-02-01
It is known that the toroidal angular momentum and the ion thermal energy are correlated in tokamak discharges heated by neutral beam injection. Here, data from ten years of measurements on DIII-D are considered, for representative discharges from all types and all conditions. The ratio of simple replacement times for momentum and energy is found to order this correlation indicating that these times are approximately equal, across the minor radius. Representative discharges of several types are discussed in more detail, as well as transport analysis results for the momentum and thermal ion diffusivities.
Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U
NASA Astrophysics Data System (ADS)
Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao
An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor
2012-10-01
Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Bounds on light gluinos from the BEBC beam dump experiment
NASA Astrophysics Data System (ADS)
Cooper-Sarkar, A. M.; Parker, M. A.; Sarkar, S.; Aderholz, M.; Bostock, P.; Clayton, E. F.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Schmid, P.; Schmitz, N.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Walck, Ch.; Wachsmuth, H.; Wünsch, B.; WA66 Collaboration
1985-10-01
Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require ifm g˜$̆4 GeV for ifm q˜ - minw.
SERT II thrusters - Still ticking after eleven years
NASA Technical Reports Server (NTRS)
Kerslake, W. R.
1981-01-01
The Space Electric Rocket Test II (SERT II) spacecraft was launched in 1970 with a primary objective of demonstrating long-term operation of a space electric thruster system. An overview is presented of all the SERT II testing conducted during the time from 1970 to 1981. Thruster testing and interaction results are considered, taking into account ion beam thrusting, distant neutralization, and the plasma beam thrust. In a discussion of durability testing, attention is given to the main cathodes, the neutralizer cathodes, the main keeper insulator, the H.V. grid insulators, the neutralizer propellant tanks, and the main propellant tanks. The most important result of the study is related to the confidence gained that mercury bombardment ion thruster systems can be built and operated in space on a routine basis with the same lifetime and performance as measured in ground testing.
Conceptual design of the beam source for the DEMO Neutral Beam Injectors
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.
2016-12-01
DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Briggs, R J
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energymore » (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, J. A.; Anderson, J. K.; Eilerman, S.
2012-10-15
A new E Parallel-To B neutral particle analyzer, which has recently been installed on Madison Symmetric Torus (MST) reversed-field pinch (RFP), has now been calibrated, allowing the measurement of the fast ion density and energy distribution. This diagnostic, dubbed the advanced neutral particle analyzer (ANPA), can simultaneously produce time resolved measurements of the efflux of both hydrogen and deuterium ions from the plasma over a 35 keV energy range with an energy resolution of 2-4 keV and a time resolution of 10 {mu}s. These capabilities are needed to measure both majority ion heating that occurs during magnetic reconnection events inmore » MST and the behavior of the fast ions from the 1 MW hydrogen neutral beam injector on MST. Calibration of the ANPA was performed using a custom ion source that resides in the flight tube between the MST and the ANPA. In this work, the ANPA will be described, the calibration procedure and results will be discussed, and initial measurements of the time evolution of 25 keV neutral beam injection-born fast ions will be presented.« less
NASA Technical Reports Server (NTRS)
Federman, Steven R.
1992-01-01
The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chong Shik; Shiltsev, Vladimir; Stancari, Giulio
The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab’s e-lens experiment for the space charge compensation. In addition, we willmore » show how the IOTA e-column compensates space charge with theWARP simulations. The dynamics of proton beams inside of the e-column is understood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.« less
Measurements of high-current electron beams from X pinches and wire array Z pinches.
Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R
2008-10-01
Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.
Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)
2002-01-01
An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Low energy beam transport for HIDIF
NASA Astrophysics Data System (ADS)
Meusel, O.; Pozimski, J.; Jakob, A.; Lakatos, A.
2001-05-01
Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Groß, R. Dölling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe + beam are presented and the results of numerical simulations are shown.
NASA Astrophysics Data System (ADS)
Conde, L.; Domenech-Garret, J. L.; Donoso, J. M.; Damba, J.; Tierno, S. P.; Alamillo-Gamboa, E.; Castillo, M. A.
2017-12-01
The characteristics of supersonic ion beams from the alternative low power hybrid ion engine (ALPHIE) are discussed. This simple concept of a DC powered plasma accelerator that only needs one electron source for both neutral gas ionization and ion beam neutralization is also examined. The plasma production and space charge neutralization processes are thus coupled in this plasma thruster that has a total DC power consumption of below 450 W, and uses xenon or argon gas as a propellant. The operation parameters of the plasma engine are studied in the laboratory in connection with the ion energy distribution function obtained with a retarding-field energy analyzer. The ALPHIE plasma beam expansion produces a mesothermal plasma flow with two-peaked ion energy distribution functions composed of low and high speed ion groups. The characteristic drift velocities of the fast ion groups, in the range 36.6-43.5 Km/s, are controlled by the acceleration voltage. These supersonic speeds are higher than the typical ion sound velocities of the low energy ion group produced by the expansion of the plasma jet. The temperatures of the slow ion population lead to ion Debye lengths longer than the electron Debye lengths. Furthermore, the electron impact ionization can coexist with collisional ionization by fast ions downstream the grids. Finally, the performance characteristics and comparisons with other plasma accelerator schemes are also discussed.
Active spectroscopy upgrades and neutral beam injection on LTX- β
NASA Astrophysics Data System (ADS)
Elliott, Drew; Biewer, Theodore; Canik, John; Reinke, Matthew; Bell, Ronald; Boyle, Dennis; Guttenfelder, Walter; Kaita, Robert; Kozub, Thomas; Majeski, Richard; Merino, Enrique
2017-10-01
The LTX- β upgrade includes the addition of neutral beam injection (NBI) and increased active spectroscopy. Typical plasmas have been and are expected to remain inboard limited, at 14 cm with minor radii of 18-23 cm. The NBI, 35 Amps of 20 keV particles, will enable active diagnosis of ion velocity distribution profiles through charge exchange (CHERS). 18 CHERS views will cover more than a full minor radius, each sampling 2 cm of major radius. The system has both a set of beam directed ``active'' views and a symmetric set of views pointing away from the beam for stray light subtraction. Along with measuring ion temperatures and impurity transport, the CHERS diagnostic will measure the plasma rotation profiles. The recently described low recycling regime is predicted to allow for high rotational velocities due to the low neutral drag. The planned NBI has been predicted to give on axis velocities near 100 km/s. Flow shear is expected to increase confinement in this regime by suppressing trapped electron mode and other microturbulence enhanced transport. Upgrades to the Thomson scattering system, including an array of polychromators and a new camera, will assist in diagnosing the low density hot edge in this low recycling regime. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1976-01-01
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.
Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G
2017-11-03
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
NASA Astrophysics Data System (ADS)
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.
2017-11-01
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beammore » halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.« less
Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER
NASA Astrophysics Data System (ADS)
Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.
2009-03-01
The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.
Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunke, B.; Bora, D.; Hemsworth, R.
2009-03-12
The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D{sup -} and capable of delivering 16.5 MW of D{sup 0} to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H{sup -} to 100 keV will inject {approx_equal}15 A equivalent of H{sup 0} for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion sourcemore » as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D{sup -} and H{sup -} current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.« less
Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D
2008-02-01
The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.
A hollow cathode neutralizer for a 30-cm diameter bombardment thruster
NASA Technical Reports Server (NTRS)
Bechtel, R. T.
1973-01-01
Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.
Modeling of potential TAE-induced beam ion loss from NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Darrow, Douglass; Fredrickson, Eric; Podesta, Mario; White, Roscoe; Liu, Deyong
2015-11-01
NSTX-U will add three additional neutral beam sources, whose tangency radii of 1.1, 1.2, and 1.3 m, are significantly larger than the 0.5, 0.6, and 0.7 m tangency radii of the neutral beams previously used in NSTX. These latter beams will also be used in NSTX-U. Here, we attempt to formulate an estimate of the propensity of the beam ions from all the various sources to be lost under a range of NSTX-U plasma conditions. This estimation is based upon TRANSP calculations of beam ion deposition in phase space, and the location of the FLR-corrected loss boundary in that phase space. Since TAEs were a prominent driver of beam ion loss in NSTX, we incorporate their effects through the following process: NOVA modeling of TAEs in the anticipated NSTX-U plasma conditions gives the mode numbers, frequencies, and mode structures that are likely to occur. Using this information as inputs to the guiding center ORBIT code, it is possible to find resonant surfaces in the same phase space along which beam ions would be able to diffuse under the influence of the modes. The degree to which these resonant surfaces intersect both the beam deposition volume and the orbit loss boundary should then give a sense of the propensity of that beam population to be lost from the plasma. Work supported by US DOE contracts DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.
First neutral beam injection experiments on KSTAR tokamak.
Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M
2012-02-01
The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.
NASA Astrophysics Data System (ADS)
Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark
2015-11-01
A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.
Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M
2001-06-04
Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.
Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson
A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.
Radiated and conducted EMI from a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.; Peer, W.
1981-01-01
In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.
Water cluster fragmentation probed by pickup experiments
NASA Astrophysics Data System (ADS)
Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal
2016-09-01
Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.
2016-02-15
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less
Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F
2007-07-01
We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The impact of etching kinetics and etching chemistries on surface roughening was investigated by etching thermal silicon dioxide and low-k dielectric coral materials in C{sub 4}F{sub 8}/Ar plasma beams in an inductive coupled plasma beam reactor. The etching kinetics, especially the angular etching yield curves, were measured by changing the plasma pressure and the feed gas composition which influence the effective neutral-to-ion flux ratio during etching. At low neutral-to-ion flux ratios, the angular etching yield curves are sputteringlike, with a peak around 60 deg. -70 deg. off-normal angles; the surface at grazing ion incidence angles becomes roughened due to ionmore » scattering related ion-channeling effects. At high neutral-to-ion flux ratios, ion enhanced etching dominates and surface roughening at grazing angles is mainly caused by the local fluorocarbon deposition induced micromasking mechanism. Interestingly, the etched surfaces at grazing angles remain smooth for both films at intermediate neutral-to-ion flux ratio regime. Furthermore, the oxygen addition broadens the region over which the etching without roughening can be performed.« less
NASA Astrophysics Data System (ADS)
Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Hoffmann, E.; Haidt, D.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Retter, M. L.; Saitta, B.; Shotton, P. N.; Towers, S. J.; Bullock, F. W.; Burke, S.; Fitch, P. J.; Birmingham-Bonn-CERN-Imperial College-München(MPI)-Oxford-University College Collaboration
1986-10-01
The ratios Rvp and Rvp of the neutral current to charged current cross sections for neutrino and antineutrino interactions on protons have been measured in BEBC. The beam was the CERN SPS 400 GeV wideband beam. The bubble chamber, equipped with the standard External Muon Identifier, was surrounded with an additional plane of wire chambers (Internal Picket Fence), which was added to improve neutral current event identification. For a total transverse momentum of the charged hadrons above 0.45 GeV/ c and a charged multiplicity of at least 3, it was found that R vp = 0.384 ± 0.015 and R vp = 0.338 ± 0.014 ± 0.016, corresponding to a value of sin 2θ w(M woverlineMSof 0.225 ± 0.030 . Combining the results from hydrogen and an isoscalar target, the differences of the neutral current chiral coupling constants were found to be u2l- d2L = -0.080 ± 0.043 ± 0.012 and u2R- d2R = 0.021±0.055±0.028.
Overview of C-2U FRC Experimental Program and Plans for C-2W
NASA Astrophysics Data System (ADS)
Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Cappello, M.; Ivanov, A. A.; TAE Team
2016-10-01
Tri Alpha Energy's experimental program has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 and C-2U, have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, PNB 10 + MW; 15 keV hydrogen) and end-on coaxial plasma guns. Remarkable improvements in confinement and stability of FRC plasmas have led to further improved fast-ion build up; thereby, an advanced beam-driven FRC state has been produced and sustained for up to 5 + ms (longer than all characteristic system time scales), only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results and key features of C-2W will be presented. Tri Alpha Energy, Inc.
Grumman and SDI-related technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B.
1985-01-01
The application of Grumman Corporation's aerospace and nuclear fusion technology to the Strategic Defense Initiative (SDI) program has taken place in at least five major areas. These include infrared boost surveillance and tracking to detect intercontinental ballistic missiles just after launch, space-based radar, neutral particle beam platforms, nuclear electric power and propulsion units in space, and battle management systems. The author summarizes developments in each of these areas to illustrate how Grumman has responded to the request that the scientific and industrial communities pursue innovative, high-risk concepts involving materials, structures, space power, space physics, and kinetic energy weapon concepts. 3more » figures.« less
Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985
DOE R&D Accomplishments Database
Smalley, R. E.
1985-01-01
There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.
Impurity transport during neutral beam injection in the ISX-B tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isler, R. C.; Crume, E. C.; Arnurius, D. E.
1980-10-01
In ohmically heated ISX-B discharges, both the intrinsic iron impurity ions and small amounts of argon introduced as a test gas accumulate at the center of the plasma. But during certain beam-heated discharges, it appears that this accumulation does not take place. These results may reflect the conclusion of Stacey and Sigmar that momentum transferred from the beams to the plasma can inhibit inward impurity transport.
Energy recovery from mixed H-/H0/H+ beams and collector simulations
NASA Astrophysics Data System (ADS)
Variale, V.; Cavenago, M.; Baltador, C.; Serianni, G.; Veltri, P.; Sartori, E.; Agostinetti, P.
2017-08-01
An axisymmetric system to recover beam energy from partially neutralized H- beams was recently proposed, for a given beam acceleration voltage Vs. In the case of ion source NIO1 Vs may range from 20 to 60 kV. A realistic beam with 3 mrad divergence, and a composition of 25 : 50 : 25 of H-, H0 and H+ has been considered. The collector works by decelerating the H- ions (into a system similar to a Faraday cup provided with an exit hole electrode), so that they are radially deflected by space charge and anode lens effects, and collected to a low kinetic energy Kc (less than 1 keV), while neutral and H+ ions can pass through the exit hole electrode. A following collector can recover H+ energy. Since the space charge calculations are challenging for highly nonlinear problem and for a possible (numerically unstable) virtual cathode phenomena different computation tools were compared for simulations. Stabilization techniques are compared. Limits for local perveance are discussed. Also mesh asymmetry effects and the related transverse oscillations of H+ beam may be observed. Efficiency over 90 % can be reached in typical conditions. The secondary yield (which is low thanks to low impact energy Kc and Faraday cup concept) is estimated.
NASA Astrophysics Data System (ADS)
Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala
2008-11-01
The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.
Phenomenology of beam driven modes in the field reversed configuration
NASA Astrophysics Data System (ADS)
Magee, Richard; Bolte, Nathan; Clary, Ryan; Necas, Ales; Korepanov, Sergey; Smirnov, Artem; Thompson, Matthew; Tajima, Toshiki; THE TAE Team
2016-10-01
The C-2U experiment offers a unique plasma environment combining a high beta field reversed configuration (FRC) embedded in a low beta magnetic mirror with high power neutral beam injection. The beams are injected tangentially into a modest magnetic field so that the orbits of the resulting fast ions encircle the entire plasma. These large orbit particles sustain and stabilize the plasma and suppress turbulence. Measurements of magnetic fluctuations at the edge of the plasma reveal the presence of three coherent beam driven modes: a low frequency, chirping mode, a mode near the ion cyclotron frequency, and a high frequency compressional Alfven mode. Remarkably, none of these modes are observed to have a deleterious effect on global plasma confinement. In fact, the cyclotron mode has the beneficial effect of dramatically enhancing the DD fusion reaction rate by drawing a trail from the plasma ion energy distribution on a sub-collisional timescale. In this presentation, we experimentally characterize the beam driven modes in the C-2U FRC with data from multiple diagnostics including magnetics, spectroscopy, neutral particle analyzers and fusion product diagnostics. Results are compared to a particle-in-cell simulation in a simplified geometry.
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
Suppression of energetic particle driven instabilities with HHFW heating
Fredrickson, E. D.; Taylor, G.; Bertelli, N.; ...
2015-01-01
In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less
TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics
NASA Technical Reports Server (NTRS)
Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.
1980-01-01
The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.
Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.
1978-01-01
An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.
An image filtering technique for SPIDER visible tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonnesu, N., E-mail: nicola.fonnesu@igi.cnr.it; Agostini, M.; Brombin, M.
2014-02-15
The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.
Reverse current in solar flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1977-01-01
We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Measurement of ion thruster exhaust characteristics and interaction with simulated ATS-F spacecraft
NASA Technical Reports Server (NTRS)
Worlock, R.; Trump, G.; Sellen, J. M., Jr.; Kemp, R. F.
1973-01-01
The ATS-F ion engine was mounted on a simulated spacecraft and was operated in a 22 by 35 foot vacuum chamber, using the same neutralizer control point as in earlier small chamber tests. The control point was in the middle of a range of 16 steps and, thus, the range should be adequate for transition to space flight. Measurement of the near- and far-field ions showed that the ion beam was well defined in a cone of 18-degrees half-angle. The material deposition experiment indicated that the ATS-F solar array would accumulate less than 0.2 A of aluminum per thousand hours of thruster operation, so that the corresponding power loss could be considered negligible. An interesting result was that the coupling between the beam and spacecraft was strong enough to require relatively large increases in the beam potential as the neutralizer bias was increased.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.
Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less
NASA Astrophysics Data System (ADS)
Sykes, Alan
1997-05-01
The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; ...
2017-11-03
Here, we report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥ 1T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε B ≈ 10 -3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma formore » thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.« less
A current disruption mechanism in the neutral sheet for triggering substorm expansions
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.
1989-01-01
Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario.
Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.
1974-01-01
Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.
Cryosorption Pumps for a Neutral Beam Injector Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dremel, M.; Mack, A.; Day, C.
2006-04-27
We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less
NASA Astrophysics Data System (ADS)
Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.
2018-01-01
The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
NASA Technical Reports Server (NTRS)
Jacobsen, T. A.; Maynard, N. C.
1980-01-01
The POLAR 5 rocket experiment carried an electron accelerator on a 'daughter' payload which injected a 0.1 A beam of 10 keV electrons in a pulsed mode every 410 ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the 'mother' payload and from a crude RPA on the 'daughter' payload are interpreted to indicate that the 'daughter' charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the 'daughter' is shown to be asymmetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged 'daughter' and the beam are seen at distances exceeding 100 m at the 'mother' payload.
Development of neutral beam injection system by use of washer gun plasma source
NASA Astrophysics Data System (ADS)
Imanaka, Heizo; Kajiya, Hirotaka; Nemoto, Yuichi; Azuma, Akiyoshi; Asai, Tomoaki; Yamada, Takuma; Inomoto, Michiaki; Ono, Yasushi
2008-11-01
For the past ten years, we have been investigating high-beta Spherical Tokamaks (ST) formation using reconnection heating of their axial merging in the TS-4 experiment, University of Tokyo. The produced ST was observed to have the maximum beta of 50-60% right after the merging of two STs. A key issue after the formation is to maintain the produced high-beta ST over 100 Alfven times for its stability check. A new low-cost pulsed neutral beam injection (NBI) system has been arranged for its sustainment experiment. Its advantages are 1) low voltage (15kV for low-field side of ST) and high current (20A), 2) maintenance-free, 3) low-cost. The conventional filament plasma source was replaced by the washer gun to realize air-cooled and maintenance free NBI system. In its startup experiment, we already extracted the maximum beam current of 3.7A for then acceleration voltage of 10kV successfully. This result suggests that the increase in the acceleration voltage and several conditioning work will realize its designed beam parameters of 15kV, 20A.
Suppression of Alfvénic modes with off-axis NBI
NASA Astrophysics Data System (ADS)
Fredrickson, Eric; Bell, R.; Diallo, A.; Leblanc, B.; Podesta, M.; Levinton, F.; Yuh, H.; Liu, D.
2016-10-01
GAE are seen on NSTX-U in the frequency range from 1 to 3 MHz with injection of the more perpendicular, NSTX neutral beam sources. A new result is that injection of any of the new, more tangential, neutral beam sources with tangency radii larger than the magnetic axis suppress this GAE activity. Simulations of beam deposition and slowing down with the TRANSP code indicate that these new sources deposit fast ions with 0.9
Beam power-dependent laser-induced fluorescence radiation quenching of silver-ion-exchanged glasses
NASA Astrophysics Data System (ADS)
Nahal, Arashmid; Khalesifard, Hamid Reza M.
2007-04-01
In this article, results of an investigation about the modification of silver ions embedded in a glass matrix under the action of a CW high-power Ar + laser beam, by means of laser-induced fluorescence, is reported. It is known [A. Nahal, H.R.M. Khalesifard, J. Mostafavi-Amjad, Appl. Phys. B 79 (2004) 513-518] that, as a result of the interaction of the laser beam with the sample, the embedded silver ions reduce to neutral ones and silver clusters are formed. We observed that the fluorescence radiation of the central part of the interaction area, on the sample, diminishes simultaneously with the formation of the neutral clusters. Further increase in the exposure time or the power of the beam results in reappearance of the fluorescence radiation, in the central part of the interaction area. We found that, during and after the interaction the spectrum of the fluorescence radiation changes. This makes it possible to study the laser-induced changes in the embedded silver ions and clusters, in real-time.
A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster
NASA Technical Reports Server (NTRS)
Lathem, W. C.
1973-01-01
A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.
NASA Astrophysics Data System (ADS)
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.
2017-05-01
A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.
Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n$sup -3$, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. Themore » overpopulation decreases with increasing principal quantum number.« less
Goumiri, I. R.; Sabbagh, S. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.
2017-01-01
A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained. PMID:28435207
Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D
2012-06-22
Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.
NASA Astrophysics Data System (ADS)
T., Ii; Inomoto, M.; Gi, K.; Umezawa, T.; Ito, T.; Kadowaki, K.; Kaminou, Y.; Ono, Y.
2013-07-01
A low-energy, high-current neutral beam injection (NBI) was applied to an oblate field-reversed configuration (FRC) for the first time. The NB fast ions reduce growth rates of low-n modes dangerous for the oblate FRC, extending the FRC lifetime by a factor of 1.2. The reduced loss power of 5 MW is much higher than the NBI power of 0.5 MW, indicating that the NBI not only heats the FRC plasma but also improves its stability and transport properties. The NBI also maintains higher pressure and current density profiles of the FRC, improving its flux and energy decay times by a factor of 2.
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; ...
2017-02-23
In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
Negatively Charged Hydrogen Production in a Multicusp Microwave Plasma
NASA Astrophysics Data System (ADS)
Trow, John Robert
1985-06-01
High energy neutral beams are necessary for the continued development of magnetically confined fusion plasma devices. Neutral beams based on positive ions are not efficient at beam energies of 100 keV or above, however negative ion based neutral beam systems are efficient, even at high beam energies. Volume production of H('-) has many advantages over the other methods, chiefly: simplicity of design and operation, and no need for alkalai metals. Since volume production requires a low electron temperature ((TURN)1 eV) but also requires molecular intermediates only formed by more energetic electrons (>20 eV), double plasma devices with a separate hot electron region are desirable. Therefore an experiment was undertaken to examine H('-) production by volume processes in a multicusp microwave discharge, part of the cusp field being enhanced to produce an ECR (electron cyclotron resonance), that would also isolate the hotter plasma formed there. This arrangement is analogous to the "magnetic filters" used in some other negative ion sources. This work describes the experiment set up and the results obtained, which are a survey of the behavior of this type of device. Also included is a discussion of the volume processes associated with H('-) production including numerical estimates, based on the experimental measurements, which indicate H('-) production is by dissociative attachment of cold electrons to vibrationally excited hydrogen molecules, and loss is by mutual neutralization with positive ions. The experimental observations are consistent with this model. These are also the same mechanisms used in the models of Bacal and Hiskes. Since magnetic fields generated by samarium cobalt permanent magnets were an important part of this experiment a set of field calculations was undertaken and is included here as a separate chapter. This device is shown to be a viable scheme of H('-) (or D('-)) produc- tion and is worthy of further development. There are several more. quantities which still need to be measured listed in the conclusion, along with suggested improvements. *This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development & Technology Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Listopad, A.; Davydenko, V.; Ivanov, A.
2012-02-15
The upgrade of the diagnostic neutral beam injector RUDI in 2010 was performed to increase the beam density at the focal plane in accordance with the requirements of charge-exchange recombination spectroscopy diagnostics. A new focusing ion-optical system (IOS) with slit beamlets and an enlarged aperture was optimized for 50% higher nominal beam current and reduced angular divergence with respect to the previous multi-aperture IOS version. The upgraded injector provides the beam current up to 3 A, the measured beam divergence in the direction along the slits is 0.35 deg. Additionally, the plasma generator was modified to extend the beam pulsemore » to 8 s.« less
Single neutral pion production by charged-current $$\\bar{\
Le, T.; Paomino, J. L.; Aliaga, L.; ...
2015-10-07
We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.
Single neutral pion production by charged-current $$\\bar{\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, T.; Paomino, J. L.; Aliaga, L.
We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.
Collective Acceleration with Rotating Relativistic Electron Beams.
1980-04-11
experiments[ where rela- tivistic electron beams were injected into neutral gas filled drift tubes . This paper presents results of recent experiments in...was applied in the drift tube . Rander7 has measured the beamfront velocity, ion yield and ion momentum distribution for non- rotating beams in hydrogen...fields (axial and azimuthal) and currents induced in the drift tube wall.8 Diode voltage and current are V - 900 kV, I - 80 kA for r" - 100 ns, with
NASA Astrophysics Data System (ADS)
Nightingale, M. P. S.; Kugel, H.; Gee, S. J.; Price, M. N.
1999-01-01
Theoretical modeling of 1-2 MW positive hydrogen ion neutral injectors developed at Oak Ridge National Laboratory (ORNL) has suggested that the plasma grid temperature could rise by up to 180 °C at pulse lengths above 0.5 s, leading to a grid deformation on the order of 5 mm, with a consequent change in focal length (from 4 to 2 m) and beamlet focusing. One of these injectors (on loan from ORNL) was used to achieve record β values on the Small Tight Aspect Ratio Tokamak at Culham, and two more are to be used on the Mega-Ampere Spherical Tokamak (MAST) at pulse lengths of up to 5 s. Since the grid modeling has never been tested experimentally, a method for diagnosing changes in beam transport as a function of pulse length using light emitted by the beam is now under development at Culham to see if grid modifications are required for MAST. Initial experimental results, carried out using a 50 A 30 keV hydrogen beam, are presented (including comparison with thermocouple data using an EK98 graphite beam stop). These confirm that emission measurement should allow the accelerator focal length and beamlet divergence to be determined to accuracies of better than ±0.45 m and ±0.2°, respectively (compared to nominal values of 4 m and 1.2°).
Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S
2010-10-01
A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.
Dynamic characteristic of a 30-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
Measurements of the fluctuations of the discharge and beam plasmas of a 30 centimeter ion thruster were performed using 60 Hertz laboratory type power supplies. The time-varying properties of the discharge voltage and current, the ion beam current, and neutralizer keeper current were measured. The intensities of the fluctuations were found to depend on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was found to be related to the beam and magnetic baffle currents. The measurements indicated that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics modify these fluctuations.
Development of a plasma generator for a long pulse ion source for neutral beam injectors.
Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S
2011-06-01
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics
Tang, Yongsheng; Ren, Zhongdao
2017-01-01
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated. PMID:28230747
Tang, Yongsheng; Ren, Zhongdao
2017-02-20
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-02-03
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less
Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas
NASA Astrophysics Data System (ADS)
Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.
2017-12-01
A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.
NASA Astrophysics Data System (ADS)
Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David
2017-10-01
We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
ORNL-TNS/PEPR overall heating requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Y. K.M.; Rome, J. A.
1977-01-01
The ORNL TNS/PEPR studies have the objectives of (1) leading to a system that demonstrates the fusion reactor core in the mid-to-late 1980's and extrapolates to an economic tokamak power reactor, and (2) providing a near-term focus for the scientific and technological programs toward the power reactor. This discussion of the overall heating requirements for the ORNL TNS/PEPR is concerned with the neutral beams as the primary heating method, the electron-cyclotron resonance (ECR) heating at a lower power level for profile control, and the upper hybrid resonance (UHR) initiation and preheating of currentless plasmas to reduce current start-up loop voltagemore » (V/sub l/) requirements.« less
Resonant neutral-particle emission in collisions of electrons with peptide ions in a storage ring.
Tanabe, T; Noda, K; Saito, M; Lee, S; Ito, Y; Takagi, H
2003-05-16
Electron-biomolecular ion collisions were studied using an electrostatic storage ring with a merging beam technique for singly protonated peptides (angiotensin I, II, and III). A strong neutral-particle emission at around 6.5 eV was found in addition to neutrals from recombination at low energies. The rates of the high-energy peak greatly decreased with a slight decrease in the number of amino-acid residues from angiotensin I to III. These results suggest that some peptide bonds were selectively cleaved.
Characterization of the Li beam probe with a beam profile monitor on JETa)
NASA Astrophysics Data System (ADS)
Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors
2010-10-01
The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.
Edge momentum transport by neutrals: an interpretive numerical framework
NASA Astrophysics Data System (ADS)
Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team
2017-06-01
Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.
Aberration of a negative ion beam caused by space charge effect.
Miyamoto, K; Wada, S; Hatayama, A
2010-02-01
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
Highly charged ion beams and their applications
NASA Astrophysics Data System (ADS)
Marler, Joan
2018-01-01
While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.
Recent improvements of the JET lithium beam diagnostica)
NASA Astrophysics Data System (ADS)
Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors
2012-10-01
A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1980-11-30
differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower
Environmental Impact Statement for the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Malkin, M. S.
1978-01-01
Test firings and launches will release air pollutants causing a temporary localized small degradation in air quality near the tests or launch site. Areas adjacent to the site will also be subjected to moderate sound levels of predominantly low frequencies for short durations. During the launch phase, hydrogen chloride will be introduced into the stratosphere causing a small decrease in ozone. Temporary perturbations to the ionosphere will occur during orbital maneuvers and entry will have no significant effect on communication or radio wave propagation. As the Orbiter descends, a low magnitude sonic beam will be produced along the groundtrack with maximum overpressures occurring near the landing site. The overpressures will be infrequent, will vary in location and are of sufficiently low energy to be considered a momentary annoyance, if noticed at all. Major alternatives considered are discontinuation or postponement of the program, use of alternate propellants and neutralization of the ground cloud.
NASA Astrophysics Data System (ADS)
Gottschall, M.; Müller, J.
2014-01-01
Double polarization experiments using a longitudinally or transversely polarized frozen-spin-butanol target and a linearly or circularly polarized photon beam were performed with the CBELSA/TAPS experiment at the electron accelerator ELSA. With its nearly 4π angular coverage, this setup is very well suited to study neutral meson photoproduction off the nucleon up to beam energies of 3.2 GeV. Results obtained for the double polarization observable E in neutral pion and eta photoproduction show the large sensitivity of the data on the contributing resonances. If the data are compared to the predictions of state of the art partial wave analyses, large discrepancies are observed.
NASA Astrophysics Data System (ADS)
Bosetti, P. C.; Fritze, P.; Grässler, H.; Hasert, F. J.; Schulte, R.; Schultze, K.; Geich-Gimbel, C.; Nellen, B.; Pech, R.; Wünsch, B.; Grant, A.; Hulth, P. O.; Klein, H.; Morrison, D. R. O.; Pape, L.; Wachsmuth, H.; Vayaki, A.; Barnham, K. W. J.; Beuselinck, R.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Petrides, A.; Albajar, C.; Myatt, G.; Saitta, B.; Wells, J.; Bolognese, T.; Vignaud, D.; Aachen-Bonn-CERN-Democritos-Imperial College, London-Oxford-Saclay Collaboration
1983-05-01
The ratios of neutral current to charged current cross sections of neutrino and antineutrino interactions in heavy Ne/H 2 mixture have been measured in BEBC. The beam was the CERN SPS 200 GeV/ c narrow band beam. The ratios were obtained using a cut in the transverse momentum of the hadronic system. In the standard Glashow-Salam-Weinberg model, our results correspond to the value of sin 2θw = 0.182 ± 0.020 ± 0.012. By combining this experiment with data from a hydrogen target the coupling constants uL2 and L2 are found to be 0.15 ± 0.04 and 0.19 ± 0.05, respectively.
NASA Astrophysics Data System (ADS)
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Gerhardt, S. P.; Boyer, M. D.; Andre, R.; Kolemen, E.; Taira, K.
2016-03-01
A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.
2016-02-19
A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints onmore » the actuators and the available measurements of rotation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar, J.; Andres, J. de; Lucas, J. M.
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less
Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A
2014-02-01
The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
Measurements on wave propagation characteristics of spiraling electron beams
NASA Technical Reports Server (NTRS)
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
Electroproduction of the neutral pion off 4He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torayev, Bayram
Deeply virtual exclusive processes offer a unique opportunity to study the internal structure of the nucleon and nuclei. The goal of this work is to extract the beam-spin asymmetry in deeply virtual coherent neutral pion electroproduction, e^4He to e'^4He'pi^0, using the CLAS detector in the experimental Hall B at Thomas Jefferson National Accelerator Facility. The data were collected in 2009 with a 6 GeV longitudinally polarized electron beam impinging on a 30 cm long, 6 atm Helium-4 gaseous target. In order to ensure that the process is coherent, a new Radial Time Projection Chamber was used to detect and identifymore » low energy recoil a-particles. The Beam Spin Asymmetry in the coherent deep exclusive regime was measured at Q^2 = 1.50 GeV^2, xB = 0.18 and -t = 0.14 GeV^2. The measured asymmetry has an amplitude of 10%+/-5% and has the opposite sign compared the asymmetry measured for pi^0 production on the proton.« less
Yamano, Y; Takahashi, M; Kobayashi, S; Hanada, M; Ikeda, Y
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500 keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Yamano, Y.; Takahashi, M.; Kobayashi, S.; Hanada, M.; Ikeda, Y.
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
Active spectroscopic measurements using the ITER diagnostic system.
Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A
2010-10-01
Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.
Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes
NASA Astrophysics Data System (ADS)
Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.
2017-04-01
An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.
A Novel Gravito-Optical Surface Trap for Neutral Atoms
NASA Astrophysics Data System (ADS)
Xie, Chun-Xia; Wang, Zhengling; Yin, Jian-Ping
2006-04-01
We propose a novel gravito-optical surface trap (GOST) for neutral atoms based on one-dimensional intensity gradient cooling. The surface optical trap is composed of a blue-detuned reduced semi-Gaussian laser beam (SGB), a far-blue-detuned dark hollow beam and the gravity field. The SGB is produced by the diffraction of a collimated Gaussian laser beam passing through the straight edge of a semi-infinite opaque plate and then is reduced by an imaging lens. We calculate the intensity distribution of the reduced SGB, and study the dynamic process of the SGB intensity-gradient induced Sisyphus cooling for 87Rb atoms by using Monte Carlo simulations. Our study shows that the proposed GOST can be used not only to trap cold atoms loaded from a standard magneto-optical trap, but also to cool the trapped atoms to an equilibrium temperature of 3.47 μK from ~120 μK, even to realize an all-optical two-dimensional Bose-Einstein condensation by using optical-potential evaporative cooling.
The motional stark effect with laser-induced fluorescence diagnostic
NASA Astrophysics Data System (ADS)
Foley, E. L.; Levinton, F. M.
2010-05-01
The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.
Simulative research on the anode plasma dynamics in the high-power electron beam diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Dan; Liu, Lie; Ju, Jin-Chuan
2015-07-15
Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less
NASA Astrophysics Data System (ADS)
Keith, Rodney Lyman
Intermodal shipping containers entering the United States provide an avenue to smuggle unsecured or stolen special nuclear material (SNM). The only direct method fielded to indicate the presence of SNM is by passive photon/neutron radiation detection. Active interrogation using neutral particle beams to induce fission in SNM is a method under consideration. One by-product of fission is the creation of fragments that undergo radioactive decay over a time period on the order of tens of seconds after the initial event. The "delayed" gamma-rays emitted from these fragments over this period are considered a hallmark for the presence of SNM. A fundamental model is developed using homogenized cargos with a SNM target embedded at the center and computationally interrogated using simultaneous neutron and photon beams. Findings from analysis of the delayed gamma emissions from these experiments are intended to mitigate the effects of poor quality information about the composition and disposition of suspect cargo before examination in an active interrogation portal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, N.C.; Limbach, P.A.; Shomo, R.E. II
The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample.more » The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.« less
Polarisation of the Balmer-α emission in crossed electric and magnetic fields
NASA Astrophysics Data System (ADS)
Thorman, Alex
2018-03-01
An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.
High-Q plasmas in the TFTR tokamak
NASA Astrophysics Data System (ADS)
Jassby, D. L.; Barnes, C. W.; Bell, M. G.; Bitter, M.; Boivin, R.; Bretz, N. L.; Budny, R. V.; Bush, C. E.; Dylla, H. F.; Efthimion, P. C.; Fredrickson, E. D.; Hawryluk, R. J.; Hill, K. W.; Hosea, J.; Hsuan, H.; Janos, A. C.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S. J.; LaMarche, P. H.; LeBlanc, B.; Mansfield, D. K.; Marmar, E. S.; McCune, D. C.; McGuire, K. M.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Owens, D. K.; Park, H. K.; Paul, S. F.; Pitcher, S.; Ramsey, A. T.; Redi, M. H.; Sabbagh, S. A.; Scott, S. D.; Snipes, J.; Stevens, J.; Strachan, J. D.; Stratton, B. C.; Synakowski, E. J.; Taylor, G.; Terry, J. L.; Timberlake, J. R.; Towner, H. H.; Ulrickson, M.; von Goeler, S.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K.-L.; Young, K. M.; Zarnstorff, M. C.; Zweben, S. J.
1991-08-01
In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D-D fusion power gain QDD are realized in the neutral-beam-fueled and heated ``supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ``carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/
Multiple-channel, total-reflection optic with controllable divergence
Gibson, David M.; Downing, Robert G.
1997-01-01
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.
Multiple-channel, total-reflection optic with controllable divergence
Gibson, D.M.; Downing, R.G.
1997-02-18
An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.
Fast-ion D(alpha) measurements and simulations in DIII-D
NASA Astrophysics Data System (ADS)
Luo, Yadong
The fast-ion Dalpha diagnostic measures the Doppler-shifted Dalpha light emitted by neutralized fast ions. For a favorable viewing geometry, the bright interferences from beam neutrals, halo neutrals, and edge neutrals span over a small wavelength range around the Dalpha rest wavelength and are blocked by a vertical bar at the exit focal plane of the spectrometer. Background subtraction and fitting techniques eliminate various contaminants in the spectrum. Fast-ion data are acquired with a time evolution of ˜1 ms, spatial resolution of ˜5 cm, and energy resolution of ˜10 keV. A weighted Monte Carlo simulation code models the fast-ion Dalpha spectra based on the fast-ion distribution function from other sources. In quiet plasmas, the spectral shape is in excellent agreement and absolute magnitude also has reasonable agreement. The fast-ion D alpha signal has the expected dependencies on plasma and neutral beam parameters. The neutral particle diagnostic and neutron diagnostic corroborate the fast-ion Dalpha measurements. The relative spatial profile is in agreement with the simulated profile based on the fast-ion distribution function from the TRANSP analysis code. During ion cyclotron heating, fast ions with high perpendicular energy are accelerated, while those with low perpendicular energy are barely affected. The spatial profile is compared with the simulated profiles based on the fast-ion distribution functions from the CQL Fokker-Planck code. In discharges with Alfven instabilities, both the spatial profile and spectral shape suggests that fast ions are redistributed. The flattened fast-ion Dalpha profile is in agreement with the fast-ion pressure profile.
Observations of ELM stabilization during neutral beam injection in DIII-D
NASA Astrophysics Data System (ADS)
Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas
2017-10-01
Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.
Studies of dynamic processes related to active experiments in space plasmas
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Neubert, Torsten
1992-01-01
This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isler, R.C.; Colchin, R.J.; Wade, M.R.
Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less
NASA Technical Reports Server (NTRS)
Soeder, James F.; Pinero, Luis; Schneidegger, Robert; Dunning, John; Birchenough, Art
2012-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hours and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hours of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Scheidegger, Robert J.; Pinero, Luis R.; Birchenough, Arthur J.; Dunning, John W.
2012-01-01
The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hr and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location-the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hr of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.
Calculation of the non-inductive current profile in high-performance NSTX plasmas
NASA Astrophysics Data System (ADS)
Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.
2011-03-01
The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.
The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinallymore » and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011. As future funds become available, additional induction cells and pulsed power systems will be added to increase the beam energy.« less
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
NASA Astrophysics Data System (ADS)
Rivlin, Lev A.
1990-05-01
A method is suggested for the generation of atomic beams with a high degree of monokinetization from beams of negative ions accelerated in an electric field up to a threshold moment at which, subject to the Doppler effect, the longitudinal component of the ion velocity becomes sufficient for the photodetachment of an electron from an ion by photons in a laser beam collinear with the ion beam. The resultant neutral atoms continue to move without acceleration and at the same longitudinal velocities equal to the threshold value. An analysis of a number of factors limiting this effect is given below.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Wemple; Joshua J. Cogliati
2005-04-01
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less
Spin-dependent excitation of plasma modes in non-neutral ion plasmas
NASA Astrophysics Data System (ADS)
Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.
2011-10-01
We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.
NASA Astrophysics Data System (ADS)
Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.
2016-06-01
The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, V.; Agostinetti, P.; Brombin, M.
2015-04-08
In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less
NASA Astrophysics Data System (ADS)
Dostanko, A. P.; Golosov, D. A.
2009-10-01
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).
A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac
NASA Astrophysics Data System (ADS)
Miura, A.; Tamura, J.; Kawane, Y.
2017-07-01
In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.
Neutral Beam Driven Neoclassical Transport in NSTX
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Shaing, K. C.; Callen, J. D.
2002-11-01
We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505
A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges
DOE R&D Accomplishments Database
Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.
1987-02-01
Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.
Fast resolution change in neutral helium atom microscopy
NASA Astrophysics Data System (ADS)
Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.
2018-05-01
In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.
Energy and Pitch Distribution of Spontaneously-generated High-energy Bulk Ions in the RFP
NASA Astrophysics Data System (ADS)
Kim, Jungha; Anderson, Jay; Reusch, Joshua; Eilerman, Scott; Capecchi, William
2014-10-01
Magnetic reconnection events in the reversed field pinch (RFP) are known to heat bulk and impurity ions. Runaway due to a parallel electric field has recently been confirmed as an important acceleration mechanism for high energy test ions supplied by a neutral beam. This effect does not, however, explain the change in distribution of nearly Maxwellian bulk ions at a reconnection event. By operating MST near maximum current and low electron density, significant fusion neutron flux can be generated without neutral beam injection. The bulk ion distribution created in these plasmas is well-confined, non-Maxwellian, and can be measured by the Advanced Neutral Particle Analyzer (ANPA) placed at a radial or tangential porthole. Data show a high energy tail up to 25 keV with a relatively higher signal in the low energy channels (8-15 keV) at the radial port following a reconnection event. Analysis of the energy dependence of trapped orbits sampled by the ANPA at the radial view implies an abundance of lower energy particles in regions of higher neutral density. This mandates a careful deconvolution of the measured ANPA signal to compute the fast ion distribution. This work is supported by the US DOE and NSF.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, A.M.; Ruzic, D.N.; Powell, R.C.
An analyzer capable of determining the mass as well as the energy (5--200 eV) of neutral and ion species has been developed from a quadrupole mass spectrometer (QMS). The system, which is similar to a retarding grid energy analyzer (RGEA), functions by biasing the rods of a QMS and monitoring the analyzer signal as a function of bias potential. Modulation of the pole bias greatly increases the minimum detectable signal level. Experiments were performed using species generated in a single-grid Kaufman ion gun operated with N{sub 2} or Ar. Results show that the pole bias techniques can provide energy resolutionmore » of 1--2 eV. Ion species from the gun were found to have an energy equal to the sum of the beam and the plasma potentials, with an energy spread between 1 and 3 eV. Fast N{sub 2} and Ar neutral species were measured as a function of discharge voltage (30--80 V), beam acceleration voltage (50--100 V), grid voltage ({minus}20 to +5 V), and pressure (0.5 and 1.5 mTorr). The energy of the fast neutral species was always less than that of the ions. This was consistent with the fast neutrals being formed by a charge-exchange process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
Neutral Beam Injection System for the SHIP Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrashitov, G.F.; Abdrashitov, A.G.; Anikeev, A.V.
2005-01-15
The injector ion source is based on an arcdischarge plasma box. The plasma emitter is produced by a 1 kA arc discharge in deuterium. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found by means of numerical simulation tomore » provide precise beam formation. The measured angular divergence of the beam is 0.025 rad, which corresponds to a 4.7 cm Gaussian radius of the beam profile measured at focal point.« less
Particle beam injection system
Jassby, Daniel L.; Kulsrud, Russell M.
1977-01-01
This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.
Code of Federal Regulations, 2010 CFR
2010-10-01
... program must include race-neutral measures that you will take. You must maximize the use of race-neutral... race-neutral measures you can implement: (1) Locating and identifying ACDBEs and other small businesses... also provide for the use of race-conscious measures when race-neutral measures, standing alone, are not...
Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.
Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S
2015-07-24
We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.
Neutral strange particle production in antineutrino-neon charged current interactions
NASA Astrophysics Data System (ADS)
Willocq, S.; Marage, P.; Aderholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A. M.; Erriquez, O.; Faulkner, P. J. W.; Guy, J.; Hulth, P. O.; Jones, G. T.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S.; Sacton, J.; Sansum, R. A.; Varvell, K.; Venus, W.; Wells, J.; Wittek, W.
1992-06-01
Neutral strange particle production inbar v Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% for K 0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% forbar Λ and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties of K 0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.
High-current plasma contactor neutralizer system
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.
1989-01-01
A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.
Eight-cm mercury ion thruster system technology
NASA Technical Reports Server (NTRS)
1974-01-01
The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.
Simulations of space charge neutralization in a magnetized electron cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerity, James; McIntyre, Peter M.; Bruhwiler, David Leslie
Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
Structural attachments for large space structures
NASA Technical Reports Server (NTRS)
Pruett, E. C.; Loughead, T. E.; Robertson, K. B., III
1980-01-01
The feasibility of fabricating beams in space and using them as components of a large, crew assembled structure, was investigated. Two projects were undertaken: (1) design and development of a ground version of an automated beam builder capable of producing triangular cross section aluminum beams; and (2) design and fabrication of lap joints to connect the beams orthogonally and centroidal end caps to connect beams end to end at any desired angle. The first project produced a beam building machine which fabricates aluminum beams suitable for neutral buoyancy evaluation. The second project produced concepts for the lap joint and end cap. However, neither of these joint concepts was suitable for use by a pressure suited crew member in a zero gravity environment. It is concluded that before the beams can be evaluated the joint designs need to be completed and sufficient joints produced to allow assembly of a complex structure.
NASA Astrophysics Data System (ADS)
Varela, J.; Spong, D. A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A. M.; Qian, J. P.; Holcomb, C. T.; Hyatt, A. W.; Ferron, J. R.; Collins, C. S.; Ren, Q. L.; McClenaghan, J.; Guo, W.
2018-07-01
Alfvén eigenmodes are destabilized at the DIII-D pedestal during transient beta drops in high poloidal β discharges with internal transport barriers (ITBs), driven by n = 1 external kink modes, leading to energetic particle losses. There are two different scenarios in the thermal β recovery phase: with bifurcation (two instability branches with different frequencies) or without bifurcation (single instability branch). We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics, to study the properties of the instabilities observed in the DIII-D high poloidal β discharges and identify the conditions to trigger the bifurcation. The simulations suggest that instabilities with lower frequency in the bifurcation case are ballooning modes driven at the plasma pedestal, while the instability branch with higher frequencies are low n (n < 4) toroidal Alfvén eigenmodes nearby the pedestal. The reverse shear region between the middle and plasma periphery in the non-bifurcated case avoids the excitation of ballooning modes at the pedestal, although toroidal Alfvén eigenmodes and reverse shear Alfvén eigenmodes are unstable in the reverse shear region. The n = 1 and n = 2 Alfvén eigenmode activity can be suppressed or minimized if the neutral beam injector (NBI) intensity is lower than the experimental value (). In addition, if the beam energy or neutral beam injector voltage is lower than in the experiment (), the resonance between beam and thermal plasma is weaker. The and 6 AE activity can not be fully suppressed, although the growth rate and frequency is smaller for an optimized neutral beam injector operation regime. In conclusion, AE activity in high poloidal β discharges can be minimized for optimized NBI operation regimes.
Oblate Field-Reversed Configuration Experiments with Neutral Beam Injection
NASA Astrophysics Data System (ADS)
T., II; Gi, K.; Umezawa, T.; Inomoto, M.; Ono, Y.
2011-11-01
The effect of energetic beam ions on oblate Field-Reversed Configurations (FRCs) has been studied experimentally in the TS-4 plasma merging device. In order to examine its kinetic effects, we developed an economical pulsed Neutral Beam Injection (NBI) system by using a washer gun plasma source and finally attained the beam power of 0.6 MW (15 kV, 40 A) for its pulse length of 0.5 ms, longer than the FRC lifetime in TS-4. The Monte Carlo simulation indicates that the tangential NB ions of 15 keV are trapped between the magnetic axis and the separatrix. We found that two merging high-s (s is plasma size normalized by ion gyroradius) hydrogen spheromaks with opposite helicities relaxed into the large scale FRC with poloidal flux as high as 15 mWb under the assistance of the NBI. Without the assistance of NBI, however, they did not relax to an FRC but to another spheromak. These facts suggest some ion kinetic effects such as toroidal ion flow are essential to FRC stability. Recently, two new NB sources with acceleration voltage and current of 15 kV and 20 A were installed on the TS-4 device on the midplane for tangential injection, increasing the beam power over 1 MW. We will start the upgraded FRC experiments using the 1 MW NBI for ion flow control.
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de
The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less
The R&D progress of 4 MW EAST-NBI high current ion source.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin
2014-02-01
A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.
Analysis techniques for momentum transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S.D.
1991-08-01
This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)
Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varault, S.; Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9; Gabard, B.
We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiationmore » pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.« less
NASA Astrophysics Data System (ADS)
Ohori, Daisuke; Fukuyama, Atsuhiko; Sakai, Kentaro; Higo, Akio; Thomas, Cedric; Samukawa, Seiji; Ikari, Tetsuo
2017-05-01
GaAs quantum nanodisks (QNDs) in nanopillar (NP) arrays are considered to be an attractive candidate for photonic device applications. We report a damageless fabrication technique that can be used to produce large-area lattice-matched GaAs/AlGaAs heterostructure NP arrays through the use of a bio-template and neutral beam etching. We have successfully realized GaAs QNDs in NPs owing to nanoscale iron oxide masks included in poly(ethylene glycol)-decorated ferritin protein shells. We observed for first time the photoluminescence emission from as-etched GaAs QNDs and confirmed quantum confinement by quantum mechanical calculation. Our methodology is vital for high-efficiency pillar-based optoelectronic devices such as NP laser diodes.
Operational Characteristics of Liquid Lithium Divertor in NSTX
NASA Astrophysics Data System (ADS)
Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.
2010-11-01
Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.
Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.
Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S
2014-02-01
The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.
A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. G.
1972-01-01
A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.
Diagnostic studies of ion beam formation in inductively coupled plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jenee L.
2015-01-01
This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 10 15 cm -3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M 2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO +)more » ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.« less
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
Power source selection for neutral particle beam systems
NASA Astrophysics Data System (ADS)
Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory
Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.
Steady-State Ion Beam Modeling with MICHELLE
NASA Astrophysics Data System (ADS)
Petillo, John
2003-10-01
There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.
Method for producing uranium atomic beam source
Krikorian, Oscar H.
1976-06-15
A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.
Tracking and Control of a Neutral Particle Beam Using Multiple Model Adaptive Meer Filter.
1987-12-01
34 method incorporated by Zicker in 1983 [32]. Once the beam estimation problem had been solved, the problem of beam control was examined. Zicker conducted a...filter. Then, the methods applied by Meer, and later Zicker , to reduce the computational load of a simple Meer filter, will be presented. 2.5.1 Basic...number of possible methods to prune the hypothesis tree and chose the "Best Half Method" as the most viable (21). Zicker [323, applied the work of Weiss
1998-07-30
contribution we will present size dependent results absorption.of photons from two ultrashort laser pulses on the dynamics of electronic excitations in the at a... cluster beam has confirmed that the nanoparticles in the gas phase and deposited in thin laser -driven flow reactor is capable of producing films. hydrogen ...approximately 7 times larger than neutrals. MB 11 - 138 Molecular Beam Studies of Ammonia Clustered with III Group Metals Produced by Pulsed Laser Reactive
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting modemore » structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.« less
Mass spectra of neutral particles released during electrical breakdown of thin polymer films
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.
1985-01-01
A special type of time-of-flight mass spectrometer triggered from the breakdown event was developed to study the composition of the neutral particle flux released during the electrical breakdown of polymer films problem. Charge is fed onto a metal-backed polymer surface by a movable smooth platinum contact. A slowly increasing potential from a high-impedance source is applied to the contact until breakdown occurs. The breakdown characteristics is made similar to those produced by an electron beam charging system operating at similar potentials. The apparatus showed that intense instantaneous fluxes of neutral particles are released from the sites of breakdown events. For Teflon FEP films of 50 and 75 microns thickness the material released consists almost entirely of fluorocarbon fragments, some of them having masses greater than 350 atomic mass units amu, while the material released from a 50 micron Kapton film consists mainly of light hydrocarbons with masses at or below 44 amu, with additional carbon monoxide and carbon dioxide. The apparatus is modified to allow electron beam charging of the samples.
NASA Astrophysics Data System (ADS)
Serianni, G.; De Muri, M.; Muraro, A.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Franzen, P.; Ruf, B.; Schiesko, L.
2014-02-01
The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.
Ion beam technology applications study. [ion impact, implantation, and surface finishing
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Komatsu, G. K.
1978-01-01
Specific perceptions and possible ion beam technology applications were obtained as a result of a literature search and contact interviews with various institutions and individuals which took place over a 5-month period. The use of broad beam electron bombardment ion sources is assessed for materials deposition, removal, and alteration. Special techniques examined include: (1) cleaning, cutting, and texturing for surface treatment; (2) crosslinking of polymers, stress relief in deposited layers, and the creation of defect states in crystalline material by ion impact; and (3) ion implantation during epitaxial growth and the deposition of neutral materials sputtered by the ion beam. The aspects, advantages, and disadvantages of ion beam technology and the competitive role of alternative technologies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; De Muri, M.; Veltri, P.
2014-02-15
The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some resultsmore » concerning the BATMAN beam under varying operating conditions.« less
A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector
NASA Astrophysics Data System (ADS)
Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.
2017-10-01
The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.
Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams
NASA Astrophysics Data System (ADS)
Schumaker, Will
2013-10-01
Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.